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We link two approaches to biased belief formation: non-Bayesian updating
and misspecified models. The former parameterizes a bias with an updating rule
mapping signals to posterior beliefs or a belief forecast describing anticipated
beliefs; the latter is an incorrect model of the signal generating process. Our
main result derives necessary and sufficient conditions for an updating rule and
belief forecast to have a misspecified model representation, shows that these two
components uniquely pin down a representation, and constructs it. This clar-
ifies the belief restrictions implicit in the misspecified model approach. It also
allows leveraging of the distinct advantages of each approach by decomposing
a model into empirically identifiable components, showing these components
isolate the two forms of bias that the model encodes—the retrospective bias
after information arrives and the prospective bias beforehand, and rendering
off-the-shelf tools to characterize asymptotic learning and equilibrium predic-
tions in misspecified models applicable to non-Bayesian updating.
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1 Introduction

Extensive work in economics and psychology has documented systematic biases and

errors individuals exhibit when interpreting information and forming beliefs. A rich

literature has explored how to model such biased updating. Two modeling approaches

are commonly used: the ‘non-Bayesian’ approach and the ‘misspecified model’ ap-

proach. The former parameterizes a particular bias with an updating rule that maps

signal realizations to posterior beliefs (e.g., under- and overreaction in Epstein, Noor,

and Sandroni (2010)). In the latter, a subjective model of the signal generating pro-

cess describes how an individual interprets signals; the individual applies Bayes rule

to this model to form beliefs, but the model may be wrong.

Each approach has distinct advantages. The misspecified model approach can

capture a variety of behavioral biases without departing too far from the standard

framework. It is therefore relatively easy to incorporate this approach in existing

economic models. Moreover, a misspecified model also pins down an individual’s an-

ticipated beliefs before observing information, which can be relevant for ex-ante de-

cisions, strategic interaction, and social learning. Finally, the approach is amenable

to analysis in a general context. A large literature establishes general learning char-

acterizations for misspecified models (e.g., Bohren and Hauser (2021); Fudenberg,

Lanzani, and Strack (2021); Frick, Iijima, and Ishii (2023)) and develops a general

solution concept—Berk-Nash equilibrium (Esponda and Pouzo 2016).

In contrast, the non-Bayesian approach provides a transparent link between the

conceptual form of the bias (e.g., overprecision, partisan bias) and the resulting belief

distortion, highlighting the specific way in which an agent distorts information. For

example, the agent may miscode certain signal realizations, double-count signals, or

slant beliefs in a particular direction. This connection to the underlying psychologi-

cal friction allows for empirically validated modeling choices (e.g., the updating rules

used in Woodford (2020); Ba, Bohren, and Imas (2024)). Additionally, this is the ap-

proach often used in empirical work, as an updating rule can be identified from belief

data (Benjamin 2019). Importantly, however, the approach is incomplete in that it

does not pin down anticipated beliefs. The analysis is also typically conducted on

a case-by-case basis to understand how a specific updating rule impacts learning, to

determine which solution concept to pair with an updating rule, or to pin down antici-
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pated beliefs. For example, Rabin and Schrag (1999); Epstein et al. (2010) study how

confirmation bias and over/underreaction, respectively, impact asymptotic beliefs,

Eyster and Rabin (2010) define a solution concept for naive learning, and Benjamin,

Bodoh-Creed, and Rabin (2019) outline an assumption to pin down anticipated be-

liefs in a setting with base-rate neglect. This contrasts with the misspecified model

approach, which provides a general and complete framework for studying biases but

little guidance on how to capture a specific bias.

The goal of this paper is to link these two approaches in order to leverage the

advantages of each. We first determine when it is possible to represent an updating

rule as a misspecified model, in the sense that the model prescribes the same posterior

belief as the updating rule following each signal realization. While we show that

such a representation exists for many commonly used updating rules, in general,

this representation is not unique. We next show that an agent’s belief forecast—her

prediction of her future beliefs—is the other component needed to pin down a unique

representation. Importantly for empirical work, a belief forecast is also identifiable

from belief data.1 Bringing these pieces together, our main result establishes necessary

and sufficient conditions for a given updating rule and belief forecast to be jointly

represented by a misspecified model and constructs this unique representation.

From the perspective of the misspecified model approach, this result clarifies its

belief formation restrictions, decomposes the model into empirically identifiable com-

ponents, and highlights how these components isolate the two forms of bias that

a given model encodes—the induced updating rule captures the retrospective bias

that emerges after information arrives, while the induced belief forecast captures the

prospective bias that emerges before information arrives. It also provides a powerful

tool to construct misspecified models that capture a given psychological friction. From

the perspective of the non-Bayesian approach, this result provides guidance on how

to incorporate a given updating rule into economic settings that also require ex-ante

beliefs, and yields a set of off-the-shelf tools that can be used to immediately establish

important results such as belief convergence and equilibrium characterization.

We now describe our setting in more detail. An agent learns about a hidden state

1See Chambers and Lambert (2021); Karni (2020) for methods to elicit an agent’s prediction of

her own belief.
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from a signal with a fixed true distribution. The non-Bayesian approach consists of an

updating rule mapping each signal realization to a posterior belief and a belief forecast

describing the agent’s anticipated distribution of her posterior belief after observing

the signal. This set-up draws a distinction between the prospective bias of the agent—

how the agent reasons about information yet to be realized via the belief forecast—

and the retrospective bias—how the agent reasons about realized information via the

updating rule. The misspecified model approach consists of a family of subjective

distributions over the signal space, one for each state. A model is misspecified when

it differs from the true (objective) signal distribution. We say a misspecified model

represents an updating rule when the posterior belief prescribed by the updating rule

is equal to the posterior belief derived from Bayesian updating with respect to the

misspecified model, and it represents a belief forecast when the predicted distribution

of the posterior belief derived from the misspecified model is equal to the forecast.

We first derive necessary and sufficient conditions for an updating rule or a forecast

to be individually represented. The condition for the updating rule is quite mild: it

must be Bayes-feasible, in that the prior belief is contained in the relative interior

of the convex hull of the set of posterior beliefs prescribed by the updating rule.

This rules out updating rules that, for example, move beliefs towards the same state

following all signal realizations and is satisfied by many updating rules commonly

used in the literature.2 The condition for a belief forecast is more restrictive: it

must be plausible, in that its expectation is equal to the prior. This is a misspecified

analogue of Bayes plausibility (Kamenica and Gentzkow 2011). In both cases, it is

straightforward to see that these conditions are necessary implications of Bayesian

updating, as required in a misspecified model; it turns out that they are also sufficient.

Theorem 1 brings together these results to establish necessary and sufficient con-

ditions for an updating rule and a forecast to be jointly represented by the same

misspecified model. In addition to the two conditions described above, a third—no

unexpected beliefs—is needed. It requires any set of posterior beliefs that the agent

anticipates with positive probability to arise with positive probability given her up-

dating rule and vice versa. Together, these conditions clarify the belief formation

2For example, overreaction (Epstein et al. 2010), partisan bias (Bohren and Hauser 2021) and

confirmation bias (Rabin and Schrag 1999) all satisfy this condition.
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restrictions implicit in using the misspecified model approach: (i) Bayes-feasible up-

dating rules, (ii) plausible belief forecasts, and (iii) no unexpected beliefs. We show

that the second and third condition imply the first, so (i) is redundant. Therefore,

any updating rule and belief forecast satisfying (ii) and (iii) have a misspecified model

representation. In a sufficiently rich signal space condition (iii) is mild, so a given

updating rule is compatible with many different forecasts and similarly for a given

forecast. This flexibility means that the prospective bias of a misspecified model

places little restriction on the retrospective bias of the model (and vice versa).

Importantly, Theorem 1 also shows that such a representation is unique and easy

to construct. This establishes that a misspecified model can be uniquely decomposed

into the prospective and retrospective biases that it encodes. The prospective bias

reflected in the belief forecast captures errors in anticipating belief formation, while

the retrospective bias reflected in the updating rule captures errors in interpreting

information after it arrives. Every misspecified model is uniquely identified by these

two components, and they jointly describe all bias that the model encodes. This

provides a convenient formulation for a misspecified model in terms of the resulting

biases—and also, in terms of components that can be identified from belief data.

Moreover, it establishes that the induced updating rule and belief forecast together

pin down all behavioral implications of a misspecified model; the model imposes no

further belief distortions beyond those reflected in these two components. From the

perspective of the non-Bayesian approach, this result establishes that for any given

updating rule, selecting a belief forecast uniquely pins down a misspecified model

that can be used for analysis. Finally, Theorem 1 constructs the misspecified model

representation of a given updating rule and belief forecast. This provides a simple

formula that can be easily used in applications.

We next derive classes of models that feature only prospective bias or only retro-

spective bias. The sophisticated-prospectively correct (sophisticated-PC) and naive-

prospectively correct (naive-PC) models both shut down prospective bias—based on

whether an agent is sophisticated or naive about her retrospective bias—in order

to isolate the implications of retrospective bias. Given that updating rules are more

frequently studied in the literature, this provides a natural way to choose a belief fore-
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cast when retrospective bias is the primary focus.3 Analogously, the retrospectively

correct (RC) model shuts down retrospective bias in order to isolate the implications

of prospective bias. Our results derive necessary and sufficient conditions for each of

these models to exist and be unique. Taken together, these classes of models serve

dual purposes. When a researcher starts with an updating rule or belief forecast

and wants to use the misspecified model approach for analysis, they highlight which

representation to select in order to avoid introducing any additional bias. When a

researcher starts with a misspecified model that generates both retrospective and

prospective bias, they provide natural benchmarks that shut down each bias in turn,

thereby isolating the effect of the other and providing insight into their interaction.

We next develop two applications to demonstrate how our results yield novel

insights in specific economic settings. The first shows the power of our representation

for conducting a general analysis of a behavioral bias. We apply results from the

misspecified learning literature to characterize the long-run learning outcomes of a

general version of the confirmation bias updating rule from Rabin and Schrag (1999).

We show that the prediction of incorrect learning from Rabin and Schrag (1999)

robustly emerges in an individual learning setting, but the belief forecast plays a

crucial role in determining learning outcomes in a social learning setting. The second

explores a search decision when a firm has a misspecified model of the signal variance.

We decompose this model into the retrospective and prospective biases it encodes,

and then use the prospectively and retrospectively correct representations to isolate

the impact of each bias on search behavior. We show that whether bias emerges

ex-ante versus ex-post has important implications for behavior, and the extent of the

misspecification determines whether the prospective and retrospective bias offset or

amplify each other. This has important implications for choosing policy interventions,

including which bias is more important to target and whether targeting one bias but

not the other will lead to further inefficiency.

We close with several extensions of our setting, including allowing for the possi-

bility that an agent has a misspecified prior and how time inconsistency can emerge

in a dynamic version of our framework.

3For example, Benjamin et al. (2019) pair an updating rule that features base rate neglect with

a forecast that corresponds to our notion of naive-PC.
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Literature Review. Model misspecification is a popular approach for capturing

behavioral biases. In a variety of general settings, recent work has developed the

solution concept ‘Berk-Nash equilibrium’ (Esponda and Pouzo 2016), characterized

the asymptotic beliefs of misspecified learning (Bohren and Hauser 2021; Fudenberg

et al. 2021; Frick et al. 2023; Esponda, Pouzo, and Yamamoto 2021), and explored

robustness to perturbations of the model (Frick, Iijima, and Ishii 2020; Bohren and

Hauser 2021).4 Papers have also studied the implications of misspecified learning for

a variety of specific biases, including overconfidence (Heidhues, Koszegi, and Strack

2018), gambler’s fallacy (He 2022), selective attention (Schwartzstein 2014) and omit-

ted variable bias (Mailath and Samuelson 2020; Levy, Razin, and Young 2022). Our

paper shows how a non-Bayesian updating rule can be translated to a misspecified

model, allowing for analysis using these general results.

Another strand of literature seeks to provide a foundation for which misspecified

models arise and persist (Ba 2024; Fudenberg and Lanzani 2023; He and Libgober

2024; Frick, Iijima, and Ishii 2024; Lanzani 2024). One of the classes of models

we consider—prospectively correct models—are naturally robust to many of these

criteria. In such models, the misspecified agent correctly anticipates the unconditional

distribution of signals. This is analogous to conditions used to correct misspecified

models in Espitia (2021); Spiegler (2020); Mailath and Samuelson (2020) and solution

concepts such as cursed equilibrium (Eyster and Rabin 2005), behavioral equilibrium

(Esponda 2008), and analogy-based expectation equilibrium (Jehiel 2005).

The misspecified model approach assumes that an agent updates using Bayes rule.

A number of papers characterize properties of posteriors that arise from Bayesian up-

dating. Shmaya and Yariv (2016) derive a similar result to our Lemma 1 on how

the set of posteriors that can arise from an information structure relate to the prior.

Similarly, the belief forecast in our framework is analogous to the unconditional dis-

tribution over posterior beliefs in the Bayesian persuasion (Kamenica and Gentzkow

2011). Molavi (2024) shows that any distribution over posteriors satisfying very mild

assumptions can be induced via Bayes rule with respect to a misspecified model. His

condition is weaker than ours, as he allows the misspecified model to put positive

probability on signals outside the support of the true model.

4Early papers in this literature include Arrow and Green (1973); Nyarko (1991).
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There is also a recent literature that provides a foundation for general classes

of non-Bayesian updating rules and draws parallels between the structure of non-

Bayesian and Bayesian updating (Epstein et al. 2010; Cripps 2018; Chauvin 2020;

Jakobsen 2023; de Clippel and Zhang 2022). In contrast, we characterize the proper-

ties of updating rules that emerge from Bayesian updating with respect to a misspec-

ified model. Other work characterizes properties of specific non-Bayesian updating

rules. He and Xiao (2017) describe a class of updating rules in which sequential and

simultaneous processing of multiple signals lead to the same posterior. Benjamin

et al. (2019) study an updating rule that features base rate neglect and pin down

prospective beliefs by assuming an agent believes she will use Bayes rule to update

in the future. This is similar in spirit to our naive-PC model.

Benjamin, Rabin, and Raymond (2016) first highlighted the need to distinguish

between how an agent retrospectively processes information versus prospectively pre-

dicts she will process information in models of non-Bayesian updating. They draw

this distinction in relation to how an agent groups multiple signals for processing

and highlight how different perceived versus actual groupings can lead to time-

inconsistency. In contrast, our distinction separates prospective versus retrospective

bias that emerges with respect to a single signal (or more generally, a fixed grouping

of signals): specifically, it distinguishes between the anticipation of how a signal will

be interpreted versus how it is actually interpreted. This does not necessarily lead to

time-inconsistency, as we further discuss in Section 6.

Much of the literature on biased belief formation focuses on prospective or ret-

rospective bias in isolation. The work on misspecified causal graphs (e.g., Spiegler

(2016)) and Berk-Nash equilibrium (Esponda and Pouzo 2016) take a prospective

perspective, focusing on how an agent (incorrectly) predicts what will happen after

her decision. Papers such as Heidhues et al. (2018); Levy et al. (2022) and most of the

behavioral literature modelling and empirically documenting specific updating biases

(see Benjamin (2019)) focus on retrospective bias.5 But in many economic settings,

such as the search application in Section 5.2 and the strategic interactions studied

5A notable exception is Le Yaouanq and Schwardmann (2022), which measures both retrospective

and prospective bias when learning from past behavior in an experimental real-effort task. They

find that participants are retrospectively unbiased but underestimate their future learning.
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in Bohren and Hauser (2021); He (2022); Frick et al. (2024), both prospective and

retrospective bias play a key role in determining beliefs and behavior. For exam-

ple, using our decomposition, Bohren and Hauser (2023) show how retrospective and

prospective bias differentially impact an optimal lending contract.

