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Abstract

Standard mechanism design begins with a statement of the problem,

including knowledge on the designer’s part about the distribution of the

characteristics (preferences and information) of the participants who are

to engage with the mechanism. There is a large literature on robust mech-

anism design, much of which aims to reduce the assumed information the

designer has about the participants. In this paper we provide an auction

mechanism that reduces the assumed information assumed of the seller,

and, in addition, relaxes substantially the assumed information of the

participants. In particular, the mechanism performs well when there are

many buyers, even though there is no prior distribution over the accuracy

of buyers’information on the part of the designer or the participants.
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1 Introduction

There is a large literature that addresses a concern raised in Wilson (1987)

regarding mechanisms designed to implement desired social outcomes in the

presence of asymmetric information. Typically, the construction of an incentive

compatible mechanism designed to implement an effi cient social outcome relies

on strong common knowledge assumptions.

For many problems, this seems implausible, and has prompted researchers

to search for mechanisms that are "robust" in the sense that they are less sen-

sitive to the common knowledge assumptions typically made in the literature.1

The robust implementation literature has made substantial strides toward un-

derstanding the degree to which the assumptions regarding the mechanism de-

signer’s information, as well as that of the agents, can be relaxed and the at-

tendant characteristics of robust mechanisms.

In a private values auction problem in which buyers’know their own values,

the second price auction is robust: irrespective of agents’beliefs, it is a dom-

inant strategy for bidders to bid their values. While there are many auction

problems for which this is the case, there are important problems for which it

fails. Consider an auction for drilling rights on a particular oil tract. Bidders

perform tests in order to estimate characteristics of the oil present in the tract.

A bidder’s signal resulting from the test may provide a very precise estimate

of the amount of oil or the depth of the reservoir, while another bidder’s signal

may provide substantially less precise estimates. In essence, agents may have

some relevant information about the tract to be auctioned that other bidders

do not have. Hence, we have left the realm of private values problems: my value

depends on other agents’ information, their signals, as well as my own. It is

known that in the interdependent value case (that is, when an agent may have

both information of interest to other bidders and information of interest to her

alone), second price auctions may perform poorly.2

Of particular interest to us is the fact that bidding one’s value is not a

dominant strategy in a second-price auction with interdependent values. Much

of the robust implementation literature assumes that the mechanism designer

1See Bergemann and Morris (2012) and Borgers (2015), Chapter 10 for discussions of robust
mechanism design.

2Jackson (2009) presents a simple example illustrating the problem with second price auc-
tions when there is a mix of private and non-private information. In the example, the second
price auction does not have either a symmetric equilibrium or an equilibrium in undomi-
nated strategies. The example shows that equilibrium exists only in the extremes of pure
private and pure common values; existence in the private value model is not robust to a slight
perturbation.
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sets out the rules of the mechanism, following which the participating agents

typically play a Bayes Nash equilibrium of the game induced by the mechanism.

When an agent does not have a dominant strategy, her bidding strategy is a

best response to other bidders’strategies given her beliefs regarding the private

information of other bidders.

In this paper, we consider an auction model in which an agent’s valuation

for the object is the sum of a private value component and a common value

component. More precisely, we assume that there are two payoff relevant states

a and b (i.e., the possible amounts of oil) and bidder i receives a noisy signal si
(i.e., a test result) from the set {α, β} correlated with the state. The probability
that agent i receives signal α conditional on state a and the probability of β

conditional on b are parameters of the problem. In addition, there are bounds

on these accuracy parameters. The common value of the object is v(a) in state

a and v(b) in state b. Bidder i also has a private valuation ci. Consequently,

an agent’s payoff were he awarded the object would be ci + v(a) in state a and

ci + v(b) in state b. The presence of the common value component gives rise to

an auction with interdependent valuations.

If all of the data were common knowledge, then we could certainly propose

a second price auction in which each player i, knowing his signal, updates his

beliefs regarding the state and submits a bid for the object at auction. However,

due to the interdependence of valuations in this auction game with asymmetric

(but complete) information, it is no longer true that bidding one’s true valua-

tion is a dominant strategy and the Bayes-Nash equilibria may be significantly

more complicated. If, in addition, the auctioneer knows the distributions of the

agents’private values and signals, then a generalized VCG approach can deal

with the interdependency and is reasonably satisfactory in the large numbers

case that we have in mind in this paper.

McLean and Postlewaite (2004, 2017) (hereafter MP2004 and MP2017) an-

alyze this generalized VCG approach in an interdependent value model similar

to the model in this paper. These papers assume that the data of the game

is common knowledge among the agents and the mechanism designer, and fo-

cuses on the role of “informational size”introduced in McLean and Postlewaite

(2002). A given player’s informational size in an asymmetric information prob-

lem is, roughly, the degree to which that player’s information can affect, in

expectation, the probability distribution over states of nature when other play-

ers truthfully reveal their private information. MP2004 shows that when each

buyer’s informational size is small, a seller can use a modified second price auc-

tion that generates nearly the same revenue as would be the case if the common
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value part of players’ information were public. MP2017 shows how one can

construct a two-stage mechanism for this kind of interdependent problem that

extracts, and makes public, the common value part of private information in the

first stage, transforming the problem in the second stage into a private value

problem. The models in these papers follow the standard mechanism design

approach in which there is a prior that is common knowledge among the mecha-

nism designer and the participants in the problem and, knowing the distribution

of the agents’signals, the mechanism designer can construct a reward scheme

that induces agents to honestly report their types in a Bayes-Nash equilibrium

of the game induced by the mechanism.

If on the other hand not all of the data are common knowledge, then the

analysis is more delicate. In the model of this paper, the data essentially matches

that of MP2017 but departs from MP2017 significantly in that here we do not

assume that these "accuracy" parameters are common knowledge among the

agents nor are they known to the mechanism. In particular, agent i’s own ac-

curacy parameter is not known to agent i. Consequently, the designer cannot

construct a mechanism that induces honest reporting of signals, even if all of

the other data of the problem were known by the mechanism, since the mecha-

nism does not know the accuracy parameters. In particular, the aforementioned

approaches of MP2004 and MP2017, based on VCG-like transfers, are no longer

possible and a different approach is required.

To deal with the common knowledge problem, we take an epistemic view-

point and augment the model with a type space structure in which agents hold

beliefs regarding the value of the accuracy profile and the beliefs of other agents

regarding the accuracy profile. It is important to distinguish between signals

and types. If agent i has beliefs defined by type, say ti, then agent i can com-

pute the joint distribution of the accuracy profile, the state, the signals of other

agents and the types of other agents.

Now, given a type space, we can take the standard game theoretic perspective

and treat the problem as one of complete but asymmetric information. In

this case, we would be dealing with a mechanism design problem to which

the two stage methodology of MP2017 could potentially be applied in order

to elicit the bidders’types. However, we are back to a situation in which the

mechanism must know the probability structure defining of the type structure,

an assumption we wish to avoid in the spirit of detail freeness. Consequently,

we will propose a two stage mechanism in which agents report their signals, not

their types, in the first stage. If the report of agent i is a majority report, then

agent i, along with the other agents who have reported the same signal as i,
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move to stage 2. If n is the number of agents, then those who reach the second

stage do not know the identities of the other second stage players. Agent i only

knows that a set of agents of size at least n
2 reported the same signal that i

reported.

In stage two the mechanism, with probability 1 − ε, runs a second price

auction in which only those who have advanced to the second stage can submit

bids. With probability ε, the mechanism will randomly choose one of the sec-

ond stage agents to receive the object outright. Players know the rules of this

extensive form , including the value of ε.

A strategy for player i is a specification of a first stage report and a second

stage bid if the mechanism runs an auction in stage 2. For each of i’s types

ti, this (report, bid) pair is a function of i’s private valuation ci and i’s signal

si and a question remains: when bidders implement their strategies in this two

stage game, will they honestly report their signals in the first stage?

