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SEMIPARAMETRIC INFERENCE IN DYNAMIC BINARY CHOICE MODELS

ANDRIY NORETS AND XUN TANG

We introduce an approach for semiparametric inference in dynamic binary
choice models that does not impose distributional assumptions on the state
variables unobserved by the econometrician. The proposed framework combines
Bayesian inference with partial identification results. The method is applicable
to models with finite space of observed states. We demonstrate the method on
Rust’s model of bus engine replacement. The estimation experiments show that
the parametric assumptions about the distribution of the unobserved states can
have a considerable effect on the estimates of per-period payoffs. At the same
time, the effect of these assumptions on counterfactual conditional choice prob-

abilities can be small for most of the observed states.

KEYWORDS: Dynamic discrete choice models, Markov decision processes, semi-

parametric inference, identification, Bayesian estimation, MCMC.

1. INTRODUCTION
1.1. Background

A dynamic discrete choice model is a dynamic program with discrete controls. These models
have been used widely in various fields of economics, including labor economics, health
economics, and industrial organization. See Eckstein and Wolpin (1989), Rust (1994), Pakes
(1994), Miller (1997), Aguirregabiria and Mira (2010) and Keane, Todd, and Wolpin (2011)

for surveys of the literature. In such models, a forward-looking decision-maker chooses an
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2 ANDRIY NORETS AND XUN TANG

action from a finite set in each time period. The actions affect decision-makers’ per-period
payoffs and the evolution of state variables. The decision-maker maximizes the expected
sum of current and discounted future per-period payoffs. Structural estimation of dynamic
discrete choice models is especially useful for evaluating the effects of counterfactual changes
in the decision environment. The main objective of this paper is to provide a robust method

for inference about counterfactuals and structural parameters.

In estimable models, some state variables might be unobserved by econometricians. Introduc-
tion of these variables into the model is motivated by the fact that individuals always have
more information about their preferences than econometricians. Also, unobserved state vari-
ables play an important operational role in estimation as they help make the model capable
of rationalizing observed data (see Section 3.1 in Rust (1994)). To our knowledge, previous
work estimating dynamic discrete choice models assumed specific parametric forms of the
distribution of unobserved state variables. For example, normally distributed utility shocks
are mostly used in applications of the interpolation simulation method of Keane and Wolpin
(1994) and the Bayesian estimation methods of Imai et al. (2009) and Norets (2009); in the
methods of Rust (1987) and Hotz and Miller (1993), extreme value independently identically
distributed (i.i.d.) unobserved states are often used to alleviate the computational burden of

solving and estimating the dynamic program.

It is well-known that imposing distributional assumptions can have substantial effect on
inference in economic models (a discussion of this can be found, for example, in Manski
(1999)). Therefore, it is desirable to provide estimation methods that employ restrictions
implied by economic theory such as monotonicity, concavity, and independence and avoid
strong distributional assumptions on unobserved states. This has been done for static binary
choice models; see, for example, Manski (1975), Cosslett (1983), Han (1987), and Matzkin
(1992). We provide a semiparametric approach for inference in dynamic binary choice models
(DBCMs). The approach can be used as a set of tools for evaluating robustness of existing
parametric estimation methods with respect to distributional assumptions on unobserved

states.
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1.2. Model, objects of interest, and identification

We consider models with conditionally independent and additively separable unobserved
states as in Rust (1987) and Hotz and Miller (1993). The observed states are assumed to
take only a finite number of possible values. The per-period payoffs can be specified para-
metrically or non-parametrically with optional shape restrictions such as monotonicity or
concavity. Using data on individual actions and transitions for the observed state variables,
the econometrician can estimate nonparametrically the transition probabilities for the ob-
served states and conditional choice probabilities (CCPs), which are the probabilities of

choosing an action conditional on the observed states.

Applied researchers are mainly interested in inference procedures for model primitives such
as per-period payoffs and model predictions resulting from counterfactual changes in model
primitives. Counterfactual changes we consider include changes in per-period payoffs and
changes in transition probabilities for observed states. In a model of job search, an example
of the former would be an increase in per-period unemployment insurance payment and an
example of the latter would be a change in duration of unemployment insurance. Model
predictions for counterfactual experiments can be summarized by the resulting CCPs, which
we will call the counterfactual CCPs in contrast to the actual CCPs corresponding to the
data generating process. Results of counterfactual experiments seem to be of most interest
in applications. Therefore, we emphasize the counterfactual CCPs as the main object of
interest and treat the distribution of unobserved states and the per-period payoffs as nuisance
parameters. We develop a separate set of results for parameters of per-period payoffs as

sometimes they are of interest as well.

As a starting point for inference, we provide identification results for per-period payofts
and counterfactual CCPs under known and unknown distribution of the unobserved states.
Magnac and Thesmar (2002) showed that per-period payoffs are nonparametrically not iden-
tified even under known distribution of unobserved states. First, we show that exogenous
variation in transitions for the observed states can lead to nonparametric point identification
of the per-period payoffs under known distribution of unobserved states. Second, we derive

conditions under which normalizations on per-period payoffs, which are sufficient for point



4 ANDRIY NORETS AND XUN TANG

identification, affect or do not affect counterfactual predictions under known distribution of
unobserved states. Third, we show that when the distribution of the unobserved states is not
assumed to be known, per-period payoffs and counterfactual CCPs are only set identified
even under parametric or shape restrictions on the per-period payoffs. Next, we show that
even when per-period payoffs are non-parametrically not point-identified under known dis-
tribution of unobserved states, the identified set for the counterfactual CCPs under unknown
distribution of unobserved states can still be informative. The size of the identified set de-
creases with additional shape or parametric restrictions on the per-period payoffs. Finally, we
provide characterizations of the identified sets for the per-period payoffs and counterfactual
CCPs under unknown distribution of unobserved states, which are convenient for numerical

construction of the identified sets and for use in inferential procedures.

1.3. Inference

We show that in our framework the model can be reparameterized so that the observed
state transition probabilities, the actual CCPs, and the counterfactual CCPs can be treated
as the parameters. The counterfactual CCPs do not enter the likelihood function directly.
They are only partially identified by the restrictions the model places on all the parameters
jointly. These model restrictions require the actual and counterfactual CCPs to be consistent
with some distribution of unobserved states, counterfactual primitives, actual observed state
transition probabilities, and some actual per-period payoffs that satisfy (optional) shape
restrictions.

We choose the Bayesian approach to inference, which has the following advantages in our
settings. First, even under an unknown distribution of unobserved states, DBCMs impose
strong restrictions on the actual CCPs. These restrictions should be exploited in estimation.
It is conceptually straightforward to incorporate them into the Bayesian estimation proce-
dure through the restrictions on the prior support. Second, the parameters are very high-
dimensional and the model restrictions are complicated. In these settings, Markov Chain
Monte Carlo (MCMC) methods are instrumental in making inference procedures computa-

tionally feasible.
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To simplify the specification of the prior and the construction of the MCMC algorithm, we
do not treat the per-period payoffs as parameters explicitly in our estimation procedure for
the counterfactual CCPs. The per-period payoffs are only implicitly present in verification
of model restrictions on the prior support for the observed state transition probabilities, the
actual CCPs, and the counterfactual CCPs. We can recover the identified set for the per-
period payoffs separately from the estimation of counterfactual CCPs. The MCMC output
from the estimation procedure can be used for construction of frequentist confidence sets for

partially identified counterfactual CCPs and parameters of per-period payoffs.

1.4. Application

We illustrate our method using a model of bus engine replacement (Rust (1987)). We find
that assuming a specific parametric distribution for unobserved states can have a large
impact on the estimation of parameters of the per-period payoffs. In particular, without the
distributional assumptions on the unobserved states, the identified set for the parameters of
the linear per-period payoffs in Rust’s model includes values that are 5 times larger than the
values used in the data-generating process with the extreme value distributed unobserved
states. Moreover, if the linearity of the payoff function is not imposed, then the identified
set for payoffs in Rust’s model includes values that are more than 3 orders of magnitude
different from the DGP values. On the other hand, we find that the identified set of the
counterfactual CCPs can be small in most dimensions relative to the sampling variation in
the actual CCPs for realistic sample sizes. Thus, in our example parametric assumptions
about the distribution of the unobserved states have a small effect on the counterfactual
CCPs for most but not all of the observed states.

We also demonstrate that our inference framework can be supplemented with optional restric-
tions on the quantiles of the unobserved state distribution. This can be used for incorporating
information about these quantiles if it is available to researchers. Alternatively, one can use
this to do robustness checks on how deviations from the assumed distributions of unobserved
states affect estimation results.

The rest of the paper is organized as follows. Section 2 describes identification results for the
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per-period payoffs and the counterfactual CCPs under known and unknown distribution of
unobserved states. In Section 3, we discuss the Bayesian approach to inference, its relation
to other approaches, and ways to conduct frequentist inference. The MCMC estimation
algorithm and prior specification are discussed in the context of the application in Section
4. Section 5 presents estimation results and the identified sets for the per-period payoffs,
the time discount factor, and the counterfactual CCPs for Rust (1987) model. Proofs and

algorithm implementation details are delegated to appendices.
2. IDENTIFICATION

2.1. Model setup

In an infinite-horizon dynamic binary choice model, the agent maximizes the expected dis-

counted sum of the per-period payoffs

di,dpy1,

V(xb et) = max Et(z ﬂju(xﬂrj? dt+]” Et+]’))ﬂ
=0

where d; € D = {0,1} is the control variable, x; € X are state variables observed by the
econometrician, €, = (€, €;1) € R? are state variables unobserved by the econometrician,
B is the time discount factor, and w(zy, ds, ) is the per-period payoff. The state variables
evolve according to a controlled first-order Markov process. Under mild regularity conditions
(see Bhattacharya and Majumdar (1989)) that are satisfied under the assumptions we make

below, the optimal lifetime utility of the agent has a recursive representation:
(1) V(e &) = gngg[u(l"ta di, €) + BE{V (Tiy1, €041) |24, €0, di f .

t
Hereafter we make the following assumptions.

ASSUMPTION 1 The state space for the observed states is finite and denoted by X =
{1,...,K}.

ASSUMPTION 2 The per-period payoff is uw(xy = i,dy = j, &) = uj; + €; €5 is integrable
and E(e;jlx) =0 for any v € X and j € D.
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ASSUMPTION 3 Pr(xiy =iz, =k, e, dy = ) = Gii 1s independent of €;. The distribution

of €r41 given (Tyy1, Ty, €, dy) depends only on xyy and is denoted by H(-|-).

ASSUMPTION 4 The distribution of €y — €1 given x, = x is denoted by F(-|x) and has a

positive density on RY with respect to (w.r.t.) the Lebesque measure for any x in X.

Assumptions 1-4 are standard in the literature. Assumption 3 of conditional independence is,
perhaps, the strongest one. However, it seems hard to avoid. First, it is a sufficient condition
for non-degeneracy of the model (see Rust (1994)). Second, without Assumption 3 it is not
clear whether the expected value functions are differentiable with respect to parameters
(Norets (2010)). Finally, the assumption is also very convenient for computationally feasible
classical (Rust (1994), Hotz and Miller (1993)) and Bayesian (Norets (2009)) estimation of
parametrically specified models.

Except for Section 5.2, the discount factor [ is assumed to be fixed and known in what
follows. This is a common assumption in the literature on estimation of dynamic discrete
choice models and also dynamic stochastic general equilibrium models. The values of
can be taken from macroeconomic calibration literature (Kydland and Prescott (1982)) or
studies estimating time discount rates from experimental data (see Section 6 in Frederick
et al. (2002) for an extensive list of references).

In what follows it is convenient to use the following notation. G = [G%.] denotes the Markov
transition matrix for the observed states conditional on d; = j and G = (G*', G°). A vector
of stacked deterministic parts of the per-period payoffs with d; = j is denoted by u; =

/

(uj1,...,ujx) and u = (uy,up). A vector of CCPs is defined by p = (p1,...,px), pi =

Pr(dt:th:i),i:l,...,K.

2.2. Identification under known distributions of unobserved states

Following existing literature on semi- and non-parametric identification (Roehrig (1988) and

Matzkin (2007) among others), we refer to parameters (u, G, 3, F) as a (model) structure.!

'As we show below, under Assumptions 2-3, the distribution of unobserved states affects CCPs only

through the distribution of the difference in utility shocks, F.
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According to the model, transition probabilities G and CCPs p completely determine the
distribution of observables. They can be consistently estimated from data and, thus, (p, G)
are assumed to be known in the analysis of identification. In what follows, we assume that

the model is correctly specified.

In this subsection, we assume that (3, F') are known to the econometrician. The main results
of this subsection include a convenient characterization of the relationship between struc-
ture (u,G, B, F) and CCPs p in Lemma 1 and the following implications of Lemma 1 for
identification: (i) Corollary 3 shows that exogenous variation in transitions for the observed
states can lead to nonparametric point identification of the per-period payoffs under known
F; (ii) Lemma 2 shows that normalizations on per-period payoffs can lead to incorrect coun-
terfactual predictions. Readers who are only interested in semiparametric inference for the
counterfactual CCPs with unknown F' may skip the identification results after Lemma 1
and proceed to Section 2.2.2, which defines the framework and notation for the inference for

counterfactual CCPs.