Recent work on the wisdom of the crowd explores how higher order beliefs im-

pact identification. Prelec and McCoy (2022); Libgober (2024) show that if many

agents draw signals from the same model (i.e., information structure), then knowing

an agent’s posterior belief and her belief about the distribution of others’ beliefs iden-

tifies the model. This relates to our insight that eliciting an updating rule must be

paired with a component describing the distribution over beliefs to identify a unique

misspecified model.

2 Model

2.1 States, Priors, and Signals

Nature selects one of N states of the world ω ∈ Ω ≡ {ω1, ω2, . . . , ωN} according to full

support prior p ≡ (p1, ..., pN) ∈ ∆(Ω). An agent learns about the state by observing

a signal z, which is drawn from measurable space (Z,F), where Z is the set of signal

realizations and F is a σ-algebra over Z. Let µi(·; p) ∈ ∆(Z) denote the true signal

distribution conditional on state ωi at prior p, µ(·; p) ≡
∑N

i=1 piµi(·; p) denote the

true unconditional signal distribution at p, and refer to family of signal distributions

{µi(·; p)}ωi∈Ω as the true model at p. The distribution of the signal can depend on the

prior to capture settings where information is endogenously generated by an ex-ante

action choice. To ensure that no signal perfectly rules out a state, assume µi(·; p)
and µj(·; p) are mutually absolutely continuous for each ωi, ωj ∈ Ω and all p ∈ ∆(Ω).

For technical reasons, assume that there exists a σ-finite reference measure ν on

(Z,F) such that µi(·; p) is absolutely continuous with respect to ν for all ωi ∈ Ω and

p ∈ ∆(Ω).6 This environment captures many common signal structures used in the

literature, including real-valued continuous signals, finite signals, multidimensional

signals, and causal graphs (Spiegler (2016)).

6Defining a reference measure that dominates the other measures allows for the consideration of

multiple types of signal spaces within the same framework (e.g., discrete and continuous).
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2.2 Modeling Bias in Belief Updating

We introduce two approaches used to model bias in interpreting the signal: (i) the

non-Bayesian approach, where an updating rule maps each signal realization to a

posterior belief and a belief forecast specifies a prediction of future beliefs; and (ii)

the misspecified model approach, where beliefs are derived from Bayesian updating

with respect to an incorrect model of the signal process. In both approaches we

assume that the agent has a correct prior belief; the analysis immediately extends to

a misspecified prior p̂ ̸= p (see Section 3.4).

The Non-Bayesian Approach. This approach is often used in the behavioral

learning literature (see Benjamin (2019) for review). An updating rule describes an

agent’s posterior belief after each possible signal realization.

Definition 1 (Updating Rule). An updating rule h : Z ×∆(Ω) → ∆(Ω) is a mea-

surable function that maps each signal realization and prior belief to a posterior belief.

Given prior belief p and signal realization z ∈ Z, updating rule h(z, p) assigns proba-

bility h(z, p)i to state ωi. The requirement that h is measurable rules out randomness

in updating conditional on the signal. We restrict attention to updating rules that

do not (incorrectly) interpret any signals as perfectly ruling out a state and map

certainty to certainty: h(z, p)i = 0 iff pi = 0 and h(z, p)i = 1 iff pi = 1. A special case

is Bayesian updating with respect to the true signal distribution:

hB(z, p)i ≡
pi

dµi

dν
(z; p)∑N

j=1 pj
dµj

dν
(z; p)

, (1)

with 0/0 = 0 by convention. An updating rule is biased at p if it differs from Bayesian

updating, h(·; p) ̸= hB(·; p) on a µ1(·; p)-positive measure set of signals. We refer to

bias that stems from the updating rule as retrospective bias, since it arises after the

signal is realized. Definition 1 nests many biased updating rules used in the literature,

including settings where an updating rule distorts the Bayesian posterior or true

signal likelihood (in the former case, the updating rule can be written with hB as an

argument, as is sometimes done in the literature). The following example illustrates

several such updating rules (see Section 5.1 for a confirmation bias example).7

7These examples echo updating rules used in the following papers: (a) Epstein et al. (2010)

(b) & (f) Grether (1980); Benjamin (2019) (c) Thaler (2021); Benjamin (2019); Bohren and Hauser
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Example 1 (Common Updating Rules). Suppose Ω = {ω1, ω2} and Z ⊂ [0, 1]. In the

binary state case, the posterior belief is pinned down by the belief h(z, p)2 that the state

is ω2. Normalize the signal to be the Bayesian posterior belief of ω2 following a flat

prior, z = hB(z, 0.5)2. This normalization implies hB(z, p)2 = p2z/(p2z + p1(1− z)).

(a) Linear under/overreaction: h(z, p)2 = αhB(z, p)2+(1−α)p2 with α ∈ (0, 1) for

underreaction to the signal and α > 1 for overreaction.

(b) Geometric under/overreaction: h(z,p)2
h(z,p)1

= p2
p1

(
z

1−z

)α
with α ∈ (0, 1) for underre-

action to the signal and α > 1 for overreaction.

(c) Partisan bias: h(z, p)2 = hB(z, p)
α
2 (distort posterior) or h(z,p)2

h(z,p)1
= p2

p1

(
zα

1−zα

)
(distort signal likelihood) with α ∈ (0, 1) for slanting the posterior belief towards

ω2 and α > 1 for slanting towards ω1.

(d) Cognitive noise: h(z, p)2 = αhB(z, p)2 + (1 − α)pd for α ∈ (0, 1) and cognitive

default pd ∈ (0, 1) (typically, pd is chosen to be uniform).

(e) Base rate neglect: h(z,p)2
h(z,p)1

=
(

p2
p1

)α (
z

1−z

)
with α ∈ (0, 1) underweighs the prior.

(f) Complexity reduction: given finite interval partition {Z1, Z2, ..., ZK} of Z and

set of posteriors {x1, ..., xK} ⊂ [0, 1], h(z, p)2 = xj for all z ∈ Zj is a coarse

updating rule where intervals of signals are mapped to the same posterior.

While an updating rule captures how the agent interprets the signal after it arrives,

it does not specify her ex-ante beliefs about the signal and how she will interpret it

(e.g., is she naive or sophisticated about her retrospective bias; does she exhibit other

forms of bias ex-ante). Such prospective beliefs are a crucial component of many

economic settings, including settings with a decision before information arrives (e.g.,

what information to acquire or pay attention to, whether to pursue a new project

before learning about its quality), strategic interaction (e.g., expectations about how

an opponent’s action will vary with the signal), and social learning (e.g., expectations

about how an opponent’s action reflects his private signal). In the latter two cases,

the relevant prospective beliefs capture ex-ante beliefs about the signal distribution

and how others interpret it. We define a belief forecast to capture this component,

which specifies the agent’s subjective distribution over posterior beliefs.

Definition 2 (Belief Forecast). A belief forecast ρ̂(·; p) ∈ ∆(∆(Ω)) specifies a Borel

(2021) (d) Woodford (2020) (e) Jakobsen (2023); Mullainathan (2002)
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probability measure over the posterior at prior p, such that there exists a measurable

ϕ : Z → ∆(Ω) with µ1(ϕ
−1(·); p) and ρ̂(·; p) mutually absolutely continuous.

The second part of the definition is analogous to the assumption that h is measurable:

it rules out perceived randomness in the posterior beyond that stemming from the

signal by requiring that the support of the belief forecast is no “larger” than the

support of the signal.8

A special case is the accurate belief forecast ρh(·; p) for updating rule h at prior p,

which corresponds to the objective probability measure over the posterior when the

agent uses updating rule h. Given a (Borel) set of posteriors X ∈ ∆(Ω), it is equal

to the probability of the set of signals that h maps to a posterior in X, where the

probability is taken with respect to the ex-ante true signal distribution µ(·; p):

ρh(X; p) = µ({z : h(z, p) ∈ X}; p). (2)

Let ρB(X; p) denote the accurate forecast with respect to Bayesian updating rule

hB—this is the true distribution of posteriors when the agent has no retrospective

bias. Bias can also enter through the belief forecast. A belief forecast is biased if,

given updating rule h, it differs from the accurate forecast, ρ̂ ̸= ρh. We refer to such

bias as prospective bias, since it arises before the signal is realized. The following

example illustrates several biased belief forecasts.

Example 2 (Biased Belief Forecasts). Suppose Ω = {ω1, ω2}. In the binary state

case, the belief forecast is pinned down by a distribution over the posterior belief that

the state is ω2. Suppose the accurate forecast is uniform on [0, 1].

(a) Over/underprecision: the beta distribution β(α, α) with α ∈ (0, 1) (α > 1)

overweighs (underweighs) the likelihood of precise beliefs.

(b) Partisan bias: the beta distribution β(α, β) with α > β (α < β) places higher

weight on beliefs favoring state ω2 (ω1).

(c) Complexity reduction: given finite interval partition {X1, ..., XK} of [0, 1] and

8With a finite support signal, this requires that the support of the forecast is no larger than the

number of signal realizations. With an infinite support signal, the condition is more nuanced; it uses

mutual absolute continuity to relate the measure-zero sets of the forecast and signal. The condition

is defined with respect to µ1, but it implies that µi(ϕ
−1(·); p) and ρ̂(·; p) are m.a.c. for all ωi ∈ Ω,

given the assumption that µ1(·; p) and µi(·; p) are m.a.c. for all ωi ∈ Ω.
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set of posteriors {x1, ..., xK} ⊂ [0, 1], ρ̂(x; p) > 0 iff x ∈ {x1, ..., xK} is a coarse

belief forecast where an agent entertains a finite number of posterior beliefs.

The Misspecified Model Approach. In this approach, posterior beliefs and belief

forecasts are pinned down by applying Bayes’ rule to an agent’s subjective model

of the signal process. Let µ̂i(·; p) ∈ ∆(Z) denote the perceived signal distribution

in state ωi at prior p, µ̂(·; p) ≡
∑N

i=1 piµ̂i(·; p) denote the perceived unconditional

signal distribution, and refer to the family of signal distributions {µ̂i(·; p)}ωi∈Ω as

the subjective model at p. An agent’s model is misspecified at p if there exists an

ωi ∈ Ω such that µ̂i(·; p) ̸= µi(·; p). Assume each perceived signal distribution µ̂i(·; p)
is mutually absolutely continuous with the true signal distribution µi(·; p) for ωi ∈ Ω

and p ∈ ∆(Ω). This rules out ‘unexpected signals’ where a model assigns zero

probability to a set of signal realizations that occur with positive probability and

‘fake signals’ where a model assigns positive probability to a set of signal realizations

that occur with zero probability. It also implies that µ̂i(·; p) and µ̂j(·; p) are mutually

absolutely continuous and µ̂i(·; p) is absolutely continuous with respect to ν for each

ωi, ωj ∈ Ω and p ∈ ∆(Ω). This assumption is primarily technical, given that the

subjective model can place arbitrarily small probability on sets of signals that the true

model assigns positive probability to and vice versa (see Appendix D.3 for further

discussion). Let M(p) ⊂ ∆(Z)N denote the set of subjective models {µ̂i(·; p)}ωi∈Ω

such that µ̂i(·; p) is mutually absolutely continuous with µi(·; p) for all ωi ∈ Ω. We

refer to models in this set as admissible at p. The agent uses Bayes rule to form

her posterior belief with respect to her subjective model. It follows from Bayes rule

and mutual absolute continuity that prior p and model {µ̂i(·; p)}ωi∈Ω induce posterior

belief P̂ r(ωi|z) =
pi

dµ̂i
dν

(z;p)∑N
j=1 pj

dµ̂j
dν

(z;p)
that the state is ωi following signal realization z, and

belief forecast

P̂ r(x ∈ X) = µ̂

z :

(
pi

dµ̂i

dν
(z; p)∑N

j=1 pj
dµ̂j

dν
(z; p)

)
ωi∈Ω

∈ X

 ; p

 (3)

that the posterior belief x is in Borel setX ⊂ ∆(Ω). The following example illustrates

several misspecified models.

Example 3 (Examples of Misspecified Models).

(a) Misperceived mean/variance: given true signal distribution N(ωi, 1) in state ωi,
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believing signals are normally distributed with mean µ̂i ̸= ωi or variance σ̂ ̸= 1.

(b) Correlation neglect: given signal z = (z1, z2) with correlation ρi ̸= 0 in state ωi,

believing z1 and z2 are independent.

(c) Parametric approximation: using a parametric model for a nonparametric dis-

tribution (e.g., assuming normality).

(d) Complexity reduction: a model that assumes the same signal distribution for

similar states when each state has a distinct distribution in the true model.

2.3 Defining a Representation

To connect the non-Bayesian and misspecified model approaches, we next define what

it means for an updating rules or belief forecast to be represented as a subjective

model, in that the subjective model induces the same posterior beliefs as the updating

rule or the same distribution over posterior beliefs as the forecast.

Definition 3 (Subjective Model Representation).

1. Updating rule h is represented by admissible subjective model {µ̂i(·; p)}ωi∈Ω ∈
M(p) at prior p if, for every signal realization z ∈ Z, updating via Bayes rule

with respect to this model results in the same posterior belief as h(·, p) µ1(·; p)-
almost everywhere:9

pi
dµ̂i

dν
(z; p)∑N

j=1 pj
dµ̂j

dν
(z; p)

= h(z, p)i. (4)

2. Belief forecast ρ̂ is represented by admissible subjective model {µ̂i(·; p)}ωi∈Ω ∈
M(p) at prior p if the belief forecast induced by this model at p is equal to ρ̂(·; p):

µ̂

z :

(
pi

dµ̂i

dν
(z(·; p))∑N

j=1 pj
dµ̂j

dν
(z(·; p))

)
ωi∈Ω

∈ X

 ; p

 = ρ̂(X; p). (5)

for every Borel set X ⊂ ∆(Ω).

In characterizing the uniqueness of a representation, we focus on uniqueness with

respect to beliefs, and hence, behavior. An updating rule has an essentially unique

9Note that, by the mutual absolute continuity assumption, a property that holds µ1(·; p)-almost

everywhere also holds µi(·; p)-almost everywhere for all ωi ∈ Ω. As a convention, we use µ1(·; p)
to keep track of measure zero sets, but the statements can be equivalently stated with respect to

µi(·; p) or any admissible µ̂i for any ωi ∈ Ω.
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representation when any representation is equivalent on the sets of signal realizations

that map a given prior to the same posterior.

Definition 4 (Essentially Unique Representation). An updating rule h has an essen-

tially unique representation at prior p if all admissible subjective models represent-

ing h at p are equivalent when restricted to the σ-algebra generated by h(·, p), i.e.,
Fh(p) ≡ {Z ∈ F : Z = h−1(X, p) for some Borel set X ⊂ ∆(Ω)}, where in a slight

abuse of notation h−1 is taken with respect to the first argument.

This notion rules out trivial multiplicities when an updating rule maps multiple signal

realizations to the same posterior, as any model that represents this updating rule can

also be represented by other models that differ only by shifting mass between these

signal realizations. The difference between these models is economically trivial, as

they prescribe the same actual and perceived distributions over posteriors and induce

the same updating rule. See Appendix C.1 for an illustration of this concept.

2.4 Discussion

Retrospective versus Prospective Bias. A fundamental aspect of behavioral

learning models is the distinction between “prospective” and “retrospective” belief

formation (see, e.g., Benjamin et al. (2016, 2019)), a distinction that does not arise

in rational models. The way a behavioral agent forecasts her beliefs may differ from

how she actually forms beliefs. The two components of our non-Bayesian set-up

capture this distinction: we formalize retrospective bias in the form of an updating

rule and prospective bias in the form of a belief forecast. A misspecified model

also allows for such inconsistency with respect to predicted versus actual beliefs. In

particular, the distribution an agent expects her future beliefs to be drawn from can

differ from the distribution her past beliefs are drawn from. This distinction is similar

in spirit to the wedge between an agent’s prediction of her future actions and her

actual actions in the behavioral literature (e.g., the literatures on time consistency,

projection bias, reference dependence, and self-control). See Section 6 for a discussion

of time consistency in misspecified models.