In MP2004 and MP2017, the different mechanisms constructed in those pa-

pers accomplish exactly this in a perfect Bayesian equilibrium. In this paper

we are interested in a mechanism that is detail free in two senses: (i) the mech-

anism designer need not know the type space structure and (ii) the mechanism

"works" for a large class of type spaces. Given the definition of the mechanism,

task (i) has been accomplished. We are able to accomplish task (ii) if we only

require bidders to submit second stage bids that are not weakly dominated, i.e.,

that satisfy the condition of second stage admissibility defined below.

In the presence of many agents, we can use this admissibility assumption

to show that truthful reporting of stage 1 signals is "approximately incentive

compatible" for a large class of belief systems. Here, approximately incentive

compatible means that there is a large set of agents for whom truthful announce-

ment is optimal for every agent in the set if all other bidders report truthfully,

and all bidders use undominated bids in the second stage.

Furthermore, our proposed mechanism is good for the auctioneer. In partic-

ular, for a broad class of type spaces, the undominated strategies that players

use in the resulting Bayesian game of complete information yield to the seller

almost all the surplus when there are many agents.

1.1 Literature review

MP2004 analyzed an interdependent value model similar to the model in this

paper. That paper focused on the role of “informational size” introduced in

McLean and Postlewaite (2002). A given player’s informational size in an asym-
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metric information problem is, roughly, the degree to which that player’s infor-

mation can affect, in expectation, the probability distribution over states of

nature when other players truthfully reveal their private information. MP2004

shows that when each buyer’s informational size is small, a seller can use a mod-

ified second price auction that generates nearly the same revenue as would be

the case if the common value part of players’information were public. McLean

and Postlewaite MP2017 shows how one can construct two-stage mechanisms

for this kind of interdependent problem that extract the common value part

of private information in the first stage, transforming the problem in the sec-

ond stage into a private value problem. The models in these papers follow the

standard mechanism design approach in which there is a prior that is common

knowledge among the mechanism designer and the participants in the problem.

Knowing the distribution of the agents’ signals, the mechanism designer can

construct a transfer scheme that induces agents to honestly report their types

in a Bayes-Nash equilibrium of the game induced by the mechanism.

Consequently, these mechanisms are not "detail free" in the sense of Wil-

son (1987). In this paper, we present a different two stage mechanism whose

informational requirements are substantially weaker that those of MP2017. In

particular, the mechanism in the current paper does not need to know that

distribution, and indeed, does not need to know even the exact number of par-

ticipating agents.

Du (2018) presents a mechanism to sell a common value object that maxi-

mizes the revenue guarantee when there is one buyer and shows that the revenue

guarantee of that mechanism converges to full surplus as the number of buy-

ers tends to infinity. Du assumes that the prior distribution of the common

value is known. His mechanism, however, guarantees good revenue for every

equilibrium, while as we discuss in the last section, our result focuses on “truth-

ful revelation”outcomes.3 Brooks and Du, Econometrica (2021) construct an

auction mechanism for a common value problem that focusses on maxmin per-

formance across all information structures. When the number of bidders is large,

the profit guarantee is approximately the entire surplus. This takes care of the

multiplicity problem.

These papers provide mechanisms for important auction problems that ad-

dress the Wilson critique: the mechanism designer needs to know very little

about the agents who will participate in the mechanism. While the designer’s

informational requirements are minimal, the participants’informational require-

ments often remain substantial. It is assumed that the participants will play

3See also a related paper by Bergemann, Brooks and Morris (2017).
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a Bayes Nash equilibrium, which typically requires the participants to have

substantial information about other agents. Our mechanism requires partici-

pants to know bounds on the accuracies of other agents’signals, but little more.

In particular, agents are not assumed to have well-defined probabilistic beliefs

about others. A negative aspect about our mechanism relative to these papers

is that their results hold for all equilibria, while our result only guarantees the

existence of at least one outcome with the desirable properties.

Wolitzky (2016) studies mechanism design and the possibility of weakening

assumptions of agents’ beliefs. Toward this end, he assumes that agents are

maxmin expected utility maximizers a la Gilboa and Schmeidler (1989).4 Our

assumption about what agents know is substantially weaker, but Wolitzky’s

results hold for a fixed (possibly small) number of agents while our result holds

for large numbers of agents.

Lastly, Yamashita (2015) studies weakly undominated strategy implemen-

tation. Unlike our analysis, Yamashita assumes the seller has a probability

assessment for agents’private information and maximizes his expected utility.

2 The model and the main result

2.1 Preliminaries

Consider an auction model with n players and a single indivisible object. Player

i’s valuation for the object is the sum of a common value component and an

idiosyncratic private value component. The private value component of player

i is denoted ci and we assume that c1, .., cn are realizations of i.i.d. random

variables taking values in [0, 1]. We assume that the distribution of this random

variable admits a density g with corresponding distribution function G that

is strictly increasing on [0, 1]. The common value component depends on the

realization of one of two equally likely states of nature θ = a and θ = b. In

particular, player i’s valuation for the object is given by ci + v(a) in state a

and ci + v(b) in state b. Players learn the state only after the object has been
allocated. However, each player receives a signal si ∈ {α, β} correlated with
the state. The players’ signals are independent conditional on the state, and

i receives signal si = α (signal si = β) conditional on state a (state b) with

4Wolitzky also summarizes other recent papers examining the effect of weakening the com-
mon prior assumption.
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probability λi > 1
2 . That is

5

Pi(α|a, λ) = Pr ob(s̃i = α|θ̃ = a, λ) = λi = Pr ob(s̃i = β|θ̃ = b, λ) = Pi(α|a, λ).

Furthermore, we assume that there exist numbers x and y such that x < y

and
1

2
< x ≤ λi ≤ y < 1

for each i. We denote the set of vectors of accuracies [x, y]n = {(λ1, ..., λn) : λi ∈
[x, y]}, and by λ a generic element of [x, y]n. For each s = (s1, .., sn) ∈ {α, β}n

and each i, let

fnα (s−i) := |{j : sj = α and j 6= i}|
with a similar definition for fnβ (s−i). For each s = (s1, .., sn) ∈ {α, β}n and each
i, let

Fnα (s−i) := {j : tj = α and j 6= i}
with a similar definition for Fnβ (s−i).Note that |Fnα (s−i)| = fnα (s−i) and Fnβ (s−i)| =
fnβ (s−i).

The entire description of the game is common knowledge among the bidders

and he seller except for the actual accuracy profile.

Consequently, the problem we treat in this paper is a significant departure

from our earlier work on two stage models. Specifically, our previous work deals

with a complete information environment. In this complete information setup,

the seller is able to construct transfers that explicitly use the probability distri-

bution relating states and bidders’signals and these transfers provide incentives

for honest reporting in the first stage. In particular, the seller can construct a

mechanism for which an equilibrium in the resulting game of asymmetric infor-

mation played by the bidders implements honest first stage reporting. In the

current paper, the presence of incomplete information does not allow for such a

construction.

As mentioned in the introduction, we take an epistemic point of view and

introduce a type space ([x, y]n, T1, .., Tn, π) where for each ti, πi(·|ti) ∈ [x, y]n×
T−i defines the beliefs of player i regarding the accuracy profile and the types

of other bidders. Note that Ti and π can depend on n but we suppress this

dependence to lighten the notation. For simplicity, we will also assume that each

Ti is finite to avoid measurability issues and that λ ∈ [x, y]n 7→ πi(λ, t−i|ti) ∈ R+
is a pdf for each ti and t−i. In particular, for each ti ∈ Ti,∑

t−i∈T−i

∫
[x,y]n

πi(λ, t−i|ti) = 1.

5We write s̃i, s̃, θ̃ etc for random variables whose realizations si, s, θ are elements of Si, S,Θ.
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Give a type space, we next propose a two stage mechanism with complete

but asymmetric information whose extensive form is described as follows.

Stage 1: Buyer i of type ti ∈ Ti observes his signal si ∈ {α, β} and private
value ci and makes a (not necessarily honest) report of his signal to the auction-

eer. If buyer i reports signal β and at least n
2 other buyers report β, then all

buyers who have reported β (including i) advance to the second stage. If buyer

i reports signal α and at least n
2 other buyers report α, then all buyers who

have reported α (including i) advance to the second stage. If buyer i’s report is

not a majority report, then i exits the game with a payoff of 0.

