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Randomization and the Robustness of Linear Contracts∗

Ashwin Kambhampati† Bo Peng‡ Zhihao Gavin Tang§
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February 6, 2025

Abstract

We consider a principal-agent model with moral hazard, bilateral risk-neutrality,
and limited liability. The principal knows only some of the actions the agent can take
and evaluates contracts by their guaranteed payoff over possible unknown actions. We
show that linear contracts are a robustly optimal way to incentivize the agent: any
randomization over contracts can be improved by making each contract in its support
linear. We then identify an optimal random linear contract characterized by a single
parameter that bounds its continuous support. Several corollaries arise: the gain
from randomization can be arbitrarily large; optimal randomization does not require
commitment; and screening cannot improve the principal’s guarantee.

1 Introduction

Recent years have witnessed a surge in contract-theoretic research on the optimal design of
incentives when the designer does not know all the details of the contracting environment,
or is otherwise reluctant to commit to a single probabilistic model of the situation. For
moral hazard problems, the predominant approach is to assume that the designer evaluates
each contract according to its payoff guarantee, i.e., its worst-case payoff across a class of
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environments. This approach has been successful in providing a possible foundation for linear
contracts, a commonly observed contract form—see Carroll (2015 ) and subsequent work by,
e.g., Dai and Toikka (2022 ), Walton and Carroll (2022 ), Carroll and Bolte (2023 ), Marku,
Ocampo Diaz, and Tondji  (2024 ), and Vairo  (2025 ). Moreover, it does so without the need
to resort to specific assumptions about how actions map to outputs and costs, a challenge
for the Bayesian contracting literature.

The robust analysis of moral hazard problems, however, typically restricts attention to
deterministic contracts. This restriction is substantive: Kambhampati (2023 ) shows in the
framework of Carroll (2015 ) that randomizing over two linear contracts strictly improves the
principal’s guarantee compared to any optimal deterministic contract, one of which is linear.
This raises the concern that the intuition about robust optimality of interest alignment the
deterministic result formalizes is driven by restrictions on the contract space, rather than
an inherent coherence between robustness and linearity. Moreover, because Kambhampati ’s
(2023 ) result leaves open the form of optimal (necessarily random) contracts, it is no longer
clear that robustness leads to contracts that are linear or, in any sense, simple.

Motivated by these concerns, we re-visit the canonical robust moral hazard problem of
Carroll (2015 ) allowing for random contracts. In the model, the principal knows only some
actions the agent can take and evaluates contracts based on their guaranteed payoff over all
possible action sets containing the known actions. The agent is protected by limited liability
and both parties are risk-neutral. The principal commits to a randomization over contracts
and offers the realized (deterministic) contract to the agent. This allows the principal to
hedge against the Knightian uncertainty regarding the agent’s action set.

We first show that the alignment of the principal’s and the agent’s interests achieved
by linear contracts provides a robustly optimal way to incentivize the agent, whether the
contract is chosen randomly or not. Specifically, any mixture over contracts can be improved
by making each contract in its support linear. The model thus retains the prediction from
the deterministic case that the agent is offered a linear contract.

Our proof is based on explicitly formulating the guarantee of a (finitely supported) ran-
dom contract as a linear program for adversarial Nature. This problem is in general a mul-
tidimensional mechanism design problem, where the agent’s type is the realized contract.
Nature designs for each type an action subject to usual incentive compatibility constraints
and a type-dependent participation constraint stemming from the presence of actions known
to the principal. Our proof proceeds by using the dual to Nature’s problem to identify a
random linear improvement contract. Applied to the deterministic case, the approach yields
a short proof of Carroll ’s (2015 ) result, with linear programming duality used in place of his
separating hyperplane argument.
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Having established that it suffices to randomize over linear contracts, we consider the
problem of choosing an optimal mixture over a grid of such contracts. This problem is made
tractable by turning the principal’s max-min problem into a max-max problem. This can
be done by taking the dual of Nature’s minimization problem. The max-max problem is, of
course, simply a maximization problem and can be solved for analytically. This leads us to
identify a closed-form solution for the optimal randomization over a fixed grid. As the size of
the grid grows large, we obtain a guess of the form of an optimal random contract—a random
linear contract characterized by a single parameter that bounds its continuous support.

To verify that the limit contract is optimal, we construct a saddle point in the zero-sum
game played between the principal and Nature. This construction yields two important
corollaries. First, given the equilibrium strategy of Nature, commitment to randomization
is unecessary. Second, any randomization over menus of contracts cannot outperform our
optimal random contract. That is, screening would not help despite only the agent knowing
the true production technology.

Regarding the issue of the simplicity of robustly optimal contracts, our results admit two
interpretations. On one hand, the optimal random contract we identify is simple because
the agent is only ever offered a linear contract. Moreover, the randomization belongs to
a one-parameter family of distributions. On the other hand, a new layer of complexity is
introduced because it is optimal to randomize over a continuum of contracts.

That randomization may provide a hedge against Knightian uncertainty, or ambiguity,
was suggested by Raiffa (1961 ) in response to Ellsberg (1961 ). If we adopt the interpretation
that the environment is chosen by adversarial Nature, then the issue can be phrased as a
question of timing or observability. Randomization mitigates uncertainty if Nature chooses
an action set prior to the realization of a random contract. In fact, in our setting, we show
that gain from randomization may be arbitrarily large. On the other hand, randomization
has no value if Nature chooses an action set after the realization in which case the analysis
reduces to that of Carroll (2015 ). Decision theory provides axiomatizations for both attitudes
and even uncertainty regarding the timing of Nature’s move (see, e.g., Saito , 2015 ; Ke and
Zhang , 2020 ).

In practice, if the uncertainty regards the realization of some physical process such as
the choice of agent or the determination of feasible production technologies, then it seems
reasonable to assume that the resolution of a lottery over contracts just prior to one is
presented to the agent should have no effect on these phenomena, and randomization should
thus have value. Interestingly, this is the implicit position adopted in much of the recent
literature on robust mechanism design (see, e.g., Carrasco, Luz, Kos, Messner, Monteiro, and
Moreira (2018 ) and Che and Zhong (2024 ), who find random prices to be robustly optimal
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in single- and multi-dimensional screening environments). Allowing for randomization in
max-min problems is also standard in computer science.

This work is related to the literature seeking foundations for linear and other commonly
observed contracts following Holmström and Milgrom (1987 ), who concluded their fully
Bayesian analysis of the optimality of linear intertemporal incentives by suggesting that the
reason for the popularity of linear schemes might be their great robustness, and that the
case for it could perhaps be made more effectively with a non-Bayesian model. We refer
the reader to Carroll (2019 ) for a survey of this literature. Subsequent work has extended
and generalized Carroll ’s (2015 ) approach to other environments with moral hazard and
established the robust optimality of linear contracts therein (see the works cited in the
opening paragraph). Related models are studied also by Antic (2021 ), Antic and Georgiadis 

(2024 ), Rosenthal (2023 ), Burkett and Rosenthal (2024 ), and Kambhampati (2024 ), who
find worst-case optimal deterministic contracts different from linear contracts.

The rest of this paper is organized as follows. Section 2 sets up the model. Section 3 

establishes that any finitely supported contract can be weakly improved by a randomization
over linear contracts with a weakly smaller support. Section 4 sketches how to identify op-
timal random contracts defined on a grid and supplies a guess for the form of the optimal
random contract by taking the size of the grid large. Section 5 verifies the guess by con-
structing a saddle point in the zero-sum game between the principal and Nature. Section 6 

concludes with a discussion of corollaries and extensions of the main results. The Appendix
contains proofs omitted from the main text.

2 Model

We consider the problem of a principal designing a contract to motivate an agent subject to
moral hazard, with the principal facing non-quantifiable uncertainty over the agent’s set of
feasible actions.

Throughout, we write uv := ∑d
i=1 uivi for the usual inner product of any two vectors

v and u in Rd. Moreover, for any topological space B, we use ∆(B) to denote the set of
all finitely supported probability measures on B and ∆̄(B) to denote the set of all Borel
probability measures on B.

Let Y := {y1, . . . , yn} ⊂ R+ be the finite set of possible output levels, labeled in increasing
order so that 0 ≡ y1 < · · · < yn. It will be convenient to view the possible output levels as
a vector y = (y1, . . . , yn) ∈ Rn

+ and introduce the index set I := {1, . . . , n}.
An (unobservable) action for the agent is a pair (π, c) ∈ ∆(Y ) × R+, where π =

(π1, . . . , πn) is the output distribution and c is the associated cost to the agent. A tech-
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nology is a nonempty compact set of actions A ⊂ ∆(Y )× R+.
The agent is protected by limited liability, requiring payments to him to be non-negative.

A (deterministic) contract is thus a non-negative n-vector w = (w1, . . . , wn) ∈ Rn
+, where wi

is the payment from the principal to the agent if output yi is realized.
Both parties are assumed risk-neutral. Thus, if the agent plays the action (π, c) given

contract w, then the principal’s expected payoff is π(y −w) = ∑
i∈I πi(yi −wi), whereas the

agent gets πw − c = ∑
i∈I πiwi − c.

The principal does not know the actual technology available to the agent. She is only
aware of some technology A0, referred to as the known technology, and views any technology
A ⊇ A0 as possible. We assume throughout that the known technology A0 contains a
surplus-generating action, i.e., there exists (π, c) ∈ A0 such that πy − c > 0.

Faced with this uncertainty, the principal evaluates contracts based on their guaranteed
performance over all technologies that contain the known one. To state this formally, given
a contract w and a technology A, denote the agent’s maximum payoff by

U(w|A) := max
(π,c)∈A

πw − c. (2.1)

In the special case of the known technology A0, we write

U0(w) := U(w|A0). (2.2)

We note for future reference that U0(w) is continuous in the contract w by the theorem of
the maximum. The corresponding payoff to the principal is

V (w|A) := min
(π,c)∈A

π(y − w) s.t. πw − c = U(w|A). (2.3)

Note, in particular, that if the agent has multiple maximizers, then ties are broken against
the principal. The principal’s guarantee from the contract w is then

V (w) := inf
A⊇A0

V (w|A). (2.4)

We assume that the principal can hedge against the uncertainty over the agent’s technol-
ogy by randomizing over contracts. Formally, a random contract is a probability measure p
on Rn

+. Then, ∆(Rn
+) is the space of finitely supported random contracts and ∆̄(Rn

+) is the
space of all random contracts.