Comparison of Approaches. The non-Bayesian updating rule approach is often

used to model a specific form of bias or belief-updating error. In general, papers using

this approach choose a reasonable parameterization for the bias of interest and study
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how this parameterization impacts beliefs and behavior. In contrast, the misspecified

model approach is often used in a general, parametric-free way to capture a range

of biases within the same framework. For example, recent work in this literature

establishes general convergence results for a large class of misspecified models (Bohren

and Hauser 2021; Frick et al. 2023; Fudenberg et al. 2021). Establishing a connection

between these approaches will makes it straightforward to use general tools from

the misspecified learning literature to extend results from the non-Bayesian updating

literature. For instance, Section 5.1 uses convergence results from the misspecified

model literature to generalize the learning results from Rabin and Schrag (1999) to

a larger set of updating rules featuring confirmation bias. This establishes that the

qualitative insights of Rabin and Schrag (1999) do not rely on their specific choice of

updating rule or information structure (binary signals).

To a large extent, the behavioral literature on biased beliefs—both theoretical

and empirical—has focused on updating rules, which are a simple way to define and

express biases. But updating rules do not pin down all aspects of belief formation

required for economic analysis. Since a misspecified model of belief formation does,

mapping updating rules into misspecified models makes it possible to study the im-

plications of a given bias in a richer set of economic environments and clarifies the

additional bias—or lack thereof—when doing so.

Dynamics. While we outline our framework for a single signal realization and fixed

prior p, it is straightforward to map this set-up into a dynamic environment. Consider

a sequence of signals z1, z2, ..., zT (where T = ∞ captures an infinite sequence) and

let pt denote the prior belief in period t for each t = 1, ..., T . In addition to the

assumptions outlined in Section 2.1, assume the sequence of signals are independently

drawn, conditional on the state. As in Section 2.1, µi(·; p) denotes the true signal

distribution conditional on state ωi at prior p. Fixing p1, for each t ≥ 1, the prior in

period t+1 is equal to the posterior from period t. In the non-Bayesian updating rule

approach, this corresponds to pt+1 = h(zt, pt) and in the misspecified model approach,

this corresponds to pt+1,i =
pt,i

dµ̂i
dν

(zt;pt)∑N
j=1 pt,j

dµ̂j
dν

(zt;pt)
. The forecast ρ̂(x; pt) corresponds to the

period t forecast of the posterior belief pt+1 before observing zt.
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3 Representing Updating Rules and Belief Forecasts

This section derives the main representation result. We establish a necessary and

sufficient condition for an updating rule to be represented by a subjective model, and

analogously for a belief forecast. In general, these representations are not unique.

We then establish necessary and sufficient conditions for an updating rule and belief

forecast to be jointly represented by a subjective model and show that this model is

essentially unique.

3.1 Representing Updating Rules

An important feature of Bayesian updating is that the expectation of the posterior

belief is equal to the prior, i.e., the posterior is a martingale. Therefore, given the set

of posterior beliefs that arise under an updating rule, it must be possible to find a

subjective model that satisfies this property. We define the relevant set of posteriors

that arise from updating rule h(·, p) with respect to the support of the accurate

forecast, X (h, p) ≡ supp ρh(·; p). This is the smallest set of distributions over the state

space such that, when at prior p and updating according to h, the posterior is in this

set with probability one. An updating rule is Bayes-feasible if the prior p lies inside the

relative interior of the convex hull of this support, S(h, p) ≡ rel int(Conv(X (h, p))).10

Definition 5 (Bayes-Feasible Updating Rule). An updating rule h is Bayes-feasible

at p if p ∈ S(h, p).

It is straightforward to see that prior p must fall within S(h, p) in order for the

martingale property to hold. It turns out that this condition is also sufficient for prior

p to be the center of mass for some distribution over posterior beliefs, which we can

then map back into a family of signal distributions, and hence, model.

Lemma 1 (Updating Rule Representation). There exists an admissible model {µ̂i(·; p)}ωi∈Ω ∈
M(p) that represents updating rule h at prior p if and only if h is Bayes-feasible at

p.

This result extends Lemma 1 from Shmaya and Yariv (2016) to a more general signal

space and the class of updating rules we consider.11 Some care must be taken here,

10The relative interior of a set A is the set of points on the interior of A within its affine hull.
11In Shmaya and Yariv (2016), the analogue of S(h, p) is the relative interior of the convex hull

spanned by posteriors. Our set S(h, p) is the analogue of this set with the additional measurability
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both due to the lack of structure on the signal space and the requirements that

a misspecified model is absolutely continuous with respect to the true model and

has non-zero Radon-Nikodym derivatives. The space of posterior beliefs has more

structure than the signal space, which we leverage via S(h, p) for the characterization.

The Bayes-feasibility condition is relatively weak: it holds for many of the non-

Bayesian updating rules that have been considered in the literature, including most

in Example 1. An example of a violation is an updating rule in which beliefs place

more weight on the same state following all signal realizations. It is also violated for

certain parameters and signal distributions in updating rules that model base rate

neglect, cognitive noise, and partisan bias as parameterized in Example 1.12 Finally,

it is restrictive when the state space is larger than the signal space.

Therefore, this result establishes that many common non-Bayesian updating rules

can be represented by a subjective model. This is good news if one would like to

use a misspecified model to fill in the gaps left by an ‘incomplete’ updating rule.

However, in general, the representation is not essentially unique: there are often many

distinct misspecified models that represent a given updating rule. Each representation

induces a different belief forecast. Thus, the choice of representation determines the

prospective bias; different choices can lead to different predictions precisely when a

belief forecast is needed to close the model. See Appendices C.1 and C.2 for examples

of updating rules that satisfy Bayes-feasibility and an illustration of the multiplicity.

3.2 Representing Belief Forecasts

We next develop an analogous result to Lemma 1 for belief forecasts. Again, the

property that the posterior belief is equal to the prior in expectation plays a key role.

In this case, since the forecast is a distribution over posterior beliefs, the property

applies to the forecast directly. This motivates the following definition.

Definition 6 (Plausible Belief Forecast). A belief forecast ρ̂ is plausible at prior p if∫
∆(Ω)

xidρ̂(x; p) = pi for each ωi ∈ Ω.

In other words, a forecast is plausible if the expected posterior, taken with respect to

restrictions necessary for this to be well-defined on an infinite signal space.
12The key feature of base rate neglect and cognitive noise that leads to a violation is that the bias

manipulates the prior belief. If this manipulated prior is in fact the agent’s subjective prior, then

these updating rules satisfy Bayes-feasibility with respect to the misspecified prior (see Section 3.4).
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the agent’s forecast, is equal to the prior. Plausibility ensures that the agent believes

that their prior captures all current uncertainty about the state.

Plausibility is a necessary property of Bayesian updating: a Bayesian agent always

believes that, on average, her posterior will be equal to her prior. Therefore, in order

for the forecast to be represented by a subjective model, it must be plausible—a

misspecified agent does not believe that she is systematically biased. We show that

this condition is also sufficient for a representation to exist. In other words, for any

plausible forecast, it is possible to find a subjective model that induces it.

Lemma 2 (Existence of a Belief Forecast Representation). There exists an admissible

model {µ̂i(·; p)}ωi∈Ω ∈ M(p) that represents belief forecast ρ̂ at prior p if and only if

ρ̂ is plausible at p.

This is a misspecified analogue of the result in Kamenica and Gentzkow (2011) show-

ing that a distribution over posteriors can be induced by some information structure

if and only if it satisfies the martingale property.

Plausibility is relatively strong compared to Bayes-feasibility. Unlike the updating

rule, which needs very little structure to be consistent with a misspecified model, a

belief forecast must satisfy a strong requirement of Bayesian learning. However, while

plausibility rules out many forms of prospective bias for a given prior (e.g., belief

forecasts that systematically slant posteriors towards one state under an accurate

prior), it still allows for belief forecasts that capture a broad set of prospective biases.

As in the case of updating rules, a belief forecast on its own generally does not have

a unique representation. In fact, a continuum of misspecified models can represent

a given forecast. Each model induces a different updating rule, and hence, can lead

to very different predictions depending on the retrospective bias it encodes. See

Appendices C.1 and C.4 for examples of belief forecasts that satisfy plausibility and

an illustration of the multiplicity.

3.3 Decomposition

As shown above, an updating rule or belief forecast on its own does not identify a

unique misspecified model. This multiplicity gives rise to several important questions.

First, given an updating rule, what (if any) restrictions does compatibility with it

place on the set of belief forecasts? In other words, does fixing a retrospective bias
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restrict the set of feasible prospective biases that a misspecified model can feature,

or vice versa? Second, given an updating rule and belief forecast that can be jointly

represented, are these two components sufficient to pin down a unique representation,

or does a subjective model contain additional restrictions on belief formation? Our

next result answers these questions.

A necessary condition for a belief forecast to be compatible with a given updating

rule, in that the pair can be jointly represented by a subjective model, is that they

have the same support. Recall from Section 3.1 that we define the ‘support’ of an

updating rule with respect to its accurate forecast.

Definition 7 (No unexpected beliefs). An updating rule h and a belief forecast ρ̂

satisfy no unexpected beliefs at prior p if ρ̂(·; p) has the same support as the accurate

forecast for h(·, p), supp ρ̂(·; p) = X (h, p).

This condition rules out arriving at an entirely unexpected posterior or assigning

positive probability to a set of posteriors that will never eventuate given the updating

rule. Importantly, this does not rule out the possibility of an incorrect belief forecast:

the predicted and actual probabilities of holding a given set of posteriors can differ,

and indeed do whenever the agent has prospective bias.

Our main result shows that ‘no unexpected beliefs’, together with the conditions

for an updating rule and the belief forecast to be individually represented—Bayes-

feasibility and plausibility—are necessary and sufficient for determining whether they

can be jointly represented. Moreover, plausibility and ‘no unexpected beliefs’ imply

Bayes-feasibility—and hence, this latter condition is redundant. We also show that

the representation is unique and construct it.

Theorem 1 (Decomposition). Consider an updating rule h and a belief forecast ρ̂.

There exists an admissible model {µ̂i(·; p)}ωi∈Ω ∈ M(p) that represents h and ρ̂ at

prior p if and only if (i) ρ̂ is plausible at p and (ii) h and ρ̂ satisfy no unexpected

beliefs at p. When such a representation exists, it is essentially unique and, for each

ωi ∈ Ω, satisfies

µ̂i(Z; p) =
1

pi

∫
Z

h(z, p)idρ̂(h(z, p); p) (6)

for any measurable set of signal realizations Z ∈ Fh(p). This model is misspecified
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unless h(·, p) = hB(·, p) µ1(·; p)-almost everywhere and ρ̂(·; p) = ρB(·; p).13

It also follows from this result that if an updating rule and a belief forecast are

induced by a subjective model, then the belief forecast must be plausible and the pair

must satisfy no unexpected beliefs. Thus, not only are plausibility and no unexpected

beliefs necessary consequences of the misspecified model approach, they encompass all

of the belief formation restrictions implicit in using this approach. See Appendix C.1

for an example illustrating how to construct this unique representation.

Discussion. This result has several important theoretical and empirical implica-

tions. First, it shows that the updating rule and the belief forecast are the “essential”

components of a misspecified model: they fully capture how the model impacts behav-

ior (e.g., how it differs from that of a correctly specified agent). Thus, a misspecified

model can be decomposed into the two forms of bias it encodes: the prospective

bias through the belief forecast and the retrospective bias through the updating rule.

Section 5.2 demonstrates this in a misspecified model of the signal variance.

Second, it establishes that the forms of prospective and retrospective bias encoded

in a misspecified model are largely independent from each other: aside from ‘no

unexpected beliefs’, the belief forecast places no further restrictions on which updating

rules it can be paired with and vice versa. Thus, many forms of retrospective bias do

not place very strong restrictions on the form of prospective bias that a misspecified

model can encode. For instance, optimistic updating does not necessarily imply

optimistic forecasting. This implies the misspecified model approach can be used to

capture the interaction between different (and possibly conflicting) natural biases.

A notable exception is updating rules or belief forecasts that simplify the learning

environment (e.g., Example 1(f) and Example 2(c)). If one component does so, then

to satisfy no unexpected beliefs, the other component must as well. Another exception

is whether retrospective bias can be paired with no prospective bias: many updating

rules cannot be paired with the accurate forecast for this updating rule, and hence,

13In (6), we use dρ̂(h(z, p); p) for the integral with respect to the measure ρ̂ ◦h(Z, p) on Fh. This

construction is on the σ-algebra generated by h(·, p), i.e. Fh(p), since the belief forecast does not

place structure on how mass is allocated between signal realizations that induce the same posterior.

Lemma 4 in Appendix A constructs one representation on the underlying σ-algebra F . While other

constructions are possible, they are all equivalent on Fh(p), as required for essential uniqueness.
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can only be represented by a misspecified model that also encodes some form of

prospective bias. We further explore this case in Section 4.1.

Third, the result provides a powerful tool to construct models of biased be-

lief formation. Rather than needing to specify a family of conditional probability

distributions—a potentially complicated process that is removed from the conceptual

biases of interest—a researcher can simply write down a reasonable parameterization

of the desired retrospective and prospective biases and construct a model from these

components. Section 5.1 illustrates this construction for the case of confirmation bias;

it shows how such a representation can be used to apply the rich asymptotic learn-

ing results from the misspecified learning literature (e.g., Bohren and Hauser (2021);

Frick et al. (2023)) to updating rules.

Finally, on the empirical side, the updating rule and the belief forecast can both

be identified from belief data (see e.g. Benjamin (2019) for updating rules and Cham-

bers and Lambert (2021); Karni (2020) for forecasts). Therefore, the result provides

a method to empirically identify a misspecified model via these two components. Rel-

atively simple parameterizations of updating rules or belief forecasts are often used in

empirical analysis. To connect the estimates from such analyses with a misspecified

model—for instance, to utilize the rich set of theoretical results about misspecified

models—one simply needs to ensure that the desired parameterization satisfies the

given conditions.

3.4 Misspecified Prior

Recent work on biased learning also allows for a misspecified prior (e.g., Fudenberg,

Romanyuk, and Strack (2017)). Our framework easily extends to allow for this. There

is a direct analogue of Theorem 1, substituting the misspecified prior for the correct

prior. A wider range of prospective biases are possible when the prior is misspecified,

as the belief forecast does not need to be correct on average (i.e., average to p). Unlike

the case of retrospective and prospective bias, the misspecified model approach does

impose a link between prior and prospective bias. For example, optimism bias in the

prior (e.g., overweighing the likelihood of the high state) must be accompanied by

optimism bias in the forecast (e.g., overweighing the likelihood of posterior beliefs

that place high weight on the high state). See Appendix D.1 for the details.
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4 Properties of Representations

We next derive classes of models with certain properties. We derive two representa-

tions of a biased updating rule with no prospective bias—based on whether an agent is

sophisticated or naive about her retrospective bias—and a representation of a biased

belief forecast with no retrospective bias. Taken together, these representations serve

dual purposes. First, when a researcher starts with an updating rule or belief forecast

and wants to use the misspecified model approach for analysis, they highlight which

representation to select in order to avoid introducing any additional bias. Second,

when a researcher starts with a misspecified model that encodes both retrospective

and prospective bias, they provide a way to shut down each bias in turn, thereby

isolating the impact of the other and providing insight into their interaction (see the

application in Section 5.2 for illustration). Finally, we derive when an updating rule

can be represented by the same model at all prior beliefs (a prior-independent rep-

resentation) and when an updating rule or forecast can be represented by a model

with a correct prior (a correct prior representation). The former yields insight into

whether the extent and/or direction of bias varies with the prior, while the latter

highlights the form of misspecification necessary to generate the given bias.

