
                                                                                                               
The Ronald O. Perelman Center for Political 
Science and Economics (PCPSE)                                                            
133 South 36th Street                                                                                                                                               
Philadelphia, PA 19104-6297 

pier@econ.upenn.edu                                            
http://economics.sas.upenn.edu/pier 

 
 

PIER Working Paper   
24-028 

 
 

Machine Learning and the  
Yield Curve: Tree-Based 

Macroeconomic Regime Switching 
 
             

                             
 

              SIYU BIE           FRANCIS X. DIEBOLD  
City University of Hong Kong               University of Pennsylvania            

                        
 

           JINGYU HE                      JUNYE LI  
City University of Hong Kong                       Fudan University            

 
 
 
 
 

October 8, 2024 

mailto:pier@econ.upenn.edu
http://economics.sas.upenn.edu/pier


Machine Learning and the Yield Curve:

Tree-Based Macroeconomic Regime Switching

Siyu Bie
City University of Hong Kong

Jingyu He
City University of Hong Kong

Francis X. Diebold
University of Pennsylvania

Junye Li
Fudan University

First Draft: July 2024
This Draft: October 8, 2024

Abstract: We explore tree-based macroeconomic regime-switching in the context of the
dynamic Nelson-Siegel (DNS) yield-curve model. In particular, we customize the tree-
growing algorithm to partition macroeconomic variables based on the DNS model’s
marginal likelihood, thereby identifying regime-shifting patterns in the yield curve.
Compared to traditional Markov-switching models, our model offers clear economic
interpretation via macroeconomic linkages and ensures computational simplicity. In
an empirical application to U.S. Treasury bond yields, we find (1) important yield
curve regime switching, and (2) evidence that macroeconomic variables have predic-
tive power for the yield curve when the short rate is high, but not in other regimes,
thereby refining the notion of yield curve “macro-spanning”.

Acknowledgments: We gratefully acknowledge helpful input from Sid Chib. All re-
maining errors are ours alone.

Keywords: Decision Tree; Macro-Finance; Term Structure; Regime Switching; Dy-
namic Nelson-Siegel Model; Bayesian Estimation

JEL Classification: C11, E43, G12

Contact Information: siyubie2-c@my.cityu.edu.hk (Bie); fdiebold@sas.upenn.edu (Diebold);
jingyuhe@cityu.edu.hk (He); li junye@fudan.edu.cn (Li)



1 Introduction

Yield curve modeling plays crucial roles in asset pricing, risk management, and

monetary policy, and the Nelson-Siegel model (Nelson and Siegel, 1987) has long been

popular among both researchers and practitioners for its parsimonious yield-curve

representation. Diebold and Li (2006) propose a dynamic Nelson-Siegel (DNS) model,

allowing for three unobserved pricing factors (level, slope, and curvature) that evolve

smoothly.1 In reality, however, the yield curve does not always move smoothly; its un-

derlying factors can exhibit abrupt shifts or structural breaks, particularly in response

to macroeconomic (e.g., business cycle) conditions. This highlights the importance

of possible yield curve regime switching, and the importance of understanding how

yield-curve regimes relate to macroeconomic conditions.

Economists have studied yield curve regime switching (e.g., Dai et al., 2007;

Hevia et al., 2015), typically invoking Markov-switching behavior à la Hamilton (1989)

and Kim (1994).2 However, such models often lack clear economic interpretation,

because their regimes are latent, which makes it difficult to understand what the

“regimes” indicate. Although several studies interpret regimes in terms of macroe-

conomic conditions, such as real activity or asset market volatility (e.g., Hamilton,

1989; Bansal and Zhou, 2002), those interpretations have a strong flavor of Monday-

morning quarterbacking. An economically interpretable methodology for detecting

regime changes in the macroeconomy and relating them to the yield curve remains

elusive and needs to be developed.

In this paper we fill the void by developing a novel DNS extension that incor-

porates regime switching, which we call macro-instrumented DNS regimes. We make

two related contributions. First, we allow the DNS factors to switch dynamics across

macroeconomic regimes, which we detect using a customized tree structure based on

the values of an observable set of macroeconomic variables. Using Bayesian meth-

ods, we choose optimal split candidates based on the marginal DNS likelihood, which

1See Diebold and Rudebusch (2013) for a full exposition with variations and extensions.
2See also Gray (1996), Ang and Bekaert (2002), Bansal and Zhou (2002), and Xiang and Zhu (2013).



enhances regime interpretability and provides a macroeconomically meaningful un-

derstanding of yield curve dynamics.3

Second, we address the long-standing issue of whether the yield curve spans

the macroeconomy (“macro-spanning”), meaning that all current and past macroe-

conomic information is contained in the current yield curve. Such macro-spanning

implies, among other things, that macroeconomic variables have no predictive con-

tent for the yield curve. The validity of macro-spanning, however, is far from uncon-

tentious. On the one hand, macro-spanning is a key implication of the hugely-popular

class of affine macro-finance models, as reviewed for example in Bauer and Rudebusch

(2017). In those models,

... the short-term interest rate is represented as an affine function of risk fac-
tors ... that include macroeconomic variables. Accordingly, the assumption
of the absence of arbitrage and the usual form of the stochastic discount
factor imply that model-implied yields are also affine in these risk factors.
This linear mapping from macro factors to yields can ... be inverted to
express the macro factors as a linear combination of yields. Hence, these
models imply ... “spanning”...,

(Bauer and Rudebusch, 2017)

and it has found some empirical support, as in Bauer and Rudebusch (2017). On the

other hand, macro-spanning is rejected by several other studies, ranging from the early

work of Ang and Piazzesi (2003) through more recent work like Joslin et al. (2014) and

Bekaert et al. (2021).4 Those studies, however, are based on linear models, whereas

we investigate macro-spanning through the more nuanced nonlinear lens of macro-

instrumented regime switching, which allows for the possibility that macro-spanning

might hold in some macroeconomic regimes but not in others.

We proceed as follows. In section 2 we review the DNS model and introduce our

tree-based macro-instrumented regime-detection framework. In section 3 we present

empirical results for U.S. treasury bonds. We conclude in section 4, and we provide

supplementary derivations and empirical results in a series of appendices.
3Hence we make contact with two recent literatures – one that uses goal-orientated tree-based clus-

tering with economic targets (e.g., Cong et al., 2022, 2023; Feng et al., 2024; Patton and Simsek, 2023),
and one that implements Bayesian analysis of regression tree models (e.g., Chipman et al., 2010; He
et al., 2019; He and Hahn, 2023; Krantsevich et al., 2023).

4See also Dewachter and Lyrio (2006), Diebold et al. (2006), Ludvigson and Ng (2009), Duffee (2011),
Chernov and Mueller (2012), and Coroneo et al. (2016).
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2 Dynamic Nelson-Siegel with Macro-Instrumented Regime Switch-

ing

In this section we introduce our modeling framework and estimation strategy,

and we provide simulations documenting good performance.

2.1 The State-Space Model

We first review the dynamic Nelson-Siegel (DNS) model (Diebold and Li, 2006)

and its extension to a macro-finance yield-curve model (Diebold, Rudebusch, and

Aruoba, 2006). DNS extends the original static Nelson-Siegel model (Nelson and

Siegel, 1987) by writing the time-t maturity-τ yield yt(τ) as:

yt(τ) = Lt + St

(
1− e−λτ

λτ

)
+ Ct

(
1− e−λτ

λτ
− e−λτ

)
+ εt(τ), (1)

where λ controls the decay rate of the yield curve; the three parameters Lt, St, Ct are

allowed to vary over time and are interpreted as level, slope, and curvature factors,

respectively; εt(τ) is a stochastic shock capturing pricing error; and t = 1, ..., T . The

full measurement equation relating the N observed yields to the three latent factors is

then 

yt(τ1)

yt(τ2)

· · ·

yt(τN)


=



1 1−e−λτ1

λτ1
1−e−λτ1

λτ1
− e−λτ1

1 1−e−λτ2

λτ2
1−e−λτ2

λτ2
− e−λτ2

· · ·

1 1−e−λτN

λτN

1−e−λτN

λτN
− e−λτN




Lt

St

Ct

+



εt(τ1)

εt(τ2)

· · ·

εt(τN)


.

Finally, the DNS model assumes VAR(1) transition dynamics for the state vector (Lt, St, Ct)
′,

thus forming a well-defined state-space system.

We now allow for regime switching in the latent factors. Specifically, assume there

are G regimes in total, and let zt = 1, 2, · · · , G indicate the regime label at time period

t. We treat the number of regimes G and the regime labels zt as exogenous for the

moment, and we will discuss estimation (learning) subsequently. Conditional on all
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regime labels, we can write the model as

yt = Λµzt +ΛFt + εt,

Ft = Azt−1Ft−1 + ηt,

(2)

where ft = (Lt, St, Ct)
T are the factors, Ft = ft − µzt are the demeaned factors, and

yt = (yt(τ1), · · · , yt(τN))T are the N yields at the t-th period. In particular, we assume

the transition equation may be affected by regime changes such that the mean of the

factors, µzt−1
, and the VAR evolution matrix, Azt−1 , depend on the regime label, zt−1,

of the previous time period, which is determined conditional on the information set

up to period t − 1 only. The mean vector, µzt−1
, and the evolution matrix, Azt−1 , cor-

respond to all G regimes. Furthermore, we assume the measurement disturbances

and the transition noises follow the standard assumptions of independence and joint

normality, εt

ηt

 ∼ N

0,

Q 0

0 Hzt


 , (3)

where the covariance of the factor innovation, Hzt , depends on the regime of the same

period and is a dense matrix. We assume that the covariance of the measurement

errors is diagonal, Q = diag(σ2
1, · · · , σ2

N), which means that the residuals of the yields

at different maturities are uncorrelated.