Given any random contract p, the agent observes the realized contract w before choosing
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an action. We can thus extend the principal’s payoff in (2.3 ) to random contracts by setting

V (p|A) := Ep[V (w|A)]. (2.5)

Similarly, we extend the guarantee (2.4 ) to random contracts by setting

V (p) := inf
A⊇A0

V (p|A). (2.6)

The principal’s optimal guarantee is the supremum of the guarantee (2.6 ) over all ran-
dom contracts, or supp∈∆̄(Rn

+) V (p). A random contract is optimal if it attains this optimal
guarantee. In contrast, the optimal deterministic guarantee is the supremum of (2.4 ) over all
contracts, or equivalently, the supremum of (2.6 ) over all degenerate random contracts (i.e.,
contracts whose support is a singleton). A contract w is an optimal deterministic contract
if it attains the optimal deterministic guarantee. We note that the existence of a known
surplus-generating action ensures that the optimal deterministic guarantee, and hence the
optimal guarantee, is positive.

Linear contracts play a central role in the analysis. A deterministic contract w is linear if
w = αy for some slope α ∈ [0, 1]. A random contract p ∈ ∆̄(Rn

+) is linear, or a random linear
contract, if every contract in the support of p is linear, i.e., for all w ∈ supp(p), there exists
a slope α ∈ [0, 1] such that w = αy. Whenever convenient, we identify each (deterministic)
linear contract with its slope, and then identify the set of random linear contracts with
∆̄([0, 1]).

Some remarks are in order regarding the formulation of the problem:

1. Because we assume that the agent observes the realized contract before choosing an
action, the agent need not know the underlying random contract, or even be aware
that the contract was generated via randomization. In fact, because of bilateral risk-
neutrality, giving the agent a random contract would not be useful: Given any action
(π, c), the principal’s and the agent’s payoffs from a randomized contract p would be
π(y − Ep[w]) and πEp[w] − c, and thus we could equivalently use the deterministic
contract w̃ = Ep[w].

2. Our contracting environment is the same as in Carroll (2015 ), save for the following
minor differences. First, we take the set of outputs, Y , to be finite (rather than just
compact) to minimize technicalities. This is not required to prove Proposition 3 , but
it allows for simple duality-based proofs in Section 3 . Second, we assume adversarial
tie-breaking in (2.3 ), whereas Carroll broke ties in the principal’s favor. Adversarial
tie-breaking could be argued to better capture the spirit of the robustness exercise,
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and it simplifies the analysis as the infimum in (2.6 ) becomes a minimum. However,
as we will see, both assumptions lead to the same optimal guarantee and the optimal
contract is similarly unaffected by tie-breaking except for an uninteresting corner case.

3 Linear improvement argument

The duality approach we adopt to prove the optimality of random linear contracts also yields
a short proof of the optimality of linear contracts within the class of deterministic contracts.
It is instructive to see the argument first in this simpler case. We then generalize from the
deterministic case by showing that, for any finite random contract, there exists a random
linear contract with weakly smaller support that obtains at least the same payoff guarantee.

3.1 Deterministic case

Consider a deterministic contract w. We formulate the guarantee (2.4 ) of w as a linear
program. To this end, note that, given any technology A ⊇ A0, only the action chosen by
the agent matters for the principal’s payoff V (w|A) in (2.3 ).1  It thus suffices to take the
infimum in (2.4 ) over technologies that add at most one new action to the known technology
A0. It follows that the contract’s guarantee is characterized by the following linear program:

V (w) = min
π,c

π(y − w) (3.1)

s.t. πw − c ≥ U0(w), (3.2)
n∑
i=1

πi = 1, (3.3)

c, πi ≥ 0 ∀i ∈ I. (3.4)

That is, Nature designs an action (π, c) to minimize the principal’s profit, with constraint
(3.2 ) ensuring that (π, c) is a best response for the agent since, by (2.2 ), U0(w) is the agent’s
maximum payoff from the known technology A0. Problem (3.1 –3.4 ) is feasible because taking
(π, c) to be an action in A0 that attains U0(w) satisfies all constraints.

We can now show that any contract can be weakly improved upon by some linear contract.

Proposition 1. For every contract w, there is a linear contract α such that V (w) ≤ V (α).

Proof. Fix a contract w. The guarantee V (w) is clearly bounded from below by −maxiwi.
1I.e., if (π∗, c∗) attains the minimum in (2.3 ) given w and A ⊇ A0, then V (w|A) = V (w|A0 ∪ {(π∗, c∗)}).
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By strong duality, the following dual to problem (3.1 –3.4 ) is then feasible and bounded:

V (w) = max
λ,µ

λU0(w) + µ (3.5)

s.t. λwi + µ ≤ yi − wi ∀i ∈ I, (3.6)

λ ≥ 0. (3.7)

Let (λ∗, µ∗) be an optimal solution. Evaluating (3.6 ) at i = 1 gives µ∗ ≤ −(1+λ∗)w1 ≤ 0
as y1 = 0. Define a new contract w′ as follows. For each i, choose w′i to satisfy (3.6 ) as an
equality, i.e., let

w′i := yi − µ∗

λ∗ + 1 . (3.8)

By inspection, w′ is an affine function of output. As the original contract w also satisfies
(3.6 ), we have w′ ≥ w ≥ 0. Thus, w′ is a well-defined contract. Moreover, we have

V (w′) ≥ λ∗U0(w′) + µ∗ ≥ λ∗U0(w) + µ∗ = V (w), (3.9)

where the first inequality follows because (λ∗, µ∗) is by construction of w′ still feasible when w
is replaced with w′ in the dual, and the second inequality follows because w′ ≥ w and U0(w)
is weakly increasing in w by inspection of (2.2 ). We conclude that the original contract w is
outperformed by the affine contract w′.

To get a linear contract, we may drop the lump-sum payment −µ∗/(λ∗ + 1) ≥ 0 from w′

by letting w′′ := y/(λ∗+1). This leaves the agent’s choice from every technology unchanged,
but weakly increases the principal’s payoff. Thus, V (w′′) ≥ V (w′) ≥ V (w).

A reader familiar with Carroll ’s (2015 ) proof will see the parallels between the arguments,
with duality here replacing the separating hyperplane theorem. Given the equivalence of
linear programming duality and the separating hyperplane theorem, at a deeper level the
proofs are the same. However, adopting a linear programming perspective seems to allow a
somewhat more concise argument.2  

2The proof of Proposition 1 extends mutatis mutandis to any compact set Y ⊂ R+ such that minY = 0,
with a contract then defined to be a continuous function w : Y → R+. The primal problem (3.1 –3.4 ) then
becomes one of choosing a regular nonnegative Borel measure π on Y and a cost c ∈ R to solve

V (w) = min
ˆ
Y

(y − w(y)) dπ(y) s.t.
ˆ
Y

w(y) dπ(y)− c ≥ U0(w),
ˆ
Y

1 dπ(y) = 1, and c ≥ 0.

The dual problem (3.5 –3.7 ) in turn becomes one of choosing numbers λ ∈ R and µ ∈ R to

max λU0(w) + µ s.t. λw(y) + µ ≤ y − w(y) ∀y ∈ Y, and λ ≥ 0.

As the zero contract has V (0) ≥ 0, we may assume that V (w) > 0. By weak duality, this implies that the
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Proposition 1 implies that linear contracts are optimal, in the following sense:

Corollary 1. The optimal deterministic guarantee satisfies supw∈Rn
+
V (w) = supα∈[0,1] V (α).

Proof. Clearly v̄ := supw∈Rn
+
V (w) ≥ supα∈[0,1] V (α). For the converse, let wn be a sequence

such that V (wn)→ v̄. By Proposition 1 , there is a sequence of linear contracts αn such that
V (wn) ≤ V (αn) ≤ supm≥n V (αm) for all n. Hence, v̄ ≤ lim supn V (αn) ≤ supα∈[0,1] V (α).

Having established the optimality of linear contracts as a class, it only remains to char-
acterize the optimal deterministic guarantee and the optimal linear contracts to conclude
the analysis of deterministic contracts. This task is accomplished in Appendix A.1 , which
largely follows from the analysis in Carroll (2015 ), but serves to illustrate that adversarial
and principal-optimal tie-breaking yield essentially the same results.

3.2 Random contracts

We now consider random contracts. To facilitate our duality-based arguments, we temporar-
ily restrict attention to finitely supported random contracts (which are dense in the space
of all contracts). The following results generalize Proposition 1 and Corollary 1 to such
contracts.

Proposition 2. For every finitely supported random contract p ∈ ∆(Rn
+), there is a finitely

supported random linear contract q ∈ ∆(Rn
+) such that

V (p) ≤ V (q) and |supp(p)| ≥ |supp(q)| .

Corollary 2. The optimal guarantee from finitely supported random contracts satisfies

sup
p∈∆(Rn

+)
V (p) = sup

p∈∆([0,1])
V (p).

Proof. Same as Corollary 1 , mutatis mutandis.

