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Abstract

Any mapping from states to signals induces a distribution over possible posteriors.
For decision-making purposes, one is interested in parameters of those posteriors, such
as their quartiles or whether they first-order stochastically dominate some given dis-
tribution. We show that a generalization of Gale’s demand theorem can be used to
characterize which distributions over possible posteriors with the requisite properties
can be generated by some mapping from states to signals.

Keywords: Bayesian Persuasion, Information Design, Polymatroids

1 Introduction

The problem of Bayesian persuasion (see Kamenica and Gentzkow (2011) and Bergemann
and Morris (2016)) is concerned with the properties of the posterior distribution over states
induced by a given signal structure. For analytical tractability the focus has been on one-
dimensional summary statistics such as the mean (see Dworczak and Martini (2019) and
Vohra et al. (2023)) or the median of the resulting posterior (see Benoît and Dubra (2011))
or more generally the qth quantile for any q ∈ (0, 1) (see Kolotilin and Wolitzky (2024) and
Yang and Zentefis (2022)).

The setting involves a finite state space, a prior distribution π over it, and a stochastic
mapping of the states to signals. Each realized signal induces a posterior distribution over
the states. For the moment, suppose one is interested in the qth quantile of that posterior.
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Different realized signals induce different posteriors, generating different qth quantiles. Now,
fix some distribution over qth quantiles. Is there a mapping of states to signals that will
induce this distribution over qth quantiles? More generally, can one characterize the set
of distributions of posterior quantiles that can be generated by some mapping of states to
signals? Call such distributions of qth quantiles implementable.

Benoît and Dubra (2011) characterize implementable distributions for the median under
a uniform prior and finite state and signal space. Kolotilin and Wolitzky (2024) and Yang
and Zentefis (2022) characterize it in the continuum case, for any prior distribution and any
quantile. The proofs in Benoît and Dubra (2011) and Yang and Zentefis (2022) are lengthy.
Kolotilin and Wolitzky (2020) provide a direct proof by showing that all implementable
distributions of the posterior qth quantiles are implemented by a single mapping from states
to signals. We show that these results, for the finite case, are a straightforward consequence of
Gale’s demand theorem (Gale (1957)), which characterizes the existence of a feasible flow in
a bipartite network. It is a modest generalization of Hall’s matching Theorem (Hall (1935)).
It has been employed in auction theory (Che et al. (2013)) and in Bayesian persuasion (Vohra
et al. (2023)). Some well-known results in probability theory, such as Strassen (1965) and
Holley (1974), are also consequences.

Our methodology provides new results that go beyond merely characterizing which dis-
tributions over qth-quantiles are implementable. For example, one may be interested in not
just a particular quantile of the realized posterior but all three quartiles of the resulting pos-
terior. More generally, suppose we are given some finite set of distributions and require that
each realized posterior first order stochastically dominate some distribution in the family.
Our general framework also applies to this setting and provides a characterization of what
distributions over posteriors can be implemented that satisfy these properties. These results
show the versatility and applicability of Gale’s theorem and its extension. Roughly speaking,
this tool can be deployed to deal with any parameters of a distribution that can be encoded
using a collection of linear constraints that are ‘nested’ in the appropriate way.

The next section begins with a restricted setting designed to illustrate the technique as
clearly as possible. The subsequent section characterizes the distribution of implementable
q-quantiles. The concluding section outlines the generalization of Gale’s Theorem and two
applications.

