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Abstract. We study a decision maker who approaches an uncertain decision prob-

lem by formulating a set of plausible probabilistic models of the environment but

is aware that these models are only stylized and incomplete approximations. The

agent is effectively facing two layers of uncertainty. Not only is the decision maker

uncertain regarding what model in this set has the best fit (model ambiguity), but

she is also concerned that the best-fit model itself might be a poor description of

the environment (model misspecification). We develop an axiomatic foundation

for a general class of preferences that capture concern toward these two layers of

uncertainty and allow us to compare individuals’ degrees of aversion to model mis-

specification and model ambiguity independently of each other.
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†Department of Economics, University of Pennsylvania. Email: masellia@sas.upenn.edu.

1



2

1. Introduction

Economic agents often employ simplified and stylized descriptions of the complex

environment they face to help guide their decisions. This implies that model misspec-

ification is a pervasive phenomenon affecting many decision problems. For example, a

policymaker might have an incorrect description of how the economy would respond

to a fiscal or monetary stimulus, or a company’s marketing department might have

a wrong assessment of how demand would react to changes in the price of a prod-

uct. As a result, a growing literature studies the implications of using misspecified

models in the context of decision making and strategic interaction (see Section 1.1 for

a comprehensive literature review). A common assumption in this literature is that

once agents have settled on using a specific statistical model of the environment, they

disregard the possibility of it being misspecified and act in a fully Bayesian fashion,

evaluating alternatives by their expected utility with respect to that model. How-

ever, sophisticated enough agents should realize that their model is only a simplified

approximation of reality. As suggested by Hansen and Sargent (2001), an economic

agent who is concerned with acting on the basis of an incorrectly formulated model

should make decisions that are robust; that is, policies that work reasonably well

across all models that are close enough to the reference model. Following this idea,

the first axiomatic treatments of decision criteria featuring misspecification aversion

have been proposed by Cerreia-Vioglio et al. (2020) and Lanzani (2022).

In this paper, we provide an axiomatic foundation of a general class of preferences

that are averse to the possibility of misspecification. The main contribution of our

model is a way of meaningfully disentangling misspecification aversion from the more

commonly studied aversion to model ambiguity. We adopt a version of the Anscombe-

Aumann framework where uncertainty is captured by a set of states of the world

Ω, and the decision maker (henceforth, DM) needs to choose an act f that maps
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states of the world to outcomes. The DM does not know the true data-generating

process (DGP) governing the environment, but she has statistical information in her

possession. This is given by a set M of distributions over states of the world. Each

model m ∈ M can be interpreted as an alternative plausible hypothesis regarding the

DGP. Being aware that models are only imperfect and stylized descriptions of the real

environment, the DM might become concerned that, in fact, no hypothesized model

in M is an accurate approximation of the DGP; or, in other words, that the true

DGP is not contained in M. Moreover, the DM also has at her disposal a best-fit

map, identifying the model that is the best approximation of the true DGP based on

different state realizations.

In this framework, the DM evaluates each uncertain alternative according to the

following two-step procedure. First, if the DM were told sufficient information to

determine that a distribution m ∈ M is the best-fit model, she would evaluate an act

f according to the following misspecification-robust criterion

V m(f) = min
p∈∆(Ω)

{Ep[u(f)] + c(p, m)}(1)

where u is a utility over outcomes and c(·, m) is an index of misspecification aversion.

That is, even conditional on observing sufficient information to determine that m is

the best model, the DM would not completely trust it out of misspecification concerns.

Therefore, in evaluating an act f , she would also take into account other distributions

p outside of M that are not too far apart in a probabilistic sense from m. The index

c(·, m) captures the DM’s confidence in the model m. An important special case is

given by c(·, m) = λR(·||m), where R is the relative entropy and λ > 0 is a parameter

of misspecification aversion. When the DM’s concern for misspecification is high, λ is

low, and therefore, she would give preference to acts that perform robustly well across

a larger set of models around m. In the extreme case of λ approaching infinity, the
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DM becomes misspecification neutral and evaluates acts according to their expected

utility given m.

Second, being also uncertain about the identity of the best-fit model, the DM

aggregates together the misspecification-robust evaluations:

(2) V (f) = Î
󰀓
(V m(f))m∈M

󰀔
= Î

󰀣

min
p∈∆(Ω)

{Ep[u(f)] + c(p, ·)}
󰀤

where Î : RM → R is a normalized, monotone, and quasiconcave aggregator capturing

the DM’s attitudes toward the ambiguity regarding what model is the best-fit one.

Normalization allows us to interpret Î as a utility certainty equivalent of the uncertain

(because of model ambiguity) profile of misspecification-robust evaluations.

We illustrate how our framework distinguishes concern toward misspecification from

attitudes toward model ambiguity. We show that we can rank two agents in terms

of their degree of misspecification aversion by only comparing their misspecification

index c (without imposing any mutual restrictions on their aggregators Î) and, simi-

larly, we can rank agents in terms of their attitudes toward model ambiguity by only

comparing their aggregator Î (without imposing any mutual restrictions on their mis-

specification aversion indexes). Specifically, DM1 is more misspecification averse than

DM2 if and only if c1(·, m) ≤ c2(·m) for all hypothesized models m ∈ M. On the

other hand, DM1 is more averse to model ambiguity than DM2 if and only if Î1 ≤ Î2.

That is, the first individual is more model ambiguity averse if she is willing to accept

lower certainty equivalents than the second to eliminate the ambiguity regarding the

identity of the best-fit model.

We provide an axiomatization of two important special cases of the aggregator

Î. First, we show that if the DM confronts the uncertainty regarding the identity

of the best-fit model according to the expected utility tenets, she aggregates the
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misspecification-robust evaluations in a Bayesian fashion:

(3) Vφ,µ(f) =
󰁝

M
φ

󰀣

min
p∈∆(Ω)

{Ep[u(f)] + c(p, m)}
󰀤

dµ(m)

where µ is the DM’s subjective prior over the set of models M and φ captures the

DM’s attitudes toward model ambiguity. If the DM is neutral toward model ambiguity

and shows a uniform concern for misspecification, this criterion becomes the average

robust control representation axiomatized by Lanzani (2022).1 If, instead, the DM

is misspecification neutral, that is, when c(·, m) assigns an infinite penalization to

any probability model different from m itself, this criterion becomes the well-known

smooth ambiguity model of Klibanoff et al. (2005). Second, we show that if the DM

is cautious and evaluates the uncertainty about the best-fit model according to a

worst-case scenario approach, then the aggregator takes on a maxmin form and we

obtain the criterion proposed by Cerreia-Vioglio et al. (2020):

(4) Vmin(f) = min
p∈∆(Ω)

󰀝
Ep[u(f)] + min

m∈M
c(p, m)

󰀞
.

Before moving on to discussing the related literature, we provide a brief discussion

of the two main axioms underpinning our decision criterion. The first, which we call

misspecification aversion, requires that even after conditioning on the event that a

given m ∈ M is the best-fit model, the DM’s preferences still do not satisfy full-fledged

independence but only a weaker version of it (in our case, weak c-independence).

Intuitively, suppose the DM observed the information sufficient to determine that m

is the best approximation in M. If she were completely certain that the true DGP is

included in M, she would conclude as a matter of fact that m is the correct description

of the environment and evaluate uncertain alternatives according to their expected

1To be precise, we would also need to impose that the conditional misspecification-robust evaluations
are the multiplier preferences proposed by Hansen and Sargent (2001) and axiomatized by Strzalecki
(2011).
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utility given m. The fact that even after m is revealed to be the best-fit model, the

DM’s preferences might still feature violations of independence reflects her mistrust of

the best-fit model m and, thereby, a concern for the set of hypothesized models being

misspecified. The second axiom is consistency. It requires that the DM prefers an act

f to g whenever f is preferred to g conditional on each m ∈ M. This axiom connects

the subjective preferences of the DM to the statistical information encoded in the set of

models M. It captures the idea that even if aware of the possibility of misspecification,

the DM still puts substantive trust in the set of models. If they provide a unanimous

ranking of two alternatives, after taking into account misspecification concerns, then

the DM’s preferences comply with that ranking.

The rest of the paper is structured as follows. Section 1.1 discusses the relevant

literature. Section 2 lays out the decision framework and the notions of the hy-

pothesized set of models and best-fit map. Section 3 introduces and discusses the

axioms characterizing the misspecification averse preferences. Section 4 states and

discusses the representation results. Section 5 concludes. All proofs can be found in

the Appendix.

1.1. Related Literature.

Preferences and Sufficient Statistics.

This paper is related to the literature connecting statistical information to choice

behavior (see, for example, Amarante (2009), Al-Najjar and De Castro (2014), Ep-

stein and Seo (2010), and Klibanoff et al. (2014)). Within this class, the closest

paper to ours is Cerreia-Vioglio et al. (2013). Building on their setup, we incorporate

misspecification aversion in the preferences of a DM using exogenous, statistical infor-

mation to inform her choices. In their case, since the DM does not care about model

misspecification, preferences conditional on a model m are expected utility. There-

fore, their consistency axiom requires the DM’s preferences to comply whenever two
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acts are unanimously ranked according to their expected utility certainty equivalents:

∀m ∈ M,
󰁝

S
fdm 󰃒

󰁝

S
gdm =⇒ f 󰃒 g.

They show that this implies their representation only depends on the profile of ex-

pected utility evaluations (EP [u(f)])P ∈P , so that preferences are represented via an

aggregator of the map m 󰀁→ Em[u(f)]. In our case, however, even after observing the

missing information sufficient to pin down a unique best-fit model m ∈ M, the DM,

out of misspecification concerns, would only trust m to be the best approximation to

the DGP, but not necessarily the correct one. Therefore, her preferences conditional

on m are not necessarily expected utility, but can still display a preference for robust-

ness across models that are in a vicinity of m. In Theorem 1 we show that the repre-

sentation of our class of misspecification averse preferences only depends on the pro-

file of misspecification robust conditional evaluations (minp Ep[u(f)] + c(p, m))m∈M,

so that the representation can be expressed as a certainty equivalent Î of the map

m 󰀁→ minp Epu(f) + c(p, m). The fact that this map is no longer linear in the models

m ∈ M is the main technical difficulty that we deal with in this paper.2 Moreover,

we show that also in our case, axioms on preferences over acts can be translated into

properties of the certainty equivalent Î without having to resort to second-order acts.

This paper is also related to the recent axiomatization by Denti and Pomatto

(2022) of identifiable smooth ambiguity preferences. Without positing an exogenous

set of probabilistic models, and abstracting from misspecification concerns, they find

conditions under which preferences are represented by the smooth ambiguity criterion,

where the beliefs involved in the representation are identifiable; that is, they are

completely orthogonal for some kernel κ. In this paper, we start with the DM having

an exogenously given set of models and a best-fit map, connect the DM’s preferences

2In this respect, this paper is also related to Mu et al. (2021). In a different context, they show that
monotone additive statistics can be represented as averages of CARA certainty equivalents.
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to this statistical models by consistency, but allow the DM to display aversion toward

misspecification.

Decision Criteria incorporating Misspecification Concerns.

There are a few papers axiomatizing preferences that display aversion to model

misspecification. Cerreia-Vioglio et al. (2013) axiomatize the criterion (4) in a two-

preference setup à la Gilboa et al. (2010). The DM has an objectively rational prefer-

ence that satisfies weak c-independence but is incomplete and a subjectively rational

preference that is complete, but satisfies independence only on constant acts. These

two preferences are linked via two axioms originated in Gilboa et al. (2010). The first

is consistency. It requires that the subjectively rational preference is a completion of

the objectively rational. The second is that the DM exercises caution; that is, if the

objectively rational preference is not confident enough to rank an uncertain act over

a deterministic one, then the deterministic act is chosen by the subjectively rational

preference (when in doubt, go with the certain alternative). Moreover, the two pref-

erences are informed by the set of probabilistic models via coherence requirements

analogous to those given in this paper. They also propose a foundation of a more

general aggregator of the misspecification-robust evaluations in a setup involving a

two-preference family indexed by varying sets of posited models. Lanzani (2022) also

adopts the view of Cerreia-Vioglio et al. (2013) by considering states of the world

that describe both the realization of the payoff relevant state and the distribution

over such payoff states. They assume that the DM has variational preferences and

obtain the average robust criterion (3) by imposing that preferences on bets over

models satisfy the sure thing principle and uncertainty neutrality (thus obtaining an

affine φ). Moreover, they propose axioms that characterize the asymptotic behavior

of the index of misspecification concern when the DM’s preferences evolve in reaction

to the arrival of new information. We show (Theorems 2 and 3) that the criteria intro-

duced by Lanzani (2022) and Cerreia-Vioglio et al. (2020) both fall within the general
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class of misspecification averse preferences studied in this paper and represent two

opposite ends of the spectrum; the average robust criterion is neutral toward model

ambiguity, while the maxmin criterion displays an extreme form of model ambiguity

aversion. One contribution of our paper is to allow more flexible attitudes toward

model ambiguity while proposing a way to disentangle those from the degree of mis-

specification aversion. This is reflected in the fact that the representation parameters

capturing model misspecification aversion (the index c) and model ambiguity aversion

(the aggregator Î) are independent of each other.

Learning with Misspecified Models.

Starting with Esponda and Pouzo (2016), many papers have examined the as-

ymptotic behavior of actions and beliefs when agents take repeated decisions in a

stochastic environment of which they have a possibly incorrect or only partial under-

standing (see, for instance, Frick, Iijima, and Ishii, 2022; Fudenberg, Lanzani, and

Strack, 2021). In all these models, agents are not concerned about misspecification

and are expected utility maximizers. A key result is that misspecification is asymp-

totically persistent and thus matters in shaping agents’ behavior and beliefs, even

when agents collect many observations generated by the true data-generating pro-

cess. A different strand of the literature allows agents to realize that their model

is misspecified and switch to a competing alternative (see, for example, Ba (2021),

Fudenberg and Lanzani (2023), and He and Libgober (2021)). The main difference

to our misspecification averse preferences axiomatized is that agents act in a fully

Bayesian fashion once they have selected one of the competing models on the basis

of a statistical fitness test.

2. Decision Framework

We begin by describing the decision environment faced by the DM. Uncertainty

is described by a state space Ω endowed with a countably generated σ-algebra G.
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Let X be the space of consequences, a convex subset of a linear space. The DM

needs to choose simple acts, that is, simple functions f : Ω → X mapping states

to consequences that are measurable with respect to G. Denote by F the set of all

simple acts. Abusing notation, we denote by x ∈ X also the constant act yielding

consequence x in each state ω ∈ Ω. For each f, f ′ ∈ F and α ∈ [0, 1], the convex

combination αf + (1 − α)f ′ is the simple act given by:

(αf + (1 − α)f ′)(ω) := αf(ω) + (1 − α)f ′(ω)

for all ω ∈ Ω. Given any E ∈ G and simple acts f, g ∈ F , let fEg be the act taking

value f(ω) if ω ∈ E and value g(ω) if ω ∈ Ω \ E. If E is a sub-σ-algebra of G, denote

by F(E) the subset of simple acts in F that are measurable with respect to E .

Let 󰃒 be a preference relation over F . Denote by ≻ and ∼ respectively the asym-

metric and symmetric part of 󰃒. An event E ∈ G is null if for all acts f, f ′ ∈ F ,

f |Ω\E = f̃ |Ω\E implies that f ∼ f ′.

2.1. Probabilistic Models and Best-Fit Map. Let ∆ := ∆(Ω, G) denote the

space of countably additive probability measures on (Ω, G). Endow ∆ with the natural

σ-algebra D generated by the family of evaluations maps and any subset of ∆, with

its relative σ-algebra.3

We assume that the DM is equipped with a set M ⊆ ∆ of probability distribu-

tions over states of the world that, given some external information, she believes are

plausible descriptions of the uncertain environment she is facing. In keeping with the

classical setup of Wald (1950), each model m ∈ M can be interpreted as an alterna-

tive hypothesis regarding the DGP, based on substantive motivations, like scientific

theories and empirical evidence. The models in M are sometimes referred to in the

literature (see, for example, Hansen and Sargent (2022) and Cerreia-Vioglio et al.
3Appendix A provides rigorous definitions of the mathematical concepts and details regarding the
notation.
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(2020)) as structured, to remark their special status in the eye of the DM as opposed

to other distributions outside M. Following Box (1976, 1979) and Cox (1995)’s idea

that models are only approximations, we do not assume that the set of models includes

the DGP, that is, the true probability law governing state uncertainty. Moreover, we

allow for the possibility that the DM is aware of this fact, and perceives the possibility

that her set of models might be misspecified.

Our aim in this paper is to discern between ambiguity about which probabilistic

model is the best approximation to the DGP and concern about misspecification, that

is, the fact that no hypothesized model is an accurate approximation of the DGP.

Uncertainty about models is usually motivated in terms of “lack of information” pre-

venting the DM from selecting the best one. Following Cerreia-Vioglio, Maccheroni,

Marinacci, and Montrucchio (2013),4 we formalize this missing information via the

idea of sufficient statistics and information (Dynkin, 1978). Specifically, we assume

that the measurable space of states of the world (Ω, G) and the posited set of proba-

bilistic models M admit a best-fit map q : Ω → M and a sufficient σ-algebra A ⊆ G

such that

(i) A is the σ-algebra generated by q,

(ii) m({ω ∈ Ω : q(ω) = m}) = 1 for all m ∈ M.5

We interpret this framework as follows. Suppose that the well-specified description

of the environment is given by the set of models P and a map p : ω 󰀁→ pω ∈ ∆

such that P ({ω ∈ Ω : pω = P}) = 1 for all P ∈ P . The interpretation is that the

realization of ω also pins down what is the true DGP pω, so that the σ-algebra of

events A that makes pω measurable captures the sufficient information to determine
4See also Amarante (2009), Al-Najjar and De Castro (2014), Epstein and Seo (2010), and Klibanoff
et al. (2014) for related approaches.
5The requirement that each model m ∈ M is selected by the best-fit map with probability one
according to m is equivalent to the notion of sufficient statistics introduced by Dynkin (1978) and
is related to the strong law of large numbers. In mathematics and probability, this property is what
is known as complete orthogonality of the set of probability models M. See, for example, Mauldin
et al. (1983) and Weis (1984).
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what is the true probability law over states. Moreover, the statement that pω = P

with probability one according to P is a requirement that the correct description of

the environment is not contradictory; that is, whenever P is the true DGP, then it is

selected with probability one by the map pω.6 However, the DM posits a misspecified

set of models P0 that does not necessarily include all models in P7. Now, suppose the

DM observed the missing information in A that would be sufficient to infer P ∈ P .

However, since the DM has posited a misspecified set of models, the insight from Berk

(1966) suggests she would select from P0 the closest model to P ; that is, the unique

minimizer q∗(P ) ∈ P0 solving minq∈P0 R(q||P ), where R(·||·) is the relative entropy.8

Define the function q(ω) := q∗(pω) and the set M := {m ∈ ∆ : ∃P ∈ P , m = q∗(P )}.

By the measurable maximum theorem, p 󰀁→ arg maxq∈P0:q≪p R(q||p) is measurable,

so that q is also measurable with respect to A. Moreover, for all m ∈ M we would,

indeed, have that m ({ω : q(ω) = m}) = 1.9 It is in this sense that we interpret q as a

best-fit map and the information in A as the sufficient information to determine the

best approximation of the DGP among those in M. That is, if the DM were able

to observe ω, she would infer that the model mω = q(ω) is the model that closest

resembles the true DGP.