We note that because of the conclusion regarding supports, Proposition 2 nests Propo-
sition 1 as a special case by taking p to be a degenerate random contract. More generally,
Proposition 2 implies that random linear contracts are optimal given any upper bound on the
size of a contract’s support (e.g., because of computational or complexity considerations).

dual is also bounded. Moreover, if we let λ′ = 1 and µ′ = min{y − 2w(y) : y ∈ Y } − 1, then (λ′, µ′) satisfies
all dual constraints as strict inequalities. Therefore, strong duality holds for this pair of semi-infinite linear
programs (see, e.g., Lai and Wu , 1992 , Theorem 2.1). The rest of the argument now proceeds as above, with
the affine improvement contract constructed analogously to (3.8 ) given some optimal dual solution.
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In order to establish Proposition 2 , the first step is to formulate the guarantee (2.6 ) as
a linear program. Let p ∈ ∆(Rn

+) be a finitely supported random contract. Enumerate the
contracts in the support of p so that supp(p) = {w1, . . . , wk} and denote the index set by
T := {1, . . . , k}. We will write pt := p(wt) for the probability of contract t. In searching
for a worst-case technology against p, it suffices to consider technologies A ⊇ A0 that have
at most k new actions, one for each possible realized contract.3  The guarantee V (p) is thus
characterized by the following finite linear program, which we refer to as the primal problem:

V (p) = min
{(πt,ct)}

∑
t∈T

ptπ
t(y − wt) (3.10)

s.t. πtwt − ct ≥ πswt − cs ∀t, s ∈ T : t 6= s, (κts) (3.11)

πtwt − ct ≥ U0(wt) ∀t ∈ T, (λt) (3.12)∑
i∈I

πti = 1 ∀t ∈ T, (µt) (3.13)

ct, π
t
i ≥ 0 ∀i ∈ I, t ∈ T. (3.14)

That is, Nature designs, for each contract wt in the support of p, an action (πt, ct)
the agent will take if contract wt is realized. This problem can be interpreted as a multi-
dimensional mechanism design problem where the agent’s type t corresponds to a contract
wt ∈ Rn

+, the allocation is an output distribution π ∈ ∆(Y ), and the transfer is a cost
c, constrained to be nonnegative. The constraint (3.12 ) is a participation constraint that
ensures that each type t prefers its own action (πt, ct) to any of the known actions in A0. (Note
that the utility from this outside option depends on the type t.) The new constraint (3.11 ),
absent from Nature’s problem studied in the deterministic case, is an incentive compatibility
constraint that ensures that each type t prefers its own action (πt, ct) to the action (πs, cs)
of every other type s.

Problem (3.10 –3.14 ) is feasible because taking each (πt, ct) to be an action in A0 that
attains U0(wt) satisfies all constraints. (Put differently, Nature can always just give the agent
the known technology A0.) Moreover, its value is clearly bounded from below by −maxi,twti ,
and thus an optimal solution exists.

As in the deterministic case, we will study the dual to Nature’s problem. Strong duality
3To see this, given any technology A ⊇ A0, let at := (πt, ct) denote the action the agent chooses from A

if contract wt is realized. (That is, at attains V (wt|A).) It is straightforward to verify that, for all t ∈ T , we
have V (wt|A) = V (wt|A0 ∪ {a1, . . . , ak}). This implies that

V (p|A) =
∑
t∈T

ptV (wt|A) =
∑
t∈T

ptV (wt|A0 ∪ {a1, . . . , ak}) = V (p|A0 ∪ {a1, . . . , ak}).

Therefore, for any A ⊇ A0, there exists a technology A′ ⊇ A0 with
∣∣A′ \A0

∣∣ ≤ k such that V (p|A′) = V (p|A).
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implies that the following dual is feasible and bounded, with V (p) the optimal value:

V (p) = max
κ,λ,µ

∑
t∈T

λtU
0(wt)+

∑
t∈T

µt (3.15)

s.t. λtw
t
i + µt +

∑
s 6=t

κtsw
t
i −

∑
s 6=t

κstw
s
i ≤ pt(yi − wti) ∀i ∈ I, t ∈ T, (πti) (3.16)

λt +
∑
s6=t

κts −
∑
s 6=t

κst ≥ 0 ∀t ∈ T, (ct) (3.17)

κts, λt ≥ 0 ∀t, s ∈ T : t 6= s. (3.18)

We will use dual solution to refer to any vector (κ, λ, µ) ∈ RT (T−1) × RT × RT satisfying
constraints (3.17 ) and (3.18 ), and use the qualifiers feasible or optimal to indicate, respec-
tively, that the dual solution is feasible or optimal in (3.15 –3.18 ) for a given random contract
p ∈ ∆(Rn

+).
In order to make duality between problems (3.10 –3.14 ) and (3.15 –3.18 ) easier to verify,

each non-trivial primal constraint in (3.10 –3.14 ) has the associated dual variable displayed
next to it in parenthesis. Similarly, the associated primal variable is displayed next to each
non-trivial dual constraint in (3.15 –3.18 ). It may also be instructive to compare the above
dual problem to the dual (3.5 –3.7 ) from the deterministic case; by inspection, the problems
coincide if the random contract p is degenerate so that T is a singleton.

The general idea in the proof of Proposition 2 is analogous to the proof of Proposition 1 

in the deterministic case: Given a random contract p, we take an optimal dual solution
(κ∗, λ∗, µ∗) and use constraint (3.16 ) to construct, for each contract wt in the support of p,
an affine contract that dominates it from above. It will then be shown that a randomization
over these affine contracts improves on p, and that a further improvement is obtained by a
random linear contract.

We will need a preliminary result about the structure of optimal dual solutions. Given
a dual solution (κ, λ, µ), let G(κ) be a directed graph with vertex set T = {1, . . . , k} and
an arc directed from t to s whenever κts > 0. Note that if (κ, λ, µ) is an optimal solution
to (3.15 –3.18 ), then by complementary slackness, each arc in G(κ) corresponds to a binding
incentive compatibility constraint in (3.11 ) in the primal problem.

Lemma 1. There is an optimal dual solution (κ∗, λ∗, µ∗) for which the graph G(κ∗) is acyclic.

We prove Lemma 1 in the Appendix by ε-relaxing the incentive compatibility constraints
in (3.11 ) and using the continuity of the corresponding dual solution with respect to ε.

The next two lemmas establish the existence of affine contracts that outperform the
contracts in the support of p. In showing this, we will view the dual constraint (3.16 ) as a
system of linear inequalities in the contracts {w1, . . . , wk}, in the following sense.
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Definition 1. Given a dual solution (κ, λ, µ) and probabilities (p1, . . . , pk) ∈ [0, 1]k, the
w-system is the system of linear inequalities in (w1, . . . , wk) ∈ Rkn

+ defined by (3.16 ).

Given a dual solution (κ, λ, µ), define the set of in-neighbors of t ∈ T in the graph G(κ)
as N(t) := {s ∈ T : κst > 0}, and the set of out-neighbors as O(t) := {s ∈ T : κts > 0}. We
say that contract w ∈ Rn

+ is positive affine if wi = αyi + β for all i ∈ I for some α ∈ (0, 1]
and β ≥ 0 independent of i. (Because y1 = 0, every affine contract has β ≥ 0, so being
positive affine is a restriction on α.)

Lemma 2. Let (w1, . . . , wk) ∈ Rkn
+ be feasible in the w-system given (κ, λ, µ) and (p1, . . . , pk).

If all in-neighbors of a contract t ∈ T are positive affine, i.e., if the contract ws in (w1, . . . , wk)
is positive affine for all s ∈ N(t), then there is a positive affine contract xt satisfying the
following properties:

1. xt ≥ wt,

2. (xt, w−t) is feasible in the w-system.4  

Proof. Let t ∈ T be a contract whose every in-neighbor s ∈ N(t) is a positive affine contract.
The (i, t)-instance of constraint (3.16 ) then takes the form

λtw
t
i + µt +

∑
s∈O(t)

κtsw
t
i −

∑
s∈N(t)

κst(αsyi + βs) ≤ pt(yi − wti),

or, equivalently,

wti ≤
pt +∑

s∈N(t) κstαs

λt + pt +∑
s∈O(t) κts

yi +
∑
s∈N(t) κstβs − µt

λt + pt +∑
s∈O(t) κts

=: xti. (3.19)

As i ranges over I, the right-hand side defines a vector xt. By construction, xt ≥ wt ≥ 0,
and thus xt is a contract. It is affine by inspection. To verify that xt is positive affine, note
that

0 <
pt +∑

s∈N(t) κstαs

λt + pt +∑
s∈O(t) κts

≤
pt +∑

s∈N(t) κst

λt + pt +∑
s∈O(t) κts

≤ pt
pt

= 1,

where the first inequality follows because pt, αs > 0 and κts, κst, λt ≥ 0, the second follows
because αs ≤ 1 as every in-neighbor s is positive affine, and the third inequality follows
because the dual solution (κ, λ, µ) satisfies (3.17 ) by definition.

For property 2, note that (xt, w−t) satisfies the (i, t)-instance of (3.16 ) with equality for
all i ∈ I by construction of xt. Moreover, because xt ≥ wt and κst ≥ 0 for all s 6= t, replacing
wt with xt weakly relaxes all other instances of (3.16 ).

4We use the standard shorthand (xt, w−t) := (w1, . . . , wt−1, xt, wt+1, . . . , wk).
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Lemma 3. Let (w1, . . . , wk) ∈ Rkn
+ be feasible in the w-system given (κ, λ, µ) and (p1, . . . , pk).

If the graph G(κ) is acyclic, then there exists a vector of positive affine contracts (x1, . . . , xk)
that is feasible in the w-system and satisfies xt ≥ wt for every t ∈ T .

Proof. Let (w1, . . . , wk) ∈ Rkn
+ be feasible in the w-system and suppose G(κ) is acyclic.

Partition T recursively as follows:

• Let L0 := {t ∈ T : N(t) = ∅}.

• For ` ≥ 1, let L` := {t ∈ T \ ∪m<`Lm : N(t) ⊆ ⋃m<` Lm}.
That is, the zero layer L0 consists of all contracts that have no in-neighbors in the graph
G(κ). For ` > 0, the `-th layer L` consists of all contracts not contained in any of the lower
layers Lm, m < `, but whose in-neighbors are in these layers. Because G(κ) is acyclic, it is
straightforward to verify that there exists ¯̀ ∈ N0 such that L` is nonempty if and only if
0 ≤ ` ≤ ¯̀, and that {L1, . . . , L¯̀} is a partition of T .