The above model with three latent yield factors can be extended to a macro-

finance version that allows exploration of the relationship between macroeconomic

and yield factors. Following Diebold et al. (2006), we examine three major macroe-

conomic variables: manufacturing capacity utilization (CU t), the federal funds rate

(FFRt), and annual price inflation (INFLt). We set mt = (CU t,FFRt, INFLt)
T , and

augment the state-space model in Equation (2) with these three macroeconomic vari-

ables.

Let Mt be the demeaned macroeconomic factors, Mt = mt − µm
zt , and FFt =

(Ft,Mt)
T , and assume that both the yield and macroeconomic factors FFt follow
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VAR(1) processes. Then the augmented state-space model takes the form of

yt

mt

 =

Λ 0

0 I3

FFt +

Λ 0

0 I3

µzt + εt,

FFt = Azt−1FFt−1 + ηt,

(4)

where Azt−1 =

AFF
zt−1

AFM
zt−1

AMF
zt−1

AMM
zt−1

, µzt = (µF
zt ,µ

m
zt)

T , εt = (εyt , ε
m
t )

T , ηt = (ηy
t ,η

m
t )

T ,

and the measurement and transition shocks are assumed to have the same normal

distribution as in Equation (3).

2.2 Bayesian Estimation

We proceed in two steps. First we assume exogenously-known regimes, and then

we consider endogenous regime determination (learning).

2.2.1 Exogenously Known Regimes

We take a full Bayesian approach to estimate the parameters of the model using

the Kalman filter/smoother and Markov chain Monte Carlo (MCMC). The yields-only

model and the yields-macro model will be used to represent models (2) and (4), respec-

tively, throughout the paper. Yields-only signifies a model that is exclusively based on

yields, and yields-macro refers to a model that incorporates both yields and macroeco-

nomic variables. When the number of regimes is determined, say three, we also refer

to the two models as the three-regime yields-only DNS model and the three-regime

yields-macro DNS model, respectively.

Prior Specification. We use standard conjugate priors for all parameters. Neverthe-

less, here we highlight that we assume the Bayesian spike-and-slab prior (George and

McCulloch, 1993) on the off-diagonal elements in Ag for a regime g. Let agj,k denote the
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(j, k)-th element of Ag, in which case the prior is

π(agjj) ∼ N(0, ξ21), for diagonal elements

π(agjk | γ
g
jk) ∼ (1− γg

jk)N(0, ξ20) + γg
jkN(0, ξ21), for j ̸= k

γg
jk ∼ Bernoulli(w),

where we choose the hyperparameter ω equal to 0.5, suggesting that we have agnostic

beliefs about off-diagonal elements in Ag.

The diagonal elements of Ag capture the autocorrelations of the factors, for which

we simply use the conjugate normal prior. In contrast, for off-diagonal elements we

use the spike-and-slab prior, which is a popular prior for variable selection, as it

shrinks weak signals towards zero while maintaining strong signals at values close

to OLS estimates. Notice that in the yields-macro model, for each regime g, the ma-

trix Ag captures the dynamics of the latent yield and macroeconomic factors. Using

the spike-and-slab prior on the off-diagonal elements helps with the sparse matrix es-

timation and investigating the macro-spanning issue under various macroeconomic

regimes.

For the covariance matrices Q and Hg, we use the standard inverse Wishart prior.

Because Q is assumed to be diagonal, which suggests the yields with different matu-

rities are independent, the inverse Wishart prior degenerates to the inverse Gamma

prior for each diagonal element σ2
i . For the factor mean µg we use a Gaussian prior,

and for the decay parameter λ we use a uniform prior. Thus we write

Hg ∼ IW (m0,M0), µg ∼ N (µ,B),

σ2
i ∼ IG(α, β), λ ∼ Unif(a, b).

Finally, departing from Diebold and Li (2006) where λ is calibrated at a fixed con-

stant (0.0609), we allow λ to be learned from the data and updated by a random-walk

Metropolis-Hastings step. See Appendix A for details of all prior specifications and

the Gibbs sampler for posterior inference.
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Marginal Likelihood. We now discuss the marginal likelihood of the yields-macro

model (4); the marginal likelihood of the yields-only model (2) is similar and is sub-

sumed by the yields-macro model. Using the marginal likelihood is a standard Bayesian

approach for model comparison and selection. The primary advantage is that the

marginal likelihood integrates out unknown parameters a priori, making it solely a

function of the data. This approach contrasts to the plug-in parameter estimation (such

as MLE), which does not account for the estimation uncertainty and may lead to inac-

curate model comparisons when the parameter estimates are noisy.

Let Θ =
(
Λ,Ft, {Ag}Gg=1, {µg}Gg=1, {Hg}Gg=1,Q

)
denote all parameters and latent

factors in the model, and let L(yt,mt, zt | Θ) denote the likelihood of the model in

Equation (4). The latent factors Ft are unknown parameters that need to be estimated,

and there can be as many as 1,800 for 600 months and three latent factors. By simply

plugging in the MLE point estimates, the accumulated estimation error can be severe

for the likelihood calculation. Thus, by first integrating out the latent factors Ft, we

obtain a partial marginal likelihood for one time period yield yt, macroeconomic vari-

ables mt, and indicator of regimes zt as follows:

L(yt,mt,zt | Λ, {Ag}Gg=1, {µg}Gg=1, {Hg}Gg=1,Q) =

∫
L(yt,mt, zt | Θ)dFt

= N
(
ΛFt|t,Ft+1 +Λµzt ,ΛPt|t,Ft+1Λ

T +Q
)
,

which is a normal density with detailed forms of the mean and covariance matrix pro-

vided in Appendix A. Furthermore, the full partial marginal likelihood for all periods

Y = {yt}Tt=1, M = {mt}Tt=1 and Z = {zt}Tt=1 is

L(Y,M,Z | Λ, {Ag}Gg=1, {µg}Gg=1, {Hg}Gg=1,Q)

=
T∏
t=1

L(yt,mt, zt | Λ, {Ag}Gg=1, {µg}Gg=1, {Hg}Gg=1,Q).
(5)

Except latent factors Ft, integrating all other parameters of Equation (5) further yields,

L(Y,M,Z) =

∫
L(Y,M,Z | Λ, {Ag}Gg=1, {µg}Gg=1, {Hg}Gg=1,Q)dΛdAgdµgdHgdQ, (6)
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which lacks a closed-form expression. To tackle this problem, we draw posterior sam-

ples using the Gibbs sampler and plug each pair of posterior draws into Equation (6)

to evaluate the full marginal likelihood, and then we average across posterior samples.

This effectively integrates parameters out numerically.

We now introduce our macro-instrumented regime-switching model, integrat-

ing it into the Bayesian estimation framework for the yields-macro model discussed

above.

2.2.2 Endogenously Estimated Regimes (Learning)

Thus far, the indicators of regimes zt ∈ {1, 2, · · · , G} and the total number of

regimes G are assumed known. However, they should be learned from data jointly

with all model parameters. In this section we present a model-based and macro-

instrumented clustering approach to detect regimes. Our approach is model-based

since the clusters are chosen according to valuations of the marginal likelihood of the

model in Equation (4); it is macro-instrumented since all clusters are defined explicitly

according to values of a set of macroeconomic variables.

The Classification and Regression Tree (CART) of Breiman et al. (1984) is one of the

most successful machine learning non-parametric regression models for prediction.

CART sequentially partitions data into multiple leaf nodes according to decision rules,

which use one state variable at a time and compare it with a threshold. It then fits

a constant to each leaf node for local prediction. Essentially, the CART fits a local

constant step function to approximate any curve.

We borrow this divide-and-conquer strategy from CART. Similarly, we partition

the data based on the value of macroeconomic variables to detect regimes. However,

a significant distinction lies in our approach’s focus on fitting the yields-macro model

in Equation (4), where the choice of splitting values is determined by model fitness,

specifically, the marginal likelihood of the model. Therefore, we interpret the decision

tree more from the perspective of partitioning and identifying regimes rather than

merely as a tool for generating step functions for prediction.

In Figure 1 we present a simple demonstration of decision tree structure consist-
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Figure 1: An Illustrative Decision Tree

N1 : UNRATE t < 0.7

N2 : OILPRICE t < 0.3 P1

P2 P3

Yes No

Yes No

Notes: We illustrate a decision tree with two splits and three leaf nodes, creating three regimes based
on macroeconomic variables, UNRATE and OILPRICE , at thresholds of 0.7 and 0.3, respectively.

ing of two decision rules based on macroeconomic variables UNRATE t < 0.7 and

OILPRICE t < 0.3, representing the unemployment rate and crude oil price at thresh-

olds of 0.7 and 0.3, respectively. The top node N1 is named the root node, which

denotes all time periods. Two split points partition the root node into three regimes,

denoted {P1, P2, P3}. They are named as leaf nodes in the decision tree structure since

they do not have any further splits. For instance, P3 denotes regimes when the un-

employment rate is less than 70% of the historical quantile and the oil price is higher

than 30% of the historical quantile, and all the other regimes are interpreted similarly.

