Uniform Inference in Nonlinear Models with Mixed Identification Strength

The paper studies inference in nonlinear models where identification loss presents in multiple parts of the parameter space. For uniform inference, we develop a local limit theory that models mixed identification strength. Building on this non-standard asymptotic approximation, we suggest robust tests and confidence intervals in the presence of non-identified and weakly identified nuisance parameters. In particular, this covers applications where some nuisance parameters are non-identified under the null (Davies (1977, 1987)) and some nuisance parameters are subject to a full range of identification strength. The asymptotic results involve both inconsistent estimators that depend on a localization parameter and consistent estimators with different rates of convergence. A sequential argument is used to peel the criterion function based on identification strength of the parameters. The robust test is uniformly valid and non-conservative.

Download Paper

Paper Number
Authored by