By relabeling if necessary, we can assume without loss of generality that the contracts
(w1, . . . , wk) are labeled monotonically so that contracts with higher indices are in higher
layers, in the following sense: If t < t′, t ∈ L`, and t′ ∈ L`′ , then ` ≤ `′.

We now construct the positive affine contracts (x1, . . . , xk) ∈ Rkn
+ by induction on t.

Base case: Because the contracts are labeled monotonically, we have 1 ∈ L0 and thus
contract 1 has no in-neighbors. Moreover, (w1, . . . , wk) is feasible in the w-system given
(κ, λ, µ) and (p1, . . . , pk) by assumption. Thus, by Lemma 2 , there is a positive affine contract
x1 ≥ w1 such that (x1, w2, . . . , wk) is feasible in the w-system.

Induction step: Let 1 < t ≤ k. Suppose there exist positive affine contracts x1, . . . , xt−1

with xs ≥ ws for all 1 ≤ s ≤ t− 1, and (x1, . . . , xt−1, wt, . . . , wk) is feasible in the w-system.
Let L` be the layer containing contract t. By definition of L`, we have N(t) ⊆ ∪m<`Lm. The
induction hypothesis and monotonicity of labeling imply that t’s in-neighbors are positive
affine. (Note that this subsumes the special case ` = 0, in which case N(t) ⊆ ∪m<0Lm = ∅
and the conclusion holds vacuously.) Thus, Lemma 2 again gives us a positive affine contract
xt ≥ wt such that (x1, . . . , xt, wt+1, . . . , wk) is feasible in the w-system.

With the above results in hand, we are now ready to prove Proposition 2 .

Proof of Proposition 2 . Let p ∈ ∆(Rn
+) be a random contract with supp(p) = {w1, . . . , wk}

and let (κ∗, λ∗, µ∗) be an optimal solution to the dual (3.15 –3.18 ) such that G(κ∗) is acyclic,
the existence of which is ensured by Lemma 1 .

Because G(κ∗) is acyclic and (w1, . . . , wk) is obviously feasible in the w-system given
(κ∗, λ∗, µ∗) and (p1, . . . , pk), Lemma 3 gives us a vector of positive affine contracts (x1, . . . , xk)
that is feasible in the w-system and satisfies xt ≥ wt for all t ∈ T .
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Consider now the dual (3.15 –3.18 ) where we replace the contracts (w1, . . . , wk) with the
positive affine contracts (x1, . . . , xk) while keeping the probabilities (p1, . . . , pk) unchanged:

V (p1, . . . , pk;x1, . . . , xk) := max
κ,λ,µ

∑
t∈T

λtU
0(xt)+

∑
t∈T

µt

s.t. λtx
t
i + µt +

∑
s 6=t

κtsx
t
i −

∑
s 6=t

κstx
s
i ≤ pt(yi − xti) ∀i ∈ I, t ∈ T,

λt +
∑
s 6=t

κts −
∑
s 6=t

κst ≥ 0 ∀t ∈ T,

κts, λt ≥ 0 ∀t, s ∈ T : t 6= s.

Because (x1, . . . , xk) is feasible in the w-system given (κ∗, λ∗, µ∗) and (p1, . . . , pk), the dual
solution (κ∗, λ∗, µ∗) is feasible in the above problem. Therefore,

V (p1, . . . , pk;x1, . . . , xk) ≥
∑
t∈T

λ∗tU
0(xt) +

∑
t∈T

µ∗t ≥
∑
t∈T

λ∗tU
0(wt) +

∑
t∈T

µ∗t = V (p), (3.20)

where the second inequality follows because xt ≥ wt for all t and U0 is weakly increasing in
the contract (in the pointwise order) by inspection of (2.2 ).

Moreover, strong duality implies that V (p1, . . . , pk;x1, . . . , xk) is the optimal value of the
primal problem (3.10 –3.14 ), which using the positive affine form xti = αtyi + βt (i ∈ I) of
each contract t now becomes

V (p1, . . . , pk;x1 . . . , xk) = min
{(πt,ct)}

∑
t∈T

pt(1− αt)πty −
∑
t∈T

ptβt (3.21)

s.t. αtπ
ty − ct ≥ αtπ

sy − cs ∀t, s ∈ T : t 6= s, (3.22)

αtπ
ty − ct ≥ U0(αt) ∀t ∈ T, (3.23)∑
i∈I

πti = 1 ∀t ∈ T, (3.24)

ct, π
t
i ≥ 0 ∀i ∈ I, t ∈ T. (3.25)

Note that the feasible set is independent of the constants βt ≥ 0, t ∈ T . (They enter
both sides of the incentive compatibility and participation constraints (3.22 ) and (3.23 ), and
cancel out.) By inspection of (3.21 –3.25 ), replacing each xt with the linear contract αt gives

V (p1, . . . , pk;α1, . . . , αk) = V (p1, . . . , pk;x1, . . . , xk) +
∑
t∈T

ptβt ≥ V (p1, . . . , pk;x1, . . . , xk),

which together with (3.20 ) implies V (p1, . . . , pk;α1, . . . , αk) ≥ V (p).
To conclude the proof, define the random linear contract q by setting q(α) = ∑

t:αt=α pt for
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all α ∈ [0, 1], with the sum over the empty set equal to zero, as usual.5  It is then immediate
that |supp(q)| ≤ |supp(p)|. Furthermore, V (q) is the optimal value of the problem (3.21 –
3.25 ) with βt ≡ 0 for all t and with the additional constraint that (πt, ct) = (πs, cs) for all
s, t ∈ T such that αs = αt. Therefore, V (q) ≥ V (p1, . . . , pk;α1, . . . , αk) ≥ V (p).

Proposition 2 shows that every random contract p ∈ ∆(Rn
+) is weakly improved by a

random linear contract. The proof shows that p can be weakly improved by linearizing
each contract in its support while keeping the probabilities fixed, thus generalizing the proof
of Proposition 1 from the deterministic case. The new challenge in the random case is the
presence of the incentive compatibility constraints (3.11 ), which create interlinkages between
contracts as the action (πt, ct) Nature targets to contract wt will be available to the agent also
when any other contract is realized. (This is why randomization is useful in the first place.)
Because the primal (3.10 –3.14 ) is a multi-dimensional screening problem, the structure of
binding incentive compatibility constraints (i.e., those with a positive shadow price) is not
clear a priori. Our proof deals with this by showing that there nevertheless is an optimal
solution under which the binding constraints do not form a cycle. This is enough to then
use the dual to Nature’s problem to construct the improvement contract.

4 Identifying optimal contracts

We now sketch how to identify an optimal randomization over a grid of linear contracts.6  

As the grid becomes dense in the unit interval, the limit of the corresponding optimal ran-
domizations is a natural guess for the optimal random contract. (A rough intuition for why
optimality is only obtained in the limit is that each contract adds an additional incentive
compatibility constraint in Nature’s minimization problem, thereby reducing its value.) This
guess is verified to be optimal in Section 5 . Because the verification proof does not formally
rely on any results in this section, we proceed here somewhat informally.

We passed through Nature’s problem against a randomization over linear contracts in
the proof of Proposition 2 . Specifically, setting βt ≡ 0 for all t ∈ T in problem (3.21 –3.25 )
gives the primal problem for a random linear contract p with supp(p) = {α1, . . . , αk}. It
will be convenient to let the support of the contracts lie on an equally-spaced grid, i.e.,
0 < α1 < · · · < αk ≡ 1 are defined by αt := t/k for t = 0, . . . , k. (Thus, αt+1−αt = k−1.) By
inspection, the problem depends on each output distribution πt only via the expected output
et := πty ∈ [0, yn]. With this change of variables, we can write the principal’s guarantee as

5If the list α1, . . . , αk includes multiple copies of some slope, then the tuple (p1 . . . , pk;α1, . . . , αk) is itself
not a random linear contract according to our definition as it is not a finitely supported probability on [0, 1].

6See the working paper Kambhampati, Toikka, and Vohra (2024 ) for further details.
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follows:

V (p) = min
{(et,ct)}

∑
t∈T

pt(1− αt)et (4.1)

s.t. αtet − ct ≥ αtes − cs ∀t, s ∈ T : t 6= s, (4.2)

αtet − ct ≥ U0(αt) ∀t ∈ T, (4.3)

et ≤ yn ∀t ∈ T, (4.4)

et, ct ≥ 0 ∀t ∈ T. (4.5)

The agent’s type is now a slope α, the allocation is an expected output e ∈ [0, yn], the
“transfer” is a cost c ≥ 0, and the outside option in (4.3 ) is still type-dependent.