For each time period t, starting from the top node of the decision tree, we compare

the values of a set of macroeconomic variables at time t with all decision rules and

eventually navigate to one and only one leaf node. The corresponding regime label zt

is simply the index of that leaf node.

Estimating the macro-instrumented regime-switching DNS model involves choos-

ing the optimal splitting variables and thresholds from all candidates, along with es-

timating all parameters of the model in Equation (4). Specifically, when determining

the optimal splitting variables, we evaluate the marginal likelihood, as discussed in

the previous section, where all other model parameters are integrated out a priori.

Next, we illustrate the splitting algorithm step by step. Before the first split, the

root node itself is a leaf node. This means that all time periods are homogeneous, and

only one regime encompasses all periods, i.e., zt = 1 for all t = 1, · · · , T . Then, we

9



Figure 2: Candidates of the First Decision-Tree Split

N1 : UNRATE t < 0.7

P1 P2

Yes No

Notes: To determine the optimal split point, we evaluate many candidates (e.g., unemployment rate
UNRATE t < 0.7).

evaluate whether a split candidate is effective in partitioning the root, as illustrated

in Figure 2. We need to define a measurement or split criterion to assess whether this

split candidate can capture the regime pattern of the yield curve.

Suppose one split candidate based on unemployment rate Ci : UNRATE t < 0.7

partitions the data to two disjoint potential regimes P1 and P2, thus the regime indi-

cators zt are updated to reflect two regimes, zCit = 1 if UNRATE t < 0.7 and zCit = 2

if UNRATE t ≥ 0.7. The new set of regime indicators are denoted as ZCi = {zCit }Tt=1

where the superscript emphasizes its dependence on specific split candidate Ci. The

joint marginal likelihood is to evaluate Equation (6) with the new regime indicators,

L(Ci : UNRATE t < 0.7) = L(Y,M,ZCi). (7)

We advocate using the marginal likelihood because it integrates unknown pa-

rameters a priori, accounting for parameter estimation uncertainty when determining

regimes. While the yields Y and the macroeconomic variables M are fixed, the dif-

ferent split candidates create various regime partitions, yielding different regime in-

dicators ZCi and eventually leading to different evaluations of the split criterion in

Equation (7). We loop over all potential split macroeconomic variables and thresholds

and pick the one with the highest joint marginal likelihood as the first split point.

Once the first split is determined, the second split proceeds similarly. Figure 3

illustrates two potential ways to split since two leaf nodes are created after the first

step. The second split can happen at either leaf node created by the first split, and
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Figure 3: Candidates of the Second Decision-Tree Split

N1 : UNRATE t < 0.7

N2 : OILPRICE t < 0.3 P1

P2 P3

Yes No

Yes No

(a) Splitting node N2 at OILPRICE t < 0.3.

N1 : UNRATE t < 0.7

P1 N3 : DTB3 < 0.3

P2 P3

Yes No

Yes No

(b) Splitting node N3 at DTB3 < 0.3.

Notes: The left and right panels (a) and (b) illustrate two potential candidates for the second split, where
one of the nodes splits. Ultimately three leaf nodes (regimes) are available.

each has multiple potential macroeconomic variables and thresholds. Nevertheless,

a candidate Ci will create one more regime and end up with three. Let ZCi denote

the new regime indicators following the candidate tree structure with three regimes.

Thus, the split criterion is defined as L(Y,M,ZCi) again, which varies with candidates

since the indicators change while the yield and macro factors are fixed. We pick the

one with the highest marginal likelihood.

All subsequent splits proceed similarly until some pre-specified stopping condi-

tions are met. A tree can continue to grow with more splits, but a complex tree with

many leaf nodes may suffer from poor generalizability and overfitting. Thus, the in-

troduction of stopping rules is essential, such as the maximum depth, the maximum

number of splits or leaf nodes, and the minimal number of observations in a leaf. If

the tree reaches a pre-specified condition, the splitting process stops. In our setting,

we restrict the number of regimes to be no more than 3, consistent with the existing

literature (see, e.g., Xiang and Zhu, 2013). In addition, to ensure sufficient data for pa-

rameter estimation, we set the minimal number of months in a regime to 24 (2 years).

Lastly, detecting regimes for the yields-only model proceeds similarly, with the only

difference being using the yields-only model marginal likelihood as the split criterion.

Algorithm 1 summarizes the pseudocode for searching the macro-instrumented

11



Algorithm Macro-Instrumented Regime Clustering
1: Search all current leaf nodes P = {P1, · · · , PJ}.
2: for each leaf node Pi ∈ P do
3: if Pi satisfies minimal number of months in the node then
4: for each split variable and threshold combination Ci,s = {xi ≤ cs} do.
5: Partition Pi to two leaf nodes P left

i and P
right
i .

6: Update the regime indicators Zi,s following the candidate structure
7: Calculate the split criterion in Equation (7) with new regime indicators

Li,s = L(Y,M,Zi,s)

8: end for
9: end if

10: end for
11: Pick the optimal split point Ci,s with largest marginal likelihood Li,s, partition leaf node Pi

according to Ci,s and create two new leaf nodes.
12: Check pre-specified stopping conditions such as maximum number of nodes, or depth. If

satisfy then repeat from step 2, otherwise stop the algorithm.

regimes in the yields-macro model.

Once the splitting algorithm stops, the regime labels zt for all time periods are

determined explicitly by the tree structure, and we draw posterior samples of all pa-

rameters using the Gibbs sampler illustrated in Appendix A.

2.3 Simulation Evidence

We now explore the efficacy of our approach via a small simulation study. We gen-

erate the data following the three-regime yields-only model in Equation (2), where all

underlying true parameters are calibrated using empirical data. We suppose that the

true regimes are defined by two macroeconomic variables: inflation and unemploy-

ment rate, respectively, over the period period from January 2001 to December 2022 (a

total of 264 months), which are divided into three regimes: regime 1 with inflation less

than 0.4, regime 2 with inflation greater than or equal to 0.4 and unemployment rate

less than 0.2, and regime 3 with inflation greater than or equal to 0.4 and unemploy-

ment rate greater than or equal to 0.2. We use quantile values of the two variables in a

rolling ten-year window in simulation.

In keeping with our empirical analysis in the next section, we assume that there

are 13 yield maturities: 3, 6, 9, 12, 24, 36, 48, 60, 72, 84, 96, 108, and 120 months. We

12



Table 1: Simulation Results for Parameter Estimation, Three-Regime Yields Only
Model

Panel A: Transition Matrix A and Spike-and-Slab Prior Parameter γ

(1,1) (2,1) (3,1) (1,2) (2,2) (3,2) (1,3) (2,3) (3,3)

A1 0.99 0.00 0.00 0.00 0.98 0.00 0.05 0.10 0.92
Â1 0.97 0.00 0.00 0.00 0.97 0.02 0.10 0.11 0.86
RMSE 0.02 0.00 0.00 0.00 0.02 0.02 0.05 0.01 0.06
MAE 0.02 0.00 0.00 0.00 0.01 0.02 0.05 0.01 0.06
γ̂1 1.00 0.01 0.03 0.06 1.00 0.19 1.00 1.00 1.00

A2 0.98 0.00 0.00 -0.04 0.95 -0.20 0.00 0.00 0.90
Â2 0.98 0.00 0.00 -0.03 0.93 -0.10 0.00 0.00 0.85
RMSE 0.00 0.00 0.00 0.01 0.02 0.10 0.00 0.00 0.05
MAE 0.00 0.00 0.00 0.01 0.02 0.10 0.00 0.00 0.05
γ̂2 1.00 0.03 0.04 0.44 1.00 0.52 0.02 0.02 1.00

A3 0.97 0.00 0.00 -0.03 0.92 0.00 0.08 0.00 0.85
Â3 0.98 0.00 0.00 0.00 0.87 0.00 0.07 0.00 0.93
RMSE 0.01 0.00 0.00 0.03 0.05 0.00 0.01 0.00 0.08
MAE 0.01 0.00 0.00 0.03 0.05 0.00 0.01 0.00 0.08
γ̂3 1.00 0.02 0.05 0.03 1.00 0.07 1.00 0.02 1.00

Panel B: Factor Covariance Matrix H

(1,1) (2,1) (3,1) (1,2) (2,2) (3,2) (1,3) (2,3) (3,3)

H1 0.07 -0.02 -0.03 -0.02 0.05 -0.07 -0.03 -0.07 0.50
Ĥ1 0.06 -0.01 -0.02 -0.01 0.05 -0.09 -0.02 -0.09 0.43
RMSE 0.01 0.01 0.01 0.01 0.00 0.02 0.01 0.02 0.07
MAE 0.01 0.01 0.01 0.01 0.00 0.02 0.01 0.02 0.07

H2 0.10 -0.08 -0.05 -0.08 0.12 0.04 -0.05 0.04 0.90
Ĥ2 0.10 -0.08 -0.08 -0.08 0.12 0.08 -0.08 0.08 0.83
RMSE 0.00 0.00 0.03 0.00 0.00 0.04 0.03 0.04 0.07
MAE 0.00 0.00 0.03 0.00 0.00 0.04 0.03 0.04 0.07

H3 0.18 -0.13 -0.20 -0.13 0.25 0.20 -0.20 0.20 1.18
Ĥ3 0.14 -0.12 -0.21 -0.12 0.25 0.29 -0.21 0.29 1.47
RMSE 0.04 0.01 0.01 0.01 0.00 0.09 0.01 0.09 0.29
MAE 0.04 0.01 0.01 0.01 0.00 0.09 0.01 0.09 0.29

Notes: In panel A we present results for transition matrix A and spike-and-slab prior parameter γ,
and in panel B we present results for the factor covariance matrix H. We use three regimes and 13
yield maturities (3, 6, 9, 12, 24, 36, 48, 60, 72, 84, 96, 108, and 120 months). We simulate 100 sequences
of monthly observations on yields with those maturities, and for each sequence we run our Bayesian
estimation procedure and obtain posterior mean parameter estimates, tabulating the means and RMSEs
(MAEs) of the posterior means across the 100 runs. (i, j) represents (i, j)-th element of a matrix. For the
transition matrix, if Aij is not equal to 0, the corresponding value of γ is 1, otherwise 0.