2 Notation and Example

Let the state space be {1, . . . , n} and π the prior probability distribution over it. Suppose an
experiment that maps states to signals and assume there are as many signals as states. Each
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realized signal induces a posterior over the state space. Denote the posterior distribution
over the states given signal j by p(·|j). To determine whether a given probability distribution
over the state space can be induced as a possible posterior, it is enough to check if there
is a solution to the following flow problem. Introduce a supply node i for each state i ∈ Σ

with supply πi. Call the set of supply nodes S. For each signal i, introduce a demand node
and call the set of demand nodes D. Let x(i, j) be the flow from supply node i to demand
node j. In the language of experiments this is the joint probability of observing state i and
signal j simultaneously. Given a conditional probability distribution p(i|j) for each signal
j ∈ {1, . . . , n}, we need to determine if there is a flow x satisfying the following:∑

j∈D

x(i, j) = πi ∀i ∈ S (1)

x(i, j)∑
k∈S x(k, j)

= p(i|j) ∀i ∈ S, j ∈ D (2)

x(i, j) ≥ 0 ∀i ∈ S, j ∈ D (3)

Constraints (1) and (2) follow from Bayesian updating.
We are interested in whether a particular probability distribution over quantiles can be

implemented by some mapping of states to signals. If F (·) is a distribution over {1, . . . , n},
then, the q-quantile of F is the smallest r ∈ {1, . . . , n} such that F (r) ≥ q. To allow the
main idea of the proof to shine through, we will, as a first step, adopt a stricter notion of
q-quantile: the smallest number r such that F (r) = q. Under this stricter notion n can never
be a q-quantile because F (n) = 1 and it is also possible that no q-quantile exists. In Section
3, we relax this definition.

For each i ∈ {1, . . . , n} and a fixed q ∈ (0, 1), we want to know if we can achieve the
following: the probability that r is the q-quantile of the realized posterior is ρr (note ρn = 0).
If so, then, ρ is implementable.

We can formulate the problem of verifying whether ρ is implementable as follows:∑
r∈D

x(i, r) = πi ∀i ∈ S (4)

n∑
i=r+1

x(i, r) = (1− q)ρr r ∈ {1, . . . , n− 1} (5)

r∑
i=1

x(i, r) = qρr r ∈ {1, . . . , n− 1} (6)
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x(i, j) ≥ 0 (7)

Constraints (5) and (6) follow from our definition of a q-quantile. The constraint
∑n

i=1 x(i, r) =

ρr is absent because it is implied by the sum of (5) and (6).
Problem (4-7) is a transportation problem (Hitchcock (1941)). As before, introduce a

supply node i for each state i with supply πi. For each r ∈ {1, . . . , n − 1} introduce two
demand nodes denoted r+ and r− with demands (1 − q)ρr and qρr respectively. Call them
plus and minus nodes. For each supply node i introduce an arc directed from node i to
demand node r+ if r+ 1 ≤ i. For each supply node i, introduce an arc directed from node i

to demand node r− if r ≥ i. Problem (4-7) can now be phrased as follows: does there exist a
flow from the supply nodes to the demand nodes along the given arcs such that all demand
is satisfied and all supplies exhausted?

Gale’s demand Theorem (Gale (1957)) gives a necessary and sufficient condition for the
feasibility of the system (4-7). For any subset K of demand nodes, let N(K) denote the set
of supply nodes with at least one arc directed into an element of K. Then, a feasible flow
exists iff for every subset of demand nodes K, the total supply in N(K) is at least as large
as the total demand in K. To state this formally, for any subset of demand nodes K, write
K+ for the plus nodes in K and K− for the minus nodes. Then, the condition is∑

i∈N(K)

πi ≥
∑
r∈K+

(1− q)ρr +
∑
r∈K−

qρr ∀K. (8)

In principle, there are exponentially (in n) many of these conditions. However, it is easy to
show that many will be redundant. Call a subset K of demand nodes consecutive if K is
of the form {b+, (b+ 1)+, . . . , (n− 1)+} or {1−, . . . , a−}.

Lemma 2.1 If constraint (8) holds for all consecutive subsets K of demand nodes, then it
holds for all subsets K.

Proof. To deny the conclusion is to admit the existence of a non-consecutive set K of
demand nodes such that ∑

i∈N(K)

πi −
∑
r∈K+

(1− q)ρr −
∑
r∈K−

qρr < 0.