4.1 Sophisticated-Prospectively Correct Representations

When an agent exhibits bias at a future decision point, a common question is how she

anticipates this bias. The two cases typically explored in the literature are that an

agent is sophisticated—she accurately anticipates her future bias—or she is naive—

she believes she will have no (or less) future bias. An agent who is aware of her

retrospective bias has an accurate forecast. Therefore, a sophisticated-prospectively

correct (sophisticated-PC) model will induce this forecast.

Definition 8 (Sophisticated-PC Model). Admissible model {µ̂i(·; p)}ωi∈Ω ∈ M(p)

is sophisticated-PC at p if it induces a biased updating rule, h(·, p) ̸= hB(·, p) with

µ1(·; p)-positive probability, and the accurate belief forecast ρh(·; p).

We are interested in when a given biased updating rule can be represented by

a sophisticated-PC model. From Theorem 1, we know that an updating rule and

belief forecast can be jointly represented if and only if the forecast is plausible and

the forecast and updating rule satisfy no unexpected beliefs. When the forecast is
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accurate, no unexpected beliefs is trivially satisfied. Therefore, the necessary and

sufficient condition for an updating rule to have a sophisticated-PC representation is

that the accurate forecast is plausible. It immediately follows from Theorem 1 that

when such a representation exists, it is essentially unique.

Proposition 1 (Sophisticated-PC Representation). Consider an updating rule h that

is biased at prior p. There exists an admissible sophisticated-PC model {µ̂i(·; p)}ωi∈Ω ∈
M(p) that represents h at p if and only if the accurate forecast ρh(·; p) is plausible at

p. When such a representation exists, it is essentially unique and, for each ωi ∈ Ω,

satisfies

µ̂i(Z; p) =
1

pi

∫
Z

h(z, p)i dµ(z; p) (7)

for any measurable set of signal realizations Z ∈ Fh(p).

The example in Appendix C.1 illustrates how to determine whether a sophisticated-

PC representation exists and construct it.14

The requirement that the accurate forecast is plausible is quite restrictive. Re-

call that if ρh is plausible, it must satisfy
∫
∆Ω

xi dρh(x; p) = pi for all i. By change

of variables, this becomes
∫
Z h(z, p)i dµ(z; p) = pi. So the accurate forecast is plau-

sible only if the biased updating rule averages to the prior under the true signal

distribution (as opposed to under some misspecified signal distribution). This re-

lates to the Bayes-plausibility condition in Kamenica and Gentzkow (2011) which,

in our notation, requires plausibility with respect to the Bayesian updating rule, i.e.∫
Z hB(z, p)i dµ(z; p) = pi.

Despite this restrictive condition, a sophisticated-PC representation exists for

some forms of retrospective bias. Such a representation must preserve the center

of mass of beliefs but can otherwise arbitrarily distort the spread of these beliefs.

This makes it possible to represent retrospective biases that distort the variance of

posterior beliefs, such as the geometric model of under/overreaction from Example 1

(see the example in Appendix C.2). On the other hand, retrospective biases that

distort the mean of posterior beliefs, such as partisan bias, can never have such a

14In Bohren and Hauser (2024) we discuss how the sophisticated-PC property is essentially equiv-

alent to a much more demanding property—introspection-proofness—which requires the predicted

distribution of the signal is equal to the true distribution.
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Table 1. Properties of Updating Rule Representations

Retrospective Soph-PC Naive-PC Prior-Indep.
Bias Updating Rule Rep. Rep. Rep.

Over/ Example 1(a) Y N N
undereaction Example 1(b) N Y Y

Partisan Example 1(c) posterior N Y N
bias Example 1(c) signal LR N Y Y

Confirmation Rabin and Schrag (1999) N Y N
bias Section 5.1 N N N

Cognitive noise Example 1(d) N∗ N N

Base-rate neglect Example 1(e) N Y N

Complexity Example 1(f) Y N Y

*Except for the case where pd = p.

representation (see the example in Appendix C.3). A sophisticated-PC model also

requires a certain amount of complexity in how the updating rule distorts beliefs.

This prevents many simple updating rules from having such a representation, such as

the updating rule implied by the canonical Grether regressions and commonly used

in empirical work (Grether (1980); see Example 1(b)). Table 1 outlines which of the

updating rules in Example 1 have a sophisticated-PC representation with a correct

prior. A wider range of updating rules can be represented by a sophisticated-PC

model with a misspecified prior.

Similar restrictions have been used to pin down prospective beliefs for specific

non-Bayesian updating rules. For example, the processing-consistency property in

Benjamin et al. (2016) requires an agent to correctly anticipate how she will process

information. They define this property with respect to how an agent anticipates versus

actually groups multiple signals for processing. In contrast, our condition applies to

a single signal (or a fixed grouping of signals): it requires an agent to correctly

anticipate her belief distribution after observing this signal. Conceptually similar

approaches have also been used in the misspecified model literature to construct

plausible restrictions on the space of misspecified models. For example, Spiegler

(2016) uses a similar condition to connect a misspecified causal graph—as opposed

to an updating rule—to a misspecified model. He imposes this condition on each link
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of the graph to pin down a misspecified probability distribution over the outcome of

interest. Mailath and Samuelson (2020) study a model of omitted variable bias, where

the set of omitted variables together with a sophisticated-PC condition pin down the

misspecified model.

4.2 Naive-Prospectively Correct Representations

We next develop the notion of a naive-prospectively correct (naive-PC) model to

capture settings in which an agent does not have any inherent prospective bias but

also does not anticipate her future retrospective bias. The agent naively predicts

that she will update beliefs correctly in the future, but when the information arrives,

she interprets it with bias. Such an agent has a belief forecast that is accurate with

respect to the Bayesian updating rule.

Definition 9 (Naive-PC Model). Admissible model {µ̂i(·; p)}ωi∈Ω ∈ M(p) is naive-

PC at prior p if it induces a biased updating rule, h(·, p) ̸= hB(·, p) with µ1(·; p)-
positive probability and the accurate belief forecast ρB(·; p) with respect to the Bayesian

updating rule.

Before information arrives, a naive-PC agent makes the same decisions as a correctly

specified agent; her misspecification only alters behavior after observing the signal.

Again we are interested in when a given updating rule has a naive-PC represen-

tation. Forecast ρB is plausible since it is generated by the correctly specified model.

Therefore, from Theorem 1, no unexpected beliefs with respect to ρB is the necessary

and sufficient condition for an updating rule to have a naive-PC representation. It

immediately follows from Theorem 1 that when such a representation exists, it is

essentially unique and defined by (8).

Proposition 2 (Naive-PC Representation). Consider an updating rule h that is bi-

ased at prior p. There exists an admissible naive-PC model {µ̂i(·; p)}ωi∈Ω ∈ M(p)

that represents h at p if and only if h and ρB satisfy no unexpected beliefs at p. When

such a representation exists, it is essentially unique and, for each ωi ∈ Ω, satisfies

µ̂i(Z; p) =
1

pi

∫
Z

h(z, p)idρB(h(z, p); p) (8)
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for any measurable set of signal realizations Z ∈ Fh(p).
15

The example in Appendix C.1 illustrates how to determine whether a naive-PC rep-

resentation exists and construct it.

The requirement that the updating rule satisfies no unexpected beliefs with respect

to ρB is not particularly strong. With a sufficiently rich signal space, it holds for many

commonly used updating rules, including most in Example 1 (see Table 1). Therefore,

in contrast to the sophisticated representation, a naive-PC representation broadly

exists for many forms of retrospective bias. As we show in Appendix C.3, a common

partisan bias updating rule which did not have a sophisticated-PC representation

does have a naive-PC representation.

The naive-PC belief forecast is analogous to common naiveté assumptions made

in many behavioral models (e.g., models of time inconsistency (O’Donoghue and

Rabin 1999)). It has been used to pin down prospective beliefs in models of biased

individual learning (e.g., base rate neglect (Benjamin et al. 2019) and social learning

(e.g., partisan bias and overreaction (Bohren and Hauser 2021)). It has also been

informally used in less detailed behavioral models (e.g., Benjamin et al. (2016)).

Therefore, formalizing how to capture a naive-PC belief forecast in a misspecified

model shows that we can consistently and rigorously impose such a property.

Taken together, both the sophisticated- and naive-PC representations of an updat-

nig rule pin down a belief forecast with respect to the correctly specified model. But

the condition for a sophisticated-PC representation to exist is much more restrictive

than that for a naive-PC representation. In Section 5.2, we compare how retrospective

over- and underprecision impact search behavior in these two representations.

4.3 Retrospectively Correct Representations

We next consider settings in which prospective bias is the primary focus, and derive a

representation that shuts down retrospective bias in order to isolate its impact. In a

retrospectively correct (RC) model, an agent has a biased belief forecast but correctly

interprets signals using the Bayesian updating rule.

Definition 10 (RC Model). Admissible model {µ̂i(·; p)}ωi∈Ω ∈ M(p) is RC at prior

p if it induces the Bayesian updating rule hB(·, p) and a biased belief forecast ρ̂(·; p) ̸=

15Alternatively, one could write this representation as µ̂i(Z; p) = µi({z : hB(z, p) ∈ h(Z, p)}; p).
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Table 2. Properties of Belief Forecast Representations

Prospective Bias Belief Forecast RC Rep. Correct Prior Rep.

Over/underprecision Example 2(a) Y Y

Partisan Bias Example 2(b) Y N

Complexity Example 2(c) N Y

ρB(·; p).

A misspecified agent with a RC model makes the same decisions as a correctly speci-

fied agent after information arrives, but can behave differently ex-ante. When a belief

forecast has a RC representation immediately follows from Theorem 1.

Proposition 3. Consider a belief forecast ρ̂ that is biased at prior p. There exists

an admissible RC model {µ̂i(·; p)}ωi∈Ω ∈ M(p) that represents ρ̂ at p if and only

if ρ̂ is plausible at p and hB and ρ̂ satisfy no unexpected beliefs at p. When such a

representation exists, it is essentially unique and satisfies (6) setting h(·, p) = hB(·, p).

This establishes that many belief forecasts are consistent with Bayesian updating.

An agent can have very biased predictions about her future beliefs, but still update

correctly after observing the signal. Therefore, the misspecified model approach can

be used to capture prospective biases without needing to also allow for retrospective

bias. As shown in Table 2, two of the three belief forecasts in Example 2 have a RC

representation. The example in Appendix C.1 illustrates how to determine whether

a RC representation exists and construct it.

4.4 Other Properties

Prior-Independent Representations. In Theorem 1, the representation can vary

with the prior belief. This is natural when the true model varies with the prior, but it

can also occur when the true model does not. Therefore, another property that sheds

light on the structure of bias is whether an updating rule can be represented by the

same model at all prior beliefs—that is, it has a prior-independent representation. In

Appendix D.4 we derive a necessary and sufficient condition for an updating rule to

have such a representation. Many well-known parameterizations of common biases

have prior-independent representations. As shown in Table 1, this includes many of
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the updating rules in Example 1.

Correct Prior Representations. Some biases can only be represented by a mis-

specified model with an incorrect prior. Therefore, whether an updating rule or

forecast can be represented by a model with a correct prior also provides insight into

the structure of the bias. This is more relevant for belief forecasts, since, through

plausibility, the requirement of a correct prior places more structure on the prospec-

tive bias than on the retrospective bias. Table 2 highlights whether the forecasts in

Example 2 have such a correct prior representation.

5 Applications

The following two applications demonstrate the results from Sections 3 and 4. The

first shows how a misspecified model representation can be used to study learning

when an agent updates with confirmation bias. The second shows how the decompo-

sition clarifies the impact that a misspecified model has on search behavior.

5.1 Representing Confirmation Bias

This application explores confirmation bias in belief-updating, in that an agent mis-

interprets information to confirm her current belief. Rabin and Schrag (1999) show

that a particular updating rule exhibiting confirmation bias leads to incorrect learn-

ing (i.e., with positive probability the agent places probability one on the incorrect

state). We use the representation in Theorem 1 to show that, in an individual learn-

ing setting, incorrect learning continues to emerge for a broad class of updating rules

that exhibit confirmation bias, regardless of the belief forecast. However, in a social

learning setting, the asymptotic learning outcomes depend crucially on the chosen

belief forecast—different representations lead to different learning predictions.

Individual Learning. In Rabin and Schrag (1999), an agent observes an i.i.d.

sequence of binary signals zt ∈ {l, r} for t = 1, 2, ..., where each signal matches the

unknown state ω ∈ {L,R} with probability θ > 1/2. If the signal contradicts her

current belief (i.e., she believes state L is more likely and observes signal r, or vice

versa), then with probability q ∈ (0, 1) the agent misinterprets the signal and updates

to the Bayesian posterior following the opposite signal realization. Letting p denote

the current belief that the state is R, m denote a misinterpreted signal realization and,

in a slight abuse of notation, l and r denote correctly interpreted signal realizations,
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this corresponds to h(z, p) = hB(r, p) when z = m and p > 1/2, h(z, p) = hB(l, p)

when z = m and p ≤ 1/2, and h(z, p) = hB(z, p) otherwise. They show that for

high q, incorrect learning occurs with positive probability. This parameterization

makes several strong assumptions. First, misinterpreted signals are interpreted as

the opposite signal. Second, the severity of the confirmation bias—the frequency q

that a signal is misinterpreted and the degree to which it is slanted—is independent of

the current belief: an agent exhibits the same bias regardless of whether she believes

one state is a lot or a little more likely than the other.

We use our framework to show that similar learning outcomes obtain for a broad

class of updating rules with confirmation bias, where we allow the probability of

misinterpreting the signal and the slant of the misinterpreted signal to vary with the

current belief. Specifically, if the signal contradicts the agent’s current belief p, then

with probability q(p) ∈ [0, 1] she misinterprets it and slants it by weight ν(p) ∈ [0, 1]

towards the Bayesian posterior for the opposite realization. Again letting m denote a

misinterpreted signal realization, the following updating rules captures these features:

h(z, p) =


(1− ν(p))hB(l, p) + ν(p)hB(r, p) z = m and p > 1/2

ν(p)hB(l, p) + (1− ν(p))hB(r, p) z = m and p ≤ 1/2

hB(z, p) z ∈ {l, r}.

(9)

For technical reasons, we assume that ν and q are continuous and symmetric at

certainty, ν(0) = ν(1) and q(0) = q(1). The model of Rabin and Schrag (1999)

corresponds to the case where q(p) is constant and ν(p) = 1.

Theorem 1 makes it straightforward to represent this more general updating rule

as a misspecified model and apply the criterion for characterizing asymptotic learning

from Bohren and Hauser (2021). This updating rule satisfies Bayes-feasibility, and

therefore, by Lemma 1, has a misspecified model representation. Moreover, any

misspecified model representation satisfies the assumptions in Bohren and Hauser

(2021), so we can use their criterion to characterize asymptotic learning outcomes.

Finally, all representations reduce to the same criterion, and therefore, lead to the

same learning outcomes; the belief forecast does not impact asymptotic learning. This
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leads to the following result.16

Proposition 4. There exist cut-offs q ∈ (0, 1) and ν : [0, 1] → (0, 1], with ν(q(1)) < 1

for q(1) > q, such that (i) for q(1) > q and ν(1) > ν(q(1)), both incorrect and correct

learning arise with positive probability, and with probability one, one of these two

outcomes arise; (ii) for q(1) < q or ν(1) < ν(q(1)), almost surely learning is correct.