13



Table 2: True and Estimated Values of Latent Factor Means

Lt St Ct Lt St Ct Lt St Ct

µ1 6.50 -1.80 -0.80 µ2 6.00 -1.50 -0.50 µ3 5.50 -1.20 -0.20
µ̂1 7.46 -1.80 -1.05 µ̂2 6.92 -1.71 -0.44 µ̂3 6.39 -1.27 -0.21
RMSE 0.97 0.16 0.25 RMSE 0.93 0.26 0.11 RMSE 0.90 0.19 0.07
MAE 0.96 0.12 0.25 MAE 0.92 0.22 0.09 MAE 0.89 0.14 0.05

Notes: We show the true values (denoted µ) and estimated values (denoted µ̂) of the three latent factor
means under three regimes, as well as MAE and RMSE measures of estimation accuracy.

Table 3: True and Estimated Value of Covariance Matrix Q

(1,1) (2,2) (3,3) (4,4) (5,5) (6,6) (7,7) (8,8) (9,9) (10,10) (11,11) (12,12) (13,13)

Q 0.07 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.07 0.01 0.01 0.01 0.01
Q̂ 0.07 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.08 0.01 0.01 0.01 0.01
RMSE 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
MAE 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

Notes: We show the true values (row Q) and estimated values (row Q̂) of the 13 elements of the diagonal
covariance matrix Q, as well as MAE and RMSE measures of estimation accuracy. (i, j) represents (i, j)-
th element of Q.

generate 100 sequences of monthly observations on yields with those maturities and

run estimation using our Bayesian method discussed above for each sequence of sim-

ulated data. In Table 1 we present simulation results for the transition matrix A and

the factor covariance matrix H, and we report the results for other parameters in Ta-

bles 2 and 3. We report true values, means of posterior means, and RMSEs (MAEs) of

posterior means across the 100 runs. We see that for almost all parameters, the means

are very close to the true values, and the RMSEs (MAEs) are relatively small, suggest-

ing that our approach provides accurate estimation of model parameters conditional

on regimes.

3 Empirical Analysis of U.S. Treasury Bond Yields

Here we present an empirical study of U.S. Treasury bond yields. We examine two

cases: one using only latent yield factors (the yields-only model, Equation (2)), and the

other incorporating both latent yield factors and macroeconomic factors (the yields-

macro model, Equation (4)). We evaluate the macro-instrumented regimes in both

14



Table 4: Descriptive Statistics for U.S. Yields

Maturity Mean Std Min Max ρ̂(1) ρ̂(6) ρ̂(12) ρ̂(30)

3 4.47 3.51 0.01 15.95 0.99 0.94 0.87 0.66
6 4.63 3.56 0.03 16.13 0.99 0.94 0.88 0.67
9 4.75 3.57 0.05 16.11 0.99 0.94 0.88 0.69
12 4.83 3.57 0.06 15.96 0.99 0.95 0.89 0.70
24 5.07 3.53 0.12 15.72 0.99 0.95 0.91 0.75
36 5.26 3.46 0.12 15.57 0.99 0.96 0.91 0.78
48 5.44 3.39 0.17 15.48 0.99 0.96 0.92 0.80
60 5.57 3.31 0.23 15.20 0.99 0.96 0.92 0.81
72 5.70 3.26 0.31 14.99 0.99 0.96 0.93 0.81
84 5.80 3.20 0.38 14.95 0.99 0.96 0.92 0.82
96 5.88 3.15 0.45 14.94 0.99 0.97 0.93 0.82

108 5.95 3.11 0.49 14.95 0.99 0.97 0.93 0.82
120 6.01 3.04 0.53 14.94 0.99 0.96 0.92 0.82

Notes: We present descriptive statistics for U.S. yields at various maturities, measured in months. The
last four columns are sample autocorrelations at displacements of 1, 6, 12 and 30 months, respectively.
The sample period is August 1971 - December 2022. The mean, standard deviation (Std), minimum
(min) and maximum (max) values are expressed as percentages.

cases, focusing on the yields-macro model. Our primary interests are (1) determining

whether regime switching exists, and if so, (2) understanding the interactions between

macroeconomic factors and yield factors from the perspective of macro-spanning.

Most literature on yield curve regimes considers only two possible regimes and

employs “Markov-switching” models, as for example in Dai et al. (2007) and Hevia

et al. (2015). In contrast, we search for two sequential splits and create three macro-

instrumented regimes with clear economic interpretations. The reasons for choosing

three regimes are as follows. First, given the relatively small number of monthly data

points, creating too many regimes may lead to fewer months in each regime and raise

overfitting concerns. Second, our regimes are defined according to macroeconomic

variables rather than time indexes, allowing a single regime to be projected over the

time horizon with multiple disjoint intervals. Third, our approach chooses splits se-

quentially, with the importance of each split decreasing with its order. Thus, the first

two splits that create three regimes are the most critical splits that identify macroeco-

nomic regimes of the yield curve.
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Figure 4: Time Series of U.S. Yields
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Notes: We present time series of U.S. yields at maturities of 3, 6, 9, 12, 24, 36, 48, 60, 72, 84, 96, 108, and
120 months. The sample period is August 1971 - December 2022.

3.1 Data

We use the balanced zero-coupon U.S. Treasury bond yield data constructed by

Liu and Wu (2021).5 The data are monthly, from August 1971 to December 2022, to-

taling 617 months, and they include 13 maturities of 3, 6, 9, 12, 24, 36, 48, 60, 72, 84,

96, 108, and 120 months for each time period. We show yield data descriptive statis-

tics in Table 4 and time series in Figure 4. Among other things, it is apparent that

(1) average yield increases with maturity, (2) yield volatility decreases with maturity,

(3) long-maturity yields are more persistent than short-maturity yields, and (4) yield

curves generally slope upward but are sometimes inverted.

As split candidates for detecting macroeconomic regimes, we use ten leading

macroeconomic variables taken from the Federal Reserve Economic Data (FRED) database

of the Federal Reserve Bank of St. Louis, listed in Table 5. In addition, we follow

Diebold et al. (2006) in using three macroeconomic factors in our yields-macro model:

manufacturing capacity utilization (CU t), the federal funds rate (FFRt), and annual

inflation (INFLt), along with three latent yield factors.

5Liu and Wu (2021) employ a kernel-smoothing method with adaptive bandwidth selection, which
retains more of the information in the raw data, particularly for short and long maturities. The data are
available at Cynthia Wu’s website: https://sites.google.com/view/jingcynthiawu/yield-data
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Table 5: Macroeconomic Variables Serving as Split Candidates

Variable Description

DTB3 t 3-Month Treasury Bill Secondary Market Rate, Discount Basis
INDPROt Industrial Production: Total Index (percent change from a year ago)
CPI t Consumer Price Index for All Urban Consumers (percent change from a year ago)
M2 t Billions of Dollars, Seasonally Adjusted (percent change from a year ago)
PAYEMS t All Employees, Total Non-farm (percent change from a year ago)
UNRATE t Unemployment Rate
OILPRICE t Spot Oil Price: West Texas Intermediate (percent change from a year ago)
TERM SPREADt Term Spread
DEFAULT SPREADt Default Spread
VIX t CBOE Volatility Index

Notes: Data are from the Federal Reserve Economic Data (FRED) database maintained by the Federal
reserve Bank of St. Louis.

We standardize the ten macroeconomic “split variables” on a rolling window ba-

sis. That is, instead of using raw values, we replace current macro values with quan-

tiles in the past ten-year rolling-windows. Thus, all macroeconomic variable candi-

dates are standardized within [0, 1], and we use 0.2, 0.4, 0.6, and 0.8 as the candidate

split thresholds for each variable.6 This standardization ensures that the splits are

meaningful and comparable across different time periods.

3.2 The Yields-Only Model

In Figures 5 and 6 we summarize and visualize the yields-only model estimation

results. In the left panel of Figure 5 we detail the (three) estimated regimes. Both splits

turn out to be driven by the unemployment rate. More specifically, the optimal splits

are UNRATE t < 0.6 and UNRATE t < 0.2 at the first and second splits, respectively.

Hence we divide our 617-month sample into the following three regimes: UNRATE t

≥ 0.6 (Regime 1, high-unemployment, 244 months), UNRATE t < 0.2 (Regime 2, low

unemployment, 150 months), and 0.2 ≤ UNRATE t < 0.6 (Regime 3, medium unem-

ployment, 223 months). In the right panel of Figure 5, we plot the extracted time series

of latent level, slope and curvature yield factors, with regimes superimposed.