Example 1 (Exchangeability): Suppose S is an underlying finite set of contempo-

raneous states and assume that at each time period t ∈ N, the uncertainty is described

by the realization of a state st ∈ S. Then, a state of the world is an infinite sequence

of realizations from S, and the state space is given by the sequence space Ω = SN.

In this case, the relevant σ-algebra G is the one generated by all cylinders. Let Π be

6We can see the analogy to the strong law of large numbers if we interpret each ω as the realization
of an infinite sequence of random variables and pω as the limit of a consistent estimator.
7Assume that P0 is compact and convex and that for each P ∈ P, there exists a model q ∈ P0 such
that q is absolutely continuous with respect to P (written q ≪ P ).
8 That is, for every q, p ∈ ∆, R(q||p) =

󰁕
Ω ln dq

dp dq if q ≪ p and equal to ∞ otherwise.
9 For each m ∈ M, there exists P ∈ P such that m = q∗(P ), so that {ω : pω = P} ⊆ {ω : q(ω) =
q∗(pω)} and, therefore, P (Ω \ {ω : q(ω) = m}) ≤ P (Ω \ {ω : pω = P}) = 0. Since m ≪ P , it then
must be the case that m(Ω \ {ω : q(ω) = m}) = 0.
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the group of all finite permutations of N and consider the set A of all exchangeable

events; that is, events E ∈ G for which π−1E = E for all permutations π ∈ Π. If

we let P = {P : ∀π ∈ Π, ∀E ∈ G, P (π−1E) = P (E)} be the set of all exchange-

able probability measures, we know that (Ω, G, P) is a Dynkin space with sufficient

σ-algebra A and the set of extreme points of P is given by the models P ∈ P that

take on 0-1 values on the sufficient σ-algebra A. For example, if S = {0, 1}, the set

of models could be given by the iid Bernoulli distributions with success parameter in

between p < p̄; that is, P0 = {q = ×n∈Np : p ∼ Ber(p) for some p ∈ (p, p̄).}

3. Uncertainty Averse Preferences, Coherence, and Consistency

In the sequel, we fix a measurable state space (Ω, G) and a set of probabilistic models

M, admitting a best-fit map q and sufficient σ-algebra A satisfying the properties

outlined in the previous section.

3.1. Uncertainty Averse Preferences. We assume that the DM’s preferences of

the DM satisfy the axioms of Cerreia-Vioglio et al. (2011).

Axiom 1 (Uncertainty Averse Preferences):

(i) Weak Order. 󰃒 is complete and transitive.

(ii) Monotonicity. For all f, f ′ ∈ F , if f(ω) 󰃒 f ′(ω) for all ω ∈ Ω, then f 󰃒 f ′.

(iii) Mixture Continuity. If f, f ′, f ′′ ∈ F , the sets {α ∈ [0, 1] : αf ′ +(1−α)f ′′ 󰃒 f}

and {α ∈ [0, 1] : f 󰃒 αf ′ + (1 − α)f ′′} are both closed.

(iv) Risk Independence. For all x, y, z ∈ X and α ∈ [0, 1],

x 󰃒 y ⇐⇒ αx + (1 − α)z 󰃒 αy + (1 − α)z .

(v) Uncertainty Aversion. For all f, f ′ ∈ F and α ∈ (0, 1),

f ∼ f ′ =⇒ αf ′ + (1 − α)f 󰃒 f .
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(vi) Unboundedness. There exist x, y ∈ X such that x ≻ y and for all α ∈ (0, 1),

there are z, z′ ∈ X such that

αz + (1 − α)y ≻ x ≻ y ≻ αx + (1 − α)z′ .

The first four requirements guarantee that the preferences are a continuous and

monotone weak order satisfying independence when restricted to constant acts. Then,

the theorem of Herstein and Milnor (1953) implies that the preferences are represented

on X by an affine utility u. If we interpret the mixture space X as the set of simple

lotteries over outcomes, these axioms imply that the DM evaluates lotteries - i.e.,

constant acts not involving ambiguity - according to their objective expected utility.

Requirement (v) is due to Schmeidler (1989) and captures a preference for hedging

against uncertainty. The last requirement is mostly for technical convenience, and it

guarantees that the utility over consequences u will be unbounded above and below.

Finally, the next axiom guarantees that preferences are robust to small perturba-

tions and guarantees the countable additivity of the subjective probabilities.

Axiom 2 (Monotone Continuity): For all f, f ′ ∈ F and x ∈ X, for all (En)n∈N ⊆ G

such that E1 ⊇ E2 ⊇ · · · and 󰁗
n∈N En = ∅, if f ≻ f ′, then, there exists n0 ∈ N such

that xEn0f ≻ f ′.

3.2. Coherence and Consistency. For each model m ∈ M, denote by Em :=

q−1(m) ∈ A the set of states of the world for which the best-fit map would imply that

m is the best approximation of the DGP. Moreover, given p ∈ ∆, for each simple act

f , define

Ep[f ] :=
󰁛

x∈X

xp
󰀓
f−1(x)

󰀔

be the “average” of f according to the probability model p. Notice that since f has

finite image and X is convex, Ep[f ] ∈ X and it is the certainty equivalent of f for

an Anscombe-Aumann EU maximizer who holds belief p over the state space Ω. The
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following axiom captures the idea that the preferences of the DM are coherent with

the statistical framework embodied by the set of models and the best-fit map.

Axiom 3 (Coherence):

(i) For all models m ∈ M, Em is nonnull and fEmh 󰃒 gEmh if and only if

fEmh′ 󰃒 gEmh′ for all f, g, h, h′ ∈ F .

(ii) For all m ∈ M and f, g, h ∈ F ,

f = g a.e. [m] =⇒ fEmh ∼ gEmh .

(iii) For all m ∈ M, if p(Em) = 1 but p ∕= m, then there exist f ∈ F and x ∈ X

such that fEmx 󰃒 x but x ≻ Ep[fEmx].

(iv) For all x ∈ X and f ∈ F , the set {m ∈ M : fEmx 󰃒 x} is measurable.

Coherence requires that the DM’s preferences are adapted to the statistical infor-

mation implied by the hypothesized models and the best-fit map. Point (i) requires

that for each model m, the preferences of the DM deem possible the event that m is

indeed the best approximation of the true DGP.10 Moreover, the second part of the

first point requires that the DM is able to identify the event that each model is the

best approximation of the DGP and make conditional assessments of the acts based

on this event. In particular, this guarantees that we can define nontrivial preferences

󰃒m conditional on a model m ∈ M being the best approximation to the true DGP

in an unambiguous way: for all f, g ∈ F ,

f 󰃒m g ⇐⇒ (∃h ∈ F , fEmh 󰃒 gEmh) .

The second requirement ensures that the preferences of the DM incorporate the in-

formation provided by the best-fit map and are coherent with the selected best-fit

model. If two acts are equal with probability one according to a model m ∈ M,
10 We can think of this as a parsimony requirement: if the DM thought that a model could never
be the best-fit one, then she might just as well drop it altogether.
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the fact that the DM pays special attention to the model when it is the best-fit one

suggests that she will be indifferent between them conditional on the event that m is,

indeed, the best approximation. The third point clarifies the interpretation of m as

having a special status in the eyes of the DM compared to other models not in M.

In principle, any p assigning probability one to Em is not contradicted by observing

evidence Em. However, since p is not selected by q, the DM’s preferences display

instances of “incoherence” with it. That is, the DM’s preferences prefer a (possibly)

uncertain alternative f to the constant act x conditional on Em even if x is strictly

preferred to the p-certainty equivalent of f .11 Finally, the last point is a measurability

requirement of preferences with respect to the sufficient σ-algebra. To summarize,

coherence implies that each model m ∈ M induces a well-defined and nontrivial con-

ditional preference 󰃒m that ranks as indifferent acts that are equal with probability

one according to m and changes in a measurable fashion with respect to the models.

The next axiom is key in tying together the DM’s subjective preferences with the

set of models and the conditional preferences they induce.

Axiom 4 (Consistency): For all f, f ′, g ∈ F ,

(∀m ∈ M, fEmg 󰃒 f ′Emg) =⇒ f 󰃒 f ′ .

This assumption is analogous to the consistency axiom introduced in Gilboa et al.

(2010) and Cerreia-Vioglio et al. (2013). We can think of the set of models M as

identifying an objective preference over acts. If an act f dominates act f ′ conditional

on each model m ∈ M, then f is objectively preferred by the DM to f ′. Consistency

requires that the subjective preferences of the DM are informed by the objective

preferences.

11 This axiom is not strictly needed to obtain the representation and only clarifies the interpretation
of each m being the unique reference model for the DM after observing the event Em. In particular,
this implies that the misspecification index c(·, m) is uniquely minimized at m.
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3.3. Misspecification Aversion. We next state a conditional version of the axiom

characterizing the variational preferences of Maccheroni et al. (2006). That is, the

preferences after conditioning on the event that the model m ∈ M is the best-fit one

satisfy a weaker form of independence, weak certainty independence, but they still do

not need to satisfy full-fledged independence because of misspecification concerns.

Axiom 5 (Misspecification Aversion): For all models m ∈ M, f, f ′ ∈ F , x, y ∈ X,

and α ∈ (0, 1),

αf + (1 − α)x 󰃒 αf ′Emf + (1 − α)x =⇒ αf + (1 − α)y 󰃒 αf ′Emf + (1 − α)y .

We interpret Axiom 5 as capturing the idea that the DM is aware that the set of

models is possibly misspecified and is concerned about it. Recall that we interpret

ambiguity as the lack of information needed to pin down a unique probability distri-

bution over states of the world. Now, suppose the DM was able to observe sufficient

information to determine that a model m is the best-fit among all those in M. If

she was completely certain that the true DGP is included in M, she should conclude

as a matter of fact that m is the correct description of the uncertainty about the

states. In this case, there is no reason why the DM’s preferences should exhibit any

ambiguity aversion but should instead behave according to the subjective expected

utility tenets. That violations of independence are still allowed, even after being told

that m is the best-fit model, reflects the idea that the does not trust that the best-fit

model m is, in fact, the true DGP, reflecting a concern for the set of models being

misspecified.

To summarize, we define the preferences under analysis as a binary relations satis-

fying all the axioms discussed so far.

Definition 1 (Misspecification Averse Preferences): A preference relation 󰃒 on F

is said to be Misspecification Averse if it satisfies Axioms 1, 2, 3, 4, and 5.
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4. Representation of Misspecification Averse Preferences

In this section we present our main representation results. As a first step, we

provide a representation for the preferences 󰃒m conditional on the event that the

model m ∈ M is the best-fit one. The result is that each 󰃒m is a variational preference

(Maccheroni et al., 2006).

Proposition 1: Suppose (Ω, G, M) admits a best-fit map q and 󰃒 is a misspeci-

fication averse preference relation. Then, there exist an affine and surjective utility

function u : X → R and a convex statistical distance c : ∆ × M → [0, ∞],12 such that

for each m ∈ M, f, g ∈ F ,

f 󰃒m g ⇐⇒ Im(u(f)) ≥ Im(u(g))

where Im : B(G) → R is defined as

(5) Im(ϕ) = min
p∈∆

󰀝󰁝

Ω
ϕdp + c(p, m)

󰀞

for all ϕ ∈ B(G) it satisfies the following properties

(i) for all ϕ, ϕ′ ∈ B(G), ϕ = ϕ′ a.e. [m] =⇒ Im(ϕ) = Im(ϕ′).

(ii) for all ξ ∈ B0(M) such that 0 ≤ ξ ≤ 1 there exists ϕ ∈ B0(G) such that

0 ≤ ϕ ≤ 1 and ξ(m) = Im(ϕ) for all m ∈ M.

Moreover, u is unique up to positive affine transformations, and c is unique given

u.

We can interpret Proposition 1 in terms of a robust approach to the possibility

of misspecification. Suppose that the DM has observed sufficient information to

determine that m is the best-fit model she has available. Because of the possibility

of misspecification, in evaluating an act f conditional on this information, the DM

12See Appendix A for a rigorous definition of the notion of statistical distance.
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forms a robust evaluation of the act f

(6) V m(f) := Im(u(f)) = min
p∈∆

󰀝󰁝

Ω
u(f)dp + c(p, m)

󰀞
.

The statistical distance c(·, m) captures how distant in a statistical sense a distribu-

tion p is from the best-fit model m. In particular, since the DM is concerned that

m might not be an accurate approximation of the true DGP, she also takes into ac-

count other models p that are not too far apart from m. The index c(·, m) captures

exactly the DM’s confidence in the best-fit model m. When c(·, m) is (uniformly)

lower, the DM potentially takes into account a larger set of models around m in

evaluating an act; this reflects a lower trust in m or, conversely, a higher aversion

to misspecification. An important and tractable case is when the misspecification

index takes the form c(·, m) = λR(·||m) for all hypothesized models m ∈ M, where

λ > 0 is a parameter of misspecification aversion. In this case, the misspecification

concern is proportional to the relative divergence with respect to the best-fit model,

and it is uniform across models in M (see Lanzani (2022)), where a higher aversion

toward misspecification is captured by a lower parameter λ. We now make this intu-

ition about the statistical distance c(·, m) precise by adapting to the present context

the approach to comparative uncertainty aversion due to Ghirardato and Marinacci

(2002). Given two preferences 󰃒1 and 󰃒2, we say that 󰃒1 is more misspecification

averse than 󰃒2 if for all m ∈ M, f ∈ F and x ∈ X,

(7) fEmx 󰃒1 x =⇒ fEmx 󰃒2 x

The idea behind this notion is that also in this case, constant acts are unaffected

by the possibility that the set of hypothesized models is misspecified, since they are

non-stochastic and, therefore, their evaluation does not depend on the probabilistic

assessment of state uncertainty. Therefore, if it is true that after conditioning on
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any given model m ∈ M, a DM is not concerned enough about misspecification

to choose a constant act over an uncertain one, a fortiori, that should also be true

for a less misspecification averse DM. The following result shows that this definition

agrees with the notion that the statistical distance in the representation is an index

of misspecification aversion.

Proposition 2: Suppose (Ω, G, M) admits a best-fit map q and 󰃒1 and 󰃒2 are

two misspecification averse preference relations. Then, 󰃒1 is more misspecification

averse than 󰃒2 if and only if u2 is a positive affine transformation of u1 and, after

normalizing u1 = u2, c1(·, m) ≤ c2(·, m) for all models m ∈ M.

Note that each function Im can be seen as a non-linear expectation with respect to

the best-fit model m ∈ M. Indeed, while it fails to be linear, it satisfies many other

characteristic properties of expectations, like monotonicity, normalization and same

evaluation of functions that are almost surely equal. In particular, the map ω 󰀁→ Iq(·)

can be understood as a non-linear common conditional expectation of Im.

Given the representation of the conditional preferences given in Proposition 1, we

are able to associate to each act f ∈ F a function m 󰀁→ I(f, m) := Im(f) that

maps each hypothesized model m to the misspecification-robust evaluation of act f

conditional on m being the best-fit model. The axiom of Consistency then implies

that if I(f, m) ≥ I(g, m) for all m ∈ M, the DM is confident that f is better than

g and thus f 󰃒 g. As remarked in Cerreia-Vioglio et al. (2020), this exemplifies the

special status of the hypothesized models over distributions that are not in M. If the

misspecification-robust evaluations according to each model m rank unanimously an

act over another, this is sufficient for the DM to decide to pick the first one. However,

in general, the set of models will not provide a unanimous robust ranking of every

pair of acts.
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The first main result is that the representation of misspecification averse preferences

only depends on I(f, ·); that is, there exists a monotone, continuous, and quasi-

concave aggregator of these misspecification-robust evaluations that represents the

preferences of the DM.

Theorem 1: Suppose (Ω, G, M) admits a best-fit map q. The following are equiv-

alent:

(i) 󰃒 is a misspecification averse preference relation,

(ii) there exist a surjective utility function u : X → R, a convex statistical dis-

tance c : ∆ × M → [0, ∞], a monotone, normalized, quasiconcave, and

lower semicontinuous functional Î : B(M, DM) → R, which is continuous

on B0(M, DM) such that for all f, g ∈ F ,

(8) f 󰃒 g ⇐⇒ Î (I(u(f), ·)) ≥ Î (I((u(g), ·))

where for all m ∈ M, I(ϕ, m) = Im(ϕ) defined as

∀ϕ ∈ B(G), I(ϕ, m) = Im(ϕ) = min
p∈∆

󰀝󰁝

Ω
ϕdp + c(p, m)

󰀞
.

and satisfies properties (i)-(ii) stated in Proposition 1.

Moreover, u is unique up to positive affine transformations, and c and Î are unique

given u.

We already discussed how c(·, m) can be interpreted as an index of the DM’s un-

certainty aversion. As we now make precise, Î is an ambiguity certainty equivalent

capturing attitudes toward the uncertainty regarding the best-fit model. To this end,

say that 󰃒1 is more averse to model ambiguity than 󰃒2 if for all f ∈ F(A) and x ∈ X,

(9) f 󰃒1 x =⇒ f 󰃒2 x.
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The intuition for this definition is that acts that are measurable with respect to

the sufficient information A are exactly those acts that are only affected by the

uncertainty regarding what is the best approximation among the set of hypothesized

models but not by misspecification concerns regarding the accuracy of the models in

approximating the true DGP (notice that they need to be constant on each event Em).

Therefore, the definition above states that if 󰃒1 is more averse to model ambiguity

than 󰃒2 then, whenever model ambiguity considerations are not enough for DM1 to

prefer the certain outcome x to the act f that is affected by ambiguity about the

best-fit model, then definitely they should not be enough for the less averse DM2.

Proposition 3: Suppose (Ω, G, M) admits a best-fit map q and 󰃒1 and 󰃒2 are

two misspecification averse preference relations. Then, 󰃒1 is more model ambiguity

averse than 󰃒2 if and only if u2 is a positive affine transformation of u1 and, after

normalizing u1 = u2, Î1 ≤ Î2.

Since Î1 and Î2 are normalized, they can be interpreted as certainty equivalents of

uncertain bets on the likelihood of which model is the best-fit one. The result can

then be taken as stating that 󰃒1 is more averse to model ambiguity than 󰃒2 if DM1 is

willing to accept lower certainty equivalents than DM2 as compensation for uncertain

bets over the likelihood of the best approximation in M. In this sense, Proposition

3 allows us to interpret the aggregator Î as incorporating the DM’s attitudes toward

uncertainty about the identity of the best-fit model. This result, together with Propo-

sition 2, clarifies how representation (8) achieves a separation of attitudes regarding

the ambiguity about the identity of the best-fit model and misspecification concerns.

Indeed, aversion to model ambiguity is captured by the aggregator Î, while the sta-

tistical distance c(·, m) is an index of the degree of aversion to the possibility that

the set of hypothesized models is misspecified.
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Before proceeding to study special cases of the aggregator Î, we provide a partial

converse showing that if preferences are represented by the criterion (8) in Theorem

1, then there exists a best-fit map q̂ with respect to which the preferences satisfy the

coherence, consistency, and misspecification aversion axioms. To state the result, we

introduce the following definition. The aggregator Î is strongly monotone if for all

ξ1, ξ2 ∈ B(M) such that ξ1 > ξ2
13, then Î(ξ1) > Î(ξ2).

