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Abstract

We propose a new tool to filter non-linear dynamic models that does not require

the researcher to specify the model fully and can be implemented without solving the

model. If two conditions are satisfied, we can use a flexible statistical model and a

known measurement equation to back out the hidden states of the dynamic model. The

first condition is that the state is sufficiently volatile or persistent to be recoverable.

The second condition requires the possibly non-linear measurement to be sufficiently

smooth and to map uniquely to the state absent measurement error. We illustrate the

method through various simulation studies and an empirical application to a sudden

stops model applied to Mexican data.
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1 Introduction

“[You can] do something without having to do everything.” Lars Peter Hansen,

2014.

Economists are often interested in filtering dynamic models, that is, in backing out the

states and the shocks that drive the equilibrium path of the economy. There are at least four

reasons for this interest. First, the path of shocks (or their distribution) is a reality check of the

model. Suppose the shocks required to fit the data are unlikely (i.e., their probability is very

low) or implausible (i.e., they contradict other sources of evidence or narrative analytics). In

that case, a researcher may consider moving in an alternative direction. Second, economists

are interested in historical decompositions: evaluating how much a shock contributed to

the observed dynamics. In that way, we can build counterfactuals. Third, knowing the

current state of the economy, including the shocks, is necessary when forecasts or optimal

policies are state-dependent. Fourth, once you have recovered the shocks conditional on some

parameter values, evaluating the likelihood of the model associated with these parameter

values is straightforward. This opens the door to the structural estimation of the model

either through maximum likelihood or the Bayesian approach.

Filtering a generic, fully specified dynamic equilibrium model can be accomplished with a

non-linear filter, such as the sequential Monte Carlo filter described in Herbst and Schorfheide

(2016, ch. 10) and Fernández-Villaverde et al. (2016). Unfortunately, this approach suffers

from three drawbacks. First, a sequential Monte Carlo filter requires fully specifying the

model, including aspects that are not central to the paper, such as auxiliary functional forms,

an issue about which various researchers may disagree. Worse, some models’ findings might

be fragile with respect to these auxiliary assumptions (Canova and Ferroni, 2022). Second, a

sequential Monte Carlo filter requires solving the full model to specify the transition equations

required in the simulation. This can be computationally costly. And, third, the filter suffers

from the curse of dimensionality, making it difficult to apply to large models.1 While new

filters like the one in Farmer (2021) are most promising, they still face the same challenges

of fully specifying the model, solving it, and a curse of dimensionality.

In this paper, we tackle the problem of non-linear filtering from a different perspective.

More concretely, we follow the dictum in Hansen (2014, p. 950): “Hansen (1982) builds

on a long tradition in econometrics of ‘doing something without having to do everything.”

This entails the study of partially specified models, that is, models in which only a subset of

1For the simpler, linear normal case, we can apply the Kalman filter. Some of the concerns (i.e., the
curse of dimensionality) are less relevant to this situation. Others still hold (i.e., the need to specify auxiliary
parametric forms at least to first and second order). As we will show later, a misspecified linear Kalman filter
can yield misleading estimates of the hidden state in our non-linear examples.

2



economic relations are formally delineated.” In the spirit of partial specification, we refer to

our approach as the “partial (information) filter.”

We are not the first to push this idea. Andreasen et al. (2018) present a method for

estimating models non-linearly using the population moments generated by a perturbation

solution of the model. This approach, however, still requires solving the model with per-

turbation (which can sometimes be hard when the model has non-differentiabilities such as

occasionally binding constraints) and specifying the moments of the shocks that enter into

the computation of the model population moments. An early application of the partial filter

we present here, published in Drautzburg et al. (2021), filters the shock process in an econ-

omy solved using the method of Andreasen et al. (2018). Gallant et al. (2017) also pursue

a similar idea of Bayesian estimation of state space models via moment conditions with a

partially specified measurement equation. While these authors focus on parameter estimates,

we focus on filtering the hidden state variables.

The key advantage of our filtering method is the ease of implementation. Specifically, our

approach approximates the state dynamics with a flexible statistical model, such as a vector

autoregression (VAR), possibly with non-linear terms. This VAR serves as a plug-in estimate

of the model expectations.2 Given the statistical model, we can filter out an estimate of the

hidden state from the measurement equation. While the VAR is a purely auxiliary model,

we obtain the full estimates as a fixed point of the VAR estimation and the filtering stage.