Next, in Figure 6 we show the actual and fitted yield curves, both overall and for

6Note that the three macroeconomic variables used in the yields-macro model for examining dy-
namic interactions with the yield factors are left unmodified with their original values.
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Figure 5: Tree Structure and Time Series of Yield Factors, Three-Regime Yields-Only
Model
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Notes: In the left panel (a) we show the tree structure of estimated macro-instrumented regimes in the
yields-only model. It partitions twice based on the unemployment rate, resulting in three regimes. In
the right panel (b) we plot the three time series of latent yield factors extracted from the model, using
background colors to indicate regime (light green for Regime 1, green for Regime 2, and orange for
Regime 3).

each of the three regimes.7 The model fits well, as the fitted curve is close to the actual

one both overall and within each of the three regimes. Furthermore, we observe that

yields are highest in Regime 1 when the unemployment rate is high (greater than the

60% quantile of the past ten years).

In Table 6 we present parameter estimation results. According to the estimated

transition matrix A, the level factor is the most persistent and the curvature factor is

the least persistent in all three regimes. We find that the curvature factor positively

affects the future level factor in Regime 1 and positively affect the future slope factor

in Regime 2. However, in Regime 3, we do not find any significant interactions among

the three yield factors.

In Table 7 we present summary statistics of the yield residuals. Besides residual

mean, standard deviation, minimum and maximum value, we also present mean ab-

solute error (MAE) and root mean square error (RMSE) measuring the overall errors

and model fitness. Broadly speaking, the three-regime yields-only DNS model fits the

yield curve very well. On average, the MAE and RMSE are 4.69 bps and 6.61 bps, re-

spectively. We note that the yields with 3- and 6-month maturities are relatively more

challenging to fit and show higher pricing errors. In general, the model fits the long-

7We average the actual yield curves within the same regime.
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Figure 6: Actual and Fitted Yield Curves, Three-Regime Yields-Only Model
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Notes: We show actual yields and fitted yield curves in each of three estimated regimes, as well as over
the full sample (“all actual” and “all fitted”).

maturity yields much better than the short-maturity yields. For example, the MAE for

yields with maturities of 3-12 months is about 7.66 bps, whereas it is only 3.31 bps for

yields with maturities of 60-120 months. This finding is consistent with the literature.

3.3 The Yields-Macro Model

We now present empirical results from the yields-macro regime-switching model

in Equation (4). We find that when the macro factors are incorporated together with

the yield factors, the split candidates change in comparison to those in the yields-only

model, mainly because the joint dynamics of the macro and yield factors may exhibit

different regime-switching patterns.

As we see from the left panel of Figure 7, the first split candidate is DTB3 t (3-

month treasury bill rate) at the threshold of 0.6, and the second is UNRATE t at the

threshold of 0.4. The two splits create three regimes, Regime 1 (DTB3 t ≥ 0.6) with

202 months, Regime 2 (DTB3 t < 0.6 & UNRATE t < 0.4) with 169 months, and Regime

3 (DTB3 t < 0.6 & UNRATE t ≥ 0.4) with 246 months. In the right panel of Figure 7

we present the estimated time series of three yield factors. Despite the fact that the

detected regimes are different, the factor dynamics look very similar to those resulting

19



Table 6: Parameter Estimates, Three-Regime Yields-Only Model

Regime 1 A H µ

Lt−1 St−1 Ct−1 Lt St Ct

Lt
0.98

(0.01)
0.00

(0.01)
0.03

(0.01)
0.21

(0.02)
-0.10
(0.02)

-0.35
(0.05)

6.18
(0.14)

St
0.00

(0.00)
0.96

(0.02)
0.00

(0.01)
0.55

(0.05)
0.10

(0.07)
-1.73
(0.12)

Ct
0.07

(0.05)
0.08

(0.05)
0.86

(0.04)
1.75

(0.17)
-0.78
(0.32)

Regime 2

Lt
0.99

(0.01)
0.00

(0.00)
0.00

(0.00)
0.06

(0.01)
-0.03
(0.01)

0.03
(0.02)

6.11
(0.09)

St
0.00

(0.00)
0.95

(0.02)
0.09

(0.02)
0.10

(0.01)
-0.02
(0.02)

-1.39
(0.07)

Ct
0.00

(0.01)
0.00

(0.02)
0.83

(0.04)
0.46

(0.06)
-0.52
(0.19)

Regime 3

Lt
0.99

(0.01)
0.01

(0.01)
0.00

(0.01)
0.10

(0.01)
-0.08
(0.01)

-0.06
(0.02)

6.13
(0.10)

St
0.00

(0.00)
0.99

(0.01)
0.00

(0.01)
0.22

(0.02)
0.11

(0.03)
-1.46
(0.10)

Ct
0.00

(0.01)
-0.02
(0.04)

0.92
(0.03)

0.76
(0.08)

-0.37
(0.27)

Notes: We show posterior means and standard deviations in each of the three regimes. Bold font indicates that the posterior 95%
credible interval does not include 0. Because H is a symmetric matrix, we show only its diagonal and upper-right elements.

Table 7: Residuals, Three-Regime Yields-Only Model

Mean Std Min Max MAE RMSE

3 -13.08 22.50 -129.55 51.24 18.76 26.01
6 -4.31 8.77 -51.63 28.73 7.30 9.76
9 0.13 0.83 -2.79 4.54 0.60 0.84

12 2.06 4.77 -24.10 24.23 3.99 5.19
24 1.15 7.32 -34.06 34.85 5.60 7.41
36 -0.48 4.09 -14.80 19.81 3.07 4.11
48 -0.05 2.45 -15.52 10.37 1.73 2.45
60 -1.26 4.42 -31.34 13.41 3.14 4.59
72 0.20 5.02 -17.42 25.33 3.48 5.02
84 0.03 3.90 -15.43 21.43 2.54 3.90
96 0.22 2.74 -14.80 17.07 1.59 2.75
108 0.30 4.93 -19.88 33.48 3.20 4.93
120 0.10 8.99 -49.67 19.90 5.94 8.98

3-12m -3.80 9.21 -52.02 27.18 7.66 10.45
24-48m 0.21 4.62 -21.46 21.67 3.46 4.66

60-120m -0.07 5.00 -24.76 21.77 3.31 5.03

Average -1.15 6.21 -32.38 23.42 4.69 6.61

Notes: We show moments, extremes, MAE, and RMSE. Entries are in basis points.

from the yields-only model in the right panel of Figure 5.

In Table 8 we present the posterior means and standard deviations of the model

parameters for the three regimes. Importantly, our results suggest that macro-spanning

is regime-specific. In Regimes 2 and 3, we do not find any statistically significant ef-

fects of macro factors on yield factors (see estimates in the transition matrix A), sug-

gesting that the macro factors have no predictive value for the yield curve. That is,
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Figure 7: Tree Structure and Time Series of Yield Factors, Three-Regime Yields-Macro
Model
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Notes: In the left panel (a) we show the tree structure of estimated macro-instrumented regimes in
the yields-macro model. It partitions twice, based first on the 3-month interest rate and then on the
unemployment rate, resulting in three regimes. In the right panel (b) we plot the three time series of
latent yield factors extracted from the model, using background colors to indicate regime (light green
for Regime 1, green for Regime 2, and orange for Regime 3).

macro spanning seems to be a reasonable approximation to the yields-macro dynam-

ics in Regimes 2 and 3. In contrast, however, in Regime 1, which features high short-

term (3-month) interest rates, we find a significant positive effect of inflation on the

curvature factor, so that macro spanning is violated.

To further examine the macro-spanning issue, we estimate a yields-macro model

with no regime switching, i.e., a single-regime model. We show the estimation results

in Table 10. The effects of the macro factors on the yield factors are all statistically

insignificant, providing further support to our finding that macro-spanning may be

regime-specific and would be missed if one fails to allow for the possibility of regime

switching.

In Table 9 we present summary statistics for the three-regime yields-macro model

residuals. Overall, the model fits the yields well. In general it performs similarly to

the yields-only model; for example, on average, the MAE and RMSE are 4.67 bps and

6.60 bps, respectively, which are the same as the corresponding values in the yields-

only model. We also note that the yields-macro model performs slightly better than

the yields-only model in fitting the short-maturity yields; for instance, the RMSEs for

the 3- and 6-month yields are 25.88 bps and 9.68 bps, respectively, with comparison to
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Figure 8: Actual and Fitted Yield Curves, Three-Regime Yields-Macro Model
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Notes: We show actual yields and fitted yield curves in each of three estimated regimes, as well as over
the full sample (“all actual” and “all fitted”).

26.01 bps and 9.76 bps, respectively, in the yields-only model.

Finally, it is interesting and informative to compare the fitted yield curves under

the regimes identified by the yields-only model in Figure 6 to those resulting from

the regimes identified by the yields-macro model which we show in Figure 8. No-

tably, the short-maturity yields are quite different in the three regimes in the yields-

macro model, whereas they are similar in the three regimes in the yields-only model.

This highlights that macro factors can help distinguish the regime-switching pattern

in yield curves relative to using yield factors alone.

3.4 Comparing Regimes

Let us now explore further whether the three detected regimes are really different.