Call this difference the deficit. We show that if any subset of demand nodes has a negative
deficit, there must be a consecutive subset of demand nodes with a negative deficit.

If K contains the plus nodes j+ and (j+r)+ for some r but not a+, such that j < a < j+r,
then including a+ in K would leave the left-hand side of (8) unchanged but increase the right-
hand side, thus producing another set with a negative deficit. Similarly, if there is a k+ whose
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index exceeds the index of the largest plus node in K, including it would decrease the deficit.
The same argument applies to the minus nodes. Therefore, we may assume that there exist
indices a and b with

K = {1−, . . . , a−} ∪ {b+, . . . , (n− 1)+}.

If a ≥ b, then N(K) consists of all supply nodes and (8) holds. So, suppose that a < b.
Then,

N(K) = {1, . . . , a} ∪ {b+ 1, . . . , n} = N(K−) ∪N(K+).

Therefore, (8) must fail for at least one of K− or K+, which implies at least one consecutive
subset with a negative deficit, a contradiction.

Given the Lemma it suffices to enforce (8) only for consecutive sets of demand nodes.
When K = {r+, . . . , (n− 1)+} this would imply that

n−1∑
j=r

ρj ≤
∑n

j=r+1 πj

1− q
⇒ 1−

r−1∑
j=1

ρj ≤
∑n

j=r+1 πj

1− q
⇒

r−1∑
j=1

ρj ≥
∑r

j=1 πj − q

1− q
.

When K = {1−, . . . , r−} we conclude that

r∑
j=1

ρj ≤
∑r

j=1 πj

q
∀r.

This yields the following:

Theorem 2.1 A distribution {ρr}nr=1 over q-quantiles is implementable iff

max{
∑r+1

j=1 πj − q

1− q
, 0} ≤

r∑
j=1

ρj ≤ min{1,
∑r

j=1 πj

q
} ∀r ≤ n− 1.

Theorem 2.1 tells us which distributions over quantiles (under the strict notion) are
implementable but not the mapping from states to signals that will induce it. However, an
extreme point solution to system (4-7) (when it exists) is easily found using the Northwest
corner rule, and this rule characterizes the set of extreme points (see Section 8.1 of Brualdi
(2006)).

2.1 Optimizing over ρ

The problem of maximizing a linear function of the ρjs satisfying the constraints in Theo-
rem 2.1 is an instance of maximizing a linear function over a generalized polymatroid. A
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generalized polymatroid is a polyhedron associated with a pair of real-valued functions g(·)
and f(·) defined over subsets of {1, . . . , n} that are called paramodular:

1. g(·) is non-decreasing and supermodular,

2. f(·) is non-decreasing and submodular,

3. g(∅) = f(∅) = 0,

4. f(S)− g(T ) ≥ f(S \ T )− g(T \ S) holds for all S, T ⊆ {1, . . . , n}.

Given a paramodular pair (g, f), a generalized polymatroid is

{y ∈ ℜn : g(S) ≤
∑
j∈S

yj ≤ f(S) ∀S ⊆ {1, . . . , n}}.

Optimizing a linear function over a generalized polymatroid can be accomplished using a
greedy algorithm; see Chapter 14.5 in Frank (2011) for details. This also gives a characteri-
zation of the extreme points of a generalized polymatroid.

We now explain why the constraints in Theorem 2.1 correspond to a generalized poly-
matroid. Let L be a laminar family subsets of {1, . . . , n}.1 To eliminate some inessential
possibilities, we assume that the maximal (in the sense of set inclusion) elements of L par-
tition {1, . . . , n}.

