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Abstract

This paper characterizes the transition dynamics of a continuous-time neoclassical

production economy with capital accumulation in which households face idiosyncratic

income risk and cannot commit to repay their debt. Therefore, even though a full set

of contingent claims that pay out conditional on the realization of idiosyncratic shocks

is available, the equilibrium features imperfect insurance and a non-degenerate cross-

sectional consumption distribution. When household labor productivity takes two val-

ues, one of which is zero, and the utility function is logarithmic, we characterize the

entire transition dynamics induced by unexpected technology shocks, including the

evolution of the consumption distribution, in closed form. Thus, the model constitutes

an analytically tractable alternative to the standard incomplete markets general equi-

librium Aiyagari (1994) model by retaining its physical environment, but replacing the

incomplete asset markets structure with one in which limits to consumption insurance

emerge endogenously due to limited commitment.
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1 Introduction

Households face considerable idiosyncratic income and unemployment risk. Following the
work of Bewley (1986), Huggett (1993) and Aiyagari (1994), a large literature has arisen
studying the macroeconomic consequences of this risk on the micro level, both theoretically
as well as empirically.1 The key assumption in much of this work (henceforth denoted as
standard incomplete markets, SIM) is that the idiosyncratic risk is uninsurable, in the sense
that explicit market or informal insurance arrangements are by assumption absent, and the
best households can do is to engage in self-insurance through the accumulation of assets
whose payoff is non-contingent on the realization of the idiosyncratic risk.

However, there is now considerable evidence that households are able to smooth con-
sumption better than what is implied by the standard approach of self-insurance. Blundell,
Pistaferri and Preston (2008) developed a (by now standard) methodology to empirically
measure the extent of consumption insurance against permanent and transitory income
shocks, and Kaplan and Violante (2011) showed that, quantitatively a standard life-cycle
version of the SIM model implies too little insurance especially against permanent income
shocks. A substantial follow-up literature, which includes Arellano, Blundell and Bon-
homme (2017), Chatterjee, Morley and Singh (2021), Eika, Mogstad and Vestad (2020),
Braxton et al. (2023), Balke and Lamadon (2022), and Commault (2022) have largely
confirmed these findings. Thus, alternatives to the conventional self-insurance approach
encoded in the SIM model are needed.

To make a contribution to this goal, in this paper we introduce limited commitment in
the tradition of Kehoe and Levine (1993, 2001), Kocherlakota (1996), and Alvarez and Jer-
mann (2000) into the same physical environment that Aiyagari (1994) studied with standard
incomplete markets. Specifically, we develop and study a continuous time general equilib-
rium neoclassical production economy with idiosyncratic income risk and explicit insur-
ance contracts against these risks. We assume that households cannot honor their debts,
and therefore cannot sell these contracts short, limiting the extent of insurance households
can achieve. Effectively, therefore, ours is a model with a full set of Arrow securities and
tight short-sale constraints at zero.2

1See, e.g., Krueger, Mitman and Perri (2016) for an overview of this literature. It may be appro-
priate to also point to Imrohoroglu (1989) and the PhD thesis by Uhlig (1990), the latter of which also
featured a choice of households between risky and riskless investments. The thesis is available here:
https://voices.uchicago.edu/haralduhlig/thesis/.

2As Krueger and Uhlig (2006) show, this asset market structure is equivalent to a one-sided limited com-
mitment model in which perfectly competitive and perfectly committed insurance companies offer long-term
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The purpose of this paper is to understand the consequences of introducing this lim-
ited insurance as cleanly as possible, by examining the most tractable scenario in which
closed-form solution of the entire macroeconomic dynamics can be given. The analysis
here thus seeks to serve as an important stepping stone and complements to a more quanti-
tative and empirical, but ultimately less tractable investigation. To this end, we assume that
household labor productivity takes two values, one of which is zero, and that the period
utility function is logarithmic. In Krueger and Uhlig (2024), we analytically characterized
the steady state of this model (for an arbitrary number of income states). In this paper, we
show that the entire transition path of the economy induced by an MIT aggregate (transitory
or permanent) productivity shock, including the dynamic evolution of the non-degenerate
consumption and wealth distribution can be given in closed form as long as the aggregate
shock is not too large.3 This complete analytical tractability of the transition path not only
sets our model apart from the standard Aiyagari (1994) SIM model, but also contrasts with
the representative agent neoclassical growth model without any idiosyncratic income risk
(or equivalently, with frictionless complete markets) for which no closed-form solution of
its transitional dynamics is available.

This analytical tractability originates from the fact that under the assumptions made,
the population endogenously separates into two groups: one group with only labor income
but no capital income, and a second group with no labor income but heterogeneous asset
holdings and thus asset incomes. Crucially, this latter group shares the same consumption
growth rate and effective saving rate, which (given log utility) is a constant that does not
depend on the current or future interest rates. This second group then aggregates exactly
(both in steady state and along the transition), and the resulting macro economy is also
characterized by a constant aggregate saving rate, as in the classic Solow model or as in the
model of workers and entrepreneurs by Moll (2014), but unlike in the standard neoclassical
growth model or the SIM model. As Sato (1963) and Jones (2000) have already shown,
the nonlinear ordinary differential equation characterizing the aggregate dynamics of an
economy with a constant saving rate is a Bernoulli differential equation with a closed-
form solution – the same is then true in our economy. We wish to emphasize, though,
that in contrast to the Solow model, the constant aggregate saving rate is a result rather
than an assumption, and that this rate depends on the structural parameters of the model,

consumption insurance contracts to households that cannot commit to these long-term contracts and can
switch to competing intermediaries without punishment. Without punishment, short-sale constraints at zero
are then precisely Alvarez and Jermann’s (2000) solvency constraints that are “not too tight.”

3The transition path could also be induced by an initial capital stock that is not at its steady state value.
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including the time preference rate as well as the parameters governing the idiosyncratic
income process.

Given the dynamics of the aggregate capital stock, the speed of convergence to the new
steady state and the entire transition path of the consumption distribution in response to the
MIT shock can also be characterized in closed form. To demonstrate the potential useful-
ness of our tractable model for applied-quantitative work, we establish two results. First,
we show that our model can slow down the speed of convergence of capital to its long-run
steady state (relative to the standard neoclassical growth model), and therefore potentially
contribute to a resolution of the puzzle originally identified by King and Rebelo (1993)
that neoclassical convergence dynamics tends to be too fast, relative to what is observed
in the data. Second, we show that in the model, consumption inequality is “procyclical:”
it increases on impact in response to an (expansionary) positive productivity shock before
converging back to its original level in the long run.

1.1 Related Literature

In this paper, we seek to integrate two foundational strands of the literature on macroeco-
nomics with household heterogeneity. The first strand has developed and applied the stan-
dard incomplete markets model with uninsurable idiosyncratic income shocks and neoclas-
sical production, as Bewley (1986), Imrohoroglu (1989), Uhlig (1990), Huggett (1993), and
Aiyagari (1994). In a recent paper, Achdou et al. (2022) analyze a two-state continuous-
time SIM model. As we do, they characterize the stationary equilibrium by two key differ-
ential equations: one governing the optimal solution of the consumption (self-)insurance
problem, and one characterizing the associated stationary distribution. The papers comple-
ment each other by characterizing equilibria in the same physical environment, but with two
different market structures. Furthermore, we achieve a full analytical characterization of
the entire transition path of the economy, possibly opening a path for an analytical analysis
of macroeconomic fluctuations.

The second branch is the literature on recursive contracts and endogenously incom-
plete markets which permits explicit insurance, but whose scope is limited by contract
enforcement frictions.4 More specifically, we incorporate explicit insurance contracts of-

4Recent work that builds on Kehoe and Levine (1993), Kocherlakota (1996), and Alvarez and Jermann
(2000) includes Broer (2012), Abraham and Laczo (2018), and Sargent, Wang and Yang (2021). A com-
mon theme in this literature is the interaction between private and public insurance, see, e.g., Golosov and
Tsyvinski (2007), Thomas and Worrall (2007), and Krueger and Perri (2011).
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fered by competitive financial intermediaries, as analyzed previously in partial equilibrium
by Krueger and Uhlig (2006), into a neoclassical production economy. In doing so, we
seek to provide the macroeconomics profession with a novel, fully micro-founded yet an-
alytically tractable model of neoclassical investment, production, and the cross-sectional
consumption and wealth distribution, where the limits to cross-insurance are explicitly de-
rived from first principles of contractual frictions. While the approach and formulation
here are described from the perspective of a financial market, one can alternatively think
of the insurance contracts offered by financial intermediaries as long-term wage contracts
offered by firms that provide workers with partial insurance against productivity fluctua-
tions to workers, in line with the formulation in Harris and Holmstrom (1982), Thomas and
Worrall (1988), Guiso, Pistaferri and Schivardi (2005), Saporta-Eksten (2016), and Balke
and Lamadon (2022).

Finally, our paper shares elements and insights with other work on dynamic macro mod-
els with limited commitment in endowment economies, such as Zhang (2013), Grochulski
and Zhang (2011), and Miao and Zhang (2015), but models capital accumulation and pro-
duction explicitly. In doing so, we provide a general equilibrium treatment, as do Got-
tardi and Kubler (2015), Hellwig and Lorenzoni (2009), and Martins-da-Rocha and Santos
(2019), the latter two in the context of the sovereign debt literature.

In the next section, we describe the model and define the equilibrium. Section 3 charac-
terizes the optimal household consumption-asset allocation for a given sequence of wages
and interest rates. Section 4 aggregates these allocations to analytically characterize the
equilibrium transition path, starting from an initial steady state with partial consumption
insurance. It also provides sufficient conditions on the aggregate productivity process for
a partial insurance transition equilibrium to exist, and contrasts the speed of convergence
to the new steady state in our model to that of the representative agent neoclassical growth
model. Section 5 traces out consumption and wealth inequality along the transition, both
analytically and quantitatively through numerical simulations. Section 6 concludes. All
proofs and additional technical details and results are contained in the Appendix.
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2 The Model

2.1 Preferences, Endowments and Financial Markets

Time is continuous. There is a population of a continuum of infinitely lived agents of
mass 1 who supply labor to the market, consume goods, and sign contracts. The labor
productivity zit of an individual agent i at time t follows a two-state Poisson process that
is independent across agents. More precisely, productivity can either be high (zit = ζ > 0)
or zero (zit = 0). Let Z = {0, ζ}. The transition from high to low productivity occurs at
rate ξ > 0, whereas the transition from low to high productivity occurs at rate ν > 0. The
stationary productivity distribution associated with this process is given by

(Ψl,Ψh) =

(
ξ

ξ + ν
,

ν

ξ + ν

)
. (1)

We assume that the initial distribution given in equation (1) – the same is then true for all
t > 0.

Agents have log utility u (c) = log (c) and discount the future at rate ρ > 0. Then the
expected utility of an agent from period t onward is given by

Ut = Et

[∫ +∞

t

e−ρ(τ−t) log (c) dτ

]
,

where the expectation depends on the current idiosyncratic state and risk of the agent.5

There is a competitive sector of production firms which uses labor and capital to pro-
duce the final output good according to the Cobb-Douglas production functionAtF (K,L) =

AtK
θL1−θ, where θ ∈ (0, 1) denotes the capital share and At > 0 is a productivity param-

eter, evolving as an exogenous and non-stochastic function of time. More specifically, we
always impose the following assumption.

Assumption 1. At is differentiable as a function of time t for all t > 0 and converges to a

finite and strictly positive limit,

A∞ = lim
t→+∞

At, A∞ ∈ (0,+∞) . (2)

Note that the above assumption permits productivity At to jump (or have a kink) at
5We abstract from aggregate risk in this paper. In addition, a number of our results for the deterministic

transition analysis generalize to CRRA utility, see Online Appendix G.
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t = 0. In fact, it merely stipulates that after this initial MIT shock, productivity evolves
smoothly and converges to a finite limit. Capital depreciates at a constant rate δ ≥ 0.
Production firms seek to maximize profits, taking as given the market spot wage wt per
efficiency unit of labor and rental rate of capital (net of depreciation) rt per unit of capital.
We normalize aggregate labor supply L = ζ ν

ξ+ν
to unity, and thus

ζ =
ξ + ν

ν
. (3)

This normalization is without loss of generality given the CRTS production technology.
As in Krueger and Uhlig (2006, 2022, 2024), agents seek to insure themselves against

their productivity fluctuations. We assume that a full set of individual-specific insurance
contracts is available, but individuals cannot commit to honor these contracts and there is
no punishment from default. There are two ways to formulate the resulting consumption
insurance contracts and associated market structure, which turn out to be equivalent.

First, envision a market structure in which individuals buy long-term consumption in-
surance contracts from risk-neutral and perfectly competitive insurance companies. These
financial intermediaries can fully commit to contracts, whereas individuals cannot com-
mit and individuals can switch insurers without cost at any time, i.e., there is one-sided
limited commitment. The intermediaries offer the utility-maximizing consumption alloca-
tion to individuals, subject to breaking even and subject to not losing an individual to the
competition.6

In Krueger and Uhlig (2006), following the insights of Alvarez and Jermann (2000),
they show that this is equivalent to an asset market-based formulation in which individuals
own assets (in the form of physical capital), either by themselves or through an account at a
financial intermediary, and given this capital, maximize lifetime utility by buying idiosyn-
cratic shock-contingent Arrow securities subject to state-contingent short-sale constraints.
This is the formulation we pursue here. The key result in Krueger and Uhlig (2006), rem-
iniscent of Bulow and Rogoff (1989), is that limited commitment by households and no
punishment from default implies that individuals cannot borrow at all in this capital ac-
count. Note that the capital account is state-contingent, and its balance can jump when
productivity changes and otherwise evolves due to new (possibly negative) investment x,
given the current agent-specific state and calendar time t. Our formulation is, therefore,
quite different from a conventional borrowing constraint for state non-contingent assets.

6Krueger and Uhlig (2022) use this formulation in their analysis of stationary equilibria.
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Denote by Ut (k; z) the expected continuation lifetime utility of the agent, given the
current capital account k, agent-specific productivity z and the aggregate state of the econ-
omy encapsulated by the time index t. This lifetime utility satisfies the Hamilton-Jacobi-
Bellman (HJB) equation defining the optimal consumption-asset allocation.