Stage 2: Suppose that bidder i and k other bidders advance to the second

stage where k ≥ n
2 . With probability ε, the auctioneer will randomly choose

(with probability 1
k+1 ) one of the second stage buyers to be awarded the object

outright. With probability 1 − ε, the auctioneer will conduct a k + 1 bidder

second price auction. We assume that bidders who reach the second stage do

not know the identities of the other second stage bidders. That is, bidder i who

reaches the second stage only knows that at least n
2 other bidders submitted a

first stage report matching that of bidder i.

2.2 Strategies, payoffs and the main result

To begin, we need to derive several probability expressions. For θ ∈ {a, b},
s = (s1, .., sn) ∈ {α, β}n, and (λ1, ..., λn) ∈ [x, y]n, let P (θ, s|λ) denote the

probability of (θ, s) conditional on λ. Then

P (a, s|λ) =
1

2

∏
j∈Fα(s−i)

λj
∏

j∈Fβ(s−i)

(1− λj)

and

P (b, s|λ) =
1

2

∏
j∈Fα(s−i)

(1− λj)
∏

j∈Fβ(s−i)

λj .

Therefore,

Pi(α|λ) = Pi(α|a, λ)
1

2
+ Pi(α|b, λ)

1

2
=

1

2
λi +

1

2
(1− λi) =

1

2

and

Pi(β|λ) = Pi(β|a, λ)
1

2
+ Pi(β|b, λ)

1

2
=

1

2
(1− λi) +

1

2
λi =

1

2
.

If i has type ti, then given P and i’s beliefs πi, bidder i assigns a probability

to (θ, s, λ, t−i) defined as

µi(θ, s, λ, t−i|ti) = P (θ, s|λ)πi(λ, t−i|ti).
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If si ∈ Si and ti ∈ Ti, then

µi(si|ti) =
∑

s−i∈{α,β}n

∑
θ∈{a,b}

∑
t−i∈T−i

∫
[x,y]n

µi(θ, s, λ, t−i|ti)dλ

=

∫
[x,y]n

Pi(si|λ)πi(λ|ti)dλ

=

∫
[x,y]n

1

2
πi(λ|ti)dλ

=
1

2

Since Pi(si|λ) = 1
2 = µi(si|ti), it follows that

µi(θ, s−i, λ, t−i|si, ti) =
P (θ, s|λ)πi(λ, t−i|ti)

µi(si|ti)

=
P (θ|s, λ)P (s|λ)πi(λ, t−i|ti)

µi(si|ti)

=
P (θ|s, λ)P (s−i|si, λ)Pi(si|λ)πi(λ, t−i|ti)

µi(si|ti)

=
P (θ|s, λ)P (s−i|si, λ)Pi(si|λ)πi(λ, t−i|ti)

µi(si|ti)
= P (θ|s, λ)P (s−i|si, λ)πi(λ, t−i|ti)

Given n and the data defining the two stage game and a type space ([x, y]n, T1, .., Tn, π),

we have a well defined Bayesian game. In this game, a (pure) strategy for bid-

der i of type ti has two components: a first stage reporting function (ci, si) 7→
ri(ci, si|ti) ∈ {α, β} and a second stage bidding function (ci, si) 7→ bi(ci, si|ti) ∈
R.

Definition: A strategy profile (ri, bi)
n
i=1 is truthful if for every i, ri(ci, si|ti) =

si for all ci ∈ [0, 1], si ∈ {α, β} and ti ∈ Ti.

Our goal is to provide an incentive for bidders to honestly report their private

signals in stage 1. That incentive depends, of course, on the way in which first

stage reports affect second stage payoffs which, in turn, depends on bidders’

second stage bidding strategies in the event that the mechanism designer (MD)

conducts an auction in the second stage.

Fix a truthful strategy profile (rj , bj)
n
j=1. Suppose that player i of type ti

with private characteristic ci observes signal si = β. If i reports signal β to the

mechanism, what is the ex ante expected payoff of agent i ?

10



If fnβ (s−i) <
n
2 , then i’s first stage report is a minority report so i leaves the

game with payoff zero.

If fnβ (s−i) ≥ n
2 , then i moves to the second stage and i joins a set Fβ(s−i) ⊆

N\i of truthful agents who have also advanced to the second stage. Although i
does not know the actual composition of Fnβ (s−i), i does know that |Fnβ (s−i)| =
fnβ (s−i) = k for some k ≥ n

2 .

With probability 1−ε, the designer conducts a second price auction. Condi-
tional on type profile (t1, .., tn) and signal profile s−i, it follows that i’s expected

payoff in the auction, depends on i’s bid bi(ci, si|ti), the bids of i’s opponents
(bj(cj , sj |tj))j∈Fβ(s−i), the density g, i’s private characteristic ci, the parameter
profile λ and i’s signal si = β. We write this expected auction payoff as6

Ai(β|t−i, λ, s−i, ci, ti, si = β).

With probability ε, the designer conducts a lottery. Conditional on type

profile (t1, .., tn) and signal profile s−i, it follows that i’s expected payoff in the

lottery depends on i’s private characteristic ci, the parameter profile λ and i’s

signal si = β. We write this expected lottery payoff as7

Li(β|s−i, λ, , ci, si = β) =
ci +

∑
θ∈{a,b} v(θ)P (θ, s−i|si = β, λ)

|Fβ(s−i)|
.

Combining these, it follows that, if all other agents truthfully report their sig-

nals, then player i of type ti with private value ci who observes signal si = β

and reports β will have ex ante expected payoff equal to

Ui(β|(bj)nj=1, ci, si = β, ti)

= (1− ε)
∑
t−i

∫
[x,y]n

∑
k≥n2

∑
s−i

:|Fβ(s−i)|=k

Ai(β|t−i, λ, s−i, ci, ti, si = β)P (s−i|si = β, λ)

πi(λ, t−i|ti)

+ε
∑
t−i

∫
[x,y]n

∑
k≥n2

∑
s−i

:|Fβ(s−i)|=k

Li(β|s−i, λ, , ci, si = β)P (s−i|si = β, λ)

πi(λ, t−i|ti))
Again, suppose that player i of type ti with private value ci observes signal

si = β. Now suppose that i reports signal α to the mechanism. If fnα (s−i) <
n
2 ,

6For the precise definition of Ai(β|t−i, λ, s−i, ci, ti, si = β), see Section 5.2 below)
7Note that Li does not depend on ti since Li does not depend on second stage bids and

rj(cj , sj |tj) = sj if j 6= i.
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then i’s first stage report is a minority report so i leaves the game with payoff

zero.

If fnβ (s−i) ≥ n
2 , then i moves to the second stage and joins a set Fα(s−i) ⊆

N\i of truthful agents who have also advanced to the second stage. Again,
i does not know the actual composition of Fnα (s−i) but i does know that

|Fnα (s−i)| = fnα (s−i) = k for some k ≥ n
2 .

Conditional on type profile t and signal profile s−i,, i has an analogous

expected second stage auction payoff depending on i’s bid bi(ci, si|ti), the bids
of i’s opponents (bj(cj , sj |tj))j∈Fα(s−i), the density g, i’s private characteristic
ci, the parameter profile λ and i’s signal si = β and we denote this payoff as

Ai(α|t−i, λ, s−i, ci, ti, si = β).

Similarly, i has an analogous expected lottery payoff

Li(α|s−i, λ, ci, si = β) =
ci +

∑
θ∈{a,b} v(θ)P (θ, s−i|si = β, λ)

|Fα(s−i)|
.