This establishes that the stark parameterization of confirmation bias in Rabin and

Schrag (1999) does not drive the possibility of incorrect learning: when confirmation

bias is sufficiently severe, beliefs become entrenched on the incorrect state regardless

of the exact parameterization. See Appendix B for the analysis.

Social Learning. We next show that in a social learning environment where agents

use the confirmation bias updating rule specified above, the choice of belief forecast

does impact the asymptotic learning characterization. Suppose that a sequence of

agents learn from a private signal and the action choices of prior agents. In particular,

each agent t observes a private signal zt ∈ {l,m, r} as outlined above, then chooses

an action at ∈ {L,M,R}, where payoffs are such that action R is optimal following

p > p ∈ (1/2, 1), action L is optimal following p < 1− p, and action M is optimal for

p ∈ (1− p, p). Suppose that a share 1− 2π of agents observe the action history ht =

{a1, ..., at−1}, while share 2π are autarkic and only observe their private signal, with

share π having a prior belief pA ∈ (1/2, p) and share π having a prior belief 1− pA <

1/2. Both autarkic and non-autarkic types use the updating rule described above,

but are not aware that anyone misinterprets signals. In particular, non-autarkic types

correctly infer autartkic types’ signals, but apply the same updating rule to this signal

as they apply to their own signal. Assume that non-autarkic agents have a correct

belief about the share of autarkic types.

This updating rule has multiple misspecified model representations. Social learn-

ing requires inference about sets of signals that map to a given action, which depends

on both the belief forecast and the updating rule. Hence, the choice of representa-

tion affects the predicted learning outcomes.17 To illustrate our point, we focus on

16We present this result for symmetric signals as in Rabin and Schrag (1999); it immediately

extends to asymmetric signals.
17Note that this updating rule has a naive-PC representation only when ν(p) ∈ {0, 1}, as otherwise

the posterior following signal m does not arise in the correctly specified model, and does not have a
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(a) Rep. #1: ρ̂(p) = 0.01 (b) Rep. #2: ρ̂(p) = 0.5

Figure 1. Social learning outcomes depend on the chosen representation (θ = 0.65)

a parameterization of the updating rule in which agents interpret signal m as un-

informative: h(m, p) = p. Fig. 1 illustrates how the learning outcomes depend on

the probability of misinterpreting a signal q and the share of autarkic types π for

two representations. The representation in panel (a) has a belief forecast that places

very low probability on uninformative information, ρ̂(p) = 0.01. The learning out-

come is similar in spirit to the individual learning setting: incorrect learning arises

when the signal is misinterpreted with sufficiently high probability. The representa-

tion in Panel (b) has a belief forecast that places higher probability on uninformative

information—ρ̂(p) = 0.5. This leads to starkly different learning outcomes: cyclical

learning (i.e., beliefs fail to converge) arises for a sufficiently low share of autarkic

types and probability of misinterpreting the signal.

5.2 Misspecified Search

This application explores how a misspecified model of the signal variance impacts

search decisions. Following Theorem 1, we decompose the misspecified model into

the prospective and retrospective biases it encodes, then use Propositions 1 to 3 to

separately study the impact of each on search behavior. Whether the bias encoded

in the misspecified model emerges ex-ante versus ex-post to information arrival plays

a key role in determining whether excess or insufficient search occurs.

sophisticated-PC representation for any q(p) > 0.
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Set-Up. A firm considers whether to adopt one of two new technologies, j ∈ {1, 2}.
Technology j has either low or high value, ωj ∈ {L,H}, each equally likely. Values

are independently drawn and unobserved. The firm learns about these technologies

sequentially. In each of two periods, it chooses whether to search a new technology

(if an unsearched option remains) or to adopt one of the technologies it has already

searched. Without loss of generality, assume that technology 1 is searched first.

When the firm searches technology j, it draws a signal zj from normal distribution

N(1, 1) when ωj = H and N(−1, 1) when ωj = L. The signals are independent across

technologies. The firm has a misspecified model of the signal process: it believes the

signal is drawn from normal distribution N(1, σ̂2) when ωj = H and N(−1, σ̂2) when

ωj = L, with σ̂ ̸= 1. In other words, it correctly perceives the mean but misperceives

the variance: it overestimates it when σ̂ > 1 and underestimates it when σ̂ < 1.

It correctly believes that the signals are independent across technologies. The firm

receives a payoff of 1 from adopting a high value technology and 0 from adopting a

low value technology or not adopting any technology. It costs the firm c = 0.1 to

search each technology.

Decomposition. Decomposing the misspecified model into the induced updating

rule and belief forecast isolates the retrospective and prospective biases it encodes.

Letting ϕ(z|m,σ) denote the pdf of the normal distribution with meanm and variance

σ2, the misspecified model induces updating rule h(z) = ϕ(z|1,σ̂)
ϕ(z|1,σ̂)+ϕ(z|−1,σ̂)

, where h(z) is

the subjective probability that the technology is high value after observing realization

z and we suppress the dependence on the prior since it is fixed. This is the geometric

parameterization of under/overreaction in Example 1(b) with α = 1/σ̂2. Thus, if the

agent overestimates the variance, σ̂2 > 1, she retrospectively underreacts and if she

underestimates the variance, σ̂2 < 1, she retrospectively overreacts. The misspecified

model induces belief forecast ρ̂(x) = µ̂(h−1(x)) (in cdf form), where ρ̂ is the subjec-

tive distribution over the posterior belief that the technology is high value, µ̂ denotes

the cdf of an equally weighted mixture distribution of N(1, σ̂2) and N(−1, σ̂2), and

again we suppress the dependence on the prior.18 When the agent overestimates

the variance, σ̂2 > 1, this forecast puts insufficient weight on precise posteriors and

18Since h(z) is increasing in z, we can write cdf ρ̂ in terms of cdf µ̂, i.e., ρ̂(x) ≡ Pr({z : h(z) ≤
x}) = µ̂(h−1(x)).
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excess weight on intermediate posteriors, leading to prospective underprecision as

in Example 2(a), and analogously prospective overprecision for σ̂2 < 1. Thus, this

misspecified model puts structure on the relationship between the prospective and

retrospective bias: retrospective overreaction is coupled with prospective overpreci-

sion, and similarly for underreaction and underprecision. Fig. 4 in Appendix B plots

this updating rule and forecast, as well as the correctly specified analogues hB(z) and

ρB(x) = µ(h−1
B (x)) and the accurate forecast ρh(x) = µ(h−1(x)).

Search Behavior. The firm always searches the first technology since c < 0.5.

After observing signal realization z1, it searches the second technology if

c <

∫ 1

h(z1)

(x− h(z1)) dρ̂(x), (10)

where we assume the firm does not search when indifferent. Since the right hand

side of (10) is decreasing in h(z1), and h(z1) is increasing in z1, we can express this

decision as a cut-off z∗ on the signal such that the firm searches the second technology

iff z1 < z∗. If it does not search the second technology, the firm adopts the first

technology, and if it does, it adopts the technology with the higher signal.

As can be seen in (10), both retrospective bias and prospective bias impact search

behavior. When the firm has an overprecise forecast, it overestimates the likelihood

of receiving a very precise signal when it searches the second technology, which leads

it to overestimate the benefit of search and thereby search the second technology

too often. But in this case, the firm also overreacts to the first signal: following a

high first signal, it overestimates the probability that the first technology is good—

counteracting the forecast bias—and following a low first signal, it underestimates the

probability that the first technology is good—exacerbating the forecast bias. Thus,

the interaction between the prospective and retrospective bias will determine whether

the firm searches too often or not often enough, compared to a correctly specified firm.

Fig. 2 shows that the firm engages in insufficient search, regardless of whether the

misperceived variance induces overprecision and overreaction (σ̂ < 1) or underpreci-

sion and underreaction (σ̂ > 1). Relative to the correctly specified model, the firm

sets a lower signal threshold to adopt the first technology without searching the sec-

ond. The extent of this deviation from optimal search is increasing in the difference

between the true and misperceived variance: a larger bias in either direction leads to a
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Figure 2. Impact of retrospective versus prospective bias on search behavior

higher probability of inefficiently stopping. We next study the role of the prospective

versus retrospective bias in driving this inefficiency; the results from Section 4 allow

us to separately shut down each bias and isolate the impact of the other.

The Impact of Retrospective Bias. We first examine how retrospective over- or

underreaction impact search behavior by comparing the firm’s behavior to the RC

model. This model induces the Bayesian updating rule hB and the same forecast

ρ̂ as the firm’s model.19 First consider the case where the firm underestimates the

variance, σ̂ < 1, thereby exhibiting retrospective overreaction and prospective over-

precision. Fig. 2 shows that the RC model leads to excess search, while the firm’s

model leads to insufficient search. Thus retrospective overreaction drives the insuf-

ficient search—absent such overreaction, prospective overprecision generates excess

search. In contrast, when the firm overestimates the variance, σ̂ > 1 (retrospective

underreaction and prospective underprecision), both the RC model and the firm’s

model lead to insufficient search. For small levels of bias, the RC model is more

inefficient than the firm’s model; thus, retrospective underreaction mitigates the ef-

ficiency loss stemming from prospective underprecision. For more severe bias, the

19Given that hB and ρ̂ satisfy no unexpected beliefs (hB induces all posteriors in (0, 1), which is

the support of ρ̂) and ρ̂ is plausible (since it is induced by a misspecified model), by Proposition 3,

the RC model exists and is unique. See Appendix B for details.
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firm’s model is more inefficient; thus, retrospective underreaction exacerbates the ef-

ficiency loss stemming from prospective underprecision. Taken together, this shows

that retrospective and prospective bias can either offset or amplify each other, de-

pending on the direction and severity of the bias. In either case, prospective bias

alone also leads to inefficient behavior, demonstrating the importance of considering

the impact of prospective bias in addition to the more oft studied retrospective biases.

The Impact of Prospective Bias. We next examine how prospective bias impacts

search behavior by comparing the firm’s behavior to that in the two prospectively cor-

rect representations. Both induce the same updating rule h as the firm’s model; the

naive-PC representation induces the forecast from the correctly specified model, ρB,

while the sophisticated-PC representation induces the accurate forecast, ρh.
20 Fig. 2

plots search behavior for each. When the firm underestimates the variance, search be-

havior in both prospectively correct models is similar to the firm’s model. Intuitively,

for small σ̂, the firm maps any positive signal to an almost-one probability of high

quality and any negative signal to an almost-zero probability of high quality. There-

fore, the signal cut-off z∗ approaches zero independently of the belief forecast, leading

to insufficient search. In fact, overreaction on its own—combined with the failure to

anticipate this overreaction in the naive-PC model—leads to even less search than

the firm’s model. Thus, the prospective overprecision in the firm’s model offsets the

inefficiently low search generated by retrospective overreaction. Since search behavior

in the firm’s model and the sophisticated-PC model are near identical, making the

firm aware of its retrospective overreaction would not mitigate its insufficient search.

When the firm overestimates the variance, a very high signal is needed to move the

posterior away from the prior. In the naive-PC representation, the firm does not

anticipate this and searches too often. In the sophisticated-PC representation, the

firm anticipates this and searches too little. The same is true for the firm’s model,

but less so because it places lower probability on low signals when the state is low,

and therefore, ascribes a higher value to search.

20Given that h and ρB satisfy no unexpected beliefs (h induces all posteriors in (0, 1), which

is the support of ρB), by Proposition 2 the naive-PC representation exists and is unique. Given

that ρh is plausible, by Proposition 1 the sophisticated-PC representation exists and is unique. See

Appendix B for details.
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Discussion. Taken together, these results show that whether bias emerges prospec-

tively versus retrospectively leads to qualitatively different predictions about search

decisions. Therefore, the timing of when a bias emerges has important implications

for behavior. Moreover, the prospective and retrospective bias a model encodes can

either offset or amplify each other. This has important implications for selecting

policy interventions, including which bias is more important to target and whether

targeting one bias but not the other will lead to further inefficiency.

These results also show how the choice of approach impacts the analysis. An

economist who uses the non-Bayesian updating rule approach may view overreaction

paired with the naive-PC forecast as the natural model to use, while an economist

who uses the misspecified model approach may view the misspecified variance model

as the natural set-up. Since these models lead to qualitatively different behavior, the

choice of approach will impact the conclusions the economist reaches.

6 Discussion and Conclusion

Time Consistency. Time inconsistency is a key property of many dynamic behav-

ioral models. In terms of belief distortions, it is an inherent feature of certain biases

(e.g. confirmation bias or disbelief in the law of large numbers (Benjamin et al.

2016)). Therefore, any representation of such biases will exhibit time inconsistency

in that the models an agent anticipates she will use in future periods differ from the

models she actually uses. This notion of bias in anticipated versus actual model is

conceptually distinct from our notion of prospective versus retrospective bias in an-

ticipated versus actual processing of a signal within a given model. A straightforward

extension of our framework that combines a prior-dependent representation with a

failure to anticipate how the model changes with the current belief can capture time

inconsistency (see Appendix D.2). Prior-dependent models do not always lead to

time inconsistency. When the agent accurately anticipates how her model changes

with her belief, she will be time consistent. For example, a correctly specified model

that varies with the prior—as in active learning environments—is prior-dependent

but clearly also time consistent.

Conclusion. We link two approaches commonly used to study biases in belief

formation: the non-Bayesian approach and the misspecified model approach. Our

main result decomposes a misspecified model into the two forms of bias it encodes—
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retrospective bias via the updating rule and prospective bias via the belief forecast—

and highlights the belief formation restrictions implicit in using the misspecified model

approach. Moreover, it demonstrates how to uniquely represent an updating rule or

belief forecast by suitably selecting the other component. Finally, we identify natural

ways to construct such models that do not introduce additional bias. Taken together,

these results provide a method to embed belief formation biases into economic de-

cision problems. They also highlight the importance of eliciting the belief forecast

as well as the (more commonly measured) updating rule in empirical work, as both

components of belief formation play a key role in many economic settings.
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A Proofs from Sections 3 and 4

In this section, except where noted we omit the prior p from the arguments of the

forecast, updating rule, and misspecified model. As most results hold prior by prior,

we establish them for an arbitrary interior prior p ∈ ∆(Ω).

Proof of Lemma 1. (If) LetMuc denote the set of signal distributions that are mu-

tually absolutely continuous with respect to µ. Let F ≡ {x : xi =
∫
Z h(z)i dµ̂(z), µ̂ ∈

Muc)} and S(h) denote the closure of S(h). We first show that F = S(h), which

implies that S(h) = rel int F since both sets are convex, and then show that any prior

that lies in the relative interior of F can be represented by a misspecified model. Con-

sider any x ∈ S(h). Since the closure of the support of ρh, X (h), is compact, S(h) is

its convex hull. By Caratheodory’s theorem there is a set of K ≤ N ai ∈ X (h) s.t.∑K
j=1 λjaj = x, λj > 0,

∑K
j=1 λj = 1.

It remains to establish that x lies in F , so we need to construct a µ̂, mutually

absolutely continuous with respect to µ that satisfies
∫
h(z)idµ̂(z) = xi. Fix ε ∈

(0,minj{λj}), and for each aj take a collection of disjoint balls of radius δ < ε
2K

around aj, Bδ(aj). The set of signals that map to this ball has positive measure.
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Define a density by

dµ̂

dµ
(z) =


λj− ε

2K

µ(h−1(Bδ(ai)))
if z ∈ h−1(Bδ(ai))

ε

2µ(Z\h−1(
⋃K

j=1 Bδ(aj)))
o.w.

if µ(Z \ h−1(
⋃K

j=1Bδ(aj))) > 0, otherwise let dµ̂
dµ
(z) =

λj

µ(h−1(Bδ(ai)))
if z ∈ h−1(Bδ(ai)).