Proposition 4: Assume that (Ω, G) is a standard Borel space and that M is a

measurable subset of ∆(Ω). Suppose that a preference relation 󰃒̂ is represented by the

criterion (8) given in Theorem 1, with Im satisfying properties (i)-(ii) of Proposition 1

for all m ∈ M. Then, there exists a best-fit map q̂ : Ω → M such that m (q̂−1(m)) = 1

for all m ∈ M and for all m ∈ M, if we define Êm = q̂−1(m), then

f = g a.e. [m] =⇒ fÊmh ∼ gÊmh .

for all f, g, h ∈ F . If, furthermore, Î is strongly monotone, then 󰃒̂ satisfies axioms

3, 4, and 5 given the best-fit map q̂.

The abstract form of Î in the general representation of Theorem 1 is because

no behavioral assumptions regarding the independence properties of the preference

relation 󰃒 have been made other than risk independence. The next two results

characterize two specific shapes of the monotone aggregator of the misspecification-

robust evaluations. The first result provides a foundation for a Bayesian version of the

misspecification averse preferences, where the DM forms a subjective belief capturing

her uncertainty regarding the identity of the best-fit model in M.

Theorem 2: Suppose (Ω, G, M) admits a best-fit map q. The following are equiv-

alent:

13Recall that ξ1 > ξ2 if ξ1 ≥ ξ2 and ξ1(m) > ξ2(m) for some m ∈ M.
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(i) 󰃒 is a misspecification averse preference relation whose restriction to F(A)

admits an expected utility representation,14

(ii) there exist a surjective and affine utility function u : X → R, a convex sta-

tistical distance c : ∆ × M → [0, ∞], a strictly increasing, continuous, and

concave function φ : R → R and a nonatomic prior µ ∈ ∆σ(M, DM) such

that 󰃒 is represented on F by:

(10) V (f) :=
󰁝

M
φ

󰀕
min
p∈∆

󰁝

Ω
u(f)dp + c(p, m)

󰀖
dµ(m) .

Moreover, u is unique up to positive affine transformations, c is unique given u, φ

is unique up to positive affine transformations given u, and µ is unique.

As before, the DM’s concern for misspecification is captured by the fact that even

conditioning on the information revealing that m is the best-fit model, she still takes

into account other distributions that are close enough to m. In this case, the percep-

tion of uncertainty regarding the identity of the best-fit model in the absence of the

information in the sufficient sigma-algebra A and the attitudes toward this uncer-

tainty are captured, respectively, by the Bayesian prior µ over the set of hypothesized

models and the index of uncertainty aversion φ. The subjective belief µ quantifies

what models the DM considers more likely to be good approximations of the true

DGP. The concavity of φ captures the negative attitude exhibited by the DM toward

this ambiguity about the best-fit model. The Bayesian criterion (10) can be seen as

an extension of the smooth ambiguity model of Klibanoff et al. (2005) to incorporate

misspecification concerns. We can recover the smooth ambiguity model by letting

the misspecification aversion index c go to infinity (except on the diagonal, where

it is always 0). This is equivalent to taking a limit case where the DM is neutral

to misspecification. As already remarked in the introduction, this criterion becomes

14That is, 󰃒 satisfies Savage (1954)’s Axioms P2-P6 when restricted to acts measurable with respect
to A.
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the average robust control criterion axiomatized by Lanzani (2022) when the DM

is neutral toward the ambiguity regarding the identity of the best-fit model. This

would, indeed, imply that the index φ is affine. The relative entropy formulation of

the misspecification aversion index c(·, m) = λR(·||m) could be obtained by imposing

suitable versions of the multiplier preferences axioms discussed by Strzalecki (2011).

Finally, the next theorem shows that the criterion axiomatized in Cerreia-Vioglio

et al. (2020) can arise as a special case of the representation in Theorem 1 when we

assume that preferences exhibit a cautious attitude with respect to the uncertainty

about the best-fit model.

Axiom 6 (M-Caution): For all f ∈ F and x ∈ X,

∃m ∈ M, x ≻ fEmx =⇒ x 󰃒 f.

This axiom is the conceptual analogue in our framework to the caution axiom

in Gilboa et al. (2010). Indeed, the set of hypothesized models induces a typically

incomplete dominance relation 󰃒M, where for all f, g ∈ F ,

f 󰃒M g ⇐⇒ ∀m ∈ M, f 󰃒m g.

If f 󰃒M g, this means that f is better than g according to each model m ∈ M

after taking into account misspecification concerns. Because the DM trusts the set of

models, when f 󰃒M g, the DM is confident that f is better than g. Then, Axiom 6

can be rewritten as the requirement that if f ∕󰃒M x, then x 󰃒 f . The interpretation

is that if the DM is not sure that the uncertain act f is better than the constant (and

therefore unaffected by uncertainty considerations) act x, then she should behave

cautiously and prefer the certain act over the uncertain one. We also impose the

following technical axiom.
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Axiom 7 (M-Lower Semicontinuity): For all x ∈ X and f ∈ F , the set {m ∈ M :

x 󰃒 fEmx} is closed.

This axiom is a strengthening of requirement (iii) in the axiom of Coherence (it

requires closedness and not only measurability) and it is only needed to ensure that

minima are achieved in the criterion. The following result shows that M-Caution

delivers the criterion of Cerreia-Vioglio et al. (2020).

Theorem 3: Suppose (Ω, G, M) is admits a best-fit map q and M is compact.15

The following are equivalent:

(i) 󰃒 is a misspecification averse preference relation satisfying Axioms 6 and 7,

(ii) there exists a surjective utility function u : X → R, a convex statistical dis-

tance c : ∆ × M → [0, ∞] such that 󰃒 is represented on F by:

(11) V (f) = min
p∈∆

󰁝

Ω
u(f)dp + min

m∈M
c(p, m).

Moreover, u is unique up to positive affine transformations, and c is unique given u.

Notice that minm∈M c(m′, m) = 0 for all models m′ ∈ M. Therefore, CM(·) :=

minm∈M c(·, m) can be seen as a statistical distance between probability distributions

and the set of hypothesized models M capturing the degree of misspecification con-

cern of the DM, when she takes a worst-case scenario approach to the uncertainty

regarding what is the best-fit model.

5. Conclusion

This paper provides an axiomatic foundation of general preferences that are mis-

specification averse. We study a framework where the DM formulates a possibly

misspecified set of models that she considers plausible descriptions of the environ-

ment. We introduce the notion of a best-fit map that identifies the most suitable

15As for Axiom 7, closedness of M is only needed to ensure that minima are achieved.
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approximation of the true DGP based on (in principle) observable states. This allows

us to discern between the DM’s concern about the set of models being misspecified and

negative attitudes toward the uncertainty about what hypothesized models are more

likely to be the best description of the environment. The main result is that the DM’s

preferences are a monotone and quasiconcave aggregation of misspecification-robust

evaluations based on each model. As we saw in the paper, this representation achieves

a separation of attitudes toward model ambiguity, captured by the aggregator, and

misspecification concerns, captured by the misspecification-robust conditional eval-

uations. Specific shapes of the aggregator can be obtained by imposing additional

suitable behavioral axioms on the DM’s preferences. We show that two important

decision criteria recently introduced in the literature by Lanzani (2022) and Cerreia-

Vioglio et al. (2020) fall within the general class of misspecification averse preferences

we studied. In particular, we provide specific axioms to obtain the Bayesian aggre-

gator and the cautious criterion from the general case.
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Appendix

Appendix A. Mathematical Preliminaries

A.1. Basic Notions. Given an arbitrary measurable space (Y, Y), we denote by

∆(Y, Y) and ∆σ(Y, Y) respectively the space of finitely and countably additive prob-

ability measures on (Y, Y). Sometimes, we will omit making explicit reference to the

σ-algebra whenever no ambiguities can arise. Since both these spaces can be iden-

tified with subsets of the dual space of B0(Y, Y), the space of Y-measurable simple

functionals mapping Y to the real line, endowed with the supnorm || · ||∞, we endow

them with the weak* topology. We endow ∆σ(Y, Y) with the Borel σ-algebra gener-

ated by this topology; which is the same as the natural σ-algebra DY,Y generated by

the family of evaluations maps:

∀E ∈ Y , E∗ : ∆σ(Y, Y) → R, p 󰀁→ p(E) .

and any subset Q of ∆σ, with the relative σ-algebra DY,Y
M := DY,Y ∩ M. Moreover,

denote by B(Y, Y) the set of bounded Y-measurable functionals from Y to R. We

know that B(Y, Y) is the supnorm closure of B0(Y, Y).

Given a nonempty subset B̃ of B(Y, Y), a functional Ψ : B̃ → R is said to be a

niveloid if for all ϕ, ϕ′, ∈ B̃,

Ψ(ϕ) − Ψ(ϕ′) ≤ sup(ϕ − ϕ′)

A niveloid is Lipschitz continuous with respect to the supnorm. Indeed:

Ψ(ϕ) − Ψ(ϕ′) ≤ sup(ϕ − ϕ′) ≤ | sup(ϕ − ϕ′)| ≤ sup |ϕ − ϕ′| = ||ϕ − ϕ′||∞

Ψ(ϕ′) − Ψ(ϕ) ≤ sup(ϕ′ − ϕ) ≤ | sup(ϕ′ − ϕ)| ≤ sup |ϕ′ − ϕ′| = ||ϕ − ϕ′||∞
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so that |Ψ(ϕ) − Ψ(ϕ′)| ≤ ||ϕ − ϕ′||∞ for all ϕ, ϕ′ ∈ B̃. Moreover, the functional

Ψ is said to be normalized if Ψ(k) = k for all k ∈ R such that k ∈ B̃, where we

identify each real number with the constant function yielding it everywhere. Finally,

the functional Ψ is said to be monotone if whenever ϕ, ϕ′ ∈ B̃ and ϕ ≥ ϕ′, then

Ψ(ϕ) ≥ Ψ(ϕ′).16 We say that Ψ is monotone continuous if for all ϕ, ϕ′ ∈ B̃ and

k ∈ B̃, for all monotone sequences (En)n ∈ Y such that En ↓ ∅, if Ψ(ϕ) > Ψ(ϕ′),

then there exists n0 ∈ N such that Ψ(kχEn0
+ ϕχEc

n0
)ϕ > Ψ(ϕ′).

We define on B(Y, Y) the lattice operations ∨ and ∧ as follows: for all ϕ, ϕ′ ∈

B(Y, Y), (ϕ ∨ ϕ′)(ω) = max{ϕ(y), ϕ′(y)} and (ϕ ∧ ϕ′)(ω) = min{ϕ(y), ϕ′(y)} for all

y ∈ Y . We say that a nonempty subset L of ⊆ B(Y, Y) is a lattice if for all ϕ, ϕ′ ∈ L,

ϕ ∨ ϕ′, ϕ ∧ ϕ′ ∈ L. If (ϕn)N is a sequence of functions in ⊆ B(Y, Y) and ϕ ∈ B(Y, Y),

we write ϕn → ϕ to mean that (ϕn)n converges uniformly to ϕ. If we want to stress

that the uniformly convergent sequence is monotone, we write ϕn ↗ ϕ if ϕn ≤ ϕn+1

for all n ∈ N and ϕn ↘ ϕ if ϕn ≥ ϕn+1 for all n ∈ N. Finally, we write ϕn ↑ ϕ if

ϕn ≤ ϕn+1 for all n ∈ N and (ϕn)n converges pointwise to ϕ and, similarly, ϕn ↓ ϕ if

ϕn ≥ ϕn+1 for all n ∈ N and (ϕn)n converges pointwise to ϕ.

A.2. Probabilities and Statistical Distances. We now discuss some basic math-

ematical notions about probabilities and statistical distances. Fix an arbitrary mea-

surable space (Y, Y). For any p, q ∈ ∆(Y, Y), we write p ≪ q to denote that p is

absolutely continuous with respect to q. Moreover, if q ∈ ∆(Y, Y) and f and g are

Y-measurable functions mapping Y to some arbitrary set, we write f = g a.e. [q]

whenever q({y ∈ Y : f(y) = g(y)}) = 1. As it is standard in measure-theoretic

contexts, we assume throughout the convention 0 · ∞ = 0. If f is a function mapping

Y to some measurable space, we denote by σ(f) the σ-algebra generated by f .

16See Maccheroni et al. (2006) and Cerreia-Vioglio et al. (2014) for an in-depth discussion of niveloids
and their properties.



32

Given a convex subset C of ∆(Y, Y) and an extended real valued function ϕ : C →

R̄, we denote by dom ϕ the effective domain of ϕ, that is the subset of its domain on

which ϕ takes on finite values; that is, dom ϕ := {p ∈ C : |ϕ(p)| < ∞}. Moreover, we

say such function ϕ to be grounded if infp∈C ϕ(p) = 0. Fix a subset Q ⊆ ∆σ(Y, Y) of

countably additive probability measures. A function c : ∆(Y, Y) × Q → [0, ∞] is said

to be a statistical distance if it satisfies the following two properties:

(i) for each q ∈ M, p = q implies c(p, q) = 0,

(ii) c(·, q) is lower semicontinuous for all q ∈ Q.

Furthermore, a statistical distance c is convex if the section c(·, q) is a convex function

for each q ∈ Q and is said to be a divergence if for all q ∈ Q, p ∈ dom c(·, q) implies

that p ≪ q.

A.3. Structured Spaces. Say that the triple (Ω, G, M) is a structured space if

(Ω, G) is a measure space, where G is a countably generated σ-algebra and M ⊆

∆(G) := ∆(Ω, G) is a set of models admitting a best-fit map q with sufficient σ-

algebra A. Given a structured space, let D := DΩ,G and DM := DΩ,G
M respectively the

natural σ-algebra on ∆σ(G) and the relative σ-algebra on M. Throughout the section,

fix a structured space. In particular, recall that Em := q−1(m) and m(Em) = 1 for

all m ∈ M. Denote by Λ the set of all the events in G that have probability either 0

or 1 according to all models m ∈ M:

Λ := {E ∈ G : ∀m ∈ M, m(E) = 1 or m(E) = 0}.

Lemma B.1: The σ-algebra generated by q is in Λ: A = σ(q) ⊆ Λ. In particular,

m(E) ∈ {0, 1} for all E ∈ A and model m ∈ M.
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Proof of Lemma B.1: By definition of the σ-algebra D, σ(q) is generated by

the class:

C :=
󰁱
q−1 ({p ∈ ∆σ(G) : p(E) ≤ x}) : x ∈ [0, 1], E ∈ G

󰁲
.

Then, take any x ∈ [0, 1] and E ∈ G. We have that for any m ∈ M,

m
󰀓
q−1 ({p ∈ ∆σ(G) : p(E) ≤ x})

󰀔
= m ({ω ∈ Ω : qω(E) ≤ x})

= m ({ω ∈ Ω : qω(E) ≤ x} ∩ Em)

=

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

1 if m(E) ≤ x

0 if m(E) > 0
,

and, therefore, q−1 ({p ∈ ∆σ(G) : p(E) ≤ x}) ∈ Λ, showing that C ⊆ Λ.

It is clear that Ω, ∅ ∈ Λ and that if E ∈ Λ, then Ω \ E ∈ Λ. Moreover, if we take

(E)n∈N ⊆ Λ, for each m ∈ M, we have either of two cases. If m(En) = 0 for all

n ∈ N, then:

m(∪n∈NEn) ≤
󰁛

n∈N
m(En) = 0 =⇒ m(∪n∈NEn) = 0.

If, instead, there exists k ∈ N such that m(Ek) = 1, then:

m(∪n∈NEn) ≥ m(Ek) = 1 =⇒ m(∪n∈NEn) = 1.

It follows that ∪n∈NEn ∈ Λ. We can, thus, conclude that Λ is a σ-algebra containing

M and, therefore, σ(q) = σ(C) ⊆ Λ. 󰃈

Suppose that u : X → R is an affine and surjective function. If E is a sub-σ-algebra

of G, we can define the operator u : F(E) → B0(E) as follows: for each f ∈ F(E),

u(f)(ω) = u(f(ω))
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for all ω ∈ Ω.

Lemma B.2: Suppose u is affine and surjective. Then, u : F(E) → B0(E) is an

affine operator and {u(f) : f ∈ F(E)} = B0(E).

Proof: Take any f ∈ F(E). Then, there exists a finite, measurable partition of

Ω, (Ei)k
i=1 ⊆ E , and consequences (xi)k

i=1 ⊆ X such that f = 󰁓k
i=1 χEi

xi. Then, for

all Ei and for all ω ∈ Ei,

u(f)(ω) = u(f(ω)) = u(xi)

and therefore, u(f) = 󰁓k
i=1 χEi

u(xi). Therefore, u(f) ∈ B0(E) for all f ∈ F(E) so

that the operator is well-defined and {u(f) : f ∈ F(E)} ⊆ B0(E). Moreover, take

α ∈ (0, 1) and f, f ′ ∈ F(E). We have that for all ω ∈ Ω,

u(αf + (1 − α)f ′)(ω) = u((αf(ω) + (1 − α)f ′(ω))

= αu(f(ω)) + (1 − α)u(f ′(ω))

= αu(f)(ω) + (1 − α)u(f ′)(ω)

proving affinity. Finally, take any ϕ ∈ B0(E). Then, there exist a finite, measurable

partition of Ω, (Ei)k
i=1 ⊆ E , and reals (ri)k

i=1 ⊆ R such that ϕ = 󰁓k
i=1 χEi

ri. Since

Im u = R, for each ri we can pick xi ∈ X such that ri = u(xi). Setting f = 󰁓k
i=1 χEi

xi

we can see that ϕ = u(f) and ϕ ∈ F(E). This shows that B0(E) ⊆ {u(f) : f ∈

F(E)}. 󰃈

Appendix B. Proof of Proposition 1

We say that a binary relation 󰃒 over F is solvable if, for each act f ∈ F , there

exists a constant act xf ∈ X such that xf ∼ f . We call such (possibly non-unique) act

the certainty equivalent of f . Next, we show that a preference relation that satisfies

Axiom 1 is solvable.
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Lemma B.3: Suppose that 󰃒 is a preference relation on F satisfying Axiom 1.

Then, 󰃒 is solvable.

Proof of Lemma B.3: Fix any f ∈ F . Since f takes on only finitely many

values, we can pick x∗ and x∗ in X such that for all ω ∈ Ω, x∗ 󰃒 f(ω) 󰃒 x∗. By

Axiom 1.ii, this implies that x∗ 󰃒 f 󰃒 x∗. Now, {α ∈ [0, 1] : αx∗ + (1 − α)x∗ 󰃒 f}

and {α ∈ [0, 1] : f 󰃒 αx∗ + (1 − α)x∗} are closed by mixture continuity and are

non-empty, since the first one contains 1 and the second one contains 0. Moreover,

by completeness of 󰃒, their union is the whole [0, 1]. Since the closed, unit interval is

connected, such sets must have a non-empty intersection. This shows the existence

of xf ∈ X such that xf ∼ f . 󰃈

We proceed by defining the preferences conditional on a given model m ∈ M being

the best-fit model and show that they inherit some properties from the unconditional

preferences. Let us first recall the following axioms characterizing the variational

preferences axiomatized by Maccheroni et al. (2006).

Axiom B.1 (Variational):

• Weak Certainty Independence. For all f, f ′ ∈ F , x, y ∈ X, and α ∈ (0, 1),

αf + (1 − α)x 󰃒 αf ′ + (1 − α)x =⇒ αf + (1 − α)y 󰃒 αf ′ + (1 − α)y .

• Uncertainty Aversion. For all f, f ′ ∈ F and α ∈ (0, 1),

f ∼ f ′ =⇒ αf ′ + (1 − α)f 󰃒 f .