Combining these, it follows that, if all other agents truthfully report their

signals, then player i of type yi with private value ci who observes signal ti = β

and reports α will have ex ante expected payoff equal to

Ui(α|(bj)nj=1, ci, si = β, ti)

= (1− ε)
∑
t−i

∫
[x,y]n

∑
k≥n2

∑
s−i

:|Fα(s−i)|=k

Ai(α|t−i, λ, s−i, ci, ti, si = β)P (s−i|si = β, λ)

πi(λ, t−i|ti)

+ε
∑
t−i

∫
[x,y]n

∑
k≥n2

∑
s−i

:|Fα(s−i)|=k

Li(α|s−i, λ, , ci, si = β)P (s−i|si = β, λ)

πi(λ, t−i|ti))
Definition: Suppose that Γn is a two stage game and ([x, y]n, π, T1, .., Tn)

is a type space for Γn. Suppose that c = (c1, .., cn) is a profile of private char-

acteristics and t = (t1, .., tn) is a profile of types. A truthful strategy profile

(ri, bi)
n
i=1 is incentive compatible for J ⊆ {1, .., n} given c and t if for every

i ∈ J ,

Ui(β|(bj)nj=1, ci, si = β, ti) ≥ Ui(α|(bj)nj=1, ci, si = β, ti)

Ui(α|(bj)nj=1, ci, si = α, ti) ≥ Ui(β|(bj)nj=1, ci, si = α, ti)

12



In keeping with the typical approach to implementation, one would investi-

gate the circumstances under which the Bayesian game admits an equilibrium

that is truthful and incentive compatible. In this paper, we take a different tack.

In particular, we show that there exists a strategy profile that is truthful and

incentive compatible if players are restricted to submitting undominated bids in

the second stage auction. The next definition formalizes our notion of weakly

dominated.

Definition: Suppose that Γn is a two stage game and ([x, y]n, π, T1, .., Tn) is

a type space for Γn. Suppose that (ri, bi) is a strategy for player i in the Bayesian

game and suppose that ci ∈ [0, 1]. Then (ri, bi) is ex-post weakly dominated if

there exists a bid b′′i such that the following hold for every Q ⊆ N\i, every
si ∈ {α, β} and every ti ∈ Ti and every ci ∈ [0, 1] :

a. for every (rj , bj)j∈Q and for every s−i, every t−i, and every λ,

ci +
∑

θ∈{a,b}

v(θ)P (θ|s−i, si, λ)−max
j∈Q
{bj(cj , sj |tj)}

χ(b′′i > max
j∈Q
{bj(cj , sj |tj)})

≥

ci +
∑

θ∈{a,b}

v(θ)P (θ|s−i, si, λ)−max
j∈Q
{bj(cj , sj |tj)}

χ(bi(ci, si|ti) > max
j∈Q
{bj(cj , sj |tj)})

(b) there exists a (rj , bj)j∈Q and s−i and t−i such that

ci +
∑

θ∈{a,b}

v(θ)P (θ|s−i, si, λ)−max
j∈Q
{bj(cj , sj |tj)}

χ(b′′i > max
j∈Q
{bj(cj , sj |tj)})

>

ci +
∑

θ∈{a,b}

v(θ)P (θ|s−i, si, λ)−max
j∈Q
{bj(cj , sj |tj)}

χ(bi(ci, si|ti) > max
j∈Q
{bj(cj , sj |tj)})

A profile of strategies (ri, bi)
n
i=1 is second stage admissible if for each i, (ri, bi)

is not ex post weakly dominated.

Proposition: Suppose that x
1−x > min{ v(b)v(a) ,

v(a)
v(b) }. Then for each ε > 0

there exists a δ such that for each δ ∈ [δ, 1[, there exists an N such that for each

n ≥ N and every type space ([x, y]n, π, S1, .., Sn) for Γn the following holds: for

every truthful strategy profile (ri, bi)
n
i=1 that is second stage admissible for c, the

13



two stage mechanism is interim individually rational and incentive compatible

for all i ∈ J = {j|cj ∈ [0, δ]}. Furthermore,

Prob(|J −G(δ)n| ≥ n− 2
3 ) < exp[−2n

1
3 ]

Remark 1: To interpret the result, note that we assume that x
1−x >

min{ v(b)v(a) ,
v(a)
v(b) }. Consequently, we do require that the commonly known min-

imum accuracy x be suffi ciently large. As a simple application of Hoeffding’s

Inequality, the result asserts that, in a suffi ciently large auction game, a large

fraction of the set of all players will report their true signals irrespective of

their beliefs regarding the accuracy profile as long as their private valuations

are bounded away from 1. To obtain this result, the players need only choose

second stage bidding strategies that satisfy a weak requirement of admissibility.

Remark 2: For large n, the seller’s expected revenue is close to

(1− ε)
(

1 +
v(a) + v(b)

2

)
.

To see this, suppose that n is large. With probability 1−ε, the second stage auc-
tion has k ≥ n

2 bidders who have reported α and are choosing admissible second

stage bids, then the bidders estimate the value of the common component to

be approximately v(a) so the winning bidder pays approximately v(a) plus the

second highest value of the private valuations of the other k bidders. For large

n this is approximately 1 + v(a). If the second stage auction has k ≥ n
2 bidders

who have reported β and are choosing admissible second stage bids, then the

bidders estimate the value of the common component to be approximately v(b)

so the winning bidder pays approximately v(b) plus the second highest value

of the private valuations of the other k bidders. For large n this is approxi-

mately 1 + v(b). Therefore the seller’s expected revenue from the mechanism is

approximately equal to

(1−ε)([1+v(a)]P (fα(s̃) ≥ n

2
)+[1+v(b)]P (fβ(s̃) ≥ n

2
)) = (1−ε)

(
1 +

v(a) + v(b)

2

)
.

Remark 3: Our mechanism can induce truthful reporting of signals without
transfers designed by the auctioneer, transfers that would require the auctioneer

to know the beliefs of the agents. While we view this as an advantage, this

advantage comes at a price, namely, truthful reporting in the first stage by a

large fraction of all participants.
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Remark 4: The proof requires a number of complex estimates but the essen-
tial idea is relatively straightforward. Suppose that xv(b) > (1−x)v(a). A player

can estimate Ai(β|t−i, λ, s−i, ci, ti, si = β) and Li(β|s−i, λ, , ci, si = β) and can

also estimate Ai(α|t−i, λ, s−i, ci, ti, si = β) and Li(β|s−i, λ, , ci, si = β). For a

player with ci ∈ [0, δ], bothAi(β|t−i, λ, s−i, ci, ti, si = β)−Ai(α|t−i, λ, s−i, ci, ti, si =

β) and Li(β|s−i, λ, , ci, si = β)− Li(β|s−i, λ, , ci, si = β) converge to zero. The

former is negative and converges to zero at an exponential rate while the lat-

ter is positive converges at a linear rate. Consequently, Ui(β|(bj)nj=1, ci, si =

β, ti) − Ui(α|(bj)nj=1, ci, si = β, ti) is positive for suffi ciently large n. Further-

more, these rates are valid irrespective of the type space associated with the

underlaying data and the result follows. A completely symmetric argument es-

tablishes that Ui(α|(bj)nj=1, ci, si = α, ti)−Ui(β|(bj)nj=1, ci, si = α, ti) is positive

for suffi ciently large n if xv(a) > (1− x)v(b).

3 Proof

Assume that i of type ti receives signal si = β and has private characteristic

ci ∈ [0, δ] where δ < 1.

For a profile s of signals, note that

fnα (s−i) + fnβ (s−i) = n− 1

The dependence of fnθ (s−i) and Fnθ (s−i) on n and λ1, .., λn is suppressed for

notational ease.

Step 1: To begin, note that there exists an integer N0 such that for each i
and for all n ≥ N0, we have
n

2
< x(n−1)−(n−1)

2
3 ≤ λi(n−1)−(n−1)

2
3 < λi(n−1)+(n−1)

2
3 ≤ y(n−1)+(n−1)

2
3 < n .

Applying Hoeffding’s inequality, it follows that

P

(∣∣∣∣fβ(s̃−i)

n− 1
−
∑
j 6=i λj

n− 1

∣∣∣∣ > 1

(n− 1)
1
3

|b
)
≤ 2 exp

(
−2(n− 1)

1

(n− 1)
2
3

)
.