Under Assumptions 1-3, the Bellman equation (1) can be rewritten in vector notation as

follows,

(2) Vg = Ug + ﬁGo/maX{'Uo + €0, V1 + 61}dH(E|X)

v = uy + BG? /max{vo + €9, v1 + €1 }dH (¢ X),

where v; = (vj1,...,vx)" is a vector of stacked deterministic parts of the alternative specific

lifetime utilities v;; = wj; + BE{V (Ti41, €41)|2¢ = 4,dp = j}. We also adopt a Matlab-like

convention to simplify notation: for scalar €; and vector vj, v; +¢€; = (vj1 + €5, ..., Vk +€);
for a function/expression f(z) mapping from X to R, we use f(z1,...,zx) as the short-hand
notation for (f(x1),..., f(xk))’, which is a mapping into R¥. In this notation,

fmax{vm -+ €0, V11 + El}dH(€’$ = 1)
/max{vo + €0, V1 + El}dH(E|X) =
[ max{vox + €0, v1x + €1 }dH (e|x = K)
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Let us rewrite the Bellman equations (2) in a form convenient for analyzing identification,
(3) vo = Uy + BG vy + /max{(), vy — vy — (€0 — €1) }dH (€| X))
V1 = Uy + ﬁGl[Ul + /max{O, €p — €1 — (Ul — ’Uo)}dH(G‘X)],

where we used E(e;|z) =0 for any v € X and j € D. Let Ae = €y — €;; then, (3) implies

(4) vy — vy = (I — BGY) Huy + BG* (s — (v1 — wo)) }dF (5| X)]
v1—v0
— (I =BG Hug + ﬁGo/ (v1 — vy — 8)}dF (s|X)].
Since d; = 1 at x; = i when vy; — vy; > A¢;, we have p = (p1,...,px) = F(v; — 1| X). In

the following lemma, we give necessary and sufficient conditions for some p to be the CCPs

for a given model structure.

LEMMA 1 A wvector p is a vector of CCPs implied by structure (u, G, 3, F) if and only if
B)  FplX) =

(1= 56 -+ 5G] [ SdF(1X) (- diag(p) P 01X))

F~1(p|X)

— (I - BG"™! {uo + ﬁGO[/OO sdF(s|X) + diag(p)Fl(p]X)]}

F=(plX)

The necessity follows immediately from (4) by substituting in v; — vy = F~}(p|X) and
the zero expectation for Ae given X. The proof of sufficiency is given in Appendix C. The
system of equations (5) is convenient for analyzing identification and developing inference
procedures for two reasons. First, it is linear in the per-period payoffs u. Second, it involves
only conditional choice probabilities p and structural parameters (u, G, 5, F), but not other
non-primitive objects such as optimal continuation values. A result similar to Lemma 1 can
also be established for a finite-horizon model.

To our knowledge, Magnac and Thesmar (2002) were the first to provide a formal analysis

of identification in the model we consider here.? They used related but different system of

2 Rust (1994) discusses lack of point identification in a simplified model without unobserved states.
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equations. Their system involves optimal continuation values, and thus, the links between
the CCPs and structural parameters are not explicit in their characterizations. Their positive
identification results were about certain differences in future value functions and not about
parameters in per-period payoffs. Aguirregabiria (2005) derived a system similar to (5) as
necessary conditions for a vector p to be the CCPs in single-agent models. He used it to
identify choice probabilities under counterfactual changes in v when F' is assumed to be
known. Aguirregabiria (2010) derived a related representation for the finite-horizon case. A
result equivalent to Lemma 1 can also be obtained as a special case of the results derived in
Aguirregabiria and Mira (2007) and Pesendorfer and Schmidt-Dengler (2008) for dynamic
discrete choice games. Heckman and Navarro (2007) analyzed identification while assuming
that an outcome variable in each period is observable. Kasahara and Shimotsu (2009) studied
a model in which a choice probability is a finite mixture of unobservable component CCPs,
which are also conditional on unobserved heterogeneity. Hu and Shum (2012) studied the
identification of a dynamic discrete choice model in which observed states and unobserved
heterogeneity contain a lot of information about each other. Both of these papers showed
how to identify both the CCPs conditional on unobserved heterogeneity and the mixture
probabilities, but did not analyze identification of the per-period payofts.

The following remarks, lemmas, and corollaries summarize the implications of Lemma 1 for

identification when F' is known (p, G, and [ are also considered to be known and fixed).

REMARK 1 Because the number of equations in (5), K, is smaller than the number of
unknowns, 2K, u cannot be jointly identified without further restrictions. This was first noted
by Magnac and Thesmar (2002). In comparison, here we note that (5) identifies the difference
between the discounted total expected payoffs from two trivial policies of clinging to one of the
two actions forever: (I — BG*)"tuy — (I — BG°)tug (note (I — BGI)t =T+ 3 72 (BGI)!).

In the static case, =0, this is reduced to the identification of uy — ug.

Even though per-period payoffs are not point-identified, the linear system in (5) defines
the identified set for u, which is a lower dimensional subset of R?%. Economic theory often

provides shape restrictions on u such as linearity, monotonicity, or concavity. Let us denote
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the set of feasible values of w by U. Any shape restriction obviously reduces the identified
set for u. The following corollaries to Lemma 1 demonstrate how shape restrictions can lead

to set and point identification.

COROLLARY 1 Suppose per-period payoffs satisfy shape restrictions given by strict inequal-

ities (such as strict monotonicity or concavity). Then payoffs are not point-identified.

COROLLARY 2 Suppose per-period payoffs are linear in parameters, U = {u : u; =
Z;0 for j = 0,1}, where Z; is a known K x d matriz and d is the dimension of 6. Then, 6
is point- (over-)identified if the rank of (I — BG")~'Zy — (I — BG°)~1Zy is equal to (strictly
greater than) d.

The corollaries follow immediately from Lemma 1.

2.2.1. Exogenous variation in the transition probabilities of the observed states

In this subsection, we consider an alternative way to point identify per-period payoffs when
they are specified nonparametrically. Suppose there are N > 2 observed types of decision-
makers in the data (indexed by n = 1,2,..., N respectively), for whom the observed state
transition probabilities are different but the per-period payoffs are identical. Denote these
transition probabilities by G" for j = 1,0 and n =1,..., N.

There are lots of applications where this condition can be satisfied. For example, in models
of retirement decisions, transition of income will differ for private and public pension plans.
Thus, we have two types of agents: those with private pensions and those with public ones.
The condition holds if people with different pension plans have the same preference for income
and leisure. Another example is health care utilization decisions such as women’s decision
to take mammography. The medical history of patient’s parents affects her probability of
developing breast cancer, but is likely not to affect per-period payoffs, see Fang and Wang
(2008).

With F known, the CCPs for all N types (denoted by p',p?, ... ,p" respectively) are now
characterized by a system of 2K unknowns in v and N K equations. Hence, non-parametric

identification of per-period payoffs is possible up to an appropriate normalization, provided
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there is sufficient rank in the coefficient matrix for u. This is formalized in the following

corollary proved in Appendix C.

COROLLARY 3  Suppose there are N types of decision-makers with different observed state
transition probabilities but the same per-period payoffs. (i) For any N > 2 and any CCPs
(ph,p?%, ..., pN), u is identified up to 2K — r normalizations, where r is the rank of the NK -
by-2 K matrix:

(I =BG, —(1 = Ao
(6) r = rank :
(] _ BGl,N)fl’ _(] _ BGO,N)fl

(i) When N =2, r defined in part (i) is equal to

I — Gl’l, I — G1,2
(7) r = rank b b and
I—pBGY™, I —pGo?

(8) =K+ rank[(I - BGM)(I — BGO)N = (I — BG (I — BG*3) 1]
(iii) When N = 2 and G*' = G*?, r = K + rank[G"' — G1?] |

For point-identification of the per-period payoffs (up to a location normalization), we need
the highest possible rank in Corollary 3,7 = 2K —1. Parts (ii) and (iii) of the corollary provide
easy-to-interpret sufficient conditions for when point-identification does and does not hold.
It can be seen from part (ii) of the corollary that if one generates G*/ independently from
continuous distributions then r = 2K — 1 with probability 1. At the same time, part (iii)
of the corollary illustrates that when only few elements of the transition matrices change
exogenously then point identification of the per-period payoffs might fail. Specifically, when
G and at least two rows of G' do not change exogenously then the rank of G*! — G2 is at
most K — 2 and, thus, by part (iii) r is at most 2K — 2.

Some earlier papers have used weaker forms of exclusion restrictions to identify various

features of DBCMs. Magnac and Thesmar (2002) show that exclusion restrictions can help
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identify the difference between current value functions defined as the sum of current static
payoffs and future value functions. They show that if there exists a pair of states that yield
the same current value functions, then current value functions can be identified for all states
with knowledge of the unobserved states distribution. Fang and Wang (2008) use a related
but different assumption of exclusion restrictions in which there exists a pair of observable
states under which the per-period payoffs are the same while transition probabilities to
future states are different. This helps identify per-period payoffs in DBCMs with hyperbolic
discounting in which one of the actions yields per-period payoffs that are independent from
the observed states. In comparison, the assumption of exogenous variation in observed state
transition probabilities in the current paper is slightly more restrictive but leads to completely
non-parametric identification of u under known F'. In addition, our results also provide a
transparent relationship between the number of normalizations required for identification of

u and easily verifiable rank conditions on observed state transitions.

2.2.2. Identification of counterfactuals

Structural models are useful in analysis of counterfactual changes in structural parameters.
Lemma 1 can be used to set up a framework for analyzing identification of the counterfactual
CCPs. Suppose we are interested in the CCPs when the per-period payoffs and the observed
state transition probabilities are changed to some counterfactual values.

We consider counterfactual experiments described by a pair ((7 ,é), where counterfactual
transition probabilities for observed states G = (G°, G') are fixed to some known values and
correspondence U : U — R2X defines a set of permissible values of counterfactual payoffs
4 given actual payoffs u. For example, when the per-period payoff of choosing alternative 0
is unchanged by the counterfactual and the per-period payoff of choosing alternative 1 goes
up by 10% for all observed states, U(u) = { : @y = uo, 4 = 1.1 -uy}. We do not consider
counterfactual experiments that change 3 or F.

Analysis of counterfactuals is routinely performed in applications. Consider the following
examples of counterfactual changes in u: changes in unemployment insurance benefits in a job
search model; changes in entry costs resulting from changes in local taxes in firms’ entry /exit

model; and changes in new engine prices in bus engine replacement model (Rust (1987)).
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Examples of counterfactual changes in G also abound: changes in social security pension rules
in a model of retirement decisions (Rust and Phelan (1997), Aguirregabiria (2010)); changes
in bus routes and, thus, mileage transitions in the engine replacement example; changes in
the evolution of determinants of the demand in entry/exit models (Collard-Wexler (2013));
and changes to bankruptcy laws in mortgage default models.

The identified set of the counterfactual CCPs consists of all § implied by structure (4, G, 8, F ),
where @ € U(u) with u € U and structure (u, G, 8, F) implies the CCPs p in the DGP.

REMARK 2  FEwven if u is not point identified, the identified set of counterfactual CCPs can
be a proper subset of (0,1)X. For example, consider a special case of counterfactual analysis,
in which U(u) = {u} but the observed state transition probabilities are changed from G to
G. Suppose the set of feasible per-period payoffs U is compact and cdf F(-|x) is continuous
for any x € X, which implies uniform continuity of p as a function of (u,G) (the continuity
follows by standard arguments, see, for example, Norets (2010); the uniformity follows by
the compactness assumption). Then, given any €, > 0 there exists e > 0 such that whenever
|G — G| < eq, any p with ||p—p|| > €, is not in the identified set, where || -|| is a Buclidean

norm. This follows immediately from the uniform continuity of p as a function of (u,G).

Of course, any additional shape restrictions in U will reduce the identified set of the counter-
factual CCPs. Also, as we discuss in the previous subsection, the per-period payoffs, and thus
the counterfactual CCPs, can be point identified under exogenous variation in the transition
probabilities of the observed states.

Lemma 1 implies that the per-period payoffs are not identified. For this reason, one might
think that setting ug equal to any vector of constants ¢ (e.g. ¢ = 0 € RE) is a necessary
normalization for identifying u; non-parametrically. However, such an assignment of wug is
not “innocuous” in that it can lead to errors in predicting the CCPs under counterfactual
transition probabilities of the observed states. The next two lemmas give conditions under

which normalizing ug affects and does not affect the predicted counterfactual outcomes.

LEMMA 2 Consider a counterfactual experiment where G is changed to G and per-period

payoffs are unchanged. Denote the true uy in the DGP by uj. Suppose researchers set ug to
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some ¢ € RE in order to estimate u,. Then the predicted p based on ug = c differs from the

true counterfactual CCPs based on wy = ug unless
(9) (I = BGHI = BG°) ™ = (I = BGYI — BG°) | (¢ —ug) = 0.

Lemma 2 suggests that setting ug to an arbitrary constant in general affects the predicted
counterfactual outcome. To see this suppose the rank of the matrix in (9) multiplying (¢ —ug)
is equal to the largest possible value K — 1. Corollary 3 with N = 2, G%2 = G°, and
G2 = G provides easy-to-understand sufficient conditions for the rank condition to hold as
the matrices in (8) and (9) have the same form. Under this rank condition, (9) holds if and
only if ¢ — ufy = const - (1,1,...,1)". Hence setting uy to be a vector with equal coordinates
(such as the zero vector) when the actual ug is not independent from observed states (i.e.,
ug # const - (1,1,...,1)") leads to incorrect counterfactual predictions.

On the other hand, the following lemma shows that setting ug to an arbitrary vector can
serve as an innocuous normalization if the goal is to predict counterfactual outcomes under

linear changes in the per-period payoffs.