Lemma B.4: Suppose that (Ω, G, M) is a structured space and that the preference

relation 󰃒 satisfies Axioms 1, 2, 3, 4, and 5. For all m ∈ M, define 󰃒m as follows:

for all f, f ′ ∈ F ,

f 󰃒m f ′ ⇐⇒ ∃g ∈ F , fEmg 󰃒 f ′Emg.
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Then, 󰃒m is well-defined, satisfies Axiom 1, 2, and B.1 and coincides with 󰃒 when

restricted to constant acts in X.

Proof of Lemma B.4: Fix any m ∈ M and consider 󰃒m as defined in Equation

B.4. We show that this is a well-defined binary relation over F . Indeed, suppose that

for f, f ′ ∈ F , there exists some g ∈ F such that fEmg 󰃒 f ′Emg. Then, Axiom 3

implies that fEmh 󰃒 f ′Emh for all h ∈ F . Therefore, in the following, we just fix

a g ∈ F and notice that f 󰃒m f ′ ⇐⇒ fEmg 󰃒 f ′Emg. Moreover, note that for

any f, f ′, g ∈ F and α ∈ [0, 1], (αf + (1 − α)f ′)Emg = α(fEmg) + (1 − α)(f ′Emg).

Indeed, if ω ∈ Em:

((αf + (1 − α)f ′)Emg) (ω) = (αf + (1 − α)f ′)(ω)

= αf(ω) + (1 − α)f ′(ω)

= α(fEmg)(ω) + (1 − α)(f ′Emg)(ω)

= (α(fEmg) + (1 − α)(f ′Emg)) (ω)

and, if ω ∈ Ω \ Em:

((αf + (1 − α)f ′)Emg) (ω) = g(ω)

= αg(ω) + (1 − α)g(ω)

= α(fEmg)(ω) + (1 − α)(f ′Emg)(ω)

= (α(fEmg) + (1 − α)(f ′Emg)) (ω) .

Step 1: Weak Order. Take any f, f ′ ∈ F . Then, since 󰃒 is complete, it follows

that either fEmg 󰃒 f ′Emg or f ′Emg 󰃒 fEmg. That is, either f 󰃒m f ′ or f ′ 󰃒m f ,

showing that 󰃒m is complete. Moreover, suppose that there are f, f ′, f ′′ ∈ F such

that f 󰃒m f ′ and f ′ 󰃒m f ′′. Then, fEmg 󰃒 f ′Emg and f ′Emg 󰃒 f ′′Emg. Since 󰃒 is
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transitive, it follows that fEmg 󰃒 f ′′Emg and, therefore, that f 󰃒m f ′′. This shows

that 󰃒m is also transitive.

Step 2: Mixture Continuity. Take any f, f ′, f ′′ ∈ F . We show that {α ∈ [0, 1] :

αf ′ + (1 − α)f ′′ 󰃒m f} is closed. Indeed, take any α0 ∈ [0, 1] and let g = f :

α0 ∈ {α ∈ [0, 1] : αf ′ + (1 − α)f ′′ 󰃒m f}

⇐⇒ α0f
′ + (1 − α0)f ′′ 󰃒m f

⇐⇒ (α0f
′ + (1 − α0)f ′′)Emg 󰃒 fEmg

⇐⇒ α0(f ′Emf) + (1 − α0)(f ′′Emf) 󰃒 f

⇐⇒ α0 ∈ {α ∈ [0, 1] : α(f ′Emf) + (1 − α)(f ′′Emf) 󰃒 f}

so that {α ∈ [0, 1] : αf ′ + (1 − α)f ′′ 󰃒m f} = {α ∈ [0, 1] : α(f ′Emf) + (1 −

α)(f ′′Emf) 󰃒 f} and the latter is closed by Axiom 1. By an analogous argument, it

follows that also {α ∈ [0, 1] : f 󰃒m αf ′ + (1 − α)f ′′} is closed. Hence, 󰃒m satisfies

mixture continuity.

Step 3: Weak Certainty Independence. Take any f, f ′ ∈ F , x, y ∈ X and α ∈ (0, 1).

Then,

αf + (1 − α)x 󰃒m αf ′ + (1 − α)x =⇒ [αf + (1 − α)x]Emg 󰃒 [αf ′ + (1 − α)x]Emg

and letting g = αf + (1 − α)x this implies that:

αf + (1 − α)x 󰃒 [αf ′ + (1 − α)x]Em[αf + (1 − α)x]

= αf ′Emf + (1 − α)x.
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But, then, by Axiom 5,

αf + (1 − α)y 󰃒 αf ′Emf + (1 − α)y

= [αf ′ + (1 − α)y]Em[αf + (1 − α)y],

which, then, implies that αf +(1−α)y 󰃒m αf ′ +(1−α)y. If follows that 󰃒m satisfies

Weak Certainty Independence. A fortiori, it satisfies Risk Independence.

Step 4: Non-triviality. Since Em is nonnull, there must exist f, f ′, g ∈ F such

that fEmg ≻ f ′Emg. Since f and f ′ are finite-valued, we can pick x, y ∈ X so that

x 󰃒 f(ω) and f ′(ω) 󰃒 y for all ω ∈ Em. But then, monotonicity implies that

xEmg 󰃒 fEmg ≻ f ′Emg 󰃒 yEmg

and, by transitivity, xEmg ≻ yEmg so that x ≻m y. It follows that 󰃒m is non-trivial.

Step 5. 󰃒m|X =󰃒X . By Axiom 1, 󰃒 is a non-trivial weak order satisfying mixture

continuity and independence when restricted to X. By Steps 1-4, the same is true for

󰃒m. Then, by Herstein and Milnor (1953), there exist affine functions u, um : X → R

such that u represents 󰃒|X and um represents 󰃒m|X . Moreover, since both 󰃒 and 󰃒m

are non-trivial, u and um are non-constant. Now, take any x, y ∈ X such that x 󰃒 y.

Then, for all ω ∈ Ω,

ω ∈ Em =⇒ (xEmg)(ω) = x 󰃒 y = (yEmg)(ω)

ω ∈ Ω \ Em =⇒ (xEmg)(ω) = g(ω) = (yEmg)(ω)
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so that, since 󰃒 satisfies reflexivity and monotonicity by Axiom 1, xEmg 󰃒 yEmg

and, therefore, x 󰃒m y. Thus, for all x, y ∈ X:

u(x) ≥ u(y) =⇒ x 󰃒|Xy

=⇒ x 󰃒 y

=⇒ x 󰃒m y

=⇒ x 󰃒m|Xy

=⇒ um(x) ≥ um(y) .

By Corollary B.3 in Ghirardato et al. (2004), there exists a ∈ R++ abd b ∈ R such

that u = aum + b. This implies the claim.

Step 6: Monotonicity. Take f, f ′ ∈ F and assume that f(ω) 󰃒m f ′(ω) for all

ω ∈ Ω. Since by Step 4, 󰃒m|X =󰃒X , it is also the case that f(ω) 󰃒 f ′(ω) for all

ω ∈ Ω. Then, since 󰃒 satisfies Axiom 1, reflexivity and monotonicity imply that

fEmg 󰃒 f ′Emg and, therefore, f 󰃒m f ′, proving the statement.

Step 7: Unboundedness. This follows immediately by Step 5.

Step 8. Uncertainty Aversion

Take any f, f ′ ∈ F and α ∈ (0, 1) and suppose that f ∼m f ′. Then, taking g = f

in the definition of 󰃒m and since 󰃒 satisfies Axiom 5, we have

f ∼m f ′ =⇒ f ∼ f ′Emf

=⇒ αf + (1 − α)f ′Emf 󰃒 f

=⇒ [αf + (1 − α)f ′]Emf 󰃒 fEmf

=⇒ αf + (1 − α)f ′ 󰃒m f

showing that 󰃒m satisfies Uncertainty Aversion.

Step 9: Monotone Continuity.



40

Take any f, f ′ ∈ F such that f ≻m f ′, x ∈ X, and (An)n∈N ⊆ G such that

A1 ⊇ A2 ⊇ · · · and 󰁗
n∈N An = ∅. Taking g = f in the definition of 󰃒m, we have

that f ≻ f ′Emf . Moreover, for each n ∈ N, let En := An ∩ Em and observe that

En = An ∩ Em ⊇ An+1 ∩ Em = En+1 and

󰁟

n∈N
En =

󰁟

n∈N
(An ∩ Em) = (

󰁟

n∈N
An) ∩ Em = ∅ ∩ Em = ∅.

Since 󰃒 satisfies Axiom 2, we can find n0 ∈ N such that xEn0f ≻ f ′Emf . Moreover,

ω ∈ En0 = An0 ∩ Em =⇒ (xEn0f)(ω) = x = ((xAn0f)Emf)(ω),

ω ∈ Em \ An0 =⇒ (xEn0f)(ω) = f(ω) = ((xAn0f)Emf)(ω),

ω ∕∈ Em =⇒ (xEn0f)(ω) = f(ω) = ((xAn0f)Emf)(ω).

Therefore, (xAn0f)Emf = xEn0f ≻ f ′Emf which implies that xAn0f ≻m f ′ as we

wanted to show. 󰃈

We are now ready to prove Proposition 1.

Proof of Proposition 1: (i) implies (ii) Suppose that (Ω, G, M) is a structured

space and the preference relation 󰃒 satisfies Axioms 1, 2, 3, 4, and 5. Since 󰃒 is a non-

trivial, continuous weak order satisfying independence when restricted to constant

acts, we know by Herstein and Milnor (1953) that there exists an affine and non-

constant function u : X → R representing 󰃒 over X. Moreover, such u is cardinally

unique. Next, we show that Im u = R. Clearly, being u affine and X convex, Im u

must be an interval. Pick x, y ∈ X such that x 󰃒 y and a monotonically decreasing

sequence (αn)n ⊆ [0, 1] such that αn → 0. Then, by unboundedness, for each n ∈ N,

there exists zn, z′
n ∈ X such that:

αnzn + (1 − αn)y ≻ x ≻ y ≻ αnz′
n + (1 − αn)x
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Since u represents 󰃒 on X and is affine, this implies:

αnu(zn) + (1 − αn)u(y) > u(x) > u(y) > αnu(z′
n) + (1 − αn)u(x)

and, rearranging:

u(zn) >
u(x) − u(y)

αn

+ u(y) and u(z′
n) < −u(x) − u(y)

αn

+ u(x)

for all n ∈ N. Therefore, (u(zn))n and (u(z′
n))n are sequences in Im u, the first

monotonically increasing and diverging to +∞, the second monotonically decreasing

and diverging to −∞. This implies that Im u = R.

Now, fix m ∈ M. By Lemma B.4, 󰃒m|X =󰃒|X . Therefore, 󰃒m is represented

by u when restricted to constant acts in X. Define the functional Im
0 : B0(G) → R

as follows: for each ϕ ∈ B0(G), Im(ϕ) = u(xfϕ) where fϕ ∈ F is chosen such that

ϕ = u(fϕ) and xfϕ ∼m fϕ. This functional is well-defined by Lemmas B.4 and B.2.

Moreover, define V m(f) := Im
0 ◦ u : F → R. Again, by Lemma B.2, V m is a well-

defined functional over F . Moreover, it represents 󰃒m. Indeed, for any f, f ′ ∈ F :

f 󰃒m f ′ ⇐⇒ xf 󰃒m xf ′

⇐⇒ u(xf ) ≥ u(xf ′)

⇐⇒ Im
0 (u(f)) ≥ Im

0 (u(f ′))

⇐⇒ V m(f) ≥ V m(f ′) .

Lemma B.5: Im
0 is a normalized and concave niveloid.

Proof: Step 1: Monotonicity. Take ϕ, ψ ∈ B0(G) and assume that ϕ ≥ ψ. By

Lemma B.2, we can find fϕ, fψ ∈ F such that u(fϕ) = ϕ and u(fψ) = ψ. Then, for

all ω′ ∈ Ω,

u(fϕ(ω′)) = u(fϕ)(ω′) = ϕ(ω′) ≥ ψ(ω′) = u(fψ)(ω′) = u(fψ(ω′))
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and, therefore, fϕ(ω) 󰃒m fψ(ω). Then, since by Lemma B.4, 󰃒m satisfies monotonic-

ity and transitivity, fϕ 󰃒m fψ and, therefore, xfϕ 󰃒m xfψ
. We can, thus, conclude

that

Im
0 (ϕ) = u(xfϕ) ≥ u(xfψ

) = Im
0 (ψ)

which proves the claim.

Step 2: Normalization. Take k ∈ R. Since Im u = R, we can find xk ∈ X such that

u(xk) = k. Then:

Im
0 (k) = u(xk) = k

showing that Im
0 is normalized.

Step 3: Translation Invariance. Take any ϕ, ψ ∈ B0(G) and k, r ∈ R. By Lemma

B.2 and surjectivity, we can find fϕ, fψ ∈ F and xk, xr ∈ X such that u(fϕ) = ϕ,

u(fψ) = ψ, u(xk) = k, and u(xr) = r. Now, for any α ∈ (0, 1), since u is an affine

operator, we have for each ξ ∈ {ϕ, ψ}, l ∈ {k, r},

u(αfξ + (1 − α)xl) = αu(fξ) + (1 − α)u(xl) = αξ + (1 − α)l .

Moreover, by Lemma B.4 and the fact that Im
0 ◦ u represents 󰃒m:

Im
0 (αϕ + (1 − α)k) = Im

0 (αψ + (1 − α)k)

=⇒ Im
0

󰀓
u(αfϕ + (1 − α)xk)

󰀔
= Im

0

󰀓
u(αfψ + (1 − α)xk)

󰀔

=⇒ αfϕ + (1 − α)xk ∼m αfψ + (1 − α)xk

=⇒ αfϕ + (1 − α)xr ∼m αfψ + (1 − α)xr

=⇒ Im
0 (u(αfϕ + (1 − α)xr)) = Im

0 (u(αfψ + (1 − α)xr))

=⇒ Im
0 (αϕ + (1 − α)r) = Im

0 (αψ + (1 − α)r) .
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Then, for any ϕ′, ψ′ ∈ B0(G) and k′, r′ ∈ R, by letting ϕ = ϕ′/α, ψ = ψ′/α, k =

k′/(1 − α), and r = r′/(1 − α) in the previous implication:

Im
0 (ϕ′ + k′) = Im

0 (ψ′ + k′) =⇒ Im
0 (ϕ′ + r′) = Im

0 (ψ′ + r′) .

Then, take any ξ ∈ B0(G) and l ∈ R. By Step 2, Im
0 is normalized and, therefore,

Im
0 (ξ) = Im

0 (Im
0 (ξ)). By what is shown above, this implies:

Im
0 (ξ + l) = Im

0 (Im
0 (ξ) + l) = Im

0 (ξ) + l

proving the claim.

Step 4: Quasi-concavity. Take any ϕ, ψ ∈ B0(G) such that Im
0 (ϕ) = Im

0 (ψ) and

α ∈ (0, 1). By Lemma B.2, we can find fϕ, fψ ∈ F such that ϕ = u(fϕ) and ψ = u(fψ).

Then:

V m(fϕ) = Im
0 (u(fϕ)) = Im

0 (ϕ) = Im
0 (ψ) = Im

0 (u(fψ)) = V m(fψ)

so that fϕ ∼m fψ. Since 󰃒m satisfies Axiom B.1, uncertainty aversion implies that

αfϕ + (1 − α)fψ 󰃒m fψ

and, therefore:

Im
0 (αϕ + (1 − α)ψ) = Im

0 (αu(fϕ) + (1 − α)u(fψ))

= Im
0 (u(αfϕ + (1 − α)fψ))

= V m(αfϕ + (1 − α)fψ)

≥ V m(fψ)

= Im
0 (u(fψ)) = Im

0 (ψ)

proving the claim.
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By Steps 1-4 and Theorem 4 in Cerreia-Vioglio et al. (2014), it follows that Im
0 is

a normalized and concave niveloid. □

Denote by Im : B(G) → R the unique normalized and concave niveloid extending

Im
0 (see Lemma 25 in Maccheroni et al. (2006)). It is clear that V m = Im ◦ u on

F . Then, by Lemma 26 in Maccheroni et al. (2006), there exists a grounded, lower

semicontinuous and convex function cm : ∆ → [0, 1] such that:

(12)
Im(ϕ) = min

p′∈∆(G)

󰀝󰁝

Ω
ϕdp′ + cm(p′)

󰀞

cm(p) = sup
ϕ′∈B(G)

󰀝
Im(ϕ′) −

󰁝

Ω
ϕ′dp

󰀞

for all ϕ ∈ B(G) and p ∈ ∆(G). Then, define c(·, m) := cm(·) for all m ∈ M. We

have that for each m ∈ M and for each f, f ′ ∈ F ,

f 󰃒m f ′ ⇐⇒ V m(f) ≥ V m(f ′)

⇐⇒ Im(u(f)) ≥ Im(u(f ′))

⇐⇒ min
p∈∆(G)

󰀝󰁝

Ω
u(f)dp + c(p, m)

󰀞
≥ min

p∈∆(G)

󰀝󰁝

Ω
u(f ′)dp + c(p, m)

󰀞
,

proving the representation in (5). We only need to check that c(·, m) is finite only on

probabilities that are absolutely continuous with respect to m. This is the content of

the next lemma.

Lemma B.6: For all m ∈ M, if p ∈ dom c(·, m), then p ≪ m and c(p, m) = 0 if

and only if p = m. In particular, c is a convex divergence.

Proof of Lemma B.6: Fix any m ∈ M.

We first show that if p ∈ dom c(·, m), then p is absolutely continuous with respect to

m. Suppose there exists a model m ∈ M and a p̂ ∈ dom c(·, m) that is not absolutely

continuous with respect to m. We show that 󰃒 would violate Coherence. Indeed,

we can find a measurable set E ∈ G such that m(E) = 0 but p̂(E) > 0. Consider
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the sequence of acts (fn)n∈N ⊆ F such that for each n ∈ N, fn = xnEx0 where,

since u is surjective, we can pick x0 ∈ u−1(0) and xn ∈ u−1 (−n). Since m(E) = 0,

fn = x0 a.e.[m] for any n ∈ N. Since p̂ ∈ dom c(·, m), c(p̂, m) < ∞, so that there

exists N ∈ N large enough such that c(p̂, m) < N · p̂(E). Therefore,

V m(fN) = Im(u(fN)) = min
p∈∆

󰀝󰁝

Ω
u(fN)dp + c(p, m)

󰀞

= min
p∈∆

󰀝󰁝

E
−N dp + c(p, m)

󰀞

= min
p∈∆

{−N p(E) + c(p, m)}

≤ −N p̂(E) + c(p̂, m)

< 0 = u(x0)

showing that x0 ≻m fN and, therefore, x0E
mx0 ∕∼ fNEmx0. But since x0 = fN with

probability 1 according to m, this violates Coherence.

We now show that c(p, m) = 0 if and only if p = m. Let P0 := {p0 ∈ ∆(Ω) :

c(p0, m) = 0}. First of all, P0 is non-empty because c(·, m) is grounded. Moreover,

P0 ⊆ {p0 ∈ ∆(Ω) : p0 ≪ m} by what just shown above. Take p0 ≪ m such that

p0 ∕= m. Then, by Coherence there must exist f ∈ F such that fEmx 󰃒 x, but

x ≻
󰁕

Ω fdp0. But, then,

󰁝

Ω
u(f)dp0+c(p0, m) ≥ min

p∈∆(Ω)

󰀝󰁝

Ω
u(f) + c(p, m)

󰀞
≥ u(x) > u

󰀕󰁝

Ω
u(f)dp0

󰀖
=

󰁝

Ω
u(f)dp0

which implies that c(p0, m) > 0. Since this holds for all p0 ≪ m sich that p0 ∕= m, it

must be the case that ∅ ∕= P0 ⊆ {m}. That is, c(p, m) = 0 if and only if p = m.