Therefore,

P
(
fβ(s̃−i) > y(n− 1) + (n− 1)

2
3 |b
)
≤ P

fβ(s̃−i) >
∑
j 6=i

λj + (n− 1)
2
3 |b

 ≤ 2 exp[−2(n−1)
1
3 ]

and

P
(
fβ(s̃−i) < x(n− 1)− (n− 1)

2
3 |b
)
≤ P

fβ(s̃−i) <
∑
j 6=i

λj − (n− 1)
2
3 |b

 ≤ 2 exp(−2(n−1)
1
3 ).

15



Similarly,

P

(∣∣∣∣fα(s̃−i)

n
−
∑
j 6=i λj

n

∣∣∣∣ > 1

(n− 1)
1
3

|a
)
≤ 2 exp(−2(n− 1)

1

(n− 1)
2
3

)

implying that

P
(
fα(s̃−i) > y(n− 1) + (n− 1)

2
3 |a

)
≤ P

fα(s̃−i) >
∑
j 6=i

λj + (n− 1)
2
3 |a

 ≤ 2 exp(−2(n−1)
1
3 )

and

P
(
fα(s̃−i) < x(n− 1)− (n− 1)

2
3 |a
)
≤ P

fα(s̃−i) <
∑
j 6=i

λj − (n− 1)
2
3 |a

 ≤ 2 exp(−2(n−1)
1
3 ).

We also will need the following probability bounds that follow from the bounds

computed above:

(i)

P
(
fα(s̃−i) < x(n− 1)− (n− 1)

2
3 , si = β|a

)
= (1− λi)P

(
fα(s̃−i) < x(n− 1)− (n− 1)

2
3 |a
)

≤ 2(1− λi) exp(−2(n− 1)
1
3 ).

(ii)

P
(
fα(s̃−i) ≥

n

2
, ti = β|b

)
= λiP

(
fα(s̃−i) ≥

n

2
|b
)

= λiP
(
fβ(s̃−i) <

n

2
|b
)

≤ λiP
(
fβ(s̃−i) < x(n− 1)− (n− 1)

2
3 |b
)

≤ 2λi exp(−2(n− 1)
1
3 ).

(iii)

P
(
fβ(s̃−i) < x(n− 1)− (n− 1)

2
3 , ti = β|b

)
= λiP

(
fβ(s̃−i) < x(n− 1)− (n− 1)

2
3 |b
)

≤ 2λi exp(−2(n− 1)
1
3 )

(iv)

P
(
fβ(s̃−i) ≥

n

2
, ti = β|a

)
= (1− λi)P

(
fβ(s̃−i) ≥

n

2
|a
)

= (1− λi)P
(
fα(s̃−i) <

n

2
|a
)

≤ (1− λi)P
(
fα(s̃−i) < x(n− 1)− (n− 1)

2
3 |a
)

≤ 2(1− λi) exp(−2(n− 1)
1
3 ).
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Step 2: In this step, we compute bounds for∑
θ∈{a,b}

v(θ)P (θ|s−i, si = β, λ)

if Fβ(s−i) = Q and |Q| = k, and that hold for all suffi ciently large n. To begin,

note that∑
θ∈{a,b}

v(θ)P (θ|s−i, si = β, λ) = v(b)− [v(b)− v(a)]P (θ|s−i, si = β, λ)

Since Fβ(s−i) = Q,

P (s−i, si = β|a) = (1− λi)

∏
j∈Q

(1− λj)

 ∏
j /∈Q∪i

λj


and

P (s−i, si = β|b) = λi

∏
j∈Q

λj

 ∏
j /∈Q∪i

(1− λj)


we conclude that for all n ≥ N0,

P (a|s−i, si = β) =
P (s−i, si = β|a)

P (s−i, si = β|a) + P (s−i, si = β|b)

=
1

1 +

λi

∏
j∈Q

λj


 ∏
j /∈Q∪i

(1−λj)


(1−λi)

∏
j∈Q

(1−λj)


 ∏
j /∈Q∪i

λj


≤ 1

1 +
(

x
1−x

)2k−n+2 .
Let d = 2x− 1. Then there exists an integer N1 > N0 such that n ≥ N1 and

k ≥ x(n− 1)− (n− 1)
2
3 imply that(
x

1− x

) (n−1)d
2

≤
(

x

1− x

)2k−(n−1)
.

To see this choose N1 > N0 so that d − 2(n − 1)−
1
3 > d

2 for all n ≥ N1. Then

k ≥ x(n− 1)− (n− 1)
2
3 and x

1−x > 1 imply that

(
x

1− x

)2k−(n−1)
≥
(

x

1− x

)2(x(n−1)−(n−1) 23 )−(n−1)
17



and it follows that(
x

1− x

)2k−(n−1)
≥
(

x

1− x

)2(x(n−1)−(n−1) 23 )−(n−1)
=

(
x

1− x

)(n−1)[d−2(n−1)− 1
3

]
≥
(

x

1− x

) (n−1)d
2

.

In particular, (
x

1− x

)2k−n+2
≥
(

x

1− x

) (n−1)d
2 +1

Therefore, n ≥ N1 implies (since v(a) < v(b)) that for each k ≥ x(n− 1)−
(n− 1)

2
3 we have

v(b) ≥
∑

θ∈{a,b}

v(θ)P (θ|s−i, si = β, λ)

= v(b)− [v(b)− v(a)]P (a|s−i, si = β, λ)

≥ v(b)−

 1

1 +
(

x
1−x

) (n−1)d
2 +1

 [v(b)− v(a)].

Step 3: In this step, we next compute bounds for∑
θ∈{a,b}

v(θ)P (θ|s−i, si = β, λ)

if Fα(s−i) = Q and |Q| = k, and that hold for all suffi ciently large n.

Since Fα(s−i) = Q,

P (s−i, si = β|a) = (1− λi)

∏
j∈Q

λj

 ∏
j /∈Q∪i

(1− λj)


and

P (s−i, si = β|b) = λi

∏
j∈Q

(1− λj)

 ∏
j /∈Q∪i

λj


we conclude that

P (b|s−i, si = β) =
P (s−i, si = β|b)

P (s−i, si = β|a) + P (s−i, si = β|b)

=
1

1 +

(1−λi)

∏
j∈Q

λj


 ∏
j /∈Q∪i

(1−λj)


λi

∏
j∈Q

(1−λj)


 ∏
j /∈Q∪i

λj


≤ 1

1 +
(

x
1−x

)2k−n .
18



If n ≥ N1 and k ≥ x(n− 1)− (n− 1)
2
3 then we conclude from step 2 that(

x

1− x

)2k−(n−1)
≥
(

x

1− x

) (n−1)d
2

implying that(
x

1− x

)2k−n
=

(
x

1− x

)2k−(n−1)(
1− x
x

)
≥
(

x

1− x

) (n−1)d
2

(
1− x
x

)
=

(
x

1− x

) (n−1)d
2 −1

.

Therefore,

v(a) ≤
∑

θ∈{a,b}

v(θ)P (θ|s−i, si = β, λ)

= v(a) + [v(b)− v(a)]P (b|s−i, si = β).

≤ v(a) +

 1

1 +
(

x
1−x

) (n−1)d
2 −1

 [v(b)− v(a)].

Step 4: For each n, define

ηn =

 1

1 +
(

x
1−x

) (n−1)d
2 −1

 [v(b)− v(a)]

and note that

ηn ≥

 1

1 +
(

x
1−x

) (n−1)d
2 +1

 [v(b)− v(a)].

Summarizing Steps 2 and 3, we conclude the following: for every n ≥ N1 and

for each k ≥ x(n− 1)− (n− 1)
2
3 ,

v(b) ≥
∑

θ∈{a,b}

v(θ)P (θ|s−i, si = β, λ) ≥ v(b)−

 1

1 +
(

x
1−x

) (n−1)d
2 +1

 [v(b)−v(a)] ≥ v(b)−ηn

if |Fβ(s−i) = k and

v(a) ≤
∑

θ∈{a,b}

v(θ)P (θ|s−i, si = β, λ) ≤ v(a)+

 1

1 +
(

x
1−x

) (n−1)d
2 −1

 [v(b)−v(a)] = v(a)+ηn.
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if |Fα(s−i) = k.