LEMMA 3 Consider a counterfactual experiment G = G and U(u) = {i = au+ (A1, Ag)},
where Ay’s are known K-vectors and o is a known scalar. Setting ug to an arbitrary vector

does not affect the predicted counterfactual CCPs.

To our knowledge, Lemmas 2 and 3 present the first formal discussion in the literature
about the impact of normalizations of per-period payoffs on various types of counterfactual

analyses. Proofs of these lemmas are included in Appendix C.

2.3. Identification under unknown distributions of unobserved states

In this subsection, we assume that the distribution of unobserved states is unknown to the
econometrician. The main results of this subsection include a convenient characterization of
the relationship between (u, G, ) and p when the distribution of unobserved states is un-
known (Theorem 1) and the following implications of Theorem 1 for identification: Corollaries

4 and 5 show that the identified sets for per-period payoffs and counterfactual CCPs can be
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explored with the help of linear programming algorithms as long as the shape restrictions
on per-period payoffs are defined by linear equalities and inequalities.

Hereafter, we maintain the following assumption.
ASSUMPTION 5  The distribution of Ae is independent from x: F(-|z) = F(-).2

Equations in (5) suggest that the CCPs depend on F' only through a finite number of
quantiles F~*(p;) and corresponding integrals | ;,Of(pk) sdF(s). Lemma 4 below characterizes
the relations between such quantiles and corresponding truncated integrals for a generic F.
Theorem 1 then combines Lemma 4 with Lemma 1 to characterize the CCPs when F is not

known.

LEMMA 4 Given any positive integer L and a triple of L-vectors p, §, and e, where com-
ponents of p are labeled so that 1 > p; > ps > ... > pr, > 0 without loss of generality, there

exists a distribution F such that

(10) F has a density f > 0 on R w.r.t. the Lebesque measure,
(11) /de(s) =0
(12) Fﬁl(pl):(sza ZE{L,L}

(13) ei:/:ode(s),iE{l,...,L}

if and only if

14 > 01 >
(14) —,
(15) ...>5i>w>5i+l>
Pi — Pit+1
(16) --~>5L>—€—L.
pL

3A characterization of the CCPs without this assumption can be obtained by arguments similar to those
we employ in Lemma 4 below. However, such a characterization seems to be too weak to be useful in empirical

work.
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Conditions in the lemma are easy to understand geometrically. For example, condition (15)

simply requires the expectation of Ae conditional on Ae € (6;11,6;) to be in (d;41,0;),

féiiﬂ sdF
F(6;) = F(6i41)

€ (0i41,6:).

The lemma is proved in Appendix C. The following theorem follows immediately from Lem-

mas 1 and 4.

THEOREM 1 For a given triple (u,G,3), a vector p in (0,1)X is the CCPs implied by
structure (u, G, 3, F) for some F satisfying (10)-(11) if and only if there exist e in RX and
§ in RE such that: (i)

(17 §=({I-pGH! [ul + G e— (I - diag(p))(ﬂ}
— (I =pa%™ [UO +BG[e + diag(p)fﬂ] :

(ii) After relabeling the K coordinates in p and their corresponding coordinates in 6 and e
so that 1 > py > py >+ > pg > 0, the unique (strictly ordered) components in p and their
corresponding coordinates in § and e satisfy (14)-(16), and e; = e;, §; = §; whenever p; = p,.
For example, suppose K = 6,p = (p1,p2,...,D6) = (%, %, s, %, 1—10, %), and let § = (01, 02,...,06)
and e = (eg,€q,...,65). Then the restrictions in (ii) of Theorem 1 are summarized as:
01 = 04, 09 = Jg, €1 = €4, €3 = €g, and
€3 €y — €3
> 03 > > 0y > > 01 >

1 —ps D3 — P2 D2 — D1 b1 —DPs s
When F' is unknown, (17) implies that the scale of F' can be normalized without a loss of

€1 — €2 €5 — €1 €5

generality as long as U is a linear cone, which we assume hereafter. Let d,, = F'~1(p,,) denote

the unrestricted median of F'. A convenient normalization is to fix the value of

(18) e, = / sdF(s) =log(2), where p,, = 0.5,

F_l(pm)

as in the logistic distribution (the location of F' is normalized in Assumption 2 and equation

(11)).
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2.3.1. Identified set for per-period payoffs

By definition, the identified set for per-period payoffs under unknown F' consists of all u in
U such that for some F' satisfying (10)-(11) and a scale normalization, structure (u, G, 8, F)
implies the CCPs p in the DGP. The following corollary to Theorem 1 provides a computa-

tionally convenient characterization of the identified set of per-period payoffs.

COROLLARY 4 (i) For a given pair (p,G), the identified set of per-period payoffs, U(p, G),
consists of all uw in U for which there exists (8, ¢e,0,,) € R25FL satisfying the following condi-
tions. (a) (u, G, B,0,e,p) satisfy (17). (b) Let (pm,em) be defined as in (18). Define K + 1-

*

vectors p* = (pi,...,Di41), €, and §* by stacking (pm.Dp), (e,em), and (8,0,,) respectively
and relabeling the coordinates so that 1 > p} > p5 > -+ > pi > 0. Then, the unique
(strictly-ordered) coordinates in p* and the corresponding coordinates in §* and e* satisfy
(14)-(16), and ef = e} and 67 = 05 whenever p; = pj.

(i) If U is convex then U(p, G) is also conver.

The dependence of the identified set U(p, G) on the time discount factor § and restrictions
on the per-period payoffs U is suppressed in the notation for simplicity.

The scale normalization employed in the corollary, which is described in the previous sub-
section, is convenient for computing the identified sets as it implies the linearity of the
equalities and inequalities in the unknowns. A linear programming algorithm can be used to
verify whether a given vector of per-period payoffs is in U(p, G).

If the per-period payoffs are parameterized then an approximation to the identified set of
the parameters can be computed on a grid: for each point in the grid we can check if the
corresponding per-period payoffs are in U(p, G). If the restrictions on u; are linear (U = {u :
uj = Z;0}), then a more efficient algorithm described in Section 4.2 and Appendix B.2 can
be used to compute the identified set. These strategies are computationally feasible when
the dimension of 6 is not high. Even when the dimension of 6 is high it is feasible to compute
the identified sets for lower-dimensional sub-vectors of § under linear u; as we describe at
the end of Appendix B.2.

The definition of the identified set in Corollary 4 assumes a known time discount factor. It
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is possible to include g in the vectors of parameters to be identified. We give an example of

the joint identified set for 8 and payoff parameters in our application (Section 5.2).

2.3.2. Identified set for counterfactual CCPs

The notation and examples of counterfactual changes in primitives (u,G) are described in
Section 2.2.2. When F'is unknown to the econometrician, the identified set of the CCPs under
counterfactual experiment (U, G) consists of all p implied by any structure (@, G, 3, F), in
which F satisfies (10)-(11), @ € U(u) with v € U, and structure (u, G, 8, F) implies the CCPs
p in the DGP. It is important to note that unknown F' is assumed to be unchanged by the
counterfactual. The following corollary to Theorem 1 provides a computationally convenient

characterization of the identified set of counterfactual CCPs.

COROLLARY 5  For a given pair (p, G) and a counterfactual experiment (ﬁ, é), the identified
set for counterfactual CCPs, P(p, G), consists of all p for which there existu € U, @ € U(u),
and (5,6,5, €,0m) € R™EFL such that the following conditions hold. (a) (u,G, 3,9, e,p) and
(@, G, B,8,¢,p) satisfy (17). (b) Let (pm,em) be as defined in (18). Define 2K + 1-vectors
P = (P, Dogq1)s €, and 0* by stacking (pm, D, p), (e,€,en), and (9, 5,0m) respectively
and relabeling the coordinates so that 1 > p} > p5 > -+ > p5rey > 0. Then, the unique
(strictly-ordered) coordinates in p* and the corresponding coordinates in 0* and e* satisfy

(14)-(16), and e} = e} and 0; = 0} whenever p; = pj.

The dependence of the identified set P(p, G) on the time discount factor 3, restrictions on the
per-period payoffs U, and counterfactual (U , é) is suppressed in the notation for simplicity.
In the corollary we use a scale normalization on F' defined in (18). Note, however, that a
scale normalization does not affect P(p, G).

Given the lack of nonparametric identification for u even under known F' (Remark 1), it
is clear that the shape and/or functional form restrictions, U, play an important role in
partially identifying the counterfactual CCPs under unknown F'. However, as the following
lemma demonstrates even without restrictions on w, the identified set, P(p,G), can be a

proper subset of (0, 1)%.
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LEMMA 5 Consider a counterfactual change in u such that (I — BGY) ™ (ay — uy) + (I —
BGOY Yty — ug) # 0. Then, P(p,G), is a proper subset of (0,1)X.

Since the characterization of P(p, G) is rather involved it seems hard to determine analyt-
ically what affects the size of this set. Therefore, we suggest using numerical algorithms to
learn about P(p, G). To verify that a candidate vector p belongs to P(p,G) one needs to
check the feasibility of equalities and inequalities described in Corollary 5. This can be done
by a linear programming algorithm described in Appendix B.1 as long as U(u) is defined by
linear equalities and inequalities. As we demonstrate in the application (Section 5.3), this

linear programming algorithm can be combined with MCMC to estimate the identified set.

3. INFERENCE

The identification results from the previous section demonstrate that per-period payoffs,
u, and counterfactual CCPs, p, are only partially identified when F' is unknown. There is
a growing literature in econometrics on inference for partially identified parameters. See
for example, Manski (2003), Imbens and Manski (2004), Chernozhukov, Hong, and Tamer
(2007), Rosen (2008), Stoye (2009), Beresteanu and Molinari (2008), Romano and Shaikh
(2010), Andrews and Soares (2010), Canay (2010), Bugni (2010), and Moon and Schorfheide
(2012).

In principle, one can apply a criterion function approach of Chernozhukov et al. (2007) or
related approaches to construct confidence sets for the identified sets of p and parameters of
u (see Appendix E in Norets and Tang (2013) for a description of a criterion function). In our
high-dimensional settings, a criterion function approach seems computationally challenging.
Therefore, it is essential to develop an inference procedure that can handle high-dimensional

problems.

3.1. Bayesian approach

Bayesian inference in partially identified models is conceptually straightforward. In these
models, the likelihood function can be represented as a function of point identified parameters

((p, G) in our case). Partially identified parameters and structural model restrictions can



SEMIPARAMETRIC INFERENCE IN DYNAMIC BINARY CHOICE MODELS 21

enter the econometric model through the restrictions on the prior distribution for (p, G, p).
An important advantage of the Bayesian approach is that Bayesian MCMC methods perform
well in high-dimensional problems. On the other hand, possible dependence of Bayesian
estimation results on the prior is an important issue that needs to be carefully addressed.
Next, we describe data typically used for estimating a DBCM and construct the likelihood
function. We then give a detailed description of our Bayesian procedure. The following sub-
section describes the frequentist properties of the procedure.

DBCMs are usually estimated from panel data on individual choices and observed states,
(z%,di,... 2%, d},), where i is an index for individuals in the sample and T} is the num-
ber of time periods in which ¢ is observed to make decisions. Given a vector of CCPs, p,
and Markov transition matrices for observed states, GG, the distribution of the observables
P ({d}, 5, dhe .., i} |p. G, {2y s given by

K
19 pt -t TT G e

k=1
where n is the number of individuals in the sample, nij is the number of observed decisions
di = j at state 2} = k, 1/, is the number of observed transitions from i = k to zi,, = [ given
the decision di = j. The distribution of the observables above is conditional on the initial
observed states . This is appropriate in the Rust (1987) model that we consider in Sections
4-5. An alternative that might be appropriate in other applications is to assume that the
process for (z¢,d;) is stationary and combine (19) with the implied stationary distribution
for 2!, which would be a function of (p, G).
In a standard MLE procedure for DBCMs (Rust (1994), Keane and Wolpin (1994)), (u, G, F)
are parameterized. After solving for value functions in the model, one can replace the CCPs p
in the likelihood in (19) with functions of the parameters. The parameters are then estimated
by the MLE. Estimates of the counterfactual CCPs are obtained by solving the model under
the counterfactual changes in the estimated parameters.
When F' is unknown, there are multiple values of u and p that can be consistent with
the structural model and given values of (p,G). Thus, (p,G,p,u) can all be treated as

parameters for estimation. Under this parameterization, the likelihood function is given by
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(19). It depends only on (p, G). As we described in the identification section, the structural
model does restrict (p, G) (Theorem 1). It also restricts (p,u) for given (p,G) (Corollaries
4 and 5). It is natural to incorporate these restrictions into the econometric model via the

prior distribution.

First, suppose that the primary interest is in p and u can be treated as a nuisance pa-
rameter. Then one can define a joint prior for (p,G,p) as a distribution truncated to
{(p,G,p) : p € P(p,G)}, where P(p,G) is the identified set for p defined in Corollary
5. The posterior distribution of (p, G, p) is proportional to the product of this prior and the
likelihood in (19). In this case we can treat (u,d,e) as nuisance parameters. The prior for
them is not specified and (u, 0, €) appear only implicitly in verification that p € P(p, G). This
reduces the dimension of the problem and considerably simplifies specification of the prior
and construction of the MCMC algorithm for exploring the posterior distribution. Proper-
ties that researchers would like to impose on u a priori can be included in this approach
through the shape or parametric restrictions U. Similarly, certain restrictions on F' can also

be incorporated (see Section 4.6).