The partial filtering approach requires two main conditions to be satisfied. First, the

measurement equation needs to identify the hidden state. This assumption could be violated,

for example, with an observation equation that is quadratic in the hidden state when the state

space is unrestricted. However, in most applications, natural restrictions on the state space

emerge, for example, that prices and quantities are non-negative. Second, the researcher

requires a consistent estimator of the model expectations. Using simulations, we show that

this condition can be relaxed: our procedure also works in the presence of misspecification in

the form of unknown measurement error as long as the measurement error is relatively small

or the hidden state is sufficiently persistent.

Using VARs to approximate model expectations is not a new idea. For example, Campbell

(1991), Bernanke and Kuttner (2005), and Chahrour et al. (2021) use VARs to approximate

expected returns. Closer to us, Sbordone (2002) uses VAR-based expectations to stand in

for a firm’s expectations in a New Keynesian price setting equation. Our innovation is that,

under regularity conditions, we can use a VAR approximation also for filtering hidden state

variables.

2While we have focused on time-invariant VARs, a tractable way to allow for time variation has been
proposed by Petrova (2019). Allowing for time variation is a straightforward extension of our approach.
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After presenting some theoretical results, we investigate the partial filter’s performance

with a battery of Monte Carlo experiments. These exercises confirm that, in many situations,

the partial filter provides excellent estimates of the objects of interest for many researchers

(e.g., shocks and unobserved states).

Next, we apply the partial filter to a sudden stops model of a small open economy. The

model, postulated by Mendoza (2010), introduces a loan-to-value constraint in the small

open economy real business cycle model. Because of its inherent non-linearities, this model is

challenging to solve. For example, with the fixed-point iteration (FiPIt) algorithm developed

in Mendoza and Villalvazo (2020), it takes 115 seconds to compute the solution for one set

of parameter values.3 Adding a full-information filter, such as a sequential Monte Carlo

filter, to this solution pushes the computation time further (depending on the details of the

data, around another minute or two). In comparison, our partial information filter takes 47

seconds. While the difference between three/four minutes and 47 seconds might not look

large, we may need to repeat the computation for tens of thousands of different parameter

values (for example, if we are exploring the fit of the model to the data). More importantly,

our sudden stops model is simple; larger non-linear models may take hours to compute, while

our partial filter model is much more robust to the curse of dimensionality.

We investigate the performance of our partial filter in this sudden stops model with a

Monte Carlo experiment, where we generate pseudo-true samples from the model. After

demonstrating that the partial filter works well in this Monte Carlo experiment, we apply the

filter to Mexican data from 1980Q1 to 2018Q4. The partial filter identifies well the different

financial crises that hit Mexico.

While our application is a model with rational expectations, our framework easily allows

for parametric departures from rational expectations, for example, by including the appro-

priate change of measure in the filtering equation. Think, for instance, about the case of

cognitive discounting in Gabaix (2020), where the deviation of the forecast from the bal-

anced growth path is shrunk by a factor that is constant for a given forecast horizon. We

could address other departures from rational expectations, such as limited information, by

limiting the information set we use to compute the approximating VAR.

Since at least Roberts (1995), a growing literature has used survey data for assessing

macroeconomic models or for estimating them. See, for example, Coibion et al. (2021). How-

ever, surveys usually only include information about objects readily understood by individ-

uals, such as inflation, but not about structural objects, such as shocks or co-state variables.

Our partial filter helps us to learn about these structural objects and their evolution.

3All run times throughout the paper were measured on a computer with an Intel Core i7-8700 @ 3.200GHz
with six cores and 12 logical processors, 32.0 GB memory, Windows 10, and Matlab 2021a.
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The rest of the paper is structured as follows. Section 2 sets up the general environment

and discusses the necessary conditions that ensure that the filter is consistent. To fix ideas,

Section 3 analyzes a simple univariate example that features different non-linearities in the

state or measurement equations. Section 4 uses a simulation study of a sudden stops model.

Section 5 applies the partial filter to the same model using Mexican data. Section 6 concludes.

2 The partial information filter

This section presents the partial information filter. First, we introduce the general environ-

ment. Second, we describe our filter. Third, we postulate some regularity conditions required

by our procedure. Finally, we outline some extensions.

