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Abstract

The paper studies inference in nonlinear models where identification loss presents in multiple

parts of the parameter space. For uniform inference, we develop a local limit theory that models

mixed identification strength. Building on this non-standard asymptotic approximation, we sug-

gest robust tests and confidence intervals in the presence of non-identified and weakly identified

nuisance parameters. In particular, this covers applications where some nuisance parameters are

non-identified under the null (Davies (1977, 1987)) and some nuisance parameters are subject

to a full range of identification strength. The asymptotic results involve both inconsistent esti-

mators that depend on a localization parameter and consistent estimators with different rates of

convergence. A sequential argument is used to peel the criterion function based on identification

strength of the parameters. The robust test is uniformly valid and non-conservative.
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1 Introduction

Economic theory and empirical studies often suggest nonlinear relationships among economic vari-

ables. These relationships are commonly specified in a parametric form involving several nonlinear

component functions with unknown transformation parameters and loading coefficients that mea-

sure the importance of each component. Inference in such nonlinear models are non-standard due

to loss of identification in multiple areas of the parameter space. This paper investigates inference

in an additive nonlinear regression model that takes the form

Yt =

p∑
j=1

gj(Xt, πj)βj + Z ′tζ + Ut, (1.1)

where the nonlinear function gj(·, πj) is known up to πj for j = 1, ..., p. For example, in a multiple

regime smooth transition model, the unknown parameter πj characterizes the transition from one

regime to the next via an exponential or logistic transformation and the null hypothesis H0 : βp = 0

reduces p regimes to p− 1 regimes.1 Many other types of nonlinear transformations are discussed

in Hansen (1996). In this nonlinear model, πj is not identified if βj = 0 for j = 1, ..., p, which yields

p different sources of identification failures. In finite-sample estimation, πj is weakly identified

when βj is close to 0 and the identification strength of πj varies with the magnitude of βj . Such

non/weak identification from each nonlinear component is spilled over to the estimation of all

unknown parameters.

Mixed identification strength brings new challenges to uniform inference. Take the test H0 :

βp = 0 for example. In addition to the non-identification of πp under the null hypothesis, the

nuisance parameters πj for j = 1, ..., p − 1 could be non-identified, weakly identified, or strongly

identified, depending on the unknown value of βj . In consequence, this is a non-standard test that

is different from the problem investigated in Davies (1977, 1987), Andrews and Ploberger (1994),

and Hansen (1996), among others. These classical results apply to testing the null hypothesis

H0 : β = (β1, ..., βp)
′ = 0, where the nuisance parameter π = (π1, ..., πp)

′ is non-identified. When

the interest is in a sub-vector of β rather than the full vector, a uniformly valid test has not been

studied in the literature.

This paper studies uniform inference for sub-vectors of θ = (β′, ζ ′, π′)′. The result not only

covers the test H0 : βp = 0, but also applies to any linear functions of θ and applies to both

tests and confidence sets. For confidence set construction, Andrews and Cheng (2012) consider

a broad class of models where non-identification occurs at a single point of the parameter space,

1See van Dijk, Terasvirta, and Franses (2002) for a review of the smooth transition autoregressive model.
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including the model in (1.1) with p = 1. The main challenge in this paper is the multiple sources

of non/weak identification when p > 1, as illustrated by the test H0 : βp = 0. As in Andrews and

Cheng (2012), this paper considers a full range of identification strength around the crucial point

where identification is lost. However, when the number of such crucial points increases from one

to multiple, a new asymptotic theory is required for uniform inference with mixed identification

strength.

The paper derives a local limit theory for the least squares estimator and the Wald statistic

when βj converges to 0 at various rates or is bounded away from 0. A faster convergence rate

models weaker identification strength of πj . This is analogous to the model of weak instruments

in Staiger and Stock (1997) and Stock and Wright (2000). Because the identification strength is

unknown, all convergence rates and all combinations across j = 1, ..., p are considered for uniform

inference, following the approach in Andrews and Guggenberger (2009a, 2010).

The main technical innovation of the paper is the use of sequential arguments to develop the

asymptotic theory for estimators and test statistics in the presence of mixed identification strength.

This asymptotic theory allows for the coexistence of both inconsistent estimators and consistent

estimators with different rates of convergence. To implement the sequential arguments, we first

concentrate out the loading coefficients β and ζ, which are always strongly identified, then group

the nonlinear parameters πj based on their identification strength. Starting from the most strongly

identified group to the most weakly identified group, the sequential procedure concentrates out

one group at a time. The most weakly identified group involves inconsistent estimators that are

functionals of chi-square processes. The rate of convergence of consistent estimators are derived in

a sequential manner. Finally, the process is reversed by plugging the most weakly identified group

to other groups and the test statistics. Uniformly valid tests and confidence sets are suggested

based on these non-standard asymptotic distributions.

The asymptotic theory in this paper complements the mixed-rate results developed in Lee (2005,

2010), Radchenko (2008), and Antoine and Renault (2012). In particular, a rotation akin to that

in Antoine and Renault (2012) is used to develop the asymptotic distribution of the Wald statistic.

The asymptotic results also relate to those considered for near weak instruments by Hahn and

Kuersteiner (2002), Caner (2010), and Antoine and Renault (2009). In addition, mixed-rate results

have a long history for non-stationary time series, such as Phillips and Park (1988), Sims, Stock,

and Watson (1990), Kitamura and Phillips (1997), just to name a few. Different from these papers,

the present problem is tied to loss of identification and it involves both inconsistent estimators and

consistent estimators with different rates of convergence. The Wald statistic does not always have
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an asymptotic chi-square distribution. Furthermore, a different proof strategy based on sequential

peeling is used for the identification problem at hand.

There is growing interest in robust inference with weakly identified nuisance parameters. The

projection method is studied in Dufour and Taamouti (2005, 2007). Recent development with

weakly identified nuisance parameters include Chaudhuri and Zivot (2011), Andrews and Cheng

(2012, 2013, 2014), Guggenberger, Kleibergen, Mavroeidis, and Chen (2012), Andrews and Miku-

sheva (2012, 2013), Chen, Ponomareva, and Tamer (2013), among others. In the nonlinear model

considered in this paper, the direction of weak identification is known. Making use of this structure,

we propose a robust and non-conservative test in the presence of multiple weakly identified nui-

sance parameters. In a general nonlinear model without such knowledge, the geometric approach

in Andrews and Mikusheva (2013) provides an informative robust test.

This paper also broadly relates to many other papers on non-identification and weak identi-

fication. The weak instrument literature is related to the weak identification considered in the

present paper, e.g., see Nelson and Startz (1990), Dufour (1997), Staiger and Stock (1997), Stock

and Wright (2000), Kleibergen (2002, 2005), Moreira (2003), Guggenberger and Smith (2005),

Andrews, Moreira, and Stock (2006), Olea (2013), Andrews (2013), and other papers referenced

in Andrews and Stock (2007). Guerron-Quintana, Inoue, and Kilian (2013), Andrews and Miku-

sheva (2012, 2013), Qu (2013) consider weak identification in DSGE models, an important issue

discussed in Schorfheide (2013). Nelson and Startz (2007) introduce the zero-information-limit

condition, which applies to the models considered in this paper. Ma and Nelson (2010) consider

tests based on linearization for nonlinear models under weak identification. Sargan (1983), Phillips

(1989), and Choi and Phillips (1992) study simultaneous equations models where some parameters

are unidentified. Shi and Phillips (2012) consider weak identification with integrated regressors.

The rest of the paper is organized as follows. Section 2 introduces the drifting sequences of true

parameters used to model mixed identification strength. Sections 3 and 4 develop the asymptotic

distributions of the least squares estimator and the Wald and t statistic under mixed identification

strength. Section 5 proposes a robust test based on this non-standard asymptotic distribution.

This robust test has correct asymptotic size and it is as efficient as the standard test under strong

identification. Proofs are collected in the Appendix.
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2 Uniformity and Drifting Sequences of Distributions

We are interested in a sub-vector of θ, denoted by Rθ, where the matrix R has full rank dr ≤ dθ.

The true value of θ belongs to a set Θ∗, which includes a neighborhood around β = 0. Thus,

the area where non/weak identification occurs is part of the parameter space. For a fixed value

of v, we test the null hypothesis H0 : Rθ = v using the test statistic Tn(R) and a critical value

cn,1−α(v), where α is the nominal size. This notation allows cn,1−α(v) to depend on both the

sample size and the null value, although in standard scenarios it typically is the 1− α quantile of

a chi-square distribution or standard normal distribution. A nominal 1 − α confidence set for Rθ

is CSn = {v : Tn(R) ≤ cn,1−α(v)}, obtained by inverting tests.

Without knowing the true parameters, we aim to control the maximum null rejection probability

of a test over all true parameters consistent with the null, called the finite-sample size of a test. To

this end, a reliable critical value should be based on a uniform approximation of the distribution

of Tn(R) over the parameter space. However, standard asymptotic results developed under strong

identification fail to do so. To illustrate this uniformity issue, Figure 1 takes a simple model with

p = 2 and plots the finite-sample (n = 500) rejection probability of the standard two-sided t

test for different true values of β1 and β2. The data generating process (DGP) is specified below

where the robust test is introduced and more simulation results are reported. This figure confirms

that the standard approximation can be excellent for some true parameters but poor for the rest.

Furthermore, the area where standard approximation fails does not disappear even for large samples.

The lack of uniformity also applies to approximations by some non-standard distributions. Use

the simple model p = 2 for example. To test the null hypothesis H0 : β2 = 0, a non-standard

approximation is required due to the loss of identification of π2. However, the non-standard distri-

bution that works well for large β1 may work poorly when β1 is close to 0. Figure 1 demonstrates

that, even when the true value of β2 is fixed at 0, the distribution of the t statistics vary with the

true value of β1. To obtain a valid test for H0 : β2 = 0, we should consider all possible identification

strength of π1 as well as the non-identification of π2.

To better approximate the finite-sample distribution of the test statistic Tn(R), we consider

alternative asymptotic approximations along drifting sequences of true parameters. Let βj,n denote

the true value of βj for sample size n, for j = 1, ..., p. Due to the nonlinear structure of the model,

πj is strongly identified only if βj,n → βj,0 6= 0. For the rest, the rate at which {βj,n : n ≥ 1}

converges to 0 models the identification strength of πj . To achieve a uniform approximation, we
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Figure 1: Standard Two-Sided t Test: Finite-Sample Rejection Probability (×100) for H0 : β1 =
β1,0 (left) and H0 : β2 = β2,0 (right).

Notes: nominal size α = 5%, sample size n = 500, the true values of β1 and β2 are β1,0 = b1/
√

500
and β2,0 = b2/

√
500 for b1 and b2 in the X axis and Y axis of the figure.

consider sequences of βj,n for j = 1, ..., p that satisfy one of the following conditions:

(i) βj,n → 0, n1/2βj,n → bj ∈ R, (weak identification) or

(ii) βj,n → 0, n1/2|βj,n| → ∞, (semi-strong identification) or

(iii) βj,n → βj,0 6= 0 (strong identification). (2.1)

In addition, limn→∞ βj,n/βj′,n ∈ R∪{±∞} for sequences in (ii) and (iii)2. Following the terminology

in Andrews and Cheng (2012), the sequences in (i), (ii), (iii) are associated with weak, semi-

strong, and strong identification of πj , respectively. The semi-strong identification case provides

an important link between the two extreme cases and it is crucial for uniform results. In the

rest of the paper, we first develop asymptotic distributions of estimators and test statistics along

these drifting true parameters, under which the p nonlinear regressors are categorized into different

identification groups. The grouping rule is specified in Section 3.1 below. In particular, the semi-

strong identification category is further divided into different groups based on the rate at which

βj,n converges to 0. In practice, the group specification depends on the true parameters and is

2Without loss of generality, we assume βj,n 6= 0 ∀n for sequences in (ii) and (iii).
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unknown. We show that the class of asymptotic approximations along all group specifications is

sufficiently large to yield a uniform approximation of the finite-sample size of a test.

3 Asymptotic Distributions of Estimators

The observations {Wt = (Yt, X
′
t, Z
′
t)
′ : t ≤ n} are independent and identically distributed (i.i.d.)

or strictly stationary. We assume Ut has zero mean conditional on Xt and Zt. The true value of

θ belongs to the set Θ∗ = B∗1 × · · · × B∗p × Z∗ × Π∗, where B∗j for j = 1, ..., p is a closed interval

that includes both zero and non-zero values. Thus, the area where non/weak identification occurs

is part of the parameter space. Both Z∗ and Π∗ are compact sets. For any θ ∈ Θ∗, the distribution

of {Wt : t ≤ n} is denoted by Fγ for the parameter γ = (θ, φ) ∈ Γ, where φ ∈ Φ∗ denotes an

infinite-dimensional nuisance parameter that characterizes the distribution. In parametric models,

the finite-dimensional parameter θ fully specifies the distribution of the data and φ does not exist.

Let Pγ and Eγ denote the probability and expectation under the distribution indexed by γ.

In addition to the drifting sequences {βj,n : n ≥ 1}, we allow other parameters to change with

the sample size, following the approach in Andrews and Guggenberger (2009a, 2010). As such, we

not only obtain uniform results over B∗1 × · · · ×B∗p, but also over γ ∈ Γ. Specifically, for sample size

n, the true parameters are

θn = (β′n, ζ
′
n, π

′
n)′, βn = (β1,n, ..., βp,n)′, πn = (π1,n, ..., πp,n)′, and γn = (θn, φn) (3.1)

where θn → θ0 = (β′0, ζ
′
0, π
′
0)′, γn → γ0 ∈ Γ, and the subscript 0 denotes the limit of true values.

We consider rescaling βj,n as in (2.1) rather than other parameters because the distributions are

non-standard only when some elements of β are close to 0.

The least squares sample criterion function3 is

Qn(θ) =
1

2n

n∑
t=1

Yt − p∑
j=1

gj(Xt, πj)βj

2

. (3.2)

The least squares estimator θ̂n minimizes Qn(θ) over θ ∈ Θ, where Θ = B1 × · · · × Bp ×Z ×Π, Bj
for j = 1, ..., p are closed intervals, and Z and Π are compact sets. To focus on the identification

issue rather than the boundary effect, we assume all true values in Θ∗ are in the interior of Θ. We

3The constant 1/2 is added to simplify the asymptotic results presented below.
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derive asymptotic distributions along sequences of true parameters {γn ∈ Γ : n ≥ 1}, assuming the

following assumptions hold for any γ ∈ Γ.

Assumption 1. gj (x, π) is twice continuously differentiable with respect to (wrt) π, ∀π ∈ Π

and any x in its support. We denote the first and second order derivatives of gj (x, πj) wrt πj by

gπj (x, πj) and gππj (x, πj) , respectively. For some non-stochastic function Mj(x) ∈ R, |gππj(x, πj)−

gππj(x, πj)| ≤Mj(x)|πj − πj |, ∀πj , πj ∈ Πj .

For time series data, the following assumption holds. Let dθ denote the dimensional of θ.

Assumption 2. (i) {Wt : t ≥ 1} is a strictly stationary and strong mixing sequence with mixing

coefficients αm ≤ Cm−r for some r > dθq/(q − dθ) and some q > dθ ≥ 2.

(ii) Eγ(Ut|Ft−1) = 0 and Eγ |Ut|2q ≤ C, where Ft−1 is the sigma field to which Xt, Zt, and Ut−1 are

adapted.

