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Abstract

This paper characterizes the stationary equilibrium of a continuous-time
neoclassical production economy with capital accumulation in which agents
can insure against idiosyncratic income risk by trading state-contingent as-
sets, subject to limited commitment constraints that rule out short-selling. For
an N-state Poisson labor productivity process we characterize the household
consumption-asset allocation, stationary asset distribution and aggregate cap-
ital supply. When production is Cobb-Douglas, productivity takes two values,
of which one is zero, and agents have log-utility, the equilibrium interest rate,
capital stock and consumption distribution is given in closed form. We there-
fore provide a tractable alternative to the Aiyagari incomplete markets model.
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1 Introduction

In this paper, we provide a fully micro-founded, analytically tractable general equi-
librium macroeconomic model of neoclassical investment, production, and the cross-
sectional consumption distribution in which the limits to insurance of idiosyncratic
income risk are explicitly derived from a limited commitment friction.

This model seeks to integrate two foundational literatures on macroeconomics
with household heterogeneity. The first strand studies the standard incomplete mar-
kets (SIM) model with uninsurable idiosyncratic income shocks and neoclassical
production, see Bewley (1986), Imrohoroglu (1989), Uhlig (1990), Huggett (1993)
and Aiyagari (1994). In that model, agents can trade assets to self-insure against
income fluctuations, but the payout of these assets by assumption is not contingent
on an agent’s individual income realization, thereby ruling out explicit insurance
against income risk. The second branch is the broad literature on endogenously
incomplete markets, and recursive contracts to solve them, that permit explicit in-
surance but its extent is restricted by informational or contract enforcement fric-
tions. We follow Alvarez and Jermann (2000) and Krueger and Uhlig (2006) and
allow agents to trade assets that pay out contingent on agent-specific shocks but
are subject to limited commitment: whereas the financial intermediaries (e.g., in-
surance companies) selling these assets are committed to making state-contingent
payments, the agent is not. As a consequence of the assumed lack of punishment
from default agents cannot sell these assets short, limiting the degree of insurance
they can obtain. The contracts are front-loaded: when income is high, the agent
purchases insurance that finances consumption in excess of income down the road
should income change. We integrate this friction in a continuous time, general equi-
librium neoclassical production economy and characterize stationary equilibria.

The result is a macroeconomic model with agent heterogeneity that links the ac-
cumulation of the aggregate capital stock to the insurance contracts of agents.1 We
assume that agents have CRRA utility in consumption. Given the aggregate interest

1In practice, capital held for financing insurance commitments is a substantial part of the capital
stock. Here we make the extreme assumption that it accounts for all of it. Note that the SIM model
also assumes that self-insurance against idiosyncratic income risk accounts for the entire capital
holdings: agents with constant income and the same discount factor would not accumulate capital.
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rate r and implied wage w, we analytically characterize the optimal consumption
and capital allocation choices and the resulting aggregate capital supply when in-
come follows a general N -state Poisson process. We show how to calculate the
equilibrium interest rate by solving a one-dimensional nonlinear equation in r after
normalizing capital supply and demand by the aggregate wage. For the special case
of two income states, one of which is zero, we characterize the equilibrium interest
rate and all equilibrium entities in closed form, including comparative statics with
respect to the model parameters determining income risk, preferences, and technol-
ogy. We use this special case throughout to illustrate how the general theory works
and to show how a unique, or multiple-state equilibria can arise.

Our results for the special two-income state case and the full characterization
of the resulting equilibrium can be seen as the counterpart to the characterization
of the two-state continuous-time SIM model in Achdou et al. (2022). They also
characterize the equilibrium by two key differential equations: one governing the
optimal solution of the consumption (self-)insurance problem and one character-
izing the associated stationary distribution. They derive an analytical characteri-
zation of the wealth distribution, given the savings function. The latter cannot be
determined in closed form there (although partially characterized); for the two-state
case, we achieve a full characterization of the stationary distribution in this paper
and thus proceed all the way to closed-form solutions for the equilibrium objects.
Methodologically, the papers complement each other by characterizing equilibria in
the same physical environment but under two fundamentally different market struc-
tures. Our results for the N-state case and the full analytical characterization, given
the equilibrium interest rate, go beyond Achdou et al. (2022) and open the door
to quantitative applications in a rich environment but with considerable analytical
transparency regarding the solution. We then study one special case analytically
and one quantitatively to showcase our approach. Thus, the paper provides a quan-
titative workhorse model and alternative to the celebrated SIM.

We build on the substantial literature on limited commitment, including Thomas
and Worrall (1988), Kehoe and Levine (1993), Phelan (1995), Kocherlakota (1996),
Broer (2013), Golosov et al. (2016), Abraham and Laczo (2018), Sargent et al. (2021),
and specifically shares insights with the theoretical analyses in Krueger and Perri
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(2006, 2011), Zhang (2013), Grochulski and Zhang (2012), and Miao and Zhang
(2015), but for a general N -state continuous time Poisson process.2 We provide
a general equilibrium treatment, as do Hellwig and Lorenzoni (2009), Martins-da-
Rocha and Santos (2019), and Gottardi and Kubler (2015).

Our theory builds on recent advances regarding the empirical properties of house-
hold consumption. There is now considerable evidence that individual consumption
smoothing is larger than what standard approaches of self-insurance via asset sav-
ings generate. Blundell, Pistaferri and Preston (2008) have shown that there is very
considerable consumption insurance even of permanent income shocks, a finding
that is difficult to rationalize within the standard SIM, see Kaplan and Violante
(2011). Using improved methods and data as well as alternative approaches, these
results have been largely confirmed by the more recent literature such as Arellano,
Blundell and Bonhomme (2017), Eika et al. (2020), Chatterjee, Morley and Sigh
(2020), Braxton et al. (2021), Commault (2022), and Balke and Lamadon (2022)
for the labor market, as well as Hofmann and Browne (2013), Ghili, Handel, Hendel
and Whinston (2023) and Atal, Fang, Karlsson and Siebarth (2023) for the private
health insurance market. Thus, alternatives to the conventional self-insurance ap-
proach are needed, which our paper provides. As in Harris and Holmstrom (1982),
one interpretation of the consumption insurance allocation in this paper is that firms
insure workers against idiosyncratic productivity fluctuations. This perspective is
pursued in Guiso, Pistaferri, and Schivardi (2005) and Balke and Lamadon (2022).
Saporta-Eksten (2016) shows that wages are lower after a spell of unemployment,
which he interprets as a loss in productivity. In the context of our model, this ob-
servation can be rationalized as part of optimal consumption insurance.

2 The Model

Time is continuous, and the economy is populated by a continuum of infinitely
lived individuals of mass 1 who value consumption streams. Aggregate output is
produced with capital and labor and can be used for consumption and investment.

2Our general approach is also related in spirit to recent work by Dàvila and Schaab (2023),
Alvarez and Lippi (2022), and Alvarez, Lippi and Souganidis (2022).
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2.1 Technology

The unique final output good is produced by a perfectly competitive sector of
firms that use labor and capital as input. The production function F (K,L) for
K ≥ 0, L ≥ 0 is assumed to be strictly concave, have constant returns to scale, be
strictly increasing in each argument, satisfy F (0, 0) = 0 and be twice continuously
differentiable. Production firms seek to maximize profits, taking as given the mar-
ket spot wage w per efficiency unit of labor and the market rental rate per unit of
capital. Capital accumulation is linear, and capital depreciates at rate δ. There is
a resulting equilibrium rate of return (equal to the real interest rate) r for investing
in capital. We drop time subscripts t to economize on notation whenever possible
since we shall concern ourselves only with stationary equilibria in which aggregate
variables such as the factor prices (w, r) are constant and where w > 0.

2.2 Preferences and Endowments

Agents have a strictly increasing, strictly concave, twice continuously differentiable
CRRA period utility function u(c), with risk aversion parameter σ, and discount the
future at rate ρ > 0. The expected lifetime utility of a newborn agent is given by

E

[∫ ∞

0

e−ρt c
1−σ
t

1− σ
dt

]
.

where it is understood that σ = 1 represents the log-case.
Individuals face idiosyncratic income risk. Specifically, each agent can be in one

of N states x ∈ X = {1, . . . , N}, with associated idiosyncratic labor productivity
level z(x) ≥ 0.3 For a fixed aggregate equilibrium wage w per labor efficiency
units, individual labor income in state x is then wz(x), and we will use the terms
(labor) productivity and income interchangeably. Let αx,x′ be the transition rate
from x to x′, with αx,x = −

∑
x′ ̸=x αx,x′ and collect the transition rates in the

3We denote real-valued functions of x with round brackets, while subscript-x denotes vectors of
length x − 1 or matrices of size (x − 1) × (x − 1). For example, zx is the (x − 1)-dimensional
vector [z(1), . . . , z(x − 1)]′. We use function-of-x notation to denote entries of a vector, as in
this example, as well as entries of a matrix, except denoting αx,x′ using sub-indices. We also use
sub-index notation to denote functions of time.
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N × N matrix A. We assume that for every x′, there is some x ̸= x′, so that
αx,x′ ̸= 0, i.e., every state can be reached from some other state. Transitions are
assumed to be independent across individuals. Associated with A is a stationary
distribution µ̄ = [µ̄1, . . . , µ̄N ]

′, an N × 1-dimensional vector satisfying

A′µ̄ = 0 and
∑
x∈X

µ̄(x) = 1 (1)

We also assume that the stationary distribution is unique, that all individuals draw
their initial productivity from µ̄ and that the idiosyncratic shock process satisfies∑

x∈X

z(x)µ̄(x) = 1 (2)

so that aggregate labor input is equal to L = 1 in every period.4

2.3 Financial Markets

Households seek insurance against their idiosyncratic risk. We envision a compet-
itive sector of intermediaries who provide insurance at actuarially fair rates. These
intermediaries invest the insurance payments in agent-specific accounts in units of
capital k, earning the market interest rate r. They will then make payments from
this capital account in the insurance case, i.e., if the current state x of the agent state
changes to a new state x′. This may require changing the account amount from k to
k(x′). The household budget budget constraint reads as

c+ k̇ +
∑
x′ ̸=x

αx,x′(k(x′)− k) = rk + wz(x) (3)

This constraint takes into account that insurance is actuarially fair so that the outlay
for the account change k(x′) − k equals αx,x′(k(x′) − k). In contrast to the SIM
model, capital is state-contingent (on agent-specific productivity x). We assume
that intermediaries are fully committed to making the state-contingent payments,

4Uniqueness of µ̄ can be assured under standard assumptions on A, for example, that all elements
of A are strictly positive. The assumption that all states can be reached assures that µ̄(x) > 0 for all
x. The idiosyncratic productivity states z(x) can always be scaled such that (2) is satisfied.
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but the commitment by the agents is limited in that they are free to switch interme-
diaries at any point and without penalty for not making promised payments. There-
fore, agents cannot go short in their capital accounts, resulting in the constraints

k(x′) ≥ 0 (4)

Furthermore, we need to ensure that capital does not become negative even in the
absence of a state transition. This is achieved by requiring that

k̇ ≥ 0 if k = 0 (5)

The Hamilton-Jacobi-Bellman equation for the value function U of the household
maximization problem can then be stated as

ρU(k, x) = max
c≥0,k̇,(k(x′))x′∈X

{
u(c) + U ′(k, x)k̇ +

∑
x′ ̸=x

αx,x′(U(k(x′), x′)− U(k, x))

}
(6)

with maximization subject to the budget constraint (3) and the limited commitment
constraints (4) and (5).

An alternative and (as shown in Krueger and Uhlig, 2006) equivalent formu-
lation of the limited commitment friction without punishment for default is to ex-
plicitly introduce competitive cost-minimizing financial intermediaries that offer
long-term consumption insurance contracts. These contracts stipulate full income-
history contingent consumption payments in exchange for delivering all labor in-
come to the intermediaries. One-sided limited commitment then means that inter-
mediaries can fully commit to long-term contracts, but individuals cannot. That is,
in every instant, after having observed current labor productivity, the individual can
leave her current contract and sign up with an alternative intermediary at no pun-
ishment, obtaining in equilibrium the highest lifetime utility contract that allows an
intermediary to break even. Here, we focus on formulating the model with finan-
cial markets in the spirit of Alvarez and Jermann (2000). The tight borrowing con-
straints at zero are precisely the borrowing limits they call “not too tight”, given that
there is no punishment from default here. As a third interpretation of the financial
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market structure we assume, one can think of our formulation as a convex combi-
nation of the standard complete markets model with a full set of state-contingent
claims and natural state-contingent borrowing constraints on one hand and the SIM
model with tight borrowing constraints at zero on the other hand.

3 The Optimal Consumption-Asset Allocation

3.1 General Properties of Optimal Allocations

We now characterize the optimal consumption-saving allocation. To that end, it
is helpful to move from recursive to time domain since the time dependence of
allocation comes through the evolution of the individual capital account k and the
state x when focusing on steady states (and thus on constant wages and interest
rates). Written as a function of time, the budget constraint (3) reads

ct + k̇t +
∑
x′ ̸=x

αx,x′(kt(x
′)− kt) = rkt + wz(x) (7)

where kt(x′) is the date-t state-contingent capital stock going forward from state x′.
It is also equal to the expected net present value of the future consumption stream
net of income when the current state is x′.