For each S ∈ L there are two non-negative integers k(S) and b(S) so that the following
is feasible:

b(S) ≤
∑
i∈S

yi ≤ k(S) ∀S ∈ L (9)

yi ≥ 0 ∀i ∈ {1, . . . , n} (10)

That the maximal elements of L partition {1, . . . , n} ensures that system (9-10) is bounded.
The problem of maximizing a linear function over (9-10) can be reduced to the problem

of optimization over a generalized polymatroid for a suitable pair of paramodular functions
{g(·), f(·)}. For each S ⊆ {1, . . . , n} set

f(S) = max
∑
i∈S

yi

s.t.
∑
i∈A

yi ≤ k(A) ∀A ∈ L

1A family of subsets is laminar if, for any two members in the family, either they are disjoint or one is
contained in the other. Budish et al. (2013) call the family hierarchical.
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yi ≥ 0 ∀i ∈ {1, . . . , n}

and
g(S) = min

∑
i∈S

yi

s.t.
∑
i∈A

yi ≥ b(A) ∀A ∈ L

yi ≥ 0 ∀i ∈ {1, . . . , n}

2.2 Monotone Function Intervals

Here, we remark that a problem closely related to characterizing implementable quantiles
is also related to generalized polymatroids. It is the problem of characterizing the set of
monotone functions that lie pointwise between two fixed monotone functions. It was studied
in Yang and Zentefis (2024) for the continuum case. We focus of the ‘discrete’ case. The
continuum case follows as the discretization becomes finer and finer via Helly’s selection
Theorem (Jenssen (2024)).

Let ℓ(·) and u(·) be non-negative real valued non-decreasing functions defined on {0, 1, . . . , n}
such that ℓ(k) ≤ u(k) for all k ∈ {0, 1, . . . , n}. The restriction of ℓ(·), u(·) to being non-
negative is for convenience only. Let K(ℓ, u) denote the set of monotone functions that lie
between ℓ(·) and u(·), i.e.,

K(ℓ, u) = {h : {0, 1 . . . , n} → ℜ : ℓ(k) ≤ h(k) ≤ u(k) ∀k}.

Now, any non-negative, non-decreasing function h(·) defined on {0, 1, . . . , n} can be expressed
h(k) =

∑k
j=0 xj where xj ≥ 0 for all j = 0, 1, . . . , n. Therefore, an equivalent description of

K(ℓ, u) is the set of solutions to

ℓ(k) ≤
k∑

j=1

xj ≤ u(k) ∀k = 0, 1, . . . , n

xj ≥ 0 j = 0, 1, . . . , n

Notice that the set of constraints forms a laminar family. Hence, the set of monotone func-
tions that lie pointwise between two fixed monotone functions is a generalized polymatroid.
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3 Relaxing The Notion of Quantile

We relax the strict notion of quantile used earlier and show that a variation of Theorem 2.1
still holds. Recall, that a q-quantile of a distribution F (·) over {1, . . . , n} is the smallest
integer r such that F (r) ≥ q. A necessary condition for a distribution F (·) to have a q-
quantile of r is the existence of an ϵ > 0 such that F (r) ≥ q and F (r−1) ≤ q−ϵ. We use this
observation to characterize which distributions {ρr}nr=1 over q-quantiles are implementable.

Given an ϵ > 0, a distribution {ρr}nr=1 over q-quantiles is implementable if there is a
feasible solution to the following:

∑
j∈D

x(i, j) = πi ∀i ∈ {1, . . . , n} (11)

n∑
i=1

x(i, r) = ρr r ∈ {1, . . . , n} (12)

r∑
i=1

x(i, r) ≥ qρr (13)

r−1∑
i=1

x(i, r) ≤ (q − ϵ)ρr r ∈ {2, . . . , n} (14)

x(i, r) ≥ 0 ∀i, r (15)

Theorem 3.1 System (11- 15) is feasible iff

max{
∑k

i=1 πi − q + ϵ

1− q + ϵ
, 0} ≤

k∑
r=1

ρr ≤ min{1,
∑k

i=1 πi

q
}, ∀r ≤ n− 1

The proof is an immediate consequence of a generalization of Gale’s Theorem, which is
discussed in the next section.