(iii) Eγ(supπj∈Πj [gj (Xt, πj)
2q + gπj (Xt, πj)

2q + gππj (Xt, πj)
2q] +Mj(Xt)

2q) ≤ C, for j = 1, ..., p.

For i.i.d. data, the following assumption holds in place of Assumption 2 for some δ > 0. In the

asymptotic results below, we use Assumption 2 to represent both of them.

Assumption 2∗. (i) {Wt : t ≥ 1} is i.i.d.

(ii) Eγ(Ut|Xt, Zt) = 0, Eγ |Ut|4+δ ≤ C.

(iii) Eγ(supπj∈Πj [gj (Xt, πj)
4+δ+gπj (Xt, πj)

4+δ+gππj (Xt, πj)
4+δ]+Mj(Xt)

4+δ) ≤ C, for j = 1, ..., p.

Let g(Xt, π) = (g1(Xt, π1), ..., gp(Xt, πp))
′ ∈ Rp.

Assumption 3. ∀π, π0 ∈ Π and some ε > 0, Pγ (a′ [g(Xt, π)′, g(Xt, π0)′, Zt] = 0) ≤ 1 − ε for any

a 6= 0 and π 6= π0.

Assumptions 1 and 2 are standard regularity assumptions on dependence, smoothness, and

moment conditions. In subsequent analysis, they are necessary to obtain the uniform law of large

numbers (ULLN) and the weak convergence of some empirical processes. Assumption 3 is for the

identification of β and ζ and the identification of π when β is different from 0.
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3.1 Grouping Rules and Reparameterization

To derive asymptotic results with mixed identification strength, we first group the nonlinear regres-

sors based on the order of magnitude of βj,n for j = 1, ..., p. Without loss of generality, we assume

βj′,n = O(βj,n) ∀j′ > j.

The grouping rule is as follows.

(i) All βj,n that have a non-zero limit are put in the first group. If all βj,n have zero limits, the first

group is empty.

(ii) All βj,n that are O(n−1/2) are put in the last group.

(iii) For those that converge to 0 but at a rate slower than n−1/2, members in group k converge to

0 slower than members in group k′ for any k′ > k and members in the same group converge to 0

at the same rate.

Following this grouping rule, the first group is associated with strong identification, the last

group is associated with weak identification, and the middle groups are associated with semi-strong

identification, ordered by the rate of convergence. Note that the group index k for βj,n is a property

associated with the drifting sequence {βj,n : n ≥ 1}. Therefore, the group index k does not change

with the sample size n. We call k the group index for βj .

A reparameterization follows the grouping rule. Suppose there are K groups and βk1 , ..., βkpk

are the pk elements in group k. Let

Ik = {k1, ..., kpk} (3.3)

denote the indices for group k. For example, suppose βn = (3, 1, n−1/4, n−1/3, 2n−1/3, n−1/2, n−1)′.

The group indices are I1 = {1, 2}, I2 = {3}, I3 = {4, 5}, I4 = {6, 7}, and the number of group is

K = 4.

Following the group indices in (3.3), we use the subscript Ik to denote a sub-vector associated

with group k, e.g.,

βIk = (βk1 , ..., βkpk )′ ∈ Rpk . (3.4)

For the drifting sequences, βIk,n denote the true values of βIk when the sample size is n and βIk,0

denote its limit. The grouping rule implies that

for different groups: βIk′ ,n = o(||βIk,n||) for k′ > k,

for the same group: βIk,n � ||βIk,n|| for k = 1, ...,K − 1, (3.5)
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where � represents convergence at the same rate.4 In the presence of weak identification, βIk =

O(n−1/2) for k = K. If all regressors are in the semi-strong or strong identification category, the

second line of (3.5) also applies to k = K.

Example. Consider a two-regressor model where Yt = β1g(Xt, π1) + β2g(Xt, π2) + Ut.

(i) If β1,n → β1,0 6= 0 and β2,n → β2,0 6= 0, I1 = {1, 2}.

(ii) If n1/2β1,n → b1 ∈ R, n1/2β2,n → b2 ∈ R, I1 = �, I2 = {1, 2}. Here I1 = � because both β1,n

and β2,n have zero limits.

(iii) If β1,n → 0, ||n1/2β1n|| → ∞, β2,n � β1,n, I1 = � and I2 = {1, 2}.

(iv) If β1,n → β1,0 6= 0 and β2,n → 0, I1 = {1}, I2 = {2}.

(v) If β1,n → 0, β2,n → 0, ||n1/2β1n|| → ∞, β2n/β1n → 0, I1 = �, I2 = {1}, I3 = {2}.

In cases (i), (ii), (iii), π1 and π2 have the same identification strength. In case (iv) and (v), the

identification strength of π1 and π2 is mixed. �

3.2 Sequential Peeling of the Criterion Function

The minimization of the sample criterion function Qn (θ) can be viewed in a sequential way. Apply

the grouping results and define

πIk = (πk1 , ..., πkpk )′ (3.6)

for group k. The regressors and their derivatives in group k are collected in

gk (x, πIk) = (gk1 (x, πk1) , · · · , gkpk (πkpk ))′ ∈ Rpk ,

gπk (x, πIk) = (gπk1 (πk1) , · · · , gπkpk (πkpk ))′ ∈ Rpk . (3.7)

When analyzing πIk , we use πk− to denote elements of π in previous groups and πk+ to denote

elements of π in subsequent groups, i.e.,

πk− = (π′I1 , ..., π
′
Ik−1

)′ and πk+ = (π′Ik+1
, ..., π′IK )′. (3.8)

It follows that π = (π′k− , π
′
Ik , π

′
k+)′. The identification strength of πk− , πIk , πk+ is in a decreasing

order by definition.

4For two sequences of non-zero constants {an : n ≥ 1} and {bn : n ≥ 1}, an � bn if and only if limn→∞
an
bn
6= 0

and limn→∞
bn
an
6= 0. When an is a vector, we write an � bn if the relationship holds for each element of an.
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According to the grouping rule, πI1 is strongly identified. We put all strongly identified elements

of π in this group because they can be analyzed together with β and ζ, which are also strongly

identified. The semi-strongly identified and weakly-identified elements of π are analyzed differently

using the sequential procedure proposed below. If no elements of π are strongly identified, I1 = �

and πI1 disappears.

We now describe the sequential procedure and introduce some notations.

(i) For k = 1, conditional on π1+ , minimizing Qn(θ) = Qn(β, ζ, πI1 , π1+) over β, ζ, and πI1 yields

β̂(π1+), ζ̂(π1+), and π̂I1 (π1+) . The concentrated criterion functionQn(β̂(π1+), ζ̂(π1+), π̂I1 (π1+) , π1+)

is written as Qcn(π1+) = Qcn(πI2 , π2+) because π1+ = (πI2 , π2+).

(ii) Continue the procedure for k = 2, ...,K − 1 sequentially. For each k, conditional on πk+ ,

minimize Qcn(πIk , πk+) over πIk to obtain π̂Ik (πk+) . Concentrating out πIk , the criterion function

Qcn(π̂Ik (πk+) , πk+) is written as Qcn(πk+) = Qcn(πIk+1
, π(k+1)+).

(iii) For k = K, the criterion function is Qcn(πIK ) and its minimizer is π̂IK .

(iv) Reverse the order of the procedure. Sequentially plug in the estimators from π̂IK to π̂I2 , we

obtain π̂IK−1
= π̂IK−1

(π̂K) , ..., π̂I1 = π̂I1(π̂I2 , ..., π̂IK ), β̂ = β̂(π̂I2 , ..., π̂IK ), and ζ̂ = ζ̂(π̂I2 , ..., π̂IK ).

This is an equivalent representation of the standard least squares estimator and

θ̂ = (β̂′, ζ̂ ′, π̂′I1 , ..., π̂
′
IK )′. (3.9)

This sequential representation is necessary for deriving the asymptotic results with mixed identifi-

cation strength.

The asymptotic analysis starts with the uniform consistency of the strongly identified parame-

ters. Roughly speaking, the sample criterion function Qn(θ) uniformly converges to its population

counterpart Q(θ), which identifies the true values of β, ζ, πI1 but does not depend on π1+ because

βIk,n → 0 for k > 1. By an extension of standard arguments for consistency of extremum estimators,

we obtain the uniform consistency for the strongly identified parameters.

Lemma 1 (consistency for strong identification groups)

Suppose Assumption 1-3 hold. Then,

sup
π+
1 ∈Π+

1

(
||ζ̂(π1+)− ζn||+ ||β̂(π1+)− βn||+ ||π̂I1(π1+)− πI1,n||

)
→p 0.
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To obtain consistency for the semi-strong identification groups, we analyze the concentrated

criterion function Qcn(πIk , πk+) sequentially for k = 2, ...,K − 1. We show that, after proper re-

centering and rescaling, Qcn(πIk , πk+) has a non-degenerate limit that identifies the true value of

πIk . This limit is non-degenerate in πIk but is degenerate in πk+ . In consequence, parameters with

different identification strength are analyzed sequentially.

Before presenting asymptotic results for the semi-strong identification groups, we first define

some notations. Analogous to πk− and πk+ , define

βk− = (β′I1 , ..., β
′
Ik−1

)′ ∈ Rdk− and βk+ = (β′Ik+1
, ..., β′IK )′ ∈ Rdk+ , (3.10)

which are associated with the coefficients before and after βIk . When analyzing Qcn(πIk , πk+), the

parameters that have been concentrated out are collected in

ψk− = (β′, ζ ′, π′k−)′. (3.11)

The true value of ψk− is denoted by ψk−,n. Let ψ̂k−(πk, πk+) denote the estimator of ψk− con-

ditional on (πk, πk+). Following the description of the sequential procedure, Qcn(πIk , πk+) =

Qn(ψ̂k−(πk, πk+), πIk , πk+).

Define

ψ0
k−,n = (β′k−,n, β

0′
k , β

0′
k+ , ζ

′
n, π

′
k−,n), with β0

k = 0 and β0
k+ = 0. (3.12)

Note that the difference between ψk−,n and ψ0
k−,n lies in βk and βk+ . To derive the asymp-

totic distribution of the concentrated criterion function, Qn(ψ̂k−(πk, πk+), πIk , πk+) is centered

around Qn(ψ0
k−,n, πIk , πk+). We set β0

k = 0 and β0
k+ = 0 in ψ0

k−,n so that the centering term

Qn(ψ0
k−,n, πIk , πk+) does not depend on (πk, πk+). To make it clear, Qn(ψ0

k−,n, πIk , πk+) is abbrevi-

ated to Qn(ψ0
k−1,n).

Define a derivative vector

dψk,t(π) = (g(Xt, π)′, Z ′t, gπk− (Xt, πk−)′)′, (3.13)

where gπk− (Xt, πk−) = (gπ1(Xt, πIk)′, ..., gπk−1
(Xt, πIk−1

)′)′ is a collection of the first order deriva-

tive in groups 1 to k − 1. For any πIk , π̃Ik ∈ ΠIk , define a covariance matrix

Hk(πIk , π̃Ik |πk+) = Eγ0dψk,t(πk−,0, πIk , πk+)dψk,t(πk−,0, π̃Ik , πk+)′, (3.14)

where the subscript 0 denotes the limit of the true value as n→∞.
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Assumption 4. λmin(Hk(πIk , πIk |πk+)) ≥ ε for some ε > 0 ∀πIk ∈ ΠIk , πk+ ∈ ΠIk+ and k =

1, ...,K.

The following Lemma establishes consistency for the semi-strong identification groups using the

limit of Qcn(πIk , πk+). This Lemma is proved by induction. In step k, part (a) of the Lemma is

used to show the consistency in part (b) and the rate of convergence in part (c). The latter two in

turn are used to obtain part (a) for step k + 1. Let dβ, dζ , and dk− denote the dimensions of β, ζ,

and βk− .

Lemma 2 (consistency for semi-strong identification groups by induction)

Suppose Assumptions 1-4 hold. Then, for k = 2, ...,K − 1,

(a) the concentrated sample criterion function satisfies

||βIk,n||
−2
(
Qcn(πIk , πk+)−Qn(ψ0

k−,n)
)

→ p −
1

2
∆′kHk(πIk , πIk,0|πk+)′ [Hk(πIk , πIk |πk+)]−1Hk(πIk , πIk,0|πk+)∆k,

where ∆k = (01×dk− , ω
′
k,0, 01×(dζ+dk− ))

′ and ωk,0 = limn→∞ βIk,n/||βIk,n|| is the angel parameter;

(b) the estimator of πIk satisfies

sup
πk+∈Πk+

‖π̂Ik(πk+)− πIk,n‖ →p 0;

(c) the estimator of ψk− = (β′, ζ ′, π′I1 , ..., π
′
Ik−1

)′ satisfies

||βIk,n||
−1



β̂k−(πk+)− βk−,n
β̂Ik(πk+)− βIk,n

β̂k+(πk+)

ζ̂ − ζn
diag{βk−,n}(π̂k−(πk+)− πk−,n)


→p 0.

Comments. 1. Part (a) is obtained by a quadratic expansion of Qn(ψ̂k−(πk, πk+), πIk , πk+)

around the centering term Qn(ψ0
k−,n). This expansion relies on the consistency of ψ̂k−(πk, πk+),

which follows from Lemma 1 and part (b) up to step k − 1.

2. This quadratic expansion has some non-standard features. First, the expansion is around

ψ0
k−,n instead of the true value of ψk− . The choice of ψ0

k−,n ensures that the left hand side of part (a)
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is minimized by π̂Ik(πk+). The right hand side of part (a) is uniquely minimized at πIk = πIk,0 by a

matrix Cauchy-Schwarz inequality. Therefore, the argmax continuous mapping theorem (Theorem

3.2.2 in van der Vaart and Wellner (1996)) gives consistency in part (b). Second, in this quadratic

expansion, both the first and second order derivatives have mixed rate of convergence.

3. Part (c) provides the rate of convergence of ψ̂k−(π̂Ik(πk+), πk+), which is crucial for deriving

the asymptotic distribution in part (a) for step k + 1. As k gets larger, the rate of convergence

||βIk,n||−1 also gets faster and this rate is improved in a sequential manner.

To sum up, Lemma 2 shows that all parameters in the semi-strong identification groups can be

consistently estimated, uniformly over πK ∈ ΠK , i.e.,

sup
πK∈ΠK

‖π̂K−(πK)− πK,n‖ →p 0. (3.15)

3.3 Asymptotic Distribution in the Reparameterized Model

Next we show the asymptotic distribution of the least squares estimator under mixed identification

strength. There are two cases: (a) The last group involves weak identification, i.e., n1/2βIK →

bIK ∈ RdK . (b) There are no weakly-identified parameters and the last group only involves strong

or semi-strong identification. In case (a), πIK cannot be consistently estimated because its signal

does not dominate the noise from the error. In case (b), we apply the arguments in Lemma 2 to

k = K and obtain consistency of π̂IK .