This is by construction a non-negative measurable function. With respect to this

density, |
∫
Z h(z)idµ̂(z)− xi| ≤ ε, so x ∈ F . By standard argument any point in F is

in the closure of S(h), so these two sets are the same and we can work directly with

points in F .

Now we show that h can be represented. Consider the vector m ∈ ∆(Ω) where

mi =
∫
Z h(z)i dµ(z), the expected value of the misspecified posterior under the true

unconditional distribution, which exists, and lies in F . Since the prior p is in the

relative interior, there exists an ε > 0 s.t. q = (1 + ε)p − εm ∈ F . Moreover, there

exists a probability distribution γ ∈ Muc absolutely continuous with respect to ν s.t.

qi =
∫
Z h(z)i dγ(z). Consider the compound lottery where with probability 1

1+ε
the

signal z is drawn from γ and with complementary probability it is drawn from µ.

Call this measure µ̂. Then
∫
Z h(z)i dµ̂(z) = pi. Finally, suppose that there was a set

Z with ν-positive measure where for all z ∈ Z, dµi

dν
(z) > 0 but dµ̂i

dν
(z) = 0. This set

occurred with positive probability under µ so it must occur with positive probability

under µ̂ by construction. This is a contradiction. Therefore, we can represent this

with a misspecified model.

(Only If) Take a measure µ̂ ∈ Muc. This induces a full support distribution over

supp ρh, denoted ρ̂µ̂ ≡ µ̂ ◦ h−1. Let mi =
∫
Z h(z)idµ̂(z). Suppose m was not on the

relative interior. Then there exists a hyperplane that properly supports S(h) at m,

v ∈ RN s.t. v ·m ≥ v · s for all s ∈ S(h), strict for any s on the relative interior. But

then, since the relative interior is non-empty, any point on the relative interior can

be written as the convex combination of points in the support (implying at least one

of these points is not on the hyperplane), and any neighborhood of that point occurs

with positive probability, v ·m =
∫
v ·s dρ̂µ̂(s) < v ·m by the full support assumption.

This is a contradiction. □

Proof of Lemma 2. (If) Fix a plausible forecast ρ̂ and the associated measurable

function ϕ : Z → ∆(Ω) such that µ1(ϕ
−1(·)) and ρ̂ are mutually absolutely continuous
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(by Definition 2 such a function exists). Let ρϕ = µ ◦ ϕ−1. Define the measure

µ̂(Z) =
∫
Z

dρ̂
dρϕ

(ϕ(z)) dµ(z). Note that
∫
Z ϕ(z)idµ̂(z) =

∫
∆(Ω)

xidρ̂(x) = pi so µ̂i(Z) =
1
pi

∫
Z
ϕ(z)i dµ̂(z) is a subjective model with unconditional signal distribution µ̂. This

subjective model has forecast ρ̂ by construction of µ̂ and the change of variables

formula. (Only If) Fix a subjective model {µ̂i}ωi∈Ω. Let h(z) be the updating rule

defined by Bayes rule with respect to this model. Then if ρ̂(X) = µ̂(h−1(X)) is a

forecast, it is, by definition, the forecast represented by the subjective model. By

construction, h(z) is a measurable function s.t. ρ̂(X) = 0 if and only if ρh(X) = 0.

So ρ̂ is a forecast. Finally,∫
∆(Ω)

xidρ̂(x) =

∫
Z
h(z)idµ̂(z) =

∫
Z

pi
dµ̂i

dν
(z)∑N

k=1 pk
dµ̂k

dν
(z)

dµ̂(z) = pi

∫
Z
dµ̂i(z) = pi,

for any ωi ∈ Ω so it is a plausible forecast. □

Intermediate Lemmas. Before proving Theorem 1, we first prove two lemmas.

The following lemma establishes when a measure over the signal space can be part of

a model representing a given updating rule.

Lemma 3. (i) Updating rule h can be represented by an admissible model {µ̂i(·; p)} ∈
M(p) at prior p with unconditional signal distribution µ̂(·; p) iff for all ωi ∈ Ω,∫

Z
h(z, p)i dµ̂(z; p) = pi. (11)

If such a representation exists, then for any ωi with pi > 0, µ̂i(Z; p) =
1
pi

∫
Z
h(z, p)i dµ̂(z; p)

for any measurable set of signal realizations Z ⊂ F . (ii) Updating rule h can be rep-

resented by an admissible model {µ̂i(·; p)} ∈ M(p) at prior p with conditional signal

distribution µ̂j(·; p) ∈ Muc in state ωj iff∫
Z

h(z, p)i
h(z, p)j

dµ̂j(z; p) =
pi
pj

(12)

for all ωi ∈ Ω. If such a representation exists, then for any ωi with pi > 0, µ̂i(Z) =
pj
pi

∫
Z

h(z)i
h(z)j

dµ̂j(z) for any measurable set of signal realizations Z ⊂ F .

Proof. Fix an updating rule h. Part 1: (If) Suppose h can be represented by a

model with unconditional signal distribution µ̂. It follows from standard argument

that beliefs must be a martingale, which implies
∫
Z h(z)i dµ̂(z) = pi. (Only If) Now
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suppose that µ̂ is a measure with
∫
Z h(z)i dµ̂(z) = pi. Define conditional distributions

µ̂i(Z) =
1
pi

∫
Z
h(z)i dµ̂(z) for all Z ∈ F . These are probability distributions, as h(z)i

is non-negative and µ̂i(Z) = 1 by construction. It remains to show this model induces

the posterior prescribed by h following each signal realization z. Since µ̂i is absolutely

continuous with respect to µ̂, Bayes rule with respect to {µ̂i}ωi∈Ω and the properties

of the Radon-Nikodym derivative imply that, µ-a.e.,

pi
dµ̂i

dν
(z)∑N

j=1 pj
dµ̂j

dν
(z)

=
pi

dµ̂i

dµ̂
(z)∑N

j=1 pj
dµ̂j

dµ̂
(z)

= h(z)i,

so these distributions induce the posterior prescribed by h. Finally, for the above

equation to hold, any misspecified model that represents h must solve

p1/h(z)1 −p2/h(z)2 0 . . . 0

p1/h(z)1 0 −p3/h(z)3 . . . 0
...

. . .

p1/h(z)1 0 . . . 0 −pN/h(z)N

p1 p2 . . . pN−1 pN




dµ̂1

dµ̂
(z)

dµ̂2

dµ̂
(z)
...

dµ̂N

dµ̂
(z)

 =



0

0
...

0

1


µ̂-a.s. Therefore, the conditional distributions are unique as the left-hand matrix is

an N ×N full-rank matrix.

Part 2. (If) Suppose h can be represented by a misspecified model with condi-

tional signal distribution µ̂j. Then, by standard argument, for any ωi the likelihood

ratios h(z)i/h(z)j must be martingales with respect to µ̂j so
∫
Z

h(z)i
h(z)j

dµ̂j(z) = pi
pj
.

(Only If) Now suppose that µ̂j is a measure that satisfies
∫
Z

h(z)i
h(z)j

dµ̂j(z) =
pi
pj

for up-

dating rule h and all i. Define the misspecified model µ̂i(Z) =
∫
Z

pj
pi

h(z)i
h(z)j

dµ̂j(z). This

is a misspecified model that induces updating rule h(z). Without loss of generality

assume j = 1. Then any family of misspecified models with updating rule h and

conditional signal distribution µ̂1 must solve

0 p2
p1

h(z)1
h(z)2

0 . . . 0

0 0 p3
p1

h(z)1
h(z)3

. . . 0
...

. . .

0 0 . . . 0 pN
p1

h(z)1
h(z)N

1
p1

−p2
p1

. . . −pN−1

p1
−pN

p1




dµ̂
dµ̂1

(z)
dµ̂2

dµ̂1
(z)
...

dµ̂N

dµ̂1
(z)

 =



1

1
...

1

1
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µ̂1 a.s. so this model is unique since the left-most matrix is full-rank. □

Lemma 4 (Construction of Representation). Consider an updating rule h and a plau-

sible belief forecast ρ̂ that satisfy no unexpected beliefs, and let ρh be the accurate fore-

cast for h. Then h and ρ̂ are represented by the family of models {µ̂i(·, p)}ωi∈Ω,p∈∆(p)

with, for each ωi ∈ Ω and p ∈ ∆(Ω),

µ̂i(Z; p) =
1

pi

∫
Z

h(z, p)i
dρ̂

dρh
(h(z, p); p) dµ(z; p) (13)

for any measurable set of signal realizations Z ∈ F .

Proof. By assumption, ρ̂ is absolutely continuous with respect to ρh, so
dρ̂
dρh

exists.

For any Borel set X, define

ρ̂i(X) ≡
∫
X

xi

pi

dρ̂

dρh
(x)dρh(x) =

∫
h−1(X)

h(z)i
pi

dρ̂

dρh
(h(z)) dµ(z)

where the second equality follows from change of variables. These are probability

measures, and
∑

piρ̂i(X) = ρ̂(X). For any Z ∈ F , define

µ̂i(Z) ≡
∫
Z

1

pi
h(z)i

dρ̂

dρh
(h(z)) dµ(z).

We are integrating a measurable function over a measurable set, so the model {µ̂i}ωi∈Ω

is indeed a family of measures over (Z,F). This is a probability measure as

µ̂i(Z) =

∫
Z

1

pi
h(z)i

dρ̂

dρh
(h(z)) dµ(z) =

∫
∆(Ω)

1

pi
xi

dρ̂

dρh
(x) dρh(x) = 1.

Model {µ̂i}ωi∈Ω clearly induces the the specified updating rule h, as dρ̂
dρh

is non-zero

a.s. over the support of ρh by mutual absolute continuity. It remains to show that

this induces the desired forecast, i.e., µ̂ ◦ h−1(X) = ρ̂(X) for any Borel set X. For

any Borel set X, note that

ρ̂i(X) =

∫
X

xi

pi

dρ̂

dρh
(x) dρh(x) =

∫
h−1(X)

h(z)i
pi

dρ̂

dρh
(h(z)) dµ(z) = µ̂i(h

−1(X)),

and therefore, µ̂(h−1(X)) =
∑

piρ̂i(X) = ρ̂(X). This establishes that {µ̂i}ωi∈Ω in-

duces the desired forecast. □
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Proof of Theorem 1. Lemma 4 establishes sufficiency, since the model defined

in (13) represents h and ρ̂. We use Lemmas 2 and 3 to establish necessity and

uniqueness. By Lemma 2, the forecast must be plausible. Suppose there exists a

Borel set X such that ρh(X) > 0 but ρ̂(X) = 0 and a subjective model {µ̂i}ωi∈Ω that

induces the desired forecast and updating rule exists. Let Z = h−1(X). Then by

the mutual absolute continuity of the misspecified and correctly specified measures,

0 = µ̂(Z) = µ(Z) = ρh(X) > 0, which is a contradiction. Nearly identical logic

implies that it’s impossible for ρh(X) = 0 but ρ̂(X) > 0. Therefore, ρh and ρ̂ must

be mutually absolutely continuous. Uniqueness of the representation on Fh follows

from Lemma 3. Fix a model {µ̂i}ωi∈Ω that represents h and ρ̂. For any Z ∈ Fh, the

unconditional measure µ̂(Z) must satisfy µ̂(Z) = ρ̂ ◦ h(Z). Since the model {µ̂i}ωi∈Ω

induces µ̂ and h when restricted to the measurable space (Z,Fh), this implies that

µ̂i(Z) =

∫
Z

h(z)idµ̂(z) =

∫
Z

h(z)idρ̂(h(z)),

so these conditional measures are unique. Note that (13) is equal to (6) on Fh(p). □

Proof of Proposition 1. This result is immediate from Theorem 1. It follows from

that result that for any given updating rule h and accurate forecast ρh, there exists a

representation at p if and only if ρh is plausible and h and ρh satisfy no unexpected

beliefs. Since ρh is mutually absolutely continuous with itself no unexpected beliefs

is always satisfied, implying Proposition 1. □

Proof of Proposition 2. (If) The existence of a misspecified model with fore-

cast ρB follows from Theorem 1, since ρB is plausible because it is the correctly

specified forecast. For any Borel set X such that Z = h−1(X), note that µ̂i(Z) =
1
pi

∫
Z
h(z)idρB(h(z)) = µi(h

−1
B (X)) = µi(h

−1
B (h(Z))) by construction of µ̂i, (6), and

the definition of ρB. (Only If) Let ρB = µ(h−1(X)) be the accurate Bayesian forecast.

Suppose there exists a naive-PC representation {µ̂i}ωi∈Ω and there exists a Borel set

X s.t. ρB(X) > 0 but ρ̂(X) = 0. Then µ̂(h−1(X)) = 0, which by absolute continuity

implies µ(h−1(X)) = 0. But this implies that µ(h−1
B (X)) = 0 which is a contradiction.

Similar logic applies when ρB(X) = 0 but ρ̂(X) > 0. □

Proof of Proposition 3. This result follows immediately from Theorem 1. □
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B Calculations from Section 5

Proof of Proposition 4. When p > 1/2, the true model we outline in Section 5.1

corresponds to

l m r

L (1− q(p))θ q(p)θ 1− θ

R (1− q(p))(1− θ) q(p)(1− θ) θ

and when p ≤ 1/2, it corresponds to

l m r

L θ q(p)(1− θ) (1− q(p))(1− θ)

R 1− θ q(p)θ (1− q(p))θ

.

It is straightforward to extend the Bohren and Hauser (2021) framework to allow

the signal misspecification to map two signals that induce the same true posterior

to different misspecified posteriors. We first characterize the locally stable set Λ(L).

Let ν̃ ≡ ν(0) denote the slant at certainty (recall ν(1) = ν(0) by assumption), and

similarly, let q̃ ≡ q(0) denoted the misinterpretation probability at certainty. For

p < 1/2, any model representing this updating rule satisfies

µ̂(m|R, p)

µ̂(m|L, p)
=

(1− ν(p))hB(r, p) + ν(p)hB(l, p)

1− (1− ν(p))hB(r, p)− ν(p)hB(l, p)
∗ 1− p

p
.

At p = 0, this simplifies to

µ̂(m|R, p)

µ̂(m|L, p)
=

(1− ν̃)θ

1− θ
+

(1− θ)ν̃

θ
.

Therefore, the local stability of correct learning is determined by the sign of

γ(0, L) = (1− q̃)(1− θ) log

(
θ

1− θ

)
+ q̃(1− θ) log

(
(1− ν̃)θ

1− θ
+

ν̃(1− θ)

θ

)
+ θ log

(
1− θ

θ

)
.

At q̃ = 0, agents have a correctly specified model at certainty, so γ(0, L) < 0. As q̃

increases, more weight is placed on the second term and less weight is placed on the

first term. The second term is less than the first term; therefore, γ(0, L) is decreasing

in q̃. Therefore, for all q̃ and ṽ, γ(0, L) < 0 and correct learning is locally stable,

0 ∈ Λ(L).
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Figure 3. Confirmation Bias (θ = 0.625)

Similarly, the local stability of incorrect learning is determined by the sign of

γ(∞, L) = θ(1− q̃) log

(
1− θ

θ

)
+ θq̃ log

(
(1− ν̃)(1− θ)

θ
+

ν̃θ

1− θ

)
+ (1− θ) log

(
θ

1− θ

)
.

At q̃ = 0 or ν̃ = 0, agents have a correctly specified model, so γ(∞, L) < 0. As

q̃ increases, more weight is placed on the second term and less weight is placed on

the first term. The second term is greater than the first term; therefore, γ(∞, L)

is increasing in q̃. Similarly, the second term is increasing in ν̃, and therefore, so is

γ(∞, L). At q̃ = 1 and ν̃ = 1,

γ(∞, L) = log

(
θ

1− θ

)
> 0. (14)

Therefore, the desired cutoffs q ∈ (0, 1) and ν(q̃) ∈ (0, 1) exist such that incorrect

learning is locally stable for q̃ > q and ν̃ > ν(q̃). The construction of Λ(R) is

analogous. Given that there is a single type, mixed learning does not arise. Therefore,

by Theorem 4 in Bohren and Hauser (2021), Λ(ω) fully characterizes asymptotic

learning outcomes. □

Calculations from Section 5.2.