Definition 1. For z ∈ Z, wages wt and interest rates rt, let z̃ be the “other” state and

pz ∈ {ξ, ν} be the Poisson intensity for the transition from z to z̃. An optimal consumption

allocation Ct =
(
Ut(k; z), ct(k; z), xt(k; z), k̃t(k; z)

)
k≥0,z∈Z

is the solution to the program

ρUt (k; z) = max
c,k̃≥0,x

u (c) + U̇t (k; z) + U ′
t (k; z)x+ pz

(
Ut

(
k̃, z̃
)
− Ut (k; z)

)
(4)

s.t. c+ x+ pz

(
k̃ − k

)
= rtk + wtz (5)

x ≥ 0 if k = 0. (6)

To build intuition for the HJB, consider the agent’s (not planner’s) problem in the stan-
dard deterministic neoclassical growth model where the agent receives a constant wage w
and owns capital k, earning interest r. The HJB equation in that model reads as ρU (k) =

maxc,x u (c) + U ′ (k)x s.t. c + x = rk + w, or, substituting out investment x, simply
ρU (k) = maxc≥0 {u (c) + U ′(k) [rk + w − c]}. The flow payoff ρU (k) of the value func-
tion U (k) is the sum of the flow utility u (c) from consuming c and the change in the value
function U ′ (k)x due to the investment k̇t = x. Investment and consumption have to re-
spect the budget constraint c+x = rk+w. The agent chooses c (and x) so as to maximize
the flow payoff ρU (k), given the budget constraint.

The fact that wages and interest rates (wt, rt) are time-varying adds a time subscript
to the value function Ut (·), and the payoff now also includes the time derivative in the
value function U̇t (·) due to changing factor prices. In the presence of idiosyncratic labor
productivity risk, the current state of the household includes both capital as well as current
productivity (k, z), and the value function becomes a function of both these individual state
variables. In addition, labor income is now wtz.

For Definition 1, two further crucial features are added that embed the financial market
structure with explicit insurance but limited commitment. First, the flow payoff ρUt (k; z)

also accounts for the expected instantaneous change in utility pz
(
Ut

(
k̃; z̃
)
− Ut (k; z)

)
due to a possible change in productivity from z to z̃. Note the crucial feature that the capital
stock upon a productivity change, k̃, is allowed to differ from the current one, k. This is
the feature of explicit insurance against idiosyncratic agent-specific shocks, in contrast to
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the standard incomplete markets model which requires k̃ = k. The change in the capital
stock has to be paid for, though, which explains the actuarially fair “insurance premium”
pz

(
k̃ − k

)
in the budget constraint7 (5). Second, the lack of commitment is incorporated

by the restriction that k̃ ≥ 0, as well as x ≥ 0 when k = 0. Without punishment for walking
away from a negative capital account (defaulting on an intermediary if the account is held
with them), Krueger and Uhlig (2006) show that the state-contingent borrowing limits that
are not too tight, in the sense of Alvarez and Jermann (2000), are exactly at zero.8

2.2 Equilibrium

In our model, agents hold capital to insure against a spell of low productivity. We will focus
on equilibria in which agents never wish to purchase state-contingent capital for the high-
productivity state – our definition of equilibrium below reflects that focus. For this to be
optimal, the return on capital has to be sufficiently low and wage growth sufficiently high
(in a way we make precise below). We will provide sufficient conditions on the parameters
of the model such that this is indeed the case in equilibrium.9

The only reason for acquiring and subsequently holding capital is thus to finance the
consumption stream of agents with zero productivity. High-productivity agents pay insur-
ance premia to obtain a stock of capital should the transition to zero productivity occur,
but hold no capital as long as they are productive. Thus, all these agents are identical and
we do not need to keep track of their past productivity history. Low-productivity agents,
in contrast, are distinguished by the length of time τ ≥ 0 elapsed since the transition from
high to low productivity occurred. The distribution of these agent types is easy to charac-
terize. The total mass of high- and low-productivity agents is given in equation (1). The
density for low-productivity agents is given by

ψl (τ) =
ξν

ξ + ν
e−ντ , τ ≥ 0, (7)

which integrates to the total mass Ψl =
ξ

ξ+ν
of low-productivity agents. Low-productivity

agents hold capital ks,t which depends on the date t and the time s = t−τ of the transition to

7We can think of insurance being offered by risk-neutral perfectly competitive intermediaries so that the
price of one unit of capital upon a transition from z to z̃ costs pz , which equals the transition rate from z to z̃.

8In Krueger and Uhlig’s (2006) discrete-time environment, the interest rate is exogenous, but this does not
change the fact that in the absence of any punishment, positive (possibly state-contingent) debt (a negative k)
cannot be sustained, reminiscent of the classic Bulow and Rogoff (1989) result.

9Under these parameter restrictions, we conjecture this is the only equilibrium.
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low productivity. Thus, rather than keeping track of the joint state distribution across capital
and productivity states (k; z), it is more convenient to keep track of the capital holding ks,t
as a function of the transition time s and the calendar time t. Similarly, we denote by cs,t
the consumption of an agent at time t who made the transition to low productivity at time
s < t. In what follows, time derivatives are always with respect to calendar time.

Definition 2. An equilibrium consists of household allocations Ct, equilibrium wages wt,

interest rates rt, aggregate capital Kt, and capital holdings of low-productivity agents

(ks,t)s≤t, as functions of time t ∈ (−∞,+∞), such that:

1. Given wt and rt, the household allocations Ct are optimal (see Definition 1).

2. The allocations Ct have the “only low-productivity agents hold capital” property that

k̃t (k; 0) = 0 for all k = kt,τ , τ ≥ 0 as well as xt (0; ζ) = 0.

3. Capital holdings of low-productivity agents are consistent with the allocations Ct,
i.e.,

kt,t = k̃t (0; ζ) , (8)

k̇s,t = xt (ks,t; 0) , (9)

where k̇s,t =
∂ks,t
∂t

.

4. The interest rates and wages (rt, wt) satisfy

rt = AtFK (Kt, 1)− δ, (10)

wt = AtFL (Kt, 1) . (11)

5. The goods market clears∫ +∞

0

ct (kt−τ,t; 0)ψl (τ) dτ +
ν

ξ + ν
ct (0; ζ) + δKt = AtF (Kt, 1) . (12)

6. The capital market clears ∫ +∞

0

kt−τ,tψl (τ) dτ = Kt. (13)
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In the capital market clearing condition (13), the supply of capital comes from all agents
with currently low productivity that were income rich τ periods ago, integrated over all τ .
Similarly, aggregate consumption in (12) is composed of the integral over the heteroge-
neous consumption levels of the income-poor and the uniform consumption of the income-
rich times their mass.

The thought experiment envisions the economy initially (for t < 0) in a stationary

equilibrium in which all entities in Definition 2 indexed by time t are constant, where we
establish that there is a unique stationary equilibrium in Section 4.1. Then, aggregate total
factor productivity changes at time t = 0 from the constant A∗ towards a time-varying path
At with limt→+∞At = A∞. Since this is a complete surprise to everyone (the typical “MIT
shock”), the stationary equilibrium allocations chosen at t < 0 have not allowed for that
contingency. We then characterize the dynamic transition path induced by this change in
productivity. The aggregate capital stock and its distribution at t = 0 is predetermined by
the steady state equilibrium associated with At ≡ A∗.

3 The Optimal Consumption Allocation

In this section, we characterize the optimal household consumption-asset allocation, given
a path for wages and interest rates (rt, wt). We start with a graphical representation of the
optimal allocation to provide intuition and to guide the ensuing theoretical analysis.

Figure 1 illustrates the consumption insurance allocation in the initial steady state (i.e.,
for t < 0) of an agent with productivity zt and thus labor income yt = w∗zt that switches
idiosyncratic productivity at two Poisson dates from high to low and back to high produc-
tivity. In the high idiosyncratic income state of a simple equilibrium, the agent holds no
capital, consumes less than his current income (see the upper panel) and uses the difference
to make insurance payments against the possibility of a switch to low productivity. When
the switch occurs, the agent receives a stock of capital as insurance payout (see the lower
panel) and draws down this capital account to finance the consumption stream during the
low-productivity (zero labor income) phase. Upon a transition back to high productivity,
the capital account returns to its zero value and the allocation returns to the initial phase.

Figure 2 depicts what happens to the consumption insurance allocation on the impact of
the MIT shock at time t = 0. Whereas the capital held by low-productivity agent remains
unchanged on impact (since capital is a state variable and the transition was completely
unexpected), a different path for consumption emerges, due to changed aggregate dynamics

10
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t

consumption

labor income

Insurance 
payments

ΔΔΔ

Insurance contract for an agent: steady state

capital account 

ch

τ

ct, yt

kt

Figure 1: Consumption insurance allocations in stationary equilibrium. In the high-
productivity state, the agent holds no capital, consumes less than current income, and pays
for insurance against a productivity change. When the productivity state changes to zero,
the agent receives a stock of capital as insurance payout, running it down while productiv-
ity is zero. When productivity switches to the high state again, the capital account returns
to zero.

in wages and interest rates (wt, rt) and the resulting individual income process yt = wtzt.
In the high-productivity phase, consumption changes due to the changing wages along the
transition, but as long as Assumption 3 below is satisfied, the capital account will still
be zero and part of labor income will again be devoted to insurance payments against
idiosyncratic productivity loss. During the low-productivity and thus zero labor income
spell (assumed to encompass the instant t = 0 of the MIT shock), the aggregate shock
will potentially induce an altered consumption path due to interest rate changes along the
transition. Whereas consumption can in principle change discontinuously at t = 0 (as
displayed in Figure 2), we will show that this is not the case when utility is logarithmic.10

We now proceed with the formal analysis. Given an allocation Ct, we define the implied

10For a general CRRA utility function, a jump at t = 0 indeed occurs. See Online Appendix G.
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Figure 2: Consumption allocation around transition date t = 0. Low-productivity agents
keep their capital. Since returns rt and wages wt have changed, a different consumption
path might now be optimal, given this initial capital.

time derivative of consumption (assuming no idiosyncratic z-state transition) as11

ċt (k; z) ≡
∂ct (k; z)

∂t
+
∂ct (k; z)

∂k
xt (k; z) . (14)

We make the following assumption, which involves equilibrium variables. In Propo-
sition 2 below, we will show that the condition (in this assumption) holds under suitable
assumptions about the exogenous parameters.

Assumption 2. For some T ≥ 0, rt < ρ for all t ≥ T .

Lemma 1 (The optimal allocation Ct for z = 0 and k > 0). For k > 0 and with assump-

tion 2, the optimal contract of definition 1 is characterized by the consumption dynamics

ċt (k; z)

ct (k; z)
= rt − ρ. (15)

Furthermore, if z = 0 and, for some k̄ > 0 we have k̃t(k; 0) = 0 for all k ≤ k̄, then there

11To provide some intuition for this definition of the time derivative, suppose that productivity remains
constant at z for some time interval. In that case note that k̇t = xt (k; z) and that consumption evolves as
c (t) = ct (kt; z) as a function of time only. Taking the derivative with respect to time yields the expression.
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exists ¯̄k such that for all k ≤ ¯̄k,

ct (k; 0) = (ρ+ ν) k, (16)

xt (k; 0) = (rt − ρ) k, (17)

The proof is in the Appendix. Note that we permit the possibility that rt > ρ for some
period along the transition. When this happens, capital k will be temporarily increasing. In
Lemma 1, we need to make sure that kt ≤ k̄ for all t. This is assured by making the initial
level of capital k > 0 small enough, i.e., k ≤ ¯̄k for some suitable bound ¯̄k. We now use this
result to characterize the dynamics of consumption for individuals with currently high pro-
ductivity. To do so, let us make the following assumption concerning equilibrium variables,
to be replaced in Proposition 2 below by an assumption about exogenous parameters.

Assumption 3. Suppose the aggregate wage and interest rate satisfy ∀t ≥ 0,

ẇt

wt

+ ρ > rt. (18)

Generally, agents discount future payments at rate ċt
ct
+ ρ. Suppose that consumption

is proportional to wages, as will be the case for individuals with high productivity. The
assumption then says that this discount rate is higher than the interest rate rt that can be
earned on savings, i.e., these agents would rather not postpone consumption into the future
by saving. Recall that they cannot borrow. Now define the constant

α ≡ ρ+ ν

ρ+ ν + ξ
. (19)

For ease of notation, let cs,t = ct(ks,t; 0) denote consumption of a zero productivity agent
at date t who switched from high to zero productivity at date s ≤ t, and thus holds capital
ks,t. This notation implies that cs,s and ks,s are the consumption and capital holdings of an
individual whose productivity has turned to zero this very instant. Denote by ch,t = ct(0; ζ)

the date t consumption of a high-income individual with no assets.

Lemma 2 (The optimal allocation Ct). Let assumption 3 be satisfied. Then the optimal

contract of definition 1 implies the dynamics of consumption and investment as

13



ch,t = αζwt, (20)

cs,t = ch,se
∫ t
s (ru−ρ)du, (21)

for all s, t, where the constant α is defined in equation (19) and where we recall that the

instantaneous consumption growth rate of unconstrained agents is given by rt − ρ.

The proof is in the Appendix. Equation (20) implies that high-productivity agents pay
an insurance premium (1 − α)ζwt against their productivity falling. Since the insurance
contracts are actuarily fair, this finances initial capital

kt,t =
1− α

ξ
ζwt (22)

after the switch to zero income. Equation (16) then implies

ct,t =
(ρ+ ν) (1− α)

ξ
ζwt = αζwt (23)

for the consumption following the switch, which coincides with ch,t and with the expression
in (21). Finally, solving for α in equation (23) delivers (19).

Remarkably and as equation (16) shows, the wage-normalized entry level of consump-
tion ch,t/wt after switching to zero productivity is the same as in the initial steady state,
despite the fact that the subsequent consumption path drifts down at a different (and time-
varying) rate, see equation (21). However, since the rates at which future consumption is
discounted also change, the present discounted value of this altered consumption stream
remains the same with log-utility, and thus the wage-normalized entry level of consump-
tion does not change along the transition path. This is a version of the well-known “income
effect and substitution effect cancel” property of log preferences.

Applying the results above to the steady state, we have

c∗h = αζw∗, (24)

c∗τ = e(ρ−r∗)τc∗h, (25)

k∗τ =
1

ρ+ ν
e(ρ−r∗)τc∗h. (26)

14



4 Transition Dynamics

To compute the aggregate capital supply Kt at time t, we aggregate the capital holdings of
low-productivity agents,

Kt =

∫ t

−∞
ks,tψl(t− s)ds. (27)

This allows us to characterize the evolution of the aggregate capital stock in closed form.