If the primary interest is in v and no counterfactual experiments are considered then the
approach of the previous paragraph can be modified (a prior for (p, G,u) is truncated to
{(p,G,u) : w € U(p,G)}, where U(p,G) is the identified set for u defined in Corollary
4). Alternatively, one can consider the posterior distribution of (p,G) only. The prior for
(p, G) can be truncated to the restrictions described in Theorem 1 and u can be treated as a
nuisance parameter in the estimation of (p, G) (u only shows up implicitly in the verification
of the linear restrictions in Theorem 1). Then, credible and confidence sets for U(p, G) or
P(p,G) can be constructed after estimation of (p, G). We implement the latter approach in
our application (Section 5.5) as it does not require developing an additional MCMC algorithm
for exploring the posterior of (p, G, u).

Specifying an uninformative prior for (p, G,p) (or (p, G,u) or (p,G)) is not trivial because
the support of the prior can be rather complicated. For example, a uniform prior for (p, G, p)
truncated to {(p,G,p) : p € P(p,G)} can be very informative as we demonstrate in Sec-

tion 4.3. Flexible hierarchical priors, which allow for a priori dependence in components of
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(p,G,p), seem to provide a general solution to this problem. In Section 4, we provide fur-
ther motivation and details for the prior specification and implementation of the MCMC

algorithm in the context of Rust’s model.

3.2. Frequentist inference based on MCMC output

In this subsection, we describe frequentist properties of the Bayesian estimation procedure
described in the previous subsection. We also present ways to use Bayesian estimation output
for construction of classical confidence sets.

To be specific let us consider estimation of (p, G, p). By the Bernstein-von Mises theorem,
Bayesian credible sets for point-identified parameters (p, G) are asymptotically equivalent
to the corresponding confidence sets obtained from the MLE for (p,G) (assuming the prior
density is positive and continuous in an open neighborhood of the data-generating values of
(p, G), see, for example, Chapter 10 in van der Vaart (1998)).

For partially identified parameters the Bernstein-von Mises theorem does not hold. Moon
and Schorfheide (2012) show that credible sets for partially identified parameters are strictly
smaller than the corresponding confidence sets asymptotically. Their results apply to our
settings. To understand these results suppose that the prior of p conditional on (p, G) is a
uniform distribution on P(p, G). As the sample size increases the posterior for (p, G) concen-
trates around the DGP values and the posterior for p converges to the uniform distribution
on the identified set for p. Thus, a Bayesian credible set for p excludes about 5% of the vol-
ume of the identified set. In contrast, a 95% classical confidence set for p typically includes
the identified set.

The conceptual differences between classical and Bayesian inference for partially identified
parameters can also be described as follows. Bayesian inference does not distinguish between
the uncertainty from the lack of point identification and that from the sampling variability.
In contrast, a standard classical 95% confidence set allows for errors in 5% of hypothetical
repeated samples; however, the lower bound on the coverage rate is imposed at all parameter
values in the parameter space.

Classical and Bayesian approaches can be reconciled if the identified set is the object of
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interest. In this case, the posterior for the identified parameters (p, G) implies the posterior
distribution for P(p, G) on a space of sets. Let us denote a 100(1 — )% Bayesian credible
set for (p,G) by BYS . Then,

20 Bl.= U PWw.@)

(v, GBS,
is a 100(1 — )% credible set for P(p,G). In settings with multiple prior distributions for
partially identified parameters considered in Kitagawa (2011), sets in (20) have posterior
lower probability at least 1 — o (Appendix E.2 in Norets and Tang (2013) provides more
details on Kitagawa (2011)’s approach).
If B"Y has 100(1 — @)% frequentist coverage then the set in (20) also has 100(1 — a)%

[0}

frequentist coverage. One could go further and consider confidence sets of the form

2y .= U P,

,G
(p',G"eCP,

where C*¢ is a 100(1 — a)% frequentist confidence set for (p,G). In a search of confidence
sets for P(p, G) that satisfy any reasonable optimality criterion such as smallest weighted
expected volume, one can restrict attention to sets satisfying (21) because any confidence
set for the identified set can be represented as a superset of (21) (Lemma 9 in Appendix C).
In our application, we use approximations to the highest posterior density credible sets as
BPS (and CP%, which is justified by the Bernstein-von Mises theorem). This could lead
to conservative confidence sets. However, the problem of finding C**% so that CT , in (21)
satisfies some optimality properties seems to be hard to solve analytically or numerically in
our high-dimensional settings. Most of the literature on confidence sets for partially identified
parameters also does not consider optimality properties.* Thus we leave this issue to future
research.

Approximations to sets in (21) (or (20)) for any particular C*% (or B”“) can be easily

obtained from MCMC estimation output, (p', G*,p',t = 1,2,...), of the Bayesian approach
described in the previous subsection. Specifically, sets in (21) (or (20)) can be estimated by

4One exception to this is Chiburis (2009) who considers optimality in testing moment inequality models.
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the the support of {7 : (p',G*) € CP%} (or {f' : (p',G') € B }). Thus, the Bayesian
approach described in the previous subsection can be used for implementing frequentist
inference on P(p, G) and, in a similar fashion, on U(p, G).

For applied work, we recommend reporting the whole posterior distributions for p since they
are more informative than credible sets. They also have a decision theoretic justification. As
we demonstrate in Sections 4-5, posterior distributions can be compared with prior distribu-
tions and estimates of the identified sets to evaluate the extent of uncertainty from the set

identification, the prior shape, and the sampling variation.

4. APPLICATION: METHODOLOGY

We illustrate our methodology using Rust (1987) model of bus engine replacement. First,
we describe the model. Second, we discuss how to construct the identified sets for the per-
period payoff parameters. Third, we discuss the prior specification and the MCMC algorithm.
Fourth, we show how additional restrictions of F' can be incorporated in our framework.

Section 5 presents the results for simulated and real data.

4.1. Rust (1987) model of optimal bus engine replacement

Rust (1987) model of optimal bus engine replacement is a standard example in the literature.
Several papers used it for testing new methodologies for estimation of dynamic discrete choice
models (see Aguirregabiria and Mira (2002), Bajari, Benkard, and Levin (2007), and Norets
(2009)).

In the model, a transportation company manager decides in each time period ¢ whether to
replace (d; = 1) or maintain (d; = 0) the engines of each bus in the company’s fleet. The
observed state variable is the cumulative mileage of a bus engine at time ¢ (denoted by ;)
since the last engine replacement. Some additional factors that can affect the replacement
or maintenance costs, denoted by €; = (€, €;1), are observed by the manager but not the
econometrician. The mileage is discretized into K = 90 intervals X = {1,..., K}. The costs
of engine replacement and maintenance at time ¢ are given respectively by u(x; = k,d; =

1,e) = uip + € and u(xy =k, dy = 0, €;) = ugg + €0. U1y is constant across k and it captures
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the deterministic one-time replacement costs; ug is the deterministic maintenance cost for
an engine in mileage interval k. For the rest of the section, we normalize uy; to 0 for all k.
For z; < 88, the change in mileage (x;;,1 — z;) follows a multinomial distribution on {0, 1,2}
with parameters m = (mg, 71, m2). For x; equal to 89 and 90, the multinomial distributions
are respectively given by (m, 1 — mp,0) and (1,0,0). Buses are assumed to start with a new
engine, so the likelihood can be conditional on x; = 1 for new buses. The Markov transition
matrices for x;, G, can be easily constructed from 7.

Rust (1987) assumes an extreme value distribution for €,y and €1 and exploits this assumption
to estimate parameters in ug. In comparison, we do not rely on assumptions about the
parametric form of the distribution of ¢;. We assume only that ¢; is independent of x;.

It is computationally convenient to define the set of feasible per-period payoffs U by a linear
system of equations or inequalities. This can accommodate all parametric cases considered in
Rust (1987) where cost functions are linear in the unknown parameters. To fix ideas, we adopt
a simple linear index specification: U = {u : wuy, = 0 and ugp = 0y + 61k, for some 6; <
0,6y € R}, If F were known to econometricians, 8y and 6; would be over-identified by Corol-
lary 2 in Section 2. Since U is defined by a linear system of equations, whether p € P(p, )
can be verified by checking the feasibility of a system of linear equalities and inequalities (see
a characterization of P(p, ) in Corollary 5). A linear programming algorithm for checking
the feasibility of the system is described in Appendix B.1.

The counterfactual experiments we consider involve changes only in transition probabilities
for the observed state, 7 # m, where 7 is known. The per-period payoffs are left unchanged,
The following properties of the model are useful for developing prior specification and the

MCMC algorithm.
LEMMA 6 If60; <0, thenp= (p1,...,Dk---,PK) s increasing in k.

LEMMA 7  For counterfactual experiments that only change observed state transition prob-

abilities in m, the CCP given x; = 1 does not change: py = p;.
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LEMMA 8 Consider the same counterfactual experiment as in Lemma 7. If there are (p, p, )

such that p € P(p,m) and no two coordinates in (p,po,...,Px) are identical, then for any

(p§7 cee 7p;(7p§7 s ,ﬁ;(,ﬂ*> suﬁﬁiciently close to (p27 s 7pK7ﬁ27 s 7ﬁK77T>7 ﬁ* = (p17ﬁ§7 s Jﬁ;() €

P((p1, 05, -, Ph), ™).

4.2. Computing identified sets for per-period payoff parameters

The algorithm for computing the identified set of the per-period payoff parameters exploits
the convexity of the identified set (Corollary 4 (ii)) and the supporting hyperplane theo-
rem, which implies that the boundary of the set can be fully characterized by supporting
hyperplanes. To explain the idea of the algorithm let us consider the case where § € R2.
Any point on the boundary of a convex set in R? is uniquely associated with a tangent line,
which is completely characterized by a slope and an intercept. Thus, the task of recovering
a convex set in R? amounts to recovering the set of pairs of slopes and intercepts that define
the boundary points. To implement this idea we define a grid on the slopes. For each slope
in the grid, we obtain the intercepts of the two lines with this slope that are tangent to
the identified set. The intercepts are obtained by solving a linear program. Appendix B.2
formally describes the algorithm.

Note that if the researcher is interested in a lower-dimensional sub-vector of 8, then the grid
search over the slopes needs to be performed only over the lower-dimensional part of the
parameter space.’ If the dimension of the sub-vector of interest is 1, then the identified set

can be found by solving two linear programs.

4.3. Prior

Specification of an uninformative prior for (p,p, ) requires some care. First of all, such a
prior must give probability 1 to {(p,p,7) : p € P(p,n)}. Furthermore, by Lemma 7 the prior
must imply p; = p;. Thus, from now on we exclude the first coordinate from p (it is implicitly
given by p1). Lemma 8 suggests that it is reasonable to construct the prior for (p,p,7) by

specifying a density with respect to the Lebesgue measure on R*($+! that is truncated to

SWe thank the editor for pointing this out.
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{(p,p,m) : p € P(p,m)} (the dimension of 7 is 2, and the dimension of (p,p) is 2K — 1 since
p1 = p1). At first sight, one might suggest using a product of uniform (or uninformative
Beta) densities on (0, 1) for each component of (p, p) and a Dirichlet density for =. However,
such a specification results in a strongly informative prior that can dominate the likelihood
even for moderate sample sizes. A short explanation for this is that a priori independence
of components of p or p is unreasonable. To get more insight in the context of Rust’s model
note that Lemma 6 implies monotone coordinates in p and p. A uniform distribution for
coordinates of p truncated to monotonicity restrictions p; < ps < --- < pg results in the
marginal distribution for px equal to the distribution of the K™ order statistic, which is far
from uniform for K = 90. This example is not exactly equivalent to uniform truncated to

{(p,p,7) : p € P(p,m)} but it illustrates the problem well.

A general solution to this problem, which is likely to work for other models as well, is to
allow for dependence of coordinates of (p,p) in the distribution that is to be truncated to
{(p,p,7) : p € P(p,m)}. Prior dependence in the Bayesian framework can be introduced
through hierarchical modeling (see Sims (2006) for an insightful discussion of an example
where hierarchical modeling solves a somewhat similar problem; for a textbook treatment
of hierarchical models, see Geweke (2005) and Gelman et al. (2003)). To illustrate this idea,
suppose components of p are i.i.d. Beta(ms, (1 —m)s) with location and spread parameters
(m, s) truncated to p; < py < --- < px and (m, s) have a flexible prior distribution. For any
fixed (m, s) we would have the same problem of rather dogmatic marginal distributions for
components of p when K is large. However, when (m, s) can vary, the marginal distributions

of components of p can have considerably larger variances.