4 Generalizations

We consider two generalizations of the problem of determining which distributions over
quantiles are implementable. In each case, the relevant characterization is easily obtained
using a generalization of Gale’s Theorem.

In the first generalization, for economy of exposition only, focus on the case of quartiles.
Let D denote a set of possible quartiles. An element of D is a vector (r1, r2, r3) with
r1 < r2 < r3. Here r1 is the 25th percentile, r2 is the 50th percentile while r3 is the 75th
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percentile. Denote by ρ(r1, r2, r3) the ‘desired’ probability of realizing a posterior whose
quartiles take values (r1, r2, r3). Given D and a probability vector ρ over the elements of D,
is there a mapping of states to signals that will induce the distribution ρ over D? This can
be restated as whether the system below is feasible.∑

j∈D

x(i, j) = πi ∀i ∈ {1, . . . , n} (16)

n∑
i=1

x(i, j) = ρj ∀j ∈ D (17)

∑
i≤rj1

x(i, j) ≥ 0.25ρj (18)

∑
i≤rj2

x(i, j) ≥ 0.5ρj (19)

∑
i≤rj3

x(i, j) ≥ 0.75ρj (20)

∑
i≤rj1−1

x(i, j) ≤ (0.25− ϵ)ρj (21)

∑
i≤rj2−1

x(i, j) ≤ (0.5− ϵ)ρj (22)

∑
i≤rj3−1

x(i, j) ≤ (0.75− ϵ)ρj (23)

x(i, j) ≥ 0 ∀i ∈ {1, . . . , n}, j ∈ D (24)

Theorem 4.1 Let D be a finite set of possible quartile vectors r and ρ a probability distribu-
tion over D. There is a mapping of states to signals such that the probability of the realized
posterior having quartiles r ∈ D is ρr iff,

0.25
∑

j:rj1≤k≤rj2−1

ρj + 0.5
∑

j:rj2≤k≤rj3−1

ρj + 0.75
∑

j:rj3≤k≤n−1

ρj ≤
k∑

i=1

πi ∀k ≤ n− 1

(0.25−ϵ)
∑

j:k≤rj1−1

ρj+(0.5−ϵ)
∑

j:rj1≤k≤rj2−1

ρj+(0.75−ϵ)
∑

j:rj2≤k≤rj3−1

ρj+
∑

j:rj3≤k

ρj ≥
k∑

i=1

πi ∀k ≤ n−1

Now, consider a different yet related question. First, we recall the notion of first order
stochastic dominance. A distribution H(·) over {1, . . . , n} is said to first-order stochastically
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dominate (FOSD) distribution W (·) if

H(r) ≤ W (r) ∀r ≤ n− 1.

If the corresponding density functions are denoted h(·) and w(·) respectively, the FOSD
condition can be written as:

r∑
j=1

h(j) ≤
r∑

j=1

w(j) ∀r ≤ n− 1

n∑
j=1

h(j) = 1

If H FOSD W , then each q-quantile of H is no larger than the corresponding q-quantile of
W .

Now, let D be some finite collection of probability distributions. Fix a probability distri-
bution ρ(·) over the elements of D. Thus, ρ(W ) is the probability assigned to distribution
W in D. Call ρ(·) implementable if there is a mapping of states to signals such that the
probability of the realized posterior FOSD distribution W ∈ D is ρ(W ).

Theorem 4.2 Let D be a finite set of probability distributions and ρ a probability distribution
over D. Then, ρ(·) is implementable iff

∑
W∈D

ρ(W )W (r) ≥
r∑

i=1

πi ∀r = 1, . . . , n.

Theorems 3.1, 4.1, and 4.2 are corollaries of a generalization of Gale’s Theorem (see
Theorem 6 in Che et al. (2013)) described below. The proof of Theorem 4.1 appears in the
appendix. The proofs of Theorem’s 3.1 and 4.2 are similar and are omitted.