Lemma 3 (Dynamics of aggregate capital supply). Let the initial capital stock K0 be given

by the steady state capital stock associated with a steady state interest rate r < ρ and12 let

Assumptions 1, 2 and 3 be satisfied. Then the aggregate law of motion for capital is given

as

K̇t = ŝAtK
θ
t − δ̂Kt, (28)

where ŝ = 1− α + αθ and δ̂ = δ + ρ+ ν. (29)

The proof is in the Appendix. The aggregation result is intuitive: high-productivity
agents consume the fraction α of all wages and save the rest (1− α)wt. Low-productivity
agents own all capital, earn rt on their capital accounts, and deplete it at rate ρ+ ν. Adding
up yields

K̇t = (1− α)wt + (rt − (ρ+ ν))Kt. (30)

Using the expressions for the wage and interest rate (rt, wt) from (10) and (11) delivers the
law of motion (28) with saving rate ŝ in (29).

Lemma 3 shows that the law of motion for aggregate capital is akin to that of a Solow
model with the exogenous and constant saving rate ŝ and depreciation rate δ̂. This is a
consequence of the constant savings rates (see equations (16)) and (20)): with log util-
ity, low-productivity agents consume a constant fraction of their capital account and high-
productivity agents consume a constant fraction of their wage income.

As is well-known for the Solow model or from lemma 10 with as = ŝAs, the differential
equation (28) has a closed-form solution for the equilibrium time path of capital, i.e.,

Kt =

(
e−(1−θ)δ̂t (K0)

1−θ + (1− θ) ŝ

∫ t

0

e−(1−θ)δ̂(t−s)Asds

) 1
1−θ

. (31)

12Assumption S1 in Section 4.1 below guarantees such a unique partial insurance steady state with r < ρ.
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Define the function

K(A) =

(
ŝA

δ̂

) 1
1−θ

. (32)

Corollary 1. Under the conditions of Lemma 3, we have Kt → K(A∞).

This is a direct consequence of Assumption 1, Lemma 3 and equation (31).
With log utility, the right-hand side of (31) is exclusively a function of exogenous pa-

rameters and the exogenous time path of total factor productivity At. The explicit solution
in (31), in principle, applies to any productivity path, but the requirement that Assumption
3 be satisfied imposes restrictions on the path for which (31) is a valid characterization of
the equilibrium transition path for capital.

The time paths of all other aggregate variables, such as interest rate, wage and aggregate
consumption directly follow from those of the aggregate capital stock, as in the standard
neoclassical growth model, i.e.,

rt = θAtK
θ−1
t − δ, (33)

wt = (1− θ)AtK
θ
t , (34)

Ct = AtK
θ
t − δKt − K̇t = (1− ŝ)AtK

θ
t +

(
δ̂ − δ

)
Kt. (35)

A Solow model would yield Ct = (1− ŝ)AtK
θ
t . The difference here arises from the

difference between δ̂ and δ. The expression (33) for interest rates allows us to rewrite (28)
more conveniently as

K̇t

Kt

=
ŝ

θ
(rt + δ)− δ̂. (36)

4.1 Partial Insurance Steady State

For a constant At ≡ A∗, the steady state K∗ capital stock satisfying K̇t = 0 and associated
interest rate r∗ are given by

K∗ =

(
ŝA∗

δ̂

) 1
1−θ

= K (A∗) , (37)

r∗ = θ
δ̂

ŝ
− δ. (38)
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Define the constant

χ ≡ ξ

ν (ρ+ ν + ξ)
− θ

(1− θ) (ρ+ δ)
. (39)

Krueger and Uhlig (2024) show that χ is the difference between steady-state wage-normalized
capital supply and demand at r = ρ. We now impose the following assumption for the
steady state (consequently labeled S1), which guarantees a unique stationary equilibrium
with interest rate r∗ < ρ.

Assumption S1. Let the exogenous parameters of the model satisfy θ, ν, ξ, ρ > 0 and

χ > 0. (40)

In Lemma 5 of Online Appendix B.1, we show that r∗ < ρ if and only if χ > 0. The
following proposition from Krueger and Uhlig (2024) follows from and summarizes our
discussion above and fully characterizes the steady state of the model.

Proposition 1 (Krueger and Uhlig (2024)). Let Assumption S1 be satisfied. Then there

exists a unique stationary equilibrium. The unique equilibrium capital stock and interest

rate (K∗, r∗) are given by equations (37) and (38), and r∗ satisfies r∗ < ρ. The equilib-

rium features partial insurance, i.e., consumption of the high-productivity agents is ch and

consumption of the low-productivity agents drifts downwards at rate r∗ − ρ < 0. The equi-

librium wage is given by w∗ = (1− θ)A∗ (K∗)θ. The stationary consumption distribution

has a mass point at c∗h = αζw∗ for the mass ν
ν+ξ

of high-productivity agents, and

k∗τ = e−(ρ−r∗)τ c∗h
ν + ρ

(41)

c∗τ = e−(ρ−r∗)τc∗h (42)

for the low-productivity agents as a function of τ (the time elapsed since their last transition

to low productivity), where k∗τ = kt−τ,t and c∗τ = c (kt−τ,t) is independent of t.

Note that k∗τ is the net present value of the future zero-income consumptions c∗τ+s,
taking into account the rate ν of switching out of the zero income state, i.e.,

k∗τ =

∫ +∞

s=0

e−(ν+r∗)sc∗τ+sds. (43)
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4.2 Sufficient Conditions

In this section, we derive sufficient conditions on the exogenous productivity path and the
other model parameters under which equation (18) is satisfied in equilibrium. In what fol-
lows, we also impose Assumption S1 which guarantees the existence of a unique stationary
equilibrium with partial insurance from which the transition path starts.

We begin by showing that Assumption 3 requires that the growth rate of productivity
is not “too low” and the equilibrium interest rate is not “too high” along the transition
path. Exploiting ẇt/wt = Ȧt/At + θK̇t/Kt and using the dynamics of aggregate capital
in equation (36), substituting ŝδ− θδ̂ with ŝr∗ and rearranging terms, we rewrite condition
(18) in Assumption 3 as

Ȧt

At

> (1− ŝ) (rt − r∗) + r∗ − ρ. (44)

Hence, if the growth rate of productivity Ȧt/At is bounded below and the equilibrium in-
terest rate is bounded above, then a sufficient (but not necessary) condition for Assumption
3 to hold in equilibrium is that the inequality in equation (44) holds at these bounds for
Ȧt/At and rt. In that case, the incentives to save for the high idiosyncratic productivity
state are sufficiently weak because future wage growth is sufficiently strong and interest
rates are sufficiently low along the entire equilibrium path.

For a productivity process that is increasing over time, only an upper bound on the
level of productivity is needed to establish that (44) holds. An increase in productivity
has two countervailing effects. On the one hand, it leads to an increase in the equilibrium
wage over time and thus reduces savings incentives, relaxing the inequality in (44). On the
other hand, the increase in productivity leads to a temporary increase in the equilibrium
interest rate along the transition and thus strengthens the incentives to save even for the
high idiosyncratic productivity state. It is this second effect whose magnitude we have
to bound with an upper bound on the level of productivity in order to ensure that (44)
remains satisfied for all t. We formalize this argument in Section 4.2.1, and we provide two
examples of productivity processes that satisfy this condition – one is a one-time permanent
increase in productivity and the other is a monotonically increasing path of productivity.

The situation is asymmetric for a productivity decline, since it is negative wage growth

now that might induce savings for the future for all contingencies and threatens to violate
the no-savings condition (44). Now we require an upper bound on the speed of the produc-
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tivity decline rather than on the level of productivity in order to bound the negative wage
growth effect that is only partially offset by a decline in the interest rate along the transi-
tion. That a condition on the new level of productivity (as was the case for an increase in
productivity) is now insufficient can be readily seen for a permanent decline in productivity
(for which Ȧt/At = −∞ at t = 0 and thus (44) is necessarily violated since the interest rate
remains finite at t = 0). We formalize this argument in Section 4.2.2 and give an example
of a gradually declining productivity path that satisfies the no-savings condition (44).

Taken together, the sufficient conditions on the productivity paths for Assumption 3 to
hold in equilibrium are “asymmetric” for increasing versus decreasing productivity paths
– the former requires an upper bound on the level of productivity while the latter requires
a lower bound on the negative growth rate of productivity. In Section 4.3, we show by
example that conditional on the no-savings condition (44) being satisfied in both cases,
a symmetric increase and decrease in productivity leads to a nearly symmetric transition
path for aggregate capital and the other macroeconomic aggregates in the model. Finally,
in Section 4.4, we compare the speed of convergence to a new steady state in our model to
the speed in the standard (continuous time) representative agent neoclassical growth model.

4.2.1 Increase in Productivity

In this section, we consider a general productivity process {At}t≥0 that is increasing over
time. We can now replace Assumptions 2 and 3 on equilibrium wages and interest rates
with Assumption 4, which is stated purely in terms of exogenous parameters.

Assumption 4 (Upper bound on the productivity level). The productivity process {At}t≥0

satisfies At < Ā for all t ≥ 0 and the bound Ā > A∗ satisfies

Ā

A∗ = 1 +
ρ− r∗

(r∗ + δ) (1− ŝ)
, (45)

where A∗ is the initial steady state productivity level and r∗ is the stationary interest rate.

Given Assumption S1, Proposition 1, equation (38) and 0 < ŝ < 1 imply that Ā > A∗.
Broadly speaking, Assumption 4 imposes an upper bound on the level of productivity so
that the interest rate does not rise “too high” along the transition path. This discourages the
high-productivity agent from accumulating capital.13

13The upper bound Ā follows from the following consideration, to be made precise in the proof of Propo-
sition 2 in the Appendix. Since At is increasing, Kt is increasing and rt < r̄ = Ā (K∗

0 )
θ−1 − δ, the interest
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With Assumption 4, we can now characterize the dynamics of aggregate capital in
closed form in Proposition 2. This proposition is the counterpart of Lemma 9 in Online
Appendix G.3, but with logarithmic utility and with an assumption exclusively on the ex-
ogenous parameters of the model.

Proposition 2 (Transition dynamics with log utility after a productivity increase). Suppose

agents have log utility and the productivity process {At}t≥0 is weakly increasing over time

with A0 ≥ A∗. Furthermore impose Assumptions 1, S1 and 4. Then the dynamics of

aggregate capital is given in (28), capital is weakly increasing and the equilibrium wage

and interest rate processes jointly satisfy Assumptions 2 and 3.

The proof is in the Appendix. An immediate and permanent increase in productivity
from A∗ to Ã is a special case of Proposition 2 and further simplifies the closed-form tran-
sitional dynamics, as we show in Corollary 2 below. Note that in this case, Assumption S1
not only guarantees the existence of a unique stationary equilibrium with partial insurance
from which the transition path starts, but also insures that the interest rate is monotonically
decreasing along the transition path induced by the permanent productivity increase.

Corollary 2 (Transition dynamics after a permanent productivity increase). Suppose the

agents have log utility and a permanent shock raises productivity from A∗ to Ã. Further

impose Assumptions S1 and 4.

1. Recall K̃ from equation (37). For all t ≥ 0, the aggregate capital stock is

Kt =
(
K̃1−θ +

(
(K∗)1−θ − K̃1−θ

)
e−(1−θ)δ̂t

) 1
1−θ

. (46)

2. The aggregate capital stock and the wage are strictly increasing over time, and the

equilibrium interest rate is strictly decreasing over time.

3. The equilibrium wage and interest rate processes jointly satisfy Assumption 3.

The proof is in the Appendix. We display the essence of Corollary 2 graphically in
Figure 3 for a specific set of parameters (see the caption of the figure for their values).14

This serves to further clarify the intuition behind our results. Panel (a) shows that the

rate, which would prevail at t = 0, if A0 = Ā. Note that r̄ + δ =
(
Ā/A∗) (r∗ + δ). Since Ȧt/At ≥ 0,

condition (44) is implied by 0 = (1− ŝ)
((
Ā/A∗)− 1

)
(r∗ + δ) + r∗ − ρ or (45).

14In Figure E.1 of Online Appendix E we consider a continuous increase in productivity and show that the
dynamics of the aggregate variables are qualitatively similar.
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interest rate jumps up on impact and then drifts down to its new (equal to the old) steady
state level. Panels (b) and (d) display that the wage and aggregate consumption jump up on
impact and then continue to increase to their new steady state levels. The aggregate capital
stock in panel (c) increases monotonically over time towards the new and larger steady
state level associated with a permanently higher productivity.

In panel (e), we depict the growth rate of wages and the (negative) interest-discount
rate differential, the two key ingredients of Assumption 3. Recall that in order for agents
to not want to save for the high-productivity state, the sum between the two terms has to
be negative for all t. The figure shows that even though the interest rate rises on impact,
this effect is not strong enough: rt − ρ remains negative throughout the transition, which,
coupled with positive wage growth, ensures that savings incentives remain sufficiently low.

The figure also clarifies the role Assumption 4 plays: if the increase in productivity is
too large, the interest rate jump on impact might be so large that, temporarily, agents might
want to save for the high-productivity state as well. Assumption 4 insures precisely that
this does not happen at any time during the transition.15 An alternative way to see this is to
plot all combinations of

(
rt,

ẇt

wt
+ ρ
)

attained along the transition. Panel (f) (with r on the
x-axis) shows that all these combinations satisfy rt − ρ < ẇt

wt
.

4.2.2 Decline in Productivity

In this section, we consider a general productivity process {At}t≥0 that is continuous and
decreasing over time. Proposition 3 shows that the no-savings Assumption 3 or, equiv-
alently, equation (44) is satisfied as long as the exogenous (and possibly time-varying)
growth rate of productivity is not too negative, as made precise in Assumption 5 below.

Assumption 5 (Lower bound on the growth rate of productivity). The growth rate Ȧt

At
of

the productivity process {At}t≥0 satisfies

Ȧt

At

> r∗ − ρ. (47)

To see this, note that a decreasing path for At implies rt ≤ r∗ (see Lemma 4). Thus,
the right hand side of (44) is bounded above by r∗ − ρ < 0.