To characterize the non-standard distribution under weak identification, let G(πIK ) be a mean-

zero Gaussian process with covariance kernel

Ω(πIK , π̃IK ) = Eγ0U2
t dψK ,t(πIK− ,0, πIK )dψK ,t(πIK− ,0, π̃IK )′. (3.16)

Building on this Gaussian process, define

τ(πIK ) = [HK(πIK , πIK )]−1 [HK(πIK , πIK ,0)SIK bIK +G(πIK )] ,

ξ(πIK ) = −1

2
τ(πIK )′HK(πIK , πIK )τ(πIK ),

π∗IK = arg min
πK∈ΠK

ξ(πIK ). (3.17)

We assume that each sample path of the non-central chi-square process ξ(πIK ) has a unique min-

imizer with probability one and call this minimizer π∗IK . In the presence of weak identification,

Theorem 1 below shows that ξ(πIK ) appears in the limit of the concentrated criterion function
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Qcn(πIK ). In contrast to the right hand of part (a) in Lemma 2, ξ(πIK ) cannot identify the true

value of πIK . The localization parameter bIK represents the signal to noise ratio.

To define the joint distribution in case (b), define covariance matrices

Σ(π) = H−1(π)Ωθ(π)H−1(π), where

H(π) = Eγ0dθ,t(π)dθ,t(π)′ and Ωθ(π) = Eγ0U2
t dθ,t(π)dθ,t(π)′ with

dθ,t(π) = (g(Xt, π)′, Z ′t, gπ(Xt, πk)
′)′. (3.18)

Assumption 5. (i) λmin(H(π)) ≥ ε, λmin(Ωθ(π)) ≥ ε, for some ε > 0 ∀π ∈ Π.

(ii) Each sample path of the stochastic process {ξ(πIK ) : πIK ∈ ΠIK} is minimized at a unique

point with probability one.

Theorem 1 (asymptotic distribution of estimators)

Suppose Assumptions 1-5 hold. Then,

(a) with weakly identified parameters: If n1/2βIK → bIK ∈ RdK ,

n
(
Qcn(πIK )−Qn(ψ0

K,n)
)
⇒ ξ(πIK ),

and  n1/2B(βK−,n)
(
ψ̂K− − ψK−,n

)
π̂IK

⇒
 τ(π∗IK )− SIK bIK

π∗IK

 ,

where ψK− = (β′, ζ ′, π′I1 , ..., π
′
IK−1

)′, SIk = [0dk×dk− , Idk , 0dk×(dζ+dk− )]
′, and B(βK−,n) =

diag{(1dβ+dζ , β
′
K−,n)′};

(b) without weakly identified parameters: If ||n1/2βIK || → ∞, Lemma 2 applies to k = K and

n1/2B(βn)
(
θ̂ − θn

)
→d N(0,Σ(π0)),

where B(βn) = diag{(1dβ+dζ , β
′
n)′}.

Comments. 1. In case (a), ψ̂K− = (β̂′, ζ̂ ′, π̂′I1 , ..., π̂
′
IK−1

)′ is consistent but it has a non-standard

asymptotic distribution. The distribution involves the Gaussian process τ(πK) and the inconsistent

estimator π∗IK . In addition, the rate of convergence of π̂I2 , ..., π̂IK−1
are all slower than n−1/2.

2. Without weakly identified parameters, the distribution in part (b) is analogous to standard

results except for the rescaling matrix B(βn).
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Example (Cont.) In the example yt = β1g1(Xt, π1) +β2g2(Xt, π2) +Ut, consider the distribution

of the least squares estimator when β1,n → 0, |n1/2β1,n| → ∞, and n1/2β2,n → b2 ∈ R. Following

the grouping rule, the group indices are I1 = �, I2 = {1}, I3 = {2} and the number of groups

is K = 3. In this case, β = (β1, β2)′ is strongly identified, π1 is semi-strongly identified, and π2 is

weakly identified.

The asymptotic results apply to this example as follows. First, Lemma 1 implies that β̂(π) is

consistent uniformly over π = (π1, π2)′. Second, applying Lemma 2 with k = 2 and ψ2− = (β, π1)′

yields that β̂(π2) = β̂(π̂1(π2), π2) and π̂1(π2) are both consistent uniformly over π2. Third, apply

Theorem 1(a) with K = 3 and IK = {2}, we obtain
n1/2

(
β̂ − βn

)
n1/2β1n (π̂1 − π1,n)

π̂2

⇒
 τ(π∗2)− S2b2

π∗2

 , (3.19)

where S2b2 = (0, b2, 0)′, G(π2), τ(π2), and π∗2 are as defined in (3.16) and (3.17) with

HK(π2, π2,0) = Eγ0dψK ,t(π1,0, π2)dψK ,t(π1,0, π2,0)′,

Ω(π2, π̃2) = Eγ0U2
t dψK ,t(π1,0, π2)dψK ,t(π1,0, π̃2)′, where

dψK ,t(π1,0, π2) = (g1(Xt, π1,0), g2(Xt, π2), gπ1(Xt, π1,0))′ . � (3.20)

4 Wald Test and t Test with Mixed Identification Strength

Under drifting true parameters, we consider tests of the null hypothesis H0 : Rθn = νn for some

dr × dθ matrix R of rank dr. We establish the asymptotic distributions of the Wald statistic and

the t statistic, allowing Rθ to involve parameters with different identification strength. Both θn

and vn may change with n. This is particularly useful for confidence set construction. For the test

H0 : βp = 0, vn = 0.

Under strong identification, Theorem 1(b) implies that B−1(β0)Σ(π0)B−1(β0) is the asymptotic

covariance matrix of the least squares estimator θ̂. Following the definition of Σ(π) in (3.18), we

estimate Σ(π) by

Σ̂ = [Ĥ]−1Ω̂θ[Ĥ]−1, where

Ĥ = n−1
n∑
t=1

dθ,t(π̂)dθ,t(π̂)′, Ω̂θ = n−1
n∑
t=1

Û2
t dθ,t(π̂)dθ,t(π̂)′, (4.1)
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and Ûi is the regression residual. The standard definition of the Wald statistic for the null hypothesis

H0 : Rθn = vn is

Wn(R) = n
(
Rθ̂ − vn

)′ (
RB−1(β̂)Σ̂B−1(β̂)R′

)−1 (
Rθ̂ − vn

)
. (4.2)

This is the standard Wald statistic typically used in empirical work. Obviously a standard critical

value from the chi-square distribution is justified under strong identification. Below we show that

the Wald statistic has a different asymptotic distribution under weak identification. Therefore, a

different critical value should be employed. We use the Wald statistic for presentation of the main

results. Analogous results hold for the t statistic.

Section 4.1 introduces an orthogonal rotation on the restriction matrix R that separates re-

strictions on parameters of different identification strength. Section 4.2 uses a rescaling matrix

to deal with the asymptotic singularity of the covariance matrix. This section disassemble the

Wald statistic into a sandwich form where each part has a non-degenerate limit. The non-standard

asymptotic distribution of the test statistics are presented in Section 4.3.

4.1 Rotation

Under mixed identification strength, the estimator θ̂ involves both inconsistent estimators and

consistent estimators of different rates of convergence. It is essential to separate the restrictions on

different groups. This is achieved by an orthogonal rotation of the restriction matrix R.

We first introduce the rotation matrix for the general case. Partition the restriction matrix R

into

R = [R1 : R2 : · · · : RK ], (4.3)

where R1 is the submatrix of R associated with (β′, ζ ′, π′I1), the strongly identified parameters, and

Rk is the submatrix of R associated with πIk for k = 2, ...,K. Thus, R1 is a dr × (dβ + dζ + d1)

matrix and Rk is a dr × dk matrix for k = 2, ...,K, where dk is the number of elements in Ik. Let

A = [A1 : A2 : · · · : AK ] ∈ O(dr) (4.4)
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be an orthogonal matrix that satisfies two conditions below:

(i) A′R =



A′1R1 0 0 0 0

A′2R1 A′2R2 0 0 0
...

...
. . . 0 0

A′K−1R1 A′K−1R2 · · · A′K−1RK−1 0

A′KR1 A′KR2 · · · A′KRK−1 A′KRK


is block upper diagonal (4.5)

and

(ii) R∗ =



A′1R1 0 0 0 0

0 A′2R2 0 0 0

0 0
. . . 0 0

0 0 0 A′K−1RK−1 0

0 0 0 0 A′KRK


has full rank. (4.6)

This rotation matrix A can be obtained as follows. For k = K, let d∗K = rank(RK) and AK

be the dr × d∗K matrix whose columns span the column space of RK . For k = K − 1, let d∗K−1 =

rank([RK−1 : RK ])−rank(RK) and AK−1 be a dr×d∗K−1 matrix such that the rows of [AK−1 : AK ]

span the columns space of [RK−1 : RK ]. Continue this step sequentially to k = K− 2, ..., 2. In each

step, let

d∗k = rank[Rk : · · · : RK ]− rank[Rk+1 : · · · : RK ] (4.7)

and Ak be a dr × d∗k matrix such that the columns of [Ak : · · · : AK ] span the column space of

[Rk : · · · : RK ]. Finally, the columns of A1 ensures that A is an orthogonal matrix. When dk = 0,

Ak disappears from the construction of A. In the special case where d1, ..., dk−1 = 0, Ak is chosen

to ensure that A is an orthogonal matrix. The rotation is similar to that used by Antoine and

Renault (2012) for mixed-rate distribution in different directions.

Following the rotation by A, the linear restrictions in R are separated for parameters with

different rates of convergence, including possible inconsistent estimators in group K. In the asymp-

totic distribution derived below, we show that the block diagonal matrix R∗ appears in place of R

asymptotically. Under the null, the Wald statistic defined in (4.2) satisfies

Wn(R) = Wn(A′R) = Wn(R∗) + εn, (4.8)

where εn is explicitly defined as the difference between Wn(A′R) and Wn(R∗). In the proof of

Theorem 2 below, we show that εn is asymptotically negligible. The analysis roughly goes as
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follows. Under the null, consider A′R(θ̂ − θn) in Wn(A′R). For k = 2, ...,K,

A′kR
(
θ̂ − θn

)
=
∑
`<k

A′kR`

(
ψ̂k− − ψk−,n

)
+A′kRk (π̂Ik − πIk,n) and

ψ̂k− − ψk−,n = op(‖π̂Ik − πIk,n‖) (4.9)

where the first equality holds because A′R is upper block-diagonal and the second equality fol-

lows from Theorem 1. Therefore, only the block-diagonal elements remain asymptotically and the

asymptotic distribution of Wn(R) is determined by that of Wn(R∗).

Example (Cont.) Here we use examples to illustrate the restriction matrix R∗ in the simple

model yt = β1g(Xt, π1) + β2g(Xt, π2) + Ut.

(1) H0 : β2 = 0. In this case, R = (0, 1, 0, 0) and R∗ = R.

(2) H0 : π1 − π2 = 0. In this case, R = (0, 0, 1,−1). The real restriction vector R∗ depends

on the identification strength of π1 and π2. (i) If both π1 and π2 are strongly identified, R∗ = R.

(ii) If the identification strength of π1 is stronger such that π1 is estimated with a faster rate,

R∗ = (0, 0, 0,−1). (iii) If both π1 and π2 are weakly identified, π1 and π2 again belong to the same

group and R∗ = R.

(3). H0 : β1 + π1 = 0 and π1 − π2 = 0. (i) If β1 is strongly identified, π1 is semi-strongly

identified (estimated at a rate slower than n−1/2), and π2 is weakly identified,

R =

 1 0 −1 0

0 0 1 −1

 and R∗ =

 0 0 −1 0

0 0 0 −1

 . (4.10)

(ii) If β1 is strongly identified but π1 and π2 are both weakly identified,

R =

 1 0 −1 0

0 0 1 −1

 and R∗ =

 0 0 −1 0

0 0 1 −1

 . � (4.11)

4.2 Rescaling Matrix for Asymptotic Singularity of Covariance Matrix

Under the null, Wn(R∗) can be written as

Wn(R∗) = n
(
θ̂ − θn

)′
R∗′
(
R∗B−1(β̂)Σ̂B−1(β̂)R∗′

)−1
R∗
(
θ̂ − θn

)
. (4.12)

To deal with the asymptotic singularity of the covariance matrix, we start with the diagonal matrix

B(β̂). This matrix can be decomposed into two matrices associated with the norm and the angle
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of βk for k = 1, ...,K, i.e.,

B(β) = D(β)B(ω), where

D(β) = diag{(1dβ+dζ , ‖β1‖ 1d1 , ..., ||βK ||1dK )′},

B(ω) = diag{(1dβ+dζ , ω
′
1, ..., ω

′
K)′}. (4.13)

Write B(β̂) = D(β̂)B(ω̂). The angel parameters in B(ω̂) do not converge to zero, following the

grouping rule. To deal with the asymptotic singularity of D(β̂), define a new diagonal matrix D∗(β̂)

as

D∗(β) = diag{(1d∗1 , ||β2||1d∗2 , ..., ||βK ||1d∗K )′} ∈ Rdr×dr . (4.14)

Because R∗ is a block-diagonal matrix, it follows that

R∗D(β) = D∗(β)R∗. (4.15)

With probability approaching one,

Wn(R∗) = Wn(D∗(β̂)R∗) = ρ′nV
−1
n ρn, (4.16)

where

ρn = n1/2D∗(β̂)R∗(θ̂ − θn) = n1/2R∗D(β̂)(θ̂ − θn)

= R∗B−1(ω̂)ξn with ξn = n1/2B(β̂)(θ̂ − θn), (4.17)

and

Vn = D∗(β̂)R∗B−1(β̂)Σ̂B−1(β̂)R∗′D∗(β̂)

= R∗B−1(ω̂)Σ̂B−1(ω̂)R∗′. (4.18)

The equality in (4.15) and B(β̂) = D(β̂)B(ω̂) are used in both (4.17) and (4.18). An important

implication of the calculation in (4.18) is that Vn is non-singular asymptotically and V −1
n appears as

the rescaling covariance matrix in (4.16). Below we derive the asymptotic distribution of ξn,B
−1(ω̂),

and Σ̂ under all identification scenarios, which in turn yields the asymptotic distribution of the Wald

statistic following (4.16)-(4.18).
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4.3 Non-standard Distribution of the Test Statistic

First consider the re-centered and re-scaled parameter ξn defined in (4.17). Following the asymptotic

distribution in Theorem 1(a), define a function of the Gaussian process τ(πK):

ξ(πIK ) =

 τ(πIK )− SIK bIK
diag (τβK (πIK )) (πIK − πIK ,0)

 , where τβK (πIK ) = S′IKτ(πK). (4.19)

Under weak identification, we show ξn ⇒ ξ(π∗IK ) in the proof of Theorem 2 below. To handle the

matrix B−1(ω̂) in ρn and Vn, define

ω(πIK ) =

(
ω′1,0, ω

′
2,0, ..., ω

′
K−1,0,

τβK (πIK )′

‖τβK (πIK )‖

)′
and

Bω(πIK ) = B(ω(πIK )) = diag

{(
1dβ+dζ , ω

′
1,0, ...., ω

′
K−1,0,

τβK (πIK )′

‖τβK (πIK )‖

)′}
. (4.20)

For the strong and semi-strong identification groups, the angel parameters are estimated con-

sistently. This is the reason that ωk,0 shows up in (4.20) for k = 1, ...,K − 1. For group K,

τβK (π∗IK )/||τβK (π∗IK )|| characterizes the limit of the angel parameter.

In the proof of Theorem 2, we show that

(a) under weak identification, i.e., n1/2βK → bK ∈ RdK ,

ξn ⇒ ξ(π∗IK ), ω̂ ⇒ ω(π∗IK ), Σ̂⇒ Σ(π∗IK ), (4.21)

(b) without weak identification, i.e., ||n1/2βK || → ∞,

ξn →d ξ ∼ N(0,Σ(π0)), ω̂ →p ω0, Σ̂(π̂)→p Σ(π0). (4.22)

All convergence holds jointly. Put the distributions in (4.21) and (4.22) together with the decom-

position in (4.16)-(4.18), the asymptotic distribution of the Wald statistic is given below.