□
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As an almost immediate consequence of Lemma B.6, we show that for any m ∈ M,

if ϕ, ψ ∈ B(G) and ϕ = ψ a.e. [m], then Im(ϕ) = Im(ψ). Indeed:

m({ω : ϕ(ω) ∕= ψ(ω)}) = 0 =⇒ ∀p ≪ m, p({ω : ϕ(ω) ∕= ψ(ω)}) = 0

and, therefore,

Im(ϕ) = min
p≪m

󰀝󰁝

Ω
ϕ dp + c(p, m)

󰀞
= min

p≪m

󰀝󰁝

Ω
ψ dp + c(p, m)

󰀞
= Im(ψ).

Finally, as far as uniqueness, that u is cardinally unique follows from Herstein and

Milnor (1953). Moreover, the uniqueness of c given u is guaranteed by the fact that

󰃒m is an unbounded variational preference and Proposition 6 in Maccheroni et al.

(2006). 󰃈

Next, we show the characterization of the comparative notion of misspecification

aversion.

Proof of Proposition 2: Suppose that 󰃒1 and 󰃒2 are two misspecification

averse preferences. Let (u1, c1) and (u2, c2) represent respectively (󰃒m
2 )m∈M and (󰃒m

2

)m∈M as in Proposition 1 and define Im
1 and Im

2 accordingly for all m ∈ M. Suppose

that u2 is a positive affine transformation of u1 and c1 ≤ c2. Without loss of generality,

assume that u1 = u2 = u. Fix any m ∈ M and take any f ∈ F and x ∈ X such that

fEmx 󰃒m
1 x. Then, f 󰃒m

1 x and, therefore, Im
1 (u(f)) ≥ u(x). Then:

Im
2 (u(f)) = min

p∈∆

󰀝󰁝

Ω
u(f)dp + c2(p, m)

󰀞

≥ min
p∈∆

󰀝󰁝

Ω
u(f)dp + c1(p, m)

󰀞

= u(x)

so that f 󰃒m
2 x, and, therefore, fEmx 󰃒2 x.
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As for the other direction, note that Equation 7 and nontriviality imply that u2 is

a positive affine transformation of u1. Without loss of generality, set u1 = u2 = u.

Fix any m ∈ M and take ϕ ∈ B0(G). Let f ∈ F be such that u(f) = ϕ and x ∈ X

such that f ∼m
1 x. Then, condition 7 implies that f 󰃒m

2 x, so that

Im
1 (ϕ) = Im

1 (u(f)) = u(x) ≤ Im
2 (u(f)) = Im

2 (ϕ).

Therefore, Im
1 (ϕ) ≤ Im

2 (ϕ) for all ϕ ∈ B0(G). Since the latter is dense in the space

B(G), we conclude that I1 ≤ I2. Then, using Equation (12):

c1(p, m) = sup
ϕ′∈B(G)

󰀝
Im

1 (ϕ′) −
󰁝

Ω
ϕ′dp

󰀞

≤ sup
ϕ′∈B(G)

󰀝
Im

2 (ϕ′) −
󰁝

Ω
ϕ′dp

󰀞
= c2(p, m)

for all p ∈ ∆. 󰃈

We conclude this section by proving the existence of a generalized conditional

expectation. The next corollary shows that we are able to find a non-linear conditional

expectation given A that is common to all hypothesized models m ∈ M.

Corollary 1: Suppose (Ω, G, M) admits a best-fit map and (Im)m∈M are defined

as in (5). Then, there exists a non-linear common conditional expectation of (Im)m∈M

given A. This is a map IA : B(G) → RΩ such that for all ϕ ∈ B(G), IA(ϕ) is in

B(A), IA(ϕ)(ω) = Iq(ω)(ϕ) for all ω ∈ Ω and for all A ∈ A and m ∈ M,

Im (IA(ϕ)χA) = Im(ϕχA).

Proof of Corollary 1: First, we show that for any given ϕ ∈ B(G), Im(ϕ) is

measurable as a function of m.

Lemma B.7: The map m 󰀁→ Im(ϕ) is a DM-measurable and bounded functional for

all ϕ ∈ B(Ω, G).
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Proof of Lemma B.7: Fix ϕ ∈ B(Ω, G) arbitrarily. We first show that m 󰀁→

Im(ϕ) is bounded. Indeed, since ϕ is bounded, there exist k, K ∈ R such that

k ≤ ϕ ≤ K. By Lemma B.5, for each m ∈ M, Im is normalized and monotone and,

therefore,

k = Im(k) ≤ Im(ϕ) ≤ Im(K) = K

proving boundedness. We now show that m 󰀁→ Im(ϕ) is also measurable. Take any

real number r ∈ R. We want to show that {m ∈ M : Im(ϕ) > r} is a measurable set

in DM. Since u is surjective, take xr such that u(xr) = r. Moreover, by Lemma B.2,

we can pick fϕ such that u(fϕ) = ϕ. Then, we have:

{m ∈ M : Im(ϕ) > r} = {m ∈ M : Im(u(fϕ)) > u(xr)}

= {m ∈ M : fϕEmxr 󰃒 xr}

and the latter is measurable since 󰃒 satisfies Coherence. This proves that m 󰀁→ Im(ϕ)

is bounded and measurable for any ϕ ∈ B(Ω, G). 󰃈

Denote by q0 the restriction of q to Ω0. Clearly, q0 is AΩ0/DM, where AΩ0 is the

relative σ-algebra A ∩ Ω0. Fix any ϕ ∈ B(Ω, G). Since m 󰀁→ Im(ϕ) is bounded and

DM-measurable by Lemma B.7, it follows that the composition

Iq(·)(ϕ) : (Ω0, AΩ0) → (M, DM) → (R, B(R))

ω 󰀁→ q(ω) 󰀁→ Iq(ω)(ϕ)

is a AΩ0-measurable and bounded functional. Obtain IA(ϕ) by extending Iq(·)(ϕ) to

the whole Ω in the following way: IA(ϕ)(ω) = Iq(ω)ϕ if ω ∈ Ω0 and IA(ϕ)(ω) = 0 if

ω ∈ Ω \ Ω0. It is easy to see that IA(ϕ) ∈ B(A). Moreover, take any A ∈ A and

fix m ∈ M arbitrarily. We know that m(Em) = 1, so that m(Ω \ Em) = 0, where

we recall that Em = {ω ∈ Ω : q(ω) = m}. By Lemma B.6, we also have that if

p ∈ dom c(·, m), it must be the case that p is absolutely continuous with respect to
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m. Then, p(Ω \ Em) = 0 and p(Em) = 1 for all p ∈ dom c(·, m). Moreover, since

A ∈ Λ by Lemma B.1, we have that either m(A) = 1 or m(A) = 0. In any case, this

implies that for any p ∈ dom c(·, m),

p(A ∩ Em) = p(A)p(Em) = p(A) = m(A).

Then:

Im(IA(ϕ)χA) = min
p∈∆

󰀝󰁝

Ω
IA(ϕ)(ω)χA(ω) dp(ω) + c(p, m)

󰀞

= min
p∈dom c(·,m)

󰀝󰁝

A∩Em
Iq(ω)(ϕ) dp(ω) + c(p, m)

󰀞

= min
p∈dom c(·,m)

󰀝󰁝

A∩Em
Im(ϕ) dp(ω) + c(p, m)

󰀞

= min
p∈dom c(·,m)

{Iq(ϕ) q(A) + c(p, m)}

= Im(ϕ) m(A)

= Im(ϕχA).

The last equality follows from the fact that m(A) ∈ {0, 1}. Indeed, if m(A) = 0,

Im(ϕχA) = min
p∈dom c(·,m)

󰀝󰁝

A
ϕdp + c(p, m)

󰀞
= 0 = Im(ϕ)m(A)

and if m(A) = 1,

Im(ϕχA) = min
p∈dom c(·,m)

󰀝󰁝

A
ϕdp + c(p, m)

󰀞

= min
p∈dom c(·,m)

󰀝󰁝

Ω
ϕdp + c(p, m)

󰀞
= Im(ϕ)m(A) .

󰃈
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Appendix C. Structured Functionals

Throughout the section, assume that (Ω, G) is a measurable space M is a set of

models admitting a best fit map q with sufficient σ-algebra A, that Im is given as in

the representation of Proposition 1 for all models m ∈ M, and that IA is the common

generalized conditional expectation of M given A, which exists by Corollary 1. Notice

that for each ϕ ∈ B(G), we can see Im(ϕ) as a function from models to R:

I(ϕ, ·) : M → R, m 󰀁→ I(ϕ, m) := Im(ϕ).

Define the operator T : B(Ω, G) → RM such that for all ϕ ∈ B(Ω, G),

T (ϕ)(m) = I(ϕ, m)

for all m ∈ M. By Lemma B.7, we have that Im T ⊆ B(M, DM).

Lemma B.8: T : B(Ω, G) → B(M, DM) is Lipschitz continuous of order 1 with

respect to supnorm convergence and is additive and homogeneous on B(A).

Proof of Lemma B.8: We prove the result in three steps.

Step 1: T is Lipschitz continuous. Take a ϕ ∈ B(G) and take any sequence (ϕn) ⊆

B(G) such that ||ϕ − ϕn||∞ → 0. For each m ∈ M, since Im is a niveloid and,

therefore, Lipschitz continuous of order 1, we have that:

|T (ϕ)(m) − T (ϕn)(m)| = |Im(ϕ) − Im(ϕn)| ≤ ||ϕ − ϕn||∞

and, therefore,

||T (ϕ) − T (ϕn)||∞ = sup
m∈M

|T (ϕ)(m) − T (ϕn)(m)| ≤ ||ϕ − ϕn||∞ → 0.

Step 2: T is additive on B(A). Take ϕ, ψ ∈ B(A). Since B0(A) is dense in B(A),

we can find sequences (ϕn)n∈N, (ψn)n∈N ⊆ B0(A) such that ϕn → ϕ and ψn → ψ in
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the supnorm. Fix any n ∈ N. Then, there exists a partition (En
i )kn

i=1 ⊆ A such that

ϕn = 󰁓kn
i=1 rn

i χEn
i

and ψn = 󰁓kn
i=1 r̃n

i χEn
i

for reals (rn
i )kn

i=1, (r̃n
i )kn

i=1 ⊆ R. By Lemma B.1,

for each m ∈ M, there exists a unique jn(m) ∈ {1, . . . , kn} such that m(En
jn(m)) = 1

and m(En
i ) = 0 for all i ∕= jn(m). Therefore, for all m ∈ M, ϕn = rn

jn(m) and

ψn = r̃n
j(m) a.e.[m] and, similarly ϕn + ψn = rn

jn(m) + r̃n
jn(m), so that

T (φn + ψn)(m) = Im(ϕn + ψn) = Im(rn
jn(m) + r̃n

jn(m))

= rn
jn(m) + r̃n

jn(m)

= Im(rn
jn(m)) + Im(r̃n

jn(m)) = Im(ϕn) + Im(ψn) = T (ϕn)(m) + T (ψn)(m).

We conclude that T (ϕn + ψn) = T (ϕn) + T (ψn) for all n ∈ N. Since T is continuous

with respect to supnorm convergence, taking limits we conclude that T (ϕ + ψ) =

T (ϕ) + T (ψ).

Step 3: T is homogeneous on B(A). Take ϕ ∈ B(A) and κ ∈ R. As before, we

can find a sequence (ϕn)n∈N ⊆ B0(A) such that ϕn → ϕ in the supnorm. Notice also

that ||κϕn − κϕ||∞ = |κ|||ϕn − ϕ||∞ → 0. Fix any n and pick a partition (En
i )kn

i=1 ⊆ A

such that ϕn = 󰁓kn
i=1 rn

i χEn
i

for reals (rn
i )kn

i=1 ⊆ R. For each m ∈ M, Lemma B.1

implies that there exists a unique jn(m) ∈ {1, . . . , kn} such that m(En
jn(m)) = 1 and

m(En
i ) = 0 for all i ∕= jn(m). Therefore, for all m ∈ M, ϕn = rn

jn(m) a.e. [m] and,

similarly κϕn = κrn
jn(m) a.e. [m], so that

T (κϕn)(m) = Im(κϕn) = Im(κrn
jn(m)) = κrn

jn(m) = κIm(rn
jn(m)) = κIm(ϕn) = κT (ϕn)(m)

Therefore, T (κϕn) = κT (ϕn) for all n ∈ N and taking limits and by continuity of T

we conclude that T (κϕ) = κT (ϕ). 󰃈

Lemma B.9: Let T (B(A)) and T (B0(A)) be the images through T of B(A) and

B0(A) respectively. Then, T (B(A)) = Im T and T (B0(A)) is supnorm dense in Im T .
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Moreover, T preserves lattice operations when restricted to B(A). In particular, Im T

is a lattice.

Proof of Lemma B.9: It is clear that

T (B(A)) = {I(ϕ, ·) : ϕ ∈ B(Ω, A)}

⊆ {I(ϕ, ·) : ϕ ∈ B(Ω, G)} = Im T

since A is a a sub-σ-algebra of G. As for the reverse inclusions, take any ξ ∈ Im T

and let ϕξ ∈ B(G) be such that ξ = T (ϕξ). Then, by Corollary 1, IA(ϕξ) ∈ B(A)

and for all m ∈ M,

T (IA(ϕξ))(m) = Im (IA(ϕξ)) = Im(ϕξ) = T (ϕξ)(m) = ξ(m),

so that ξ ∈ T (B(A)), showing that Im T ⊆ T (B(A)). Next, we show that T (B0(A))

is supnorm dense in Im T . Take ξ ∈ Im T and a corresponding ϕξ ∈ B(A) such that

ξ = T (ϕξ) (which exists given what shown above). Since B0(A) is supnorm dense in

B(A), we can find a sequence (ϕn)n ⊆ B0(A) such that ||ϕn − ϕξ||∞ → 0. Define

ξn = T (ϕn) for each n ∈ N and note that (ξn)n ⊆ T (B0(A)). We show that ξn

converges to ξ in the supnorm. Indeed, by Lemma B.8, T is Lipschitz of order 1 and,

therefore

||ξ − ξn||∞ = ||T (ϕ) − T (ϕn)||∞ ≤ ||ϕ − ϕn||∞ → 0.

Finally, we show that T preserves lattice operations on B(A). Indeed, pick ϕ, ϕ̃ ∈

B(A) arbitrarily. Since B0(A) is supnorm dense in B(A), we can take sequences

(ϕ)n, (ϕ̃n)n ⊆ B0(A) such that ||ϕ − ϕn||∞, ||ϕ̃ − ϕ̃n||∞ → 0. For each n ∈ N, we can

find a finite partition (Ei
n)k

i=1 and reals (ri
n)k

i=1, (r̃i
n)k

i=1 such that:

ϕn =
k󰁛

i=1
χEi

n
ri

n, ϕ̃n =
k󰁛

i=1
χEi

n
r̃i

n.
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Fix any m ∈ M. By Lemma B.1, for each n ∈ N, there is a unique El
n in the

partition such that m(El
n) = 1. Therefore, ϕn = rl

n and ϕ̃n = r̃l
n a.e. [m], so that by

Proposition 1 and normalization, Im(ϕn) = Im(rl
n) = rl

n and Im(ϕ̃n) = Im(r̃l
n) = r̃l

n

for all n ∈ N. Clearly, it is also the case that ϕn ∨ ϕ̃n = rl
n ∨ r̃l

n a.e. [m] so that

Im(ϕn ∨ ϕ̃n) = Im(rl
n ∨ r̃l

n) = rl
n ∨ r̃l

n for all n ∈ N. Therefore:

Im(ϕn ∨ ϕ̃n) = rl
n ∨ r̃l

n = Im(ϕn) ∨ Im(ϕ̃n)

for all n ∈ N. Since lattice operations are continuous and Im is Lipschitz, taking

limits, it follows that

T (ϕ ∨ ϕ̃)(m) = Im(ϕ ∨ ϕ̃) = Im(ϕ) ∨ Im(ϕ̃) = T (ϕ)(m) ∨ T (ϕ̃)(m).

Since m was chosen arbitrarily, we can conclude that T (ϕ ∨ ϕ̃) = T (ϕ) ∨ T (ϕ̃). That

Im T is a lattice follows from the fact that Im T = T (B(A)) and T |B(A) preserves

lattice operations. 󰃈

Recall that B0(DM) := B0(M, DM) and B(DM) := B(M, DM) are, respectively,

the spaces of simple and bounded functions on the set of models M measurable

with respect to DM. The following result shows that these spaces can be covered

by applying the operator T respectively to B0(A) and B(A). Further, characteristic

functions of sets in DM can be recovered by applying the operator T to characteristic

functions of sets in A.

Lemma B.10: Im T = B(M, DM). Moreover, T (B0(A)) = B0(M, DM) and T ({χE :

E ∈ A}) = {χD : D ∈ DM}. Moreover, for each ξ ∈ B0(M, DM) such that

0 ≤ ξ ≤ 1, there is ϕ ∈ B(A) with 0 ≤ ϕ ≤ 1 such that ξ = T (ϕ).

Proof of Lemma B.10: We prove the results via a series of steps.

Step (i). For all E ∈ A, there exists DE ∈ DM such that T (χE) = χDE
.
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Proof: Take any E ∈ A. By Lemma B.1, E ∈ Λ and, thererfore, for all m ∈ M,

either m(E) = 1 or m(E) = 0. But then for all m ∈ M:

m(E) = 1 =⇒ χE = 1 a.e. [m] =⇒ T (χE)(m) = Im(χE) = Im(1) = 1,

m(E) = 0 =⇒ χE = 0 a.e. [m] =⇒ T (χE)(m) = Im(χE) = Im(0) = 0.

Therefore, Im T (χE) ∈ {0, 1}. Moreover, by Lemma B.7, DE := [T (χE)]−1({1}) ∈

DM and T (χE) = χDE
as we wanted to show. □

Step (ii). For all D ∈ DM, there exists ED ∈ A such that T (χED) = χD.

Proof: Take any D ∈ DM and let ED = q−1(D). Since the space is structured,

ED ∈ A and m(ED) = 1 if m ∈ D and m(ED) = 0 if m ∈ M \ D. But then for all

m ∈ M:

m ∈ D =⇒ χED = 1 a.e. [m] =⇒ T (χED)(m) = Im(χED) = Im(1) = 1,

m(E) ∈ M \ D =⇒ χED = 0 a.e. [m] =⇒ T (χED)(m) = Im(χED) = Im(0) = 0,

and we can, thus, conclude that T (χED) = χD. □

Steps (i) and (ii) together imply that T ({χE : E ∈ A}) = {χD : D ∈ DM}.

Step (iii). T (B0(A)) ⊆ B0(M, DM).