15In this example, the interest rate satisfies rt < ρ for all t along the transition path. We can also find
productivity processes that satisfy the conditions in Corollary 2 for which the interest rate is not always below
ρ along the transition. We provide an example in Figure E.2, which features a “large” permanent increase in
productivity. However, Assumption 3 still holds for this example since rt <

ẇt

wt
+ ρ in equilibrium.
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(a) Interest rate (b) Wage

(c) Capital (d) Consumption

(e) Comparing rt − ρ with ẇt
wt

(f) ẇt
wt

+ ρ as a function of rt

Figure 3: Transitional dynamics with a permanent increase in productivity. The figure plots
the transition dynamics when productivity permanently increases from A∗ = 1 to Ã = 1.2.
Agents have log utility and δ = 0.16, ν = 0.2, ρ = 0.4, θ = 0.25, ξ = 0.2.
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Proposition 3 (Transition dynamics after a continuous productivity decline). Impose As-

sumptions 1, S1, 5, A0 = A∗ and Ȧt ≤ 0 for all t > 0. Then the dynamics of aggregate

capital is given in (28), and the equilibrium wage and interest rate processes jointly satisfy

Assumptions 2 and 3.

The proof is in the Appendix. Proposition 3 states that in order to discourage agents
from accumulating capital for the high idiosyncratic productivity state, we need to bound
the growth rate of the productivity decrease. This insures that wages do not fall too fast,
otherwise even high-productivity agents would want to hold some capital to fund future
consumption in light of low future wages. Note that this requirement contrasts with the
case of a productivity increase for which we required a bound on the level of productivity
in Assumption 4 to limit the increase in the interest rate.

To demonstrate why we need a bound on the speed of the productivity decline for our
equilibrium characterization, we now continue the numerical example from the previous
section, but now consider a symmetric permanent decline in productivity for which condi-
tion (47) in Assumption 5 is violated. Let productivity permanently decrease from A∗ = 1

to Ã = 1/1.2, and suppose the proposed consumption insurance contract is optimal (which
we will argue it is not). The implied interest rate and wage paths violate Assumption 3
since the wage jumps down at the time of the shock (see Figure 4 panel (b)), which implies
that ẇt

wt
= −∞ at t = 0 (and together with a finite r0) leads to a violation of Assumption 3.

Figure 4 displays the path of wages (upper panels) and consumption of high-productivity
agents (ch,t) and of agents that have experienced an idiosyncratic productivity decline ex-
actly at time 0, that is c0,t, in the lower panels. The left panels correspond to the produc-
tivity increase from the previous subsection, and the right panels are for the correspond-
ing permanent decline in aggregate productivity. In the left panels, wage growth is high,
consumption of high-productivity agents jumps on impact, whereas consumption of low-
productivity agents remains continuous. Of course, this indicates inefficient consumption
insurance since ch,t > c0,t at time t = 0. Ideally, consumption c0,t should also jump
up after the positive aggregate productivity shock. However, this would require the low-
productivity agents to borrow against future higher income, which is precisely what the
limited commitment constraint prevents. Thus, the depicted consumption paths are indeed
optimal as the permanent productivity increase satisfies Assumption 4.

The same is not true for a sudden decline in productivity (right panel) and associated
drop in wages. In the associated conjectured consumption allocation, ch,t drops immedi-
ately in response to the collapse in wages and remains below c0,t for a sustained period
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(a) Wage: A∗ → 1.2A∗ (b) Wage: A∗ → A∗/1.2

(c) Household consumption: A∗ → 1.2A∗ (d) Household consumption: A∗ → A∗/1.2

Figure 4: Difference between permanent increase and decrease in productivity. We plot
the dynamics of wages and individual agents’ consumption, assuming that agents behave
according to the allocation from Lemmas 1 and 2. Panels (a) and (c) plot the dynamics
when productivity permanently increases from A∗ = 1 to Ã = 1.2. Panels (b) and (d)
do the same when productivity permanently decreases from A∗ = 1 to Ã = 1/1.2. In
panels (c) and (d), the solid black line plots consumption of a low-productivity agent who
just transitioned from high productivity at time t, while the dotted blue line denotes the
consumption of high-productivity agent at time t. Agents have log utility and δ = 0.16, ν =
0.2, ρ = 0.4, θ = 0.25, ξ = 0.2.
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of time, see panel (d) of Figure 4. That is, if the low-productivity agent has a reversal
towards high productivity at some t > 0 (when ch,t < c0,t is still the case), she would see
consumption decline on impact of this event, again an instance of inefficient consumption
insurance. In this case, however, this can be avoided, by the low-productivity agent sav-

ing for the high-productivity reversal. That is, the conjectured consumption allocation is
sub-optimal precisely because the no-savings condition of Assumption 3 is violated.

Although it is clear that a discontinuous fall in productivity will always violate Assump-
tion 3, a number of continuously declining productivity processes satisfy the assumption.
In the next corollary, we provide such an example.

Corollary 3. Consider the following log-linearly decreasing productivity path {At}t≥0

logAt = logA∗ +
t+ (T − t) · 1 {t > T}

T

(
log Ã− logA∗

)
(48)

with A0 = A∗ > Ã and T > 0. Impose Assumption S1. If the parameters Ã and T satisfy16

logA∗ − log Ã

T
< ρ− r∗, (49)

then the dynamics of aggregate capital is given in (28), the equilibrium wage and interest

rate processes jointly satisfy Assumptions 2 and 3.

This follows directly from Proposition 3. That is, if the eventual decline from A0 to Ã
is not too large and the decay rate parameterized by T is not too fast, then Assumption 5
and thus Assumption 3 are satisfied for this continuously declining productivity process.

4.3 Symmetric Continuous Productivity Increase and Decrease

In the last section, we show that the sufficient conditions needed to guarantee that house-
hold allocations are “simple” are asymmetric between productivity increases and produc-
tivity declines. We now argue that conditional on these conditions being satisfied, and
conditional on the productivity increase and decrease being symmetric, equilibrium alloca-
tions and prices are nearly symmetric as well.

To do so, in Figure 5, we compare the transitional dynamics of the aggregate variables
under the log-linear productivity process from Corollary 3 with parameters T = 2 and

16The right-hand side of equation (49) is the negative of the right-hand side of equation (47).
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(a) Log productivity (b) Interest rate (absolute deviation)

(c) Log wage (absolute deviation) (d) Log capital (absolute deviation)

Figure 5: This figure compares the dynamics of aggregate variables with a continuous
increase and decrease in productivity, as described in the main text. The solid black line
plots the case of the productivity increase and the dotted blue line displays the productivity
decrease. All variables in log deviation from their initial steady state values. Agents have
log utility and δ = 0.16, ν = 0.2, ρ = 0.4, θ = 0.25, ξ = 0.2.

A∗ = 1, and where the final steady state productivity is either Ã = 1/1.2 or Ã = 1.2. That
is, log productivity linearly increases (decreases) from log (A∗) to the new steady state
value log Ã in T periods. Both paths satisfy the respective sufficient conditions from the
previous sections so that in each case, Assumption 3 is satisfied. In each panel of the figure,
the solid black line plots the case when productivity increases and the dotted blue line plots
the case when productivity decreases.

Panel (a) plots the two productivity paths (in log deviation from the initial steady state
values) and shows that, by construction, the increase and decline are symmetric about the
old steady state. The remaining panels (b)-(d) display paths of the interest rate, the wage
and the aggregate capital stock. The figure shows that all macroeconomic aggregates (as
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well as aggregate output and consumption, since these follow directly from the dynamics
of the aggregate capital stock) respond symmetrically to a symmetric productivity change.
In fact, as one can see from equation (31) characterizing the capital stock in closed form,
K1−θ

t responds to productivity movements (the terms in the last integral of equation (31))
fully symmetrically. Since wages equal wt = AtK

1−θ
t , they evolve symmetrically, too,

see panel (c). For the interest rate and capital, the transition path is not exactly symmetric
(since these variables depend on Kθ

t or Kθ−1
t ), but as the figure shows, the deviations from

complete symmetry are quantitatively very small.
We conclude that the main asymmetry induced by limited commitment is one of the

conditions required so that high-productivity agents do not want to save. The economy
then responds symmetrically to positive and negative aggregate productivity shocks.

4.4 Speed of Convergence

So far we have characterized the transition path induced by a shock to productivity. This
begs the question of how rapid the convergence to the new steady state is, given the ex-
ogenous shock. We can think of the initial steady state as describing an originally poor
country that, all of a sudden, obtains access to frontier production technologies. The speed
of convergence question then asks how quickly such a country will catch up with frontier
economies if it is described by our model. In this section, we will answer this question and
compare our model to the standard neoclassical growth model along this dimension.17

Barro and Sala-i-Martin (2004) formally define the speed of convergence βt as

βt ≡ −
∂
(
K̇t/Kt

)
∂ log (Kt)

. (50)

It measures how much the growth rate of capital declines (increases) as the capital stock
increases (declines) towards its new steady state. One expects the partial derivative to be
negative and the minus sign in the definition turns the speed of convergence positive. The
following proposition characterizes the speed of convergence in our model.

Proposition 4 (Speed of convergence). Suppose Assumptions 1, 2 and 3 hold. Then the

speed of convergence in our model is characterized as follows.

17See Barro and Sala-i-Martin (2004) for a summary of the empirical evidence on this issue, and King and
Rebelo (1993) for a quantitative assessment of the standard neoclassical growth model for this question.
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1. Along the transition,

βt =
(1− θ)

θ
ŝ (rt + δ) . (51)

2. In the long run,

βt → β = (1− θ) δ̂. (52)

Thus the speed of convergence in the long run is independent of the path for productivity
At or the risk of losing productivity ξ.18 Note that this proposition holds rather generally. In
particular, its conditions are satisfied under the conditions of Proposition 2 or Proposition 3.

The proof is in the Appendix. We now study the speed of convergence numerically,
both to show Proposition 4 in action as well as to contrast it to the speed of convergence
in the standard neoclassical growth model.19 Since the neoclassical growth model has no
closed-form solution, it is a priori unclear how its speed of convergence compares to our
model. Proposition 5 below provides an answer, using a log-linearization of the neoclassi-
cal growth model around the steady state. No such approximation is needed for our model
since its speed of convergence around the steady state can be given without it, as shown in
the previous proposition.

Proposition 5 (Comparison of speed of convergence). Suppose a permanent shock raises

productivity from A∗ to Ã. Furthermore impose Assumptions 1, S1 and 4. Around the

new steady state, our model exhibits a slower speed of convergence than the neoclassical

growth model if and only if

θ

(
1 +

ν

ρ+ δ

)(
1 +

ρ+ ν
ρ

1−θ
+ δ

)
< 1. (53)

The proof involves some tedious calculations and is in Online Appendix C.2. Figure 6
plots the speed of convergence in both models under the baseline parameters of Figure 3.

These parameter values satisfy equation (53) and thus in the long run our model displays
slower convergence to the new steady state than the neoclassical growth model. Panel (a)
and panel (b) differ in the initial levels of capital in the two models. In panel (a), each
model starts from its own steady state capital stock which is lower in the neoclassical
growth model since in that model the steady state interest rate is r = ρ, whereas our model

18The expression in equation (52) is also the speed of convergence along the transition if one log-linearizes
the model around the new steady state.

19Online Appendix C.1.2 includes the computational details for our solution of that model.
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(a) Starting from steady state (b) Starting from same capital

Figure 6: This figure compares the speed of convergence in our model with that in the
representative agent neoclassical growth model, following a permanent increase in produc-
tivity. In each panel, the solid black line represents our model and the dotted blue line is
neoclassical growth model. Productivity permanently increases from A∗ = 1 to Ã = 1.2.
Agents have log utility and δ = 0.16, ν = 0.2, ρ = 0.4, θ = 0.25, ξ = 0.2.

features partial insurance and thus r < ρ. In panel (b), we instead assume that both models
start from the same capital stock, equal to the initial steady state capital stock in our model.

The figure shows that our model displays slower convergence than the neoclassical
growth model, both in the short run and the long run. As King and Rebelo’s (1993) classic
paper on this issue shows, the speed of convergence in the neoclassical growth model is
fast initially if the capital stock is far below its new long-run steady state level (as is the
case when there is a large permanent increase in productivity) since this means temporarily
high returns to capital, and temporarily high investment rates (and thus high endogenous
savings rates of the representative agent). In our model, akin to the classical Solow model,
the saving rate of those making positive saving decisions is constant (but endogenous).
Thus convergence is slower in the short run, and, with the inequality in Proposition 5 also
in the long run. As King and Rebelo (1993) and Barro and Sala-i-Martin (2004) argue,
the neoclassical growth model implies unreasonably fast convergence for commonly used
calibrations. Thus our model can potentially alleviate this fast convergence “puzzle.” Of
course, this requires that the parameters satisfy the condition of Proposition 5.
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5 Consumption Inequality along the Transition

In this section, we study the evolution of consumption inequality along the transition in-
duced by a (permanent or transitory) productivity shock. This analysis shows how the
distribution of consumption changes over the business cycle, according to our model, as-
suming that the unexpected MIT productivity shock can be treated as a good approximation
of aggregate fluctuations. Our model is tractable enough to do this analytically, to a large
degree, and uses numerical analysis only to illustrate the theoretical results.

5.1 Theory: Inequality in Steady State and along Transition

At any point in time t, we can theoretically characterize the (percentage) consumption gap
between an agent with currently high productivity ch,t and an agent that had high produc-
tivity last τ ≥ 0 periods ago, ct−τ,t, as

log

(
ch,t
ct−τ,t

)
. (54)

From the characterization in equation (20), ch,t is proportional to the current wage

ch,t = αζwt =
ν + ρ

ν + ρ+ ξ
ζwt.

Hence, high-productivity agents’ consumption normalized by the wage, remains constant
over time, and absolute consumption of this group changes proportionally with the aggre-
gate wage rate wt in the economy. Since the share of high-productivity agents is Ψh = ν

ν+ξ

and the distribution of waiting times τ for low-productivity agents isψl (τ) = ξνe−ντ/ (ξ + ν)

(see equation (7)), a characterization of the consumption gap log (ch,t/ct−τ,t) for all τ ≥ 0

fully characterizes the consumption distribution at each time t. Since ct−τ,t is strictly de-
creasing in τ , Online Appendix D demonstrates the (obvious) fact that the index τ maps
into a specific quantile of the consumption distribution.