Theorem 2 (Wald statistic with mixed identification strength)

Suppose Assumptions 1-5 hold. Then,

(a) with weakly identified parameters: If n1/2βIK → bIK ∈ RdK ,

Wn(R) ⇒ W(π∗IK ), where

W(πIK ) =
[
R∗B−1

ω (πIK )ξ(πIK )
]′ [
R∗
(
B−1
ω (πIK )Σ(πIK )B−1

ω (πIK )
)
R∗′
]−1 [

R∗B−1
ω (πIK )ξ(πIK )

]
;



21

(b) without weakly identified parameters: If ||n1/2βIK || → ∞, Wn(R)→d χ
2
dr
.

Comments: 1. The asymptotic distribution of the Wald statistic not only depends on the weak

identification group through bIK , but also depends on the rest of the group specification through

R∗.

2. Theorem 2 shows that the Wald statistic has a non-standard asymptotic distribution if some

parameters are weakly identified. Quantiles of this non-standard distribution can be obtained by

simulation. The Wald statistic has a chi-square distribution asymptotically as long as all parameters

are at least semi-strongly identified. Semi-strong identification affects the rate of convergence of

the estimators but not the asymptotic distribution of the Wald statistic. The Wald statistic for

tests with linear restrictions is self-corrected when all parameters are consistently estimated.

For single hypothesis H0 : Rθn = vn where dr = 1, we can also use the t statistic:

tn(R) =
n1/2

(
Rθ̂ − νn

)
√
RB−1(β̂)Σ̂B−1(β̂)R′

. (4.23)

This is the standard definition of the t statistic.

Corollary 1 (t statistic with mixed identification strength)

Suppose Assumptions 1-5 hold and dr = 1. Then,

(a) with weakly identified parameters: If n1/2βIK → bIK ∈ RdK ,

tn(R)⇒ T (π∗IK ), where T (πIK ) =
R∗B−1

ω (πIK )ξ(πIK )√
R∗
(
B−1
ω (πIK )Σ(πIK )B−1

ω (πIK )
)
R∗′

;

(b) without weakly identified parameters: If ||n1/2βIK || → ∞, tn(R)→d N(0, 1).

Example (Cont.) Now we get back to the example yt = β1g1(Xt, π1) + β2g2(Xt, π2) + Ut and

consider the null hypothesis H0 : β2 = 0. The restriction matrix is R = R∗ = (0, 0, 0, 1). Under

the null, n1/2β2,n = b2 = 0. The distribution of the Wald statistic depends on the identification

strength of π1.

(1) If |n1/2β1,n| → ∞, which includes both strong and semi-strong identification of π1, IK = {2}

and b2 = 0. In this case, πIK = π2. The elements in T (π2) are specified as follows: ξ(π2) is as

specified in (4.19) with τ(π2) given in (3.20), S2 = (0, 1, 0)′, b2 = 0, and Bω(π2) = I4.
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(2) If n1/2β1,n → b1 ∈ R, IK = {1, 2} and b = (b1, b2)′ = (b1, 0)′. In this case, πIK = π. The

elements in T (π) are specified as follows: G(π), τ(π), and π∗ are as defined in (3.16) and (3.17)

with

HK(π, π0) = Eγ0dψK ,t(π)dψK ,t(π0)′,

Ω(π, π̃) = Eγ0U2
t dψK ,t(π)dψK ,t(π̃2)′, where

dψK ,t(π) = (g1(Xt, π1), g2(Xt, π2))′, (4.24)

the selector matrix is SIK = I2, and

SIK bIK = b = (b1, 0)′, τβK (πIK ) = τ(π),

Bω(πIK ) = diag

{(
1, 1,

τ(π)′

‖τ(π)‖

)′}
. � (4.25)

5 Robust Inference

Next, we link the asymptotic distributions under all group specifications to the asymptotic size of

tests and confidence sets, which approximates the finite-sample size of tests and confidence sets,

respectively. To this end, we first formally define the asymptotic size. For fixed v, the asymptotic

size of a test for the null hypothesis: H0 : Rθn = v is

AsySz = lim sup
n→∞

[
sup

γ∈Γ:Rθ=v
Pγ (Tn(R) > cn,1−α(v))

]
, (5.1)

which is the limsup of the finite-sample size of the test. A nominal 1 − α confidence set for Rθ

is obtained by inverting the tests for H0 : Rθn = vn, i.e., CSn = {vn : Tn(R) ≤ cn,1−α(vn)}. The

asymptotic size of this confidence set is

AsySz = lim inf
n→∞

inf
γ∈Γ

Pγ
(
Tn(R) ≤ cn,1−α(vn)

)
, (5.2)

which is the liminf of the finite-sample size of the confidence set.

5.1 Potential Size Distortion

Theorem 2 and Corollary 1 show that the asymptotic distributions of the Wald statistic and t

statistic depend on

h = (I, bIK , ω0, γ0), (5.3)
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where I is the group specification, n1/2βIK ,n → bIK measures the identification strength of group

K, ωIk,n → ωIk,0 is the angle parameter in group k, γn → γ0 ∈ Γ. Let HI denote the collection of

all group specifications. Then the parameter space of h is

H = {h = (I, bIK , ω, γ) : I ∈ HI , bIK ∈
(
R ∪ {±∞}

)dK , ‖ωIk‖ = 1, γ ∈ Γ}. (5.4)

When the null hypothesis is H0 : Rθ = v for fixed v, the value of parameter h that is consistent

with the null hypothesis is collected in

H(v) = {h ∈ H : Rθ0 = v}. (5.5)

Along a sequence of true parameters {γn ∈ Γ : n ≥ 1} associated with h, define

W(h) =

 W(π∗K), if Theorem 2 (a) holds,

χ2
dr
, if Theorem 2 (b) holds.

(5.6)

For the t test, define T (h) similarly toW(h), withW(π∗K) and χ2
dr

replaced by T (π∗K) and N(0, 1),

respectively.

For a standard Wald test, the 1− α quantile of χ2
dr
, denoted by χ2

dr,1−α, is used as the critical

value. For a standard symmetric two sided t test, the 1 − α/2 quantile of N(0, 1), denoted by

z1−α/2, is used as the critical value.

Assumption CV1. (i) W(h) is continuous at χ2
dr,1−α ∀h ∈ H.

(ii) |T (h)| is continuous at z1−α/2 ∀h ∈ H.

Theorem 3 (size distortion of standard test and confidence set)

Suppose Assumptions 1-5 and CV1 hold. Then,

(a) the asymptotic size of a standard Wald test is suph∈H(v) Pr(W(h) > χ2
dr,1−α);

(b) the asymptotic size of a standard Wald confidence set is infh∈H Pr(W(h) ≤ χ2
dr,1−α);

(c) parts (a) and (b) apply to the symmetric two-sided t test and confidence set by replacing W(h)

with T (h) and replacing χ2
dr,1−α with z1−α/2.

Comments. 1. The degree of size distortion for a standard test and confidence set can be simulated

using the formula in Theorem 3 and the distributions derived in Theorem 2 and Corollary 1.
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2. Theorem 3 is proved by applying the generic results in Andrews, Cheng, and Guggenberger

(2011). A reparameterization of h is introduced to fit this problem in the generic set up.

5.2 Data-Dependent Non-Standard Critical Values

To avoid size distortion, the ideal critical value to use is the 1−α quantile of W(h) or T (h) in the

presence of weak identification. However, these distributions depend on the unknown parameter

h specified in (5.3). When constructing a robust critical value, the general strategy is to plug in

elements of h that can be consistently estimated and take a supreme of the quantiles over the

elements of h that cannot be consistently estimated.

A special element of h is the group specification I. The group specification I cannot be con-

sistently estimated, however, an identification-category-selection (ICS) method can significantly

reduce the number of group specifications relevant for robust inference. This ICS procedure uses

data to determine the weak identification group IK , leaving the semi-strong identification groups

I2, ..., IK−1 and the strong identification group I1 unspecified. This method is closely related to the

generalized moment selection method in Andrews and Soares (2010) and the type 1 robust critical

value in Andrews and Cheng (2012). Different from these papers, the group specification I cannot

be fully determined by the ICS procedure. Nevertheless, this selection yields a less conservative

choice of the critical value.

For j = 1, ..., p, let

ICSj,n = n1/2(Σ̂j)
−1/2

∣∣∣β̂j∣∣∣ , (5.7)

where Σ̂j is the j-th diagonal element of Σ̂. Roughly speaking, ICSj,n = Op(1) only if βj,n =

O(n−1/2). We select the weak identification group by

ÎW = {j : ICSj,n ≤ κj,n}, (5.8)

where {κj,n : n ≥ 1} is a sequence of constants such that κj,n →∞ and κj,n/n
1/2 → 0 for j = 1, ..., p.

For the null hypothesis H0 : βk = 0, we put k in ÎW without selection. The regressors are selected

one by one in ÎW . If prior information is available for a group structure, the selection statistic

ICSj,n can be modified to take the form of a Wald statistic. Define

Ĥ = {h ∈ H : IK = ÎW , ωIk = β̂Ik/||β̂Ik || and πIk = π̂k for k < K}.5 (5.9)

5The asymptotic distribution W(π∗K) does not depend on the true values of β and ζ although both of them can
be consistently estimated. Hence, we do not plug in the estimators of β and ζ.
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Let W1−α(h) denote the 1 − α quantile of W(h) defined in (5.6). To obtain a confidence set by

inverting tests for H0 : Rθn = vn with the Wald statistic, we suggest the plug-in critical value

ĉn,1−α = sup
h∈Ĥ
W1−α(h). (5.10)

Because Ĥ is a subset of H, ĉn,1−α is smaller than suph∈HW1−α(h), which is the least favorable

critical value. To test the null hypothesis H0 : Rθn = v for fixed v, the plug-in critical value

ĉn,1−α(v) is obtained by replacing Ĥ with Ĥ(v) = Ĥ ∩ H(v). When the t statistic is used for a

symmetric two-sided test, the plug-in critical values is constructed with W1−α(h) replaced by the

1− α quantile of |T (h)|. We call test and confidence set based on this plug-in critical value robust

test and robust confidence set.

In empirical implementation, the first step is to specify Ĥ by he ICS method. Second, simulate

W1−α(h) for each h using the asymptotic distribution in Theorem 4. Simulation methods for a

Gaussian processes is given in Hansen (1996). Finally, obtain the plug-in critical value following

(5.10). The computation depends on the number of nonlinear regressors in the model as well

the parameter of interest. In many cases, W1−α(h) does not depend on I except for the weak

identification group IK . The procedure becomes computation intensive as the number of nonlinear

regressors increases. For this reason, the current paper suggests a simple data-dependent rule in

(5.8). More sophisticated and computation intensive data-dependent choices are considered for

other models or for general set-ups in Andrews and Barwick (2012), Andrews and Cheng (2012),

McCloskey (2012), among others. These methods can be adapted to the present model using the

asymptotic distributions developed in Sections 3 and 4.

Assumption CV2. (i)W(h) is uniformly continuous in ωIk and πIk for k = 1, ...,K−1 on h ∈ H.

(ii) W(h) is continuous at its 1− α quantile for all h ∈ H and α ∈ (0, 1/2).

(iii) Parts (a) and (b) hold with W(h) replaced by |T (h)|.

The following result holds for the robust test and confidence set based on the Wald statistic

and the t statistic.

Theorem 4 (robust test and confidence set)

Suppose Assumptions 1-5 and Assumption CV2 hold. Then,

(a) the asymptotic size of the robust test of H0 : Rθ = v is α;

(b) the asymptotic size of the robust confidence set of Rθ is 1− α.



26

Figure 2: Robust Test: Asymptotic (left) and Finite-Sample (right, n = 500) Rejection Probability
(×100) for H0 : β2 = β2,0.

Notes: DGP is the same as that for Figure 1, nominal size α = 5%, the true values of β1 and β2

are β1,0 = b1/
√

500 and β2,0 = b2/
√

500 in the right panel.

Example (Cont.) Figure 2 presents numerical results for robust tests in yt = β1g1(Xt, π1) +

β2g2(Xt, π2) + Ut. The DGP is the same as that for Figure 1 so that the performance of the

standard test and the robust test can be compared. The test statistic is the symmetric two-sided t

statistic, coupled with the standard critical value in Figure 1 and the robust critical value in Figure

2. The left panel of Figure 2 is obtained by drawing the t statistic and the ICS statistic from their

asymptotic distributions.6 Both figures demonstrate how the null rejection probability of the test

changes with the true values of β1 and β2.

Table 1 below focuses on the test H0 : β2 = 0 and shows the null rejection probability as a

function of b1 and the true value of π1, denoted by π1,0. Under the null, the true value of π2 is

irrelevant.

In this example, the nonlinear functions are the exponential smooth transition function. Specif-

ically, x = (x1, x2, x3)′, g1(X,π1) = x1(1− exp(−c(x3−π1)2), g2(x, π2) = x2(1− exp(−c(x3−π2)2).

The marginal effect of x1 and x2 are both nonlinear, depending on the transition variable x3. The

6The asymptotic distribution of the t statistic and the ICS statistic are given in Corollary 1 and (C.11) in the
appendix. The ICS statistics are non-centered t statistics. Thus, their asymptotic distributions follow the same
arguments for the t statistic.
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marginal distribution of X1t, X2t, X3t, Ut are all standard normal and independent across obser-

vations. The correlation coefficient between X1t and X2t is 0.5, both are uncorrelated with X3t.

The error Ut is independent of all other variables. The true values of β1 and β2 are b1/
√
n and

b2/
√
n, respectively, for finite-sample results with sample size n.7 The true values of π1 and π2 are

both 0 for Figures 1 and 2. The optimization parameter space for π1 and π2 are both [−1, 1]. The

constant c is 10. In all cases, 50,000 simulation repetitions are conducted.

The right panel of Figure 2 is comparable to the right panel of Figure 1 with the standard test

replaced by the robust test. The left panel of Figure 2 is an asymptotic version of the right panel

obtained by drawing the t statistic and the ICS statistic from their asymptotic distributions. To

demonstrate the effect of the ICS procedure for different values of b1 and b2, we consider π1,0 = 0

and π2,0 = 0 when constructing the robust critical value in Figure 2.

In Figure 2, the ICS procedure is based on a data-dependent choice of the tuning parameter.

First, the ICS statistic ICS1,n and ICS2,n are constructed following (5.7). They are compared

with tuning parameters κ1,n = c1 log(log(n)) and κ2,n = c2 log(log(n)) to determine the weak iden-

tification set ÎW . The constants c1 and c2 are tuned by the asymptotic null rejection probabilities

through simulation. Replacing the t statistic and the ICS statistic by draws from their asymptotic

distributions, we simulate the null rejection probability of the robust test for any values of c1 and

c2. For large values of c1 and c2, the ICS procedure favors the least favorable critical value, which

controls the maximum rejection probability but tends to under reject for some values of b1 and b2.

In the simulation for Figure 2, we choose c1 and c2 that minimize the average probability of under

rejection, provided that the maximum rejection probability is no larger than α + ε, where ε is a

tolerance level close to 0. We set α = 5% and ε = 0.1% in the simulation. The same constants c1

and c2 are used in the two panels of Figure 2. These choices minimize the non-similarity of the test

over b1 and b2 while controlling the maximum rejection probability.