Intuitively, agents with positive capital and no state transitions obey a standard
complete markets Euler equation, and consumption is continuous when a state tran-
sition occurs. Consumption might jump upon a state transition, but only if the
associated state-contingent capital k′(x′) is zero (i.e. if the limited commitment
constraint binds). For a given rate of return r on capital, define the growth rate
g = g(r) per

g =
ρ− r

σ
(8)

This growth rate g will be the common growth rate of consumption of all agents
whose limited commitment constraint is not binding. Formally:

Proposition 1. Let w > 0 and r be given. A solution to the HJB equation has the

following properties:
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1. For a agent with k > 0, (6) implies

ċt
ct

= g. (9)

If k′(x′) > 0, then consumption after the state transition is unchanged,

c(k′(x′), x′) = c(k, x). (10)

If k′(x′) = 0, then

c(k′(x′), x′) ≥ c(k, x) (11)

2. The decision rules for consumption c(k;x) is strictly increasing in k. The

decision rule for k(x′; k, x) is weakly increasing in k and strictly increasing

wherever it is positive.

3. U(k, x) is strictly concave in k.

4. For k = 0, the HJB equation (6) implies

k̇t = 0 and ċt = 0 (12)

Proof. See Appendix A.

3.2 Characterization of Optimal Allocation

On the basis of the previous proposition, we can provide a full characterization of
the optimal consumption allocation under the assumption that r ≤ ρ. The next
proposition characterizes the optimal consumption contract by N consumption lev-
els c(x), x ∈ X , so that consumption either drifts down at rate g or jumps up to
c(x′), if a state transition to x′ occurs and c(x′) is higher than the pre-jump con-
sumption level.

If consumption is higher than labor income, it needs to be financed with cap-
ital (income). In particular, suppose that ct = c(x). Capital reserves kx(x

′) > 0

have to be created for all transitions from state x to states x′ with c(x′) < c(x),
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while an upward jump in consumption resets the allocation at zero capital (and
the limited commitment constraint is binding).5 For a given current state x, the
state-contingent capital stocks for states x′ < x form an x − 1-dimensional vector
kx = [kx(1), . . . , kx(x − 1)]′ which we need to characterize as part of the optimal
allocation. This characterization proceeds by first calculating the amount of cap-
ital dx = [dx(1), . . . , dx(x − 1)]′ needed to finance the gap between consumption
and labor income until the endogenous time T (x) when consumption drifting down
from c(x) at rate g reaches the next consumption level c(x − 1). The total capital
saved to insure for a state transition to x′ < x is then the appropriately discounted
sum of these capital differences. For a given g = g(r), a full solution of the agent
problem is then determined by (c(x), T (x), dx, kx) for all x ∈ X . The following
proposition provides a complete and explicit characterization of these entities.

We need the following notation. Let αmin = minx<N αx,N be the minimum
hazard rate across states x < N of escaping to the highest state N . Let 1x be the
(x− 1)-dimensional vector with only 1’s, let 0x be the (x− 1)-dimensional vector
with only 0’s, let Ix be the (x−1)×(x−1)-dimensional identity matrix, let zx be the
(x− 1)-dimensional vector [z(1), . . . , z(x− 1)]′ and let αx = [αx,1, . . . , αx,x−1]

′ ∈
IRx−1 be a vector of length6 x−1. Define the (x−1)×(x−1)-dimensional matrices
Ax, Bx and Cx by Ax(x̃, x

′) = αx̃,x′ for x̃, x′ ∈ {1, . . . , x− 1}, Bx = rIx −Ax and
Cx = (r + g)Ix − Ax. We require the following additional technical condition. It
is satisfied if the matrix Ax has only positive entries off the diagonal. It is closely
related to the concept of irreducibility of Markov chains.

Assumption 1. For every x there is some ϵ̄ > 0 with the property that e−Bxϵ has

only nonzero entries for all 0 < ϵ < ϵ̄.

Proposition 2. Let Assumption 1 be satisfied and w > 0 and r be given. Suppose

that −αmin < r ≤ ρ. Let assumption 1 be satisfied. For each state x ∈ X , let

c = c(x) be the solution to the HJB equation (6) with k = 0. Without loss of

5Since the enumeration of states has no intrinsic importance, we can relabel them such that c(x)
is an increasing sequence.

6Conventionally, the (x − 1) × (x − 1)-dimensional identity matrix is denoted by Ix−1. For
tightness of notation, we instead use the subscript x here, as well as for other (x − 1) × (x − 1)-
dimensional matrices.
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generality, suppose that the exogenous states are ordered such that c(x) ≤ c(x′)

when x < x′.7 For each x ∈ X , the consumption levels c(x), wait times T (x) ∈ IR+

and contingent capital stocks kx ∈ IRx−1
+ and capital differences dx ∈ IRx−1

+ for x =

1 are given by the initialization c(1) = wz(1) and the empty vectors d1 = k1 = [ ],

and for all states x > 1 solve the system of equations8

T (x) =
log(c(x))− log(c(x− 1))

g
∈ [0,∞] (13)

dx = c(x)C−1
x

(
Ix − e−CxT (x)

)
1x −B−1

x

(
Ix − e−BxT (x)

)
wzx (14)

kx = dx + e−BxT (x)

[
kx−1

0

]
(15)

c(x) = wz(x)− αxkx (16)

Proof. See Appendix A

Note that the proof establishes that the expressions in (14) and (15) are also
well-defined for T (x) = ∞, which is important for the case r = ρ and also for the
example considered in the next subsection. Also note that the system of equations
(13)-(16) is block-recursive in x and thus can be solved recursively by starting with
the allocation for x = 1 and iterating forward in x. At each step, these four equa-
tions solve a fixed point problem. Given T (x), one can solve for dx, kx and c(x),
but then c(x) is needed to calculate T (x). The intuition is as follows. A lower c(x)
allows the agent to pay more for the insurance against worse states and consume
more there. However, that consumption plan ultimately must result in the same ini-
tial consumption c(x), when such a transition occurs. So, neither too much nor too
little insurance will do the trick: it has to be just right. In the next subsection 3.3,
we simplify the problem in a two state example, where the low income is zero and

7Since the enumeration of states has no intrinsic importance, we can relabel them such that c(x)
is an increasing sequence. For a recursive algorithm, set x = 1 be the state resulting in the lowest
income z(x). Suppose the sequence of states x = 1, . . . , n and their associated consumption levels
and capital reserves have already been found. Try each of the remaining states as a candidate for the
state resulting in the next lowest c(x) and solve equations (13) to (16). Among all these candidates,
pick that state x, which results in the lowest c(x).

8Note that d1 and k1 have dimension zero. Thus, for x = 2,
[

kx−1

0

]
= [0] and k2 = d2 in

equation (15) which is another way of writing the start of the recursion.
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thus T (x) = ∞, but this will not work generally.

Proposition 3. Let Assumption 1 be satisfied. Then the solution is unique.

Proof. See Appendix A

3.3 An Example

In this subjection, we provide an example intended to serve two purposes. First,
it clarifies how to use the notation and characterization in Proposition 2 and al-
lows us to give an intuition for the optimal solution based on closed-from formulas.
Second, this example delivers a closed-form solution not only of the optimal agent
consumption-capital process but will also exhibit a closed-form solution for the
equilibrium consumption distribution and the law of motion for the aggregate capi-
tal stock, making a complete closed-form characterization of the entire equilibrium
feasible.

To this end, now assume that X = {1, 2} and z(1) = 0. We can interpret the
state x = 2 as being employed and state x = 1 as being unemployed. Also, denote
the Poisson intensity of losing a job as ξ = α2,1 > 0 and the Poisson intensity
of finding a job by ν = α1,2 > 0. Now consider x = 2. The ingredients for the
characterization in Proposition 2, for state x = 2 are as follows. All x − 1 entities
are simply numbers (rather than vectors or matrices), and Ax = α1,1 = −α1,2 = −ν

since all rows of the transition rate matrix A sum to zero. Then Bx = r − α1,1 =

r + ν, Cx = r + g − α1,1 = r + g + ν, αx = α2,1 = ξ, 1x = 1, zx = 0. For this
two-state example, c(1) = 0 and T (2) = ∞, that is, consumption drifts down from
c(2) to c(1) = 0 at rate g asymptotically.9 Now (15) implies that d2(1) = k2(1) and
(16) and (14) read, respectively, as

c(2) = wz(2)− ξk2(1) (17)

k2(1) =
c(2)

r + g + ν
(18)

9In the case r = ρ, which is encompassed in the analysis, consumption remains constant and
does not drift down at all.
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Note that (18) requires r + g + ν > 0 in order for the expression to make sense.
This is assured by the assumption that −min{ξ, ν} = −αmin < r of Proposition 2.
The two equations above can be easily solved explicitly as

c(2) =
r + g + ν

r + g + ν + ξ
wz(2) < wz(2) (19)

k2(1) =
1

r + g + ν + ξ
wz(2) (20)

We also note that for r = ρ or for log-utility (σ = 1) and thus g = ρ− r we have

c(2) =
ρ+ ν

ρ+ ν + ξ
wz(2) (21)

k2(1) =
1

ρ+ ν + ξ
wz(2) (22)

and thus both the share of income in the high state devoted to consumption c(2) as
well as to the capital bought as insurance for the low state k2(1) are independent
of the equilibrium interest rate r. Note that the total expense for insurance is ξ ×
k2(1), which is strictly increasing in the intensity ξ with which the agent becomes
unemployed (and declines with the intensity ν of finding a new job).

A visual representation of the optimal consumption dynamics is provided in Fig-
ure 1. The left panel represents the case r = ρ, and the right panel displays the case
r < ρ in which agents are impatient and, absent constraints, prefer a downward-
sloping consumption time path.

4 The Invariant Consumption Distribution

In the previous section, we have derived the optimal agent consumption allocation
and shown that it is characterized by N consumption thresholds c(x) and wait times
T (x) for all x ∈ X , as well as a common downward consumption drift −g(r) =

−ρ−r
σ

≤ 0 whenever the limited commitment constraint is not binding. In this
section, we will first derive the unique stationary distribution associated with this
consumption process for the general case and then continue our two-state example
for which a closed-form calculation of the distribution can easily be given.
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Figure 1: These two figures show the optimal consumption dynamics for given a
sample path for productivity. If the agent always had zero productivity in the past,
the agent will also consume zero and hold zero contingent capital. Upon the first
instance of high productivity, the agent uses the labor income to finance a jump in
consumption to c(2), but also to acquire the state-contingent capital position k2(1)
which finances the optimal consumption path in the absence of labor income (i.e.,
then productivity falls to z(1)). When r = ρ as in the left panel, consumption is con-
stant forever. While productivity is high, consumption is also constant for r < ρ as
shown in the right panel, and when productivity switches to zero, consumption fol-
lows the standard continuous-time Euler equation and falls at rate g asymptotically
to zero.

4.1 Theoretical Characterization of the Distribution

Assume now that αmin < r < ρ. Let µ(x) be the mass of agents in state x and
at consumption level c(x). Let fx,x̃(t) be the density of agents with current state
x̃ whose consumption has been drifting down t ∈ [0, T (x)] periods from c(x),
starting at t = 0. For these t, consumption is equal or higher than c(x − 1).10 We
collect the mass points and densities as

D = ((µ(x))x∈X , (fx,x̃(t))x,x̃∈X,t≥0) (23)

10For t > T (x), consumption has drifted below c(x − 1), and we let fx,x̃(t) = 0 for t > T (x)
and count the agents arriving at t = T (x) towards µ(x − 1) if x̃ = x − 1 or towards fx−1,x̃ if
x̃ < x− 1. Note that fx,x̃(t) = 0, if x̃ ≥ x, since agents in state x̃ ≥ x consume at least c(x).
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and call it the stationary distribution if its mass integrates to unity and it is a
solution to the state and consumption transitions implied by the Markov process for
the states determined by the matrix A and the consumption evolution characterized
in Proposition 2. Thus, these point masses µ(x) and densities fx,x̃ satisfy a list of
conditions implied by the Kolmogorov forward equations given in Proposition 12
of Appendix B.In particular, let fx(t) = [fx,1(t), . . . , fx,x−1(t)]

′. This vector of
densities satisfies the matrix ODE

ḟx(t) = A′
xfx(t). (24)

They give rise to the following complete characterization of the stationary distribu-
tion D of decay times t.

Proposition 4. Recall that µ̄ is the unconditional stationary distribution across

states, solving 0 = A′µ̄ and
∑

x µ̄(x) = 1, assumed to be unique. Let Assumption

1 be satisfied and assume that αx,x < 0 for all x and that µ̄N > 0.11 Let fx(t) =

[fx,1(t), . . . , fx,x−1(t)]
′. Then the stationary distribution D is unique and can be

calculated recursively as follows.

1. µN = µ̄N

2. For x = N, . . . , 2,

(a) calculate the x−1-dimensional vector fx(0) = [fx,1(0), . . . , fx,x−1(0)]
′:

fx,x̃(0) =

{
αx,x̃µ(x), if x = N

αx,x̃µ(x) + fx+1,x̃(Tx+1), if x < N
(25)

(b) calculate the solution fx(t) for t ∈ (0, T (x)] to (24) as12

fx(t) = exp (A′
xt) fx(0) (27)

11If αx,x = 0, the state x would be absorbing. Note that it is easy to generalize the result to a case
where µ̄N = . . . = µ̄x̄+1 = 0 in which case µ(x) = 0 and fx,x′(t) = 0 for all x > x̄.