To obtain more prior flexibility in conditional prior distributions we use a finite mixture of
beta distributions truncated to {(p,p,7) : p € P(p,m)} as the prior for (p,p). Mixtures of
beta distributions can approximate and consistently estimate large non-parametric classes of
densities; see, for example, Rousseau (2010). Let M denote the number of mixture compo-
nents, z; € {1,..., M} (and Zx) denote a latent mixture component allocation variable for

pr (and pi), and Pr(z; = j) = a; be the mixing probability for component j. Then, before
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truncation to {(p,,7) : p € P(p, )},

L(s)p”™ (1 — pi) =%
F(mlsl)F((l — ml)sl)

P(prlzk = j,m, s) = Beta(pg; mys;, (1 —my)s;) =

Introduction of such allocation variables is standard in MCMC estimation of mixture models;
see Diebolt and Robert (1994). Parameterization of beta distribution in terms of location m;
and spread s; is also convenient for implementation of MCMC estimation algorithms. With

this notation, the prior distribution up to a normalizing constant is given by

(22) P(p,p,m, 2,2, a,m, s)

H Beta(py; mysy, (1 —mq)sy) - H Beta(pr; massar, (1 — mar)Sar)

kizp=1 kizpg=M
: H Beta(pg; mysi, (1 —myq)sy) - H Beta(pr; massar, (1 — mar)sar)
k:gkzl kgk:M

M
- H Beta(m;; Nyyg, Nppy) - Gamma(s;;y ,7,)

Ym0
i=1
K K M
a—1
. G{Zk . a%k . aj
k=1 k=2 7=1

b—1_b-1

Ty T (1—7T0—7r1)b_1 D

: 173(p,7r) (p),

where values for the hyperparameters N,.,, N, .1, Yeor Yap» @ and b are chosen by the re-
searcher. A standard Dirichlet prior for m is suitable as 7 is low dimensional and the data

contain a lot of information about 7.

4.4. Overview of MCMC algorithm

The posterior distribution of (p,p, 7, 2, Z, a, m, s) is proportional to the product of the prior
n (22) and the likelihood in (19) with G%, replaced by the corresponding elements of .
Its density can be computed up to a normalizing constant from (19) and (22). Therefore, a
Metropolis-Hastings MCMC algorithm can in principle be used for exploring the posterior

distribution.® To achieve good performance in practice, the proposal transition density in a

6To produce draws from some target distribution, a Metropolis-Hastings MCMC algorithm needs only

values of a kernel of the target density. The draws are simulated from a transition density and they are
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Metropolis-Hastings algorithm should mimic the posterior distribution. In actual applications
the dimension of p can be high and constructing good proposal distributions for a Metropolis-
Hastings algorithm can be challenging. In this case, an MCMC algorithm that uses the Gibbs
sampler, which updates only one or a few coordinates of the parameter vector at a time,
can be much more effective.” Also, different variations of the Metropolis-Hastings algorithm
can be used together with the Gibbs sampler to construct robust hybrid MCMC algorithms,
see Tierney (1994). We use these ideas along with particular properties of the model such
as Lemma 6 and Lemma 7 to develop an MCMC sampler that performs well in practice
and has required theoretical properties. Appendix A provides a detailed description of the
algorithm.

The main computational burden of our algorithm is the solution of the linear program
for verification of p € P(p,m) on every iteration of the MCMC algorithm. The number
of constraints and variables in the linear program increases only linearly in the size of p.
Nevertheless, our semi-parametric estimation algorithm is more computationally intensive
than Rust’s algorithm for parametric models because the MCMC algorithm typically requires
more iterations for convergence than the likelihood maximization in Rust’s algorithm. We
report approximate computing times for identification and estimation exercises in Section 5.
In Norets and Tang (2013), we consider a firm’s entry and exit model and demonstrate that
practical MCMC algorithms can be constructed even if the researcher does not have a priori
information about properties of CCPs implied by the model restrictions such as monotonicity
in Rust’s model proved in Lemma 6. To construct a practical MCMC algorithm for a new
model, the researcher may need to further experiment with MCMC blocks and proposal

densities described in Appendix A and Norets and Tang (2013). The performance of MCMC

accepted with probability that depends on the values of the target density kernel and the transition density.
If a new draw is not accepted, the previous draw is recorded as the current draw from the Markov chain.
The sequence of draws from this Markov chain converges to the target distribution. For more details, see,

for example, Chib and Greenberg (1995) or Geweke (2005).
"The Gibbs sampler divides the parameter vector in blocks and sequentially produces draws from the

distribution of one block conditional on the other blocks and data. For example, to explore P(61,603) on
iteration r the sampler produces HY) ~ P(6, |9§T71)) and 95” ~ P(92|9Y)). The sequence of draws (HY), 05”)
from this Markov chain converges to P (61, 62). For more details; see, Tierney (1994) or Geweke (2005).
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algorithms depends on the dimension and complexity of the model and it might be more

difficult to handle models that are more complex than the ones we consider.

4.5. Uses of MCMC' algorithm

In addition to exploring the posterior distribution of (p, 7, p) for Bayesian inference in Section
5.4, we use the MCMC algorithm for two other purposes. First, the confidence sets for 6
presented in Section 5.5 are constructed as follows. Similar to a confidence set for p discussed
in Section 3.2, a valid 1 — « confidence set for € can be defined by
23) Bl.= U uw.),

(¢’ 7")eBY”,
where B is a 1 — « confidence set for (p,7) and U(p, ) is the identified set for 6 defined
in Corollary 4. To construct an asymptotically valid approximation to a confidence set B}
we use a 1 —a Bayesian credible set. To construct this credible set we estimate mean, /i, and
variance-covariance matrix, 3, of the posterior for (logp, ) using MCMC draws from the
posterior. The posterior of logp is better approximated by a normal distribution than the
posterior of p, especially for coordinates for which we do not have many observations. By
is approximated by posterior draws satisfying [(logp, 7) — 'S~ [(logp, 7) — ji] < ¢, where
critical value ¢ is chosen so that 100(1 — «)% percent of posterior draws are in the set. Thus,
set BY__ has Bayesian and asymptotic frequentist interpretations. For each posterior draw
of (p/,7') in B we compute U(p', ') by the algorithm described in Section 4.2.
Second, we use the MCMC algorithm for recovering the identified set of counterfactual CCPs
in Section 5.3 (it is impractical to do a grid search to recover this set in a space with dimension
K = 90). The MCMC algorithm is the same as the one described in Appendix A, except
that we keep (p, ) fixed. The support of the posterior explored by this MCMC is then used

as an approximation of the identified set of counterfactual CCPs.

4.6. Additional restrictions on F

So far we have taken an agnostic approach to the distribution of the unobserved states. We do

not assume anything about F' other than the existence of positive density and independence



32 ANDRIY NORETS AND XUN TANG

from observed states. Nonetheless, in practice, researchers might have some idea about the
magnitude of shocks. It is possible to include researchers’ knowledge about F'in the form of
restrictions on the quantiles into our estimation procedure. For example, in experiments we

use the following restrictions,

(24) 0 = Fiogiatici)] < bd - max{|F ;D) = Frornat(Pi)], Ttogistic

where 0704istic 1s the standard deviation of the logistic distribution and bd is a parameter. Since
the distance between the quantiles of normal and logistic distributions around 0.5 is very
small, the presence of 0ja4istic in the bound allows for somewhat bigger deviations from the
logistic distribution around 0.5. The parameter bd controls the size of the allowed deviations.
Using logistic and normal quantiles as benchmarks is sensible as most of the applications use
these distributions for unobserved states. Performing estimation and identification exercises
with different values of bd can shed light on sensitivity of results with respect to parametric
assumptions about F'. At the same time, any degree of flexibility can be attained by setting
appropriate values for bd. In experiments below we use bd € {0.25,1,00}. To impose these
additional restrictions on F' in the model one can just add inequality (24) to inequalities in
Theorem 1. More generally, any linear restrictions on ¢ can be included in the model in a

similar fashion.

5. APPLICATION: RESULTS

In this section, we present the identified sets for payoff parameters, discount factor, and
counterfactual CCPs, estimation results for actual and counterfactual CCPs, and confidence
sets for per period payoff parameter in Rust’s model. Except for Section 5.5, we use sim-
ulated data below. This allows us to compare estimation results with the identified sets
corresponding to the DGP.

To simulate the data we solve the dynamic programming problem to find the actual CCPs
as described in Rust (1987). We use the following DGP for simulating the data: logistic F,
0y = 5.0727, 1 = —.002293, my = .3919, m; = .5953 and the discount factor § = .999. These
parameter values correspond to Rust’s estimates for group 4 except that we decreased 6, by

5 and decreased S by 0.0009 in order to increase engine replacement probabilities for low
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mileage (without this change simulated data contained no replacement observations for very
low z). Section 5.5 demonstrates the application of the methodology for estimating payoff

parameters to real data.

5.1. Identified sets for per-period payoff parameters

This subsection recovers the population identified set of per-period payoff parameters (6, 01)
and visualizes the identifying power of additional restrictions on F'. Using MATLAB medium
scale linear programming algorithm on a PC with Intel 2.7GHz processor and 8GB RAM,
it takes about 69 seconds to compute an approximation to the identified set on a 100 point

grid for the slope parameter.
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FIGURE 1.— Identified sets of cost parameters with bd = 0o, 1,0.25

The three nested sets in Figure 1 correspond to the identified sets of (g, ;) under different
quantile restrictions on F as in (24) with bd = oo, 1,0.25. The smaller bd is, the closer F' is
required to be to the logistic distribution. The largest identified set in Figure 1 corresponds
to unrestricted F' and includes values of (g, ;) that differ from the DGP values by 5 times.
The figure shows that stronger restrictions on quantiles of F' considerably reduce the size of

the identified set.
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Recovering the identified set of uy without assuming linearity is challenging because it is
impractical to perform a grid search in a 90-dimensional parameter space. However, one can
guess and verify that the identified set of ug includes values that are more than 3 orders of
magnitude larger than the DGP values. To understand this, note that by inequalities (14)-
(16), the range of quantiles ¢ consistent with given CCPs p is large if the smallest CCP, py,
is small and the largest CCP, pg, is large. In our parameterization of the GDP, the smallest
CCP, py, is of the order 107 and thus, according to (16), §; can reach the order 10*. By

(17), this can lead to large values in uy.

5.2. Joint identification of time discount factor and per-period payoffs

In this subsection, we relax the assumption that the time discount factor is known and
describe the joint identified set for the payoff parameters and the time discount factor. The
DGP is described in the beginning of Section 5. We define a fine grid for § and run the
algorithm for recovering the identified sets for 6 for every value of 3 in the grid. For all
values of  in the grid the identified set for 6 is non-empty. Figure 2 shows identified sets of

0 computed for several different values of 5.

----p=0.01
----- p=0.34
—p=067
s = 0.9999
= DGP, p=0999| |

-0.2
0

()

FIGURE 2.— Identified sets 6 for different 5 (bd = o0)

The figure shows that even without additional restrictions on F', the joint identified set of
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(B, 0) is informative. However, the projection of this identified set on the time discount factor
dimension is (0,1). With additional restrictions on F, the projection of the identified set on
the time discount factor dimension can be a proper subset of (0,1). For example, with F
restricted by bd = 0.25 (see Section 4.6), the projection is [0.52,1) or, in other words, the
identified set for 6 is empty for 5 < 0.52.

5.3. Identified sets of counterfactual CCPs

In this subsection, we examine the identified set of counterfactual CCPs when the transition
probabilities are changed to 7o = .6 and 7; = .3 and (f3, 6o, 6,) are unchanged. Figure 3
presents the marginal “posteriors” for counterfactual CCPs with (p,G) fixed at the DGP
values. The supports of these distributions are the projections of the K-dimensional identi-
fied set for the counterfactual CCPs onto single dimensions corresponding to each coordinate
in p. Figure 4 depicts these supports for each coordinate k£ under no additional restrictions
on F. As can be seen from the figure, the projections of the identified set for x > 85 are

much larger than the projections for x < 85.
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FIGURE 3.— Posteriors of c.f. CCPs with p, G fixed as in DGP with bd = oo (solid), 0.25
(dash), 1 (dash-dot). Vertical lines: “true” c.f. CCPs with ¢; extreme value i.i.d.
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From Figure 3, we see that as F' is restricted to be increasingly closer to the logistic dis-
tribution, the identified sets for the counterfactual CCPs in most dimensions change little,
even though the identified sets for the per-period payoff parameters presented in Figure 1

are reduced a lot.

0.8 —

ons

0014
06l |
0013
& ooz I
g I
0011

05| = |

001 I

nooa| |

04| 0.008

cACCPs

0.3

0.2

01 =

FIGURE 4.— Identified set projections for counterfactual CCPs with bd = oo.

5.4. Estimation of counterfactuals with simulated data

Using parameter values described in the beginning of Section 5, we simulate a data set for
5,000 buses. For each bus, we simulate data starting with £ = 1 until the engine is replaced.
The goal is to estimate the counterfactual CCPs without relying on the distributional as-
sumption about € and €; when the transition probabilities are changed to 7y = .6 and
71 = .3 and (5,0, 0,) are unchanged.

We estimate the model for three different numbers of mixture components in the prior,
M = 3,6,9. The results are similar and we report them only for M = 6. The values for prior
hyperparameters are N, =2, N, ., = 2, Yo = 10,7, =10, a =3, and b = 3. Estimation

results are robust to reasonable changes in the prior hyperparameters such as Yoo = 2 and
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7, =90 The length of all MCMC runs is about 3 million draws. Using MATLAB on a PC
with Intel 2.7GHz processor and 8GB RAM, it takes about 38 seconds to obtain 100 MCMC
draws. Since the draws are highly serially correlated, we thin the MCMC sample keeping
only every 100-th draw. We report estimation results using the thinned samples. Trace plots

of MCMC draws from several simulator runs suggest that the MCMC algorithm converges.®

Posteriors of Actual and Counterfactual CCP with M = 6 and Bds ond : NaN
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FIGURE 5.— Posteriors for actual CCPs (solid) and counterfactual CCPs (dashed). No

bounds on §. Vertical lines show “true” values for actual and counterfactual CCPs.