Derivation of the misspecified normal belief forecast. From the normal distribution,

47



(a) Updating Rule: Overreaction (b) Belief Forecast: Overprecision

Figure 4. Decomposing Retrospective and Prospective Bias (σ̂2 = 0.25)

h−1(x):

h(z) =
e−

1
2(

z−1
σ̂ )

2

e−
1
2(

z−1
σ̂ )

2

+ e−
1
2(

z+1
σ̂ )

2 = x

⇐⇒ h−1(x) = − σ̂2

2
log

(
1− x

x

)
.

Because z is the mixture of two normal distributions, its subjective unconditional

cdf is given by µ̂(z) = (Φ(z|1, σ̂) + Φ(z| − 1, σ̂))/2, where Φ(z|m,σ) denotes the cdf

of the normal distribution with mean m and variance σ2. From ρ̂(x) = µ̂(h−1(x)),

computing the pdf dρ̂(x) is straightforward:

dρ̂(x; p) = dµ̂(h−1(x, p))× σ̂2

2

(
1

x− x2

)
,

where dµ̂(z) = (ϕ(z|1, σ̂) + ϕ(z| − 1, σ̂))/2 denotes the subjective unconditional pdf

of z. Fig. 4 plots this forecast for σ̂2 = 0.25, as well as the correctly specified forecast

which corresponds to σ̂2 = 1.

Derivation of the sophisticated-PC representation. The sophisticated-PC forecast has

cdf ρh(x) = µ(h−1(x)) and pdf

dρh(x) = dµ(h−1(x))× σ̂2

2

(
1

x− x2

)
.
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(a) Perceived signal distribution in state L (b) Perceived signal distribution in state H

Figure 5. Misspecified model representations (σ̂2 = 0.5)

A misspecified model representation exists if ρh is plausible, which holds at p =

1/2: This representation corresponds to µ̂IP
H (z) = 2

∫ z

−∞ h(u) dµ(u) and µ̂IP
L (z) =

2
∫ z

−∞(1− h(u)) dµ(u). Fig. 4 plots the accurate forecast and Fig. 5 plots the pdfs of

µ̂IP
H and µ̂IP

L .

Derivation of the naive-PC representation. The correctly specified forecast has cdf

ρB(x) = µ(h−1
B (x)) and pdf

dρB(x) = dµ(h−1
B (x))× 1

2

(
1

x− x2

)
.

A misspecified model representation exists if h and ρB satisfy no unexpected be-

liefs, which is satisfied since both models induce all beliefs x ∈ (0, 1). This repre-

sentation corresponds to: µ̂NC
H (z) = 2

∫ z

−∞ h(u)dρB(h(u)) and µ̂NC
L (z) = 2

∫ z

−∞(1 −
h(u))dρB(h(u)). Note that we need to be careful here in terms of how we take the

integral. It is not (dρB)(h(z)), but d(ρB(h(z))). Explicitly, we have:

d(ρB(h(z))) = dµ

(
σ2

σ̂2
z

)
× σ2

σ̂2
.

Fig. 5 plots the pdfs of µ̂NC
H and µ̂NC

L .

Derivation of the retrospectively-correct representation. The RC updating rule is hB.

A misspecified model representation exists if hB and misspecified normal forecast
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ρ̂ satisfy no unexpected beliefs, which is satisfied since all beliefs x ∈ (0, 1) are

induced by both (we already know ρ̂ is plausible, which is the other condition).

The representation corresponds to µ̂RC
H (z) = 2

∫ z

−∞ hB(u)dρ̂(hB(u)) and µ̂RC
L (z) =

2
∫ z

−∞(1− hB(u))dρ̂(hB(u)), where

d(ρ̂(hB(z))) = dµ̂

(
σ̂2

σ2
z

)
× σ̂2

σ2
.

Fig. 5 plots the pdfs of µ̂RC
H and µ̂RC

L .

C Additional Examples

C.1 Discrete Signal Example

The following example illustrates the results from Section 3. Consider binary state

space Ω = {L,R} with a uniform prior and signal space Z = {z1, z2, z3, z4}. Given the

focus on a uniform prior, we suppress p as an argument of the updating rule, forecast,

and model. Moreover, in a slight abuse of notation given the binary state space, we

define the updating rule as the probability assigned to state R after observing each

signal, i.e. h(z) = Pr(R|z) for each z ∈ Z and the belief forecast as a distribution ρ̂(x)

over set of probabilities x that the state is R. Note Definition 2 requires | supp ρ̂(x) | ≤
4. In this set-up, a model corresponds to a pair of vectors {µ̂L, µ̂R}, where each

vector specifies a subjective probability mω,k for each signal zk in each state ω, i.e.

µ̂ω = (mω,1,mω,2,mω,3,mω,4) with
∑4

k=1 mω,k = 1.

Illustration of Lemma 1. A Bayes-feasible updating rule maps at least one sig-

nal to a posterior above the prior and one signal to a posterior below the prior, i.e.

minz h(z) < 0.5 < maxz h(z). Given a Bayes-feasible updating rule h, any solution

(m1,m2,m3,m4) ∈ ∆3 to
∑4

k=1 h(zk)mk = 0.5 pins down a model that represents

h, with mR,k = 2h(zk)mk and mL,k = 2(1 − h(zk))mk for k = 1, ..., 4.21 Aside

from knife-edge cases, there are multiple solutions, and therefore, multiple represen-

tations. For example, if h(z1) = 0.1, h(z2) = 0.2, h(z3) = 0.8 and h(z4) = 0.9, then

(0.2, 0.3, 0.3, 0.2) and (0.1, 0.4, 0.4, 0.1) are both solutions (in fact, there are a con-

tinuum of solutions). Note that each model induces a unique belief forecast, which

assigns probability mk = (mR,k +mL,k)/2 to posterior belief h(zk).

21To see that any such model represents h, note that it induces posterior belief mR,k/(mR,k +

mL,k) = h(zk) following signal realization zk, and therefore, it induces the desired updating rule.
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Illustration of Lemma 2. A forecast ρ̂ is plausible if
∑

x∈supp ρ̂(x′) xρ̂(x) = 0.5.

For example, the forecast ρ̂(x) = 0.51{x ∈ {x1, 1 − x1}} for some x1 ∈ (0, .5) is

plausible since .5x1+ .5(1−x1) = 0.5. One such model that represents this forecast is

mR,1 = x1/2, mR,2 = x1/2, mR,3 = (1− x1)/2 and mR,4 = (1− x1)/2 in state R, and

similarly for state L substituting 1−x1 for x1.
22 This model induces an updating rule

that maps {z1, z2} to posterior x1 and {z3, z4} to 1 − x1.
23 Alternatively, the model

mR,1 = x1/3, mR,2 = x1/3, mR,3 = x1/3 and mR,4 = 1− x1 in state R, and similarly

for state L substituting 1−x1 for x1, also represents ρ̂. This model induces a different

updating rule: it maps {z1, z2, z3} to x1 and z4 to 1 − x1. In fact, for any updating

rule that assigns at least one signal to each posterior x1 and 1− x1, it is possible to

find a model that induces this updating rule and represents ρ̂(x). As discussed above,

each updating rule induces a different retrospective bias. For example, if the correct

model maps {z1, z2} to posterior x1, then mapping {z1, z2, z3} to x1 slants information

towards state L, whereas mapping {z1, z3} to x1 inverts the interpretation of z2 and

z3.

Illustration of Theorem 1. Consider the plausible forecast ρ̂(x) = 0.5 ∗ 1{x ∈
{x1, 1 − x1}} for x1 ∈ (0, .5). Then any updating rule with h(z) ∈ {x1, 1 − x1}
for all z ∈ Z satisfies no unexpected beliefs. Consider h(z1) = h(z2) = x1 and

h(z3) = h(z4) = 1−x1. Given that h(z) maps {z1, z2} to the same posterior and simi-

larly for {z3, z4}, the σ-algebra generated by h(z) is Fh(p) = {∅, {z1, z2}, {z3, z4},Z}.
From (6), h and ρ̂ have an essentially unique representation at p = 0.5 that satisfies

µ̂R({z1, z2}) = x1 and µ̂R({z3, z4}) = 1 − x1 in state R and µ̂L({z1, z2}) = 1 − x1

and µ̂L({z3, z4}) = x1 in state L. Applying Lemma 4, one such representation is

µ̂i(zk) =
(

µ(zk)
µ(z1)+µ(z2)

)
µ̂i({z1, z2}) for k = 1, 2 and µ̂i(zk) =

(
µ(zk)

µ(z3)+µ(z4)

)
µ̂i({z3, z4})

for k = 3, 4.

22To see that this model represents ρ̂(x), recall that zk induces posterior belief mR,k/(mR,k +

mL,k). This simplifies to posterior belief x1 following z1 and z2 and 1 − x1 following z3 and z4.

Therefore, it induces forecast ρ̂(x1) = µ̂({z1, z2}) = (mR,1 +mL,1)/2 + (mR,2 +mL,2)/2 = 0.5 and

ρ̂(1− x1) = µ̂({z3, z4}) = 0.5 by an analogous calculation, as desired.
23To motivate the notion of essential uniqueness (Definition 4), note that any α ∈ (0, 1) pins

down a model that represents ρ̂(x) with mR,1 = αx1, mR,2 = (1 − α)x1, mR,3 = α(1 − x1) and

mR,4 = (1− α)(1− x1) in state R, and similarly for state L substituting 1− x1 for x1. For each α,

the corresponding model induces the same updating rule. Therefore, all models in this class induce

the same forecast and updating rule, and are considered equivalent under Definition 4.
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Illustration of Proposition 1. Consider updating rule h(z1) = h(z2) = x1 and

h(z3) = h(z4) = 1 − x1 for some x1 ∈ (0, 1). The accurate forecast corresponds

to ρh(x1) = µ(z1) + µ(z2) and ρh(1 − x1) = µ(z3) + µ(z4), where µ is the correct

unconditional model. A sophisticated-PC representation of h exists if this forecast is

plausible, i.e., x1(µ(z1)+µ(z2))+(1−x1)(µ(z3)+µ(z4)) = 0.5. Note that this condition

depends on the true signal measure; it is satisfied if either an equal mass of signals

map to each posterior, µ(z1) + µ(z2) = µ(z3) + µ(z4) = 0.5, or the signal is perceived

to be uninformative, x1 = 0.5. To construct a sophisticated-PC representation of

h, suppose the true unconditional signal distribution is µ(z) = (0.2, 0.3, 0.3, 0.2).

From (7), the unique introspection-proof sophisticated-PC representation is µ̂1(z) =

(.4(1− x1), .6(1− x1), .6x1, .4x1) and µ̂2(z) = (.4x1, .6x1, .6(1− x1), .4(1− x1)).

Illustration of Proposition 2. Again consider updating rule h(z1) = h(z2) = x1

and h(z3) = h(z4) = 1 − x1 for some x1 ∈ (0, 1). Suppose the correct model induces

updating rule hB(z1) = hB(z2) = hB(z3) = x1 and hB(z4) = 1 − x1. Then ρB(x1) =

µ({z1, z2, z3}) and ρB(1 − x1) = µ(z4), where µ is the correct unconditional model.

Given that the updating rule h induces set of posteriors {x1, 1− x1}, which is equal

to the support of ρB, h and ρB satisfy no unexpected beliefs. Therefore, a naive-

PC representation of h exists. From (8), this representation is unique on Fh(0.5) =

{{z1, z2}, {z3, z4},Z} and satisfies µ̂i({z1, z2}) = µi({z1, z2, z3}) and µ̂i({z3, z4}) =

µi(z4) for ωi ∈ Ω.

Illustration of Proposition 3. Suppose the correct model induces updating rule

hB(z1) = 0.1, hB(z2) = 0.2, hB(z3) = 0.8, and hB(z4) = 0.9 and belief forecast

ρB = (0.1, 0.4, 0.4, 0.1) over posteriors (0.1, 0.2, 0.8, 0.9). Consider a prospectively

overprecise belief forecast ρ̂ = (0.4, 0.1, 0.1, 0.4) over posteriors (0.1, 0.2, 0.8, 0.9) that

places more weight on the extreme posteriors and less weight on the interior posteriors

relative to ρB. This forecast is plausible and satisfies no unexpected beliefs with

respect to hB. Therefore, a RC representation of ρ̂ exists. From (6), it is equal to

µ̂1 = (.72, .16, .04, .08) and µ̂2 = (.08, .04, .16, .72). Note this model is misspecified,

since from hB and ρB, the correctly specified model is µ1 = (.18, .64, .16, .02) and

µ2 = (.02, .16, .64, .18).
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C.2 Linear Under- and Overreaction

The following example illustrates the multiplicity of representations for the linear

under- and overreaction updating rule from Example 1 (Epstein et al. 2010) and

shows that it has a sophisticated-PC representation. A common updating rule for

underreaction models the posterior belief as a weighted average of the Bayesian pos-

terior and the prior,

h(z, p) = αhB(z; p) + (1− α)p

for α ∈ [0,∞) (such that h(z, p) is a probability for any z ∈ Z). We use Lemma 3 to

find misspecified models that represent this updating rule.

First consider a sophisticated-PC misspecified model, i.e., µ̂ = µ. We show that

such a model is pinned down by the true unconditional measure µ, the Bayesian

updating rule hB, and the bias parameter α, independent of the details of the in-

formation environment. When µ̂ = µ, µ̂ satisfies (11) as
∫
Z hB(z; p)i dµ̂(z; p) =∫

Z hB(z; p)i dµ(z; p) = pi by standard argument, and therefore,
∫
Z(αhB(z; p)i + (1−

α)pi) dµ̂(z; p) = pi. In this case, the subjective distribution in state ωi must be equal

to:
dµ̂i

dν
(z; p) =

[
α

pi
hB(z; p)i + (1− α)

]
dµ

dν
(z; p).

In this representation, the agent correctly anticipates her future beliefs but retrospec-

tively underreacts to the signal.

To construct an alternative representation, we need to put more structure on the

information environment. Consider a setting with |Ω| = 2, Z = [0, 1], a uniform

prior and true unconditional signal distribution, and |hB(z; p)1 − 1
2
| symmetric about

z = 1/2. Then the model that induces subjective unconditional pdf dµ̂(z; p) =

3/2−6(z−1/2)2 (in a slight abuse of notation, using dµ̂ to denote the pdf) also satisfies∫
Z hB(z; p)idµ̂(z; p) = 1/2, and therefore,

∫
Z(αhB(z; p)i+(1−α)/2) dµ̂(z; p) = 1/2.24

In this representation, the agent underestimates the frequency of extreme beliefs—she

exhibits prospective underprecision.

C.3 Partisan Bias (distort posterior)

This example shows that a common parameterization of partisan bias does not have

a sophisticated-PC representation when the prior is correctly specified but can when

24Recall that hB and α are such that this density is never negative.
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the prior is misspecified. It also has a naive-PC representation.

Consider binary state space Ω = {ω1, ω2} and updating rule h(z, p)2 = hB(z, p)
α
2

for α ∈ (0, 1) from Example 1. This updating rule exhibits ω2-partisan bias: after

any signal realization, the agent places higher probability on state ω2 than a cor-

rectly specified agent. Let ρh denote the accurate distribution over the posterior

belief that the state is ω2. Then
∫ 1

0
x dρh(x; p) =

∫
Z h(z, p)2 dµ(z; p) follows from a

change of variables and a property of the accurate forecast. But
∫
Z h(z, p)2 dµ(z; p) >∫

Z hB(z, p)2 dµ(z; p) = p2, where the equality follows from Bayes plausibility (i.e., hB

is plausible at p). Therefore, the accurate forecast cannot be plausible at p. This ar-

gument clearly applies more generally to any bias that systematically skews posterior

beliefs in one direction. Note that with a misspecified prior p̂ ̸= p, it is possible to

find a model in which the updating rule averages to the misspecified prior and the

Bayesian updating rule averages to the correct prior.

