Semi-Parametric Inference in Dynamic Binary Choice Models

We introduce an approach for semi-parametric inference in dynamic binary choice models that does not impose distributional assumptions on the state variables unobserved by the econometrician. The proposed framework combines Bayesian inference with partial identification results. The method is applicable to models with finite space of observed states. We demonstrate the method on Rust's model of bus engine replacement. The estimation experiments show that the parametric assumptions about the distribution of the unobserved states can have a considerable effect on the estimates of per-period payoffs. At the same time, the effect of these assumptions on counterfactual conditional choice probabilities can be small for most of the observed states.

Download Paper

Paper Number
13-054
Year
2013
Authored by