Table 1 focuses on the test H0 : β2 = 0 under different values of b1 and π1,0. Under the null,

the data does not depend on π2. Because b2 = 0, the ICS procedure only compares ICS1,n with

κ1,n = c1 log(log(n)). Similar to Figure 2, we choose c1 to minimize the average rate of under

rejection over b1 and π1,0, provided that the maximum null rejection probability is controlled.

When the sample size is 500, the maximum rejection probability of robust test is 5.7% and the

minimum rejection probability of the robust test is 4.5%. �

Tests proposed in this paper are robust to identification loss in multiple areas of the parameters

space. It is particularly useful for sub-vector inference when the nuisance parameters have mixed

7In simulations, the grids for b1 and b2 are {1, 2, 3, 4, 5, 6, 8, 10, 20, 30}. Only results for b1 and b2 up to 10 are
reported because they are stable for larger values of b1 and b2.
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Table 1: Rejection Probability (x100) of Tests for H0 : β2 = 0 versus H0 : β2 6= 0

Robust Standard

π1,0 b1 n = 200 n = 500 n = 1000 n = 200 n = 500 n = 1000

0 0 6.2 5.5 5.3 21.0 19.9 19.7
1 6.1 5.2 5.0 20.0 19.1 18.8
2 5.7 4.7 4.5 18.0 16.9 16.7
3 5.4 4.5 4.1 16.5 15.4 15.2
4 5.5 4.6 4.2 15.9 14.8 14.6
6 6.0 5.0 4.6 15.8 14.8 14.5
8 6.3 5.4 5.2 15.8 14.7 14.5
10 6.3 5.4 5.3 15.8 14.7 14.4

0.3 0 6.4 5.5 5.4 21.3 19.9 19.4
1 6.1 5.3 5.1 20.3 19.1 18.5
2 5.8 4.8 4.5 18.1 16.9 16.4
3 5.5 4.5 4.2 16.8 15.3 15.1
4 5.6 4.6 4.3 16.3 14.8 14.5
6 6.3 5.1 4.9 16.2 14.8 14.4
8 6.5 5.5 5.3 16.2 14.8 14.5
10 6.4 5.5 5.4 16.2 14.7 14.4

0.5 0 6.2 5.6 5.2 20.9 20.4 19.5
1 6.0 5.3 4.9 19.8 19.3 18.6
2 5.6 4.8 4.4 17.9 17.2 16.5
3 5.4 4.6 4.1 16.5 15.7 14.9
4 5.5 4.7 4.3 16.0 15.1 14.4
6 6.0 5.2 4.9 16.0 15.0 14.3
8 6.3 5.6 5.3 16.0 15.1 14.4
10 6.2 5.6 5.4 15.9 15.0 14.3

0.8 0 6.1 5.5 5.1 21.1 20.0 19.5
1 5.8 5.2 4.9 20.0 18.9 18.5
2 5.5 4.8 4.3 17.9 16.8 16.4
3 5.3 4.6 4.1 16.5 15.4 14.9
4 5.4 4.7 4.3 16.0 14.9 14.5
6 5.9 5.3 5.0 16.0 15.0 14.4
8 6.2 5.7 5.4 16.1 15.0 14.4
10 6.1 5.7 5.5 16.1 14.9 14.3

max 6.5 5.7 5.5 21.3 20.4 19.7

identification strength. The ICS procedure and the plug-in method improve the efficiency of the

robust test, however, the test does not have optimality properties, such as those discussed in

Elliott, Müller, and Watson (2012). Besides the Wald statistic and the t statistic, one can derive

the asymptotic distributions of the QLR and LM statistics along drifting parameters and simulate

their robust critical values in a similar fashion. Andrews and Cheng (2012) study the QLR statistic

when identification loss occurs at one point. With multiple points of non-identification in this

paper, the sequential peeling method developed in Section 3.2 is useful to analyze the constrained

sample criterion function. We leave these alternative robust tests and their comparison for future

work.
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Appendix

This version: May 8, 2014

For notational simplicity, in this appendix we use subscript k rather than Ik to denote param-

eters in group k for notational simplicity. For example, πk and βk are used in place of πIk and

βIk . The continuous mapping theorem is abbreviated to CMT. Left hand side and right hand are

abbreviated to lhs and rhs. With probability approaching one is written as w.p.a.1.

A Auxiliary Lemmas

Let s(W, θ) denote a function of θ that is differentiable on the support of W. Its derivative is

denoted by sθ(W, θ). The following lemmas apply to strictly stationary strong mixing time series

under Assumption 2 or i.i.d. data under Assumption 2∗.

Lemma A.1 (uniform law of large numbers)

Suppose (i) Assumption 2(i) or 2∗(i) holds, (ii) Eγ(supθ∈Θ ||s(Wt, θ)||1+δ+supθ∈Θ ||sθ(Wt, θ)||1+δ)

≤ C ∀γ ∈ Γ for some C <∞ and δ > 0, and (iii) Θ is compact. Then, (i) supθ∈Θ ||n−1
∑n

t=1 s(Wt, θ)−

Eγ0s(Wt, θ)|| →p 0 under any sequence of true parameters {γn ∈ Γ : n ≥ 1} and γn → γ0 ∈ Γ. (ii)

Eγ0s(Wt, θ) is uniformly continuous on Θ ∀γ0 ∈ Γ.

Lemma A.2 (stochastic equicontinuity)

(a) Suppose (i) Assumption 2(i) holds, (ii) Eγ(supθ∈Θ ||s(Wt, θ)||q+supθ∈Θ ||sθ(Wt, θ)||q) ≤ C ∀γ ∈

Γ for some C <∞ and q as in Assumption 2(i). Then, νns(θ) = n−1/2
∑n

t=1(s(Wt, θ)−Eγns(Wt, θ))

is stochastically equicontinuous over θ ∈ Θ under {γn} ∈ Γ(γ0), i.e., ∀ε > 0 and η > 0, ∃δ > 0 such

that lim supn→∞ P [supθ1,θ2∈Θ:||θ1−θ2||<δ ||νns(θ1)− νns(θ2)|| > η] < ε ∀γ0 ∈ Γ.

(b) Part (a) holds if Assumption 2(i) is replaced by Assumption 2∗(i) and q is replaced by 2 + δ for

some δ > 0.

Lemma A.3 (central limit theorem)

(a) Suppose (i) Assumption 2(i) holds, (ii) Eγ |s(Wt)|q ≤ C ∀γ ∈ Γ for some C < ∞ and q as

in Assumption 2(i). Then, n−1/2
∑n

t=1(s(Wt) − Eγns(Wt)) →d N(0, Vs(γ0)) under {γn} ∈ Γ(γ0)

∀γ0 ∈ Γ, where Vs(γ0) =
∑∞

m=−∞Covγ0(s(Wt), s(Wt+m)).

(b) Part (a) holds if Assumption 2(i) is replaced by Assumption 2∗(i) and q is replaced by 2 + δ for

some δ > 0.
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Lemmas A.1-A.3 are proved in Lemmas 11.3-11.5 in the supplemental appendix of Andrews and

Cheng (2013) for the strong mixing arrays. Lemma A.1 automatically extends to the i.i.d. data.

Lemma A.2 holds for the i.i.d. data with q replaced by 2 + δ by applying stochastic equicontinuity

results for the type II class (Lipschitz functions) in Andrews (1994). Lemma A.3 extends to i.i.d.

data with q replaced by 2 + δ following the Lyapunov central limit theorem for row-wise i.i.d.

triangular arrays.

B Proofs for Asymptotic Distributions of Estimators and Test

Statistics

Proof of Lemma 1. The sample least squares criterion function is

Qn(θ) = n−1
n∑
t=1

U2
t (θ)/2, where

Ut(θ) = Yt − g(Xt, π)′β − Z ′tζ

= Ut + g(Xt, πn)′βn + Z ′tζn − g(Xt, π)′β − Z ′tζ. (B.1)

Applying Lemma A.1, Qn(θ) converges to a non-random function Q(θ) uniformly over θ ∈ Θ. The

population criterion function is

Q(θ) = Eγ0U2
t /2 + Eγ0

[
g(Xt, π0)′β0 + Z ′tζ0 − g(Xt, π)′β − Z ′tζ

]2
/2 (B.2)

and Q(θ) is continuous in θ on Θ. Note that βI1,0 6= 0 and βIk,0 = 0 for k > 1 by the group

specification.

Define

ψ = (β′, ζ ′)′. (B.3)

Let ψn denote the true value of ψ for sample size n and ψn → ψ0. We write the criterion function

Q(θ) as Q(ψ, π1|π1+) and analyze Q(ψ, π1|π1+) as a function of (ψ, π1) for a fixed value of π1+ .

Now we show that for any π1+ , Q(ψ, π1|π1+) is uniquely minimized by (ψ0, π1,0). Note that

βk,0 = 0 for k > 1 by the grouping rule. Therefore, Q(ψ0, π1,0|π1+) = 0. For fixed π1+ ,

Q(ψ, π1|π1+)−Q(ψ0, π1,0|π1+)

= Eγ0

[
g1(Xt, π1,0)′β1,0 − g1(Xt, π1)′β1 −

K∑
k>1

gk(Xt, πk)
′βk + Z ′t(ζ0 − ζ)

]2

/2. (B.4)
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By Assumption 3,

Pγ0
(
a′
[
g(Xt, π)′, g(Xt, π0)′, Zt

]
= 0
)
< 1 (B.5)

for any a 6= 0 and π 6= π0. Because β1,0 6= 0, the rhs of (B.4) is greater than 0 for any π1 6= π1,0.

When π1 = π1,0, (B.5) implies that the rhs of (B.4) is greater than 0 unless β = β0 and ζ = ζ0.

Given that (i) the population criterion function Q(ψ, π1|π1+) is uniquely minimized by (ψ0, π1,0)

for any π1+ , (ii) Q(ψ, π1|π1+) is continuous, and (iii) the parameter spaces are all compact, we have

the identification uniqueness condition

inf
π1+∈Π1+

inf
ψ∈Ψ,π1∈Π1

{Q(ψ, π1|π1+)−Q(ψ0, π1,0|π1+)} > 0 (B.6)

uniformly over Π1+ , following Lemma 8.1 in the supplemental appendix of Andrews and Cheng

(2012). Finally, (B.6) implies the uniform consistency of ψ̂(π1+) and π̂1(π1+) by Lemma 3.1 of

Andrews and Cheng (2012). This Lemma extends the consistency proof for extremum estimators

to uniform consistency. �

Proof of Lemma 2. The proof is by induction. Step 1 shows that Lemma 2(b) and 2(c) hold for

k = 1. Step 2 shows that, if Lemma 2(b) and 2(c) hold for k − 1, Lemma 2(a)-2(c) hold for k.

Step 1. For k = 1, Lemma 2(b) is

sup
π1+∈Π1+

‖π̂1(π1+)− π1n‖ →p 0, (B.7)

which follows from Lemma 1. For k = 1, Lemma 2(c) becomes

||β1,n||−1


β̂1(π1+)− β1,n

β̂1+(π1+)

ζ̂ − ζn

→p 0 (B.8)

uniformly over π1+ , which follows from Lemma 1, β1,n → β1,0 6= 0, and βk,n → βk,0 = 0 for k > 1.

Step 2. Suppose Lemma 2 holds for k− 1. For ψk− = (β′, ζ ′, π′1, ..., π
′
k−1)′, the result for k− 1

yields uniform consistency of ψ̂k−(πk, πk+) over (πk, πk+). Now we show Lemma 2 holds for k.

Let D1
ψk

(θ) and D2
ψk

(θ) denote the first and second order partial derivatives of Qn(θ) wrt ψk− ,
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where θ = (ψ′k− , π
′
k, π
′
k+)′. In this model, the first order derivative is

D1
ψk

(θ) = −n−1
n∑
t=1

B(βk−)dψk,t(π)Ut(θ), where

B(βk−) = diag{(1dβ+dζ , β
′
k−)′},

dψk,t(π) = (g(Xt, π)′, Z ′t, gπk− (Xt, πk−)′)′. (B.9)

The second order derivative is

D2
ψk

(θ) = B(βk−)

(
n−1

n∑
t=1

dψk,t(π)dψk,t(π)′ − n−1
n∑
t=1

d∗ψk,t(θ)Ut(θ)

)
B(βk−), where (B.10)

d∗ψk,t(θ) =

 0dβ+dζ diag{gπk− (Xt, πk−)} [diag{βk−}]−1

diag{gπk− (Xt, πk−)} [diag{βk−}]−1 diag{gππk− (Xt, πk−)} [diag{βk−}]−1

 .

Recall that

ψ0
k−,n = (βk−,n, β

0
k, β

0
k+ , ζn, πk−,n), where β0

k = 0 and β0
k+ = 0. (B.11)

We set β0
k = 0 and β0

k+ = 0 in ψ0
k−,n so that the criterion function Qn(θ) does not depend on

(πk, πk+) when evaluated at ψ0
k−,n. Hence, we write Qn(ψ0

k−,n) = Qn(ψ0
k−,n, πk, πk+).

Part (a). Because ψ̂k−(πk, πk+) minimizes Qn(ψk− , πk, πk+) for any (πk, πk+), a mean-value

expansion of the first order condition (FOC) around ψk− = ψ0
k−,n implies that

0 = D1
ψk

(ψ̂k−(πk, πk+), πk, πk+)

= D1
ψk

(ψ0
k−,n, πk, πk+) +D2

ψk
(ψ∗k−,n, πk, πk+)

(
ψ̂k−(πk, πk+)− ψ0

k−,n

)
, (B.12)

for some ψ∗k−,n between ψ̂k−(πk, πk+) and ψ0
k−,n (ψ∗k−,n may depend on πk and πk+). This expansion

implies that

ψ̂k−(πk, πk+)− ψ0
k−,n = −

[
D2
ψk

(ψ∗k−,n, πk, πk+)
]−1

D1
ψk

(ψ0
k−,n, πk, πk+). (B.13)

We first study the first-order partial derivative in (B.13). Normalize it by
[
B(βk−,n)

]−1
,

[
B(βk−,n)

]−1
D1
ψk

(ψ0
k−,n, πk, πk+)

= −n−1
n∑
t=1

dψk,t(πk−,n, πk, πk+)
[
gk(Xt, πk,n)′βk,n + gk+(Xt, πk+,n)′βk+,n + Ut

]
. (B.14)



A.5

We normalize both sides of (B.14) by ||βk,n||−1 and obtain

||βk,n||−1
([

B(βk−,n)
]−1

D1
ψk

(ψ0
k−,n, πk, πk+)

)
→ p − Φk(πk, πk,0|πk+)ωk,0, where (B.15)

Φk(πk, πk,0|πk+) = Eγ0dψk,t(πk−,0, πk, πk+)g
k
(Xt, πk,0)′.

The convergence follows from (i) applying Lemma A.1 to n−1
∑n

t=1 dψk,t(πk−,n, πk, πk+)gk(Xt, πk,n)′

and n−1
∑n

t=1 dψk,t(πk−,n, πk, πk+)gk+(Xt, πk+,n)′, (ii) applying Lemmas A.2 and A.3 to the empir-

ical process n−1/2
∑n

t=1 dψk,t(πk−,n, πk, πk+)Ut, (iii) βk+,n = o(||βk,n||), and (iv) ||n1/2βk,n|| → ∞.