12In particular,
fx(T (x)) = exp (A′

xT (x)) fx(0) (26)
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(c) Finally,

µ(x−1) =
−1

αx−1,x−1

(
fx,x−1(Tx) +

∑
x̃<x−1

αx̃,x−1

(
µ̄x̃ −

∑
x′>x−1

∫ Tx′

t=0

fx′,x̃(t)dt

))
(28)

The integral terms in (28) can be calculated explicitly as∫ Tx

t=0

fx(t)dt = (A′
x)

−1
(exp(A′

xT (x))− Ix)fx(0) (29)

Proof. See Appendix B

The conditions that a stationary distribution has to satisfy have the following
interpretation. Item 1. states that all individuals currently in the highest state x = N

(with mass µ̄N) are located at the mass point µN and thus will have the highest
consumption level c(x). The next condition, item 2.a, characterizes the density for
the instant (i.e., t = 0) an individual experiences a drop in the state from x to x̃ < x.
Two groups of individuals transit here: those at the mass point µ(x) that experience
a transition to x̃, which happens at intensity αx,x̃, and those that have continued to
drift down from state x + 1 and thus consumption c(x + 1) for Tx+1 units of time
and have passed through c(x) at this very instant. From t ∈ (0, T (x)] on the vector-
valued density follows a simple matrix ordinary differential equation determined
by the matrix of state transitions Ax whose solution is given in (25). Finally, the
last equation characterizes the next lower mass point µx−1,x−1 and states that in
the stationary distribution the outflow from this mass point, αx−1,x−1µ(x − 1) =∑

x′ ̸=x−1 αx−1,x′µ(x−1) is equal to its inflow. This inflow comes from two sources,
those that have drifted down from the consumption level c(x) for Tx units of time
(density fx,x−1(Tx)), and then those experiencing state transitions to x − 1 from
states x̃ (which occur with intensity αx̃,x−1). The term in brackets gives the mass of
all individuals in current state x̃ which do not currently drift down from state even
higher than x− 1.13

13The others simply continue to drift down upon making the state transition to x − 1 rather than
enter the mass point µ(x− 1).
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Since there is a one-to-one mapping between the time t consumption has drifted
down from one of the thresholds c(x) upon a transition to a lower state and the
level of consumption at this time, the previous characterization of the decay time
distribution then implies the cross-sectional consumption distribution for a given
interest rate r. We characterize this distribution in the next proposition.

Proposition 5. Let Assumption 1 be satisfied. For c ∈ (c(x − 1), c(x)), define

t(c) = (log(c(x)) − log(c))/g. The probability density ϕ(c) for consumption c ∈
[c(1), c(N)], permitting mass points, is given by

ϕr(c) =

{
1
gc

∑
x′<x fx,x′(t(c)) if c ∈ (c(x− 1), c(x))

µ(x)δδδc if c = c(x)
(30)

where δδδc indicates a Dirac mass point at c.

For x ∈ X , define Dx = gIx − A′
x. Aggregate consumption is given by

C = c(1)µ1 +
∑
x>1

c(x)
(
µ(x) + 1′

xD
−1
x (Ix − exp(−DxT (x))) fx(0)

)
(31)

Proof. This is a direct consequence of the characterization of the distribution of
consumption decay times in Proposition 4 and a change of variables from t to c

through the mapping tc, see Appendix B for the details.

So far, we have treated r as a fixed parameter. We seek to understand how
the solution varies with r. All objects calculated in Propositions 2, 4 and 5 are
functions of r.14 In particular, let us explicitly denote the dependence of aggregate
consumption C(r) on r, where C(r) = C is given in equation (31).

In the next subsection, we continue the two-state example from Section 3.3 to
show how Propositions 4 and 5 work in practice.

4.2 The Example Continued

For the two-state example from Section 3.3, the calculation of the stationary decay-
time and consumption distributions is straightforward and deliver the consumption

14Proposition 3 guarantees that they are indeed functions, not correspondences.
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distribution in closed form. We can directly apply Proposition 4 with the highest
state with a mass point being N = 2, and thus item 1 of Proposition 4 implies

µ2 = µ̄2 =
ν

ξ + ν
. (32)

Thus, all individuals in state 2 consume c = c(2), per Proposition 5.
The remainder of the decay-time distribution f2(t) = f2,1(t) for x = 2 follows

directly from parts 2.a and 2.b of Proposition 4. Since for this example the matrix
A2 = α1,1 = −ν is just a number, α2,1 = ξ and T (2) = ∞ (see Section 3.3), we
immediately have that

f2,1(0) = α2,1µ2 =
ξν

ξ + ν
(33)

f2,1(t) =
ξν

ξ + ν
e−νt, t ∈ (0,∞). (34)

Note that
∫∞
0

f2,1(t)dt = ξ
ξ+ν

= µ̄1, and thus the decay-time distribution in (34)
accounts for the entire mass of low-productivity individuals.

Translated into the consumption distribution, equation (30) in Proposition 5 im-
plies that t(c) = (log(c(2)) − log(c))/g and the consumption probability density
function for all c ∈ (0, c(2)) is given by

ϕr(c) =
1

gc

ξν

ξ + ν
e−νt(c) =

1

gc

ξν

ξ + ν
e−

ν
g
[log(c(2))−log(c)] =

ξνc(2)−
ν
g c

ν
g
−1

g(ξ + ν)
(35)

and thus the consumption distribution in this example has a mass point at c(2) and
a Pareto density with shape parameter ν

g
− 1 on the interval (0, c(2)) below it.

Part 2.c of Proposition 4 immediately implies that µ1 = 0, that is, there is
no mass point for state x = 1, which is intuitive since consumption reaches c =

c(1) = 0 only asymptotically. The normalization in equation (2), that aggregate
labor L = µ̄2z(2) =

ν
ξ+ν

z(2) = 1 and z(1) = 0 implies z(2) = (ξ + ν)/ν. Plug
this into equation (19) to obtain

c(2) =
r + g + ν

r + g + ν + ξ

ξ + ν

ν
w
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The last part of Proposition 5, with the matrix D2 = g+ν becoming a scalar, allows
us to calculate aggregate consumption as a function of the interest rate, as15

C(r) = 0 + c(2)

(
µ2 +

1

g + ν
f2,1(0)

)
= c(2)

ν

ξ + ν

(
g + ν + ξ

g + ν

)
=

(
1 +

rξ

(g + ν)(r + g + ν + ξ)

)
w (36)

For σ = 1 (log-utility, and thus g = ρ− r), aggregate consumption becomes

C(r) =

(
1 +

rξ

(ρ+ ν − r)(ρ+ ν + ξ)

)
w (37)

5 Stationary Equilibrium

Equipped with the solution of the agent problem and the associated stationary con-
sumption (and asset) distribution ϕr as well as aggregate consumption C(r) derived
in the previous section, we can now determine the general equilibrium interest rate
and wage in the economy. In this economy, there are three markets: the labor mar-
ket, the capital market, and the goods market. Aggregate labor supply, the sum of
labor efficiency units of all agents, is exogenous and normalized to L = 1, and thus,
the wage adjusts such that firms demand that labor in stationary equilibrium, which
we define next.

Definition 1. A stationary equilibrium consists of an equilibrium wage and interest

rate (w, r), aggregate capital K, and a stationary consumption probability density

function ϕ(c) such that

15To see this, add and subtract ξ to and from the numerator of c(2), write

c(2)
ν

ξ + ν

(
g + ν + ξ

g + ν

)
=

(r + g + ν + ξ − ξ)(g + ν) + (r + g + ν)ξ

(r + g + ν + ξ)(g + ν)

and combine terms.
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1. The interest rate and wage (r, w) satisfy

r = FK(K, 1)− δ (38)

w = FL(K, 1) (39)

2. The goods market and the capital markets clear

C(r) + δK = F (K, 1) (40)
C(r)− w × 1

r
= K. (41)

3. The stationary consumption probability density function ϕ(c) is consistent

with the dynamics of the optimal consumption allocation characterized in

Proposition 2, that is, it satisfies Proposition 4.

In the capital market clearing condition (41), the right-hand side K = Kd is
the demand for capital by the representative firm. The numerator on the left-hand
side is the excess consumption, relative to labor income, of all agents, that is, the
aggregate capital income required to finance that part of consumption that exceeds
labor income. Dividing by the return to capital r gives the capital stock that agents
need to own to deliver the required capital income. Thus we can think of

Ks(r) =
C(r)− w(r)

r
(42)

as the household sector’s supply of assets. By restating the capital market clearing
condition as

Ks(r) = Kd(r)

where Ks(r) is defined in (42) and Kd(r) is defined through (38), we can provide an
analysis of the existence and uniqueness of the stationary equilibrium in the (K, r)

space, analogously to the well-known analysis familiar from Aiyagari (1994) for
the standard incomplete markets model.

As long as r ̸= 0, the usual logic of Walras’ law applies and one of the two
market clearing conditions is redundant. Equation (41) always implies (40), but the
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reverse is not true for r = 0.16 Thus, we make use of the capital market clearing
condition (41) rather than the goods market clearing condition (40) for our ensuing
analysis of stationary equilibria.

5.1 Equilibrium Existence

We seek to establish the existence of an equilibrium with partial insurance. We
will impose a simple condition ensuring that capital supply exceeds capital de-
mand at r = ρ. One would also like to find a simple condition so that capi-
tal demand exceeds capital supply at some suitable lower bound. Suppose, say,
that production is Cobb-Douglas, F (K,L) = KθL1−θ. As r approaches −δ and
thus r + δ approaches zero, equation (38) implies that Kd(r) → ∞ and therefore
w(r) = (1 − θ)

(
Kd(r)

)θ → ∞. Hence, per Lemma 5, the total asset supply
associated with that wage then diverges, Ks(r) → ∞, thwarting this strategy.

We therefore adopt the more fruitful approach of examining capital supply and
demand (Kd(r), Ks(r)) normalized by the wage w(r) = FL(K

d(r), 1),

κs(r) =
Ks(r)

w(r)
and κd(r) =

Kd(r)

w(r)
. (43)

and characterize it in the following proposition.17 Define the following bounds r

and r̄ for the interest rate such that both (normalized) capital demand and supply
are well-defined for interest rates r ∈ (r, r̄) in between these bounds:

r = max{−αmin, lim
K→∞

FK(K, 1)− δ} and r̄ = min{ρ, lim
K→0

FK(K, 1)− δ} (44)

Section 6 shows that r will not exceed ρ since capital supply is infinitely elastic at

16From Euler’s theorem and equations (38) − (39) it follows that

w + rK = F (K, 1)− δK

Thus, (41) always implies (40). The reverse is true for r ̸= 0. This issue is not unique to our model;
it is present in the Aiyagari model as well. See Proposition 7 in Auclert and Rognlie (2020).

17We believe that this approach of analyzing the model is fruitful more generally for any model
with standard neoclassical production, including the Aiyagari (1994) model and the competitive
equilibrium of the standard representative agent model.
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r = ρ.

Proposition 6. Let Assumption 1 be satisfied. Then normalized capital supply κs(r)

and normalized capital demand κd(r) are well-defined, continuous and strictly pos-

itive functions of r ∈ (r, r̄).

Proof. For normalized capital supply κs(r), Lemma 5 in Appendix D.1 establishes
that aggregate consumption C(r) is differentiable and equal to w(r) at r = 0. The
existence and continuity of a well-defined κs(r) function follows from L’Hospital’s
rule at r = 0 and is straightforward otherwise. Thus κs(r) has the stated properties
on (αmin, ρ) ⊇ (r, r̄).

For normalized capital demand κd(r), observe that the marginal product of cap-
ital is a continuously differentiable and strictly decreasing function of K, mapping
K ∈ (0,∞) onto (limK→∞ FK(K, 1), limK→0 FK(K, 1)) ⊇ (r + δ, r̄ + δ). Since
the marginal product of labor FL(K, 1) is positive and continuous for all positive
K, the function κd(r) has the properties stipulated in Proposition 6.

A rate of return r∗ gives rise to a stationary equilibrium if

κs(r∗) = κd(r∗) (45)

In order to ensure the existence of equilibrium, we need the following boundary
conditions.18

Assumption 2. Let lim infr→r κ
s(r) < lim supr→r κ

d(r) and lim supr→r̄ κ
s(r) >

lim infr→r̄ κ
d(r).

The following proposition is then a trivial consequence of Proposition 6 and the
intermediate value theorem.

Proposition 7. Suppose assumptions 1 and 2 are satisfied. Then, a stationary equi-

librium with an interest r∗ ∈ (−δ, ρ) exists.

18The use of lim inf and lim sup in the assumption is sufficient for the existence result of Propo-
sition 7 and avoids a discussion of the existence of the associated limits.
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Assumption 2 involves the endogenous entities (κs(r), (κd(r)) at the bound-
aries (r, r̄). If one is willing to put further structure on the production function
and agent preferences and endowments, then it can be replaced with conditions
on exogenous parameters only. In particular, consider a CES production function

F (K,L) =
(
θK1− 1

η + (1− θ)L1− 1
η

) η
η−1

with elasticity of substitution η ∈ (0,∞).
This includes the Cobb-Douglas specification F (K,L) = KθL1−θ as a special case
for η = 1. We show in Appendix C.2 that normalized capital demand becomes

κd(r) =
θ

(r + δ)
[(

r+δ
θ

)η−1 − θ
] (46)

If the elasticity of substitution is as high or higher than in the Cobb-Douglas case,
η ≥ 1, then κd(r) is strictly decreasing and continuously differentiable. It is defined
on r ∈ (θ

η
η−1 − δ,∞) for η > 1 and r = (−δ,∞) for η = 1, and diverges, as r

approaches the lower bound of that interval. If −αmin is lower than that lower
bound, then the first half of Assumption 2 is automatically satisfied.19

In the next subsection, we continue our example and show that for this example,
the second half of Assumption 2 can also be replaced by an assumption on exoge-
nous parameters characterizing the extent of income risk (and the other parameters
of the model). Section 6 considers the case when the second inequality in Assump-
tion 2 is reversed, and a stationary equilibrium with full consumption insurance can
emerge.