To answer this question, we focus on the dynamics of factors, which are determined

by the transition matrix A and factor innovation covariance matrix H. Therefore, we

examine the difference between those two matrices under different regimes from both

Bayesian and frequentist perspectives. We first overlay posterior distributions of the

parameters and then conduct t-tests of the posterior samples across regimes.



Table 8: Parameter Estimates, Three-Regime Yields-Macro Model

Regime 1 A H µ

Lt−1 St−1 Ct−1 CU t−1 FFRt−1 INFLt−1 Lt St Ct CU t FFRt INFLt

Lt
0.99

(0.01)
0.01

(0.02)
0.00

(0.00)
0.00

(0.00)
0.00

(0.01)
0.00

(0.00)
0.14

(0.02)
0.00

(0.02)
-0.21
(0.04)

0.05
(0.03)

0.07
(0.02)

0.01
(0.01)

5.83
(0.08)

St
0.00

(0.00)
0.92

(0.03)
0.00

(0.00)
0.00

(0.00)
0.00

(0.00)
0.00

(0.01)
0.61

(0.06)
-0.13
(0.07)

0.13
(0.06)

0.31
(0.05)

0.03
(0.02)

-1.25
(0.07)

Ct
0.00

(0.02)
-0.30
(0.07)

0.79
(0.04)

0.00
(0.00)

0.00
(0.02)

0.14
(0.03)

1.44
(0.16)

-0.01
(0.10)

-0.29
(0.07)

-0.03
(0.03)

0.11
(0.27)

CU t
0.18

(0.18)
0.13

(0.16)
0.00

(0.01)
0.97

(0.02)
-0.16
(0.16)

-0.01
(0.02)

1.23
(0.14)

0.20
(0.06)

0.07
(0.02)

77.91
(0.18)

FFRt
0.48

(0.05)
0.56

(0.05)
0.00

(0.00)
0.00

(0.00)
0.57

(0.04)
0.00

(0.00)
0.54

(0.06)
0.03

(0.02)
4.66

(0.07)

INFLt
0.00

(0.00)
0.00

(0.00)
0.00

(0.00)
0.04

(0.00)
0.00

(0.00)
0.98

(0.01)
0.08

(0.01)
3.32

(0.06)

Regime 2

Lt
0.98

(0.01)
0.00

(0.00)
0.00

(0.00)
0.00

(0.01)
0.00

(0.01)
0.00

(0.00)
0.09

(0.10)
-0.06
(0.06)

0.02
(0.03)

0.00
(0.01)

0.00
(0.09)

0.02
(0.02)

5.85
(0.11)

St
0.00

(0.00)
0.97

(0.02)
0.00

(0.01)
0.00

(0.01)
0.00

(0.02)
0.00

(0.00)
0.13

(0.05)
0.01

(0.02)
0.03

(0.02)
0.02

(0.06)
0.00

(0.01)
-1.38
(0.10)

Ct
0.00

(0.01)
0.00

(0.01)
0.88

(0.04)
0.00

(0.00)
0.00

(0.01)
0.00

(0.01)
0.48

(0.06)
0.04

(0.03)
0.00

(0.02)
0.01

(0.01)
-0.04
(0.24)

CU t
0.00

(0.01)
0.00

(0.01)
0.00

(0.01)
0.98

(0.01)
0.00

(0.01)
0.00

(0.01)
0.28

(0.03)
0.02

(0.01)
0.03

(0.01)
77.87
(0.14)

FFRt
0.34

(0.06)
0.30

(0.05)
0.00

(0.00)
0.00

(0.01)
0.68

(0.05)
0.00

(0.00)
0.05

(0.08)
0.01

(0.01)
4.71

(0.06)

INFLt
0.00

(0.00)
0.00

(0.00)
0.00

(0.01)
0.00

(0.00)
0.00

(0.00)
0.99

(0.01)
0.05

(0.01)
3.28

(0.08)

Regime 3

Lt
0.97

(0.01)
0.00

(0.00)
0.02

(0.01)
0.00

(0.02)
0.00

(0.02)
0.00

(0.00)
0.17

(0.48)
-0.13
(0.26)

-0.21
(0.13)

-0.01
(0.02)

-0.02
(0.42)

0.01
(0.07)

5.93
(0.12)

St
0.00

(0.01)
0.98

(0.01)
0.00

(0.02)
0.00

(0.01)
0.00

(0.03)
0.00

(0.01)
0.23

(0.17)
0.19

(0.07)
0.02

(0.02)
0.02

(0.22)
0.00

(0.03)
-1.43
(0.07)

Ct
0.00

(0.02)
0.00

(0.02)
0.93

(0.04)
0.00

(0.01)
0.02

(0.04)
0.00

(0.01)
1.10

(0.13)
0.02

(0.05)
0.02

(0.12)
0.02

(0.04)
-0.07
(0.34)

CU t
-0.01
(0.03)

-0.02
(0.04)

0.07
(0.05)

0.98
(0.01)

-0.05
(0.05)

0.00
(0.01)

0.47
(0.05)

0.01
(0.01)

0.05
(0.01)

78.12
(0.13)

FFRt
0.32

(0.05)
0.30

(0.04)
0.03

(0.01)
0.00

(0.02)
0.67

(0.04)
0.00

(0.00)
0.05

(0.36)
0.01

(0.06)
4.65

(0.06)

INFLt
0.00

(0.01)
0.00

(0.01)
0.00

(0.01)
0.00

(0.00)
0.00

(0.01)
0.98

(0.01)
0.10

(0.02)
3.33

(0.06)

Notes: We show posterior means and standard deviations in each of the three regimes. Bold font indicates that the posterior 95%
credible interval does not include 0. Because H is a symmetric matrix, we show only its diagonal and upper-right elements.

Table 9: Residuals, Three-Regime Yields-Macro Model

Mean Std Min Max MAE RMSE

3 -13.04 22.37 -128.48 49.54 18.62 25.88
6 -4.29 8.69 -50.87 27.72 7.24 9.68
9 0.15 0.84 -2.28 3.78 0.62 0.85

12 2.06 4.77 -24.39 24.47 4.00 5.20
24 1.13 7.23 -33.52 34.17 5.51 7.31
48 -0.06 2.59 -16.90 11.20 1.80 2.59
84 0.03 3.90 -15.49 21.23 2.53 3.89
120 0.10 8.99 -50.30 21.09 5.95 8.98

3-12m -3.78 9.17 -51.51 26.38 7.62 10.40
24-48m 0.19 4.60 -21.95 22.14 3.43 4.64

60-120m -0.07 5.02 -25.06 22.01 3.33 5.05

Average -1.15 6.20 -32.48 23.38 4.67 6.60

Notes: We show moments, extremes, MAE, and RMSE. Entries are in basis points.
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Table 10: Parameter Estimates, Single-Regime Yields-Macro Model

A H µ

Lt−1 St−1 Ct−1 CU t−1 FFRt−1 INFLt−1 Lt St Ct CU t FFRt INFLt

Lt
0.98

(0.01)
0.00

(0.01)
0.01

(0.01)
0.00

(0.02)
0.01

(0.03)
0.00

(0.00)
0.15

(0.39)
-0.05
(0.06)

-0.14
(0.02)

0.01
(0.02)

0.00
(0.37)

0.01
(0.01)

6.36
(0.07)

St
0.00

(0.01)
0.96

(0.01)
0.01

(0.01)
0.01

(0.02)
0.00

(0.03)
0.00

(0.00)
0.34

(0.33)
0.05

(0.03)
0.05

(0.03)
0.09

(0.33)
0.01

(0.01)
-1.97
(0.05)

Ct
0.00

(0.02)
0.00

(0.02)
0.92

(0.02)
0.00

(0.00)
0.01

(0.02)
0.01

(0.02)
1.03

(0.07)
0.03

(0.04)
-0.10
(0.03)

0.00
(0.01)

-0.83
(0.25)

CU t
0.30

(0.07)
0.23

(0.06)
0.02

(0.02)
0.99

(0.01)
-0.27
(0.06)

0.00
(0.01)

0.63
(0.04)

0.07
(0.02)

0.06
(0.01)

78.55
(0.14)

FFRt
0.44

(0.04)
0.44

(0.04)
0.00

(0.01)
0.00

(0.02)
0.60

(0.03)
0.00

(0.00)
0.22

(0.35)
0.02

(0.01)
4.73

(0.05)

INFLt
0.00

(0.00)
0.00

(0.00)
0.01

(0.01)
0.01

(0.00)
0.00

(0.00)
0.99

(0.00)
0.08

(0.00)
3.63

(0.06)

Notes: This table summarizes the posterior mean of parameter estimations. Bold font indicates that
the posterior 95% credible interval does not cover 0. For simplicity, we only provide the diagonal and
upper-right elements of H given that H is a symmetric matrix.

3.4.1 Posterior Distributions

We first examine more closely the posterior densities of the estimated parameters

in A and H across different regimes. Given their importance in determining the factor

dynamics, we focus on the diagonal elements, denoted by Ai,i and Hi,i for the i-th

element on the diagonal respectively.

In Figure 9 we present posterior density plots for the yields-only model. It is clear

that the three regimes detected are quite different for all pairs of regimes. For example,

although Regimes 2 and 3 may have similar posterior densities for A1,1, which repre-

sents the dynamics of the level factor, they are very different for A2,2 and A3,3 (slope

and curvature factors, respectively). Notably, the factor innovation covariances are

very different across regimes. The posterior densities of the diagonal elements of H

display only minimal overlap across the three regimes, which indicates that the factor

dynamics change significantly under the three detected regimes.