Note that Φk(πk, πk,0|πk+) = Hk(πk, πk,0|πk+)Sk, where Hk(πk, πk,0|πk+) is defined in (3.14) and

Sk is a selector matrix such that gk(Xt, πk,0) = S′kdψk,t(πk−,0, πk, πk+).

Next we study the second-order partial derivative in (B.13). Pre- and post-multiply D2
ψk

(θ) by

[B(βk−)]−1,

[B(βk−)]−1D2
ψk

(θ)[B(βk−)]−1 = n−1
n∑
t=1

dψk,t(π)dψk,t(π)′ − n−1
n∑
t=1

d∗ψk,t(θ)Ut(θ). (B.16)

Lemma A.1 implies uniform convergence of the first term on the rhs. Now we show the second

term on the rhs is negligible, i.e.,

n−1
n∑
t=1

Ut(θ)d
∗
ψk,t

(θ) = op(1) at θ = (ψ∗′k−,n, π
′
k, π
′
k+)′, (B.17)

uniformly over (πk, πk+1), where ψ∗k−,n is between ψ̂k−(πk, πk+) and ψ0
k−,n. Let Ik− = I1∪ ...∪Ik−1

denote the indices of regressors in groups 1 to k− 1. Given the definition of d∗ψk,t(θ), it is sufficient

to show that for j ∈ Ik− ,

n−1
n∑
t=1

[gπj (Xt, πj) + gππj (Xt, πj)]Ut(θ)/βj = op(1) (B.18)

uniformly over (πk, πk+) when evaluated at θ = (ψ∗′k−,n, π
′
k, π
′
k+)′. Note that this analysis is element

by element for each j = 1, ..., p rather than by groups.

Next we show (B.18) holds for j ∈ Ik− . To differentiate a single element βj from a group, we

use β` to denote group `. For j ∈ Ik− and ` = k − 1, we have the following results:

||β`,n||
βj,n

= Op(1) and

||β`,n||
β̂j,n(πk, πk+)

=

(
β̂j,n(πk, πk+)− βj,n

|β`,n||
+

βj,n
||β`,n||

)−1

= Op(1), (B.19)
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because (i) the coefficients βj,n are grouped in a decreasing order and (ii) Lemma 2(c) applies to

` = k − 1. Given (B.19), we have
||β`,n||
βj

= Op(1) (B.20)

for any βj between βj,n and β̂j,n(πk, πk+). For ` = k − 1, the error Ut(θ) can be written as

Ut(θ) =
[
Ut + g`−(Xt, π`−,n)′β`−,n + g`(Xt, π`,n)′β`,n + g`+(Xt, π`+,n)β`+,n

]
−
[
g`−(Xt, π`−)′β`− + g`(Xt, π`)

′β` + g`+(Xt, π`+)β`+
]
. (B.21)

Using this expansion, write

n−1
n∑
t=1

gπj (Xt, πj)Ut(θ)/βj = (Aj +Bj + Cj)
||β`,n||
βj

, (B.22)

where ||β`,n||/βj = Op(1) following (B.20) and Aj , Bj , Cj are specified as follows. The first term is

Aj =
n−1/2

∑n
t=1 gπj (Xt, πj)Ut

n1/2||β`,n||
. (B.23)

The second term is

Bj = n−1
n∑
t=1

[
gπj (Xt, πj)g`−(Xt, π`−,n)

]′ β`−,n
||β`,n||

− n−1
n∑
t=1

[
gπj (Xt, πj)g`−(Xt, π`−)

]′ β`−

||β`,n||

= n−1
n∑
t=1

[
gπj (Xt, πj)

(
g`−(Xt, π`−,n)− g`−(Xt, π`−)

)]′ β`−,n
||β`,n||

−n−1
n∑
t=1

[
gπj (Xt, πj)g`−(Xt, π`−)

]′ β`− − β`−,n
||β`,n||

=
(
π`−,n − π`−

)′ [
n−1

n∑
t=1

gπj (Xt, πj)diag{gπ`−(Xt, π
∗∗
`−)}

]
β`−,n
||β`,n||

−n−1
n∑
t=1

[
gπj (Xt, πj)g`−(Xt, π`−)

]′ β`− − β`−,n
||β`,n||

, (B.24)

for some π∗∗`− between π`−,n and π`− by a mean-value expansion. The third term is

Cj =

[
n−1

n∑
t=1

gπj (Xt, πj)g`(Xt, π`,n)

]′
β`,n
||β`,n||

−

[
n−1

n∑
t=1

gπj(Xt, πj)g`(Xt, π`)

]′
β`
||β`,n||

(B.25)

+

[
n−1

n∑
t=1

gπj (Xt, πj)g`+(Xt, π`+,n)

]′
β`+,n
||β`,n||

−

[
n−1

n∑
t=1

gπj (Xt, πj)g`+(Xt, π`+)

]′
β`+

||β`,n||
.
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Now we show Aj,Bj , Cj = op(1). Note that the rate of convergence in Lemma 2(c) holds when

ψ̂k−(πk, πk+) is replaced by ψn. Hence, it also holds for any ψk− between ψ̂k−(πk, πk+) and ψn.

First, Aj = op(1) because (i) n−1/2
∑n

t=1 gπj (Xt, πj)Ut = Op(1) uniformly over πj by Lemma A.2

and Lemma A.3 and (ii) n1/2||β`,n|| → ∞. Second, Bj = op(1) because, (i) for ψk− between

ψ̂k−(πk, πk+) and ψn, (π`−,n − π`−)′β`−,n/||β`,n|| = op(1), (β`− − β`−,n)/||β`,n|| = op(1) by Lemma

2(c), and (ii) the sample means are Op(1) by the ULLN in Lemma A.1. Third, Cj = op(1)

holds because (i) for ψk− between ψ̂k−(πk, πk+) and ψn, β`,n/||β`,n|| → ωk,0, β`/||β`,n|| → ωk,0,

β`+,n/||β`,n|| → 0, β`+/||β`,n|| → 0 and (ii) the sample means are Op(1) by the ULLN in Lemma

A.1. Similarly, (B.22) holds when gπj (Xt, πj) is replaced by gππ,j(Xt, πj). This proves (B.18), which

in turn implies (B.17).

It follows from (B.16) and (B.17) that, for θ = (ψ′k− , π
′
k, π
′
k+)′, where ψk− is between ψ̂k−(πk, πk+)

and ψ0
k−,n, the normalized second order partial derivative satisfies

[B(βk−)]−1D2
ψk

(θ)[B(βk−)]−1 → p Hk(πk, πk|πk+), where

Hk(πk, πk|πk+) = Eγ0dψk,t(πk−,0, πk|πk+)dψk,t(πk−,0, πk|πk+)′. (B.26)

Next we show

[B(βk−,n)]−1[B(βk−)]→p Idβ+dζ+dk−
, (B.27)

where dk− is the number of elements in βk− , so that rescaling by B(βk−) and by B(βk−,n) is

asymptotically equivalent. For j ∈ Ik− ,

β̂j(πk, πk+)

βj,n
− 1 =

β̂j(πk, πk+)− βj,n
||βk−1,n||

||βk−1,n||
βj,n

→ 0 (B.28)

by applying Lemma 2(c) to k − 1. This implies that for j ∈ Ik− , βj/βj,n → 1 for any βj between

β̂j(πk, πk+) and βj,n, which further implies the desired result in (B.27).

Normalizing the equality in (B.13), we obtain

B(βk−,n)
(
ψ̂k−(πk, πk+)− ψ0

k−,n

)
(B.29)

= −
{

[B(βk−,n)]−1D2
ψk

(ψ∗k−,n, πk, πk+)[B(βk−,n)]−1
}−1 {[

B(βk−,n)
]−1

D1
ψk

(ψ0
k−,n, πk, πk+)

}
.
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Applying (B.15), (B.26), and (B.27) to (B.29) yields

||βk,n||−1
(
B(βk−,n)

(
ψ̂k−(πk, πk+)− ψ0

k−,n

))
→ p [Hk(πk, πk|πk+)]−1 Φk(πk, πk,0|πk+)ωk,0

= [Hk(πk, πk|πk+)]−1Hk(πk, πk,0|πk+)∆k (B.30)

uniformly over (πk, πk+), where ∆k = Skωk,0 by definition.

We expand the criterion functionQcn(πk, πk+) = Qn(ψ̂k−(πk, πk+), πk, πk+) around (ψ0
k−,n, πk, πk+)

for fixed (πk, πk+). Note that Qn(ψ0
k−,n) = Qn(ψ0

k−,n, πk, πk+) does not depend on (πk, πk+) and we

have shown the consistency of ψ̂k−(πk, πk+). By a second order Taylor expansion,

Qcn(πk, πk+)−Qn(ψ0
k−1,n)

= D1
ψk−

(ψ0
k−,n, πk, πk+)′

(
ψ̂k−(πk, πk+)− ψ0

k−,n

)
+

1

2

(
ψ̂k−(πk, πk+)− ψ0

k−,n

)′
D2
ψk−

(ψ∗∗k−,n, πk, πk+)
(
ψ̂k−(πk, πk+)− ψ0

k−,n

)
=
(
D1
ψk−

(ψ0
k−,n, πk, πk+)′

[
B(βk−,n)

]−1
)(

B(βk−,n)
(
ψ̂k−(πk, πk+)− ψ0

k−,n

))
+

1

2

(
B(βk−,n)

(
ψ̂k−(πk, πk+)− ψ0

k−,n

))′ (
[B(βk−,n)]−1D2

ψk−
(ψ∗∗k−,n, π2)[B(βk−,n)]−1

)
×
(
B(βk−,n)

(
ψ̂k−(πk, πk+)− ψ0

k−,n

))
(B.31)

for some ψ∗∗k−,n between ψ̂k−(πk, πk+) and ψ0
k−,n. Applying the results for the first and second order

derivatives in (B.15) and (B.26) and the results for B(βk−,n)(ψ̂k−(πk, πk+)− ψ0
k−,n) in (B.29) and

(B.30), we obtain the desired result in part (a).

Part (b). Following the definitions of Hk(πk, πk|πk+) and ∆k = [01×dk− , ω
′
k,0, 01×(dζ+dk− )]

′, the

matrix Cauchy-Schwarz inequality (see Tripathi (1999)) implies that ∆′kHk(πk, πk,0|πk+)′

[Hk(πk, πk|πk+)]−1Hk(πk, πk,0|πk+)∆k is uniquely maximized at πk = πk,0 provided that for a 6= 0

and some ε > 0,

Pγ
(
a
[
ω′k,0gk(Xt, πk,0)

]
+ b′

[
gk−(Xt, πk−,0), gk(Xt, πk), gk+(Xt, πk+), Z ′t, gπk− (Xt, πk−,0)

]
= 0
)
≤ 1−ε

(B.32)

for πk 6= πk,0. Because each element in ωk,0 is different from 0 following the grouping rule, the

desired result in (B.32) is implied by Assumption 3. Thus, part (b) follows from part(a), the

argmax CMT (Theorem 3.2.2 in van der Vaart and Wellner (1996)(1996, p. 286)), and πk,n → πk,0

as n→∞.

Part (c). Part (c) follows from (B.30), the consistency in part (b), and replacing β0
k,n, which
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is a vector of zeros, with βk,n in the centering term.

This completes the proof of step 2 in the induction arguments, and therefore completes the

proof of Lemma 2. �

Proof of Theorem 1. Part (a). For k = K, normalizing (B.14) by n1/2 yields

n1/2
[
B(βK−,n)

]−1
D1
ψK

(ψ0
K−,n, πK)

= −n−1
n∑
t=1

dψK ,t(πK−,n, πK)gK(Xt, πK,n)′
(
n1/2βK,n

)
− n−1/2

n∑
t=1

UtdψK ,t(πK−,n, πK)

⇒ − [HK(πK , πK,0)SKbK +G(πK)] (B.33)

following Lemmas A.1-A.3 and n1/2βK,n → bK . For k = K, (B.26) yields

[B(βK−)]−1D2
ψK

(θ)[B(βK−)]−1 →p HK(πK , πK) (B.34)

for any θ = (ψ′K− , π
′
K)′ where ψK− is between ψ̂K−(πK) and ψ0

K,n. In addition, (B.27) gives

[B(βK−,n)]−1[B(βK−)]→p Idβ+dζ+dK−
. (B.35)

For k = K, normalizing (B.29) by n1/2, we obtain

n1/2B(βK−,n)
(
ψ̂K−(πK)− ψ0

K−,n

)
(B.36)

= −
(

[B(βK−,n)]−1D2
ψK

(ψ∗K−,n, πK)[B(βK−,n)]−1
)−1

n1/2
[
B(βK−,n)

]−1
D1
ψK

(ψ0
K−,n, πK)

for ψ∗K−,n between ψ̂K−(πK) and ψ0
K,n. Combining (B.33)-(B.36) yields

n1/2B(βK−,n)
(
ψ̂K−(πK)− ψ0

K−,n

)
⇒ τ(πK), where (B.37)

τ(πK) = [HK(πK , πK)]−1 [HK(πK , πK,0)SKbK +G(πK)] .
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Applying (B.31) to k = K and normalizing the criterion function by n, we obtain

n
(
Qcn(πK)−Qn(ψ0

K−,n)
)

=
(
n1/2D1

ψK
(ψ0

K−,n, πK)′
[
B(βK−,n)

]−1
)(

n1/2B(βK−,n)
(
ψ̂K−(πK)− ψ0

K−,n

))
+

1

2

(
n1/2B(βK−,n)

(
ψ̂K−(πK)− ψ0

K−,n

))′ (
[B(βK−,n)]−1D2

ψK
(ψ∗∗K−,n, πK)[B(βK−,n)]−1

)
×
(
n1/2B(βK−,n)

(
ψ̂K−(πK)− ψ0

K−,n

))
(B.38)

⇒ −1

2
[HK(πK , πK,0)SKbK +GK(πK)]′ [HK(πK , πK)]−1 [HK(πK , πK,0)SKbK +GK(πK)]

following (B.33), (B.34), and (B.37). Because π̂K minimizes Qcn(πK), applying the argmax CMT,

we obtain

π̂K ⇒ π∗K . (B.39)

Because ψ̂K−(π̂K) = ψ̂K− , the CMT and (B.37) yield

n1/2B(βK−,n)
(
ψ̂K− − ψK−,n

)
= n1/2B(βK−,n)

(
ψ̂K−(π̂K)− ψ0

K−,n

)
− n1/2B(βK−,n)

(
ψK−,n − ψ0

K−,n

)
⇒ τK(π∗K)− SKbK , (B.40)

where SKbK is a vector of the same size as ψK− but with the sub-vector of βK replaced by bK and

the rest replaced by zeros. The convergence in (B.39) and (B.40) hold jointly because there are

both functionals of the same underlying stochastic processes. This completes the proof. �

Part (b). When ||n1/2βK,n|| → ∞, Lemma 2 applies to k = K with πk+ omitted in the

expression. This provides (i) consistency of θ̂ and (ii) the rate of convergence in Lemma 2 (c) with

k = K.