5.2 The Example Continued

The properties of normalized capital supply can be examined explicitly in the two-
state example of Sections 3.3 and 4.2. Equation (36) immediately implies that for

19For η ∈ (0, 1), normalized capital demand κd(r) is defined on r ∈ (−δ, θ
η

η−1 ). We show in
appendix C.2 that in this case κd(r) has an upward-sloping part. Indeed, for the limit case of η = 0
(Leontieff production function), κd(r) is upward-sloping on the entire interval r ∈ (−δ, 1−δ) where
it is defined. In terms of general properties outside the CES case, we establish in Appendix C.1 that
κd(r) is strictly decreasing if FK is strictly convex. Note that these results and issues arise in any
models employing a neoclassical production function, including the standard representative agent
model as well as the Aiyagari (1994) model. This might explain why the literature typically assumes
that the production function is Cobb-Douglas.
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this example

C(r)

w(r)
= 1 +

rξ

(g(r) + ν)(r + g(r) + ν + ξ)
(47)

where we recall that the growth rate g(r) (and thus the decay rate of consumption
−g) is given per equation (8) by g(r) = ρ−r

σ
. With a Cobb-Douglas production

function and thus equation (46), and with κs(r) = (C(r)/w(r) − 1)/r, the capital
market clearing condition can be stated explicitly as

κd(r) =
θ

(1− θ)(r + δ)
=

ξ(
− r

σ
+ ρ

σ
+ ν
) ((

1− 1
σ

)
r + ρ

σ
+ ν + ξ

) = κs(r)

(48)
where we have now written out the growth rate g(r) = ρ−r

σ
. This is a quadratic

equation and can have no, one or two solutions in the interval (−δ, ρ).
It is easy to see that the following assumption, stated purely in terms of the

exogenous parameters of the model, implies Assumption 2 with r = −δ and r̄ = ρ.

Assumption 3. The production function takes a Cobb-Douglas form. The param-

eters characterizing the production technology (θ, δ), agent preferences (ρ) and

idiosyncratic risk (ν, ξ) satisfy αmin = min{ν, ξ} > δ and

κd(ρ) =
θ

(1− θ)(ρ+ δ)
<

ξ

ν (ρ+ ν + ξ)
= κs(ρ) (49)

We will now show that if, in addition to this assumption, the intertemporal elas-
ticity of substitution 1/σ is sufficiently high (σ is sufficiently low), then capital
supply is upward sloping in the interest rate and the partial insurance steady state is
unique. In contrast, if σ is sufficiently large, then κs(r) can have downward-sloping
segments and the possibility of multiple partial insurance steady states emerges.

5.2.1 Logarithmic Utility (σ = 1): Uniqueness and Comparative Statics

If σ = 1, then the equilibrium condition (48) is linear in the interest rate, and the
unique partial insurance stationary equilibrium can be characterized in closed form.

Proposition 8. Suppose σ = 1.
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1. Suppose Assumptions 1 and 2 are satisfied and that normalized capital de-

mand κd(r) is downward sloping. Then the equilibrium is unique.

2. Now suppose Assumption 3 is satisfied as well. Then the unique equilibrium

interest rate r∗ ∈ (−δ, ρ) is given by

r∗ =
θ(ν + ρ+ ξ)(ν + ρ)− ξδ(1− θ)

ξ + θ(ν + ρ)
(50)

r∗ is strictly increasing in ρ+ ν and θ and strictly decreasing in ξ and δ. The

capital stock K∗ is strictly increasing in ξ and strictly decreasing in ρ+ν and

δ. The stationary consumption distribution has a mass point and a truncated

Pareto distribution with Pareto coefficient κ = ν
ρ−r∗

−1 below the mass point.

Proof. With σ = 1, (47) implies that normalized capital supply is given by

κs(r) =
ξ

(ρ− r + ν)(ρ+ ν + ξ)
(51)

and is strictly increasing in r. Thus, the equilibrium must be unique. Equation (50)
follows from solving (the now linear) equation (48), when σ = 1. The comparative
static properties for the equilibrium interest rate follow directly from its closed-
form expression, and the comparative statics results for the equilibrium capital stock
follow from the fact that it is a decreasing function of r∗. The statements about the
consumption distribution follow directly from equation (35).

The finding that the equilibrium capital stock increases and the interest rate
falls with an increase in the risk of income falling, ξ, indicates the presence of
precautionary saving in our model. To see this, note that the variance of income is
given by V ar(z) = µ̄1(0− 1)2 + µ̄2(ζ − 1)2 = ξ

ν
where we used the normalization

µ̄2ζ = 1 that average labor productivity equals 1. Increasing ξ, holding ν fixed
and increasing ζ such that average productivity remains at one therefore constitutes
a mean-preserving spread increasing income risk. In response agents save more
individually20 and the aggregate capital stock rises as a result. That is, there is

20Capital saved for the transition to the low state (see equation (22)) is given by k2(1) =
1

ξ+ν+ρζw = w
ν(1+ρ/(ξ+ν)) which is increasing in ξ.
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precautionary saving on the micro and macro level in our model, but it takes the
form of state-contingent saving due to the market structure we have assumed.
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Figure 2: The left panel shows wage-normalized capital demand κd(r) and capital
supply by the household sector κs(r), as a function of the interest rate. The figure
is drawn with Assumption 3 in place, guaranteeing a unique stationary equilibrium
interest rate r∗ < ρ. The right panel plots consumption demand C(r) by the house-
hold sector and net goods supply. There are two intersections: one at the stationary
equilibrium interest rate r∗ and one at r = 0; but at the latter interest rate (r = 0),
the capital market does not clear.

The unique equilibrium is represented graphically in Figures 2a and 2b. There
is a unique equilibrium with an interest rate r < ρ that clears both the capital market
(Figure 2a) and the goods market (Figure 2b).

5.2.2 Multiple Partial Insurance Steady State Equilibria

If normalized capital demand κd(r) is downward sloping, as it is for Cobb-Douglas
production, the CES specification for η ≥ 1 and a multitude of other production
functions, the key to establishing the existence of a unique partial insurance steady
state is an upward-sloping normalized capital supply function.

Inspection of the asset supply function on the right-hand side of (47) shows this
to be the case if σ ≤ 1. In contrast, as σ approaches infinity and the IES converges to
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zero, the lifetime utility function becomes Leontieff, and the asset supply function
is downward-sloping, raising the possibility of multiple partial insurance stationary
equilibria. The next proposition summarizes the various possibilities for σ ̸= 1. For
simplicity, we assume that the production function is Cobb-Douglas.

Proposition 9. Let Assumptions 1 and 3 be satisfied.

1. If σ < 1, then κs(r) is strictly increasing on r ∈ (−δ, ρ). There exists a

unique stationary equilibrium with interest rate r ∈ (−δ, ρ).

2. Let σ > 1 and let σν+ρ
σ−1

> δ be satisfied.21 There exists at least one stationary

equilibrium with r ∈ (−δ, ρ).

(a) Suppose σ ∈ (1, 2] and let ξ ≥ δ be satisfied.22 Then κs(r) is increasing

on r ∈ [−δ, ρ) and the stationary equilibrium with interest rate r ∈
(−δ, ρ) remains unique.

(b) There exist parameter combinations with 2 < σ < ∞ such that κs(r)

has decreasing parts on [−δ, ρ) and that there are two stationary equi-

libria with r ∈ (−δ, ρ) solving the quadratic capital market clearing

condition (48).

Proof. See Online Appendix E. For the last part, see the example in Figure 3.

This proposition shows that for wide parameter combinations, the uniqueness
of equilibrium can be guaranteed (parts 1 and 2a). It also identifies (in part 2b) the
range of parameters where two stationary equilibria can emerge. This scenario is
depicted in Figure 3.

6 Stationary Equilibrium with Full Insurance

Suppose that r̄ = ρ, but that the second part of assumption 2 is violated, i.e., sup-
pose lim supr→ρ κ

s(r) ≤ lim infr→ρ κ
d(r). Since there is full consumption insur-

ance when r = ρ, it follows that the capital supply needed to provide this full
21This condition ensures that the effective discount rate r + ν + g(r) used to determine c(2) is

positive even at r = −δ, and thus c(2) is finite at that interest rate and at all higher interest rates.
22This condition ensures that κs(r) is increasing at r = −δ.
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Figure 3: Two equilibria with partial insurance when σ > 2.

(a) Capital Market Clearing (b) Equilibrium Consumption Distributions

This figure plots an example of two equilibria, both with partial insurance, under parameter values
σ = 10, θ = 0.25, δ = 0.16, ν = 0.05, ξ = 0.02, ρ = 0.4. The two equilibrium interest rates are
given by r∗1 = −0.0246, r∗2 = 0.1357. Left panel: solid line represents the capital supply curve
κs (r), dashed line represents the capital demand curve κd (r). The right panel displays the two
equilibrium consumption distributions, including the mass point for each of them.

insurance is insufficient to meet capital demand. As a result, agents hold capital for
conventional consumption, smoothing savings motives, and not just as an insurance
cushion. Capital supply becomes infinitely elastic at r = ρ, just as in the steady
state of the standard representative agent neoclassical growth model.

Consider an agent indexed by j ∈ [0, 1] in state x. With full insurance, con-
sumption is constant at some level cj . There is no disinvestment, k̇j,t,x = 0, and
hence, there is a constant capital level kj(x) for every level of productivity x, with
the flow of interest payments financing the gap between income and consumption.
Budget constraint (7) reads

cj +
∑
x′ ̸=x

αx,x′(kj(x
′)− kj(x)) = ρkj(x) + wz(x) (52)

or
(ρIN+1 − A)kj = cj − wz (53)

where IN+1 is the identity matrix of size N×N and where kj = [kj(1), . . . , kj(N)]
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is the vector of capital stocks held by agent j, conditional on each income state.23

Equation (53) can be solved for the capital levels kj , provided the wage w and
consumption cj are known. The wage w follows directly from the production side
at r = ρ. As for the consumption level, note that cj ≥ c(N), where the latter is
the lowest consumption level in state N compatible with r = ρ and as calculated
in proposition 2. This follows because agents will eventually reach state N , with
zero capital and permanent consumption of at least c(N), even if that agent starts
off with zero capital in some other state. The proof of the following proposition in
appendix E then implies that kj is non-negative for any agent j.

Proposition 10. Let Assumption 1 be satisfied and suppose that r̄ = ρ and lim supr→ρ κ
s(r) ≤

lim infr→ρ κ
d(r). Then there is a stationary equilibrium with r = ρ in which every

agent j ∈ [0, 1] consumes a constant amount cj ≥ c(N). Average consumption c̄ is

given by sum of the flow income from capital and wages

c̄ = ρKd(ρ) + w(ρ) (54)

where K = Kd(ρ) solves (38) at r = ρ and where w(ρ) follows from (39) at

K = Kd(ρ). Individual capital holdings kj satisfy equation (53). If cj = c̄ for all

agents, the distribution of the agents over the point masses (x, k̄j(x)) is given by

the stationary distribution µ̄ for A, where k̄ solves (53) for cj = c̄.24 For arbitrary

consumption distributions cj ≥ c(N), k̄ is the average of the capital holdings

across agents.

Appendix E has the proof. In principle, nothing guarantees that the vector of
capital holdings defined in (53) satisfies kj(x) ≥ 0 for all x. The proof shows that
this is indeed what the assumed inequality limr→ρ κ

s(r) ≤ κd(ρ) insures.
Note that replacing cj = c̄ in the agent budget constraint (53) with the goods

market clearing condition (54) and taking the inner product with the stationary dis-

23Recall that we use the notation Ix to denote the (x − 1) × (x − 1) identity matrix: thus the
subscript N + 1 here. Further, recall that αx,x = −

∑
x′ ̸=x αx,x′ .

24It is not necessarily true that all agents have the same consumption: they just each have con-
sumption of at least c(N) and average consumption is c̄, but we cannot say more than that. The
consumption distribution is indeterminate and depends on the (arbitrary) initial distribution of capi-
tal, exceeding kN (x) for x < N or 0 for x = N .
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tribution µ̄ yields

µ̄ · (ρIN+1 − A)k̄ = ρKd(ρ) + w(ρ)− w(ρ)µ̄ · z.

Since µ̄ · z = 1 by normalization and µ̄′A = 0 by stationarity of µ̄, we have

µ̄ · k̄ = Kd(ρ) (55)

and thus, the asset market clearing condition is satisfied at r = ρ as well, a simple
consequence of Walras’ law.

Proposition 10 opens the door for the existence of (at least) two steady-state
equilibria, one with partial insurance, the other with full insurance, by reversing the
orderings at both ends in Assumption 2.

Assumption 4. Assume that lim supr→r κ
s(r) > lim infr→r κ

d(r). Assume that

r̄ = ρ and that lim infr→ρ κ
s(r) < lim supr→ρ κ

d(r).

Proposition 11. Suppose assumption 4 is satisfied. Then there is at least one partial

insurance stationary equilibrium with an interest r∗ ∈ [r, ρ) and one full insurance

equilibrium at r = ρ.

Proof. Like Proposition 7, the existence of a partial insurance stationary equilib-
rium follows from the intermediate value theorem and Proposition 6. The existence
of the full insurance equilibrium follows from Proposition 10.