Step 5: Let N1 be defined as in Step 4. Suppose that n ≥ N1 and k ≥
x(n − 1) − (n − 1)

2
3 . Let E[v|s−i, si = β, λ] =

∑
θ∈{a,b} v(θ)P (θ|s−i, si = β, λ)

and let ηn be defined as in Step 4.

5.1: We compute an upper bound on bidder i’s the second stage auction
payoff Ai(α|t−i, λ, s−i, ti, si = β) if Fα(t−i) = k and all bidders use ex post

undominated bids. In this case,

v(a) ≤ E[v|s−i, si = β, λ] ≤ v(a) + ηn

and we first prove the following lemma.

Lemma: Suppose that v(a) ≤ E[v|s−i, si = β, λ] ≤ v(a) + ηn. Let Q =

Fα(s−i) and let b′i denote the second stage bid for player i. If b
′
i < ci + v(a),

then b′i is weakly dominated.

Proof: Let b∗−i = maxj 6=i{bj(cj , sj |tj)} and note that i’s payoff in the auction
is then [

ci + E[v|s−i, si = β, λ]− b∗−i}
]
χ(b′i ≥ b∗−i)

with a tie breaking rule if b′i = b∗−i. Suppose that b
′
i < ci + v(a).

If b∗−i ≥ ci + v(a), then a bid of b′i is a losing bid with payoff zero. However,

a bid ci + v(a) has zero payoff if b∗−i > ci + v(a) and a nonnegative payoff if

b∗−i = ci+v(a) since ci+E[v|s−i, si = β, λ]−b∗−i = E[v|s−i, si = β, λ]−v(a) ≥ 0.

If b∗−i ≤ b′i, then a bid of ci + v(a) is a winning bid with payoff ci +

E[v|s−i, si = β, λ] − b∗−i > 0. However, a bid of b′i is a winning bid with payoff

ci +E[v|s−i, si = β, λ]− b∗−i > 0 if b∗−i < b′i and a nonnegative payoff of at most

ci + E[v|s−i, si = β, λ]− b∗−i if b∗−i = b′i.

If b′i < b∗−i < ci + v(a), then a bid of b′i loses with payoff of zero while a bid

of ci + v(a) wins with payoff

ci+E[v|s−i, si = β, λ]−b∗−i > ci+E[v|s−i, si = β, λ]−ci−v(a) > ci+v(a)−ci−v(a) = 0

5.2 Applying the lemma, note that ci+E[v|s−i, si = β, λ] < ci+v(a)+ηn and

maxj∈Q{ci + v(a)} ≤ maxj∈Q{bj(cj , sj |tj)}. Let Q = Fα(s−i) and suppose that

|Q| = k. If i participates in the auction and submits the bid b′i = bi(ci, si|ti),
then
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Ai(α|t−i, λ, s−i, ti, ci, si = β)

=

∫
[0,1]k

[
ci + E[v|s−i, si = β, λ]−max

j∈Q
{bj(cj , sj |tj)}

]
χ(b′i ≥ max

j∈Q
{bj(cj , sj |tj)})g−i(c−i)dc−i

<

∫
[0,1]k

∑
s−i

[
ci + v(a) + ηn −max

j∈Q
{cj + v(a)}

]
χ(b′i ≥ max

j∈Q
{bj(cj , sj |tj)})g−i(c−i)dc−i

=

∫
[0,1]k

∑
s−i

[
ci + v(a) + ηn −max

j∈Q
{cj} − v(a)

]
χ(b′i ≥ max

j∈Q
{bj(cj , sj |tj)})g−i(c−i)dc−i

=

∫
c−i

[
ci −max

j∈Q
{cj}+ ηn

]
χ(b′i ≥ max

j∈Q
{bj(cj , sj |tj)})g−i(c−i)dc−i

≤
∫
[0,1]k

∑
s−i

[
ci −max

j∈Q
{cj}+ ηn

]
χ(b′i > max

j∈Q
{bj(cj , sj |tj)}, ci ≥ max

j∈Q
{ci} − η)g−i(c−i)dc−i

≤
∫
[0,1]k

[
ci −max

j∈Q
{cj}+ ηn

]
χ(ci ≥ max

j∈Q
{cj} − η)g−i(c−i)dc−i

=

∫ ci+ηn

0

[ci − γ + ηn] d[G(γ)k] ≤ Gk(ci + ηn).

5.3 There exists N2 > N1 such that ηn <
1−δ
2 . Therefore, n > N2 implies

that

ci + ηn < δ +
1− δ

2
=

1 + δ

2
< 1.

If n > N2,

Ai(α|t−i, λ, s−i, ti, ci, si = β) ≤ Gk(ci + ηn) ≤ Gk(
1 + δ

2
).

Step 6: Let N2 be defined as in Step 5.3. In this step, we find an upper
bound for Ui(α|(bj)nj=1, ci, si = β, ti) if n > N2.
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6.1 ∑
k≥n2

∑
s−i

:|Fα(s−i)|=k

Li(α|s−i, λ, ci, si = β)P (s−i|si = β, λ)

∑
k≥n2

∑
s−i

:|Fα(s−i)|=k

 ∑
θ∈{a,b}

(
ci + v(θ)

k + 1
)P (θ|s−i, si = β, λ)

P (s−i|si = β, λ)

≤
∑
k≥n2

∑
s−i

:|Fα(s−i)|=k

[
ci + v(a) + ηn

k + 1

]
P (s−i|si = β, λ)

=
∑
k≥n2

[
ci + v(a) + ηn

k + 1

] ∑
s−i

:|Fα(s−i)|=k

P (s−i|si = β, λ)


=
∑
k≥n2

[
ci + v(a) + ηn

k + 1

]
P (fα(s−i) = k|si = β, λ)

6.2 Defining
B = max{ci + v(b), 1 + ci + v(a)}

and

Hk =
∑

S⊆N\i
:|S|=k

∏
j∈S

λj

 ∏
j /∈S∪i

(1− λj)


and recalling that

P
(
fα(s̃−i) ≥

n

2
, ti = β|b

)
≤ 2λi exp(−2(n− 1)

1
3 )

and

P
(
fα(s̃−i) < x(n− 1)− (n− 1)

2
3 , ti = β|a

)
≤ 2(1− λi) exp(−2(n− 1)

1
3 )

we conclude that
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∑
k≥n2

[
(1− ε)G(

1 + δ

2
)k +

ε

k + 1
[ci + v(a) + ηn]

]
P (fα(s̃−i) = k|si = β)

=
∑

n
2≤k<x(n−1)−(n−1)

2
3

(1− ε)
∑
k≥n2

G(
1 + δ

2
)k +

ε

k + 1

∑
k≥n2

[ci + v(a) + ηn]

P (fα(s̃−i) = k, si = β|a)

+
∑

k≥x(n−1)−(n−1)
2
3

[
(1− ε)G(

1 + δ

2
)k +

ε

k + 1
[ci + v(a) + ηn]

]
P (fα(s̃−i) = k, si = β|a)

+
∑
k≥n2

[
(1− ε)G(

1 + δ

2
)k +

ε

k + 1
[ci + v(a) + ηn]

]
P (fα(s̃−i) = k, si = β|b)

≤
∑

k≥x(n−1)−(n−1)
2
3

[
(1− ε)G(

1 + δ

2
)k +

ε

k + 1
[ci + v(a) + ηn]

]
P (fα(s̃−i) = k, si = β|a) + 2B exp(−2(n− 1)

1
3 )

=
∑

k≥x(n−1)−(n−1)
2
3

[
(1− ε)G(

1 + δ

2
)k +

ε

k + 1
[ci + v(a) + ηn]

]
(1− λi)Hk + 2B exp(−2(n− 1)

1
3 )

6.3 Consequently,

Ui(α|(bj)nj=1, ci, si = β, ti)

= (1− ε)
∑
t−i

∫
[x,y]n

∑
k≥n2

∑
s−i

:|Fα(s−i)|=k

Ai(α|t−i, λ, s−i, ci, ti, si = β)P (s−i|si = β, λ)

πi(λ, t−i|ti)

+ε
∑
t−i

∫
[x,y]n

∑
k≥n2

∑
s−i

:|Fα(s−i)|=k

Li(α|s−i, λ, , ci, si = β)P (s−i|si = β, λ)

πi(λ, t−i|ti))

≤
∑
t−i

∫
[x,y]n

 ∑
k≥x(n−1)−(n−1)

2
3

[
(1− ε)G(

1 + δ

2
)k +

ε

k + 1
[ci + v(a) + ηn]

]
(1− λi)Hk + 2B exp(−2(n− 1)

1
3 )

πi(λ, t−i|ti))
Step 7 Let N2 be defined as in Step 5.3. In this step, we find an lower

bound for Ui(β|(bj)nj=1, ci, si = β, ti) if n > N2.