We need to place more structure on the information environment to show that

this updating rule has a naive-PC representation. Consider signal space Z = [0, 1], a

uniform prior, and for notational simplicity suppress the dependence of the models on

p. Suppose the true measures are µ2(z) = z2 and µ1(z) = 2z− z2 (in a slight abuse of

notation, in cdf form). This induces unconditional measure µ(z) = (µ1(z)+µ2(z))/2 =

z, updating rule hB(z, 0.5)2 =
1

1+dµ1/µ2(z)
= z, and belief forecast ρB(x; 0.5) = Pr(z :

hB(z, 0.5)2 ≤ x) = µ(x) = x (in cdf form over the posterior belief that the state

is ω2). The accurate forecast is ρh(x; 0.5) = Pr(z : h(z, 0.5) ≤ x) = Pr(z : z ≤
x1/α) = µ(x1/α) = x1/α. Since ρh and ρB have the same support, h and ρB satisfy

no unexpected beliefs. Therefore, a naive-PC representation exists. It is unique since

each signal maps to a unique posterior, and from (8), is equal to µ̂i(z) = µi(z
α) for

ωi ∈ Ω.

C.4 Beta Distribution Belief Forecasts

Suppose Ω = {L,R}. Let p denote the prior probability of state R, Z = [0, 1], F
be the Borel σ-algebra, and the correctly specified model be a set of full support

distributions over Z. Consider the following parametric family of forecasts, where,

in a slight abuse of notation, dρ̂θ denotes the pdf of the forecast over the posterior x
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that the state is R:

dρ̂θ(x; p) =
xθ−1(1− x)θ(1−p)/p−1

Γ (θ)Γ (θ(1− p)/p)/Γ (θ/p)
(15)

for θ > 0.25 This corresponds to the family of beta distributions with mean p.

For any θ, this forecast is plausible since
∫
∆(Ω)

x dρ̂θ(x; p) = p. To illustrate the

multiplicity of representations, suppose θ = 1 and p = 0.5, so that dρ̂1(x; 0.5) = 1

is the uniform forecast. For any γ > 0, the model with pdfs dµ̂R(z) = 2γz2γ−1 and

dµ̂L(z) = 2γzγ−1−dµ̂R(z) represents ρ̂1(x, 0.5).
26 From Bayes rule, this model induces

updating rule h(z, 0.5) = dµ̂R(z)/(dµ̂R(z) + dµ̂L(z)) = zγ that the state is R. Each

value of γ captures a different level of retrospective bias: as γ decreases, the updating

rule slants the interpretation of a given signal realization more in favor of state R.

D Additional Analysis and Discussion

D.1 Misspecified Prior

Let p̂ ≡ (p̂1, ..., p̂N) ∈ ∆(Ω) denote the agent’s subjective prior and assume it has

full support. A misspecified prior corresponds to p̂ ̸= p. Let µi(·; p̂) ∈ ∆(Z) de-

note the true signal distribution conditional on state ωi at subjective prior p̂, where,

given the motivation that action choices can influence the signal distribution, these

true measures depend on the subjective prior (which guides ex-ante actions). Let

µ(·; p̂, p) ≡
∑N

i=1 piµi(·; p̂) denote the true unconditional signal distribution at p̂

and true prior p, where the average is taken with respect to the objective prior

p. The accurate belief forecast depends on both the objective and subjective pri-

ors since it depends on µ(·; p̂, p): ρh(X; p̂, p) = µ({z : h(z, p̂) ∈ X}; p̂, p), while

hB(z, p̂) depends on the subjective prior. The support of the accurate forecast at p̂,

X (h, p̂) ≡ supp ρh(·; p̂, p), is independent of the objective prior by the mutual abso-

lute continuity of µi(·; p̂) and µj(·; p̂).27 The misspecified prior is a primitive of either

25Note that ϕ(z) = (z, 1−z) satisfies the mutually absolutely continuous condition in Definition 2,

and therefore, this is indeed a valid belief forecast.
26To see this, note that the unconditional signal cdf is µ̂(z; 0.5) = zγ . Given x = zγ , this induces

forecast cdf µ̂(x1/γ ; 0.5) = x which is the uniform forecast.
27From µ(·; p̂, p) ≡

∑N
i=1 piµi(·; p̂) and mutual absolute continuity, µ(·; p̂, p) has the same support

as each µi(·; p̂) for any p ∈ ∆(Ω). By (2), ρh(·; p̂, p) is defined with respect to µ(·; p̂, p), and therefore,

has the same support as any measure over posteriors defined with respect to µi(·; p̂). Therefore, given
that µi(·; p̂) is independent of p, so is X (h, p̂).
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approach—along with the misspecified signal distributions µ̂i(·; p̂) or the updating

rule and forecast h(z, p̂) and ρ̂(x; p̂). There is a direct analogue of Theorem 1, sub-

stituting the misspecified prior for the correct prior. In particular, the forecast must

be plausible with respect to the misspecified prior and the misspecified model is as in

(6) given the misspecified prior.

D.2 Time Consistency

In this section we show how a prior-dependent representation can lead to time in-

consistency in a dynamic version of our framework. Suppose state ω is drawn at the

beginning of the game. An agent observes a sequence of conditionally i.i.d. signals

drawn from µi when the realized state is ωi. The agent uses an updating rule and

a belief forecast that have a prior-dependent representation with model (µ̂i(·; p))ωi∈Ω

at prior p. When the agent has belief p, she believes that she will use the updating

rule and forecast induced by model (µ̂i(·; p))ωi∈Ω in all future periods. This leads to

dynamically inconsistent behavior, as the agent’s model of how to interpret informa-

tion changes with her belief but she does not anticipate this. Therefore, the agent

may wish to deviate from her ex-ante action strategy after observing the signal and

updating her belief, and hence, her model.

D.3 Relaxing Admissibility

The admissible assumption requires that the misspecified model and the correctly

specified model are mutually absolutely continuous. This in turn identifies the sup-

port of the signal distributions in any model that represents a belief forecast and an

updating rule. In Theorem 1, the no unexpected beliefs condition ensures that the

updating rule and belief forecast are consistent in terms of which beliefs they induce

on this support. We could relax this assumption and provide a similar result without

specifying a correctly specified model. Instead of using the correctly specified model

to determine the support of the signal distributions, we could use the updating rule

and forecast directly. In this case, the condition for a representation to exist can

be weakened: there only needs to exist a set of signals on which the updating rule

induces the beliefs in the support of the forecast, instead of a specific set pinned down

by the correctly specified model.28

28Formally, no unexpected beliefs can be relaxed to “ρ̂ is absolutely continuous with respect to

ν ◦ h−1”. A variation of Theorem 1 then holds under the appropriate reformulation of Definition 3.
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D.4 Prior-Independent Representations

The following definition formalizes the notion of a prior-independent representation.

Definition 11 (Prior-Independent Representation). An updating rule h(z, p) has

a prior-independent representation if there exists a subjective model {µ̂i(·)}ωi∈Ω ∈
∆(Z)N that is admissible at all p ∈ ∆(Ω) and represents h(z, p) at all p ∈ ∆(Ω).

This is an appealing property for biases in which an agent is inherently Bayesian but

has a mistaken understanding of the signal that does not vary with her prior. For

example, biases such as overreaction and optimism are not intrinsically linked to the

agent’s prior. In contrast, the property is conceptually at odds with biases in which

the agent’s prior influences her perception of information. For example, the prior is a

key component of confirmation bias, and therefore, any representation of an updating

rule exhibiting confirmation bias naturally varies with it.

The following proposition presents a necessary and sufficient condition for an

updating rule to have a prior-independent representation. In particular, such a rep-

resentation exists if and only if it is possible to factor the prior likelihood ratio pj/pi

out of the posterior likelihood ratio h(z, p)j/h(z, p)i for any pair of states.

Proposition 5 (Prior-Independent Representation). Fix an updating rule h(z, p) that

is Bayes-feasible at all p ∈ ∆(Ω). Then h(z, p) has a prior-independent representation

if and only if
pih(z,p)j
pjh(z,p)i

is independent of p for all p ∈ ∆(Ω), z ∈ Z, and ωi, ωj ∈ Ω.

When this holds, then any model that represents h(z, p) at prior p′ also represents

h(z, p) at all other priors p′′ ∈ ∆(Ω).

Proof. (If:) Fix an interior prior p ∈ ∆(Ω). By Lemma 1, there exists a misspecified

model {µ̂i}ωi∈Ω that represents h(z, p) at p. Therefore, by Bayes rule, for µ-almost

all z
h(z, p)i
h(z, p)j

=
pi

dµ̂i

dν
(z)

pj
dµ̂j

dν
(z)

.

In this case, the forecast determines the set of beliefs that must be “rationalized”, whereas in

Theorem 1, the forecast and updating rule must be rationalized over the set of signals that can

actually occur.
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So the condition from Proposition 5 implies that

h(z, p′)i
h(z, p′)j

=
p′i

dµ̂i

dν
(z)

p′j
dµ̂j

dν
(z)

which is exactly the condition h(z, p′) must satisfy to be induced by {µ̂i}ωi∈Ω at p′.

(Only If:) Suppose that h(z, p) admits a prior independent representation {µ̂i}ωi∈Ω.

By Lemma 1, for every p, h(z, p) ∈ S(h(·, p)). Moreover, by Bayes rule

h(z, p)i
h(z, p)j

=
pi

dµ̂i

dν
(z)

pj
dµ̂j

dν
(z)

,

so for any p,p′

pjh(z, p)i
pih(z, p)j

=
p′jh(z, p

′)i

p′ih(z, p
′)j

.

□

When this condition holds, then any model that represents an updating rule at some

prior p can form a prior-independent representation.29

Many well-known parameterizations of common biases have prior-independent

representations. As shown in the examples below, this includes the geometric un-

der/overreaction and partisan bias (distort signal likelihood) updating rules in Ex-

ample 1. Intuitively, any bias that distorts the true signal likelihoods dµi

dν
/
∑

ωj∈Ω
dµj

dν

independently of the prior will have a prior-independent representation.

This result also establishes when an updating rule does not have a prior-independent

representation. Many biases naturally vary with the prior, and updating rules that

require a prior-dependent representation are essential for capturing the essence of

these biases. For example, the direction of confirmation bias and the magnitude of

base rate neglect depend on the prior; the versions of these updating rules in Exam-

ple 1 require prior-dependent representations. The property is also at odds with some

biases in which an agent is non-Bayesian. As shown in the examples below, the linear

parameterization of over/underreaction in Example 1 only admits prior-dependent

29Whenever the updating rule has at least two representations at p, then trivially a prior-

dependent representation also exists. To see this, consider two models that represent h at prior

p and suppose both models also represent h at all priors. To form a prior-dependent representation,

select one model to represent h at p ∈ (0, 0.5] and the other model to represent h at p ∈ [0.5, 1).
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representations. Even though the bias parameter is independent of the prior, the

additivity of the non-Bayesian updating rule differs structurally from the multiplica-

tive form of Bayes rule and it can only be represented in a framework that imposes

Bayesian updating by allowing the model to vary with the prior. Additionally, distort-

ing the Bayesian posterior can link the magnitude of the bias to the prior. As shown

in the examples below, the distort posterior version of partisan bias from Example 1

does not have a prior-independent representation. While prior-independent represen-

tations lend themselves to more straightforward dynamic analysis, prior-dependent

representations are still tractable. For example, recent work in the misspecified learn-

ing literature establishes general convergence results when the model varies with the

prior (Bohren and Hauser 2021; Frick et al. 2023).

Even when a prior-independent representation exists for a given updating rule,

the unique model that represents a forecast-updating rule pair may not be prior-

independent due to the dependence of the forecast on the prior. We next show that

when an updating rule has a prior-independent representation, then pairing it with

the naive-PC forecast results in a prior-independent representation.

Proposition 6 (Naive-PC and Prior-Independence). Fix an updating rule h(z, p) that

has a prior-independent representation and a naive-PC representation at some prior

p ∈ ∆(Ω). Then the naive-PC representation is prior-independent.

This establishes a desirable property of the naive-PC model.

Proof. Fix a prior p where there exists a {µ̂i}ωi∈Ω that is an essentially unique repre-

sentation of h(z, p) and ρB at prior p. It follows from Proposition 5 that this induces

h(z, p) at every prior, as for any p′ the likelihood ratio of the updating rule must be

the likelihood ratio induced by Bayes rule with respect to the representation,

p′j
p′i

h(z, p′)i
h(z, p′)j

=
pj
pi

h(z, p)i
h(z, p)j

=
dµ̂i

dν
(z)

dµ̂j

dν
(z)

.

By construction, this representation induces ρB at p′, as for any Borel set X,

ρB(X; p′) =
N∑
i=1

p′iµi({z : hB(z) ∈ X}) =
N∑
i=1

p′iµ̂i(h
−1(X)).

□
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We already know that, by definition, the forecast induced by the naive-PC model

is the same as the forecast induced by the correctly specified model in a one-period

setting. In a dynamic setting with a sequence of signals, the forecast induced by the

naive-PC model paired with an updating rule that has a prior-independent represen-

tation satisfies a stronger consistency property. While ρ̂(x; p) specifies the period-t

forecast of the period-(t+1) posterior belief, in a dynamic setting, one can also define

the period-t forecast of the period-(t+k) posterior belief for any k > 1. The naive-PC

representation of an updating rule with a prior-independent representation induces

a period-t forecast over period-(t + k) posterior beliefs that is equal to the period-t

forecast of period-(t+ k) posterior beliefs in the correctly specified model.

Examples. We show that the updating rules modeling geometric overreaction and

partisan bias (distort signal likelihood) in Example 1 have a prior-independent repre-

sentation, while those modeling linear under/overreaction and partisan bias (distort

posterior) do not.

Geometric overreaction. Suppose the correctly specified model does not depend on

the prior. The geometric over- and underreaction updating rule from Example 1

corresponds to
h(z, p)2
h(z, p)1

=
p2
p1

(
z

1− z

)α

.

It is straightforward to see that it is possible to factor out the prior from this ex-

pression, and therefore, it satisfies the condition in Proposition 5 and has a prior-

independent representation.

Partisan Bias (distort signal likelihood). Consider the parameterization of partisan

bias from Example 1 that distorts the signal likelihood:

h(z, p)2
h(z, p)1

=
p2
p1

(
zα

1− zα

)
.

Again, it is straightforward to see that it is possible to factor out the prior from this

updating rule, and therefore, it has a prior-independent representation.

Linear overreaction. The linear over- and underreaction updating rule from Exam-
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ple 1 does not satisfy the condition in Proposition 5, as

p1
p2

h(z, p)2
h(z, p)1

=
p1
p2

αhB(z, p)2 + (1− α)p2
αhB(z, p)1 + (1− α)p1

clearly depends on the prior since hB(z, p)2 ≡ p2z
p2z+p1(1−z)

.

Partisan Bias (distort posterior). Similarly, in the model of partisan bias in Example 1

that distorts the posterior,

p1
p2

h(z, p)2
h(z, p)1

=
p1
p2

(
hB(z, p)2
hB(z, p)1

)α

=

(
p1
p2

)1−α(
z

1− z

)α

,

where the second equality follows from hB(z, p)2 ≡ p2z
p2z+p1(1−z)

. This expression also

clearly depends on the prior.
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