Assumption 4 requires that κd(r) is upward-sloping or that κs(r) is downward-
sloping for at least a certain range of the interest rate. As shown above, this cannot
occur in our simple 2-state example with Cobb-Douglas production and log-utility.
However, even for this example, Assumption 4 is not empty as long as σ is suffi-
ciently large, and thus, the IES is sufficiently small. 25

25Recall that normalized capital supply is κs(r) = ξ/((g+ν)(r+g+ν+ξ)) with g = (ρ−r)/σ,
see equation (48). While this function is well defined for −ν−ξ < r ≤ ρ, examination of (18) shows
that we need to keep r > −ν, as σ → ∞. Impose that 0 < ν = ξ < δ. Therefore r = αmin = ν
is the lower bound for r in assumption 4. As r → −ν and σ → ∞, normalized capital supply
converges to 1/ν, while normalized capital demand in the Cobb-Douglas case is θ/((1−θ)(δ−ν)).
If ν < (1− θ)δ, one can therefore find r > −ν and σ large enough that Assumption 4 is satisfied.
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7 Quantitative Exploration

The previous sections characterized partial- and full insurance stationary equilibria
theoretically. We now demonstrate that our model is amenable to the same quan-
titative analysis as the standard incomplete markets (SIM) model. For a plausible
calibration of idiosyncratic risk consistent with micro data, it delivers a unique par-
tial insurance interest rate and consumption distribution that can be quantitatively
compared to the SIM in continuous time, as explored recently in, e.g., Kaplan,
Nikolakoudis and Violante (2023). To do so, we first discuss the calibration of the
model, with focus on the idiosyncratic productivity process. We then show the sta-
tionary consumption distribution and contrast the capital market equilibrium in our
model with that in the standard incomplete market model.

7.1 Calibration

For the calibration, we adopt the five-state process used by Kaplan et al. (2023),
but augment it by a sixth state, referred to below as the superstar state, see Table
1. With this superstar state, the insights from the simple two-state example above
carry over to the quantitative version here: essentially, the agent switches back and
forth between the very high income and low incomes, setting aside insurance in
the former against the transition to the latter. Specifically, we choose the highest
state in such a way that the share of the population in that state is 1% and that their
share of labor income is 20% (see, e.g., Piketty and Saez, 2003). Since average
labor productivity is normalized to 1, we have 0.01 ∗ z(6) = 0.2 which implies
z(6) = 20. Analogous to our two-state example, let ξ and ν denote the Poisson
intensity of leaving or arriving at the high state.26 Since the share of highly produc-
tive agents is 0.01 = ν

ξ+ν
= 1

1+ξ/ν
, this implies that we need ξ

ν
= 99. This leaves

us with one degree of freedom determining the persistence (or expected duration,

These calculations also allow for a non-existence example. Assume Cobb-Douglas production
and Leontieff preferences σ → ∞, and impose θ = 1/3 as well as ν = ξ < δ and thus r = −ν.
Non-existence follows if κs = 1/(r + 2ν) > 2(r + δ) = κd for all r ∈ (−ν, ρ]. This is the case if
ν < 2δ/3. For finite, but large σ then follows for ν sufficiently small compared to δ. Assume, e.g.,
that ν = ξ = ρ < δ/2. With some algebra one can show that κs > κd for all r ∈ (−ν, ρ] if σ ≥ 7.

26Formally, ξ =
∑

x<6 α6,x and ν =
∑

x<6 αx,6µ̄(x).
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Table 1: Parameterization of the Quantitative Model

Parameter Interpretation Value
θ Capital Share 40%
δ Depreciation Rate 2.25%
σ Risk Aversion 1
ρ Time Discount Rate 1%
ν Poisson Rate of Moving into Top 0.001
ξ Poisson Rate of Moving out of Top 0.1
z Labor Productivity States (0.5,0.65,0.81,0.96,1.12,20)
µ̄ Labor Productivity Distribution (0.07,0.24,0.37,0.24,0.07,0.01)

The table contains the parameterization of the model at a quarterly frequency. The last two rows
contain the idiosyncratic labor productivity states z(.) as well as the associated stationary distribution
µ̄ over these states. The complete matrix of Poisson transition rates is contained in Appendix F

1/ξ) of remaining in the superstar state. For a quarterly frequency and assuming
that duration to be 10 quarters, we obtain ξ = 0.1 and thus ν = 0.1/99 = 0.001.

For the remaining parameters, we follow Kaplan et al. (2023) and set the capital
share to θ = 0.4 and the quarterly depreciation rate to δ = 2.5%. Risk aversion is
σ = 1, and the quarterly time discount rate ρ = 1%.

7.2 Stationary Consumption Distribution and Capital Market

Figure 4 shows the consumption distribution. As Proposition 5 implies, there are
N = 6 mass points, denoted by the circles in the figure. The highest mass point
contains 1% of the population at consumption level c(6)/w = 4.65 = 0.23 ∗ z(6).
Thus, agents in the highest income state set aside more than three-quarters of their
income as insurance payments against an income change.

The density between the mass points is provided in Proposition 5, exploiting the
matrix exponential formula (27). It is determined both by the common consumption
decay rate of all unconstrained individuals (r − ρ) as well as the outflow rates into
higher states (the αx,x̃), resulting from the differential equation. It therefore displays
exponential decay (at a rate that varies across the different segments).

Figure 5 depicts the capital market equilibrium for our limited commitment
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Figure 4: Consumption Distribution: Quantitative Limited Commitment Model
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(a) Consumption Distribution
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(b) Consumption Distribution: Zoom

This figure displays the stationary consumption (normalized by the wage) distribution. We chose r ≈
0 because the mass points, depicted as solid points, are more clearly visible. The left panel shows
the entire distribution with its right tail; the right panel zooms in on the middle of the distribution.

model (LCM) and compares it to the standard incomplete markets (SIM) model.
With the assumed Cobb-Douglas production function, normalized capital κd is
downward-sloping, see equation (48), and is the same for both models. For our
calibration normalized capital supply κs is strictly upward sloping in the limited
commitment model. Assumption 2 is satisfied. Thus, there is a unique equilibrium
interest rate r∗, which takes the (quarterly) value of r∗ = 0.68%, smaller than the
quarterly discount rate of ρ = 1%.

Capital supply for the SIM model needs to be calculated numerically, using
standard techniques, and is likewise upward sloping.27 We observe that capital
supply for the SIM model is larger for each interest rate than in our model. As
a consequence, the stationary equilibrium interest rate, unique in both economies,
is strictly smaller (and thus the equilibrium capital stock is strictly larger) in the
SIM model28 than in our economy, and is, in turn, smaller in both models than the

27We thank Greg Kaplan for providing us with the code for the SIM with N > 2 states.
28While the claim that this is always the case seems intuitive, it is not easy to prove. In a nutshell,

our environment allows agents to redistribute savings from states where they have a low marginal
value of wealth to states where this value is high. The effect on the marginal value of overall capital
can then turn either way.
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Figure 5: Capital Market Equilibrium in the Limited Commitment Model and the
Standard Incomplete Markets Model with Neoclassical Production
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The figure displays the equilibrium in the capital market in the limited commitment model and SIM.
The normalized capital demand (blue solid, downward sloping) schedule is identical in both models.
The normalized capital supply from the household sector, for a given interest rate, is larger in the
SIM (yellow line) than in the LCM (red line). Therefore, the interest rate is lower and the capital
stock is higher in the SIM than in the LCM.

subjective time discount factor ρ = 1%. As summarized in Table 2, the equilibrium
interest rates for our benchmark calibration are r∗LCM = 0.68% and r∗SIM = 0.6%.
Finally, as the interest rate approaches the time discount factor from below, asset
supply in the SIM model diverges to infinity (as is well-known), whereas it remains
finite in the limited commitment economy.

7.3 Comparative Statics

So far, we set the parameter ξ = 0.1, implying an expected time of remaining in
the superstar state of 10 quarters, or 2.5 years. We now vary this parameter, with
the objective of not only providing sensitivity analysis but also showing how the
equilibrium interest rate and associated capital stock respond to a change in the
extent of labor income risk as well as its persistence. Raising ξ but holding ξ/ν

constant keeps the cross-sectional distribution over states constant, but it decreases
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the persistence of both remaining in the superstar state and remaining in one of the
5 “normal” states.29 By contrast, only raising ξ and keeping ν constant implies a
mean-preserving spread, as in the simple model with two states.30

Table 2 shows the outcome of both experiments. The interest rate in our model is
always larger and the associated equilibrium capital stock smaller than in the SIM.
Making the superstar state less persistent without changing the cross-sectional labor

Table 2: Comparative Statics

Parameter Bench. Low Pers. High Pers. MPS
ξ 0.10 0.2475 0.025 0.20
ν 0.001 0.0025 0.00025 0.001
r∗LCM 0.675% 0.775% 0.615% 0.635%
r∗SIM 0.595% 0.695% 0.565% 0.545%

The table summarizes the equilibrium r∗ for different parameterizations of the income process.

productivity distribution lowers precautionary saving in both models, increases the
equilibrium interest rate and decreases the equilibrium capital stock. By contrast, a
mean preserving spread (MPS) increases precautionary saving in both models and
leads to a reduction in the equilibrium interest rate and an increase in the steady
state capital stock, as we showed analytically for our model with two states.

8 Conclusion

The standard incomplete markets general equilibrium model of Aiyagari (1994)
has become a workhorse model for a substantial literature, but does not address
the source for market incompleteness and results in less consumption smoothing
than documented by the empirical literature. In this paper, we therefore propose
an alternative model in which market incompleteness arises endogenously due to

29The mass of agents in the high income state stays at 1%; there is no need to adjust state z(6).
30This increase ξ/ν and makes the top group smaller. As a consequence, we increase z(6) and

make the top group income-richer, such that average productivity remains at one.
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limited commitment. The resulting model is analytically tractable yet as amenable
to quantitative analysis as the benchmark SIM.

For a general continuous-time N-state Poisson labor productivity process, we
have characterized the optimal consumption-asset allocation, the stationary asset
distribution, as well as the aggregate supply of capital. For a specific example in
which labor productivity takes two values, one of which is zero and when agents
have log-utility and production is Cobb-Douglas, the entire stationary equilibrium
can be computed in closed form. In contrast, multiple steady states can arise for
large risk aversion. We have analyzed a calibrated version of our model, using six
income states, and shown numerically that the nominal interest rate is higher and
less sensitive to comparative static changes in parameters than in the SIM model.
Our paper, therefore, provides a tractable alternative to the standard incomplete
markets general equilibrium model as in Aiyagari (1994).

In this paper we have focused on stationary equilibria, sidestepping the ques-
tion of whether this stationary equilibrium is reached from a given initial aggregate
stock, and what the qualitative properties of the transition path are. We pursue
this analysis for our two-sate example in Krueger, Li and Uhlig (2024). Similarly,
thus far we have focused on an environment that has idiosyncratic but no aggregate
shocks. We study a discrete-time version of our model with aggregate shocks and
its asset pricing implications in Ando, Krueger and Uhlig (2023).
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Appendix

A Optimal contract: lemmas and proofs.

Proof of Proposition 1. 1. Write the Lagrangian

L = u(c) + U ′(k, x)k̇ +
∑
x′ ̸=x

αx,x′(U(k(x′), x′)− U(k, x))

+λ

(
rk + wz(x)− c− k̇ −

∑
x′ ̸=x

αx,x′(k(x′)− k)

)
−1k=0µxk̇ −

∑
x′ ̸=x

αx,x′µx′k(x′)

The first-order conditions are

∂L

∂c
: u′(c) = λ (56)

∂L

∂k̇
: U ′(k, x) = λ− 1k=0µx (57)

∂L

∂k(x′)
: U ′(k(x′), x′) = λ− µx′ , all x′ (58)

with the additional complementary slackness conditions

1k=0min{µx, k̇} = 0 and for all x′ : min{µx′ , k(x′)} = 0 (59)

as well as the envelope condition

ρU ′(k, x) =
∂L

∂k

= U ′′(k, x)k̇ + rλ−
∑
x′ ̸=x

αx,x′(U ′(k, x)− λ)

or (
ρ− rλ+

∑
x′ ̸=x

αx,x′

)
(U ′(k, x)− λ) = U ′′(k, x)k̇ (60)
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For k > 0, (56), (57) and (59) imply

U ′(k, x) = λ = u′(c) (61)

With equation (58) and (59), we then get

u′(c(k′(x′)) = U ′(k′(x′), x′) = u′(c) for all k′(x′) > 0 (62)

showing (10). Suppose by contradiction, that u′(c(k, x)) < u′(c(k(x′), x′))

for some state x′. This cannot be optimal since a small increase of k(x′)

and thus a small increase in c(k(x′), x′) at the cost of a small decrease in
c(k, x) would improve the value U . Put differently, replacing the proposed
decision rules for c and k(x′) on the right hand side of (6) with c−αx,x′ϵ and
k(x′) + ϵ for some sufficiently small ϵ > 0 delivers a higher value than the
proposed ρU(k, x), a contradiction. We therefore obtain that u′(c(k, x)) ≥
u′(c(k(x′), x′)), in particular for states x′, for which k(x′) = 0. The statement
(11) now follows from the strict concavity of u(·).

Rewriting (61) as a function of time and taking the derivative with respect to
time, we get

U ′′(kt, xt)k̇t = λ̇t = u′′(ct)ċt (63)

Rewriting (63) and combining it with (60) and (61) for u(c) = c1−σ/(1− σ)

yields
ċt
ct

=
λ̇t

λt

u′(ct)

cu′′(ct)
=

ρ− r

σ
(64)

and thus (9).