Standard arguments allow us to simplify the constraints (4.2 –4.5 ). Specifically, the up-
ward adjacent constraints in (4.2 ) can be taken to hold with equality without loss of optimal-
ity. This allows us to recursively eliminate the costs up to c1, which can then be set to zero
without loss of optimality. Adding in the usual monotonicity constraint on the allocation
rule to ensure incentive compatibility and dropping the upper-bound constraints (without
loss of optimality) yields a simplified program:

V (p) = min
{et}

∑
t∈T

pt(1− αt)et (4.6)

s.t. k−1
t∑

s=1
es ≥ U0(αt) ∀t ∈ T, (λt) (4.7)

et+1 − et ≥ 0 ∀t ∈ T \ {k}, (θt) (4.8)

et ≥ 0 ∀t ∈ T. (4.9)

Because the principal chooses p to maximize V , it is useful to take the dual of Nature’s
minimization problem to arrive at a single maximization problem characterizing the princi-
pal’s optimal guarantee over the grid:

max
p,λ,θ

∑
t∈T

λtU
0(αt) (4.10)

s.t. k−1
k∑
s=t

λs + θt−1 − θt ≤ pt(1− αt) ∀t ∈ T, (et) (4.11)
∑
t∈T

pt = 1 (δ) (4.12)

λt, pt ≥ 0 ∀t ∈ T, (4.13)

θt ≥ 0 ∀t ∈ T \ {k}, (4.14)
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where α0 ≡ 0, θ0 ≡ 0, and θk ≡ 0. By strong duality, the value of (4.10 –4.14 ), i.e., the
optimal guarantee over the grid, is simply

min
{et},δ

δ (4.15)

s.t. δ − (1− αt)et ≥ 0 ∀t ∈ T, (pt) (4.16)

k−1
t∑

s=1
es ≥ U0(αt) ∀t ∈ T, (λt) (4.17)

et+1 − et ≥ 0 ∀t ∈ T \ {k}, (θt) (4.18)

et ≥ 0 ∀t ∈ T. (4.19)

Identifying a solution to (4.15 –4.19 ) is straightforward. Note first that (4.16 ) can be taken
to hold with equality for all t < k without loss of optimality; increasing each et so that the
constraint binds relaxes the participation constraints (4.17 ) and satisfies the monotonicity
constraints (4.18 ) with strict inequality (recall, α1 < · · · < αk).7  Then, expressing each
allocation et in terms of the single parameter δ and substituting into the t-th participation
constraint (4.17 ) yields

δ ≥
U0( t

k
)∑t

s=1
1
k−s

,

where αt has been replaced with t/k to simplify the right-hand side expression. To minimize
δ subject to the participation constraints, it must therefore be that

δ = max
t∈T

U0( t
k
)∑t

s=1
1
k−s

. (4.20)

The value of (4.15 –4.19 ), and hence (4.10 –4.14 ), is thus given by (4.20 ).
To find the random linear contract that attains the guarantee, we can use the comple-

mentary slackness conditions, together with (4.11 ) and (4.12 ). Because all monotonicity
constraints (4.18 ) hold with strict inequality, complementary slackness implies that θt = 0
for all t in the corresponding solution to (4.10 –4.14 ). Moreover, (4.17 ) holds with equality
only at the value t = t∗ that solves the optimization problem in (4.20 ). Thus, by comple-
mentary slackness, λt = 0 for all t 6= t∗. Because (4.11 ) must bind for each t, it follows that
pt = 0 for all t > t∗. Moreover, for t ≤ t∗, (4.11 ) yields

pt = λt∗

k − t
,

7Because αk = 1, we can take ek = ek−1 + 1 without loss of optimality.
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again using αt = t/k. Substituting each pt for the right-hand side expression and using
the probability constraint (4.12 ) pins down the exact value of λt∗ . It follows from simple
arithmetic that the the optimal grid-based contract sets

pt =


1
k−t

(∑t∗

s=1
1
k−s

)−1
if 1 ≤ t ≤ t∗,

0 if t∗ < t ≤ k.
(4.21)

It can be shown that as the number of grid points k grows to infinity, (4.20 ) converges to
(5.1 ), the value proven to be the optimal guarantee. When there exists a positive solution
to the maximization problem in (5.1 ), then the limit of (4.21 ) is the random linear contract
corresponding to the cumulative distribution function satisfying (5.2 ), the contract proven
to be optimal. Otherwise, the sequence of solutions converges to the point mass on the zero
contract. We show below that this is precisely the corner case in which randomization does
not have value (see Corollary 3 ).

5 Saddle point

To identify the optimal guarantee and an optimal contract, we construct a saddle point in
the zero-sum game played between the principal and Nature using our guess from Section 4 .

Proposition 3 (Optimal Guarantee and Contract).

1. The optimal guarantee is8
 

v̄ := max
α∈[0,1]

U0(α)
− ln(1− α) > 0. (5.1)

2. If there exists α∗ > 0 attaining the maximum in (5.1 ), then the optimal guarantee is
achieved by the random linear contract p∗ ∈ ∆̄([0, 1]) corresponding to the cumulative
distribution function Gp∗ : R→ [0, 1] defined by

Gp∗(α) := ln(1− α)
ln(1− α∗) for α ∈ [0, α∗]. (5.2)

8By convention, we extend the quotient to all of [0, 1] by left and right limits. That is, let

U0(0)
− ln(1− 0)

:= lim
α→0+

U0(α)
− ln(1− α) ∈ [−∞,∞) and U0(1)

− ln(1− 1)
:= lim

α→1−

U0(α)
− ln(1− α) = 0,

where the first limit is bounded from above (because U0(0) ≤ 0), ensuring the existence of a maximum in
(5.1 ). The maximum is positive because U0(α) > 0 for α sufficiently close to one by the existence of a known
surplus-generating action. Hence, any maximizer must be strictly smaller than one.
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Otherwise, the optimal guarantee is attained in the limit of a sequence of deterministic
linear contracts converging to the zero contract.

The rest of this section is dedicated to the proof of Proposition 3 .

5.1 Attaining v̄

We show that the conjectured optimal contract attains v̄, defined in (5.1 ) in Proposition 3 .
Suppose first that there exists α∗ ∈ (0, 1) attaining the maximum in (5.1 ). Let p∗ be the
random linear contract corresponding to (5.2 ). We show that p∗ obtains a guarantee of at
least v̄.

By applying the Revelation Principle, we again formulate Nature’s problem of choosing
a technology A to minimize the profit V (p,A) as a mechanism design problem where the
realized contract α is the agent’s type, the expected output e is the allocation, the cost c
plays the role of a transfer, and the agent’s outside option is to play a known action. For
any random linear contract p, let

L(p) := min
e(·),c(·)

ˆ 1

0
(1− α)e(α) dGp(α) s.t. (5.3)

αe(α)− c(α) ≥ αe(α′)− c(α′) ∀α, α′ ∈ [0, 1] : α 6= α′, (5.4)

αe(α)− c(α) ≥ U0(α) ∀α ∈ [0, 1], (5.5)

c(α) ≥ 0, 0 ≤ e(α) ≤ yn ∀α ∈ [0, 1]. (5.6)

Note that the minimization problem (5.3 –5.6 ) is well-defined and the existence of a minimum
follows by general existence results for principal-agent problems with adverse selection (e.g.,
Nöldeke and Samuelson (2018 ), Proposition 9). It is also worth noting that constraints (5.4 –
5.6 ) are taken to hold for all α, α′ ∈ [0, 1], not just for α, α′ ∈ supp(p). This is convenient as
it allows us to work with functions e(·) and c(·) defined on the full interval [0, 1] even when
the support of p is only a subset thereof.

The following Lemma uses standard arguments to simplify constraints (5.4 –5.6 ). It also
verifies that L(p) is, in fact, the principal’s payoff guarantee, taking into account the re-
quirement that Nature’s technology must be compact and the assumption of adversarial
tie-breaking.
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Lemma 4. For any random linear contract p,

V (p) = L(p) = min
e(·)

ˆ 1

0
(1− α)e(α) dGp(α) s.t. (5.7)

e(·) is nondecreasing, (5.8)ˆ α

0
e(t)dt ≥ U0(α) ∀α ∈ [0, 1], (5.9)

e(0) ≥ 0, e(1) ≤ yn. (5.10)

Now, suppose e∗(·) is a feasible solution to (5.8 –5.10 ) and attains the minimum in (5.3 ).
By Lemma 4 and the definition of Gp∗ , the guarantee of p∗ is given by

V (p∗) =
ˆ 1

0
(1− α)e∗(α)dGp∗(α) =

ˆ α∗

0
(1− α)e∗(α)d

(
ln(1− α)
ln(1− α∗)

)

=
ˆ α∗

0

e∗(α)
− ln (1− α∗)dα =

´ α∗
0 e∗(α)dα
− ln (1− α∗) ≥

U0(α∗)
− ln (1− α∗) = v̄,

where the inequality is from (5.9 ). This establishes the desired result.
We now consider the corner case in which the unique maximizer of (5.1 ) is α∗ = 0. We

show that v̄ is attained in the limit of a sequence of deterministic contracts converging to
the zero contract. From the formula for the deterministic guarantee given in (A.2 ), this is
equivalent to showing that

lim
α→0+

1− α
α

U0(α) ≥ v̄.

Because the left-hand side expression is larger than zero (by (A.1 )), the inequality holds if
v̄ < 0. If v̄ ≥ 0, then it must be that U0(0) = 0. Hence, the known technology A0 contains
a zero cost action. Let e0 denote the maximum expected output among actions with zero
cost. Suppose (αk)k is a positive sequence that converges to zero. Take any corresponding
sequence of (principal least-preferred) best-responses in A0, (e(αk), c(αk))k. Then,

αke
0 ≤ αke(αk)− c(αk) ⇐⇒ c(αk) ≤ αk(e(αk)− e0) ≤ αkyn,

where the last inequality follows because output is bounded below by 0 and above by yn.
Hence, as k → ∞, it must be that c(αk) → 0. Because the tail of (e(αk), c(αk))k belongs
to a compact set [e0, yn] × [0, c̄] for some c̄ > 0, we may extract a convergent subsequence
(αk`

)k`
with e(αk`

)→ ē and c(αk`
)→ 0. Thus,

v̄ = lim
α→0+

U0(α)
− ln(1− α) = lim

k`→∞

U0(αk`
)

− ln(1− αk`
) = lim

k`→∞

αk`
e(αk`

)
− ln(1− αk`

) = ē.
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On the other hand,

lim
α→0+

1− α
α

U0(α) = lim
k`→∞

1− αk`

αk`

U0(αk`
) = lim

k`→∞

1− αk`

αk`

(αk`
e(αk`

)− c(αk`
)) = ē ≥ v̄.

5.2 v̄ is an upper bound

We conclude the proof of Proposition 3 by showing that no contract can obtain a guarantee
higher than v̄, again defined in (5.1 ) in Proposition 3 . It suffices to exhibit a technology
A ⊇ A0 such that no deterministic contract can attain a payoff higher than v̄ against A
(no matter how ties are broken among optimal actions for the agent). For the purposes of
constructing such a technology, let α∗ ∈ [0, 1) attain the maximum in (5.1 ) (by footnote 8 ,
α∗ < 1). Moreover, let e∗ be given by

e∗(α) := min
{
yn,

U0(α∗)
−(1− α) ln (1− α∗)

}
, ∀α ∈ [0, 1], (5.11)

and let c∗ be given by

c∗(α) := αe∗(α)−
ˆ α

0
e∗(t)dt, ∀α ∈ [0, 1].