Figure 5 displays posteriors for the actual CCPs and the counterfactual CCPs together.
Compared with the posterior of the actual CCPs, the posterior of the counterfactual CCPs
p appears to be shifted slightly to the right. Let us provide an intuitive explanation for this
increase in counterfactual CCPs. Let V(z) denote the expected continuation value when the
current mileage is x and the engine is not replaced. When an engine is replaced the bus in
the next period has mileage x = 1 + j with probability m;. This means that the expected
continuation value when engine is replaced is V(1) (it is the same as the one for not replacing

the engine at © = 1). Then, the choice probability is given by p(z) = F(ui(x) — uo(x) +

8Trace plots and prior and posteriors comparisons are presented in the supplementary materials (Norets

and Tang (2013)).
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BV (1) — V(x)]) and the effect of a change in the transition probabilities on p(x) depends
on how the change in V(1) compares to the change in V(z). For different specifications of
(u1(z), up(x)) the effect of a change in 7 on (V' (1) — V' (z)) can be either positive or negative.
Moreover, the effect can be positive at some x and negative at other x. Intuitively, when
transitions to lower mileage become more likely both the expected continuation values of
engine replacement and maintenance will go up. Which one goes up more seems to depend
on the behavior of per-period payoff functions and the rest of the structural parameters. For
our parameter values, the change is positive for all z.

Figure 5 also reveals that the posteriors for the CCPs flatten out as the mileage increases.
The height of posterior densities for the CCP is over 500 at z = 5 and close to 20 at z = 80.
This happens because in our simulated data, most of the engines are replaced at lower or
medium mileages. Thus, there are few observations for high mileage and the CCPs for high

mileage are estimated less precisely.

Posterior for actual CCP with Bounds on d and M=6
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FIGURE 6.— Posteriors for actual CCPs with restrictions on F: bd = oo (solid), bd = 1
(dash-dot), bd = 0.25 (dashed). Vertical lines are “true” actual CCPs.

Figures 6 and 7 present estimation results with additional restrictions on quantiles of F

introduced in Section 4.6. While changing bd from infinity to 1 has no visible effect on
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the actual CCPs posteriors, setting bd = 0.25 decreases the heavy right tails of the CCPs
posteriors for large mileage. These effects are even more pronounced for the counterfactual
CCPs: the almost flat posterior for the CCP at = = 80,85,90 (with bd = 1,00) becomes
much more informative with bd = 0.25. The marginal posteriors for higher coordinates
k = 80,85,90 in Figure 7 should also be interpreted as evidence that a specification of the
unobserved state distribution only has a substantial impact on the counterfactual CCPs for

a few observed states.

Posteriors for C.F. CCP with M = 6 and Bounds on d
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FIGURE 7.— Posteriors for c.f. CCPs with restrictions on F: bd = oo (solid), bd = 1
(dash-dot), bd = 0.25 (dashed). Vertical lines are “true” c.f. CCPs.

Comparing the posterior distributions with the identified sets for the counterfactual CCPs in
Section 5.3, we can assess the contribution of the lack of point identification to the posterior
distributions. A comparison of Figures 3 and 7 suggests that the identified sets for the
counterfactual CCPs are small relative to the posterior support for most of the coordinates

of p.
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5.5. Inference for payoff parameters using real data

In this subsection, we compare parameter estimation results from Rust (1987) and our semi-
parametric procedure using Rust’s data on the buses from group 4. Rust’s estimates for
(6o, 01) from Table IX are (10.075,—0.002293) with the standard errors correspondingly
(1.582,0.000639). Figure 8 depicts a 90% confidence set for (g, 6;) obtained without any

parametric assumptions about F'.
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FIGURE 8.— 90% confidence set for 6

The confidence set is the union of the sets shown in Figure 8. The algorithm for its con-
struction is described in Section 4.2. A comparison of the confidence set with Rust’s results
is consistent with the identification results of Section 5.1 based on simulated data: distri-
butional assumptions about unobserved states can have an enormous effect on parameter

estimates in DBCMs.

6. EXTENSIONS AND FUTURE WORK

Our method can be extended to dynamic binary choice games of incomplete information.
In such games, the individual player’s problem is similar to the single agent’s problem we
described above, see Aguirregabiria and Mira (2007) and Pesendorfer and Schmidt-Dengler
(2008). The essential difference is that the agent’s per-period payoff and the observed states
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transition probabilities depend on the actions of other players. As Aguirregabiria and Mira
(2007) and Pesendorfer and Schmidt-Dengler (2008), we can consider Markov perfect equi-
libria and assume that the observed data correspond to a single equilibrium (or that obser-
vations can be divided into groups or markets so that every group corresponds to a single
equilibrium). Then the identified sets for counterfactual CCPs and per-period payoffs can
be characterized in the same way as in the single-agent case considered above.

Our methodology can also be extended to models with a finite number of unobserved agent
types. In these models, CCPs for each agent type can be non-parametrically point identified.
Kasahara and Shimotsu (2009) provide testable sufficient conditions for that. Under point
identification of CCPs for each agent type, we can apply Corollaries 4 and 5 to characterize
identified sets for per-period payoffs and counterfactual CCPs for each type. Finite number
of unobserved agent types can also be accommodated in MCMC algorithms by using stan-
dard data augmentation techniques for finite mixture models (Diebolt and Robert (1994),
Fruhwirth-Schnatter (2006)).

It seems possible to extend the MCMC algorithm to estimation of models with time-variant
unobserved heterogeneity considered by Arcidiacono and Miller (2011). However, more work
is required to understand identification in that framework.

Extensions of our framework to multinomial choice models is another important direction

for future research.
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APPENDIX A: MCMC ALGORITHM

This appendix provides a description of the Metropolis-within-Gibbs algorithm for exploring
the posterior distribution of (p,p,, 2, Z,,m, s) defined in Section 4.4. The algorithm is
implemented in Matlab and the code is available upon request. The algorithm consists of

the following blocks.

1. Stack current draws of p and p in one vector (p,p). Sort (p,p) in an ascending order.
Draw a candidate for each even coordinate of the sorted vector from a beta distributions
proportional to the product of (22) and (19) and truncated to be between the adjacent
odd coordinates. Accept the draw with probability 1 if the candidate does not violate
the model restrictions (p € P(p,G)) and reject otherwise. This block is introduced
because draws that do not preserve the order and change many coordinates of (p,p)
at the same time are rarely accepted.

2. The same as block 1 but for odd coordinates. Markov transition in blocks 1 and 2 does
preserve the stationary distribution of the Markov chain. However, since the model
restrictions in Rust’s model do not imply a particular order of coordinates in (p,p)
(they only imply an order within p and p separately) we need to add Markov transitions
that would allow a change in the order. The following three blocks achieve this.

3. Pick an index k € {1,..., K} randomly or deterministically. Draw a candidate for py
from a beta distribution proportional to product of (22) and (19) and truncated to
(Pk—1,Pr+1). Accept the draw with probability 1 if the candidate does not violate the

model restrictions and reject otherwise.
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4. The same as block 3 but for pg.

5. Metropolis-Hastings random walk algorithm for (p,p, 7) with a normal proposal dis-
tribution. This block ensures that any part of the posterior support can be reached
by the algorithm, which is required for MCMC convergence; see, for example, Tierney
(1994) or Geweke (2005). The variance of the proposal distribution has to be small in
this block to get any accepted draws.

6. Draw a candidate for w from a Dirichlet distribution proportional to the product of
(22) and (19). Accept the candidate with probability 1 if it does not violate the model
restrictions and reject otherwise.

7. Blocks for sampling beta mixture prior parameters (z, Z, &, m, s) are described in Norets
and Tang (2010)

Since it is computationally expensive to verify the model restrictions, we combine block
6 with all other blocks except 5. We start the algorithm from a solution to the problem
corresponding to extreme value distribution for the shocks (we know it satisfies the model
restrictions). We check the correctness of the algorithm implementation by joint distribution

tests; see Geweke (2004).

APPENDIX B: LINEAR PROGRAMMING ALGORITHMS

In this section it assumed that the per-period payoff is defined parametrically (u; = Z;0).

B.1. Verifying that a vector of c.f. CCPs belongs to the identified set

To be specific let us describe the algorithm when the counterfactual does not change u. To
verify the model restrictions (whether p € P(p,G)) we do the following: (i) express ¢ as
a linear function of (6, e) and 0 as a linear function of (6,¢) using (17), where the linear
coefficients depend on (p,G) and (p, G) respectively; (i) substitute these linear functions
into strict inequalities described by Corollary 5; (iii) the result of (i)-(ii) is a system of strict
inequalities Az < b, where ©z = (¢',¢/,¢,4,,) and matrix A and vector b are computed
using (p, p, G, G, 8); (iv) solve the following linear programming problem: min, , ¢ subject to

Az —t < b. If the resulting optimal t*(p, G, p) is non-positive then p € P(p, G).
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B.2. Computing the identified set for per-period payoffs

The algorithm for recovering the identified set of 6, denoted by ©;(p, G), exploits the con-
vexity of ©;(p, G) and the supporting hyperplane theorem, which implies that the boundary
of ©;(p, G) can be fully characterized by a set of supporting hyperplanes. More specifically,
to approximate O;(p,G), we discretize the “slope” of hyperplanes using a finite grid. The
“slope” of a hyperplane is defined by a unit vector orthogonal to the hyperplane. The grid on
the “slopes”, wy, ..., wyy, is constructed using a grid on d—1 angles in a spherical coordinate
system, where d is the dimension of 6.

For each w; in the grid, we use a linear programing algorithm to find a pair of hyperplanes
orthogonal to w; that are tangent to the boundary of the identified set. Specifically, we solve
two linear programing problems that respectively minimize and maximize the index w6,
subject to the constraint that 6 is in the identified set with some additional small slack
n > 0. More formally, we minimize and maximize w,f subject to A*y < b* — 1, where
y = (0,e,0,), and matrix A* and vector b* are such that A*y < b* represent the system of
equalities and inequalities from Corollary 4 characterizing the identified set (the equalities are
used to substitute out § in the strict inequalities). The slackness parameter 7 is introduced
so that we can use weak inequalities A*x < b* — 1 in the constraints of the optimization
problem (there would exist no solution under strict inequalities).

For each 7 let us denote the solutions to the minimization and maximization problems re-
spectively by y: and y7. The sub-vectors in y: and y; that correspond to # are approximately
on the boundary of ©;(p, G) along the direction w;.

If the researcher is interested only in a sub-vector #; € R% of § = (01, 05) then the slope w;
is defined as a unit vector in R and the above algorithm is applied with the objective w6,
in the linear program. Note that when d; = 1, the dimension of the linear program does not

change but the grid on the slopes consists only of 1 element.

APPENDIX C: PROOFS

Proor: (Sufficiency in Lemma 1)

Suppose p satisfies (5). We will show that it is a vector of CCPs. Define vectors y and y; as
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follows,
(25) oy =(I—-pBGH™" |:U1 + 5G1[/OO sdF (s|X) — (I — diag(p))F_l(plX))}]

F=1(plX)

= (1= 96" o B[ [ sdP(SIX) + digp)P 1))

By (5) and definition of (yo, 1), we have F~!(p|X) = y1 —yo and p = [._*"" dF(s|X)). Using

these two equations we can get rid of p in (25),

) = (1= 56w+ 661 / °° war(sl) - [ w AF 61X~ )|
yo = (I — BG)~* [uo + ﬁGO[/(:yO) sdF(s| X) + /(:yo) dF (s|X)(y; — yo)}]

From (26) one can reverse the steps leading from (2) to (4) in Section 2.2 to show that
(Yo, y1) have to satisfy the Bellman equation (2). Since the solution of the Bellman equation
is unique, (yo,y1) = (vo, v1) and p = [*' ¥ dF(s|X) is a vector of CCPs.

Q.E.D.

Proor: (Corollary 3)
(i) The system of NK equations characterizing CCPs for N agent types is

Mpu = [Mp, —Mg][d), €}]

(27) : )
M u = [Mp, —My][dy, ey)

where d,, and e,, are K-vectors with coordinates d,, , = F ' (pP|lz = k), e, = fdook sdF(s|x =
k); and

Mg =[ (I —-pG-")~ —(I - pGom)~" |

Mp = (I — BG™) I — diag(p™)] + (I — BGY™) diag(p")

Mg — ([ o ﬂGl,n)flﬁGl,n o ([ o BGO,n)flﬁGO,n.
Since (I — BGI™)~t = T + BGI™ + [2(GI™)? + §3(GP™)3 + ..., the sum of all columns in

(I — BG7™)~! must be proportional to (1,1,...,1)". It then follows that the maximum rank
possible is 2K — 1 for the N K-by-2K matrix of coefficients in front of u. When the rank of
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[(MEY, ..., (ME)] is equal to r and 2K —r components of u are normalized to some values,
the linear system in (27) has a unique solution for the rest of the components of w.

(ii) Multiplication of the matrix in (6) by

I+ BGY, Okxr p Okxx, —1+pG"?

(28) an
Orxr, —I + G2 I — BG"™, Orxk

from the left and right correspondingly delivers the matrix in (7). Since matrices in (28) have
full rank, the multiplication does not affect the rank and (7) is proved.