2. This follows because any allocation that can be afforded for k can also be
afforded for k̃ > k.

3. This is a standard and straightforward argument. Consider two values for
k, say kA ̸= kB and some λ ∈ (0, 1). The λ-convex combination of the
solutions for kA and kB is feasible at the λ-convex combination of kA and kB

and thus provides a lower bound for U(kλ, x). This lower bound is strictly
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higher than the convex combination of U(kA, x) and U(kB, x) since u(·) is
strictly convex and c is strictly increasing in k.

4. A formal proof is via Lemma 8 in the Online Appendix. Here, we provide
a somewhat heuristic argument instead. If the constraint (5) is binding, then
k̇ = 0, U(kt, x) is a constant function of time and thus so is ct, establishing the
claim. Suppose, thus, by contradiction, that the constraint is not binding and
that k̇t > 0. In that case, we have (61) as well (64). Consider now a small time
interval δ later. At that point, kt+δ ≈ k̇δ > 0 as well as ct+δ ≈ ct(1−δg) < ct.
We still have (61). Noting that U(·, x) is strictly concave with the previous
part, we have

U ′(0, x) > U ′(kt+δ, x) = u′(ct+δ) < u′(ct) (65)

in contradiction to (61).

Lemma 1. For this lemma31, denote the spectral radius of a matrix M as

ρ(M).

1. e−Bxs ≥ 0 and e−Cxs ≥ 0. If, additionally, assumption 1 holds, then e−Bxs

and e−Cxs have only strictly positive entries for all s > 0.

2. The spectral radius of e−Bxs satisfies e−(r+αmax(x))s ≤ ρ(e−Bxs) ≤ e−(r+αmin)s ≤
e−rs.

3. If αmin = αmax(x), then 1x is an eigenvector of Bx and e−Bxs with eigenvalue

r + αmin and e−(r+αmin)s.

4. With assumption 1, there is an eigenvector ex to e−Bx and the largest eigen-

value ρ(e−Bx) > 0, which has only strictly positive entries. It furthermore is

the eigenvector to e−Bxs for all s ≥ 0 to the largest eigenvalue
(
ρ(e−Bx)

)s
>

0.
31Outside this lemma, ρ denotes the utility discount factor.
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5. With assumption 1, let y ≥ 0 be a (x− 1)-dimensional vector with only non-

negative entries, such that y(j) ≤ Mex(j) for some constant M > 0 and all

j = 1, . . . , x− 1. Suppose that −αmin < r. Then

0 ≤ e−Bxsy ≤ Me−(r+αmin)sex → 0 as s → 0 (66)

Proof. 1. Note32 that −Bx = −rIx + Ax only has non-negative entries off
the diagonal. For sufficiently small ϵ > 0, e−Bxϵ = Ix − ϵBx + o(ϵ) has
therefore only non-negative entries since the diagonal is dominated by Ix and
the off-diagonal is dominated by Ax. Pick such an ϵ. For arbitrary s, use
e−Bxs =

(
e−Bxϵ

)s/ϵ. The argument for Cx is exactly the same since g ≥ 0.
The argument that e−Bxs has only strictly positive entries under assumption 1
follows, since e−Bxs =

(
e−Bxϵ

)n for ϵ = s/n, where n is a sufficiently large
natural number. It then also follows for e−Cxs = e−gse−Bxs.

2. Recall that
∑

x′<x αx̃,x′ = −
∑

x′≥x αx̃,x′ . Thus, maxx̃<x

∑
x′<xAx(x̃, x

′) =

−αmin and likewise for the minimum. With that and for any ϵ ≥ 0, the row
sums of Ix − ϵBx are between 1 − ϵ(r + αmax(x)) and 1 − ϵ(r + αmin).
Let ∆ > 0. Since e−Bxϵ = Ix − ϵBx + o(ϵ), there is thus ϵ̄ > 0, so that
the sums of any row of e−Bxϵ are between 1 − (r + αmax(x) + ∆)ϵ and
1 − (r + αmin − ∆)ϵ for any 0 < ϵ < ϵ̄. Theorem 8.1.22 in Horn-Johnson
(1985) implies that 1−(r+αmax(x)+∆)ϵ ≤ ρ(e−Bxϵ) ≤ 1−(r+αmin−∆)ϵ.
Thus (1− (r + αmax(x) + ∆)ϵ)s/ϵ ≤ ρ(e−Bxs) ≤ (1− (r + αmin −∆)ϵ)s/ϵ.
Letting ϵ → 0 delivers that e−(r+αmax(x)+∆)s ≤ ρ(e−Bxs) ≤ e−(r+αmin−∆)s.
Since ∆ > 0 can be arbitrarily small and since

∑
x′≥x αx̃,x′ ≥ 0 for x̃ < x,

the result about the spectral radius follows.

3. This follows from direct calculation for Bx1x and then for e−Bxs1x =
∑∞

j=0(−sBx)
j1x/j!.

4. Assumption 1 implies that that e−Bxs is irreducible. The existence of ex is
a consequence of the Perron-Frobenius theorem applied to e−Bx . Let n > 0

32The source for this part of the proof is an answer on math.stackexchange.com.
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and m > 0 be two natural numbers. Let s = n/m. Then

(
e−Bxs

)m
ex =

(
e−Bx

)n
ex =

(
ρ(e−Bx)

)n
ex

The result now follows from the fact that e−Bxs has only strictly positive
entries, which rules out periodicity, i.e., ex must be an eigenvector of e−Bxs.
By continuity, the result then holds not just for all rational but also for all real
s > 0.

5. The first inequality follows from the first part of this lemma. For the second,
use the first and the third part of the lemma and calculate

e−Bxsy ≤ Me−Bxsv ≤ Me−(r+αmin)sex

The convergence to zero follows because r + αmin > 0 by assumption.

Proof of Proposition 2. Suppose we are in some state x̃ at t. Rewrite the budget
constraint (7) as

k̇t(x̃)− rkt(x̃) +
∑
x′

αx̃,x′kt(x
′) = wz(x)− ct(x̃) (67)

where we now explicitly denote the current state x̃ as argument for kt, k̇t and ct

and where we have exploited that αx̃,x̃ = −
∑

x′ ̸=x̃ αx̃,x′ , aside from moving terms
from one side of the equation to the other. We proceed recursively. At state x = 1,
c = c(1) = wz(1) and the net costs are zero. Define d1 = k1 = [ ] of dimension 0.

Consider now any state x > 1 and its associated consumption level c = c(x).
Suppose that we start the consumption plan at this consumption level but for some
other state x̃ < x at t = 0. Consumption will now drift down until either there
is a transition to some x′ ≥ x or until the consumption level c(x − 1) is reached.
Consumption will then continue to drift down if the current state is x′ < x− 1: we
take this into account when we aggregate costs. Let T (x) be the time it takes for
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consumption to drift down from c(x) to c(x− 1), i.e. T (x) solves

c(x− 1) = e−gT (x)c(x)

Thus,

T (x) =
log(c(x))− log(c(x− 1))

g

as in equation (13). At time 0 ≤ t ≤ T (x) and current state x̃ < x, consumption
will be

ct = e−gtc(x), (68)

provided no transition to some state x′ ≥ x has yet occurred.
In (67), kt(x′) = 0 for all x′ ≥ x and t > 0, since ct(x

′) ≥ c(x) > ct: the agent
would therefore rather dis-save in order to smooth consumption, but he is prevented
from doing so, due to our limited commitment assumption. Therefore, we only
need to calculate the entries of the (x− 1)-dimensional vector

kx,t = [kx,t(1), . . . , kx,t(x− 1)], (69)

where the second sub-index x indicates that we are at a consumption level ct in the
interval ct ∈ [c(x − 1), c(x)]. Therefore, rewrite the differential equation (67) in
vector notation as

k̇x,t −Bxkx,t = wzx − e−gtc(x)1x (70)

with terminal condition33

kx,T (x) =

[
kx−1

0

]
(71)

since kx−1,0 = kx−1 is needed to finance the consumption plan going forward for
states x̃ < x− 1 and ct ≤ c(x− 1). The solution is

kx,t = dx,t + e−Bx(T (x)−t)

[
kx−1

0

]
(72)

33Thus, if x = 2, the terminal condition is kT (2),2 = 0.
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where the solution dx,t to the non-homogeneous part with terminal condition dx,T (x) =

0x−1 is given by34

dx,t = eBxt

∫ T (x)

s=t

e−Bxs
(
e−gsc(x)1x − wzx

)
ds (73)

= c(x)C−1
x e−gt

(
Ix − e−Cx(T (x)−t)

)
1x −B−1

x

(
Ix − e−Bx(T (x)−t)

)
wzx(74)

as one can verify directly or derive, using standard ODE calculus. The difference
dx = dx,0 at t = 0 and given in equation (14) is now the (x − 1)-dimensional
vector of net costs for the piece of the consumption plan, starting at states x̃ ∈
{1, . . . , x−1} and consumption level c(x) for the time between t = 0 and t = T (x).

It follows from lemma 2 and equation (85) below that kx,t ≥ 0, thus satisfying
the limited commitment constraint (5).

We finally need to solve for c(x). Observe that the budget constraint in state x

and at c = c(x) needs to hold. It generally is given by (7). At c = c(x), k̇t = 0 and
kt = 0. Note that kt,x̃ = 0 for all x̃ > x, since c(x̃) > c(x). Note that kt,x̃ = kx(x̃)

for x̃ < x, since kx(x̃) is needed to finance the consumption plan going forward
from state x̃ and starting consumption c(x). The budget constraint (7) then reads

0 = c(x)− wz(x) +
∑
x̃<x

αx,x̃kx(x̃) (75)

As in the proposition, let αx = [αx,1, . . . , αx,x−1]
′. Then, write equation (75) as

equation (16).

Note that e−gsc(x) < wz(x − 1) for x ≥ 3 and s sufficiently close to T (x),
since e−gT (x)c(x) = c(x− 1). Therefore, dx,t(x− 1) in equation (32) is increasing
from a negative value to zero rather than decreasing from a positive value as t

approaches T (x). Nonetheless, we have the following lemma. The statement may

34In principle, the net present value calculation of equation (73) can be done for arbitrary utility
functions, except that one would then need to replace e−gsc(x) by the appropriate path for con-
sumption cs at date s and starting at c(x), which solves the optimal consumption-savings problem
at interest r. While it is unlikely that one then gets an explicit formula for the arrival time T (x) of
c(s) = c(x− 1) or an explicit solution for the ODE as in the second line (74), one can still proceed
to calculate these arrival times and integrals numerically. The rest of the analysis then continues to
go through.
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seem obvious. The proof, however, is far from it.

Lemma 2. The solution kx,t to the vector ODE (70) together with (71) is strictly

monotonically decreasing to kx,T (x) =

[
kx−1

0

]
.

Proof. Define

vx = wzx +Bx

[
kx−1

0

]
(76)

Rewrite the solution for kx,t by combining (72) and (73) as

kx,t =

∫ T (x)

s=t

e−Bx(s−t)
(
e−gsc(x)1x − wzx

)
ds+ e−Bx(T (x)−t)

[
kx−1

0

]
(77)

=

∫ T (x)

s=t

e−Bx(s−t)
(
e−gsc(x)1x − vx

)
ds+

[
kx−1

0

]
(78)

with kx = kx,0. Since e−gsc(x) > c(x− 1) for s < T (x), it suffices to show that

vx ≤ c(x− 1)1x (79)

We shall show this recursively. Note that this is trivially true for x = 2, since
v2 = wz(1) = c(1). Suppose now that (79) is true up to some state x. We shall
establish that

vx+1 ≤ c(x)1x+1 (80)

With the definition (76) applied to x+ 1, note that

vx+1 = wzx+1 +Bx+1

[
kx

0

]
(81)

Consider first the last entry vx+1(x). With equation (16), this is

vx+1(x) = wz(x)− αxkx = c(x), (82)

thus establishing (80) for that entry.
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Next, note first that Bx is the top left (x− 1)× (x− 1) sub-matrix of Bx+1, i.e.

Bx = Bx+1(1 : x− 1, 1 : x− 1) (83)

Thus, the vector of the other entries vx+1(1 : x− 1) can be written as

vx+1(1 : x− 1) = wzx +Bxkx (84)

Replace kx with (78) for t = 0 and use e−gT (x)c(x) = c(x− 1) to see that

vx+1(1 : x− 1) = wzx +Bx

[
kx−1

0

]

+Bx

∫ T (x)

s=0

e−Bxs
(
e−gsc(x)1x − vx

)
ds

= e−BxT (x)vx + Cx

∫ T (x)

s=0

e−Cxsds c(x)1x

−g

∫ T (x)

s=0

e−Cxsds c(x)1x

= c(x)1x − e−BxT (x) (c(x− 1)1x − vx)

−g

∫ T (x)

s=0

e−Cxsds c(x)1x

≤ c(x)1x

where the last inequality follows per the induction hypothesis (79) and because
e−BxT (x) ≥ 0 and

∫ T (x)

s=t
e−Cxsds ≥ 0 per part 1 of lemma 1.

The lemma immediately implies that the solution stated in Proposition 2 satisfies

kx ≥

[
kx−1

0

]
≥ 0x (85)

and therefore, indeed satisfies the limited commitment requirement (4). The lemma
is thus needed to complete the proof of Proposition 2. Proposition 2 provides a
system of equations that the solution must satisfy. The system of equations has a
recursive structure. Given the solution up to x − 1, one may then seek to calculate
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the solution for x. Given c(x), the values for T (x), dx and kx can be calculated, but
there could potentially be many values for c(x) for which (16) is then also satisfied.
The next proposition shows that this cannot be the case.