In Figure 10 we present the corresponding posterior density plots for the yields-

macro model. In parallel to the results for yields-only model, all parameters show very

different posterior patterns across the identified regimes.
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Figure 9: Posterior Densities of A and H, Three-Regime Yields-Only Model
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Notes: We show posterior densities of the diagonal elements of the factor transition matrix A and
covariance matrix H for the yields-only model with three regimes. Different colors indicate different
regimes.

3.4.2 A Two-Sample t-Test

Here we further examine the differences among detected regimes using a simple

t-test of the posterior samples of A and H. We focus on their diagonal elements for a

concise presentation. The sample size is equal since we set equal posterior sample sizes

ns when estimating parameters in the Gibbs sampler. Given that we cannot ascertain

identical variances among the regimes, we adopt the t-test that accounts for unequal

variances of s21 and s22. Our t-test statistic and its degrees of freedom are

t =
X̄1 − X̄2

s∆
, s∆ =

√
s21 + s22
ns

, d.f. =
(ns − 1)(s21 + s22)

2

s41 + s42
.

We show the test results of for yields-only and the yields-macro three regime DNS

models in Table 11. It is clear that the three regimes identified in both models are

significantly different.
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Figure 10: Posterior Densities of A and H, Three-Regime Yields-Macro Model
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Notes: We show posterior densities of the diagonal elements of the factor transition matrix A and
covariance matrix H for the yields-macro model with three regimes. Different colors indicate different
regimes.

3.5 Impulse Responses

Impulse response functions (IRFs) have been used at least since Sims (1980) to

quantify the dynamic effects of shocks.8 Our focus is on differences in impulse re-

8We use generalized impulse response functions (Koop et al., 1996) because they are invariant to
variable ordering.
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Table 11: t-tests, Three-Regime Yields-Only and Yields-Macro Models

Models Regimes A H

t-statistic p-value t-statistic p-value

Yields-Only

1 vs 2
A1,1 -42.61 0.00 H1,1 378.51 0.00
A2,2 10.77 0.00 H2,2 470.94 0.00
A3,3 34.79 0.00 H3,3 384.73 0.00

1 vs 3
A1,1 -38.38 0.00 H1,1 240.93 0.00
A2,2 -100.95 0.00 H2,2 328.54 0.00
A3,3 -63.84 0.00 H3,3 281.21 0.00

2 vs 3
A1,1 5.24 0.00 H1,1 -174.01 0.00
A2,2 -100.46 0.00 H2,2 -259.40 0.00
A3,3 -103.68 0.00 H3,3 -157.14 0.00

Yields-Macro

1 vs 2
A1,1 32.50 0.00 H1,1 28.35 0.00
A2,2 -84.09 0.00 H2,2 336.61 0.00
A3,3 -82.97 0.00 H3,3 309.13 0.00

1 vs 3
A1,1 49.44 0.00 H1,1 -2.58 0.01
A2,2 -102.33 0.00 H2,2 117.09 0.00
A3,3 -135.42 0.00 H3,3 89.82 0.00

2 vs 3
A1,1 20.47 0.00 H1,1 -8.30 0.00
A2,2 -20.08 0.00 H2,2 -33.33 0.00
A3,3 -44.13 0.00 H3,3 -235.24 0.00

1 vs 2
A4,4 -32.08 0.00 H4,4 368.43 0.00
A5,5 -93.53 0.00 H5,5 272.98 0.00
A6,6 -79.05 0.00 H6,6 112.93 0.00

1 vs 3
A4,4 -23.02 0.00 H4,4 285.35 0.00
A5,5 -97.66 0.00 H5,5 72.66 0.00
A6,6 15.37 0.00 H6,6 -59.05 0.00

2 vs 3
A4,4 10.55 0.00 H4,4 -183.32 0.00
A5,5 6.53 0.00 H5,5 0.04 0.97
A6,6 70.62 0.00 H6,6 -117.62 0.00

Notes: We show t-tests for the number of regimes in the yields-only and yields-macro models.

sponses across the three regimes. First, in Figure 11 we show IRFs and 90% confi-

dence bounds for the yields-only model. The IRFs reveal significant differences across

regimes; for example, given a shock to the level factor, the curvature factor decreases

in Regime 1 but shows no obvious responses in Regimes 2 and 3.

Second, and of greater interest in terms of contributing to the macro-spanning

debate, in Figure 12 we show Regime-1 IRFs and confidence bounds for the yields-

macro model, and we group the IRFs into three panels: responses of yield factors to

yield factors, responses of yield factors to macroeconomic factors, and responses of
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Figure 11: Impulse Responses, Three-Regime Yields-Only Model
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Notes: We show the full set of impulse response functions for each of the three regimes. Point estimates
are blue and credible bands are red.

macroeconomic factors to yield factors.9

The Regime-1 level factor shows a positive but weak response to FFRt shocks,

and the slope factor shows a stronger positive response to FFRt shocks. The cur-

vature factor, moreover, appears to respond to shocks from all macro factors. This

Regime-1 evidence against macro-spanning (i.e., evidence that macro→yields) echoes

the earlier-discussed yields-macro model parameter estimation results.

It should be noted however, that even if there is some macro→yields predictive

enhancement, it is not as strong or pervasive as as the yields→macro predictive en-

9Results for Regimes 2 and 3 appear in Appendix B.
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Figure 12: Impulse Responses in Regime 1, Three-Regime Yields-Macro Model
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(a) Yields response to yields shock
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(b) Yields response to macro shock
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(c) Macro response to yields shock

Notes: We show impulse responses for Regime 1. Point estimates are blue and credible bands are red.

hancement. For example, FFRt increases in response to shocks to the level and slope

factors in Regime 1. CU t decreases in response to the slope factor in Regimes 1 and

3 and increases in response to the curvature factor in Regime 3. Additionally, INFLt

decreases in response to an increase in the slope factor in Regime 1.

4 Conclusion

We explore tree-based macroeconomic regime-switching in the context of the dy-

namic Nelson-Siegel (DNS) yield-curve model. By integrating decision trees from

machine learning, our approach customizes the tree-growing algorithm to partition

macroeconomic variables based on the DNS model’s Bayesian marginal likelihood,
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enabling us to identify regime-shifting patterns in the yield curve. Compared to tra-

ditional Markov-switching models, this “macro instrumented” approach offers clear

economic interpretation via macroeconomic linkages and ensures computational sim-

plicity.

We then provide a detailed empirical analysis of U.S. Treasury bond yields, Au-

gust 1971 - December 2022. There are several findings. First, the macro-instrumented

approach clearly identifies regime-switching behavior in both the yields-only and yields-

macro models, both of which fir the data well. Second, the regimes are primarily

driven by the unemployment rate in the yields-only model, whereas regimes are driven

by the 3-month interest rate, followed by the unemployment rate, in the yields-macro

model. Third, we find that in a regime with high 3-month interest rate (our “Regime

1”), the macro inflation factor contains useful information on the future yield curve,

whereas in other regimes, macro factors do not contain any information on the future

yield curve.

Overall, then, our results indicate not only that yields help forecast macro, but

also that macro helps forecast yields, at least in a high-short-rate regime. That is, they

suggest that macro spanning may fail in some regimes and hold in others. Professional

thinking therefore needs some re-orientation – the right question is not “Does macro

spanning hold or fail?”, but rather, “When does macro spanning hold, and when does

it fail?”. We hope that our macro-instrumented regime-switching DNS model will

continue to be a useful tool for navigating this new, more nuanced, environment.

Appendices

A Details of Posterior Inference

This section introduces the details of the Gibbs sampler for posterior inference.

First we clarify notations: let ỹT = [y1, · · · ,yT ]
T , F̃T = [F1, · · · ,FT ]

T be the collection

of all data observations and latent factors. Let Ω = [A0,A1,A2,H0,H1,H2] represent
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all parameters of the regression coefficients and residual covariance matrices. Suppose

the yield data is balanced, N bonds for T months and n = N × T total observations.

Furthermore consider K macro factors in addition to the 3 factors of dynamic Nelson-

Siegel model, K can be zero for the case without macroeconomic variable. The dimen-

sion of all matrices are listed as follows yt, εt: N × 1, Λ: N × 3, ft,Ft,µ0,µ1,µ2,ηt:

(3 +K)× 1, A0,A1,A2: (3 +K)× (3 +K), Q: N ×N , H0,H1,H2: (3 +K)× (3 +K).

The initial values for parameters are obtained from two step approach results. Initial

values of Kalman filter F0 and P0 are equal to estimates by using Econometrics Tool-

box state-space models (SSM) in MATLAB. The prior for parameters and full Gibbs

sampler for posterior inference are as follows.

• Prior specification for different parameters

– Spike-and-slab prior: ξ20 = 10−5, ξ21 = 1.

– Decay parameter λ prior: a = 0.01, b = 0.1.

– Diagonal elements σ2
i of Q prior: α = 5, β = 0.05.

– Factor mean µ prior: µ is equal to initial value of µ, B = diag(10)3+K .

– Covariance matrix H prior: m0 and M0 are set according to initial value of

H, i.e., prior mean closing to initial values.