To prove (8) it suffices to show that the dimensions of the null spaces of the matrices in
(6) and (8) are the same (the dimension of the matrix is equal to the sum of its rank and

the dimension of its null space). Suppose 1, ...,7; € RX are a basis of the null space of
the matrix in (8). Define y; = (I — BGM)(I — BGOY) e, = (I — BGY?)(I — GO Lay,
i = 1,...,1, where the second equality follows from the definition of z;. Vectors (y},z%)’,
i=1,...,1, are independent since z;’s are independent. For any (v, z’)" in the null space of
the matrix in (6), y = (I — BGY)(I — BG*Y) "z = (I — BGM?)(I — BG®?)~ 'z and, thus, x
is in the null space of the matrix in (8) and = = Y_\_, ayz; for some scalars a;’s. Tt follows
that y = 22:1 a;y;. Thus, (y),x}), i =1,...,1, form a basis of the null space of the matrix
in (6) with N =2, and (8) is proved.

(iii) This part is an immediate implication of (8) since multiplication by a square matrix of

full rank (for example, I — 3 * G%!) does not affect the rank.
Q.E.D.

Proor: (Lemma 2)
Construct a linear system of 2K equations in u by stacking (5) for p and (u,G, 8, F) and
(5) for p and (u, G, B, F). The system can be simplified as

(29)  Ayus — Agug = B[Q(p), k(p)")
(30)  Ayuy — Agug = BIQ(B), (B)'],

L ~ ~ A\ L
where A; = (I — BG7) "and A = (I — BGY > are K-by-K matrices constructed from the
observed G and the counterfactual G , respectively; B = [A1, Ag— A;] and B = [fll, Ay — fll]
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are K-by-2K; and @ and k are functions that map from (0,1)% to RX with coordinates

Qr(p)
Qr(p) = F ' (pelzr), ri(p) = /_ (Qr(p) — s)dF (s|xy), k=1,..., K.

o0
The form of these two functions depend on the unobserved state distribution F'. The vectors
(p,p) denote observed and counterfactual CCPs respectively. Suppose we set ug = ¢ while
the truth is up = wu. Given this assignment of g, the remaining K parameters in u; are

recovered as

(31)  wr = AT {BQ(), k(p)] + Aoc}

The counterfactual analysis then amounts to recovering the p that satisfies
(32)  BlRG).AG)) = AATBRWY. s)) + (AAT A~ A) e

With F' assumed known and p identified from the DGP, this implies that whenever
(AlAl_le — 1210> (¢ —uy) # 0, the choice of ¢ has an impact on p predicted as the solution
to the equation above. Q.E.D.

ProoOF: (Lemma 3)

In this case, the counterfactual CCPs, denoted p, are characterized by
(33) Aj (o + Ay) — Ag(aug + Ao) = BIQ(D), k(D))

where A;, @), and x are defined as in the proof of Lemma 2. Suppose the truth in DGP is
up = ug but we set ug equal to some arbitrarily chosen vector ¢ in order to estimate u;. With

uy recovered as in (31), identifying counterfactual CCPs amounts to finding p such that
(34)  BlQ®), k(D) = aBlQp), s(p)] + Ai1A; — AgAg.

It then follows that the choice of ¢ has no impact on the characterization of p in (34). Q.E.D.

ProOOF: (Lemma 4)

Suppose 1 > p; >pg > -+ >pp >0, 01,...,0L, €1,...,er, and F satisfy (10)-(13). Then,

61:/ SdF>51/ dF:(Sl(l—pl)

(51 51
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imply (14). Inequalities in (15) follow since

05
€it1 — € Jo,0 8AF
Pi — Di+1 F(52> - F<5i+1)

for I satisfying (10). By (11),

o 6k
er :/ sdF = —/ sdF > —0ppi
Ok —00

and (16) follows.

€ (0i41,0i)-

To prove the other direction of the lemma, suppose (14)-(16) hold. Let us construct a par-
ticular density f(s) > 0 that satisfies (10)-(13). For s € (—o0,dx] let f(s) = crexp(bis),
where by, = pr./(0xpr + ex) and ¢ = bppg exp(—bgdy). For s € [61,00) let f(s) = ¢ exp(b1s),
where by = —(1—py)/(e1 — (1 —p1)d1) and ¢; = —by(1 —py) exp(—b161). For s € (d;,8;-1) let
f(S) = h’ill(&;,n)(s) +hi21(n,5i_1)<3)7 where r; = (ei _ei71>/(pi71 _pi)a hiy = [(pifl —pi)fszel -
(ei —ei—1)]/[(ri — 0s)(0i—1 — 63)], and Ry = [(e; — €i—1) — (pi—1 — i) &l /[(6i1 — 73) (di—1 — 04)].
It is easy to verify by direct calculation that such f satisfies (10)-(13). Q.E.D.

Proor: (Corollary 4)

Part (i) is an immediate implication of Theorem 1. To prove part (ii) suppose u',u? €

U(p, G). By definition, there exist (e!, 5,0} ) and (€2, 2, 62,) € R*5*1 such that (p, 5,6}, et, ut)

and (p, 62,02, e, u?) satisfy conditions (a) and (b) that define U(p,G) in Corollary 4. Let
6% = ad' + (1 — «)d? for a generic a € (0,1), and likewise define u®,e®, 2 also as convex
combinations. By convexity of U, u® € U. With 3, G, p fixed, the linear equalities and in-
equalities in conditions (a) and (b) hold for (p,u®,d*, e, 6%). Thus u* € U(p,G) for any

a € (0,1). Q.E.D.

Proor: (Lemma 5)

To prove the lemma it suffices to show that the actual CCP p cannot belong to the identified
set of counterfactual CCPs P(p, G) under the conditions of the lemma.

Suppose p € P(p,G). Then 6 = 6 and é = e. However, in this case, the condition assumed
in the lemma implies that (17) cannot hold simultaneously for actual and counterfactual

environments. This contradicts the supposition that p € P(p, G). Q.E.D.
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ProoOF: (Lemma 6)

If 6, < 0, then u(z,¢,d) is non-increasing in z. Also, (G° G') are monotone non-increasing
Markov transition matrices. Therefore, by a standard argument for value function mono-
tonicity (Stokey and Lucas (1989)), v; and vy from (2) are non-increasing in z. Moreover,
v; does not depend on = and vy is strictly decreasing in x because uq is strictly decreasing.

Thus, p(x) = F(vi(x) — vo(x)) is strictly increasing in x. Q.E.D.

Proor: (Lemma 7)

In Rust’s model, at x = 1 the future expected value functions are equal as the observed state
transition probabilities are the same for d = 1 and d = 0 at = 1. Thus, the choice prob-
ability at = 1 is determined only by the per-period payoff functions and the distribution
of €. Therefore, if a counterfactual experiment involves changes only in the observed state
transition probabilities m, then the coordinate of the CCP vector corresponding to x; does

not change: p; = p;. Q.E.D.

Proor: (Lemma 8)

Under the conditions of the lemma, the characterization of {(p,p,7) : p € P(p,m)} can be
given in terms of the feasibility of a system of strict inequalities (see Appendix B.1). Since
the inequalities are strict, they have to be satisfied in an open neighborhood of the original

feasible point. Q.E.D.

LEMMA 9 Any confidence set for P(p,G) can be represented as a superset of a set in the
form (21).

PROOF: To see this formally consider an arbitrary 100(1 — )% confidence set for P(p, G)
denoted by A} _(w), where w denotes data and possibly randomization variables. Define
CPC (W) ={p,G": P(p/,@") C AT _(w)}. Denote the DGP values by (po, Go). By definition
of CP% (W), [w : P(pe, Go) € AP ()] C [w : (po, Go) € CPC (w)]. Thus, if AP _(w) has
100(1 — )% coverage for P(po, Go) then CP% (w) has at least 100(1 — a)% coverage for
(po, Go). Also, CT (w) in (21) defined by these C*% (w) is a 100(1 — a)% confidence set for
P(po, Go), and CT_ (w) C AT (w), Vw. Q.E.D.
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Supplementary material for “Semiparametric

inference in dynamic binary choice models”

by A. Norets and X. Tang

APPENDIX D: EXTRA FIGURES
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F1GURE 9.— Trace plots of posterior draws for coordinates in actual CCPs p.
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F1GURE 10.— Trace plots of posterior draws for counterfactual CCPs p.

Prior and Post. for CCP
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F1GURE 11.— Marginal priors and posteriors for actual CCPs p. Prior - dashed. Posterior
- solid. Vertical - “true” actual CCPs.
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Prior and Post. for C.F. CCP
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F1GURE 12.— Marginal priors and posteriors for counterfactual CCPs p. Prior - dashed.

Posterior - solid. Vertical - “true” counterfactual CCPs.

APPENDIX E: ALTERNATIVE CLASSICAL INFERENCE PROCEDURES
E.1. Criterion function approach of Chernozhukov, Hong, and Tamer (2007)

Let us denote the parameter of interest (p or parameters of u) by 6 and the corresponding
identified set by ©;. Using characterizations of ©; in Corollaries 4 or 5, we can define a
criterion function Q(p, G, 0) that is minimized if and only if 6 belongs to ©;. The linear
program in Appendix B.1 can be used to define the criterion function for 6 = p: Q(p, G,p) =
max(0, t*(p, G, p)). The identified set ©; can be estimated by a contour set ©; = {f :
a,Q(p, G, 0) < ¢, }, where p and G are estimators of p and G, a, is a normalizing sequence,
and ¢, is a possibly data dependent sequence. An asymptotically valid confidence set of
level « for ©; is given by {0 : a,Q(p, G, 0) < co}, where critical value ¢, is ath quantile
of a, supyce, QP G, ). This critical value can be estimated by subsampling or bootstrap
procedures.

When the problem is very high-dimensional computation of an estimate of the identified set
O, and, especially, repeated maximization of Q(p, G, ) subject to 6 € ©; needed for the

bootstrap or subsampling procedure seems to be computationally infeasible. Implementations
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of Chernozhukov et al. (2007) and related approaches in the literature only involve low
(mostly one or two) dimensional problems. In most applications of DBCM the dimension of
p is expected to be very high. Even if the object of interest is not p itself but a low dimensional
function of p the computational challenges remain the same. Also, it is not obvious whether

all the technical conditions of Chernozhukov et al. (2007) are satisfied in our problem.

E.2. Kitagawa (2011)

Kitagawa (2011) proposes to use credible sets Bf’_c’; that minimize the volume of B] _ in
(20). In the case of a one-dimensional partially identified parameter of interest, he shows
that the resulting set in (20) has the nominal frequentist coverage if the boundaries of the
identified set have non-zero derivatives with respect to the point identified parameters. In
our settings, these conditions are unlikely to be satisfied as the identified sets are determined
by a large number of linear equalities and inequalities and the boundaries of the identified

sets are expected to be non-smooth.

APPENDIX F: ALTERNATIVE ALGORITHMS

The algorithm for estimation of Rust’s model presented in Appendix A exploits a priori
knowledge about implications of model restrictions such as monotonicity of CCPs. Such
knowledge can simplify the construction of MCMC algorithms and improve their perfor-
mance. This appendix demonstrates that our methodology and MCMC techniques can be
applied even if the researcher does not have a priori information about properties of CCPs
implied by the model restrictions.

Following a discussion at the end of Section 3.1, our alternative approach breaks down the
task of estimation of actual and counterfactual CCPs into two parts: estimating actual CCPs;
and estimating the identified set for counterfactual CCPs, P(p,G), for given (p, G). Using
algorithms for these two parts, one could form a point estimate for P(p,G) or construct
credible or confidence sets for P(p, G) as explained in Section 3.2 (equations (20) and (21)).
In Section F.1, we describe an algorithm for exploring the identified set for counterfactual

CCPs. An algorithm for estimation of actual CCPs is described in Section F.2. Section F.3
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illustrates the algorithms on the firm’s entry/exit example. Section F.4 applies the algorithm
for exploring the identified set for counterfactual CCPs to Rust’s model and demonstrates

that it delivers the same results as the original algorithm described in Appendix A.

F.1. MCMC algorithm for exploring the identified set of counterfactual CCPs

The identified set for counterfactual CCPs can be large and complicated. Of course, to
explore this high-dimensional set by simulation methods, one needs to know approximately
where the set is located in the high-dimensional space. Our algorithm uses a collection of
points known to be in the identified set. Let us call these points focal points. Section F.1.1
describes how to obtain the focal points. Let us next describe the main idea of the algorithm
assuming focal points are obtained (a precise description of the algorithm is given in Section
F.1.2 below).

The MCMC algorithm for exploring P(p, G) simulates a candidate draw of counterfactual
CCPs on the line connecting the previous draw and a randomly chosen focal point. The
candidate draw is accepted if it is in the identified set. The motivation for simulating on
the lines connecting points in the identified set is as follows. The identified set is connected.
Also, the inequalities defining the identified set (Corollary 5) can be rewritten to be linear
in components of p. Thus, it is reasonable to expect that a considerable part of the line
connecting two points in the identified set is also in the identified set. Since the focal points
are not necessarily close to the boundary of P(p, G), the algorithm does not restrict candidate
draws to the convex hull of the focal points: the lines on which candidates are simulated
extend beyond the focal points and are bounded only by [0,1]%. Also, a small random
perturbation in an unrestricted direction is added to candidate draws. As we discuss at the
end of Section F.1.2 below, this ensures that the algorithm can jump with positive probability
from any point of the identified set into any positive volume subset of the identified set. Thus,
the MCMC algorithm is ergodic and converges to a unique stationary distribution supported
on the identified set of counterfactual CCPs. Note that there is no prior and posterior in this
MCMC exercise. The MCMC algorithm just explores a distribution with the support equal
to the identified set. The shape of this distribution is determined by the set of focal points
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and by the specific Markov transitions of the MCMC algorithm that are defined formally in
Section F.1.2. The algorithm works particularly well if the set of focal points is adapted on
the initial stage of the algorithm. Specifically, if a newly accepted draw is more than certain
distance away from all the focal points then this new draw is added to the set of focal points.