Proposition 6 below decomposes the gap log (ch,t/ct−τ,t) into a wage component re-
flecting the fact that wages might have been different when agent τ had high productivity,
relative to today, and a discounting component capturing the fact that this agent’s consump-
tion has drifted down between period t − τ and period t at rate ρ − ru with u ∈ [t− τ, t].
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Define the average interest rate rat,τ over this interval as

rat,τ =
1

τ

∫ t

t−τ

rudu. (55)

Proposition 6 (Consumption inequality and decomposition). Suppose Assumptions S1 and

4 hold. Then at any time t, the consumption gap can be expressed as the sum of a “wage

gap” and a “discounting gap:”

log

(
ch,t
ct−τ,t

)
︸ ︷︷ ︸
consumption gap

= log

(
wt

wt−τ

)
︸ ︷︷ ︸

wage gap

+ τ
(
ρ− rat,τ

)︸ ︷︷ ︸
discounting gap

> 0. (56)

The proof is straightforward and can be found in Online Appendix B.2 for complete-
ness. Equations (36) and (38) imply that rat,τ = r∗ + (θ/ (τ ŝ)) log (Kt/Kt−τ ). Equation
(34) implies that log (wt/wt−τ ) = log (At/At−τ ) + θ log (Kt/Kt−τ ). Therefore, one can
calculate the consumption gap explicitly as

log

(
ch,t
ct−τ,t

)
= log

(
At

At−τ

)
− 1− ŝ

ŝ
θ log

(
Kt

Kt−τ

)
+ τ (ρ− r∗) . (57)

We can use the decomposition (56) and the consumption gap formula (57) to characterize
the evolution of consumption inequality along the transition following a permanent upward
jump in productivity. In Section 5.2, we consider one-time permanent productivity changes
and in Section 5.3, we discuss gradual shifts in productivity.

5.2 Permanent Productivity Shocks

Suppose a permanent shock raises productivity from A∗ to Ã at t = 0 and suppose the con-
ditions of Corollary 2 hold. Then, for a given agent characterized by τ ≥ 0, the wage gap
and the discounting gap, and thus the overall consumption gap have the following proper-
ties (see Figure 7 for a numerical illustration). At t = 0, the wage gap and consumption
gap jump up, since At/At−τ jumps from 1 to Ã/A∗ in (57). There is no change in the dis-
counting gap. For t ∈ (0, τ), the wage gap continuously widens while the discounting gap
continuously shrinks. This is a consequence of wages jumping up at t = 0 and further in-
creasing along the transition, whereas interest rates also jump up at t = 0 but then decline
towards the new (equal to the old) stationary equilibrium r∗ over time. The latter effect
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(a) Consumption gap (b) Wage gap (c) Discounting gap

Figure 7: Transition dynamics of consumption inequality with a permanent increase in
productivity from A∗ = 1 to Ã = 1.2. Panels (a)-(c) plot the consumption gap, wage gap,
and discounting gap defined in Proposition 6. See Figure 3 for parameter values.

dominates, so the consumption gap shrinks continuously, as one can see from (57) and in-
creasing capital Kt. At t = τ , At/At−τ jumps from Ã/A∗ to 1 in (57). Thus, the wage gap
declines discontinuously and the discounting gap shrinks continuously, so the consump-
tion gap falls discontinuously at t = τ . For t > τ , the wage gap shrinks further and the
discounting gap widens continuously. The latter effect dominates, so the consumption gap
widens continuously. When the economy has converged to the new stationary equilibrium,
the wage gap is zero, the discounting gap and thus the consumption gap revert back to their
original levels in the old stationary equilibrium.

We now illustrate the consequences for the overall consumption distribution, as sum-
marized by the Lorenz curve, using the numerical example from Section 4.2.1. Figure 8
displays the Lorenz curve at various points in time, at t < 0 (initial stationary equilibrium)
as well as three points of time along the transition (including t = 0, the instant after the
surprise MIT shock has occurred). Note that the Lorenz curve in the final steady state
following a permanent shock to productivity is identical to that in the initial steady state.
Panel (a) shows the Lorenz curves and panel (b) presents them in deviation from the the
initial (and final) stationary equilibrium Lorenz curve. For example, a value of −0.04 at
the 50th quantile in panel (b) for period t = 0 means that on impact, the consumption share
of the bottom half of the population falls by 4 percentage points.

We observe that in response to a positive permanent productivity shock, consumption
inequality increases before converging over time to the initial distribution. We will show
below this is the consequence of the consumption of high-productivity agents immedi-
ately jumping up with the higher wage implied by higher aggregate productivity, whereas
the low-productivity agents that finance their consumption from their (contingent) wealth
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(a) Cumulative consumption share (b) Cumulative consumption share (devia-
tion from steady state)

Figure 8: Evolution of the Lorenz curve with a permanent productivity increase from A∗ =
1 to Ã = 1.2. In each panel, the x-axis corresponds to the quantile in the population and
each line corresponds to a different time t. Panel (a) plots the cumulative consumption
share (defined in Online Appendix D.3) on the y-axis and panel (b) plots the deviation of
the cumulative consumption share from the steady state. See Figure 3 for parameter values.

holdings initially fall behind as their consumption is continuous in time (but now falls at
a slower rate over time as the interest rate increases with aggregate TFP). Over time, the
consumption of capital owners catches up to that of wage earners and the Lorenz curve
slowly converges back to the initial steady state curve.

We now return to the question of why a sudden decline in productivity leads to a viola-
tion of the no-savings condition. In Section 4.2.2, we argued that the proposed consump-
tion insurance contract is not optimal when At falls discretely. In this case, the wage would
immediately drop under the proposed allocation, inducing the high-productivity agent to
accumulate capital and thus violating Assumption 3.

We can also see this from the dynamics of the consumption gap. Figure 9 panel (b)
plots the hypothetical transition dynamics of the consumption gap assuming that individual
agents consume according to the consumption allocation in Lemmas 1 and 2. The solid
black line corresponds to an agent that had low productivity for one time unit (τ = 1). The
consumption gap for this agent turns negative upon the permanent decline in productivity,
implying the agent would consume more than the high-productivity agent (which is sub-
optimal consumption smoothing). This result is driven by the discrete drop in wage (panel
(a) of Figure 9) and the widening of the wage gap (panel (c) of Figure 9).

The discrete drop in the consumption gap also occurs for a low-productivity agent who
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(a) Wage (b) Consumption gap

(c) Wage gap (d) Discounting gap

Figure 9: Transition dynamics of consumption inequality with a permanent productivity
decrease, assuming the proposed contract is optimal. We plot the transition dynamics of
wages and consumption inequality when productivity permanently decreases from A∗ =
1 to Ã = 1/1.2, assuming that agents consume according to the optimal allocation in
Lemmas 1 and 2. Panel (a) plots the wage and panels (b)-(d) plot the consumption gap,
wage gap, and discounting gap in Proposition 6. See Figure 3 for parameter values.

just transitioned from high to low productivity at time t = 0. This agent would experience a
discrete drop in consumption under the proposed consumption contract. This is not optimal
as the agent would rather save more when he last had high productivity and avoid the
discrete drop in consumption once he switches to high productivity in the future.

5.3 A Continuous Change in Productivity

Finally, we study the dynamics of consumption inequality after a continuous increase and
decline in productivity that satisfies the no-savings condition. Consider the transition dy-

34



namics in the numerical example in Section 4.3. Recall from that section that the new
steady state values of the aggregate variables are “symmetric” in the two cases. In this
section, we examine the “symmetry” of the consumption gap and its components.

(a) Consumption gap (b) Wage gap (c) Discounting gap

Figure 10: Consumption inequality along transition with continuous productivity increase
and decrease. Productivity either increases from A∗ = 1 to Ã = 1.2 following the continu-
ous path in equation (48) with parameter T = 2 or it decreases from A∗ = 1 to Ã = 1/1.2
following the path in equation (48) with parameter T = 2. Panels (a)-(c) plot the consump-
tion gap, wage gap, and discounting gap defined in Proposition 6. Agents have log utility.
See Section 4.3 for parameter values.

Figure 10 plots the transition dynamics of the consumption gap (panel (a)) and its com-
ponents (panels (b) and (c)) after a continuous change in productivity. In each panel, the
solid black line corresponds to a low-productivity agent who last had high productivity for
τ = 1 period ago, while the dotted blue line corresponds to a low-productivity agent who
last had high productivity for τ = 2 periods ago.

Panel (a) shows that the consumption gap is monotonic in τ for both the increase and
decrease in productivity, i.e., the gap is the larger the bigger is τ in both cases. However,
it is noteworthy that the ordering of the wage gap is not symmetric while the ordering of
the discounting gap is symmetric. This is most transparent by observing that for a positive
productivity shock, the wage gap is monotonic in τ , while for a productivity decline this is
no longer true (see panel (b) of Figure 10). Since the two gaps go in opposite directions for
a decline in productivity and since they are of different magnitudes, the combined effect
on the consumption gap remains symmetric, in line with the symmetry result for aggregate
variables (conditional on the no-savings condition being satisfied) in Section 4.3.
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6 Conclusion

In this paper, we have analytically characterized the transition dynamics in a neoclassical
production economy with idiosyncratic income shocks and long-term one-sided limited
commitment contracts. When income can only take two values one of which is zero (i.e.,
unemployment) and the utility function is logarithmic, the transition path induced by an
unexpected productivity shock can be given in closed form, both for the macroeconomic
variables as well as the non-degenerate consumption distribution which displays partial
consumption insurance against the idiosyncratic income shocks.

Given these findings, we would identify two immediately relevant next questions. First,
on account of our use of continuous time, the endogenous optimal contract length is ana-
lytically tractable even outside the special case we have focused on thus far, and it will be
important to generalize our findings to the more general case. Second, thus far we have
focused on an environment that has idiosyncratic but no aggregate shocks, rendering the
macroeconomic dynamics deterministic. Given our sharp analytical characterization of the
equilibrium in the absence of aggregate shocks, we conjecture that the economy with ag-
gregate shocks might be at least partially analytically tractable as well. We view these
questions as important topics for future research.20
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A P P E N D I X

Proof of Lemma 1. Let µ ≥ 0 denote the Lagrange multiplier (LM) on the budget con-
straint (5), λ the LM on the borrowing constraint (6), and ω ≥ 0 the LM on the constraint
k̃ ≥ 0. Then the Lagrangian for the maximization problem in Definition 1 is

L = u (c) + U̇t (k; z) + U ′
t (k; z)x+ pz

(
Ut

(
k̃; z̃
)
− Ut (k; z)

)
(A.1)

−µ
(
c+ x+ pz

(
k̃ − k

)
− rtk − wtz

)
+ λx+ ωk̃.

The FOCs wrt to c, k and k̃ are

u′ (c) = µ, U ′
t (k; z) = µ− λ and U ′

t

(
k̃; z̃
)
= µ− ω

pz
. (A.2)

Consider an agent with k > 0. In this case, condition (6) does not apply and λ = 0. Then
the FOCs imply u′ (c) = U ′

t (k; z). When productivity stays unchanged for an interval of
time, we differentiate both sides wrt time t and use k̇t = x to obtain

u′′ (c) ċ = U̇ ′
t (k; z) + U ′′

t (k; z)x where (A.3)
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ċt (k; z) ≡
∂ct (k; z)

∂t
+
∂ct (k; z)

∂k
xt (k; z) , U

′′
t (k; z) ≡

∂2Ut (k; z)

∂k2
, U̇ ′

t (k; z) ≡
∂2Ut (k; z)

∂k∂t
.

Differentiating the objective in equation (4) wrt the state k delivers the envelope condition

ρU ′
t (k; z) = U̇ ′

t (k; z) + U ′′
t (k; z)x− pzU

′
t (k; z) + µ (pz + rt) . (A.4)

Using the first order conditions at k > 0 and (A.3), we have ρu′ (c) = u′′ (c) ċ + u′ (c) rt.
With u (c) = log (c), the optimal consumption therefore follows equation (15), when k > 0.

When z = 0 and k̃t (k; 0) = 0 for all k ≤ k̄ and some k̄, the consumption dynamics (15)
and the budget constraint (5) can be rewritten as the linear system of differential equations21

ċt = (rt − ρ) ct and k̇t = (rt + ν) kt − ct in the unknown functions ct and kt with the
boundary condition22 limt→+∞ kt = 0, provided kt ≤ k̄ for all t. Such a system of linear
ODEs has a unique solution. With xt (k; 0) = k̇t, it is easy to verify that the solution is (16)
and (17). The solution is valid, as long as the implied path for ks for s ≥ t does not cross
the upper bound k̄, since (17) is k̇t = (rt − ρ) k and since rt < ρ for t ≥ T per assumption
2. This will be true for all kt ∈

(
0, ¯̄k
)

and some suitable ¯̄k.

Proof of Lemma 2. The lemma is a version of Section 3.3 in the Online Appendix of
Krueger and Uhlig (2022), generalized to the case, where aggregate wages and interest
rates are functions of time. Rather than replicating the steps, here we provide the logic of
the argument and point to the results and proofs in Krueger and Uhlig (2022) for the details.

For a high-z agent, the Lagrangian, first-order and envelope conditions are as in the
proof for Lemma 1 (see (A.1), (A.2) and (A.4)) but applied to k = 0, z = ζ , and pz = ξ.

1. We first consider the choice of k̃. The solution in Lemma 1 implies that

U ′
t

(
k̃; 0
)
= u′

(
(ρ+ ν) k̃

)
=

1

(ρ+ ν)k̃
,

which increases to infinity, as k̃ → 0. The third first-order condition in (A.2) there-
fore implies that k̃ > 0 and thus ω = 0. With the first and third first-order condi-
tions in (A.2), we obtain consumption smoothing u′

(
(ρ+ ν) k̃

)
= u′ (c) and thus

21Note that equation (15) implies cs = e
∫ s
t
(ru−ρ)duct. A less formal, but more meaningful argument in

terms of economic theory is thus to recognize that the budget constraint and utility maximization implies that
the current capital k is equal to the net present value of all future consumption, as long as the productivity
state stays unchanged. This yields k =

∫ +∞
t

e−
∫ s
t
(ru+ν)ducsds = ct/ (ρ+ ν).

22The boundary condition ensures that no capital gets wasted and this follows from utility maximization.
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(ρ+ ν) k̃ = c. Therefore, equation (20) follows from the budget constraint (5), pro-
vided that x = 0.