4.1 Generalization of Gale’s Theorem

We provide a formal statement of the generalization of Gale’s Theorem that is independent
of the auction context surrounding it in Che et al. (2013), which we hope will encourage
its wider use. For completeness, we provide a proof that differs from the one in (Che et al.
(2013)). Its virtue is its brevity.

Let {1, . . . , n} be the set of supply nodes, each with a supply of πi. Let D be the set
of demand nodes, and associated with each demand node j ∈ D is a pair of paramodular
functions {gj(·), fj(·)} defined on subsets of {1, . . . , n}.
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The associated flow problem is:

n∑
i=1

xij = πi ∀i ∈ {1, . . . , n} (25)

gj(S) ≤
∑
i∈S

xij ≤ fj(S) ∀S ⊆ {1, . . . , n} ∀j ∈ D (26)

xij ≥ 0 ∀i ∈ {1, . . . , n}, j ∈ D (27)

The following is Theorem 6 in (Che et al. (2013)) stripped of its auction context.

Theorem 4.3 System (25-27) is feasible iff. for all disjoint T+, T− ⊆ {1, . . . , n}∑
j∈D

fj(T
−)−

∑
i∈T−

πi ≥ 0 ≥
∑
j∈D

gj(T
+)−

∑
i∈T+

πi.

Proof. If the system (25-27) is infeasible, by the Farkas lemma, there exists a feasible
solution to its alternative:

n∑
i=1

πisi +
∑
j∈D

∑
S⊆{1,...,n}

fj(S)yj(S)−
∑
j∈D

∑
S⊆{1,...,n}

gj(S)zj(S) < 0 (28)

si +
∑
S∋i

yj(S)−
∑
S∋i

zj(S) ≥ 0 ∀i = 1, . . . , n ∀j ∈ D (29)

yj(S), zj(S) ≥ 0 ∀S ⊆ {1, . . . , n} ∀j ∈ D (30)

If (s∗, y∗, z∗) is a feasible solution to (28-30), by scaling we can assume

−1 ≤ si ≤ 1 ∀i ∈ {1, . . . , n}. (31)

yj(S), zj(S) ≤ 1 ∀j ∈ D ∀S ⊆ {1, . . . , n}. (32)

Therefore, we can assume that (s∗, y∗, z∗) is an extreme point of (29 − 32). We show that
the extreme points of (29− 32) are integral.

A standard uncrossing argument implies that {S : y∗j (S) > 0} and {S : z∗j (S) > 0} are
laminar families. Now, the incidence matrix of the union of two laminar families is totally
unimodular. If we append to a totally unimodular matrix an identity matrix, constraints
(31-32), the augmented matrix is also totally unimodular. Hence, the basis matrix associated
with the extreme point is totally unimodular, implying that (s∗, y∗, z∗) is integral. In fact,
each si ∈ {−1, 0,+1} for all i ∈ {1, . . . , n}.

Let T+ = {i ∈ {1, . . . , n} : s∗i = 1} and T− = {i ∈ {1, . . . , n} : s∗i = −1}. We now
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determine the values of (y∗, z∗) by selecting them to minimize
∑

j∈D
∑

S⊆{1,...,n} fj(S)yj(S)−∑
j∈D

∑
S⊆{1,...,n} gj(S)zj(S) subject to (29-32) holding s∗ fixed. Stating this problem explic-

itly:
min

∑
j∈D

∑
S⊆{1,...,n}

fj(S)yj(S)−
∑
j∈D

∑
S⊆{1,...,n}

gj(S)zj(S)

s.t.
∑
S∋i

yj(S)−
∑
S∋i

zj(S) ≥ −1 ∀i ∈ T+ ∀j ∈ D

∑
S∋i

yj(S)−
∑
S∋i

zj(S) ≥ 1 ∀i ∈ T− ∀j ∈ D

∑
S∋i

yj(S)−
∑
S∋i

zj(S) ≥ 0 ∀i ̸∈ T+ ∪ T− ∀j ∈ D

yj(S), zj(S) ≥ 0 ∀S ⊆ {1, . . . , n} ∀j ∈ D

We will conclude that y∗j (T
−) = 1 for all j ∈ D and y∗j (S) = 0 whenever S ̸= T−.