7.1 Suppose that player i reports β . Then i’s payoff in the auction is at
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least 0 while his payoff from the lottery∑
k≥n2

∑
s−i

:|Fβ(s−i)|=k

∑
θ∈{a,b}

(
ci + v(θ)

k + 1
)P (θ, s−i|si = β, λ)P (s−i|si = β, λ)

≥
∑
k≥n2

∑
s−i

:|Fβ(s−i)|=k

(
ci + v(b)− ηn

k + 1
)P (s−i|si = β, λ)

=
∑
k≥n2

(
ci + v(b)− ηn

k + 1
)

 ∑
s−i

:|Fβ(s−i)|=k

P (s−i|si = β, λ)


=
∑
k≥n2

(
ci + v(b)− ηn

k + 1
) [P (fβ(s̃−i) = k|β, λ)]

Consequently, the payoff to player i is bounded from above by

ε
∑
k≥n2

(
ci + v(b)− ηn

k + 1
) [P (fβ(s̃−i) = k|si = β, λ)]

7.2 Again defining

B = max{ci + v(b), 1 + ci + v(a)}

and

Hk =
∑

S⊆N\i
:|S|=k

∏
j∈S

λj

 ∏
j /∈S∪i

(1− λj)


and recalling that

P
(
fβ(s̃−i) ≥

n

2
, ti = β|a

)
≤ 2(1− λi) exp(−2(n− 1)

1
3 )

and

P
(
fβ(s̃−i) < x(n− 1)− (n− 1)

2
3 , si = β|b

)
≤ 2λi exp(−2(n− 1)

1
3 )
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we conclude that∑
k≥n2

ε(
ci + v(b)− ηn

k + 1
)P (fβ(s̃−i) = k, si = β, λ)

=
∑

n
2≤k<x(n−1)−(n−1)

2
3

ε(
ci + v(b)− ηn

k + 1
)P (fβ(s̃−i) = k|si = β|b, λ)

+
∑

k≥x(n−1)−(n−1)
2
3

ε(
ci + v(b)− ηn

k + 1
)P (fβ(s̃−i) = k|si = β|b, λ)

+
∑
k≥n2

ε(
ci + v(b)− ηn

k + 1
)P (fβ(s̃−i) = k|si = β|a, λ)

≥
∑

k≥x(n−1)−(n−1)
2
3

ε(
ci + v(b)− ηn

k + 1
)P (fβ(s̃−i) = k|si = β|b, λ)− 2B exp(−2(n− 1)

1
3 )

=
∑

k≥x(n−1)−(n−1)
2
3

ε(
ci + v(b)− ηn

k + 1
)λiHk − 2B exp(−2(n− 1)

1
3 ).

7.3 Consequently,

Ui(β|(bj)nj=1, ci, si = β, ti)

= (1− ε)
∑
t−i

∫
[x,y]n

∑
k≥n2

∑
s−i

:|Fα(s−i)|=k

Ai(α|t−i, λ, s−i, ci, ti, si = β)P (s−i|si = β, λ)

πi(λ, t−i|ti)

+ε
∑
t−i

∫
[x,y]n

∑
k≥n2

∑
s−i

:|Fα(s−i)|=k

Li(α|s−i, λ, , ci, si = β)P (s−i|si = β, λ)

πi(λ, t−i|ti))

≥
∑
t−i

∫
[x,y]n

 ∑
k≥x(n−1)−(n−1)

2
3

ε(
ci + v(b)− ηn

k + 1
)λiHk − 2B exp(−2(n− 1)

1
3 ).

πi(λ, t−i|ti))
Step 8: Suppose that n ≥ N2 and k ≥ x(n− 1)− (n− 1)

2
3 .

8.1 Combining Steps 6.2 and 7.2, it follows that

∑
k≥n2

ε

(
ci + v(b)− ηn

k + 1

)
P (fβ(s−i) = k|si = β, λ)

−
∑
k≥n2

[
(1− ε)G(

1 + δ

2
)k + ε

(
ci + v(a) + ηn

k + 1

)]
P (fα(t−i) = k|ti = β)
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≥
∑

k≥x(n−1)−(n−1)
2
3

ε

(
ci + v(b)− ηn

k + 1

)
λiHk

−

 ∑
k≥x(n−1)−(n−1)

2
3

[
(1− ε)G(

1 + δ

2
)k + ε

(
ci + v(a) + ηn

k + 1

)]
(1− λi)Hk


− 4B exp(−2(n− 1)

1
3 )

=
∑

k≥x(n−1)−(n−1)
2
3

ε

(
ci + v(b)− ηn

k + 1

)
λiHk − ε

(
ci + v(a) + ηn

k + 1

)
(1− λi)Hk(1− ε)G(

1 + δ

2
)k(1− λi)Hk

− 4B exp(−2(n− 1)
1
3 )

=
∑

k≥x(n−1)−(n−1)
2
3

[
ε

(
ci + v(b)− ηn

k + 1

)
λi − ε

(
ci + v(a) + ηn

k + 1

)
(1− λi)− (1− ε)G(

1 + δ

2
)k(1− λi)

]
Hk

− 4B exp(−2(n− 1)
1
3 )

=
∑

k≥x(n−1)−(n−1)
2
3

[
ε

(
ci + v(b)− ηn

k + 1

)
λi − ε

(
ci + v(a) + ηn

k + 1

)
(1− λi)− (1− ε)G(

1 + δ

2
)k(1− λi)

]
Hk

− 4B exp(−2(n− 1)
1
3 )

≥
∑

k≥x(n−1)−(n−1)
2
3

[
ε

k + 1
(xv(b)− (1− x)v(a)− ηn)− (1− ε)G(

1 + δ

2
)k
]
Hk

− 4B exp(−2(n− 1)
1
3 )

8.2: Suppose that n ≥ N2 and k ≥ x(n− 1)− (n− 1)
2
3 .

For all suffi ciently large n,

xv(b)− (1− λi)v(a)− ηn ≥
xv(b)− (1− x)v(a)

2

Since G( 1+δ2 ) < 1, it follows that for k large enough,

ε

[
xv(b)− (1− x)v(a)

2

]
− (1− ε)(k + 1)G(

1 + δ

2
)k > ε

[
xv(b)− (1− x)v(a)

4

]
Furthermore, for n large enough,

ε

[
xv(b)− (1− x)v(a)

4

]
(1−2 exp(−2(n−1)

1
3 )−4B(n+1) exp(−2(n−1)

1
3 ) > 0

Consequently, there exists an N > N2 such that for all n ≥ N and k ≥
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x(n− 1)− (n− 1)
2
3 , and we conclude that∑

k≥x(n−1)−(n−1)
2
3

[
ε

k + 1
[xv(b)− (1− x)v(a)− ηn]− (1− ε)G(

1 + δ

2
)k
]
Hk

−4B exp(−2(n− 1)
1
3 )

≥
∑

k≥x(n−1)−(n−1)
2
3

1

(k + 1)

(
ε

[
xv(b)− (1− x)v(a)

2

]
− (1− ε)(k + 1)G(

1 + δ

2
)k
)
Hk

−4B exp(−2(n− 1)
1
3 )

≥
∑

k≥x(n−1)−(n−1)
2
3

1

(k + 1)

(
ε

[
xv(b)− (1− x)v(a)

4

])
Hk − 4B exp(−2(n− 1)

1
3 )

≥ 1

(n+ 1)

 ∑
k≥x(n−1)−(n−1)