2. Then we need to show that x > 0 is not optimal. Suppose otherwise, x > 0 were
optimal, then (ρ+ ν) k̃ = c together with the budget constraint (5) implies that ct <
αζwt, i.e. consumption is less than the right-hand side of equation (20). Furthermore,
constraint (6) would not be binding, λ = 0, and consumption growth would satisfy
equation (15). Let [t, t+∆] be a time interval for some ∆ > 0, during which this is
the case and along a path where no productivity switch occurs. Assumption 3 then
implies cs ≤ αζws during the interval s ∈ [t, t+∆], i.e. consumption is less than
the consumption level proposed in Lemma 2 for that episode. The integral of utility
during that time interval is then smaller than the utility of the solution proposed in
Lemma 2. This loss in utility can only be justified by the additional utility gained
from consuming the accumulated capital after a switch to lower productivity for s >
0, or, alternatively, for s > ∆ in case there is no switch to lower productivity. This
amounts to postponing consumption compared to the solution proposed in Lemma 2.
But this contradicts the impatience of the agent relative to wage growth, as expressed
in Assumption 3. A precise formulation of that contradiction requires replicating the
arguments in Section 3.3 of Krueger and Uhlig (2022), allowing for the additional
time evolution of rt and wt.

For a low-productivity agent, given his consumption dynamics in equation (15) and the
consumption of a high-productivity agent in equation (20), we have

cs,t = e
∫ t
s (ru−ρ)ducs,s = ch,se

−
∫ t
s (ρ−ru)du.

Hence, the consumption of a low-productivity agent is given equation (21).

Proof of Lemma 3. We differentiate both sides of equation (27) wrt time t,

K̇t = kt,tψl (0) +

∫ t

−∞

(
k̇s,tψl (t− s) + ks,tψ

′
l (t− s)

)
ds. (A.5)

Equation (7) implies ψ′
l (t− s) = −νψl (t− s). Rewrite equation (17) with k̇s,t = xt as

k̇s,t = (rt − ρ) ks,t. Equations (3), (7), and (22) yield

kt,tψl (0) =
1− α

ξ
ζwt

ξν

ξ + ν
= (1− α)wt. (A.6)
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Substituting into equation (A.5), we get

K̇t = kt,tψl (0) +

∫ t

−∞
((rt − ρ) ks,tψl (t− s)− νks,tψl (t− s)) ds

= (1− α)wt + (rt − ρ− ν)Kt

= (1− α) (1− θ)AtK
θ
t +

(
θAtK

θ−1
t − δ − ρ− ν

)
Kt = ŝAtK

θ
t − δ̂Kt,

where the third line above uses the interest rate and wage in equations (10) and (11), and
the last line above uses the definition of ŝ and δ̂ in equation (29).

Recall that r∗ is the steady state interest rate in equation (38) that K∗ is the steady state
level of capital, when productivity At ≡ A∗ for t < 0.

Lemma 4. Consider any productivity process {At}t≥0 such that in equilibrium, the aggre-

gate capital evolves according to equation (28).

• If At > A∗ and is weakly increasing for all t > 0, then rt > r∗ and K̇t > 0.

• If At < A∗ and is weakly decreasing for all t > 0, then rt < r∗ and K̇t < 0.

Proof. It suffices to show this for the first case of an increasing At, since the proof for the
second case of a decreasing At is entirely symmetric.

Recall the function K (A) =
(
ŝAt/δ̂

)1/(1−θ)

from equation (32), where ŝ and δ̂ are de-
fined in equation (29) of Lemma 3. K (A) is the steady state level of capital, if productivity
was constant at A. Since r∗ = θδ̂/ŝ− δ per equation (38) and since

K̇t

Kt

= ŝAtK
θ−1
t − δ̂ =

ŝ

θ
(rt + δ)− δ̂ (A.7)

per (28) and (36), it follows that

rt > r∗ ⇐⇒ K̇t > 0 ⇐⇒ Kt < K (At) . (A.8)

For any t̃ > 0, consider the solution K̃t to the ODE (A.7) starting at K̃0 = K∗, but with
At ≡ At̃ for t ∈

[
0, t̃
]

instead. It is clear that K̃t < K (At̃): convergence to the new
steady state K (At̃) for At ≡ At̃ does not happen in finite time and is strictly monotone,
as one can see by examining the solution in (46). Given any t ∈

[
0, t̃
]

and any Kt, we

have K̇t ≤ ˙̃Kt, since the right-hand side of (A.7) weakly increases, when At is replaced
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by At̃. Since K0 = K̃0 = K∗, this implies that Kt ≤ K̃t for t ∈
[
0, t̃
]
. In particular now,

Kt̃ ≤ K̃t̃ < K (At̃) and we must have rt̃ > r∗ as well as K̇t̃ > 0 per equation (A.8).23

Since t̃ > 0 is arbitrary, this establishes the claim.

Proof of Proposition 2. We proceed in two steps. We first conjecture that Assumptions 2
and 3 hold and use the upper bound Ā from Assumption 4 to obtain an upper bound r̄

for the interest rates rt along the transition path. We then verify Assumptions 2 and 3 by
showing this upper bound r̄ is sufficiently low.

Without loss of generality, we focus on the case where At > A∗ for all t > 0 and is
weakly increasing.24 Let r̄ be the equilibrium interest rate that would prevail if capital was
at its initial or steady state value Kt = K0 = K∗ and productivity was at its upper bound
Ā of Assumption 4, i.e., define

r̄ = θ
Ā

(K∗)1−θ
− δ =

Ā

A∗ (r
∗ + δ)− δ. (A.9)

1. Conjecture that Assumptions 2 and 3 hold . Lemma 3 implies (28). Lemma 4 implies
rt > r∗ and K̇t > 0 for all t > 0. Hence, Kt is increasing and Kt > K0 = K∗ for
t > 0. Comparing equation (33) and (A.9), we get rt = θ At

K1−θ
t

− δ ≤ r̄.

2. Since At is weakly increasing and bounded, At → Ã, Kt → K
(
Ã
)

and rt → r∗.
Thus, Assumption 2 holds. Use the expression for equilibrium wage in equation (34)
as well as equation (36) and calculate

ẇt

wt

+ ρ− rt =
Ȧt

At

+ θ
K̇t

Kt

+ ρ− rt =
Ȧt

At

− (1− ŝ) rt + ŝδ − θδ̂ + ρ

≥ 0− (1− ŝ) r̄ − ŝr∗ + ρ

= (1− ŝ)

(
δ −

(
1 +

ρ− r∗

(r∗ + δ) (1− ŝ)

)
(r∗ + δ)

)
+ (1− ŝ) r∗ + ρ− r∗ = 0,

where the third line above uses (A.9) and (45).

Proof of Corollary 2. Proposition 2 implies the aggregate capital can be solved from equa-
tion (28), which is a Bernoulli differential equation. Given an initial condition K0, it can

23An alternative way to see this is to examine the closed-form solution (31).
24For the case where At = A∗ is constant for t ∈

[
0, t̂
)

and At > A∗ for t > t̂, the economy will remain
at its initial steady state for t ∈

[
0, t̂
)
. The proof then goes through, starting at t̂ rather than at t = 0, and the

proposition claim holds for all t.
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be solved by replacing K1−θ
t with a new variable Xt and solving the resulting linear ODE

in Xt as usual, see the Online Appendix G.4.4 for details. One obtains equation (31) in
the paper. For the special case where a permanent shock implies At ≡ Ã, replace ŝÃ with
δ̂K̃1−θ and integrate the exponential function in (31) to obtain (46). Kt is increasing per
Proposition 2. The remaining claims now follow directly from Proposition 2 as well as the
expressions for wt and rt given in (34) and (33).

Proof of Proposition 3. WLOG, we focus on the case where At is strictly decreasing at
t = 0 and weakly decreasing for any t > 0.25 Conjecture that Assumptions 2 and 3 hold
in equilibrium. Then Lemma 3 gives the dynamics of aggregate capital in equation (28)
and implies Assumption 2. Combining the expression for the equilibrium wage in equation
(34) with the dynamics of aggregate capital in equation (36), we calculate

ẇt

wt

+ ρ− rt =
Ȧt

At

+ θ
K̇t

Kt

+ ρ− rt =
Ȧt

At

− (1− ŝ) rt − ŝ

(
θ
δ̂

ŝ
− δ

)
+ ρ

> (r∗ − ρ)− r∗ + ρ = 0.

Proof of Proposition 4. From Proposition 2, rewrite aggregate capital dynamics (28) as

K̇t

Kt

= ŝAte
(θ−1) logKt − δ̂. (A.10)

Thus, the speed of convergence defined in equation (50) is

βt = −
∂
(
K̇t/Kt

)
∂ log (Kt)

= (1− θ) ŝAtK
θ−1
t =

1− θ

θ
ŝ (rt + δ) ,

where the last equality uses the interest rate in equation (33). Equation (52) follows from
Corollary 1, implying rt → r∗ = θδ̂/ŝ− δ.

25For the case where At is constant for t ∈
[
0, t̂
)

and strictly decreasing at t = t̂ with t̂ > 0, the economy
will remain at its initial steady state for t ∈

[
0, t̂
)
. Then we just need to show the transition dynamics for

t ≥ t̂, the proof of which is the same as the case where At is strictly decreasing at t = 0.

45



O N L I N E A P P E N D I X

B More Proofs

B.1 Lemma 5 and Proof

Lemma 5. r∗ < ρ ⇐⇒ χ > 0.

Proof. Using the definition of ŝ and δ̂ in equation (29) of Lemma 3, we can rewrite the
steady state interest rate r∗ in equation (38) as

r∗ = θ
δ̂

ŝ
− δ

= θ
(δ + ρ+ ν) (ρ+ ν + ξ)

ξ + θ (ρ+ ν)
− δ

=
θ (ρ+ ν) (ρ+ ν + ξ)− δξ (1− θ)

ξ + θ (ρ+ ν)
.

Then

χ > 0

⇐⇒ θ (ρ+ ν + ξ) ν < ξ (1− θ) (ρ+ δ)

⇐⇒ θ (ρ+ ν + ξ) (ρ+ ν) < ξ (1− θ) (ρ+ δ) + θ (ρ+ ν + ξ) ρ

⇐⇒ θ (ρ+ ν) (ρ+ ν + ξ)− δξ (1− θ)

ξ + θ (ρ+ ν)
< ρ

⇐⇒ r∗ < ρ.

B.2 Proof of Proposition 6

Proof. Using the optimal consumption allocation in equations (20) and (21), we compute
the consumption ratio between the low-productivity agent and the high-productivity agent

ch,t
ct−τ,t

=
wt

wt−τe
∫ t
t−τ (ru−ρ)du

. (B.1)
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Taking logs and arranging terms delivers the equality in (56). Integrating equation (18)
from t− τ to t implies that log (wt)− logwt−τ + τρ > τrat,τ . Therefore, the inequality in
(56) follows and low-productivity agents consume less than the high income agent.

C Details of the Speed of Convergence Analysis

C.1 Neoclassical Growth Model

In this section, we consider the neoclassical growth model with representative agent and
complete market in continuous time. We first derive the speed of convergence along the
transition using the definition in equation (50) and then compute its long-run value by log-
linearizing the model.

C.1.1 Setup

There is a representative agent with utility function∫ +∞

0

e−ρtu (Ct) dt,

where u (c) = c1−σ−1
1−σ

. The production technology is

Yt = AtK
θ
t L

1−θ
t ,

Ct + It = Yt,

K̇t = It − δKt,

Ct ≥ 0, Kt ≥ 0,

where At, Yt, Kt, Ct, It are the productivity, output, capital stock, consumption, and in-
vestment at time t, respectively. The economy is endowed with capital K0 at time t = 0

and there is unit labor supply Lt = 1.
The first order conditions give the interest rate and wage

rt = θAtK
θ−1
t − δ,

wt = (1− θ)AtK
θ
t .
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This yields the following consumption and capital dynamics

Ċt

Ct

= −ρ− rt
σ

=
θAtK

θ−1
t − ρ− δ

σ
,

K̇t = AtK
θ
t − δKt − Ct.

In the steady state under productivity level A∗, capital and consumption are

K∗ =

(
θA∗

ρ+ δ

) 1
1−θ

,

C∗ = A∗ (K∗)θ − δK∗.

C.1.2 Numerical Solution of the Speed of Convergence

We consider the transition dynamics under the productivity process {At}t≥0. Let st denote
the savings rate at time t. By definition,

Ct = (1− st)Yt = (1− st)AtK
θ
t .

This implies

K̇t = stAtK
θ
t − δKt

=⇒ K̇t

Kt

= stAtK
θ−1
t − δ =

st (rt + δ)

θ
− δ = s (logKt)Ate

(θ−1) logKt − δ,

where we view the savings rate as a function of log capital, i.e. st = s (logKt).
Using the definition in equation (50), the speed of convergence can be expressed as

βt = (1− θ) stAtK
θ−1
t − ∂s (logKt)

∂ logKt

AtK
θ−1
t =

1− θ

θ
st (rt + δ)− ∂s (logKt)

∂ logKt

rt + δ

θ
.

We compute the above expression numerically for Figure 6 of the paper.

C.1.3 Speed of Convergence in the Long Run

In this section, we derive the speed of convergence in the long run for a particular produc-
tivity process. Specifically, consider a permanent shock that raises productivity from A∗ to
Ã.
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We first log-linearize the model. Note that

d logKt

dt
= Ãe−(1−θ) logKt − e

log
(

Ct
Kt

)
− δ,

d logCt

dt
=

1

σ

(
θÃe−(1−θ) logKt − ρ− δ

)
.

In the new steady state, where d logKt

dt
= d logCt

dt
= 0, we have

Ãe−(1−θ) logK∗∗ − elog(
C∗∗
K∗∗ ) = δ,

θÃe−(1−θ) logK∗∗
= ρ+ δ,

where C∗∗ and K∗∗ denote consumption and capital in the new steady state (under produc-
tivity level Ã). Taking a first-order Taylor expansion, we get[

d logKt

dt
d logCt

dt

]
=

[
ρ δ − ρ+δ

θ

− (1− θ) ρ+δ
σ

0

][
log
(

Kt

K∗∗

)
log
(

Ct

C∗∗

)] .
Let ϵ denote the eigenvalues of the first matrix on the right hand side, i.e.

det

[
ρ− ϵ δ − ρ+δ

θ

− (1− θ) ρ+δ
σ

−ϵ

]
= 0.

This implies

2ϵ = ρ±
(
ρ2 + 4

(
ρ+ δ

θ
− δ

)
(1− θ)

ρ+ δ

σ

) 1
2

.

Let ϵ1 denote the positive root and ϵ2 denote the negative root, then

logKt = logK∗∗ + ψ1e
ϵ1t + ψ2e

ϵ2t.

ψ1 = 0 must hold and ψ2 is determined from the initial condition

ψ2 = log (K∗)− log (K∗∗) .