Finally, let ᾱ satisfy e∗(ᾱ) = max(π0,c0)∈A0 π0y.9  (To see where (5.11 ) comes from, observe
that it corresponds to making the dual constraint (4.16 ) bind, save for the upper bound on
output.)

We now identify a worst-case action set. For every α ∈ [0, ᾱ], let

A(0) := {(π, c)|πy ≤ e∗(0),max{yn, c̄} ≥ c ≥ 0}

A(α) := {(π, c)|πy = e∗(α),max{yn, c̄} ≥ c ≥ c∗(α)} , ∀α ∈ (0, ᾱ],

where c̄ denotes the maximum cost of any action in A0. By construction, A := ∪α∈[0,ᾱ]A(α)
is compact, i.e., a technology. We show, in addition, that it contains A0.

Lemma 5. A ⊇ A0.

Proof. For an arbitrary (π0, c0) ∈ A0, if π0y ≤ e∗(0), we have that (π0, c0) ∈ A(0). Otherwise,
9Note that such an ᾱ exists because max(π0,c0)∈A0 π0y ≤ yn = e∗(1). Moreover,

e∗(0) ≤ U0(α∗)
− ln (1− α∗) ≤ lim

α→α∗

α
(
max(π0,c0)∈A0 π0y

)
− ln(1− α) ≤ max

(π0,c0)∈A0
π0y.

The final inequality follows because α∗ ≤ − ln(1− α∗) for α∗ ∈ (0, 1) and limα→0 (−α/ ln(1− α)) = 1.
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let π0y = e∗(α0) for some α0 ∈ (0, ᾱ]. We then have

α0e
∗(α0)− c∗(α0) =

ˆ α0

0
e∗(t)dt =

ˆ α0

0

U0(α∗)
−(1− t) ln (1− α∗)dt = − ln(1− α0)U0(α∗)

− ln(1− α∗)
≥ U0(α0) = max

(π,c)∈A0
(α0πy − c) ≥ α0π0y − c0 = α0e

∗(α0)− c0,

where the first inequality follows from the definition of α∗. Consequently, c̄ ≥ c0 ≥ c∗(α0)
and (π0, c0) ∈ A(α0).

For any (potentially nonlinear) deterministic contract w, we show that

V (w,A) ≤ v̄.

Let aw = (πw, cw) ∈ A be a best-response of the agent. Then, aw maximizes the agent’s
utility, i.e.,

πww − cw = max
(π,c)∈A

(πw − c) .

Suppose aw ∈ A(αw). Then πwy ≤ e∗(αw) and cw = c∗(αw). Consider the following subset
of A: {(

tπw + (1− t)0, c∗
(
(e∗)−1 (te∗(αw))

))}
t∈[0,1]

,

where 0 is the n-dimensional zero vector and, by convention, (e∗)−1(yn) := 1. For each
t ∈ [0, 1], the agent’s corresponding utility is

uw(t) := tπww − c∗((e∗)−1(te∗(αw))).

Observe that t = 1 corresponds to the agent’s best action. Hence, taking u′w(1) to be the
left-derivative of uw at 1,10

 

0 ≤ u′w(1) = πww − (c∗)′
(
(e∗)−1(te∗(αw))

) (
(e∗)−1

)′
(te∗(αw))e∗(αw)

∣∣∣∣
t=1

= πww − (c∗)′(αw) 1
(e∗)′ (αw)

e∗(αw)

= πww − αwe∗(αw).

Here, the first equality follows from the chain rule; the second equality follows from the
inverse function theorem; and the last equality follows from the definition of c∗. Notice that

0 ≤ πww − αwe∗(αw) ⇐⇒ αwe
∗(αw) ≤ πww.

10The left-derivative is well-defined because (e∗)−1(·) is a differentiable bijection on (0, 1).
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Consequently, the expected payoff of the principal is at most

πw(y − w) ≤ (1− αw)e∗(αw) = U0(α∗)
− ln(1− α∗) = v̄.

6 Discussion

We have shown that linear contracts remain robustly optimal when randomization is al-
lowed. We have also identified an optimal random contract described by a single-parameter
cumulative distribution function. Though we have focused attention on the Carroll (2015 )
model, we suspect both that randomization improves the principal’s guarantee and that our
techniques will be useful in characterizing optimal contracts in related models.11

 

We conclude by discussing corollaries and extensions of our results.

6.1 Gain from randomization

Define the gain from randomization as the ratio between the optimal guarantee and the
optimal deterministic guarantee, or supp∈∆(Rn

+) V (p)/ supw∈Rn
+
V (w). We say that the gain is

positive if the ratio is strictly greater than 1.
Kambhampati (2023 ) showed that a sufficient condition for the gain from randomization

to be positive is that there is an optimal deterministic contract different from the zero
contract. We provide a weaker necessary and sufficient condition.

Corollary 3. The gain from randomization is positive if and only if

U0(0)
− ln(1− 0) < max

α∈[0,1]

U0(α)
− ln(1− α) .

In particular, a sufficient condition for the gain from randomization to be positive is that
there exists an optimal deterministic contract different from the zero contract.

Proof. Denote the maximands in the optimal guarantee (5.1 ) and the optimal deterministic
guarantee (A.2 ) by

f(α) := U0(α)
− ln(1− α) and g(α) := 1− α

α
U0(α).

Recalling that these quotients are extended to all of [0, 1] by left- and right-continuity, it is
straightforward to verify that this defines continuous functions f, g : [0, 1]→ R∪{−∞} such

11For instance, the working paper by Peng and Tang (2024 ) considered a setting with multiple agents.
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Figure 6.1. Optimal guarantee versus deterministic guarantee.

that f(0) = g(0) and f(1) = g(1) = 0. (The first equality follows because f(α)/g(α)→ 1 as
α→ 0 by l’Hospital’s rule.) Moreover, because (1− α)/α < −1/ ln(1− α) for all α ∈ (0, 1),
we have

g(α) > 0 =⇒ f(α) > g(α) ∀α ∈ (0, 1). (6.1)

Suppose now that the inequality in Corollary 3 is not satisfied. Then there is no gain
from randomization, because maxα f(α) = f(0) = g(0) ≤ maxα g(α).

In the other direction, suppose the inequality in Corollary 3 is satisfied. Let α∗ > 0 attain
the maximum on the right-hand side (and hence that of f) and let α∗D maximize g. Because
the known technology contains a surplus-generating action, we have α∗D < 1 and g(α∗) > 0.
If α∗D = 0, then g(α∗) = g(0) = f(0) < f(α∗). If instead α∗D > 0, then (6.1 ) implies that
f(α∗) ≥ f(α∗D) > g(α∗D). We conclude that either way, maxα f(α) > maxα g(α), i.e., the
gain from randomization is positive.

Finally, if there is an optimal deterministic contract, then by Proposition A.1 there is an
optimal linear contract α∗D ∈ (0, 1) that maximizes g. Hence, maxα f(α) ≥ f(α∗D) > g(α∗D)
by (6.1 ).

The following example shows that the gain from randomization can be positive even when
the optimal deterministic guarantee is obtained only in the limit of a sequence of contracts
converging to the zero contract.

Example 1. Suppose the known technologyA0 consists of two actions, (π, 1) and (π′, 0), with
expected outputs πy = 4 and π′y = 1+ε, where ε ≥ 0. Then, U0(α) = max{4α−1, (1+ε)α}.
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Figure 6.2. Gain from randomization.

By (A.1 ), when ε = 0, the principal is indifferent between the deterministic contract α = 1/2
and any limit of contracts converging to the zero contract, but strictly prefers the limiting
sequence when ε > 0. The optimal deterministic guarantee is thus 1 + ε. Plotting the
functions f and g from the proof of Corollary 3 , Figure 6.1 shows, for ε = 1/4, that the
optimal guarantee is strictly larger than the optimal deterministic guarantee. (The result can
be shown to hold for any ε > 0 sufficiently small.) The basic intuition is that the principal
optimally “targets” the positive-cost known action to increase efficiency, while using the
randomization to extract enough rent from the agent to make incentivization worthwhile.

The following example shows that the gain from randomization can be arbitrarily large.

Example 2. Suppose the known technology A0 consists of a single action (π, c), whose
expected output πy is normalized to 1 and c < 1. Then U0(α) = α − c. A straightforward
calculation using (A.2 ) gives the optimal deterministic guarantee (1 −

√
c)2. On the other

hand, the optimal guarantee is
max
α∈[0,1]

α− c
− ln(1− α) .

The necessary first-order condition to this problem is − ln(1 − α) − (1 − α)−1(α − c) = 0,
which can readily be verified to have a unique solution, α∗(c), which is a continuous increasing
function of c, with limc→0 α

∗(c) = 0 and limc→1 α
∗(c) = 1. The implicit function theorem

implies that its derivative on (0, 1) is (α∗)′(c) = −1/ ln(1 − α∗(c)). Substituting back into
the objective then gives the optimal guarantee 1 − α∗(c). The gain from randomization is
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thus
γ(c) := 1− α∗(c)

(1−
√
c)2 .

From the properties of α∗(c) it follows that the gain γ(c) is a continuous function of c with
γ(0) = 1. Using l’Hôpital’s rule twice shows that limc→1 γ(c) = ∞ (see Figure 6.2 ). This
example thus exhibits the entire range of possibilities as c varies.

6.2 Commitment

The proof of Proposition 3 constructs a saddle-point (p,A) for the principal’s max-min
problem, i.e., p is a best-response for the principal against A and A is a best-response for
Nature against p. Hence, given the worst-case technology A, the principal is indifferent
among all contracts in the support of p. It follows that commitment to randomization is not
needed. That is, the principal has no incentive to deviate from any of her realized contracts.