Define the first and second order derivatives of Qn(θ) wrt θ by

D1
θ(θ) = −n−1

n∑
t=1

Ut(θ)B(β)dθ,t(π), with

B(βk) = diag{(1dβ+dζ , β
′)′},

dθ,t(π) = (g(Xt, π)′, Z ′t, gπ(Xt, π)′)′. (B.41)
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and

D2
θ(θ) = B(β)

(
n−1

n∑
t=1

dθ,t(π)dθ,t(π)′ − n−1
n∑
t=1

Ut(θ)d
∗
θ,t(θ)

)
B(β), where (B.42)

d∗θ,t(θ) =

 0dβ+dζ diag{gπ(Xt, π)} [diag{β}]−1

diag{gπ(Xt, π)} [diag{β}]−1 diag{gππ(Xt, π)} [diag{β}]−1

 .

Because θ̂ minimizes Qn(θ), a mean-value expansion of the FOC around θn implies that

θ̂ − θn = −
[
D2
θ(θ
∗)
]−1

D1
θ(θn). (B.43)

for some θ∗ between θ̂ and θn.

Evaluate D1
θ(θ) at θn and normalize it by n1/2 [B(βn)]−1 ,

n1/2 [B(βn)]−1D1
θ(θn)→d N(0,Ωθ(π0). (B.44)

Pre- and post-multiply D2
θ(θ) by [B(β)]−1,

[B(β)]−1D2
θ(θ)[B(β)]−1 = n−1

n∑
t=1

dθ,t(π)dθ,t(π)′ − n−1
n∑
t=1

Ut(θ)d
∗
θ,t(θ), (B.45)

where we have

n−1
n∑
t=1

Ut(θ)d
∗
θ,t(θ) = op(1) at θ = θ∗, (B.46)

for any θ∗ between θ̂ and θn following the arguments used to show (B.17). It follows that

[B(β)]−1D2
θ(θ)[B(β)]−1 →p H(π0) (B.47)

for any θ between θ̂ and θn. In addition, Lemma 2(c) for k = K implies that [B(βn)]−1B(β∗) →p

I2dβ+dζ for β∗ between β̂ and βn.

Putting together results for the first and second order derivatives, we obtain

n1/2B(βn)
(
θ̂ − θn

)
= −

(
[B(βn)]−1D2

θ(θ
∗)[B(βn)]−1

)−1
n1/2 [B(βn)]−1D1

θ(θn)

→ d N(0, H(π0)−1Ωθ(π0)H(π0)−1). (B.48)
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Proof of Theorem 2. Under the null hypothesis H0 : Rθn = vn, the Wald statistic Wn(R) is

Wn(R) = n
[
R
(
θ̂ − θn

)]′ [
RB−1(β̂)Σ̂nB

−1(β̂)R′
]−1 [

R
(
θ̂ − θn

)]
. (B.49)

We first show

εn = Wn(R)−Wn(R∗) = op(1). (B.50)

Because D∗(β̂) is non-singular with w.p.a.1, Wn(R) = Wn(D∗(β̂)A′R) w.p.a.1. Decompose the the

rotated matrix A′R as

A′R = R∗ + ε∗R, (B.51)

where R∗ is the block-diagonal matrix and ε∗R = A′R − R∗ is composed of the rest. Using this

decomposition, we have

Wn(D∗(β̂)A′R) = %′
[
R
(
B−1(ω̂)Σ̂nB

−1(ω̂)
)
R
′
]−1

%, where

ρ = n1/2D∗(β̂) (R∗ + ε∗R) (θ̂n − θn)

R = D∗(β̂) (R∗ + ε∗R) D−1(β̂). (B.52)

Because R∗ is block-diagonal,

R = R∗ + D∗(β̂)ε∗RD−1(β̂), (B.53)

where D∗(β̂)ε∗RD−1(β̂) = op(1) because (i) the matrix A′kRj in ε∗R is multiplied by ||β̂k|| · ||β̂j ||−1,

which is op(1) for j < k and (ii) A′R is upper block diagonal by construction. To study ρ, write it

as

ρ = ρn + n1/2D∗(β̂)ε∗R(θ̂n − θn), where

ρn = n1/2D∗(β̂)R∗(θ̂n − θn). (B.54)

The second term n1/2D∗(β̂)ε∗R(θ̂n− θn) = op(1) because its components are n1/2||β̂k|| (A′kRj) (π̂j −

πj,n) for j < k. By Theorem 1, the convergence rate of π̂j is n1/2||βj,n||, which is an order of

magnitude larger than n1/2||β̂k|| for j < k. Putting together (B.52)-(B.54), we have

Wn(R∗) + εn

= Wn(D∗(β̂)A′R)

= (ρn + op(1))′
[
(R∗ + op(1))

(
B−1(ω̂)Σ̂nB

−1(ω̂)
)

(R∗ + op(1))′
]−1

(ρn + op(1)) . (B.55)
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Applying Wn(R∗) = ρ′nV
−1
n ρn in (4.16) and comparing the first and third line of (B.55) shows that

εn = op(1) provided that (i) ρn = Op(1), (ii) B−1(ω̂)Σ̂nB
−1(ω̂) = Op(1), and

(iii) λmin(B−1(ω̂)Σ̂−1
n B−1(ω̂)) > 0 w.p.a.1., given that R∗ has full rank by construction. We

investigate these terms below.

We first consider weak identification in part (a). Following (4.17), ρn = R∗B−1(ω̂)ξn, where

ξn = n1/2B(β̂)(θ̂ − θn). To derive the asymptotic distribution of ξn, define a stochastic process

indexed by πK :

ξn(πK) =

 n1/2B(β̂K−,n)
(
ψ̂K−(πK)− ψK−,n

)
n1/2diag{β̂K(πK)} (πK − πK,n)

 . (B.56)

Applying (B.27) with k = K, we have B(β̂K−,n)[B(βK−,n)]−1 = IdK− + op(1). Applying it together

with Theorem 1(a) and the CMT yields

ξn = ξn(π̂K)⇒ ξ(π∗K), (B.57)

where

ξ(πK) =

 τK(πK)− SKbK
diag{τβK (πK)} (πK − πK,0)

 . (B.58)

To study B(ω̂) with ω̂ = (ω̂′1, ..., ω̂
′
K)′, note that for k = 1, ...K−1, ||βk,n||−1(β̂k−βk,n) = op(1)

following Lemma 2(c). This implies β̂k = βk,n + ||βk,n||op(1) and ||β̂k||/||βk,n|| = 1 + op(1). Hence,

ω̂k =
β̂k

||β̂k||
=
β̂k − βk,n
||βk,n||

||βk,n||
||β̂k||

+
βk,n
||βk,n||

||βk,n||
||β̂k||

→p ωk,0. (B.59)

For the last group,

ω̂K = n1/2β̂K/||n1/2β̂K || ⇒
τβK (π∗K)

||τβK (π∗K)||
(B.60)

by Theorem 1(a) and the CMT. Therefore,

B(ω̂)⇒ Bω(π∗K), (B.61)

which is non-singular w.p.a.1.

The covariance matrix is Σ̂ = Σ̂(θ̂), where Σ̂(θ) = [Ĥ(π)]−1′Ω̂θ(θ)[Ĥ(π)]−1. Lemma A.1 implies

that

Ĥ(π)→p H(π) (B.62)
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uniformly over π ∈ Π. For the other term, we have

Ω̂θ(θ) = n−1
n∑
t=1

Û2
t (θ)dθ,t(π)dθ,t(π)′

= n−1
n∑
t=1

U2
t dθ,t(π)dθ,t(π)′

+2n−1
n∑
t=1

Ut

(
K∑
k=1

(
g(Xt, πk,n)′βk,n − g(Xt, πk)

′βk
))

dθ,t(π)dθ,t(π)′

+n−1
n∑
t=1

(
K∑
k=1

(
g(Xt, πk,n)′βk,n − g(Xt, πk)

′βk
))2

dθ,t(π)dθ,t(π)′ (B.63)

→ p Eγ0
[
U2
t dθ,t(π)dθ,t(π)′

]
+ Eγ0

( K∑
k=1

(
g(Xt, πk,0)′βk,0 − g(Xt, πk)

′βk
))2

dθ,t(π)dθ,t(π)′


uniformly over θ ∈ Θ following the ULLN in Lemma A.1. Given the uniform consistency of

ψ̂K−(πK) over πK , we have

Ω̂(ψ̂K−(πK), πK)→p Eγ0
[
U2
t dθ,t(πK−,0, πK)dθ,t(πK−,0, πK)′

]
= Ωθ(πK−,0, πK), (B.64)

where the convergence holds uniformly over πK ∈ ΠK . Putting together (B.62) and (B.64), we have

Σ̂(ψ̂K−(πK), πK) → p Σ(πK) = [H(πK)]−1′Ωθ(πK)[H(πK)]−1, where

H(πK) = H(πK−,0, πK) and Ωθ(πK) = Ωθ(πK−,0, πK). (B.65)

By the CMT and Theorem 1(a),

Σ̂ = Σ̂(ψ̂K−(π̂K), π̂K)⇒ Σ(πK∗). (B.66)

By Assumptions 4 and 5, λmin(Σ(πK∗)) is bounded away from 0.

Putting together (B.57), (B.61), (B.66), we obtain εR = op(1) by (B.55). Furthermore, these

results hold jointly. Therefore,

Wn(R) = ρ′nV
−1
n ρn + op(1) (B.67)

=
(
R∗B−1(ω̂)ξn

)′ [
R∗
(
B−1(ω̂)Σ̂B−1(ω̂)

)
R∗′
]−1 (

R∗B−1(ω̂)ξn
)

+ op(1)

⇒
(
R∗B−1

ω (π∗K)ξ(π∗K)
)′ [

R∗
(
B−1
ω (π∗K)Σ̂(π∗K)B−1

ω (π∗K)
)
R∗′
]−1 (

R∗B−1
ω (π∗K)ξn

)
,
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where the first equality follows from (B.55) and εn = op(1), the second equality follows from the

definition of ρn and Vn, and the convergence follows from the joint convergence of those in (B.57),

(B.61), and (B.66).

Next, we prove part (b). Theorem 1(b) implies that

ξn(π̂K)→d ξ ∼ N(0,Σ(π0)) (B.68)

because B−1(β̂K(πK))B(βK,n) = 1dK + op(1) when group K involves semi-strong or strong identi-

fication. In addition, the angel parameters and the covariance matrix satisfy

ω̂ →p ω0 = (ω′1,0, ..., ω
′
K,0)′ and Σ̂→p Σ(π0) (B.69)

following the arguments in (B.59) for k = K and those in (B.65) with the consistency of π̂K .

Therefore, εn = op(1) following the calculation in (B.55). Furthermore, the Wald statistic satisfies

Wn(R) → d

[
R∗B−1(ω0)ξ

]′ [
R∗
(
B−1(ω0)Σ0B

−1(ω0)
)
R∗′
]−1 [

R∗B−1(ω0)ξ
]

∼ χ2
dr (B.70)

because R∗, B−1(ω0), and Σ0 all have full rank. This completes the proof. �

Corollary 1 follows directly from Theorem 2.

C Proofs for the Asymptotic Size

Proof of Theorem 3. We prove this theorem using the generic results in Andrews, Cheng, and

Guggenberger (2011) (hereafter ACG) after reparameterizing the model to fit the set-up in ACG.

We invoke Corollary 2.1(b) of ACG, which requires the verification of Assumptions B1, B2∗, and

C1 in ACG. This gives the desired asymptotic size result for a confidence set. The asymptotic

size of a test follows from the same arguments. The verification of these high-level assumptions in

ACG reply on the reparameterization proposed below and the asymptotic distribution derived in

Theorem 2.

To employ the notation in ACG, reparameterize β as (||β||, g(β)), where

g(β) =

(
βj
β`

)
j 6=`

=

(
β1

β2
, ...,

β1

βp
, ...,

βp
β1
, ...,

βp
βp−1

)
(C.1)
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and define βj/β` = ∞ if β` = 0. Note that it is a one-to-one transformation between β and

(||β||, g(β)) because

βj =
||β||√∑p
`=1

(
β`
βj

)2
. (C.2)

Hence, γ = (θ, φ) can be reparameterized as

λ = (||β||, g(β), ζ ′, π′, φ)′. (C.3)

Define a function

hn(λn) = (n1/2βn, ||βn||, g(βn), ζn, πn, φn). (C.4)

Recall

h = (I, bIK , ω0, γ0) = (I, bIK , ω0, β0, ζ0, π0, φ0). (C.5)

It is a one-to-one transformation between h and the limit of hn(λn).8 In particular, the grouping

rule I is determined by the limit of hn(λn) because (i) the strong identification group are for

βj,n → βj,0 6= 0, (ii) the weak identification groups are for n1/2βj,n → bj ∈ R, and (iii) the group

structure for the semi-strong identification groups are determined by the relative convergence rates

represented by the limit of g(βn). Given this grouping rule I, the limit of hn(λn) determines bIK

and the group angel parameter ω0. The other direction from h to the limit of hn(λn) is obvious.

For any sequences of true parameters {λn : n ≥ 1} for which hn(λn) converges to a limit that

can be reparameterized as h ∈ H, Theorem 2 shows that Wn(R) →d W(h). Under Assumption

CV1, W(h) is continuous at χ2
dr,1−α ∀h ∈ H. Therefore, the coverage probability satisfies

Pr(Wn(R) ≤ χ2
dr,1−α)→ Pr(W(h) ≤ χ2

dr,1−α). (C.6)

This verifies both Assumption B1 and C1 of ACG with the limit of the coverage probability CP (h) =

Pr(W(h) ≤ χ2
dr,1−α). (ACG allows for a lower and an upper bound for the limit of the finite-

sample coverage probability, denoted by CP−(h) and CP+(h), respectively. In (C.6), CP−(h) =

CP+(h) = CP (h).)

Assumption B2∗(i) of ACG holds with (λ1, ..., λq)
′ = (||β||, g(β), ζ ′, π′)′ and λq+1 = φ. Assump-

tion B2∗(ii) of ACG holds with hn(λn) = (n1/2βn, λn) and, as a result, Assumption B2∗(iii) holds

automatically. Assumption B2∗(iv) of ACG holds because the parameter space is a product space

and the parameter space of βj includes a neighborhood around 0.

8We do not differentiate ∞ and −∞ for this proof.
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Invoking Corollary 2.1(b) of ACG, we obtain Theorem 3(b). Theorem 3(a) follows from the

same arguments with H replaced by H(v) for fixed v under the null and the coverage probability

replaced by the rejection probability. Results for test and confidence set based on the t statistic

follow from the same arguments. �

Proof of Theorem 4. As in the proof of Theorem 3, we invoke Corollary 2.1(b) of ACG for this

proof. The same reparameterization for λ and hn(λn) is necessary. Assumption B2∗ of ACG is the

same for the standard test and the robust test, thus it remains to verify Assumptions B1 and C1

of ACG for the robust test and confidence interval based on the plug-in critical value.

We first introduce some notations. For a sequence of constants {cn : n ≥ 1}, let cn → [c1, c2]

denote c1 ≤ lim infn→∞ cn ≤ lim supn→∞ cn ≤ c2. To verify Assumption B1 of ACG, we first show

that for any sequence of true parameters {λn : n ≥ 1} for which hn(λn) converges to a limit that

can be reparameterized as h0 ∈ H, the coverage probability satisfies

Pr(Wn(R) ≤ ĉn,1−α)→ [CP−(h0), CP+(h0)] (C.7)

for some CP−(h0), CP+(h0) ∈ [0, 1]. Here we use h0 ∈ H rather than h ∈ H to denote the sequence

under consideration, whereas h is a generic notation in the definition of the plug-in critical value.