This ensures that the stationary distribution is well spread out over the identified set.

F.1.1. Focal points

Suppose the per-period payoffs are linear in parameters, u; = Z;6. For fixed (p, G), we can
construct focal points ¢ in P(p,G), i = 1,..., I, using the following steps.

1. Find a collection of the per-period payoff parameters, 6, i = 1,..., I, that roughly
represents the identified set. We do it by finding vertices of the identified set using the
algorithm in Appendix B.2, and then simulating random convex combinations of the
vertices.

2. For each i in {1,...,1}, find (€',8") such that (u) = Zy0',u} = Z,0",G, B, €', 8", p)
satisfy conditions of Theorem 1. It can be done by a linear programming algorithm
similar to the one in Appendix B.1 (except, there are no variables and constraints
corresponding to counterfactual framework and the per-period payoffs are fixed to u?).

3. For each (¢,4") find a parametric distribution of the difference in unobserved payoff
shocks, F, that rationalizes (p,e’,d") as in Lemma 4. For F* we use a flexible piece-
wise uniform distribution with exponential tails, which is explicitly constructed in the
proof of Lemma 4.

4. Compute the counterfactual CCP, ¢, by solving the dynamic program for (i, G, 3, F?),
where @ € U(u') and v are the payoffs determined by #°. The quantiles and truncated
integrals necessary for value function iteration algorithm for solving the DP have ana-

lytical expressions under F*.

F.1.2. Description of the MCMC' algorithm

This subsection provides a formal description of the MCMC algorithm for exploring the
identified set P(p, G). The algorithm produces (™, m = 0,1,..., M. Start with a point in
the identified set, for example, a focal point p{®) = §'. At MCMC iteration m + 1:
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1. Draw ¢ from a uniform on {1,..., T}.

2. Simulate a scalar U from a uniform on the following set
{U: "™ +U- (@ —5™) € [0,1]%}

3. Draw vector ¢ from a uniform on [—&,£]%, where € is a fixed small number.
4. Set pmHt) = pm) L U - (¢ — ™) + € if it belongs to the identified set (which can be
checked by the algorithm from Appendix B.1); otherwise go to step 1.
5. This step is performed only on the adaptation stage of the algorithm (for example, for
m < M/2): if the distance from ™+ to {¢'}L_, is larger than some bound then add
5D to the set of focal points and increase I by 1.
To see that the algorithm described above can travel between any two points in the identified

(m=1) at iteration m — 1 be an arbitrary point in

set in at most two iterations, let a draw p
the identified set. Suppose that at iteration m a focal point ¢* is selected and that ¢’ is an
interior point of the identified set. On iteration m + 1, §* can again be selected with positive
probability. Thus, a candidate for p™*1) can be a draw located on the line containing p"
and ¢ up to a perturbation by &. Draw p(™) at iteration m can be anywhere in a small ball
around a focal point ¢ since U can be sufficiently close to 1 and & ~ U[—¢, £]%. Thus, the
line connecting 5™ and ¢ can have any direction in R¥ and a candidate for p(™*1) can

jump with positive probability into any positive volume subset of (0,1)¥ (and the identified
set).

F.2. MCMC for estimation of actual CCPs

In this section, for simplicity we keep the transition probabilities for the observed states, G,
fixed. For estimation of actual CCPs, p = (p1,...,pxk), we use an MCMC algorithm that
updates one coordinate of the CCPs vector at a time.

The prior on p is a product of standard uninformative conjugate priors for Bernoulli model,
Di “ Beta(0,0) truncated to model restrictions described in Theorem 1. It is possible to

use the same hierarchical prior as in the Rust’s model. However, the simple product prior

seems to be uninformative relative to the likelihood in the entry/exit model. Thus, we use it
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for simplicity. Then, the conditional posterior distribution for each p; is a beta distribution,
Beta(n},n?), truncated to the model restrictions in Theorem 1. That is, the prior assigns
positive probability only to actual CCPs that are consistent with some 6 and F'.
The starting point for the algorithm can be obtained by solving the DP for some reasonable
payoff parameter value and logistic F', where the parameter value can be obtained by esti-
mating the model with logistic F'. We use parameter § = (1.6,0.78,0.85), which is obtained
by adding random noise to the DGP value of 6.
The hybrid MCMC algorithm alternates between the following two Markov transitions.
1. ITteration m + 1 of Metropolis-within-Gibbs with a random walk proposal density.
For each i € {1,...,k}, i ~ N(p™, ;) (below we discuss how to choose o;); if pi*
with the rest of the CCP coordinates satisfies model restrictions and for a uniform

draw U ~ U|0, 1]

U < exp{(n} — 1)[log(p!”) —log(p\™)] + (n? — 1)[log(1 — pi”) — log(1 — p\™)]}

then pgmﬂ) = pﬁ*), otherwise pgmﬂ) = pl(.m).

2. Tteration m + 1 of Metropolis-within-Gibbs with a proposal density given by the con-
ditional posterior without the truncation to model restrictions.
For eachi € {1,...,k}, pg*) ~ Beta(n}, n); if pg*) with the rest of the CCP coordinates
satisfies model restrictions then pgmﬂ) = pg*), otherwise pl(-mﬂ) = pl(-m).
The standard deviations for the random walk o; are adaptively updated on initial stage of

") s below 0.1 then decrease o;

the algorithm: for m < 3000, if the acceptance rate for pg
by 1.5, if it is above 0.4 increase o; by 1.5.

The Metropolis-within-Gibbs part of the algorithm works very well when the algorithm
starts at p(®) with sufficiently high posterior density. If the starting point p(® is far in the tail
of the posterior then some coordinates might have essentially zero acceptance rate for the
Metropolis-within-Gibbs steps. In this case the adaptive random walk part of the algorithm
is useful as it automatically adjusts the random walk variance and can move the draws
from the tails to higher posterior density area. To speed up this movement to the higher

posterior density area we also employed the following step, which is motivated by the excellent

performance of the MCMC algorithm for exploring the identified set for counterfactual CCPs:
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for m < 1000, U ~ UJ0,1], p®*) = Upgm) + (1 — U)p™e, where p™¢ is the unrestricted

MLE estimate for CCPs; if p®*) satisfies model restrictions then pgmﬂ) = pg*), otherwise
pgmﬂ) = pgm) . The algorithm works without this last step but the required burn-in period is

much longer.

F.2.1. An algorithm based on “focal” points

The simple MCMC algorithm for estimation of actual CCPs described above is going to work
well when the sample size is large and the model restrictions are not very strong relative
to the information in the likelihood function. If this is not the case, then the algorithm for
exploring the identified set of counterfactual CCPs described in Section F.1 can be adapted
to estimation of actual CCPs.

For this, we need to create “focal” points for actual CCPs and add information from the
likelihood function. To obtain suitable “focal” points, (i) specify a prior on structural pa-
rameters; (i) simulate a sample of parameter values from this prior and solve the model for
each parameter draw using extreme value distribution for unobservables or a more flexible
parameterization for this distribution such as a mixture of extreme value distributions; (iii)
use the resulting sample of CCP vectors as focal points.

Then, we use these focal points in an MCMC algorithm, which is the same as the one in
Section F.1.2 except it operates on actual CCPs and in step 4 we check that the candidate
draw of actual CCPs satisfy restrictions of Theorem 1. This check is done by a linear pro-
gramming algorithm similar to the one in Section B.1 (except, there are no variables and
constraints corresponding to the counterfactual framework).

This MCMC algorithm produces a sample of actual CCPs from a distribution induced by
the focal points and the simulation algorithm. One can use this distribution as a prior on
actual CCPs. As long as the underlying prior on the structural parameters used in obtaining
the focal points is reasonable, the induced prior on CCPs should also be reasonable.

To obtain a sample from the posterior we can reweigh the draws from the prior by the values
of the likelihood, which can work sufficiently well under the premises of this subsection (the

sample size is small and the likelihood contains little information).
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F.3. Application: firm’s entry and exit model

In this subsection, we consider a firm’s entry and exit model, which is a modified single
agent version of a model from Aguirregabiria and Mira (2007). In the following subsection,
we set up the model. In Subsection F.3.2, we compute the identified set for payoff param-
eters. Subsection F.3.3 presents actual CCPs estimated from simulated data. Subsection
F.3.4 presents the identified set of counterfactual CCPs obtained by the MCMC algorithm
described in Section F.1.

F.3.1. Model setup

If the firm does not enter a market then its per-period payoff is zero. If the firm enters then

its payoft is given by
(35) (St/(2 + Ct)Qa _17 dt*l - 1)(917 925 63)/

where s; is the market size, ¢; is the number of competitors in the market, and d;_; is the
previous period decision, which is equal to 1 if firm was in the market previous period. The
observed state variables are given by x; = (s, ¢, di—1). The per-period payoff parameters
include entry costs 63, fixed costs 6, and 6; that encompasses variable costs and demand
parameters.

The transition for the observed state is specified as follows. For market size s, € {1,..., s},
PT(St+1 = St|.'lft, dt) =0.9

PT(StJrl = St—1|xt,dt) = Pr(5t+1 = 5t+1|xt>dt) =0.05

when s; is not on the boundary. When s, = 1,
Pr(st+1 = st\xt, dt) =0.95

Pr(stJrl = St — 1‘xt7dt) =0, PT(StH =S+ 1‘$tadt) = 0.05;

analogously for s; = §. The number of competitors ¢; € {1,..., ¢}, evolves according to

Pr(ciy1 = ¢t — 181, x4, d) = 0.1exp(—1 — 0.5541 + 0.5d;)
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PT(Ct+1 = Ct|8t+1,xt7 dt) = 097
PT(CH_l = Ct — 1‘8154.171'15, dt> = 01[1 - exp(—l - 0.5St+1 + 05dt)]

when ¢; # 1 and ¢. The boundary values of ¢; are handled similarly to the boundary values
of s;.

In estimation experiments below, the actual CCPs and data are generated for § = 0.95,
0 = (2,05,1),) ¢ =3, 5 =5 and k = 2¢5 = 30. The sample includes 30000 observed
decisions. This is a realistic sample size (Collard-Wexler (2013) uses over 400000 observations
to estimate an entry and exit model). The counterfactual experiment is a 30% increase in the
entry costs. In the notation of Section 2.2.2 and Corollary 2, U((ug, u1)) = {iig = ug, @ =
710, and 0 : uy = 7,0}, where rows of Z; are defined in (35) and Zh-j = Zy;; for j # 3 and
Zyij = 1.37,, for j = 3.

F.3.2. Identified set for payoff parameters

35

F1GURE 13.— Identified set for payoff parameters

To compute the identified set ©;(p, G) in the entry/exit model for (p, G) in the DGP, we use

9 Aguirregabiria and Mira (2007) derive the specification of per-period payoffs in (35) from a first stage
Cournot game but they use a different specification in their empirical model. Thus, we select arbitrary but

seemingly reasonable value of 6.
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the algorithm described in Appendix B.2. The discretization of the slope was performed with
/100 step size on the angles in a spherical coordinate system. Figure 13 shows a convex

hull of the boundary points obtained by the algorithm.

F.3.3. Estimation of actual CCPs

The MCMC algorithm was run for 6500 iterations, which takes approximately 3.5 hours on
a 2.7GHz 8GB computer. Trace plots of first 1000 MCMC draws for selected coordinates are
shown in Figure 14. As can be seen from the plots, the number of iterations the algorithm
requires to get from far in the tail of the posterior to the area of higher posterior density

(burn-in) is much smaller than 1000.
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FIGURE 14.— MCMC draws, DGP CCPs (horizontal solid line), and MLE of CCPs (hor-

izontal dashed line).
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Figure 15 shows marginal posterior densities for CCPs estimated from p(™), m € {3001, ...,6500}.
The dashed lines in the figure show marginal posterior densities when the model restrictions
(conditions of Theorem 1) are not imposed in estimation. As can be seen from the figure,

model restrictions considerably reduce the uncertainty about CCPs estimates.
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FIGURE 15.— Posterior densities for CCPs with (solid) and without the model restrictions
(dashed). DGP CCPs (vertical solid line) and MLE of CCPs (vertical dashed line).

F.3.4. Identified set of counterfactual CCPs

In this subsection, we report the identified set of counterfactual CCPs for the DGP values
of (p, G), where the DGP is described in Section F.3.1. The set is explored by the algorithm

presented in Section F.1. Figure 16 shows the initial set of focal points.



66 ANDRIY NORETS AND XUN TANG

FIGURE 17.— Set of focal points after adaptation

For adaptation stage of the algorithm we used first 5000 iterations. The resulting set of
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focal points is shown in Figure 17. This figure is a good representation of the identified set
for counterfactual CCPs. MCMC draws are shown in Figure 18. The algorithm appears to

converge.
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F1GURE 18— MCMC draws before and after adaptation

F.4. Identified set for counterfactual CCPs in Rust’s model

Figure 19 shows the draws of counterfactual CCPs for all values of the observed state x €
{1,...,90}. The projections of the identified set on all the coordinates are very close to the
results presented in Figure 4. MCMC draws after adaptation are shown in Figure 20. Figure
21 shows the initial set of focal points. These points were obtained as described in Section
F.1.1. For adaptation stage of the algorithm we used 5000 iterations. The set of focal points
after the adaptation stage of the algorithm is shown in Figure 22. A comparison of Figures

19 and 22 shows that the adapted set of focal points well represents the identified set.
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