6.3 Screening

Observe, also, that randomizing over menus of contracts cannot increase the principal’s guar-
antee. This is again because the proof of Proposition 3 constructs a saddle-point (p,A) for
the principal’s max-min problem. Thus, the guarantee of any randomization over menus of
contracts is no better than its performance against this particular technology A. Specifically,
against A, the randomization over menus reduces to a randomization over the contracts the
agent chooses from each menu given A. The resulting payoff is thus no higher than V (p),
because p is an optimal randomization against A.

6.4 Extensions

We have deliberately kept the model streamlined to allow for a simple and transparent
analysis of the merits of linear contracts, but we note here two extensions that are immediate.

First, the improvement argument can easily accomodate the introduction of a partici-
pation constraint. The simplest way to impose a participation constraint is to assume that
the known technology A0 contains an action that results in zero output at no cost to the
agent—this is subsumed by our general analysis. If instead we assume that any contract
has to deliver the agent an expected payoff (net of cost) of at least ū > 0, then this can be
handled by replacing U0(w) with max{U0(w), ū} on the right-hand side of (3.12 ). Because
each affine contract xt constructed in the proof of Proposition 2 pointwise increases the cor-
responding original contract wt , it satisfies the so-modified participation constraint (3.12 ).
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It then follows that for every random contract, there exists a random affine contract that
(weakly) outperforms it, and thus random affine contracts are optimal as a class.

Second, it is straightforward to allow for multi-dimensional output y from any finite set
Y , with the payoff to the principal being v(y) for some function v : Y → R+. Modifying the
primal problem (3.10 –3.14 ) in the obvious way, the same argument gives an improvement
from moving to a random contract that is linear in v(y). Specifically, replace each yi with
v(yi) in the primal objective (3.10 ) and on the right-hand side of the dual constraint (3.16 ).

6.5 Tie-breaking

We assume that, when the agent is indifferent among multiple actions, he chooses the one
least preferred by the principal. The value (5.1 ) remains the optimal guarantee if instead
we assume principal-preferred tie-breaking. This follows because the guarantee of the op-
timal contract (5.2 ) can only increase and the proof given in Section 5.2 shows that the
value (5.1 ) remains an upper bound. The only modification required in the statement of
Proposition 3 is in the corner case in which randomization has no value. With principal-
preferred tie-breaking, the optimal guarantee is attained by the zero contract with no need
for approximation.

Appendix

A.1 Deterministic analysis

Consider Nature’s problem (3.1 –3.4 ) given a linear contract with slope α:

V (α) = min
π,c

(1− α)πy s.t. απy − c ≥ U0(α),
n∑
i=1

πi = 1, and c, πi ≥ 0 ∀i ∈ I.

It is clearly optimal to set c = 0 and choose π such that απy = U0(α)+, where our convention
is to write b+ = max{b, 0} for any b ∈ R. If α = 0, then it is optimal to put πy = U0(0)+ = 0,
and thus the guarantee from the zero contract is zero. (This is of course immediate given
adversarial tie-breaking.) On the other hand, the guarantee for any positive slope α > 0 is
V (α) = (1− α)U0(α)+/α. Recalling the definition of U0 from (2.2 ), we thus have

V (α) =

0 if α = 0,

(1− α) max(π,c)∈A0

(
πy − c

α

)+
if α ∈ (0, 1].

(A.1)

By Corollary 1 , the optimal deterministic guarantee is given by the supremum of the
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function V : [0, 1] → R+ defined by (A.1 ). The non-triviality assumption implies that
V (α) > 0 for α sufficiently close to 1, and thus the optimal guarantee is positive. It can
also readily be verified to coincide with Carroll ’s (2015 ) guarantee for principal-optimal tie-
breaking.12

 In what follows, we will use the fact that the optimal deterministic guarantee
can also be written as

sup
w∈Rn

+

V (w) = max
α∈[0,1]

1− α
α

U0(α), (A.2)

provided that (1−0)
0 U0(0) is taken to mean the limit as α→ 0.

An optimal deterministic contract, which is linear, can be found by simply maximizing the
guarantee (A.1 ). However, there is a small wrinkle as V , which is continuous on (0, 1], may
have a downward jump in the limit as α→ 0. This leads to the following characterization.13

 

Proposition A.1 (Optimal Deterministic Guarantee and Contract). A linear contract α
is an optimal deterministic contract if and only if it maximizes the function V : [0, 1] →
R+ defined by (A.1 ). (Because of the existence of a known surplus-generating action, any
maximizer must be interior.) If no such maximizer exists, then there does not exist an
optimal deterministic contract. In this case, the optimal deterministic guarantee is attained
in the limit of any sequence of linear contracts αn > 0 such that αn → 0.

Proof. The first claim characterizing optimal linear contracts follows by Corollary 1 and the
construction of V . That there is no optimal deterministic contract when there is no linear
optimal contract follows by Proposition 1 . Finally, the only possible point of discontinuity
of V is 0, and hence if a maximizer does not exist, then supα∈[0,1] V (α) = limα→0+ V (α).

While adversarial tie-breaking generates an existence problem relative to the case of
principal-optimal tie-breaking where an optimal (linear) contract always exists, the issue is
arguably minor: It only arises in the corner case where under principal-optimal tie-breaking,
the zero contract is the uniquely optimal linear contract. This case seems uninteresting from
the perspective of optimal incentive provision as none is required. It is incidentally also the
only case where randomization does not improve the principal’s payoff—see Corollary 3 . A
simple sufficient condition to rule it out and to ensure the existence of an optimal contract
is for any known action generating a positive surplus to have a non-zero cost.

12Principal-optimal tie-breaking leads in general to a weakly higher guarantee from the zero contract than
adversarial tie-breaking, but the guarantees are the same for any positive slope. As the guarantee under
principal-optimal tie-breaking is continuous in α, this implies that the optimal guarantees are the same.

13It is easy to show that all optimal deterministic contracts are linear under Carroll ’s (2015 ) full support
condition by verifying that then certain inequalities in the proof of Proposition 1 are strict. As this argument
is similar to Carroll’s, we omit it in the interest of space.
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A.2 Proof of Lemma 1 

We first prove a stronger result for an ε-perturbation of the problem and then establish
Lemma 1 via taking the limit ε→ 0.

Given ε ≥ 0, we introduce a relaxation of the incentive compatibility constraint (3.11 ):

πtwt − ct ≥ πswt − cs − ε ∀t, s ∈ T : t 6= s. (A.3)

The ε-perturbed primal problem consists of solving (3.10 ) subject to (A.3 ), (3.12 ), (3.13 ), and
(3.14 ). It is feasible for all ε ≥ 0, because it is a relaxation of the feasible primal problem
(3.10 –3.14 ). Let V (p; ε) denote the value of the ε-perturbed primal problem. We clearly
have V (p; ε) ≥ −maxi,twti , and hence an optimal solution exists.

Because the perturbation ε only enters the right-hand sides of some primal constraints,
in the dual it only enters the objective. The ε-perturbed dual problem consists of solving

V (p; ε) = max
κ,λ,µ

∑
t∈T

λtU(wt) +
∑
t∈T

µt − ε
∑
t∈T

∑
s 6=t

κst (A.4)

subject to (3.16 –3.18 ).

Lemma A.1. Let ε > 0. If (κ∗, λ∗, µ∗) is an optimal solution to the ε-perturbed dual problem,
then G(κ∗) is acyclic.

Proof. Let ε > 0 and let (κ∗, λ∗, µ∗) be an optimal solution to the ε-perturbed dual. Suppose
toward contradiction that G(κ∗) contains a cycle. By relabeling if necessary, we can assume
without loss of generality that the cycle involves vertices C := {1, . . . ,m} for 2 ≤ m ≤ k,
with κ∗t,t+1 > 0 for all t ∈ C, where m + 1 = 1 by convention. Similarly, we can assume
without loss of generality that p1 = mint∈C pt.

By complementary slackness, the incentive compatibility constraints in (A.3 ) correspond-
ing to κ∗t,t+1 for t ∈ C hold with equality. Letting {(πt, ct)}t∈T denote an optimal solution to
the ε-perturbed primal, we thus have

πtwt − ct − πt+1wt + ct+1 = −ε ∀t ∈ C. (A.5)

Summing the equalities over t ∈ C and recalling that m+ 1 = 1 gives

∑
t∈C

(πt − πt+1)wt = −mε. (A.6)

We will show that it is then possible to strictly lower the value of the ε-perturbed primal,
contradicting optimality.
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Construct a new solution for the ε-perturbed primal as follows. Let (π̂t, ĉt) := (πt, ct) for
all t /∈ C. For each t ∈ C, let

(π̂t, ĉt) := (1− δt)(πt, ct) + δt(πt+1, ct+1),

where δt := p1/pt ∈ (0, 1]. As the action assigned to each contract t /∈ C is the same as
before, their contribution to the objective is unchanged. But the contracts in C now yield

∑
t∈C

ptπ̂
t(y − wt) =

∑
t∈C

pt[(1− δt)πt + δtπ
t+1](y − wt)

=
∑
t∈C

[(pt − p1)πt + p1π
t+1](y − wt)

=
∑
t∈C

ptπ
t(y − wt) + p1

∑
t∈C

(πt − πt+1)(wt − y)

=
∑
t∈C

ptπ
t(y − wt)− p1mε,

where the last equality follows by (A.6 ) and the fact that ∑t∈C(πt− πt+1)y = 0 because the
sum is cyclical. Therefore, the new solution {(π̂t, ĉt)}t∈T is a strict improvement over the
supposed optimal solution {(πt, ct)}t∈T , provided we show that it is feasible.

To show feasibility, we note first that each (π̂t, ĉt) satisfies the probability and non-
negativity constraints (3.13 ) and (3.14 ). For t /∈ C this is trivial as (π̂t, ĉt) = (πt, ct). For
t ∈ C this follows because (π̂t, ĉt) is by definition a convex combination of two actions, each
of which satisfies (3.13 ) and (3.14 ).