• F̃T | Ω, ỹT ,Λ,Q,µ0,µ1,µ2. Sampling latent factors F̃t conditional on all other

parameters is achieved by Kalman filter/smoother. Given Ω and F0, the poste-

rior distribution of F̃T can be decomposed as a set of conditionals

p(F̃T | ỹT ) = p(FT | ỹT )
T−1∏
t=1

p(Ft | Ft+1, ỹt).

The above equation suggests that the factors F̃T can be sampled sequentially by
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Kalman filter, where all the conditionals are defined as

F̂t|t−1 = Azt−1Ft−1|t−1

P̂t|t−1 = Azt−1Pt−1|t−1A
T
zt−1

+Hzt

Kt = P̂t|t−1Λ
T (ΛP̂t|t−1Λ

T +Q)−1

Ft|t = F̂t|t−1 +Kt(yt −ΛF̂t|t−1 −Λµzt)

Pt|t = (I−KtΛ)P̂t|t−1.

The sampling steps are

– FT | ỹT ∼ N(FT |T ,PT |T ), where

FT |T = F̂T |T−1 +KT (yT − ΛF̂T |T−1 −ΛµzT
)

PT |T = (I−KTΛ)P̂T |T−1

– Ft | Ft+1, ỹt ∼ N(Ft|t,Ft+1 ,Pt|t,Ft+1), where

Ft|t,Ft+1 = Ft|t +Pt|tA
T
zt(AztPt|tA

T
zt +Hzt+1)

−1(Ft+1 −AztFt|t)

Pt|t,Ft+1 = Pt|t −Pt|tA
T
zt(AztPt|tA

T
zt +Hzt+1)

−1AztPt|t

• Q | F̃T , ỹT ,Ω,µ0,µ1,µ2,Λ. Yield residual covariance matrix Q = diag(σ2
1, · · · , σ2

N)

is assumed to be diagonal. The update of each σ2
i term follows the standard

inverse-Gamma conjugate sampling. For simplicity, we show the update of one

regime, and multiple regimes proceed similarly.

σ2
i | F̃T , ỹT ,Ω,µ0,µ1,µ2,Λ ∼ IG

(
α +

T

2
, β +

1

2

T∑
t=1

(yti −ΛiFt −Λiµzt)
2

)
,

where Λi is the i-th row in Λ and yti is the i-th row in yt, i = 1, 2, · · · , N .

• Hg | F̃T ,A0,A1,A2. Let Tg be number of time periods in the regime g, and for t
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satisfying the regime indicator zt = g, ηt ∼ N(0,Hg). The update step is

Hg | F̃T ,A0,A1,A2,µ0,µ1,µ2 ∼ IW (m0 + Tg,M0 +Gg),

where Gg =
∑

t:zt=g

(Ft −Azt−1Ft−1)(Ft −Azt−1Ft−1)
T .

• Ag | γg, F̃T ,H0,H1,H2. Let ag = vec(AT
g ), γg = vec((γg)T ).

π(ag | F̃T ,H0,H1,H2,γg) ∝ p(Ft+1:zt=g | ag ,H0,H1,H2,γg)π(ag | γg)

∝ exp

−
1

2

aT
g

 ∑
t:zt=g

H−1
zt+1

⊗ (FtF
T
t )

ag − 2aT
g

 ∑
t:zt=g

vec(FtF
T
t+1H

−1
zt+1

)

×
3∏

j,k=1

π(ag
jk | γg

jk)

∝ exp

−
1

2

aT
g

 ∑
t:zt=g

H−1
zt+1

⊗ (FtF
T
t )

ag − 2aT
g

 ∑
t:zt=g

vec(FtF
T
t+1H

−1
zt+1

)

×
3∏

j,k=1

exp{−
1

2ξ2
γ
g
jk

agjk
2}

∝ exp

−
1

2

aT
g

U−1
g +

∑
t:zt=g

H−1
zt+1

⊗ (FtF
T
t )

ag − 2aT
g

 ∑
t:zt=g

vec(FtF
T
t+1H

−1
zt+1

)

 ,

where Ug = diag(ξ2
γg
jk
), j, k = 1, 2, 3. Draw ag from conditional posterior N(āg, D̄g),

where

D̄g = (U−1
g +

∑
t:zt=g

H−1
zt+1

⊗ (FtF
T
t ))

−1, āg = D̄g(
∑
t:zt=g

vec(FtF
T
t+1H

−1
zt+1

)).

• γg
jk | γg

−jk, F̃T ,H0,H1,H2. γg
−jk represents the remaining elements except the

(j, k)-th element of γg.

π(γg | F̃T ,H0,H1,H2) ∝
∫

p(Ft+1:zt=g | ag,H0,H1,H2,γg)p(ag | γg)π(γg)dag

∝
∫

exp

{
−1

2

[
aTg

( ∑
t:zt=g

H−1
zt+1

⊗ (FtF
T
t )

)
ag − 2aTg

( ∑
t:zt=g

vec(FtF
T
t+1H

−1
zt+1

)

)]}

× | Ug |−
1
2 exp

(
−1

2
aTg U

−1
g ag

)
w

∑
γg
jk(1− w)

∑
(1−γg

jk)dag

=| Ug |−
1
2 w

∑
γg
jk(1− w)

∑
(1−γg

jk)

×
∫

exp

{
−1

2

[
aTg

(
U−1

g +
∑
t:zt=g

H−1
zt+1

⊗ (FtF
T
t )

)
ag − 2aTg

( ∑
t:zt=g

vec(FtF
T
t+1H

−1
zt+1

)

)]}

∝| Ug |−
1
2 | D̄g |

1
2 exp

(
1

2
āTg D̄

−1
g āg

)
w

∑
γg
jk(1− w)

∑
(1−γg

jk)

=| Ug |−
1
2 | D̄g |

1
2 exp

(
1

2
lT D̄gl

)
w

∑
γg
jk(1− w)

∑
(1−γg

jk),

33



where l =
∑

t:zt=g vec(FtF
T
t+1H

−1
zt+1

). Therefore the conditional posterior of γg
jk |

γg
−jk is

π(γg
jk | γ

g
−jk, F̃T ,H0,H1,H2) ∝ ξ−1

γg
jk
| D̄g |

1
2 exp

(
1

2
lT D̄gl

)
w

∑
γg
jk(1− w)

∑
(1−γg

jk),

which is a Bernoulli distribution. For diagonal elements of Ag, force γg
jk = 1. It’s

natural to assume that the dynamics of one factor is related to its historical val-

ues, so we don’t impose spike-and-slab prior on diagonal elements of transition

matrix A and let the corresponding γ fixed at 1.

• µg | F̃T , ỹT ,Λ,Q. Assume there are Tg time points in regime g, and in regime g,

the likelihood is

p(yt:zt=g | µg) ∝
∏

t:zt=g

exp

{
−1

2
εTt Q

−1εt

}

∝ exp

{
−1

2

[
µT

g

(
TgΛ

TQ−1Λ
)
µg − 2µT

g

(∑
t:zt=g

(ΛTQ−1yt −ΛTQ−1ΛFt)

)]}
.

The posterior distribution is

µg | F̃T , ỹT ,Λ,Q ∼ N(µ̄g, B̄g),

where

B̄g = (B−1 + TgΛ
TQ−1Λ)−1

µ̄g = B̄g

(
B−1µ+

∑
t:zt=g

(ΛTQ−1yt −ΛTQ−1ΛFt)

)
.

• λ | F̃T ,µ0,µ1,µ2, ỹT ,Q. We use random walk Metropolis-Hastings algorithm to

estimate λ. Superscript t indicates the t-th update of MCMC.

– Generate λ∗ from proposal distribution Jt(λ
∗ | λ(t−1)) = U(0.01, 0.1).

– Compute acceptance ratio r. p0(λ) = p(λ | F̃T ,µ0,µ1,µ2, ỹT ,Q) is the target
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posterior distribution.

r =
p0(λ

∗)

p0(λ(t−1))
× Jt(λ

(t−1) | λ∗)

Jt(λ∗ | λ(t−1))
=

p0(λ
∗)

p0(λ(t−1))

– Sample u ∼ U(0, 1), if u < r, set λt = λ∗, else set λt = λ(t−1).

The conditional posterior distribution is

p(λ | F̃T ,µ0,µ1,µ2, ỹT ,Q) ∝ p(ỹT | λ, F̃T ,µ0,µ1,µ2,Q)× p(λ).

=

T∏
t=1

p(yt | µ0,µ1,µ2, λ)p(λ)

∝
T∏

t=1

1√
2π

| Q |− 1
2 exp

{
−1

2

(
yt −Λ(Ft + µzt)

)T
Q−1

(
yt −Λ(Ft + µzt)

)}

∝ exp

{
−1

2

T∑
t=1

(
yt −Λ(Ft + µzt)

)T
Q−1

(
yt −Λ(Ft + µzt)

)}
.
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B Additional Results for Impulse Responses

Figure B1: Impulse Responses of Regime 2, Three-Regime Yields-Macro Model
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(c) Macro response to yields shock

Notes: This plot summarizes impulse responses for Regime 2. Blue line indicates dynamic response
and the two red dashed lines are upper and lower bound of credible bands.
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Figure B2: Impulse Responses of Regime 3, Three-Regime Yields-Macro Model
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(c) Macro response to yields shock

Notes: This plot summarizes impulse responses for Regime 3. Blue line indicates dynamic response
and the two red dashed lines are upper and lower bound of credible bands.
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