Hence, in the log-linearized model, capital evolves according to

log (Kt) =
(
1− e−βt

)
log (K∗∗) + e−βt log (K0) ,
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where β is defined as

β ≡ −ϵ2 = −
ρ−

(
ρ2 + 4

(
ρ+δ
θ

− δ
)
(1− θ) ρ+δ

σ

) 1
2

2
. (C.1)

The capital dynamics imply

K̇t

Kt

= −βe−βt (log (K0)− log (K∗∗)) = −β (logKt − logK∗∗) .

Using the definition in equation (50), the speed of convergence in the log-linearized model
is

−
∂
(

K̇t

Kt

)
∂ (logKt)

= −
K̇t

Kt

logKt − logK∗∗ = β.

Hence, β, which is defined in equation (C.1), is the long-run speed of convergence in the
neoclassical growth model.

C.2 Proof of Proposition 5

Proof. Let βNG and β denote the long-run speed of convergence in the neoclassical growth
model and the Krueger-Li-Uhlig model, respectively. According to equation (C.1) in On-
line Appendix C.1.3 and Proposition 4,

βNG =

(
ρ2 + 4

(
ρ+δ
θ

− δ
)
(1− θ) (ρ+ δ)

) 1
2 − ρ

2
,

β = (1− θ) δ̂ = (1− θ) (δ + ρ+ ν) .
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We want to find the necessary and sufficient condition for β < βNG. Note that both coeffi-
cients are positive. Then

β < βNG

⇐⇒ (ρ+ 2 (1− θ) (δ + ρ+ ν))2 < ρ2 + 4

(
ρ+ δ

θ
− δ

)
(1− θ) (ρ+ δ)

⇐⇒ ρ (δ + ρ+ ν) + (δ + ρ+ ν)2 (1− θ) <

(
ρ+ δ

θ
− δ

)
(ρ+ δ)

⇐⇒ (ρ+ δ + ν) (ρ+ (ρ+ δ + ν) (1− θ)) < (ρ+ δ)
1

θ
(ρ+ δ (1− θ))

⇐⇒ θ

(
1 +

ν

ρ+ δ

)(
1 +

(ρ+ ν) (1− θ)

ρ+ δ (1− θ)

)
< 1

⇐⇒ θ

(
1 +

ν

ρ+ δ

)(
1 +

ρ+ ν
ρ

1−θ
+ δ

)
< 1.

D Details of the Consumption Inequality Analysis

In this section, we establish the mappings between the consumption inequality measures,
the individual characteristic τ , the consumption ratio between a low-productivity agent and
a high-productivity agent, and the quantiles in the population and consumption distribution.
We consider a permanent shock that raises productivity from A∗ to Ã.

We first introduce the following notations. Let ι denote the consumption ratio of a low-
productivity agent to a high-productivity agent, P denote the quantile in the population
of agents ranked by consumption level, and G denote the quantile in the consumption
distribution.

Symbol Definition
τ Length of time elapsed since the low-productivity agent’s

last transition to low-productivity
ι Consumption ratio of a low-productivity agent

to a high-productivity agent
P Quantile in the population ranked by consumption level
G Quantile in the consumption distribution
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D.1 Mapping between τ and P

We establish a one-to-one mapping between τ and the quantiles in the population ranked
from the lowest to the highest consumption level. Using the optimal consumption allocation
in equations (20) and (21) of Lemma 2, for ∀τ, τ ′ such that 0 < τ ′ < τ , we have

ct−τ,t

ct−τ ′,t
=
wt−τ

wt−τ ′
e−

∫ t−τ ′
t−τ gudu < 1.

Hence, τ fully characterizes an agent’s rank in the consumption distribution.
At any time t, we compute the fraction of agents with consumption level lower than the

agent who last had high productivity at time t− τ . We use P (τ) to denote this metric, then

P (τ) =

∫ +∞

τ

ψl (x) dx =

∫ +∞

τ

ξν

ξ + ν
e−νxdx =

ξ

ξ + ν
e−ντ .

Hence, P (τ) is the one-to-one mapping from τ to the quantiles in the population ranked
by consumption level.

Inversely, we can also establish the mapping from the quantiles in the population to τ .
Given a P , we find the τ such that P fraction of the agents have consumption level lower
than the agent who last had high productivity at time t− τ .

τ (P ) =
1

ν
log

(
ξ

(ξ + ν)P

)
.

D.2 Mapping from ι to P

Given an ι, we compute the fraction of agents whose consumption ratio is below ι.
For ι < 1,

P (ι, t) = Pr

(
ct−τ,t

ch,t
≤ ι

)
= Pr

(
− log

(
ct−τ,t

ch,t

)
≥ − log (ι)

)
=

∫ +∞

τ
¯

ψl (x) dx =

∫ +∞

τ
¯

ξν

ξ + ν
e−νxdx

=
ξ

ξ + ν
e−ντ

¯
(ι,t).

where τ
¯
(ι, t) is the solution to the equation ct−τ

¯
,t

ch,t
= ι.
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For ι = 1,

P (1, t) = 1.

D.3 Mapping from P to G

Given the quantile P for a group of agents, we compute their cumulative consumption
share.

G (P, t) =
1

Ct

∫ +∞

τ(P )

ct−x,tψl(x)dx

=
1

Ct

∫ +∞

τ(P )

ch,t−xe
−

∫ t
t−x gudu

ξν

ξ + ν
e−νxdx

=
1

Ct

ξν

ξ + ν
αζ

∫ +∞

τ(P )

wt−xe
−

∫ t
t−x gudue−νxdx

= αξ
wt

Ct

∫ +∞

τ(P )

wt−x

wt

e−
∫ t
t−x gudue−νxdx.
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E Additional Figures

(a) Interest rate (b) Wage

(c) Capital (d) Consumption

(e) Comparing rt − ρ with ẇt
wt

(f) ẇt
wt

+ ρ as a function of rt

Figure E.1: Transitional dynamics of the aggregate variables with a continuous increase
in productivity. This figure plots the transition dynamics of the aggregate variables when
productivity increases from A∗ = 1 to Ã = 1.2 following the continuous path in equation
(48) with parameter T = 2. Agents have log utility and δ = 0.16, ν = 0.2, ρ = 0.4, θ =
0.25, ξ = 0.2.
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(a) Interest rate (b) Wage

(c) Comparing rt − ρ with ẇt
wt

(d) Households’ consumption

Figure E.2: Transitional dynamics of the aggregate variables and individual agents’ con-
sumption with a large permanent increase in productivity. This figure plots the transi-
tion dynamics of the aggregate variables and individual agents’ consumption when pro-
ductivity permanently increases from A∗ = 1 to Ã = 1.4. Agents have log utility and
δ = 0.16, ν = 0.2, ρ = 0.4, θ = 0.25, ξ = 0.2.
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(a) Capital (b) Consumption

Figure E.3: Neoclassical growth model transition dynamics with a continuous increase in
productivity. This figure plots the transition dynamics of the aggregate variables in the
neoclassical growth model with representative agent and complete market. We consider
the transition dynamics when productivity increases from A∗ = 1 to Ã = 1.2 following the
continuous path in equation (48) with parameter T = 2. The representative agent has log
utility and δ = 0.16, ρ = 0.4, θ = 0.25.

F Computational Details for Figures

This section includes the computational details for the figures. We assume log utility when
creating the figures.

• Figure 3: This figure plots the transition dynamics of the aggregate variables with a
permanent increase in productivity. The steady state values and time paths of these
variables are computed according to Section 4.

• Figure 4: This figure plots the transition dynamics of wage and individual house-
holds’ consumption assuming that individual households consume according to the
consumption insurance contracts in equations (20) and (21) of Lemma 2. The time
path of wage is computed according to Section 4. Individual households’ consump-
tion in panels (c) and (d) are computed from equations (20) and (21) of Lemma 2.

• Figure 5: This figure plots the transition dynamics of the aggregate variables with a
continuous increase in productivity and a continuous decrease in productivity. The
computational details for these two cases are the same as in Figure 3.
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• Figure 6: This figure compares the speed of convergence to the new steady state
in our model with that in the neoclassical growth model. We consider a permanent
increase in productivity. The speed of convergence in our model is computed from
equation (51) of Proposition 4, and that in the neoclassical growth model is computed
in Online Appendix C.1.2.

• Figure 8: This figure plots the evolution of the Lorenz curve with a permanent in-
crease in productivity. We create the figure in the following steps: At each time
t,

1. A low income household i is characterized by the time since he last had high
income, which is denoted as τi. We create an equally spaced vector τ =

(τ1, τ2, · · · , τn), which represents the cross section of low income households
at time t.

2. For each household i, we compute the corresponding quantile in the population
ranked by the consumption level, i.e., P (τi), using the definition of P (τ) in
Section D.1.

3. For each household i, we compute the cumulative consumption share (as a frac-
tion of aggregate consumption) for those households with consumption level
lower than i. The individual consumption level is computed from equations
(20) and (21) of Lemma 2.

4. Finally, we plot the population quantiles of these households (obtained from
Step 2) on the x-axis and the cumulative consumption share from Step 3 on the
y-axis.

• Figure 7: This figure plots the transition dynamics of consumption inequality with a
permanent increase in productivity. The consumption gap, wage gap, and discounting
gap are computed according to Proposition 6. The time path of individual consump-
tion is computed from equations (20) and (21) of Lemma 2 and the time paths of the
equilibrium wage and interest rate are computed according to in Section 4.

• Figure 9: This figure plots the transition dynamics of wage and the consumption in-
equality with a permanent decrease in productivity, assuming that individual house-
holds consume according to the consumption insurance contracts in equations (20)
and (21) of Lemma 2. The computational details are the same as in Figure 7.
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• Figure 10: This figure plots the transition dynamics of consumption inequality with
a continuous increase in productivity and a continuous decrease in productivity. The
computational details are the same as in Figure 7.

• Figure E.1: This figure plots the transition dynamics of the aggregate variables with
a continuous increase in productivity. The computational details are the same as in
Figure 3.

• Figure E.2: This figure plots the transition dynamics of the aggregate variables and
individual households’ consumption with a large permanent increase in productivity.
The computational details are the same as in Figure 3.

• Figure E.3: This figure plots the transition dynamics of aggregate capital and con-
sumption in the neoclassical growth model. We consider a continuous increase in
productivity. The steady state values and time paths of the variables are computed
according to Online Appendix C.1.1.

We summarize the features of the above figures in Table F.1.

Table F.1: Summary of figures

Item Productivity shock x-axis y-axis
Figure 3 Permanent ↑ Time Aggregate variables
Figure 4 Permanent ↑, ↓ Time Aggregate variables, individual consumption
Figure 5 Continuous ↑, ↓ Time Aggregate variables
Figure 6 Permanent ↑ Time Capital, speed of convergence
Figure 8 Permanent ↑ Population quantile Cumulative consumption share
Figure 7 Permanent ↑ Time Consumption inequality
Figure 9 Permanent ↓ Time Consumption inequality
Figure 10 Continuous ↑, ↓ Time Consumption inequality
Figure E.1 Continuous ↑ Time Aggregate variables
Figure E.2 Permanent ↑ Time Aggregate variables, individual consumption
Figure E.3 Continuous ↑ Time Capital, consumption

G Transition Dynamics When Agents Have CRRA Utility

In this section, we show how to generalize our analysis, when agents have CRRA utility.
Specifically, we assume agents have the period CRRA utility function

u (c) =
c1−σ − 1

1− σ
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instead of log-utility u (c) = log (c), so that the time-t expected utility of an agent is given
by

Ut = Et

[∫ +∞

t

e−ρ(τ−t) c
1−σ
τ − 1

1− σ
dτ

]
.

While much can still be calculated analytically, there is no longer a direct calculation
of the equilibrium path. Rather, we obtain a fixed-point problem, which one would need to
solve numerically.

More precisely, a transition equilibrium is characterized by the following fixed-point
problem.

1. Conjecture a path for aggregate capital Kt along the transition, given the initial con-
dition K0 = K∗. Calculate rt and wt, using the first-order condition of production
firms, i.e. capital and labor demand. See Section G.1 below.

2. Characterize the optimal allocation Ct, given the paths for rt and wt. See Section G.2
below.

3. Compute the path of aggregate capital supplyKS
t by aggregating the capital holdings

across individual agents. See Section G.3 below.

4. Check whether the path of aggregate capital supplyKS
t matches the conjectured path

of aggregate capital stock Kt in step 1.

G.1 Conjecture a Path for Aggregate Capital

We conjecture a path for aggregate capital {Kt}t≥0 and then calculate the path for interest
rate and wage using the first-order conditions (33) and (34) of production firms. Since the
interest rate in stationary equilibrium does not depend on the value of aggregate productiv-
ity (exactly as in the standard neoclassical growth model), the interest rate will converge to
the original steady state value r∗, i.e.,

lim
t→+∞

rt = r∗.

This together with equation (33) implies the aggregate capital Kt must converge to

K∞ =

(
θA∞

r∗ + δ

) 1
1−θ

.
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We therefore see that the conjectured capital path {Kt}t≥0 is constrained by the two bound-
ary conditions: K0 = K∗ (i.e. the original steady state as initial condition for t = 0) and
limt→+∞Kt = K∞.

G.2 Characterize the Optimal Allocation Ct
The interest rate and wage are the only aggregate variables relevant for the dynamic insur-
ance problem at the agent level. Equipped with a conjectured path of interest rate and wage
from Section G.1, we can now characterize the optimal allocation by deriving conditions
for the evolution of (individual) consumption and (individual) capital over time as functions
of productivity. Define

gt ≡
ρ− rt
σ

.

As might be expected from the standard consumption-savings problem with CRRA utility,
gt will turn out to be the negative of the consumption growth rate, if capital holdings are
strictly positive. We define the discounting term

Dt ≡
∫ +∞

t

e−
∫ s
t (ru+ν+gu)duds. (G.1)

This is the net present value of a consumption spell that starts at a level of 1, falls at rate
−gt < 0 defined above, and ends at the Poisson rate ν. This expression will be useful for
calculating the cost of a consumption allocation for a newly unproductive agent.

Given the allocation Ct, we define the implied time derivative of consumption as26

ċt (k; z) ≡
∂ct (k; z)

∂t
+
∂ct (k; z)

∂k
xt (k; z) .