Similarly, z∗j (T+) = 1 for all j ∈ D and z∗j (S) = 0 whenever S ̸= T+. Recall, we can assume
that {S : y∗j (S) > 0} and {S : z∗j (S) > 0} are laminar and y∗j (S), z

∗
j (S) ∈ {0, 1} for all j and

S.

1. For all j ∈ D and S ⊆ {1, . . . , n} we may assume that y∗j (S)z∗j (S) = 0. If not, decrease
y∗j (S) and z∗j (S) by 1. Feasibility is preserved and objective function value declines by
fj(S)− gj(S) ≥ 0.

2. Subadditivity of fj(·) implies we can eliminate the possibility of A,B ∈ {S : y∗j (S) > 0}
such that A∩B = ∅. Therefore, feasibility requires that y∗j (S) = 1 for some S containing
T−.

3. Given that fj(·) is non-decreasing, y∗j (S) = 0 whenever S is a strict superset of T−.
Hence, y∗j (T−) = 1.

4. Given y∗j (T
−) = 1, we can set y∗j (S) = 0 for all S ⊂ T− without violating feasibility.

A similar argument applies to the zj(S) variables. Hence, infeasibility implies there exist
disjoint sets T+, T− ⊆ {1, . . . , n} such that∑

i∈T+

πi −
∑
i∈T−

πi +
∑
j∈D

fj(T
−)−

∑
j∈D

gj(T
+) < 0.

We consider Theorem 4.3 to be folklore. Special cases of it, such as the matroid partition
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Theorem, Edmonds (1965), are known. The proof given here is a variation of a proof of a
closely related result.

We state a variant of Theorem 4.3 (also folklore) that is useful. Associate with each
j ∈ D a laminar family of subsets of {1, . . . , n} denoted Lj. For each S ∈ Lj there are two
non-negative integers kj(S) and bj(S) so that the following is feasible:

bj(S) ≤
∑
i∈S

yi ≤ kj(S) ∀S ∈ Lj

yi ≥ 0 ∀i ∈ {1, . . . , n}

The system whose feasibility will be of interest is

n∑
i=1

xij = πi ∀i ∈ {1, . . . , n} (33)

bj(S) ≤
∑
i∈S

xij ≤ kj(S) ∀S ∈ Lj ∀j ∈ D (34)

xij ≥ 0 ∀i ∈ {1, . . . , n}, j ∈ D (35)

Verifying feasibility of (33-35) can be reduced to verifying the feasibility of (25-27) for a
suitable pair of paramodular functions {gj(·), fj(·)}j∈D. For each j ∈ D set

fj(S) = max
∑
i∈S

yi

s.t.
∑
i∈A

yi ≤ kj(A) ∀A ∈ Lj

yi ≥ 0 ∀i ∈ {1, . . . , n}

and
gj(S) = min

∑
i∈S

yi

s.t.
∑
i∈A

yi ≥ bj(A) ∀A ∈ Lj

yi ≥ 0 ∀i ∈ {1, . . . , n}.
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Appendix: Proof of Theorem 4.1