Proof: Take ξ ∈ T (B0(A)). By definition, there exists ϕξ ∈ B0(A) such that

ξ = T (ϕξ). Then, there exists a partition (Ei)k
i=1 ⊆ A and reals (ri)k

i=1 such that

ϕξ = 󰁓k
i=1 χEi

ri. By Step (i), we have that for each i = 1, . . . , k, we can find

DEi
∈ DM such that T (χEi

) = χDEi
. Moreover, since for all i = 1, . . . , k, Ei ∈ A ⊆ Λ

by Lemma B.1, either m(Ei) = 1 or m(Ei) = 0 for each m ∈ M . It follows that

for each m, there is a unique element in the partition Ejm such that m(Ejm) = 1 and
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m(Ei) = 0 if i ∕= jm. Then, for each m ∈ M,

ϕξ = rjm a.e. [m] =⇒ T (ϕξ)(m) = Im(ϕξ) = Im(rjm) = rjm

and, since χEjm
= 1 a.e. [m] and χEi

= 0 a.e. [m] for i ∕= jm,

χDEjm
(m) = T (χEjm

)(m) = Im(χEjm
) = Im(1) = 1 =⇒ m ∈ DEjm

∀i ∕= jm, χDEi
(m) = T (χEi

)(m) = Im(χEi
) = Im(0) = 0 =⇒ m ∕∈ DEi

.

It follows that ϕξ = 󰁓k
i=1 χDEi

ri ∈ B0(M, DM). □

Step (iv). B0(M, DM) ⊆ T (B0(A)), In particular, for all D ∈ DM, there exists

ED ∈ A such that χD = T (χED).

Proof: Take any ξ ∈ B0(M, DM). By definition, there exists a partition (Di)k
i=1 ⊆

DM of M and reals (ri)k
i=1 such that ξ = 󰁓k

i=1 χDi
ri. By Step (ii), for each i =

1, . . . , k, we can find EDi ∈ A such that χDi
= T (χEDi ). Define ϕξ := 󰁓k

i=1 χEDi ri.

Clearly, ϕξ ∈ B0(A). Moreover, for each m ∈ M, let Djm be the unique element of

the partition such that m ∈ Djm . We know by Lemma B.1 that since EDjm ∈ A,

m(EDjm ) ∈ {0, 1}. If m(EDjm ) = 0, then χEDjm = 0 a.e. [m] and, therefore,

T (EDjm )(m) = Im(EDjm ) = Im(0) = 0 ∕= χDjm
(m) = 1, a contradiction. We con-

clude that m(EDjm ) = 1 so that ϕξ = rjm a.e. [m]. Therefore,

T (ϕξ)(m) = Im(ϕξ) = Im(rjm) = rjm = rjmχDjm
(m) = ξ(m).

for all m ∈ M. It follows that T (ϕξ) = ξ, showing that B0(M, DM) ⊆ T (B0(A)). □

Step (iii) and (iv) imply that B0(M, DM) = T (B0(A)). Then, we have the follow-

ing chain of inclusions:

B0(M, DM) ⊆ T (B0(A)) ⊆ B(M, DM).
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Moreover, B0(M, DM) is supnorm dense in B(M, DM) and by Lemma B.9, T (B0(A))

is supnorm dense in Im T . Taking the supnorm closure of the previous chain of

inclusions, we obtain that:

B(M, DM) = cl B0(M, DM) ⊆ cl T (B0(A)) = Im T ⊆ cl B(M, DM) = B(M, DM)

and, therefore, we can conclude that Im T = B(M, DM).

The last part of the result follows by steps iii and iv and by Lemma B.8. 󰃈

Lemma B.11:

(i) If ξ, ξ′ ∈ B0(M, DM) are such that ξ ≥ ξ′, then there exist ϕξ, ϕξ′ ∈ B0(A)

such that ϕξ ≥ ϕξ′ and ξ = T (ϕξ), ξ′ = T (ϕξ′).

(ii) If (ξn)n ⊆ T (B0(A)) is an increasing (decreasing) sequence uniformly bounded

above (below) by a constant K, there exists an increasing (decreasing) sequence

(ϕn)n ⊆ B0(A) such that ξn = T (ϕn) and ϕn ≤ K (ϕn ≥ K) for all n ∈ N.

(iii) If ξ ∈ Im T and (ξn)n ⊆ T (B0(A)) such that ξn ↑ ξ (ξn ↓ ξ), then we can

find an increasing (decreasing) sequence (ϕn)n ⊆ B0(A) and ϕ ∈ B(A) such

that ϕn ↑ ϕ (ϕn ↓ ϕ), ξ = T (ϕ), and ξn = T (ϕn) for all n ∈ N. Moreover, if

K ∈ R and ξ ≤ K (ξ ≥ K), then ϕ ≤ K (ϕ ≥ K).

(iv) If ξ, ξ′ ∈ Im T are such that ξ ≥ ξ′, then there exist ϕξ, ϕξ′ ∈ B(A) such that

ϕξ ≥ ϕξ′ and ξ = T (ϕξ), ξ′ = T (ϕξ′).

Proof of Lemma B.11: We prove the lemma in a number of steps.

Proof of (i): Take ξ, ξ′ ∈ T (B0(A)) such that ξ ≥ ξ′. By definition, we can

pick ϕξ, ϕξ′ ∈ B0(A) such that ξ = T (ϕξ) and ξ′ = T (ϕξ′). Moreover, we can find a

partition (Ei)n
i=1 ⊆ A of Ω and reals (ri)n

i=1, (r′
i)n

i=1 such that

ϕξ =
n󰁛

i=1
χEi

ri, ϕξ′ =
n󰁛

i=1
χEi

r′
i.
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Take an element Ek in the partition. If m(Ek) = 0 for all m ∈ M, we can assume

wlog that rk = r′
k. Indeed, for all m ∈ M, ϕξ′ = 󰁓

i ∕=k χEi
r′

i + χEk
rk a.e. [m] and by

Proposition 1, this implies

ξ′ = T (ϕξ′)(m) = Im(ϕξ′) = Im(
󰁛

i ∕=k

χEi
r′

i + χEk
rk) = T (

󰁛

i ∕=k

χEi
r′

i + χEk
rk)(m).

If there exists m ∈ M such that m(Ek) ∕= 0, then m(Ek) = 1 since Ek ∈ A ⊆ Λ by

Lemma B.1. Therefore, ϕξ = rk and ϕξ′ = r′
k a.e. [m] and, therefore:

rk = Im(rk) = Im(ϕξ) = T (ϕξ)(m) = ξ(m),

r′
k = Im(r′

k) = Im(ϕξ′) = T (ϕξ′)(m) = ξ′(m),

and, we conclude that rk = ξ(m) ≥ ξ′(m) = r′
k. We have thus shown that ri ≥ r′

i

for all i = 1, . . . , n. Hence, it follows that ϕξ ≥ ϕξ′ . It is then immediate to see that

since each Im is normalized, if ξ ≤ K for some K in R, we can find ϕξ ∈ B0(A) such

that ϕξ ≤ K and ξ = T (ϕξ). □

Proof of (ii): Take a sequence (ξn)n ⊆ T (B0(A)) and K ∈ R such that ξn ≤

ξn+1 ≤ K for all n ∈ N. By Step (i), we can find a sequence ϕξn ∈ B0(A) such that

ξn = T (ϕξn) and ϕξn ≤ K for all n ∈ N. However, this sequence is not necessarily

increasing. Then, define for each n ∈ N, ϕn(ω) = supk≤n ϕξk
(ω) for all ω. Notice

that ϕn : Ω → R is well-defined and in B0(A). Moreover, the sequence (ϕn)n so

constructed is increasing and uniformly bounded above by K. Moreover, since T

preserves lattice operations by Lemma B.9, we have that for each n ∈ N,

T (ϕn) = T

󰀣

sup
k≤n

ϕξk

󰀤

= sup
k≤n

T (ϕξk
) = sup

k≤n
ξk = ξn,

where the last equality follows from the fact that (ξn)n is a monotonically increasing

sequence. □
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Proof of (iii): Take a sequence (ξn)n ⊆ T (B0(A)) and ξ ∈ Im T such that ξn ↑ ξ.

Since ξ is bounded, K0 = supm∈Ω ξ is finite. Moreover, we have that ξn ≤ ξ ≤ K0

for all n ∈ N. By by point (ii), we can find an increasing sequence (ϕn)n ⊆ B0(A)

such that ξn = T (ϕn) and ϕn ≤ K0 for all n ∈ N. Since for each ω ∈ Ω, (ϕn(ω))n is a

monotonically increasing sequence of numbers bounded above by K0, it converges to

some limn ϕn(ω) ≤ K0. Therefore, the pointwise limit ϕ := limn ϕn is well-defined, it

is in B(A), and it is uniformly bounded above by K0. Moreover, we have that for all

n ∈ N,

k = min
ω∈Ω

ϕ1(ω) ≤ ϕ1 ≤ ϕn ≤ K0 =⇒ ||ϕn||∞ ≤ max{|k|, |K0|}.

Therefore, (ϕn)n is uniformly bounded in the norm. Moreover, for each m ∈ M,

Thereom 13 in Maccheroni et al. (2006) and Proposition 5 in Cerreia-Vioglio et al.

(2014), imply that Im has the Lebesgue property. Therefore:

T (ϕ)(m) = Im(ϕ) = Im(lim
n

ϕn) = lim
n

Im(ϕn) = lim
n

ξn(m) = ξ(m).

It is immediate to see that for all k ∈ R such that ξ ≤ K, K ≥ K0 and, therefore,

ϕ ≤ K. □

Proof of (iv): Take ξ1, ξ2 ∈ B(M, DM) such that ξ1 ≥ ξ2. Define ξ̃ = ξ1 − ξ2

and notice that ξ̃ ≥ 0. By point ( iii), we can find ϕ̃ ∈ B(A) such that ϕ̃ ≥ 0 and

ξ̃ = T (ϕ̃). Moreover, we can take φ2 ∈ B(A) such that ξ2 = T (ϕ2). Then, define

ϕ1 := ϕ2 + ϕ̃ ∈ B(A). Clearly, ϕ1 ≥ ϕ2 and since T is linear on B(A), we have that

T (ϕ1) = T (ϕ2 − ϕ̃) = T (ϕ2) − T (ϕ̃) = ξ2 − ξ̃ = ξ1

as we wanted to show. □

This concludes the proof of the lemma. 󰃈

Proposition B.1: The following are equivalent:
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(i) I : B(A) → R is normalized, monotone, and such that for all ϕ, ϕ′ ∈ B0(A),

(∀m ∈ M, Im(ϕ) ≥ Im(ψ)) =⇒ I(ϕ) ≥ I(ψ).

(ii) there exists a normalized and monotone functional Î : B0(M, DM) → R such

that for all ϕ ∈ B0(A),

I(ϕ) = Î(T (ϕ)).

Moreover, Î is unique and

• Î is continuous if and only if I is continuous.

• Î is quasiconcave if and only if I is quasiconcave.

• Î is monotone continuous if and only if I is monotone continuous.

Proof of Proposition B.1:

(i) implies (ii). Define Î : B0(DM) → R as follows: for all ξ ∈ B0(DM),

Î(ξ) = I(ϕξ),

where ϕξ ∈ B0(A) is chosen so that ξ = T (ϕξ).

Step 1: Î is well-defined. Pick ξ ∈ B0(DM) arbitrarily. That a ϕξ ∈ B0(A) such

that ξ = T (ϕξ) exists follows from Lemma B.10. Moreover, suppose there are two

ϕ, ψ ∈ B0(A) such that T (ϕ)(m) = Im(ϕ) = ξ(m) = Im(ψ) = T (ψ)(m) for all

m ∈ M. Then, by assumption, it must be the case that I(ϕ) = I(ψ), showing that

Î is well-defined.

Step 2: Î is normalized. Take any k ∈ R. Then, since each Im is normalized, it

follows that k = Im(k) = T (k)(m) for all m ∈ M. By definition, it follows that

Î(k) = I(k) = k, where the last equality follows from the assumption that I is

normalized. This proves the step.
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Step 3: Î is monotone. Take ξ, ξ′ ∈ Im T such that ξ ≥ ξ′. By Lemma B.10,

ξ, ξ′ ∈ T (B0(A)) and, therefore, Lemma B.11 implies that we can find ϕξ, ϕξ′ ∈ B0(A)

such that ϕξ ≥ ϕξ′ and ξ = T (ϕξ), ξ′ = T (ϕξ′). Since I is monotone

Î(ξ) = Î(T (ϕξ)) = I(ϕξ) ≥ I(ϕξ′) = Î(T (ϕξ′)) = Î(ξ′)

showing that also Î is monotone.

Step 4: Î is unique. Suppose there is another Ĩ : B0(M, DM) → R such that

I(ϕ) = Ĩ(T (ϕ)) for all ϕ ∈ B0(A). Then, take any ξ ∈ B0(M, DM). By Lemma

B.10, there exists ϕξ ∈ B0(A) and such that ξ = T (ϕξ). Then,

Ĩ(ξ) = Ĩ(T (ϕξ)) = I(ϕξ) = Î(T (ϕξ)) = Î(ξ).

It follows that Ĩ = Î.

Step 5: Î is continuous. Suppose that I is continuous. Fix any ξ, ξ′ ∈ B0(DM)

and c ∈ R. First we show that the set {α ∈ [0, 1] : Î(αξ + (1 − α)ξ′) ≤ c} is closed.

If it is empty, it is closed. If it is nonempty, take any sequence (αn)n ⊆ L such that

αn → α0. By Lemma B.10, we can pick ϕ, ϕ′ ∈ B0(A) such that ξ = T (ϕ) and

ξ′ = T (ϕ′). Moreover, we can pick we a finite partition (Ei)k
i=1 and reals (ri)k

i=1,

(r′
i)k

i=1 such that:

ϕ =
k󰁛

i=1
χEi

ri, ϕ′ =
k󰁛

i=1
χEi

r′
i.

Fix any m ∈ M. Then, there is a unique Ejm such that m(Ejm) = 1 and m(Ei) = 0

if i ∕= jm. Therefore, it follows that for all n ∈ N,

Im(αnϕ + (1 − αn)ϕ′) = αnrjm + (1 − αn)r′
jm

= αnIm(ϕ) + (1 − αn)Im(ϕ′),

Im(α0ϕ + (1 − α0)ϕ′) = α0rjm + (1 − α0)r′
jm

= α0I
m(ϕ) + (1 − α0)Im(ϕ′).
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Since m ∈ M was arbitrarily chosen, it follows that:

∀n ∈ N, αnξ + (1 − αn)ξ = αnT (ϕ) + (1 − αn)T (ϕ′) = T (αnϕ + (1 − αn)ϕ′)

α0ξ + (1 − α0)ξ = α0T (ϕ) + (1 − α0)T (ϕ′) = T (α0ϕ + (1 − α0)ϕ′)

Therefore, by definition of Î and continuity of I:

c ≥ lim inf
n

Î(αnξ + (1 − αn)ξ′)

= lim inf
n

I(αnϕ + (1 − αn)ϕ′)

= I(α0ϕ + (1 − α0)ϕ′)

= Î(α0ξ + (1 − α0)ξ′)

and, therefore, α0 ∈ {α ∈ [0, 1] : Î(αξ+(1−α)ξ′) ≤ c}, showing that this set is closed.

By a symmetric argument, we can show that {α ∈ [0, 1] : Î(αξ + (1 − α)ξ′) ≥ c} is

also closed. Siince this holds for all ξ, ξ′ ∈ B0(DM) and c ∈ R, and Î is monotone by

Step 3, Proposition 43 in Cerreia-Vioglio et al. (2011) implies that Î is continuous.

Step 6: Î is quasiconcave. Fix any α ∈ R. We show that the set Uc = {ξ ∈

B0(DM) : ξ ≥ c} is convex. If it is empty, this holds vacuously true. Suppose

it is nonempty. Take ξ1, ξ2 ∈ Uc and α ∈ [0, 1]. By Lemma B.10, we can pick

ϕ1, ϕ2 ∈ B0(A) such that ξ1 = T (ϕ1 and ξ2 = T = ϕ2. Notice that I(ϕ1) = Î(ξ1) ≥ c

and I(ϕ1) = Î(ξ1) ≥ c. Since I is quasiconcave, it follows that I(αϕ1 +(1−α)ϕ2) ≥ c.

Now, pick a partition {Ei}k
i=1 ⊆ F and profiles of scalars (r1

i )k
i=1, (r2

i )k
i=1 ⊆ R such

that ϕ1 = 󰁓k
i=1 χEi

r1
i and ϕ2 = 󰁓k

i=2 χEi
r2

i . Fix m ∈ M. Since the partition is in A,

there is a unique jm such that m(Ejm) = 1 and m(Ei) = 0 if i ∕= jm. Therefore,

Im(αϕ1+(1−α)ϕ2) = αr1
jm

+(1−α)r2
jm

= αIm(ϕ1)+(1−α)Im(ϕ2) = αξ1(m)+(1−α)ξ2(m)
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Therefore, we can conclude that T (αϕ1 + (1 − α)ϕ2) = αξ1 + (1 − α)ξ2. Then:

Î(αξ1 + (1 − α)ξ2) = I(αξ1 + (1 − α)ξ2) ≥ c

and, therefore, αξ1+(1−α)ξ2 ∈ Uc, showing convexity. Since c was arbitrarily chosen,

we conclude that Î is quasiconcave.

Step 7: Î is monotone continuous Take ξ, ξ′ ∈ B0(DM) and k ∈ R, a monotone

sequence (Dn)n ∈ DM such that Dn ↓ ∅, and assume that Î(ξ) > Î(ξ′). Then,

we can find ϕ, ϕ′ ∈ B0(A) such that ξ = T (ϕ) and T (ϕ′) = ξ′. It follows that

I(ϕ) = Î(ξ) > Î(ξ′) = I(ϕ′). Let En := q−1(Dn) ∈ A and notice that En ↓ ∅.

Therefore, there exists n0 such that I(kEn0ϕ) > I(ϕ′). Since En0 ∈ A, for all m ∈ M,

m(En0) ∈ {0, 1} and

m(En0) = 1 =⇒ kEn0ϕ = k a.e. [m] =⇒ Im(kEn0ϕ) = Im(k) = k

m(En0) = 0 =⇒ kEn0ϕ = ϕ a.e. [m] =⇒ Im(kEn0ϕ) = Im(ϕ) = ξ(m)

Moreover, notice that m(En0) = 1 if and only if m ∈ Dn0 and m(En0) = 0 if and only

if m ∕∈ Dn0 . Therefore, kDn0ξ = T (kEn0ϕ) and we can conclude that Î(kDn0ξ) =

I(kEn0ϕ) > I(ϕ′) = Î(ξ′) as we wanted to show.

(ii) implies (i).

Suppose there exists a normalized, monotone, and continuous functional Î : B0(M, DM) →

R such that for all ϕ ∈ B0(A), I(ϕ) = Î(T (ϕ)).

Step 1: I is normalized.

Take k ∈ R. Since Î is normalized, we have that Î(k) = k. Moreover, T (k)(m) =

Im(k) = k for all m ∈ M. Therefore, I(k) = Î(T (k)) = Î(k) = k, showing that I is

normalized.

Step 2: I is monotone.
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Take ϕ, ϕ′ ∈ B0(A) such that ϕ ≥ ϕ′. For all m ∈ M, Im is monotone and,

therefore, T (ϕ)(m) = Im(ϕ) ≥ Im(ϕ′) = T (ϕ′)(m). But, then, since Î is monotone

I(ϕ) = Î(T (ϕ)) ≥ Î(T (ϕ′)) = I(ϕ′),

showing that I is monotone.

Step 3: If ϕ, ϕ′ ∈ B0(A) and Im(ϕ) ≥ Im(ϕ′) for all m ∈ M, then I(ϕ) ≥ I(ϕ′).

Take any two ϕ, ϕ′ ∈ B0(A) and assume that Im(ϕ) ≥ Im(ϕ′) for all m ∈ M.