Lemma 6 (The optimal allocation Ct for z = 0 and k > 0.). For k > 0, the optimal

contract of Definition 1 implies the consumption dynamics

ċt (k; z)

ct (k; z)
= −gt. (G.2)

26As a heuristic for this definition of the time derivative, suppose that productivity remains constant at z for
some interval of time. In that case, note that k̇t = xt (k; z) and that consumption evolves as ct = ct (kt; z)
which is a function of time only. Taking the derivative with respect to time yields the expression here.
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Furthermore, if z = 0 and k̃t (k; 0) = 0 for all k ≤ k̄ and some k̄, then

ct (k; 0) =
k

Dt

, (G.3)

xt (k; 0) =

(
rt + ν − 1

Dt

)
k, (G.4)

for all k ≤ ¯̄k and some suitably chosen ¯̄k.

The proof is in Online Appendix G.4.1. We now use this result to characterize the
consumption dynamics of agents with currently high productivity. To do so, we make the
following assumption.

Assumption 6. Suppose the aggregate wage and interest rate satisfy the following condi-

tion, ∀t ≥ 0,

0 < gt +
ẇt

wt

− ξḊt

ζwt

. (G.5)

Lemma 7 (The contract Ct for z = ζ and k = 0). Let Assumption 6 be satisfied. Then

the optimal contract of Definition 1 implies the following consumption dynamics of low-

productivity agents

ct (0; ζ) =
wtζ

1 + ξDt

, (G.6)

xt (0; ζ) = 0. (G.7)

Furthermore,

k̃t (0; ζ) =
wtζ

1 + ξDt

Dt. (G.8)

The proof is in Online Appendix G.4.2. The term ξDt in the denominator of the right-
hand side of (G.6) is the insurance premium to obtain the capital stock k̃t(0; ζ) in case of
a transition to the low-productivity state and to assure desirable continuity of consumption
via (G.3), if so. Indeed, the equality

ξk̃t (0; ζ) = wtζ − ct (0; ζ)

61



shows that this is an actuarially fair contract. Note that (G.6) implies

ċt (0; ζ)

ct (0; ζ)
=
ẇt

wt

− ξḊt

ζwt

. (G.9)

Equation (G.9) rationalizes why we need Assumption 6. If consumption could be cho-
sen in an unconstrained fashion, then we would obtain (G.2). With (G.5), consumption
would grow more slowly than the right-hand side of (G.9), but this can now only be ac-
complished per borrowing against future wages and choosing x < 0, subject to making the
consumption-smoothing insurance payments against the transition to low productivity. But
this is ruled out by the borrowing constraint (6). Put differently, Assumption 6 assures that
the high-productivity agent has no desire to accumulate capital.

For ease of notation, let cs,t = ct (ks,t; 0) denote consumption of a low-productivity
agent at date t who switched from high to low productivity at time s ≤ t. This agent holds
capital ks,t at time t. This notation implies that cs,s and ks,s are the consumption and capital
holdings of an agent who has switched to low productivity this very instant. Finally, we
also denote by ch,t = ct (0; ζ) the date-t consumption of a high-productivity agent with no
assets.

From equation (G.3), capital holdings are proportional to consumption for low-productivity
agents,

ks,t = Dtcs,t. (G.10)

Equations (G.6) and (G.8) imply that

cs,s = cs (0; ζ) =
wsζ

1 + ξDs

, (G.11)

ks,s = k̃s (0; ζ) =
wsζ

1 + ξDs

Ds. (G.12)

Equation (G.11) is due to the fact that consumption is continuous and does not jump upon
receiving a negative productivity shock (it in principle could, since it is a jump variable).
For low-productivity agents, the consumption growth equation (G.2) or equivalently

ċs,t
cs,t

= −ρ− rt
σ

= −gt (G.13)

holds except for the economy-wide “MIT-shock” date t = 0 (on which the economy tran-
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sitions to the productivity path {At}t≥0). If an agent last switched from high to low pro-
ductivity after that transition date, i.e. if s > 0, then equation (G.13) characterizes his
consumption dynamics since that date. If the switch last happened at some date s ≤ 0, this
low-productivity agent will have started at some steady state capital k∗−s, characterized by
equation (41) in the log-utility case. More generally, using the results above applied to the
steady state together with

g∗ =
ρ− r∗

σ
, (G.14)

D∗ =
1

ν + r∗ + g∗
, (G.15)

we have

c∗h =
w∗ζ

1 + ξD∗ , (G.16)

c∗τ = e−g∗τc∗h, (G.17)

k∗τ = D∗e−g∗τc∗h. (G.18)

The above two cases for s yield the consumption dynamics of low-productivity agents in
Lemma 8 below.

Lemma 8 (Consumption dynamics for low productivity agents). Consider the time-t con-

sumption cs,t of a low-productivity agent who last switched from z = ζ to z = 0 at time

s ≤ t.

1. If s > 0, then

cs,t = e−
∫ t
s gudu

wsζ

1 + ξDs

. (G.19)

2. If s ≤ 0, then

cs,t = e−
∫ t
0 gudu

k∗−s

D0

. (G.20)

Equation (G.19) can be rewritten with equation (G.12) as

cs,t = e−
∫ t
s gudu

ks,s
Ds

, (G.21)
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or more generally, as

cs,t = e−
∫ t
q guduks,q

Dq

, (G.22)

for any s ≤ q ≤ t. Comparing equations (G.20) and (G.22), we see that the consumption
of agents with s < t will jump, if and only if D0 ̸= D∗: the change in the path of future
interest rates may induce the agent to reduce or to increase current consumption, compared
to the steady state and given the same budget or net present value at time t = 0.

G.3 Compute the Path of Aggregate Capital Supply

To compute the aggregate capital supply Kt at time t, we aggregate the capital holdings of
low-productivity agents,

Kt =

∫ t

−∞
ks,tψl (t− s) ds. (G.23)

Lemma 9 (Dynamics of aggregate capital supply). Capital supply evolves according to

K̇t =

(
ξDt

1 + ξDt

(1− θ) + θ

)
AtK

θ
t −

(
δ +

1

Dt

)
Kt, (G.24)

where Dt is defined in equation (G.1).

The proof is in Online Appendix G.4.3. Given the initial capital stock K0 = K∗, we
can use the capital dynamics in equation (G.24) to solve for the path of aggregate capital
supply. Lemma 10 summarizes the results with proof in Online Appendix G.4.4.

Lemma 10 (Aggregate capital supply). Suppose the aggregate capital evolves according

to equation (G.24) for all t ≥ 0, given the initial condition K0 = K∗. Then the aggregate

capital supply at any time t ≥ 0 takes the following form

KS
t =

(
e−(1−θ)

∫ t
0 buduK1−θ

0 + (1− θ)

∫ t

0

e−(1−θ)
∫ t
s buduasds

) 1
1−θ

, (G.25)
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where

at ≡
(

ξDt

1 + ξDt

(1− θ) + θ

)
At, (G.26)

bt ≡ δ +
1

Dt

, (G.27)

and Dt is defined in equation (G.1).

G.4 Proofs

G.4.1 Proof of Lemma 6

Proof. The proof expands the proof of Lemma 1 in the Appendix. It is verbatim the same
except that ρu′ (c) = u′′ (c) ċ+ u′ (c) rt now implies

ċ

c
=
rt − ρ

σ
= −gt, (G.28)

which is the consumption dynamics in equation (G.2).
When z = 0 and k̃t (k; 0) = 0 for all k ≤ k̄ and some k̄, the consumption dynamics

(G.2)27 and the budget constraint (5) can be rewritten as the linear system of differential
equations

ċt = −gtct, (G.29)

k̇t = (rt + ν) kt − ct (G.30)

in the unknown functions ct and kt with the boundary condition28 limt→+∞ kt = 0, pro-
vided kt ≤ k̄ for all t.29 The solution is valid, as long as the implied path for ks for s ≥ t

27Note that equation (G.2) implies cs = e−
∫ s
t
guduct. A less formal, but more meaningful argument in

terms of economic theory is thus to recognize that the budget constraint and utility maximization implies that
the current capital k is equal to the net present value of all future consumption, as long as the productivity
state stays unchanged. This yields k =

∫ +∞
t

e−
∫ s
t
(ru+ν)ducsds = Dtct.

28The boundary condition ensures that no capital gets wasted and this follows from utility maximization.
29To derive equation (G.30), conjecture that the solution satisfies equation (G.3), which can be rewritten as

kt = Dtct. (G.31)

Note that

Ḋt = −1 + (rt + ν + gt)Dt. (G.32)
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does not cross the upper bound k̄. This will be true for all kt ∈
(
0, ¯̄k
)

and some suitable
¯̄k.

G.4.2 Proof of Lemma 7

Proof. The lemma is a version of Section D.3 (Lemma 7) in the Online Appendix of
Krueger and Uhlig (2022), generalized to the case, where aggregate wages and interest
rates are functions of time. Rather than replicating the steps of that section, we provide the
key logic of the argument here and point to the results and proofs in Krueger and Uhlig
(2022) mentioned above for a deeper foundation.

For a high-productivity agent, the Lagrangian, first-order conditions, and envelope con-
dition are as in the proof for Lemma 1, see equations (A.1), A.2 and (A.4), but applied to
k = 0, z = ζ , and pz = ξ.

1. We first consider the choice of k̃. The solution in Lemma 1 implies that

U ′
t(k̃; 0) = u′

(
k̃

Dt

)
,

which increases to infinity, as k̃ → 0. The third first-order condition in (A.2) there-
fore implies that k̃ > 0 and thus ω = 0. With the first and third first-order conditions
in (A.2), we obtain consumption smoothing

u′

(
k̃

Dt

)
= u′ (c) =⇒ k̃ = Dtc. (G.33)

Therefore, equation (G.6) follows from the budget constraint (5), provided that x =

0.

2. Then we need to show that x > 0 is not optimal. Suppose otherwise, x > 0 were
optimal, then equation (G.33) together with the budget constraint (5) implies that
ct < wtζ/ (1 + ξDt), i.e. consumption is less than the right hand side of equa-
tion (G.6). Furthermore, constraint (6) would not be binding, λ = 0, and con-
sumption growth would satisfy equation (G.2). Let [t, t+∆] be a time interval for
some ∆ > 0, during which this is the case and along a path where no productivity

Differentiate equation (G.31) w.r.t. time t and use equations (G.29) and (G.32) to derive equation (G.30).
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switch occurs. Assumption 6 then implies cs ≤ wsζ/ (1 + ξDs) during the inter-
val s ∈ [t, t+∆], i.e. consumption is less than the consumption level proposed in
Lemma 7 for that episode. The integral of utility during that time interval is then
smaller than the utility of the solution proposed in Lemma 7. This loss in utility
can only be justified by the additional utility gained from consuming the accumu-
lated capital after a switch to lower productivity for s > 0, or, alternatively, for
s > ∆ in case there is no switch to lower productivity. This amounts to postponing
consumption compared to the solution proposed in Lemma 7. But this can be seen
to contradict the impatience of the agent relative to wage growth, as expressed in
Assumption 6. A precise formulation of that contradiction requires replicating the
arguments in Section D.3 of Krueger and Uhlig (2022), allowing for the additional
time evolution of rt and wt.

G.4.3 Proof of Lemma 9

Proof. We differentiate both sides of equation (G.23) wrt time t,

K̇t = kt,tψl (0) +

∫ t

−∞

(
k̇s,tψl (t− s) + ks,tψ

′
l (t− s)

)
ds. (G.34)

We derive ψ′
l (t− s) from equation (7),

ψ′
l (t− s) =

ξν

ξ + ν
e−ν(t−s) (−ν) = −νψl (t− s) . (G.35)

We derive k̇s,t
ks,t

from equation (G.10),

k̇s,t = Ḋtcs,t +Dtċs,t =⇒ k̇s,t
ks,t

=
Ḋt

Dt

+
ċs,t
cs,t

. (G.36)

Using the definition of Dt in equation (G.1), we get

Ḋt = −1 + (rt + ν + gt)

∫ +∞

t

e−
∫ s
t (ru+ν+gu)duds = −1 + (rt + ν + gt)Dt

=⇒ Ḋt

Dt

= rt + ν + gt −
1

Dt

.
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Substituting the above equation and equation (G.13) for consumption growth into equation
(G.36), we get

k̇s,t
ks,t

= rt + ν + gt −
1

Dt

− gt = rt + ν − 1

Dt

. (G.37)

Substituting equations (G.35) and (G.37) into equation (G.34),

K̇t = kt,tψl (0) +

∫ t

−∞

((
rt + ν − 1

Dt

)
ks,tψl (t− s)− νks,tψl (t− s)

)
ds

=
wtζ

1 + ξDt

Dt
ξν

ξ + ν
+

(
rt −

1

Dt

)
Kt

=
ξwt

1 + ξDt

Dt +

(
rt −

1

Dt

)
Kt

=
ξ (1− θ)AtK

θ
t

1 + ξDt

Dt +

(
θAtK

θ−1
t − δ − 1

Dt

)
Kt

=

(
ξDt

1 + ξDt

(1− θ) + θ

)
AtK

θ
t −

(
δ +

1

Dt

)
Kt.

The second line above uses the density and the capital holdings of the low productivity
agents in equations (7) and (G.12), the third line above uses the normalization in equation
(3), and the fourth line above uses the interest rate and wage in equations (33) and (34).

G.4.4 Proof of Lemma 10

Proof. Equation (G.24) is a Bernoulli differential equation. Given an initial condition K0,
it can be solved as follows.

1. Rewrite equation (G.24) as a linear differential equation. Define Xt ≡ K1−θ
t , at ≡(

ξDt

1+ξDt
(1− θ) + θ

)
At, and bt ≡ δ + 1

Dt
. We can rewrite equation (G.24) as

Ẋt + (1− θ) btXt = (1− θ) at. (G.38)

2. Solve the linear differential equation (G.38). Multiply both sides of equation (G.38)
by e(1−θ)

∫ t
0 budu,

d
(
e(1−θ)

∫ t
0 buduXt

)
dt

= (1− θ) e(1−θ)
∫ t
0 buduat.
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Integrate both sides of the above equation from time 0 to time t,

e(1−θ)
∫ t
0 buduXt −X0 =

∫ t

0

(1− θ) e(1−θ)
∫ s
0 buduasds,

which yields

Xt = e−(1−θ)
∫ t
0 buduX0 + (1− θ)

∫ t

0

e(1−θ)
∫ s
t buduasds. (G.39)

3. Substitute the definition of Xt into equation (G.39),

Kt =

(
e−(1−θ)

∫ t
0 buduK1−θ

0 + (1− θ)

∫ t

0

e(1−θ)
∫ s
t buduasds

) 1
1−θ

=

(
e−(1−θ)

∫ t
0 buduK1−θ

0 + (1− θ)

∫ t

0

e−(1−θ)
∫ t
s buduasds

) 1
1−θ

.
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