Proof of Proposition 3. The solution is unique for x = 1. Exploiting the block
recursive structure, suppose uniqueness has been shown for x−1. We seek to show
that there is a unique solution c(x). Suppose by contradiction that there are two
solutions ca(x) > cb(x). Calculate the corresponding times T a(x) and T b(x) per
(13). Note that T a(x) > T b(x). Define t = T a(x)− T b(x) and note that

cb(x) = e−gtca(x) (86)

Next, calculate ka
x and kb

x, using (78). We have

ka
x =

∫ Ta(x)

s=0

e−Bxs
(
e−gsca(x)1x − vx

)
ds+

[
kx−1

0

]
(87)

and, with (86),

kb
x =

∫ T b(x)

s=0

e−Bxs
(
e−gscb(x)1x − vx

)
ds+

[
kx−1

0

]

=

∫ Ta(x)

s=t

e−Bx(s−t)
(
e−gsca(x)1x − vx

)
ds+

[
kx−1

0

]
= ka

x,t

Lemma 2 implies that kb
x < ka

x. Equation(16) now implies that

ca(x) = wz(x)− αxk
a
x < wz(x)− αxk

b
x = cb(x),

which is a contradiction.

Solving the system of equations (13) to (16) requires numerical techniques35.
Generally, the ordering of the states x such that c(x) is increasing in x will not be

35No numerical techniques are required if x = 2 and z1 = 0. In that case, c(x − 1) = 0,
T (x) = ∞, Bx = r − α1,1, Cx = r + g − α1,1, αx = α2,1, 1x = 1, zx = [0], kx = dx. Now (16)
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known a priori. The block recursive structure of equations (13) to (16) in Proposi-
tion 2 suggest the following algorithm. Pick as x = 1 the state which generates the
lowest flow income wz(x). Then, recursively at each stage j = 2, . . . , N , pick each
of the remaining states x. For x, calculate the candidate c(x) per solving the system
of equations (14) to (16). Among all x, pick x = j to be that state, which produces
the lowest candidate c(x) and remove it from the pool of remaining states.

B Characterizing the consumption distribution: lem-
mas, propositions and proofs.

Proposition 12. A stationary distribution D solves the following system of equa-

tions

−αx,xµx = fx+1,x(Tx+1) +
∑
x̃<x

αx̃,x

(
µx̃ +

∑
x′:x̃<x′≤x

∫ Tx′

t=0

fx′,x̃(t)dt

)
(88)

0 < t ≤ T (x), x̃ < x : ḟx,x̃(t) =
∑
x′<x

αx′,x̃fx,x′(t) (89)

t = 0, x̃ < x : fx,x̃(0) = αx,x̃µx + fx+1,x̃(Tx+1) (90)

if x̃ ≥ x or t > T (x) fx,x̃(t) = 0. (91)

This follows from straightforward accounting of the various flows. We note that

reads as
c(x) = wz(2)− α2,1c(x)

1

r + g − α1,1

which can be easily solved for c(x),

c(x) =
r + g − α1,1

r + g − α1,1 + α2,1
wz(2)

For example, when N = 2 and z(1) = 0, and with ζ = z(2) = ζ, ν = α1,2 = −α1,1, ξ = z2,1 as
well as σ = 1 and thus g = ρ− r, we have c(1) = 0 and

c(2) =
ρ+ ν

ρ+ ν + ξ
wζ
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the system of ODE’s in (89) can be stated more compactly as (24).

Lemma 3. Let µ̄x denote the unconditional probability of being in state x. Let

µ̄ = [µ̄1, . . . , µ̄N ]
′.

1. The unconditional probabilities solve

0 = A′µ̄ and
∑
x

µ̄x = 1 (92)

2. A distribution D is a stationary distribution if and only if it satisfies Proposi-

tion 12 and whose unconditional probabilities µ̄x of being in state x,

µ̄x = µx +
∑
x′>x

∫ Tx′

t=0

fx′,x(t)dt (93)

sum to unity. The unconditional probabilities then satisfy (92).

3. Given equation (93), equation (88) is equivalent to

−αx,xµx = fx+1,x(Tx+1) +
∑
x̃<x

αx̃,x

(
µ̄x̃ −

∑
x′>x

∫ Tx′

t=0

fx′,x̃(t)dt

)
(94)

Proof. Equation (92) is the usual property of stationary distributions for continuous-
time finite-state Markov processes. Equation (93) is accounting for all the possibil-
ities. It conversely implies that the marginal unconditional probabilities µ̄x cal-
culated from a stationary distribution D satisfy (92): beyond that restriction and
Proposition 12 there is nothing else to satisfy. Finally, rewrite equation (93) for x̃
rather than x. For any x > x̃, this equation then implies

µx̃ +
∑

x′:x̃<x′≤x

∫ Tx′

t=0

fx′,x̃(t)dt = µ̄x̃ −
∑
x′>x

∫ Tx′

t=0

fx′,x̃(t)dt (95)

Plugging this into equation (88) delivers (94) and vice versa.

Proof of Proposition 4. 1. Note that µ̄x ≥ µx per (93), since fx′,x(t) ≥ 0.
Thus, if µ̄x = 0, then µx = 0, since µx ≥ 0. Since consumption is only
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drifting down, it follows36 that fx,x′(t) = 0 for all t, all x > x̄ and all x′ < x.

2. Note that fx′,x̄(t) = 0 for all x′ > x̄. Equation (94) at x = x̄ then reduces to

0 = αx̄,x̄µx̄ +
∑
x̃<x̄

αx̃,x̄µ̄x̃ (96)

Compare this to the equation for the unconditional probability µ̄x̄,

0 = αx̄,x̄µ̄x̄ +
∑
x̃ ̸=x̄

αx̃,x̄µ̄x̃ (97)

and recall that αx̄,x̄ ̸= 0 as well as µ̄x̃ = 0 for x̃ > x̄. The equation µx̄ = µ̄x̄

now follows.

3. (a) Note that fx(0) can be calculated via (90), since all other terms are
known per by recursivity. The result is unique.

(b) (27) is the unique solution to (24) or, equivalently (24), given the initial
condition fx(0).

(c) Equation (28) is equation (94) stated for x − 1 rather than x. Note that
all other terms are known by recursivity and recall that αx−1,x−1 < 0 by
assumption.

The resulting D satisfies Proposition 12 as well as Lemma 3 and thus is a sta-
tionary distribution satisfying (93) by construction. The calculation for D is unique.
Thus, this is the unique stationary distribution satisfying (93) by the third part of
Lemma 3.
To establish (29), define

gx(s) =

∫ s

t=0

fx(t)dt (98)

36A more formal argument can be made by first establishing step 3 of the corollary.
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We seek to calculate gx(T (x)). Per (24), ḟx(t) = A′
xfx(t). Thus,

A′
xgx(s) =

∫ s

t=0

A′
xfx(t)dt

=

∫ s

t=0

ḟx(t)dt

= fx(s)− fx(0)

= (exp(A′
xs)− Ix)fx(0)

where the last equality follows with (27). The result now obtains for s = T (x).

Proof of Proposition 5. The corollary follows from proper accounting and the con-
sumption dynamics in Proposition 2. It is clear that the mass points are as stated.
For the density, calculate instead the cdf Φ first. It is given by

Φ(c) = Φ(c(x− 1)) +
∑
x′<x

∫ t(c)

0

fx,x′(t)dt (99)

The expression for the density in (30) follows directly by taking the derivative and
the dependence of the upper bound of the integral on t(c). With equation (30), we
seek to explicitly calculate aggregate consumption

Cr =

∫ c(N)

c(1)

cϕr(c)dc (100)

We follow a similar strategy as the proof for (29). Note that the integral expressions
in (100) can be rewritten as∫ c(x)

c(x−1)

fx(t(c))

g
dc = c(x)hx(T (x)) (101)

where
hx(s) =

∫ s

0

e−gtfx(t)dt (102)

using the transformation of variable from c to t(c)37. Recall that ḟx(t) = A′
xfx(t)

37Thus, dt = dc/(cg) or c(x)e−gtdt = dc/g.
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per equation (24). Thus, using integration by parts as well as the explicit solution
(27) to (24),

A′
xhx(s) =

∫ s

0

e−gtA′
xfx(t)dt

=

∫ s

0

e−gtḟx(t)dt

= e−gtfx(t) |s0 +g

∫ s

0

e−gtfx(t)dt

=
(
e−gs exp(A′

xs)− Ix
)
fx(0) + ghx(s)

or
Dxhx(s) = (Ix − exp(−Dxs))fx(0) (103)

For s = T (x) and with (100), we obtain (31).

C Aggregate Capital Demand

C.1 General Production Function

Proposition 13. Suppose that FK is strictly convex. Then normalized capital de-

mand κd(r) is strictly decreasing in r.

Proof. Define f(K) = F (K, 1) (within this proof). Due to constant returns to
scale, F (K,L) = f(K/L)L. Equation (39) can be rewritten as w(K) = f(K) −
f ′(K)K. Due to the strict concavity of F , capital demand K(r) characterized by
(38) is strictly decreasing in r. Therefore κd is strictly decreasing if

g(K) =
w(K)

K
=

f(K)

K
− f ′(K) (104)

is strictly decreasing in K, since g(K(r)) = 1/κd(r).
With f(0) = 0 and by the mean value theorem, there is some 0 < K̃ < K so

that f(K) = Kf ′(K̃). Applying the mean value theorem to f ′, there is some K̂

with K̃ < K̂ < K so that f ′(K)− f ′(K̃) = (K − K̃)f ′′(K̂). Since FK is strictly
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convex, so is f ′, i.e., f ′′ is strictly increasing. Thus, f ′′(K̂) < f ′′(K). Combining,

g′(K) = −f(K)

K2
+

f ′(K)

K
− f ′′(K)

=
f ′(K)− f ′(K̃)

K
− f ′′(K)

= f ′′(K̂)− f ′′(K) < 0

C.2 CES Production Function

The next proposition characterizes κd(r) for a general CES production function.

Proposition 14. Suppose that F is of the CES variety,

F (K,L) =
(
θK1− 1

η + (1− θ)L1− 1
η

) η
η−1

= (θKν + (1− θ)Lν)
1
ν (105)

where the elasticity of substitution η satisfies 0 < η < ∞ and thus ν ∈ (−∞, 1).38

Define

r̆ =

{
θ

η
η−1 − δ, if η ̸= 1

−δ, if η = 1
(106)

Note that r̆ ≥ −δ.

1. Capital demand Kd(r) satisfying FK(K
d(r), 1)−δ = r (and thus normalized

capital demand κd(r) = Kd(r)/w(r)) is well-defined for the range of interest

rates r:

(a) For η ∈ [1,∞) the interval is given by r ∈ (r̆,∞).

(b) For η ∈ (0, 1), the interval is given by r ∈ (−δ, r̆).

2. On the range where Kd(r) is defined, normalized capital demand is given by

κd(r) =
θ

(r + δ)
[(

r+δ
θ

)η−1 − θ
] (107)

38For η = 1, this is the Cobb-Douglas production function F (K,L) = KθL1−θ.
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3. For η ∈ [1,∞), normalized capital demand is strictly decreasing in r , with

limr→r̆ κ
d(r) = ∞ and limr→∞ κd(r) = 0.

4. For η ∈ (0, 1), κd(r) is downward sloping on (−δ, η
1

1−η θ
η

η−1 −δ] and upward-

sloping on [η
1

1−η θ
η

η−1 − δ, r̆). Since η ∈ (0, 1) we have η
1

1−η ∈ (0, 1) and

thus both sub-intervals are nonempty. Furthermore, limr→−δ κ
d(r) = ∞ and

limr→r̆ κ
d(r) = ∞.

5. For η = 0 (Leontieff production), κd(r) is strictly increasing on its entire

domain r ∈ (−δ, 1− δ), with limr→−δ κ
d(r) = 1 and limr→1−δ κ

d(r) = ∞.

Proof. For ease of notation define ν = 1 − 1
η
∈ (−∞, 1). Thus the production

function is given by
F (K,L) = (θKν + (1− θ)Lν)

1
ν

and the marginal products (in equilibrium equal to factor prices) are given by

FK(K, 1) = θ
(
θ + (1− θ)K−ν

) 1−ν
ν = r + δ (108)

FL(K, 1) = (1− θ) (θKν + (1− θ))
1−ν
ν = w (109)

1. For the first part, we note that Kd(r) = K is defined through the equation
(108). First consider η > 1 and thus ν ∈ (0, 1). In that case FK(K, 1) is
strictly decreasing and

lim
K→0

FK(K, 1) = ∞

lim
K→∞

FK(K, 1) = θ
1
ν

Therefore, equation (108) has a solution if and only if

θ
1
ν < r + δ

The unique solution Kd(r) is thus well-defined on the interval r ∈ (r̆,∞).

Now consider 0 < η < 1 and thus ν ∈ (−∞, 0). Then FK(K, 1) is still
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strictly decreasing, with

lim
K→0

FK(K, 1) = θ
1
ν < ∞

lim
K→∞

FK(K, 1) = 0

and equation (108) has a unique solution if and only if

θ
1
ν > r + δ

Thus, for ν ∈ (−∞, 0), we have that Kd(r) is well-defined on r ∈ (−δ, r̆),

where r̆ = θ
1
ν − δ > −δ.

Finally, for the Cobb-Douglas case η = 1 or ν = 0, we have

FK(K, 1) = θKθ−1

with

lim
K→0

FK(K, 1) = ∞

lim
K→∞

FK(K, 1) = 0

Thus Kd(r) is well-defined on all of r ∈ (−δ,∞).