2
3

(
ε

[
xv(b)− (1− x)v(a)

4

])
Hk − 4B(n+ 1) exp(−2(n− 1)

1
3 )


≥ 1

(n+ 1)

(ε [xv(b)− (1− x)v(a)

4

]) ∑
k≥x(n−1)−(n−1)

2
3

Hk

− 4B(n+ 1) exp(−2(n− 1)
1
3 )


=

1

(n+ 1)

[(
ε

[
xv(b)− (1− x)v(a)

4

]) [
P (fβ(s−i) ≥ x(n− 1)− (n− 1)

2
3 |b)

]
− 4B(n+ 1) exp(−2(n− 1)

1
3 )

]
≥ 1

(n+ 1)

[(
ε

[
xv(b)− (1− x)v(a)

4

])
(1− 2 exp(−2(n− 1)

1
3 )− 4B(n+ 1) exp(−2(n− 1)

1
3 )

]
> 0

8.3 Let N be defined as in Step 8.2. Combining steps 8.1, 8.2, 6.3, and 7.3

we conclude that for n>N,

Ui(β|(bj)nj=1, ci, si = β, ti)− Ui(α|(bj)nj=1, ci, si = β, ti) ≥ 0

4 Discussion

1. When the number of buyers is large, the information of a single agent will

generally have a small influence on the expected value of the common compo-

nent. As discussed above, this is related to the idea of informational size that

we have employed in other papers but differs in important ways. Our previous

work assumed common knowledge of the information structure. Thus, if we

were able to induce truthful revelation of agents’private information about the

common component and make that information public, there would be common
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knowledge of the expected value of that common component. This turns the

second stage auction into a private value auction. In the current paper there is

no common knowledge prior over agents’information - no assumption is made

about agents’beliefs about either the accuracy of their own signal or the signals

of others. For every probability distribution over buyers’accuracies, one can

compute the expected value of the common component. To prove our main re-

sult we show that there is a lower bound on these expected values that converges

to the expected value given the true state.

2. We demonstrate that in our mechanism, if it is assumed that buyers do

not make dominated bids should they reach the second stage auction, then it is

optimal for a buyer to correctly reveal his state signal when there were many

buyers and other buyers reported truthfully.8 It would, however, also have been

optimal for a buyer to misreport his signal if all other buyers did so, for more or

less the same reasons that truthful revelation is often not the unique equilibrium

in a standard direct mechanism. To get to the second stage in our model, a buyer

wants to be in the majority; if all other buyers misreport, my doing so as well

maximizes my chance to move to the second stage. It should be noted, however,

that whether all buyers report truthfully or all buyers lie (that is, each buyer

announces the opposite of her signal), the same set of buyers will advance to the

second stage and, having advanced to the second stage, the constraints on the

bids that are undominated is the same. Hence, the lower bound on the seller’s

expected revenue is the same whether buyers unanimously announce truthfully

or untruthfully in the first stage. This does not, however, mean that the lower

bound is the same for all first stage announcements. For example, it is incentive

compatible for all buyers to report state a regardless of the signal they receive,

and the lower bound on the seller’s expected revenue would typically be lower

in this case.

3. We assume two equally likely states. While it is not critical that the states

be exactly equally likely, the analysis above will break down if the states have

dramatically different probabilities. Suppose the probability of state a is p and

buyers get a state signal that has accuracy .6. If p = .5 and my signal indicates

that the state is a, my belief is that a is the more likely state, and consequently,

other people are more likely to get the signal indicating state a than a signal

8Note that we do not say that correctly reporting the state signal is an equilibrium. Since
a buyer who reaches the second stage does not necessarily have a well defined probability
distribution over his possible values of the object, he does not have a well defined expected
utility conditional on getting to the second stage.
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indicating state b. However, if p = .01, my posterior beliefs are that state b is

more likely than a, and I have a better chance of getting to the second stage by

misreporting my state signal than by reporting truthfully. If the states are not

equally likely, there will be a minimum accuracy ρ of the signal for which, when

i observe a signal for state a, my belief is that a is the most likely state. It is

necessary and suffi cient that the signal accuracy be at least this high to elicit

truthful reporting.

4. We demonstrate that, for a particular auction problem, the incentive

problem stemming from interdependent values can be ameliorated when there

are many buyers. The structure of the argument suggests a general message.

A buyer gains by misreporting that part of his private information that affects

other buyers’values. By doing so the buyer alters other buyers’values by dis-

torting their beliefs. The information structure in our problem has the property

that as the number of buyers gets large, the degree to which a buyer can dis-

tort others’beliefs gets small, hence small rewards for truthful revelation induce

truthful reporting. When the number of buyers gets large, the aggregate reward

necessary to induce truthful reporting is small because the amount by which a

buyer can distort other buyers’beliefs decreases faster than rate at which the

number of buyers increases.

While there are information structures for which this is not the case, many

natural information structures share this property. When this property holds,

an important part of agents’asymmetric information —the part leading to in-

terdependent values —can be dealt with at small cost.

5. MP2017 constructs a two-stage mechanism that uses the first-stage an-

nouncements to convert the initial interdependent value problem into a private

value problem in the second stage, assuming truthful reporting in the first stage.

This makes the analysis of agents’second stage bidding behavior easier: in the

standard second-price auction, bidding below one’s expected value is weakly

dominated. In the current paper the second period problem is not private

value: agents do not have a probability distribution over the accuracies of the

signals received, hence, they do not have a probability distribution over their

value of the object being auctioned. However, the lower bound on the possible

accuracies puts a lower bound on the probability of the correct state of nature

over all possible accuracies. This, in turn, puts a lower bound for any agent

on her expected values across all possible accuracies, and bidding below this

lower bound is dominated. As the number of agents increases, this lower bound

29



converges (with probability one) to the value of the object had the underlying

state of nature been known.

6. The first stage of our two stage mechanism functions as a way to pro-

vide information to agents in the second stage that is useful in constructing

an accurate estimate of the true state θ ∈ {a, b}. This estimate is then used
to compute expected payoffs that determine those second stage bids that are

undominated. In this paper, all agents report their signals and those making a

majority report move to the second stage. In a two stage mechanism in which

agents are truthful in the first stage, a player who advances to the second stage

can compute the relative frequency vector and, consequently, construct an accu-

rate estimate of the state θ as an application of the law of large numbers. Our

choice of the first stage construction ensures strict interim individual rationality

and strict incentive compatibility, properties that we view as desirable. If these

strictness requirements are relaxed, then one can find alternative constructions

of the first stage such that the information learned by second stage participants

allows them to compute an accurate estimate of the state θ.

7. Our main result takes an asymptotic perspective as the number of bid-

ders gets large. A "small numbers" result is possible if signals are suffi ciently

accurate. Suppose that there are at least three bidders and each bidder gets a

noisy signal about theta with accuracy λi where x∗ ≤ λi < 1. Let x∗ be close to

1, meaning that all agents are getting signals that are highly accurate, but not

perfectly accurate. Agents as usual announce the state, a or b. The majority

go to the second stage (ignoring ties). Given the assumptions on the signal

structure, an agent’s expected effect on possible posteriors is small when other

agents are announcing truthfully. A small prize (get the object for free with

probability ε) is enough to get truth as an equilibrium if x∗ suffi ciently close to

1.

8. We can extend the analysis to multidimensional states. Suppose for the

oil field example, the state θ has two attributes that bidders (might) value, say,

the amount of oil and the depth of oil. Suppose that each of the attributes is

binary: the amount is High or Low and depth is Deep or Shallow. Bidders may

care about these differentially, that is, some may care more about amount than

depth while for others it is the reverse. Suppose now each agent is going to

receive a signal correlated with one of the attributes, but not the other. This

violates our assumption that for any state, an agent receives a signal that has

accuracy above .5 that his signal is the true state; now agents won’t know about
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states that differ on the attribute signal they do not receive. Now, instead of

asking an agent to "predict" the state, we ask him to predict the attribute with

which his signal is correlated and the majority announcers go to the second

stage. While not a private values problem in the second stage, our method of

restricting bids to be undominated will still deliver the same result.
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