In observing the constraints (16-24), we see that we can associate with each j ∈ D two
laminar families. The first is:

n∑
i=1

x(i, j) ≥ ρj ∀j ∈ D

∑
i≤rj1

x(i, j) ≥ 0.25ρj

∑
i≤rj2

x(i, j) ≥ 0.5ρj

∑
i≤rj3

x(i, j) ≥ 0.75ρj

This gives rise to the following supermodular function for each j ∈ D:

gj(S) = min
∑
i∈S

yi

s.t.
∑
i≤rj1

yi ≥ 0.25ρj
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∑
i≤rj2

yi ≥ 0.5ρj

∑
i≤rj3

yi ≥ 0.75ρj

n∑
i=1

yi ≥ ρj

yi ≥ 0 ∀i

A straightforward computation shows that:

1. gj({1, . . . , k}) = 0.25ρj if rj1 ≤ k ≤ rj2 − 1

2. gj({1, . . . , k}) = 0.5ρj if rj2 ≤ k ≤ rj3 − 1

3. gj({1, . . . , k}) = 0.75ρj if rj3 ≤ k ≤ n− 1

4. gj({1, . . . , k}) = ρj if k = n.

5. gj(S) = 0 in all other cases.

Similarly, for each j ∈ D we have the following submodular function:

fj(S) = max
∑
i∈S

yi

s.t.
∑

i≤rj1−1

yi ≤ (0.25− ϵ)ρj

∑
i≤rj2−1

yi ≤ (0.5− ϵ)ρj

∑
i≤rj3−1

yi ≤ (0.75− ϵ)ρj

n∑
i=1

yi ≤ ρj

yi ≥ 0 ∀i

A straightforward computation shows that

1. fj(S) = (0.25− ϵ)ρj if maxi∈S i ≤ rj1 − 1

2. fj(S) = (0.5− ϵ)ρj if rj1 ≤ maxi∈S i ≤ rj2 − 1
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3. fj(S) = (0.75− ϵ)ρj if rj2 ≤ maxi∈S i ≤ rj3 − 1

4. fj(S) = ρj if rj3 ≤ maxi∈S i

From Theorem 4.3, we know that to ensure feasibility:∑
j∈D

fj(T
−)−

∑
i∈T−

πi ≥ 0 ≥
∑
j∈D

gj(T
+)−

∑
i∈T+

πi (36)

for all disjoint T−, T+ ⊆ {1, . . . , n}.
Focus on the right-hand side of (36) first. From the properties of gj(·), it’s clear that the

only sets T+ that yield a non-trivial condition are of the form {1, . . . , k} for k ≤ n− 1. This
yields:

0.25
∑

j:rj1≤k≤rj2−1

ρj + 0.5
∑

j:rj2≤k≤rj3−1

ρj + 0.75
∑

j:rj3≤k≤n−1

ρj −
k∑

i=1

πi ≤ 0.

Now, consider the left hand side of (36). Suppose there is a t ̸∈ T−+ such that t <

maxi∈T− i. If we replace T− by T− ∪ {t} in the left-hand side of (36), this can only lower it.
Hence, we can restrict ourselves to sets T− such that T− = {1, . . . , k} or T− = {k, . . . , n}.
The first kind yields:

(0.25− ϵ)
∑

j:k≤rj1−1

ρj + (0.5− ϵ)
∑

j:rj1≤k≤rj2−1

ρj + (0.75− ϵ)
∑

j:rj2≤k≤rj3−1

ρj +
∑

j:rj3≤k

ρj −
k∑

i=1

πi ≥ 0.

If we set T− = {k + 1, . . . , n} and T+ = {1, . . . , k}, this yields:

∑
j∈D

ρj −
n∑

i=k+1

πi ≥ 0.25
∑

j:rj1≤k≤rj2−1

ρj + 0.5
∑

j:rj2≤k≤rj3−1

ρj + 0.75
∑

j:rj3≤k≤n−1

ρj −
k∑

i=1

πi

⇒ 2
k∑

i=1

πi ≥ 0.25
∑

j:rj1≤k≤rj2−1

ρj + 0.5
∑

j:rj2≤k≤rj3−1

ρj + 0.75
∑

j:rj3≤k≤n−1

ρj

This is redundant given earlier inequality.
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