2. Now we derive κd(r) = Kd(r)
w(r)

on the interval of interest rates for which Kd(r)

is defined. From equations (108) and (109), we note that

r + δ

w
=

FK(K, 1)

FL(K, 1)
=

θKν−1

(1− θ)
=

θ

1− θ
wν−1κν−1

and thus

κ =

[
θ

r+δ
wν

1− θ

] 1
1−ν

(110)

We can express wν in terms of r from equation (109) as

wν = (1− θ)ν (θKν + (1− θ))1−ν (111)
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Rewrite (108) as

Kν =
(1− θ)[

r+δ
θ

] ν
1−ν − θ

Use it to substitute Kν in equation (111) to obtain

wν = (1− θ)

(
θ[

r+δ
θ

] ν
1−ν − θ

+ 1

)1−ν

=
(1− θ)

[
θ

r+δ

]−ν([
r+δ
θ

] ν
1−ν − θ

)1−ν

Inserting wν back into equation (110) and exploiting the relationship ν
1−ν

=

η − 1 gives the expression (107) for κd(r) in the proposition.

3. For the case η ≥ 1 we have η − 1 ≥ 0 and the properties of κd(r) stated in
the proposition follow from direct inspection of equation (107).

4. Suppose that η ∈ (0, 1) or, equivalently, ν < 0. Inspecting equation (107)
and noting that

(
r̆+δ
θ

)η−1
= θ yields

lim
r→−δ

κd(r) = lim
r→r̆

κd(r) = ∞

since κd(r) is finite on (−δ, r̆), it follows that κd(r) is non-monotone on its
domain. κd(r) is decreasing, if and only if 1/κd(r) is increasing. The deriva-
tive d(r) of

1/κd(r) =

(
r + δ

θ

)η

− r − δ (112)

is

d(r) =
η

θ

(
r + δ

θ

)η−1

− 1 (113)

and is decreasing in r. Thus, d(r) > 0 and κd(r) is decreasing, if and only if
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r < r̂, where r̂ solves d(r̂) = 0, i.e.,

r̂ = θ

(
θ

η

) 1
η−1

− δ (114)

This delivers the downward-sloping and upward-sloping segmentation of (−δ, r̆),
as stated in the proposition. Since η ∈ (0, 1) we have η

1
1−η ∈ (0, 1) and thus

both intervals above are nonempty.

5. For the Leontieff case, η = 0, and thus

κd(r) =
θ

(r + δ)
[(

r+δ
θ

)−1 − θ
] =

1

1− (r + δ)

and the stated properties in the proposition directly follow.

D Aggregate Capital Supply

D.1 General Theoretical Properties

In this subsection, we provide the general characterization of aggregate consump-
tion as a function of the interest rate. We now note explicitly the dependence of the
wage w on r. The following lemma is needed in preparation.

Lemma 4. Let −αmin < r < ρ. Then

kx,t(x
′) ≤ κ̄sw (115)

where

κ̄s =
σz(N)

ρ− r
< ∞ (116)

Proof. Since r < ρ, the agents with x = N and the highest income do not hold any
capital for financing their own consumption and only set capital aside for insurance
purposes in case of dropping to a lower state. Lemma 2 together with (85) guarantee
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that kx,t(x′) ≤ kN(x
′). In order to find a bound for these values, consider instead a

two-state process, where the agent oscillates between income z(N)w and zero and
where the transition from zero back to z(N)w happens at rate ν = αmin. Suppose
that the consumption in the high-income state takes the same value c(N) as before.
For that two-state process and as in equation (18) of section 3.3, the insurance
capital needed to be set aside in the high-income state is

k̃ =

∫ ∞

s=0

e−(r+g+ν)sds c(N) =
c(N)

r + g + ν
(117)

where g = g(r) = (ρ − r)/σ. Since the agent in the original specification transits
back to state N at least at rate αmin and makes income no less than zero, regardless
of the state, it follows that the agent needs to set aside less insurance capital in
the original specification in state N and for any x′ than in the high-income state in
this “worst case scenario” two-state comparison, i.e., kN(x′) ≤ k̃ for all x′. Since
r > −αmin and since c(N) ≤ z(N) due to r < ρ, the bound follows.

Lemma 5. 1. C(r) is continuously differentiable in r ∈ (−αmin, ρ).

2. C(r)− w(r) has the same sign as r. In particular, C(0) = w(0).

3. −C(r)/w(r) converges to a strictly positive and finite value, as r → −αmin.

4. κs(r) = (C(r)/w(r)− 1)/r satisfies 0 ≤ κs(r) ≤ κ̄s, with κ̄s given in (116).

Proof of Lemma 5. 1. The fact that C(r) is continuously differentiable follows
from the implicit function theorem since all equations in Propositions 2, 4 and
5 are differentiable in r as well as in the endogenous objects to be calculated
and since Proposition 3 and its proof guarantee the invertibility of the relevant
Jacobian in the endogenous objects.

2. We have characterized the stationary distribution in terms of (x, t) in (23),
where x characterizes the current consumption interval ct ∈ (c(x− 1), c(x)]

and t denotes the time drifting down from c(x), rather than the current state x̃
and current capital holdings k = kx,t(x̃). These imply the decision rules de-
cision rules for consumption c(x̃, k) = e−gtc(x), capital depletion k̇(x̃, k) =
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k̇x,t(x̃) and insurance k(x′; x̃, k) = kx,t(x
′). The budget constraint (3) in

terms of the decision rules in the original state space

c(x̃, k) + k̇(x̃, k) +
∑
x′ ̸=x̃

αx̃,x′(k(x′; x̃, k)− k) = rk + wz(x̃) (118)

can therefore be rewritten as

e−gtc(x) + k̇x,t(x̃) +
∑
x′ ̸=x̃

αx̃,x′(kx,t(x
′)− k) = rkx,t(x̃) + wz(x̃) (119)

in terms of (x, t) as in (23) as well as the current state x̃. Integrate this bud-
get constraint with the stationary distribution (23) across all x, t, x̃. Due to
stationarity, the integrals over capital depletion terms plus insurance terms
must be zero, as there cannot be capital depletion or insurance in the aggre-
gate, i.e., these terms reflect cross-population redistributions. Note that C(r)

is the integral over the consumption terms e−gtc(x). Let Ks(r) denote the
integral over the capital holdings kx,t(x̃).39 Since average labor productivity
is normalized to be 1, it follows that

C(r) = rKs(r) + w (120)

By Lemma 4, kx,t(x̃) ≤ k̄, where k̄ < ∞ is defined in equation (116). Since
0 < kx,t(x̃) except on a null set, it follows that

0 < Ks(r) ≤ κ̄sw (121)

for all r ∈ (−αmin, ρ). Equation (120) now implies the claim.

3. By the first part of the lemma, C(r) and, analogously, Ks(r) are differen-
tiable functions of r ∈ (−αmin, ρ). Note that the solutions for consumption
and capital in Propositions 2, 4, and 5 are homogeneous of degree 1 in w.
Therefore, C(r)/w(r) is differentiable in r ∈ (−αmin, ρ), establish the claim
of a finite limit. Equation (120) and the bound (121) together with the degree-

39The superscript “s” denotes that this will be capital supply; see equation (42).
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1 homogeneity of Ks(r) in s imply that

0 < −C(r)/w(r) < δκ̄s, (122)

4. The last part now follows immediately, completing the proof.

E Equilibrium and Proofs of Propositions 9 and 10

Proof of Proposition 9. The first step of the proof establishes that normalized cap-
ital supply is well-defined and continuous on r ∈ (−δ, ρ). Recall that normalized
capital supply is κs(r) = ξ/((g+ν)(r+g+ν+ξ)) with g = (ρ−r)/σ, see equation
(48). It is evidently continuous and well-defined on (−δ, ρ) as long as both terms of
the denominator are strictly positive. Since r < ρ, and thus g > 0, the first term in
the denominator of κs is always strictly positive. The second term is positive since
g > 0 and r + ν + ξ > δ + ν + ξ > −min ν, ξ + ν + ξ > 0 per assumption 3.

By Assumption 3, we have κd(r = ρ) < κs(r = ρ). Since κs(r = −δ) < ∞ =

κd(r = −δ), it follows that κs and κd intersect at least once in (−δ, ρ), establishing
existence of a stationary equilibrium. Uniqueness follows if κs(r) is increasing
(given that κd(r) is strictly decreasing). The derivative of κs(r) is given by

dκs(r)

dr
= ξ

[
2
σ
− 1
] [

ρ−r
σ

+ ν
]
+ ξ+r

σ[(
ξ + ν + ρ−r

σ
+ r
) (

ν + ρ−r
σ

)]2
A sufficient condition for this expression to be positive is σ < 1 (part 1 of the
proposition) or σ ∈ (1, 2] and ξ ≥ δ (part 2a of the proposition). Part 2b follows
from the fact that equation (48) is a quadratic equation and thus has at most two
solutions (and we have already established that under the assumptions made, it
has at least one solution). The numerical example in the main text shows that the
statement in 2b of the proposition is not vacuous.

Proof of Proposition 10. The proof consists of two parts. For the first, we use
Proposition 2 to calculate the capital vector kN , when r = ρ. That proposition
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calculates c(N), when agents start with zero capital. We then show that the capital
vector of an agent has to be at least as high as kN and thus non-negative if the
agent consumes at least c(N). For the second, we use Proposition 4 to calculate the
stationary distribution when r → ρ and agents in state N do not have capital. This
delivers the limit capital supply limr→ρ κ

s(r). We then argue that limr→ρ κ
s(r) ≤

κd(r) implies that all agents consume at least c(N).

1. Consider the results in Proposition 2 for r = ρ. In that case, g = 0 and
e−CxT (x) = e−BxT (x) = 0x−1,x−1. The equations for c(N) and kN read

kN = dN = c(N)C−1
N 1N −B−1

N wzN (123)

c(N) = wz(N)− αNkN (124)

Pre-multiplying equation (123) with BN = CN = ρIN −AN , these equations
can be written as[

ρIN − AN ∗
−αN ∗

][
kN

0

]
= c(N)1N+1 − w

[
zN

z(N)

]
(125)

where 1N+1 denotes a vector of ones of length N . where “∗” denotes that
the coefficients in that last column are arbitrary, as they multiply zero. Recall
that c(N) was defined as that level of consumption in state N , if k = 0. We
might as well write (125) as

(ρIN+1 − A)

[
kN

0

]
= c(N)1N+1 − wz (126)

where IN+1 is the identity matrix of size N ×N . Now note that

(A− ρIN+1)1N+1 = −ρ1N+1 (127)

Thus, for c ≥ c(N), the vector

k =

[
kN

0

]
+

c− c(N)

ρ
1N+1 (128)
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is non-negative and is the solution to (53).

2. The main purpose of this part is to establish that

lim
r→ρ

κs(r)w(r) = lim
r→ρ

Ks(r) =
[
kN , 0

]
µ̄, (129)

which may seem obvious. The argument relies on the definition of aggregate
capital supply via the calculation of the stationary distribution in Proposi-
tion 4, which we now provide. That proposition assumes that agents in state
N do not hold capital. For r → ρ, the proposition delivers µN = µ̄N and

fN(t) = exp(A′
N t)


αN,1

...
αN,N−1

 µ̄N , t ∈ [0,∞).

Equation (29) delivers
∫∞
0

fN(t)dt = (A′
N)

−1
[
αN,1, · · · αN,N−1

]′
µ̄N .

Since µ̄ is the stationary measure, rewrite the first N − 1 rows of 0 = A′µ̄ as

0 = A′
N


µ̄1

...
µ̄N−1

−


αN,1

...
αN,N−1

 µ̄N

= A′
N




µ̄1

...
µ̄N−1

−
∫ ∞

t=0

fN(t)dt


Thus, (28) and (25) deliver recursively, starting from x = N ,

µ(x− 1) =
−1

αx−1,x−1

∑
x̃<x−1

αx̃,x−1

(
µ̄x̃ −

∫ ∞

t=0

fN,x̃(t)dt

)
= 0

fx−1 = 0x−1

completing the description of the stationary distribution D for r = ρ, when
k = 0 for agents in state N . It implies that agents are either in state N with
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probability µ̄N and holding zero capital or in some state x < N with probabil-
ity
∫∞
0

fN,x(t)dt = µ̄(x), “drifting down” at zero drift from c(N) and holding
capital kN(x). Total capital supply is therefore Ks(ρ) =

[
kN , 0

]
µ̄, thus

finally justifying (129). Therefore, take the inner product of (126) with the
stationary distribution µ̄, i.e. pre-multiply (126) with the row vector µ̄′, and
exploit µ̄′A = 0N+1 and µ̄′z = 1 to find

ρKs(ρ) = µ̄′ (ρIN+1 − A)

[
kN

0

]
= c(N)− w

Compare this to equation (54), defining c̄ from capital demand. The condition
κs(ρ) ≤ κd(ρ) or, equivalently, Ks(ρ) ≤ Kd(ρ) now implies that

c(N) ≤ c̄ (130)

which is the desired inequality. Since agents always end up in state N with
some positive probability and have at least zero capital there, it follows that
all agents consume at least c(N), validating the conclusions of the first part.

F Poisson Transition Matrix

The complete matrix (αx,x′) used in Section 7 is given by:

−0.232 0.060 0.093 0.060 0.018 0.001

0.018 −0.190 0.093 0.060 0.018 0.001

0.018 0.060 −0.157 0.060 0.018 0.001

0.018 0.060 0.093 −0.190 0.018 0.001

0.018 0.060 0.093 0.060 −0.232 0.001

0.020 0.020 0.020 0.020 0.020 −0.100


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