To verify Assumption C1 of ACG, we show CP−(hL) = CP+(hL) for some hL ∈ H such that

CP−(hL) = infh∈H CP
−(h) = 1 − α. Then, Corollary 2.1(b) of ACG implies that the asymptotic

size is 1− α.

For a given h0 ∈ H, its corresponding elements are IK,0, ωIk,0, πIk,0. We define an infeasible

critical value under h0 as

c1−α(h0) = sup
h∈H0

W1−α(h), where

H0 = {h ∈ H : IK = IK,0, ωIk = ωIk,0, πIk = πIk,0 for k < K}. (C.8)

This infeasible critical value c1−α(h0) does not depend on the data. Because h0 ∈ H0,

c1−α(h0) ≥ W1−α(h0). (C.9)
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Recall the plug-in critical value defined as

ĉn,1−α = sup
h∈Ĥ
W1−α(h), where

Ĥ = {h ∈ H : IK = ÎW , ωIk = β̂Ik/||β̂Ik || and πIk = π̂Ik for k < K}. (C.10)

In the definition of Ĥ, IK , ωIk , πIk for k < K are estimated. The grouping rule I is not specified

except for the last group IK .

Along a sequence of true parameters {λn : n ≥ 1} for which hn(λn) converges to a limit that

can be reparameterized as h0 ∈ H, we first show that the the estimated weak identified set ÎW is

no smaller than the true weak identification set IK,0 w.p.a.1, i.e., Pr(IK,0 ⊆ ÎW ) → 1. Therefore,

imposing IK to be ÎW in Ĥ is less restrictive than imposing IK to be IK,0 in H0. Here we assume

there exist weakly identified regressors and they are collected in IK,0 following the grouping rule.

When no regressors are weakly identified, the Wald statistic has a chi-square distribution and the

limit of the coverage probability is greater than or equal to 1 − α because ĉn,1−α ≥ χ2
dr,1−α by

construction.

Consider j ∈ IK,0, Theorem 1 and (B.65) imply

ICSj,n = n1/2(Σ̂j)
−1/2

∣∣∣β̂j∣∣∣→d (Σj(π
∗
K))−1/2

∣∣τβj (π∗K)
∣∣ , (C.11)

where τβj (πK) is an element of τ(π) associated with βj and Σj(πK) is an element of Σ(π) associated

with βj , for both of which π1, ..., πK−1 are evaluated at the limit of the true values. By Assumption

5, infπK∈ΠK Σj(πK) > 0. Hence, ICSj,n = Op(1) and ICSj,n < κn w.p.a.1. because κn →∞. This

proves

Pr(IK,0 ⊆ ÎW )→ 1. (C.12)

It follows that any element that does not belong to ÎW must be in the semi-strong or strong

identification group. Therefore, β̂Ik/||β̂Ik || →p ωIk,0 and π̂k →p πIk,0 for k < K for any group

specification I where IK = ÎW .

For a given group specification I, the quantile W1−α(h) with ωIk = β̂Ik/||β̂Ik || and πIk = π̂Ik

converge in probability to the quantile ofW1−α(h) with ωIk = ωIk,0, πIk = πIk,0 under Assumption

CV2. This follows the same line of arguments for Theorem 3 of Andrews and Guggenberger (2009b).

Because Pr(IK,0 ⊆ ÎW )→ 1, w.p.a.1,

c1−α(h0) ≤ ĉn,1−α + op(1). (C.13)
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Combing it together with (C.9), w.p.a.1, we have

W1−α(h0) ≤ ĉn,1−α + op(1). (C.14)

Under the sequence of true parameters associated with h0 ∈ H, Theorem 2 shows thatWn(R)→d

W(h0). Therefore,

Pr (Wn(R) ≤ ĉn,1−α)

≥ Pr(Wn(R) + op(1) ≤ W1−α(h0) & W1−α(h0) ≤ ĉn,1−α + op(1))

= Pr(Wn(R) + op(1) ≤ W1−α(h0))

−Pr(Wn(R) + op(1) ≤ W1−α(h0) & W1−α(h0) > ĉn,1−α + op(1))

≥ Pr(Wn(R) + op(1) ≤ W1−α(h0))− Pr(W1−α(h0) > ĉn,1−α + op(1))

→ 1− α, (C.15)

where the convergence follows from Wn(R)→d W(h0), the Slutsky’s theorem, and (C.14). There-

fore, for any h0 ∈ H, (C.7) holds with CP−(h0) = 1−α. The value of CP+(h) does not matter for

asymptotic size. We simply take CP+(h0) = 1.

To show infh∈H CP
−(h) = 1 − α, we consider the case where all parameters are strongly

identified, e.g., βj,n → βj,0 6= 0 for all j = 1, ...p. In this case,

κ−1
n |ICSj,n| =

(
κ−1
n n1/2

)
(Σ̂j)

−1/2
∣∣∣β̂j∣∣∣→∞ (C.16)

because κn diverges to ∞ slower than n1/2. Therefore, when all parameters are strongly identified,

ÎW = � w.p.a.1, which implies that ĉn,1−α = χ2
dr,1−α w.p.a.1 in this case. In addition, Theorem 2

shows that W(h0) ∼ χ2
dr

in this case. Therefore, when all parameters are strongly identified,

Pr (Wn(R) ≤ ĉn,1−α)→ Pr(W(h0) ≤ χ2
dr,1−α) = 1− α. (C.17)

Let hL denote the limit of hn(λn) when all parameters are strongly identified, i.e., β0,j 6= 0 for all j

in hL. (C.17) shows CP−(hL) = CP+(hL) = 1− α. This completes the verification of Assumption

C1 of ACG and concludes that the asymptotic size of the robust confidence set is 1−α. The proof for

the test is the same except that H, H(v), ĉn,1−α are replaced by H(v), Ĥ(v), ĉn,1−α(v), respectively,

and the coverage probability is replaced by the rejection probability. The same arguments apply

to robust tests and confidence sets based on the the t statistic. �



References

Andrews, D. W. K. (1994): “Asymptotics for Semiparametric Econometric Models via Stochastic

Equicontinuity,” Econometrica, 62(1), 43–72.

Andrews, D. W. K., and P. J. Barwick (2012): “Inference for Parameters Defined by Moment

Inequalities: A Recommended Moment Selection Procedure,” Econometrica, 80(6), 2805–2826.

Andrews, D. W. K., and X. Cheng (2012): “Estimation and Inference With Weak, Semi-Strong,

and Strong Identification,” Econometrica, 80(5), 2153–2211.

(2013): “Maximum likelihood estimation and uniform inference with sporadic identifica-

tion failure,” Journal of Econometrics, 173(1), 36–56.

(2014): “GMM Estimation and Uniform Subvector Inference with Possible Identification

Failure,” Econometric Theory, 30, 287–333.

Andrews, D. W. K., X. Cheng, and P. Guggenberger (2011): “Generic Results for Estab-

lishing the Asymptotic Size of Confidence Sets and Tests,” Cowles Foundation Discussion Papers

1813, Cowles Foundation for Research in Economics, Yale University.

Andrews, D. W. K., and P. Guggenberger (2009a): “Hybrid and Size-Corrected Subsampling

Methods,” Econometrica, 77(3), 721–762.

(2009b): “Validity Of Subsampling And Plug-In Asymptotic Inference For Parameters

Defined By Moment Inequalities,” Econometric Theory, 25(03), 669–709.

(2010): “Asymptotic size and a problem with subsampling and with the m out of n

Boostrap,” Econometric Theory, 26, 426–468.

Andrews, D. W. K., M. J. Moreira, and J. H. Stock (2006): “Optimal Two-Sided Invariant

Similar Tests for Instrumental Variables Regression,” Econometrica, 74(3), 715–752.

Andrews, D. W. K., and W. Ploberger (1994): “Optimal Tests When a Nuisance Parameter

Is Present Only under the Alternative,” Econometrica, 62(6), 1383–1414.

Andrews, D. W. K., and G. Soares (2010): “Inference for Parameters Defined by Moment

Inequalities Using Generalized Moment Selection,” Econometrica, 78(1), 119–157.

Andrews, D. W. K., and J. H. Stock (2007): “Testing with many weak instruments,” Journal

of Econometrics, 138(1), 24–46.



Andrews, I. (2013): “Conditional Linear Combination Tests for Weakly Identified Models,” Dis-

cussion paper, MIT.

Andrews, I., and A. Mikusheva (2012): “A geometric approach to weakly identified econometric

models,” Discussion paper, MIT.

(2013): “Maximum Likelihood Inference in Weakly Identified DSGE Models,” Quantitative

Economics, p. forthcoming.

Antoine, B., and E. Renault (2009): “Efficient GMM with nearly-weak instruments,” Econo-

metrics Journal, 12(s1), S135–S171.

(2012): “Efficient minimum distance estimation with multiple rates of convergence,”

Journal of Econometrics, 170(2), 350–367.

Caner, M. (2010): “Testing, Estimation in GMM and CUE with Nearly-Weak Identification,”

Econometric Reviews, 29(3), 330–363.

Chaudhuri, S., and E. Zivot (2011): “A new method of projection-based inference in GMM

with weakly identified nuisance parameters,” Journal of Econometrics, 164(2), 239–251.

Chen, X., M. Ponomareva, and E. Tamer (2013): “Likelihood Inference in Some Finite Mix-

ture Models,” Journal of Econometrics, p. forthcoming.

Choi, I., and P. C. B. Phillips (1992): “Asymptotic and finite sample distribution theory for

IV estimators and tests in partially identified structural equations,” Journal of Econometrics,

51(1-2), 113–150.

Davies, R. B. (1977): “Hypothesis testing when a nuisance parameter is present only under the

alternative,” Biometrika, 64(2), 247–254.

Davies, R. B. (1987): “Hypothesis testing when a nuisance parameter is present only under the

alternative,” Biometrika, 74(1), 33–43.

Dufour, J.-M. (1997): “Some Impossibility Theorems in Econometrics with Applications to Struc-

tural and Dynamic Models,” Econometrica, 65(6), 1365–1388.

Dufour, J.-M., and M. Taamouti (2005): “Projection-Based Statistical Inference in Linear

Structural Models with Possibly Weak Instruments,” Econometrica, 73(4), 1351–1365.

(2007): “Further results on projection-based inference in IV regressions with weak,

collinear or missing instruments,” Journal of Econometrics, 139(1), 133–153.



Elliott, G., U. K. Müller, and M. W. Watson (2012): “Nearly Optimal Tests when a Nui-

sance Parameter is Present Under the Null Hypothesis,” Discussion paper, UCSD and Princeton

University.

Guerron-Quintana, P., A. Inoue, and L. Kilian (2013): “Frequentist inference in weakly

identified dynamic stochastic general equilibrium models,” Quantitative Economics, 4(2), 197–

229.

Guggenberger, P., F. Kleibergen, S. Mavroeidis, and L. Chen (2012): “On the Asymp-

totic Sizes of Subset AndersonCRubin and Lagrange Multiplier Tests in Linear Instrumental

Variables Regression,” Econometrica, 80(6), 2649–2666.

Guggenberger, P., and R. J. Smith (2005): “Generalized Empirical Likelihood Estimators And

Tests Under Partial, Weak, And Strong Identification,” Econometric Theory, 21(04), 667–709.

Hahn, J., and G. Kuersteiner (2002): “Discontinuities of weak instrument limiting distribu-

tions,” Economics Letters, 75(3), 325–331.

Hansen, B. E. (1996): “Inference When a Nuisance Parameter Is Not Identified under the Null

Hypothesis,” Econometrica, 64(2), 413–30.

Kitamura, Y., and P. C. B. Phillips (1997): “Fully modified IV, GIVE and GMM estimation

with possibly non-stationary regressors and instruments,” Journal of Econometrics, 80(1), 85–

123.

Kleibergen, F. (2002): “Pivotal Statistics for Testing Structural Parameters in Instrumental

Variables Regression,” Econometrica, 70(5), 1781–1803.

(2005): “Testing Parameters in GMM Without Assuming that They Are Identified,”

Econometrica, 73(4), 1103–1123.

Lee, L.-f. (2005): “Classical inference with ML and GMM estimates with various rates of conver-

gence,” Discussion paper, Ohio State University.

(2010): “Pooling Estimates With Different Rates Of Convergence: A Minimum 2 Approach

With Emphasis On A Social Interactions Model,” Econometric Theory, 26(01), 260–299.

Ma, J., and C. R. Nelson (2010): “Valid Inference for a Class of Models Where Standard

Inference Performs Poorly: Including Nonlinear Regression, ARMA, GARCH, and Unobserved

Components,” Economics Series 256, Institute for Advanced Studies.



McCloskey, A. (2012): “Bonferroni-Based Size-Correction for Nonstandard Testing Problems,”

Working Papers 2012-16, Brown University, Department of Economics.

Moreira, M. J. (2003): “A Conditional Likelihood Ratio Test for Structural Models,” Economet-

rica, 71(4), 1027–1048.

Nelson, C. R., and R. Startz (1990): “Some Further Results on the Exact Small Sample

Properties of the Instrumental Variable Estimator,” Econometrica, 58(4), 967–76.

Nelson, C. R., and R. Startz (2007): “The zero-information-limit condition and spurious

inference in weakly identified models,” Journal of Econometrics, 138(1), 47–62.

Olea, J. L. M. (2013): “Efficient Conditionally Similar Tests: Finite-Sample Theory and Large-

Sample Applications,” Discussion paper, New York University.

Phillips, P. (1989): “Partially Identified Econometric Models,” Econometric Theory, 5(02), 181–

240.

Phillips, P. C. B., and J. Y. Park (1988): “On the Formulation of Wald Tests of Nonlinear

Restrictions,” Econometrica, 56(5), 1065–83.

Qu, Z. (2013): “Inference in DSGE Models with Possible Weak Identification,” Quantitative Eco-

nomics, p. forthcoming.

Radchenko, P. (2008): “Mixed-Rates Asymptotics,” The Annals of Statistics, 36(1), pp. 287–309.

Sargan, J. D. (1983): “Identification and Lack of Identification,” Econometrica, 51(6), 1605–33.

Schorfheide, F. (2013): Advances in Economics and Econometrics: Theory and Applications,

Tenth World Congressvol. 3, chap. Estimation and Evaluation of DSGE Models: Progress and

Challenges, pp. 184–230. Cambridge University Press.

Shi, X., and P. C. Phillips (2012): “Nonlinear Cointegrating Regression Under Weak Identifi-

cation,” Econometric Theory, 28(03), 509–547.

Sims, C. A., J. H. Stock, and M. W. Watson (1990): “Inference in Linear Time Series Models

with Some Unit Roots,” Econometrica, 58(1), 113–44.

Staiger, D., and J. H. Stock (1997): “Instrumental Variables Regression with Weak Instru-

ments,” Econometrica, 65(3), 557–586.



Stock, J. H., and J. Wright (2000): “GMM with Weak Identification,” Econometrica, 68(5),

1055–1096.

Tripathi, G. (1999): “A matrix extension of the Cauchy-Schwarz inequality,” Economics Letters,

63(1), 1–3.

van der Vaart, A., and J. Wellner (1996): Weak Convergence and Empirical Processes,

Springer series in statistics. Springer.

van Dijk, D., T. Terasvirta, and P. H. Franses (2002): “Smooth Transition Autoregressive

Models A Survey Of Recent Developments,” Econometric Reviews, 21(1), 1–47.


	14-018C.pdf
	“Uniform Inference in Nonlinear Models  with Mixed Identification Strength”