Then, T (ϕ) ≥ T (ϕ′) and, therefore, since Î is monotone:

I(ϕ) = Î(T (ϕ)) ≥ Î(T (ϕ′)) = I(ϕ′).

Step 4: I is continuous. Take a sequence (ϕn)n ⊆ B0(A) such that ϕn → ϕ ∈ B0(A)

uniformly. Since for each m ∈ M, Im is Lipschitz continuous, it follows that for all

m, |Im(ϕn) − Im(ϕ)| ≤ ||ϕ − ϕn||∞ so that:

||T (ϕn) − T (ϕ)||∞ ≤ ||ϕ − ϕn||∞ → 0.

Thus, T (ϕn) converges uniformly to T (ϕ) and by Lemma B.10, T (ϕn), T (ϕ) ∈ B0(DM).

Therefore, by continuity of Î, we have that:

I(ϕn) = Î(T (ϕn)) → Î(T (ϕ)) = I(ϕ)

showing that I is continuous.

Step 5: I is quasiconcave. Suppose Î is quasiconcave. Take ϕ1, ϕ2 ∈ B0(A) and

α ∈ [0, 1]. Since Im is concave, it follows that

Im(αϕ1 + (1 − α)ϕ2) ≥ αIm(ϕ1) + (1 − α)Im(ϕ2)



64

for all m ∈ M. Therefore, since Î is monotone and quasiconcave,

I(αϕ2 + (1 − α)ϕ2) = Î(T (αϕ1 + (1 − α)ϕ2))

≥ Î(αT (ϕ1) + (1 − α)T (ϕ2))

≥ min{Î(T (ϕ1)), Î(T (ϕ2))} = min{I(ϕ1), I(ϕ2)}

showing that I is quasiconcave.

Step 6: I is monotone continous. Take ϕ, ϕ′ ∈ B0(A) and k ∈ R, a monotone

sequence (En)n ∈ A such that En ↓ ∅, and assume that I(ϕ) > I(ϕ′). Then,

Î(T (ϕ)) = I(ϕ) > I(ϕ′) = Î(T (ϕ′)). Notice that for each n ∈ N, En ∈ A and,

therefore, m(En) ∈ {0, 1} for all m ∈ M. Then, let Dn = {m ∈ M : m(En) > 1
2}

and notice that m ∈ Dn if and only if m(En) = 1 and m ∕∈ Dn if and only if

m(En) = 0. Clearly, Dn is a decreasing sequence of sets. We show that ∩nDn = ∅.

Take any m ∈ M. Since m is countably additive, by continuity of finite measures,

it must be the case that m(En) → 0. However, since m(En) ∈ {0, 1} for all n ∈ N,

this implies that there is a N such that m(En) = 0 for all n > N . This implies that

m ∕∈ En for n > N and, therefore, m ∕∈ ∩nDn. It follows that Dn ↓ ∅. Since Î is

monotone continuous, there exists a n0 such that Î(χDn0
k + χDc

n0
T (ϕ)) > Î(T (ϕ′)).

Finally note that for all m ∈ M,

m ∈ Dn0 =⇒ m(Dn0) = 1 =⇒ Im(χDn0
k + χDc

n0
ϕ) = Im(k) = k

m ∈ Dc
n0 =⇒ m(Dn0) = 0 =⇒ Im(χDn0

k + χDc
n0

ϕ) = Im(ϕ) = T (ϕ)(m).
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Hence, T (χDn0
k + χDc

n0
ϕ) = χDn0

k + χDc
n0

T (ϕ) and, therefore,

I(χDn0
k + χDc

n0
ϕ) = Î(T ((χDn0

k + χDc
n0

ϕ))

= Î(χDn0
k + χDc

n0
T (ϕ))

> Î(T (ϕ′)) = I(ϕ′)

as we wanted to show. 󰃈

Appendix D. Proof of Theorem 1

Proof of Theorem 1: We know that 󰃒 is represented by u when restricted to

constant acts. Define the functional I : B0(G) → R such that for each ϕ ∈ B0(G),

I(ϕ) := u(xfϕ), where fϕ ∈ F is chosen so that ϕ = u(fϕ). By Lemma B.2, such

act fϕ exists for all ϕ ∈ B0(G), while the certainty equivalent xfϕ ∼ fϕ exists by

Lemma B.3. Moreover, for any ϕ ∈ B0(G), if there are two fϕ, f ′
ϕ ∈ F such that

u(fϕ) = ϕ = u(f ′
ϕ), we then have that since u represents 󰃒 over X,

u(fϕ)(ω) = u(f ′
ϕ)(ω) =⇒ u(fϕ(ω)) = u(f ′

ϕ(ω))

=⇒ fϕ(ω) ∼ f ′
ϕ(ω)

for all ω ∈ Ω. By Axiom 1.(ii) of monotonicity, it follows that fϕ ∼ f ′
ϕ and, by

transitivity, that xfϕ ∼ xf ′
ϕ
. Therefore, we can conclude that u(xfϕ) = u(xf ′

ϕ
),

showing that I is a well-defined functional on B0(G). It is easily seen that such

functional is also normalized, monotone, and continuous.17 Moreover, it is monotone

continuous and its restriction to B0(A) is quasiconcave.

17See for example the proof of Theorem 1 (Omnibus) in the working paper version of Cerreia-Vioglio
et al. (2022).
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Define the function V := I ◦ u : F → R. For all f, f ′ ∈ F ,

f 󰃒 f ′ ⇐⇒ xf ′ 󰃒 xf ′

⇐⇒ V (f) = I(u(f)) = u(xf ) ≥ u(xf ′) = I(u(f)) = V (f ′) .

This shows that V represents 󰃒 on F . Moreover, by Proposition 1, for each m ∈ M,

󰃒m is represented by Im ◦ u, where Im : B(G) → R is as defined in (12). Moreover,

let IA be the generalized conditional expectation as in Corollary 1. Take now ϕ, ψ ∈

B0(G) such that Im(ϕ) ≥ Im(ψ) for all m ∈ M. By Lemma B.2, we can find

fϕ, fψ ∈ F such that ϕ = u(fϕ) and ψ = u(fψ). Then, Im(u(fϕ)) ≥ Im(u(fψ)) for

all m ∈ M so that fϕ 󰃒m fψ for all m ∈ M. Consistency implies that fϕ 󰃒 fψ.

Therefore:

I(ϕ) = I(u(fϕ)) = V (fϕ) ≥ V (fψ) = I(u(fψ)) ≥ I(ψ) .

By this fact and since I is monotone, normalized, continuous, and quasiconcave,

by Lemma B.11, there exists a unique monotone, normalized, continuous, and quasi-

concave functional Î : B0(M, DM) → R such that I(ϕ) = Î(T (ϕ)) for all ϕ ∈ B0(A).

Moreover, since I is monotone continuous, so is Î. By Theorem 21 in Cerreia-

Vioglio et al. (2013), Î admits a unique monotone, normalized, lower semicontinuous,

and quasiconcave extension to B(DM), which, abusing notation, we also denote by

Î. Moreover, since Î is monotone continuous when restricted to B0(DM), it is in-

ner/outer continuous on B(DM). Take now any ϕ ∈ B0(G). Since IA(ϕ) ∈ B(A) and

B0(A) is dense in B(A), we can pick sequences (ψl
n)n∈N, (ψu

n)n∈N ∈ B0(A) such that

ψl
n ↗ IA(ϕ) and ψu

n ↘ IA(ϕ) uniformly. Fix any m ∈ M. Since Im is monotone, we

have that for all n ∈ N:

Im(ψl
n) ≤ Im(IA(ϕ)) ≤ Im(ψu

n) .
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By Proposition 1, we also have that Im(IA(ϕ)) = Im(ϕ) and, therefore, we have that

for all n ∈ N,

Im(ψl
n) ≤ Im(ϕ) ≤ Im(ψu

n)

for all m ∈ M. By what shown above, we have that for all n ∈ N:

Î(T (ψl
n)) = I(ψl

n) ≤ I(ϕ) ≤ I(ψu
n) ≤ I(T (ψl

u)).

Since Im is monotone and Lipschitz, we have that T (ψl
n) ↑ T (IA(ϕ)) = T (ϕ) and

T (ψu
n) ↓ T (IA(ϕ)) = T (ϕ). Then, since Î is inner/outer continuous, passing to the

limit in the above sequence of inequality, we obtain:

Î(T (ϕ)) = lim
n

Î(T (ψl
n)) ≤ I(ϕ) ≤ lim Î(T (ψl

u)) = Î(T (ϕ)).

This shows that I(ϕ) = Î(T (ϕ)) for all ϕ ∈ B0(G). It follows that for all f, g ∈ F ,

f 󰃒 g ⇐⇒ I(u(f)) ≥ I(u(g)) ⇐⇒ Î(T (u(f))) ≥ Î(T (u(g))).

󰃈

Proof of Proposition 3: Let 󰃒1 and 󰃒2 Suppose that 󰃒1 and 󰃒2 are two mis-

specification averse preferences represented respectively by (Î1, u1, c1) and (Î2, u2, c2)

as in Theorem 1. Suppose that u1 = u2 = u and that Î1 ≤ Î2. Take any f ∈ F(A)

and x ∈ X and assume that f 󰃒1 x. Since f is measurable with respect to A, for

each m ∈ M, f must be constant on Em and, therefore coherence and normalziation

imply:

I1(u(f), m) = I1 (u(f)χEm , m) = u(f |Em) = I2 (u(f)χEm , m) = I2(u(f), m).
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Then, we have that:

u(x) ≤ Î1 (I1(u(f), ·)) ≤ Î2 (I1(u(f), ·)) = Î2 (I2(u(f), ·))

so that f 󰃒2 x.

As for the other direction, equation (9) and nontriviality automatically imply that

u2 is a positive affine transformation of u1. Assume that u1 = u2 = u and take

ξ ∈ B0(DM). Then, by Lemmas B.10 and B.2, there exists f ∈ F(A) such that ξ =

I1(u(f), ·). By the same argument given above, it is also the case that ξ = I2(u(f), ·).

Take x ∈ X such that f ∼1 x. Then, condition (9) implies that f 󰃒2 x. Therefore:

Î1(ξ) = Î1(I1(u(f), ·)) = u(x) ≤ Î2(I2(u(f), ·)) = Î2(ξ).

Thus, Î1 ≤ Î2 on B0(DM). Since this set is dense in B(DM), we can find a monoton-

ically decreasing sequence (ξn)n ⊆ B0(DM) such that ξn ↘ ξ. Then, Î1(ξn) ≤ Î2(ξn)

for all n ∈ N. Since Î is inner/outer continuous, passing to the limit we can conclude

that Î1(ξ) ≤ Î2(ξ).

Uniqueness follows by Lemma B.1 and routine arguments.

(ii) implies (i). It follows by routine arguments.

󰃈

Proof of Theorem 4: Suppose the assumptions of the theorem are satisfied.

Pick any D ∈ DM. We want to show that there exists a ED ∈ G such that Im(χED) =

χD(m) for all m ∈ M. By assumption, there exists ϕ ∈ B0(G) such that 0 ≤ ϕ ≤ 1

and Im(ϕ) = χD(m) for all m ∈ M. Let ED = {ω ∈ Ω : ϕ(ω) > 0} which clearly is

in G. Also notice that χD ≥ ϕ. Then,using monotonicity, if m ∈ D,

1 = χD(m) = Im(ϕ) ≤ Im(χED) = min
p

p(E) + c(p, m) ≤ m(ED) ≤ 1
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showing that χD(m) = 1 = Im(χED). On the other hand, suppose that m ∕∈ D. Then

0 = χD(m) = Im(ϕ) = min
p≪m

󰁝
ϕdp + c(p, m) =

󰁝
ϕdp̂ + c(p̂, m)

where p̂ it the probability where the minimum in the above equation is attained.

Then, since ϕ ≥ 0 and c(p̂, m) ≥ 0, it must be the case that
󰁕

ϕdp̂ = 0 which in turn

implies that p̂(ED) = 0 and c(p̂, m) = 0. Since the latter is uniquely minimized at

m, it follows that m = p̂ and, therefore, m(ED) = 0. Thus,

Im(χED) = min
p≪m

p(ED) + c(p, m) = min
p≪m

0 + c(p, m) = 0 = χD(M)

Since (Ω, G) is a standard Borel space and M is a measurable subset of D, then also

(M, DM) is a standard Borel space18. Thus, we can find a sequence (Dn)n ⊆ DM that

separates points in M. That is, if m ∕= m′ for some m, m′ ∈ M, there exists Dn such

that m ∈ Dn and m′ ∕∈ Dn. By defining αM : M → {0, 1}N, as αM(m) = (χDn(m))n,

the fact that (Dn)n separates points in M implies that αM is injective. It is easy to

see that it is also measurable. Since (M, DM) is a standard Borel space, the inverse

α−1
M : Im αM → M exists and is also measurable. Furthermore, by what is shown

above, for each n ∈ N, we can find En ∈ G such that Im(En) = χDn(m) for all

m ∈ M. Define similarly αΩ : Ω → {0, 1}N as αΩ(ω) = (χEn(ω))n, which is also a

measurable function. Fix arbitrarily m0 ∈ M and define q : Ω → M as

q(ω) =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

α−1
M ◦ αΩ(ω) if αΩ(ω) ∈ Im αM

m0 otherwise.

18 See Theorems 17.23-17.24 and Corollary 13.4 in Kechris (2012)
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Clearly, q is measurable. We only need to show that m(q−1(m)) = 1 for all m ∈ M.

Then, fix m ∈ M. Take n ∈ N such that m ∈ Dn. Then, χDn(m) = 1 and, therefore,

1 ≥ m(En) = m(En) + c(m, m) ≥ min
p≪m

p(En) + c(p, m) = Im(χEn) = χDn(m) = 1

which implies that m(En) = 1. On the other hand, take n ∈ N such that m ∕∈ Dn.

Then χDn(m) = 0 and, therefore,

0 = χDn(m) = Im(χEn) = min
p≪m

p(En) + c(p, m) = p̂(En)
󰁿 󰁾󰁽 󰂀

≥0

+ c(p̂(En), m)
󰁿 󰁾󰁽 󰂀

≥0

where p̂ attains the minimum in the problem minp≪mp(En)+c(p, m). Then, p̂(En) = 0

and c(p̂, m) = 0. But since c(·, m) ≥ 0 is uniquely minimized at m, it follows that

m = p̂ and, therefore, m(En) = 0 and, thereby, m(Ω \ En) = 1. With this, notice

that

q−1(m) ⊇ {ω ∈ Ω : q(ω) = m}

= {ω ∈ Ω : αΩ(ω) = αM(m)}

= {ω ∈ Ω : χEn(ω) = χDn(m) for all n ∈ N}

=
󰁟

n∈N
{ω ∈ Ω : χEn(ω) = χDn(m)}

=
󰀳

󰁃
󰁟

n:m∈Dn

{ω ∈ Ω : χEn(ω) = χDn(m)}
󰀴

󰁄
󰁟

󰀳

󰁃
󰁟

n:m ∕∈Dn

{ω ∈ Ω : χEn(ω) = χDn(m)}
󰀴

󰁄

= (∩n:m∈DnEn)
󰁟

(∩n:m ∕∈DnΩ \ En)

and, therefore,

1 ≥ m
󰀓
q−1(m)

󰀔
≥ m ((∩n:m∈DnEn) ∩ (∩n:m ∕∈DnΩ \ En)) = 1
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implying the result.

Define Êm = q̂−1(m) for all m. Fix m0 ∈ M and take f1, f2 ∈ F and fix any

g ∈ M. Note that since m0(Êm0) = 1 and m(Êm0) = 0 whenever m ∕= m0, then

u(fiÊ
m0g) = u(fi) a.e.[m0] and u(fiÊ

m0g) = u(g) a.e. [m] whenever m ∕= m0 for i =

1, 2. This implies that Im0(u(fiÊ
m0g)) = Im0(u(fi)) for i = 1, 2 and Im(u(f1Ê

m0g)) =

Im(u(f2Ê
m0g)) for m ∕= m0. Then

Im0(u(f1)) = Im0(u(f2)) =⇒ I(u(f1Ê
m0g), ·) = I(u(f2Ê

m0g), ·)

=⇒ Î
󰀓
I(u(f1Ê

m0g)
󰀔

= Î
󰀓
I(u(f2Ê

m0g)
󰀔

=⇒ f1Ê
m0g ∼ f2Ê

m0g

and

Im0(u(f1)) > Im0(u(f2)) =⇒ I(u(f1Ê
m0g), ·) > I(u(f2Ê

m0g), ·)

=⇒ Î
󰀓
I(u(f1Ê

m0g)
󰀔

> Î
󰀓
I(u(f2Ê

m0g)
󰀔

=⇒ f1Ê
m0g ≻ f2Ê

m0g

This implies that ∀f1, f2, g ∈ F , f1Ê
m0g 󰃒 f1Ê

mg if and only if Im0(u(f1)) ≥

Im0(u(f2)) as we wanted to show. Checking the axioms is now routine. 󰃈

D.1. Proof of Theorems 2 and 3. In this section we prove the general represen-

tation in Theorem 2. We start with the following lemma.

Lemma B.12: Suppose 󰃒 is a misspecification averse preference whose restriction

to F(A) satisfies Savage’s P2-P6. There exist a non-constant, affine, and surjective

ũ : X → R, a strictly increasing φ : R → R, and a non-atomic ν ∈ ∆σ(Ω, A) such

that for all f, g ∈ F(A),

f 󰃒 g ⇐⇒ φ−1
󰀕󰁝

Ω
φ(ũ(f))dν

󰀖
≥ φ−1

󰀕󰁝

Ω
φ(ũ(g))dν

󰀖
.
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Moreover, ν is unique, ũ is unique up to positive affine transformations, and φ is

unique up to positive affine transformations given ũ.

Proof of Lemma B.12: Since when restricted to acts measurable with respect

to A, 󰃒 satisfies the Axioms of Savage (1954) and monotone continuity, there exist a

non-constant function v : X → R and a non-atomic probability measure ν ∈ ∆σ(Ω, A)

such that for all f, f ′ ∈ F(A):

f 󰃒 f ′ ⇐⇒
󰁝

Ω
v(f)dν ≥

󰁝

Ω
v(f ′)dν.

Clearly, v represents 󰃒 on X. By Herstein and Milnor (1953), there exists an affine

ũ : X → R representing 󰃒 on X. Since 󰃒 is unbounded, the argument in the

proof of Proposition 1 shows that u must be surjective. Then, there exists a strictly

increasing trasformation φ : R → R such that v = φ ◦ u. Now, Take any k, k′ ∈ Im φ

and λ ∈ (0, 1). Then, we can find xk, xk′ ∈ X such that φ(k) = φ(u(xk)) and

φ(k′) = φ(u(xk′)). Since ν is non-atomic, we can pick Eλ ∈ A such that ν(Eλ) = λ.

Then, fλ := xkEλxk′ ∈ F(A) and, by Lemma B.3, we can find xfλ
∈ X such that

xfλ
∼ fλ. Clearly, both fλ and xfλ

are measurable with respect to A. Therefore:

λφ(k) + (1 − λ)φ(k′), = ν(Eλ)φ(u(xk)) + ν(Ω \ Eλ)φ(u(xk′))

=
󰁝

Ω
φ(u(fλ))dν

=
󰁝

Ω
φ(u(xfλ

))dν

= φ(u(xfλ
)) ∈ Im φ .

Thus, φ : R → R is strictly increasing and has a convex image. It follows that φ is

continuous.