Note then that, given any contract wt, the agent’s payoff from the new action (π̂t, ĉt) is
weakly higher than from the old action (πt, ct) by construction:

π̂twt − ĉt =

π
twt − ct + δt(πt+1wt − ct+1 − πtwt + ct) = πtwt − ct + δtε if t ∈ C,

πtwt − ct if t /∈ C,

where the first case follows by the definition of (π̂t, ĉt) and equation (A.5 ). This implies that
the new solution satisfies the participation constraint (3.12 ) for all t, since

π̂twt − ĉt ≥ πtwt − ct ≥ U0(wt).

It remains to verify the incentive compatibility constraint (A.3 ). Fix contracts t and s 6= t.
Observe that by construction of (π̂s, ĉs), we have (π̂s, ĉs) = (1− β)(πs, cs) + β(πs+1, cs+1) for
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β ∈ (0, 1] (if s ∈ C) or for β = 0 (if s /∈ C). Therefore,

π̂twt − ĉt ≥ πtwt − ct ≥ (1− β)(πswt − cs − ε) + β(πs+1wt − cs+1 − ε) = π̂swt − ĉs − ε,

where the second inequality follows because {(πt, ct)}t∈T satisfies (A.3 ) by assumption.
We conclude that the new solution {(π̂t, ĉt)}t∈T is feasible, a contradiction.

To prove Lemma 1 , for each n ∈ N, let (κ∗n, λ∗n, µ∗n) be an optimal extreme point solution
to the 1/n-perturbed dual.14

 The feasible set is independent of the perturbation parameter
and it contains only finitely many extreme points. Hence, one of them appears infinitely often
as n→∞. Thus, by extracting a subsequence if necessary, we may assume that the sequence
is constant. That is, there is an extreme point (κ∗, λ∗, µ∗) such that (κ∗n, λ∗n, µ∗n) = (κ∗, λ∗, µ∗)
for all n. By Lemma A.1 , the associated graph G(κ∗) is acyclic.

We claim that (κ∗, λ∗, µ∗) is optimal in the 0-perturbed dual (3.15 –3.18 ). To see this, note
that the perturbed dual objective f(κ, λ, µ, ε) := ∑

t∈T λtU(wt) + ∑
t∈T µt − ε

∑
t∈T

∑
s6=t κst

is jointly continuous in (κ, λ, µ, ε). Therefore, given any feasible solution (κ, λ, µ), we have

f(κ, λ, µ, 0) = lim
n
f(κ, λ, µ, 1/n) ≤ lim

n
f(κ∗, λ∗, µ∗, 1/n) = f(κ∗, λ∗, µ∗, 0),

where the inequality is because (κ∗, λ∗, µ∗) is optimal for all n by construction. We conclude
that (κ∗, λ∗, µ∗) is an optimal solution to (3.15 –3.18 ) such that G(κ∗) is acyclic.

A.3 Proof of Lemma 4 

We prove that L(p) is equivalent to the problem of finding e(·) to attain the minimum
in (5.7 ) subject to (5.8 –5.10 ). Let (e(·), c(·)) be any feasible solution to (5.4 –5.6 ). Write
U(α) := αe(α) − c(α) for the agent’s indirect utility given contract α. Because (e(·), c(·))
satisfies (5.4 ), e(·) satisfies (5.8 ) and the envelope theorem (Myerson , 1981 ; Milgrom and
Segal , 2002 ) implies that

U(α) = U(0) +
ˆ α

0
e(t)dt ∀α ∈ [0, 1]. (A.7)

The feasibility constraints in (5.6 ) imply

U(0) ≤ 0, e(0) ≥ 0, e(1) ≤ yn, (A.8)
14To see that the feasible set of the ε-perturbed dual has an extreme point (and thus an extreme point that

is optimal, because the optimal value is finite) even though there are free variables, let µ′t := mini∈I pt(yi−wti)
for all t ∈ T . Then (κ, λ, µ) = (0, 0, µ′) is an extreme point.
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which clearly imply (5.10 ). (Here U(0) ≤ 0 follows because U(0) = −c(0) ≤ 0.) Finally,
(A.7 ) and the participation constraints in (5.5 ) imply that

U(0) +
ˆ α

0
e(t)dt ≥ U0(α) ∀α ∈ [0, 1], (A.9)

which in turn implies (5.9 ) because U(0) = −c(0) ≤ 0.
We next show that V (p) = L(p). The basic idea is to use the Revelation Principle to

justify direct mechanisms, treating the known action as the agent’s outside option. However,
the requirement that any feasible technology be compact and our adversarial tie-breaking
assumption create some extra work. The inequality V (p) ≥ L(p) follows, because any
feasible technology A gives rise to a feasible solution to the minimization problem (5.3 –5.6 ),
and hence we have V (p,A) ≥ L(p). We will thus show that V (p) ≤ L(p) by using an optimal
solution to (5.3 –5.6 ) to construct a feasible technology A such that V (p,A) = L(p).

Fix an optimal solution (e∗(·), c∗(·)). The obvious candidate for A is then the set A′ :=
{(e∗(α), c∗(α)) : α ∈ [0, 1]} ∪ A0. However, A′ need not be compact if (e∗(·), c∗(·)) is not
continuous. So to deal with this, we will take A to be the closure of A′. More specifically,
we will complete the proof in three steps: 1) As a preliminary result, we show that e∗(·) can
be taken to be lower semi-continuous. 2) We then define A as the closure of A′ and verify
that this gives a feasible technology where (e∗(α), c∗(α)) remains a best-response to α for all
α ∈ [0, 1]. Finally, 3) we verify that each (e∗(α), c∗(α)) satisfies the adversarial tie-breaking
assumption.

Lemma A.2. The minimization problem (5.3 –5.6 ) has an optimal solution (e∗(·), c∗(·)) such
that e∗(·) is lower semi-continuous.

Proof. By Lemma 4 , we may consider the minimization problem (5.7 –5.10 ) instead. Let e(·)
be a minimizer and denote by D ⊂ [0, 1] the set of points at which e(·) is discontinuous.
Because e(·) is nondecreasing, D has at most countably many elements.

Define e∗(·) : [0, 1] → [0, yn] by letting e∗(α) = e(α) for all α /∈ D and e∗(α) =
limα′↑α e(α′) for all α ∈ D. By construction, e∗(·) is nondecreasing and lower semi-continuous,
and it satisfies (5.10 ). Moreover, because e(·) satisfies (5.9 ) and D is countable, e∗(·) satisfies
(5.9 ) as well. Finally, because we have e∗(α) ≤ e(α) for all α ∈ [0, 1] by construction, the
allocation rule e∗(·) yields a weakly lower profit than the minimizer e(·). Therefore, e∗(·) is
a lower semi-continuous minimizer to problem (5.7 –5.10 ). By Lemma 4 , there then exists
c∗(·) such that (e∗(·), c∗(·)) is an optimal solution to (5.3 –5.6 ).

Lemma A.3. Let (e∗(·), c∗(·)) be an optimal solution to the minimization problem (5.3 )–
(5.6 ). Let A be the closure of A′ := {(e∗(α), c∗(α)) : α ∈ [0, 1]}∪A0. Then A is compact and
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thus it is a feasible technology. Furthermore, for all α ∈ [0, 1], the action (e∗(α), c∗(α)) is a
best response for the agent to contract α given technology A, i.e., (e∗(α), c∗(α)) ∈ B(α,A).

Proof. To see that A is compact, note that it is closed by definition, and it is bounded
because we have e∗(α) ∈ [0, yn] for all α by (5.6 ) and c∗(α) ∈ [0, yn − U0(α)] for all α by
(5.5 ) and (5.6 ). We also have (e0, c0) ∈ A by construction. Thus, A is a feasible technology.

To prove the second part, fix any α ∈ [0, 1]. Then

αe∗(α)− c∗(α) = max
(e,c)∈A′

αe− c = max
(e,c)∈A

αe− c,

where the first equality follows by (5.4 ) and (5.5 ), and the second equality follows because
the payoff αe − c is a continuous function of (e, c) that attains its maximum on A′, and
therefore the maximum cannot increase by taking the closure of A′.

Lemma A.4. Let (e∗(·), c∗(·)) be an optimal solution to the minimization problem (5.3 –5.6 )
such that e∗(·) is lower semi-continuous. Define the feasible technology A as in Claim A.3 .
Then for all α ∈ [0, 1], the action (e∗(α), c∗(α)) yields the lowest profit to the principal across
all best responses to contract α given technology A, i.e.,

(1− α)e∗(α) = min
(e,c)∈B(α,A)

(1− α)e ∀α ∈ [0, 1],

and hence V (p,A) = L(p).

Proof. Suppose toward contradiction that for some ᾱ ∈ [0, 1], the best response set B(ᾱ, A)
contains an action (ē, c̄) such that ē < e∗(ᾱ).

Suppose first that ᾱ = 0 so that e∗(0) > ē. Because e∗(·) is nondecreasing, this implies
that e∗(α) > ē for all α ∈ [0, 1]. Thus, the only way the action (ē, c̄) can be in A is that
it is a known action (e0, c0) ∈ A0. This in turn implies that e∗(α) > e0 for all α. But this
contradicts the optimality of (e∗(·), c∗(·)), because we can then strictly lower the value of the
objective function by instead using the clearly feasible solution (e(α), c(α)) = (e0, c0) for all
α ∈ [0, 1]. Therefore, we must have ᾱ > 0.

Because the agent’s payoff αe−c has strictly increasing differences in (α, e), the Monotone
Selection Theorem implies that the selections (e∗(α), c∗(α)) ∈ B(α,A) and (ē, c̄) ∈ B(ᾱ, A)
satisfy e∗(α) ≤ ē for all α < ᾱ. Therefore, we have limα↑ᾱ e

∗(α) ≤ ē < e∗(ᾱ), and hence e∗(·)
is not lower semi-continuous at ᾱ, a contradiction.

By Lemma A.2 there exists an optimal solution (e∗(·), c∗(·)) to (5.3 –5.6 ) where e∗(·) is
lower semi-continuous. Lemma A.4 then gives the existence of a feasible technology A such
that V (p,A) = L(p), which implies V (p) ≤ L(p).
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