The uniqueness of the representation follows by standard arguments. 󰃈
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Lemma B.13: Suppose (Ω, G, M) is a structured space and there exist a utility

function u : X → R, a convex statistical distance c : ∆ × M → [0, ∞], a strictly

increasing and continuous function φ : Im u → R and a prior µ ∈ ∆σ(M, DM) such

that 󰃒 is represented on F by

󰁝

M
φ (Im(u(f))) dµ(m)

where Im is defined as in (5). Then, there exists a probability measure ν ∈ ∆σ(Ω, A)

such that the restriction of 󰃒 to F(A) is represented by

󰁝

Ω
φ(u(f))dν.

Moreover, ν is nonatomic if µ is nonatomic.

Proof of Lemma B.13: Suppose the premise holds and define the following

measure: for all A ∈ A,

ν(A) =
󰁝

M
m(A)dµ(m)

and notice that ν ∈ ∆σ(Ω, A) and ν(Ω0) = 1. Moreover, for all D ∈ DM, since

m ∈ D =⇒ m ({ω ∈ Ω : q(ω) ∈ D}) ≥ m ({ω ∈ Ω : q(ω) = m}) = 1,

m ∕∈ D =⇒ m ({ω ∈ Ω : q(ω) ∈ D}) ≤ 1 − m ({ω ∈ Ω : q(ω) = m}) = 0

then,

ν ◦ q−1(D) = ν ({ω ∈ Ω : q(ω) ∈ D})

=
󰁝

M
m({ω ∈ Ω : q(ω) ∈ D}) dµ(m)

=
󰁝

D
m({ω ∈ Ω : q(ω) ∈ D}) dµ(m) +

󰁝

M\D
m({ω ∈ Ω : q(ω) ∈ D}) dµ(m)

=
󰁝

D
1dµ(m) = µ(D).
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Therefore, for any ψ ∈ B0(Ω, A), we have that

󰁝

M
φ (Im(ψ)) dµ(m) =

󰁝

M
φ (Im(ψ)) d(ν ◦ q−1)(m)

=
󰁝

Ω0
φ

󰀓
Iq(ω)(ψ)

󰀔
dν(ω)

=
󰁝

Ω
φ (IA(ψ)(ω)) dν(ω)

=
󰁝

Ω
φ (ψ) dν.

where we apply the change of variable formula and IA is the generalized common

conditional expectation of (Im)m∈M given A of Corollary 1. It follows that for all

f, g ∈ A, f 󰃒 f if and only if

󰁝

Ω
φ(u(f))dν ≥

󰁝

Ω
φ(u(g))dν.

as we wanted to show.

Furthermore, assume that µ is notatomic. We show that also ν is non-atomic. To

this end, take E ∈ A such that ν(A) > 0. Then, there exists by Lemma B.10 a set

DE ∈ DM such that Im(χE) = χDE
(m) for all m ∈ M. Then,

µ(DE) =
󰁝

M
χDE

(m)dµ(m) =
󰁝

M
Im(χE)dµ(m) =

󰁝

M
m(E)dµ(m) = ν(E) > 0

where we use the fact that m(E) ∈ {0, 1} for all m ∈ M. Since µ is nonatomic, there

exists a subset D0 ⊆ DE in DM such that 0 < µ(D0) < µ(DE). Again by Lemma

B.10, we can find ED0 ∈ A such that χD0(m) = Im(χED0 ) for all m ∈ M. Then, let

E0 := E ∩ ED0 ⊆ E. We have that for all m ∈ M,

χD0 = χD0 χDE
= Im(χED0 ) Im(χE) = Im(χE0)
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where again we use Lemma B.1. Therefore,

ν(E0) =
󰁝

M
m(E0)dµ(m) =

󰁝

M
Im(χE0)dµ(m) =

󰁝

M
χD0dµ(m) = µ(D0)

so that 0 < ν(E0) < ν(E), proving that ν is nonatomic. 󰃈

Proof of Theorem 2: (i) implies (ii).

We know that 󰃒 is represented by u when restricted to constant acts. Define the

functional I : B0(G) → R such that for each ϕ ∈ B0(G), I(ϕ) := u(xfϕ), where fϕ ∈ F

is chosen so that ϕ = u(fϕ). By Lemma B.2, such act fϕ exists for all ϕ ∈ B0(G),

while the certainty equivalent xfϕ ∼ fϕ exists by Lemma B.3. Moreover, for any

ϕ ∈ B0(G), if there are two fϕ, f ′
ϕ ∈ F such that u(fϕ) = ϕ = u(f ′

ϕ), we then have

that since u represents 󰃒 over X,

u(fϕ)(ω) = u(f ′
ϕ)(ω) =⇒ u(fϕ(ω)) = u(f ′

ϕ(ω))

=⇒ fϕ(ω) ∼ f ′
ϕ(ω)

for all ω ∈ Ω. By Axiom 1.(ii) of monotonicity, it follows that fϕ ∼ f ′
ϕ and, by

transitivity, that xfϕ ∼ xf ′
ϕ
. Therefore, we can conclude that

I(ϕ) = u(xfϕ) = u(xf ′
ϕ
) = I(f ′

ϕ)

showing that I is a well-defined functional on B0(G). It is easily seen that such

functional is also normalized, monotone, and continuous.19

Define the function V := I ◦ u : F → R. For all f, f ′ ∈ F ,

f 󰃒 f ′ ⇐⇒ xf ′ 󰃒 xf ′

⇐⇒ V (f) = I(u(f)) = u(xf ) ≥ u(xf ′) = I(u(f)) = V (f ′) .

19See for example the proof of Theorem 1 (Omnibus) in the working paper version of Cerreia-Vioglio
et al. (2022).
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This shows that V represents 󰃒 on F . Moreover, by Proposition 1, for each m ∈ M,

󰃒m is represented by Im ◦ u, where Im : B(G) → R is as defined in (12). Moreover,

let IA be the generalized conditional expectation from Corollary 1. Take now ϕ, ψ ∈

B0(G) such that Im(ϕ) ≥ Im(ψ) for all m ∈ M. By Lemma B.2, we can find

fϕ, fψ ∈ F such that ϕ = u(fϕ) and ψ = u(fψ). Then, Im(u(fϕ)) ≥ Im(u(fψ)) for

all m ∈ M so that fϕ 󰃒m fψ for all m ∈ M. Consistency implies that fϕ 󰃒 fψ.

Therefore:

I(ϕ) = I(u(fϕ)) = V (fϕ) ≥ V (fψ) = I(u(fψ)) ≥ I(ψ) .

Moreover, by Lemma B.12, there exist an unbounded and affine ũ : X → R,

a strictly increasing φ : R → R, and a non-atomic ν ∈ ∆σ(Ω, A) such that the

restriction of 󰃒 to F(A) is represented by the functional:

f 󰀁→ φ−1
󰀕󰁝

Ω
φ(ũ(f))dν

󰀖
.

Moreover, since Ω \ Ω0 is null, ν(Ω \ Ω0) = 0. Without loss of generality, we can

assume that ũ = u and normalize φ(0) = 0 and φ(1) = 1. Now, define the map

J : B(A) → R such that

J(ϕ) = φ−1
󰀕󰁝

Ω
φ(ϕ)dν

󰀖

for all ϕ ∈ B(A). Since φ is continuous and strictly increasing, J is well-defined,

normalized, and continuous. Moreover, for all f, g ∈ F(A),

f 󰃒 g ⇐⇒ J(u(f)) ≥ J(u(g)) .

Moreover, take any ϕ ∈ B0(A). By Lemma B.2, we can choose fϕ ∈ F(A) such that

ϕ = u(fϕ) = fϕ. Then, since both V and J ◦ u represent 󰃒 on F(A),

I(ϕ) = I(u(fϕ)) = V (fϕ) = u(xfϕ) = J (u(fϕ)) = J(ϕ) .
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We conclude that I(ϕ) = J(ϕ) for all ϕ ∈ B0(A). Take now any ϕ ∈ B0(G). Since

IA(ϕ) ∈ B(A) and B0(A) is dense in B(A), we can pick sequences (ψl
n)n∈N, (ψu

n)n∈N ∈

B0(A) such that ψl
n ↗ IA(ϕ) and ψu

n ↘ IA(ϕ) uniformly. Fix any m ∈ M. Since Im

is monotone, we have that for all n ∈ N:

Im(ψl
n) ≤ Im(IA(ϕ)) ≤ Im(ψu

n) .

By Proposition 1, we also have that Im(IA(ϕ)) = Im(ϕ) and, therefore, we have that

for all n ∈ N,

Im(ψl
n) ≤ Im(ϕ) ≤ Im(ψu

n) .

Since m was chosen arbitrarily, this holds for all m ∈ M. This and the fact that I

and J coincide on B0(A) imply that for all n ∈ N:

J(ψl
n) = I(ψl

n) ≤ I(ϕ) ≤ I(ψu
n) = J(ψu

n)

Passing to the limit and using the fact that J is continuous, we obtain that:

J(IA(ϕ)) ≤ I(ϕ) ≤ J(IA(ϕ)) .

That is:

I(ϕ) = J(IA(ϕ))

= φ−1
󰀕󰁝

Ω
φ (IA(ϕ)) ν(dω̃)

󰀖

= φ−1
󰀕󰁝

Ω0
φ

󰀕
min
p∈∆

󰀝󰁝

Ω
ϕ dp + c(p, q(ω̃))

󰀞󰀖
ν(dω̃)

󰀖
.

Finally, since q0 = q|Ω0 is a measurable transformation from (Ω0, A0) to (M, DM),

define the image measure µ := ν ◦ q−1
0 ∈ ∆σ(M, DM). Then, by Theorem 16.23 in
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Billingsley (1995):

I(ϕ) = φ−1
󰀕󰁝

Ω0
φ

󰀕
min
p∈∆

󰀝󰁝

Ω
ϕ dp + c(p, q(ω̃))

󰀞󰀖
dν(ω̃)

󰀖

= φ−1
󰀕󰁝

M
φ

󰀕
min
p∈∆

󰀝󰁝

Ω
ϕ dp + c(p, q(ω̃))

󰀞󰀖
d(ν ◦ q−1)(m)

󰀖

= φ−1
󰀕󰁝

M
φ

󰀕
min
p∈∆

󰀝󰁝

Ω
ϕ dp + c(p, m)

󰀞󰀖
dµ(m)

󰀖
.

But, then, 󰃒 is represented on F by

V (f) = I(u(f)) = φ−1
󰀕󰁝

M
φ

󰀕
min
p∈∆

󰀝󰁝

Ω
u(f) dp + c(p, m)

󰀞󰀖
dµ(m)

󰀖

as we wanted to show. Next, we show that if χD = T (χE) for E ∈ A and D ∈ DM,

then ν(E) = µ(D). Indeed,

φ−1(ν(E)) = φ−1
󰀕󰁝

Ω0
φ(χE)dν

󰀖

= J(χED) = J(IA(χE)) = I(χE)

= φ−1
󰀕󰁝

M
φ (I(χE, m)) dµ(m)

󰀖

= φ−1
󰀕󰁝

M
φ (χD) dµ(m)

󰀖

= φ−1(µ(D)).

and since φ−1 is strictly increasing, this implies that ν(E) = µ(D). We now show that

µ is nonatomic. Take D ∈ DM such that µ(D) > 0. By Lemma B.10, there exists

ED ∈ A such that χD = T (χED). Therefore, by what shown above, ν(ED) = µ(D) >

0. Since ν is nonatomic, we can find E0 ∈ A such that E0 ⊆ ED and νE0 > 0. By

Lemma B.10, we can find DE0 ∈ DM such that χDE0
= T (χE0). Suppose m ∈ DE0 .

Then, I(χE0 , m) = 1 and since E0 ∈ A, it must be the case that m(E0) = 1. Since

E0 ⊆ ED, m(ED) = 1 and, therefore, χD(m) = I(χED , m) = 1, so that m ∈ D.

This shows that DE0 ⊆ D. Moreover, by what shows above µ(DE0) = ν(E0) > 0.
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This shows that µ is non-atomic. It only remains to show that φ is concave. Take

r1, r2 ∈ R and α = 1/2. Since ν is nonatomic, we can find E such that ν(E) = 1/2.

Moreover, we can pick x1, x2 ∈ X such that r1 = u(x1) and r2 = u(x2). Then:

J(u(x1Ex2)) = φ−1
󰀕󰁝

Ω
φ (u(x1Ex2)) dν

󰀖

= φ−1
󰀕1

2φ(r1) + 1
2φ(r2)

󰀖

= φ−1
󰀕󰁝

Ω
φ (u(x2Ex1)) dν

󰀖
= J(u(x2Ex1)).

Thus, x1Ex2 ∼ x2Ex1. Since 󰃒 satisfies uncertainty aversion, it follows that

1
2x1 + 1

2x2 = 1
2x1Ex2 + 1

2x2Ex1 󰃒 x1Ex2

and, therefore, since φ is increasing:

φ
󰀕1

2r1 + 1
2r2

󰀖
= φ

󰀕
J

󰀕
u

󰀕1
2x1 + 1

2x2

󰀖󰀖󰀖

≥ φ (J (u (x1Ex2)))

= 1
2φ(r1) + 1

2φ(r2).

This shows that φ is midpoint concave. Since it is also strictly increasing on the

interval R, we conclude it is concave.

Uniqueness follows by standard arguments.

(ii) implies (i). It is clear that 󰃒 satisfies Axioms 1-5 are satisfied. Moreover, by

Lemma B.13, there exists a nonatomic probability measure ν ∈ ∆σ(Ω, A such that

the restriction of 󰃒 to F(A) is represented by the functional

󰁝

Ω
φ(u(f))dν.

This implies that 󰃒 satisfies Savage (1954)’s P2-P6 when restricted to F(A). 󰃈



80

Proof of Theorem 3: (i) implies (ii). We know that there exists an affine

u : X → R and a normalized, monotone, continuous, and quasiconcave functional

I : B0(G) → R such that 󰃒 is represented by I ◦ u on F . By Proposition 1, we know

that for each m ∈ M, there exists Im given as in (5) such that Im ◦ u represents 󰃒m

on F . By consistency, we also know that for all ϕ, ψ ∈ B0(G), Im(ϕ) ≥ Im(ψ) for

all m ∈ M implies that I(ϕ) ≥ I(ψ). Therefore, by Proposition B.1, there exists a

unique normalized, monotone, and continuous Î : B0(DM) such that Î(I(ϕ, ·)) = I(ϕ)

for all ϕ ∈ B0(G). Moreover, Î is quasiconcave and monotone continuous. Take

ξ ∈ B0(DM). By Lemma B.10, we can find a ϕ ∈ B0(A) such that ξ = T (ϕ) and

f ∈ B0(G) such that ϕ = u(f). Notice that since there exists a K such that ξ(m) ≥ K

for all m ∈ M, r0 := infm∈M ξ(m) ≥ K and, therefore, r0 ∈ R. Pick r > r0. Then, we

can find x0, x ∈ X such that r0 = u(x0) and r = u(x). Take a sequence (αn) ∈ (0, 1)

such that αn ↓ 0 and let xn = αnx + (1 − αn)x0. Fix any n ∈ N. By affinity of u,

u(xn) = αnu(x)+(1−αn)u(x0) = αnr+(1−αn)r0 > r0 = inf
m∈M

ξ(m) = inf
m∈M

I(u(f), m).

Therefore, there exists mn ∈ M such that u(xn) > I(u(f), mn). This implies that

xn ≻m f and, therefore, Caution implies that xn 󰃒 f . That is,

αnr + (1 − αn)r0 = u(xn) ≥ I(u(f)) = I(ϕ) = Î(ξ).

This holds for all n ∈ N and passing to the limit, we obtain r0 ≥ Î(ξ). On the

other hand, we have that for all m ∈ M, r0 = infm′∈M ξ(m′) ≤ ξ(m) and, therefore,

since Î is normalized and monotone, r0 = Î(r0) ≤ Î(ξ). It follows that Î(ξ) = r0 =

infm∈M ξ(m). Therefore, Î. Now, for all ξ, ξ′ ∈ B(DM,

Î(ξ) − Î(ξ′) = inf
m∈M

ξ(m) − inf
m∈M

ξ′(m) ≤ inf
m∈M

(ξ(m) − ξ(m)).
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Thus, Î is a niveloid, and it is, therefore, Lipschitz continuous. It follows that it admits

a unique, monotone, and continuous extension to B(DM), wich, abusing notation, we

also denote Î. Then, pick any ξ ∈ B(DM). Since B0(DM) is dense in B(DM), we can

find two sequences (ξu
n)n, (ξl

n)n such that ξu
n ↘ ξ and ξl

n ↗ ξ. Since Î is monotone,

we have that for all n ∈ N, ξl
n ≤ ξ ≤ ξu

n and, therefore,

Î(ξl
n) = inf

m∈M
ξl

n(m) ≤ inf
m∈M

ξ(m) ≤ inf
m∈M

ξu
n(m) = Î(ξu

n).

Since Î is continuous, passing to the limit, we obtain that Î(ξ) = infm∈M ξ. Therefore,

we have that for all ϕ ∈ B0(G),

Î(I(ϕ, ·)) = inf
m∈M

min
p∈∆(G)

󰁝

Ω
ϕdp + c(p, m)

= inf
p∈∆(G)

inf
m∈M

󰁝

Ω
ϕdp + c(p, m)

= inf
p∈∆(G)

󰁝

Ω
ϕdp + inf

m∈M
c(p, m).

Suppose that in addition M is closed and 󰃒 satisfies. Fix any ϕ ∈ B(G). Take any

r ∈ R and pick f ∈ F and xr ∈ X such that ϕ = u(f) and r = u(xr). Then:

{m ∈ M : I(ϕ, m) ≤ r} = {m ∈ M : Im(u(f)) ≤ u(xr)}

= {m ∈ M : xr 󰃒m f}

and the latter is closed by axiom. Therefore, m 󰀁→ I(ϕ, m) is lower semicontinuous.

Therefore, the functional Ĩϕ : ∆(G × M → R defined as Ĩϕ(p, m) := I(ϕ, m) −
󰁕

Ω ϕdp

is lower semicontinuous in (p, m). Then, since

c(p, m) = sup
ϕ∈B0(G)

󰀝
I(ϕ, m) −

󰁝

Ω
ϕdp

󰀞
= sup

ϕ∈B0(G)
Ĩϕ(p, m)

for all (p, m) ∈ ∆ × M and by the theorem of the maximum (see Aliprantis and

Border (2007), Lemma 17.29), we can conclude that c is lower semicontinuous in
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(p, m). Then applyin Aliprantis and Border (2007), Lemma 17.30 twice, we obtain

that infm∈M c(·, m) = minm∈M c(·, m) is lower semicontinuous and, therefore,

Î(I(ϕ, ·)) = inf
p∈∆(G)

󰁝

Ω
ϕdp + inf

m∈M
c(p, m)

= min
p∈∆(G)

󰁝

Ω
ϕdp + min

m∈M
c(p, m).

Since ϕ ∈ B0(G) was arbitrarily chosen, we conclude that this holds everywhere on

B0(G). Therefore, for all f, g ∈ F ,

f 󰃒 g ⇐⇒ I(u(f)) ≥ I(u(g))

⇐⇒ Î(I(u(f), ·)) ≥ Î(I(u(g), ·))

⇐⇒ min
p∈∆(G)

󰁝

Ω
u(f)dp + min

m∈M
c(p, m) ≥ min

p∈∆(G)

󰁝

Ω
u(g)dp + min

m∈M
c(p, m)

as we wanted to show. 󰃈
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