2.1 Environment

Let us consider a dynamic equilibrium model whose equilibrium conditions, or a subset

thereof, are described by an nx × 1 vector-valued function f :

f(xt,yt,Et[g(xt+1,yt+1,xt,yt)]) = 0, (2.1)

where yt = [yi,t]
ny

i=1 is an ny×1 vector of observables at period t, xt is an nx×1 vector of hidden

states that we are interested in backing out, Et is the conditional expectations operator, and

0 is a functional zero. The function f(·) will usually stack optimality conditions for the agents

in the model, policy rules by the government, budget and resource constraints, and stochastic

processes for exogenous states. The function g(·) deals with the part of the model involving

future states and observables. Typically, xt is only a subset of the entire state vector st that

determines the model expectations. The functions f(·) and g(·) are conditional on a vector

of states other than xt, denoted s−,t, but we omit this conditioning to save notation when no

confusion arises.

We highlight three points about equation (2.1). First, f(·) and g(·) do not need to include

all equilibrium conditions required for a full solution of the model. Our goal is to accomplish

all we need in a particular application by dealing with only a few of them (and, consequently,

only a subset of states). Second, at the cost of heavier notation, we could handle cases where

some of the states are observed, but nothing of importance is lost by omitting that situation.

Similarly, by including lagged values of the states and observables in vectors yt and xt, we

can deal with general timing and stochastic structures. Third, we let xt and yt enter as

arguments of the function g(·) to encompass situations where the conditional expectations
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depend explicitly on them. For instance, in a model with habit persistence, the expected

marginal utility tomorrow depends on consumption today.

In what follows, we proceed under the assumption that the filtering problem (2.1) has a

unique solution. This high-level assumption could be satisfied because either f and g have

appropriate properties –such as linearity– or the researcher knows that the hidden states live

in a domain Xt ⊆ Rnx where the solution is unique. Formally:

Assumption 1. For some known domain Xt and given yt and s−,t, there is a unique solution

x̃ ∈ Xt such that f(x̃,yt,E[g(xt+1,yt+1,xt,yt)|x̃, s−,t]) = 0.

The following scalar example is useful to fix ideas:

Example 1. Let the model be:

yt = µy + xt + Et[κ1xt+1 + κ2x
2
t+1] (2.2a)

xt = µx +

(
ρ1 +

η

1 + x2
t−1

)
xt−1 + ut, (2.2b)

ut ∼ iid(0, σ2
u), (2.2c)

We consider two special cases.

(a) Linear model: κ2 = η = 0.

Here f(·) = y− µy − x− κ1E[x′|x]. Under the population expectation, E[x′|x] = µx + ρ1x

so that f(·) = y − µy − (1 + κ1ρ1)x − κ1µx = 0. Thus, there is a unique solution in R
given by x = y−µy−κ1µx

1+κ1ρ1
as long as Assumption 1 holds, which implies that κ1ρ1 ̸= −1.

(b) Linear law of motion and quadratic observations equation: η = 0.

Here,

yt = µy + xt + κ1µx + κ1ρ1xt + 2κ2ρ1µxxt + κ2(µ
2
x + σ2

u) + κ2ρ
2
1x

2
t .

We require the observation to be monotonically increasing or decreasing in the hidden

state ( ∂yt
∂xt

≷ 0), which is equivalent to xt ≷ −1
2
1+κ1ρ1+2κ2ρ1µx

ρ21κ2
≡ x. Thus, for a given κ2,

if the observation equation is monotonically increasing, it has a unique solution for x in

X = (x,∞).

If the equations in f(·) do not involve expectations (i.e., g(·) is a dummy argument of

f(·)), we can back out xt directly from (2.1) under Assumption 1. For example, given some

observations on input factors, one may extract total factor productivity growth from the

production function as in Fernald (2012). Also, in some situations, Et[g(·)] might come from

survey data. For example, we may use firms’ surveyed inflation expectations in the Phillips
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curve when filtering for cost-push shocks. However, survey expectations about structural

objects (e.g., hidden state variables) are generally unavailable.

Hence, we will deal more often with situations where g(·) is nontrivial, Et[g(·)] is not

readily available, and we need to back out the hidden state vector by finding the sequence of

x̂t that solves the equation:

f(x̂t,yt, Êt[g(x̂t+1,yt+1, x̂t,yt)]) = 0, (2.3)

where Êt(·) is an estimate of the conditional expectation.

To estimate Êt(·), we will proceed in two steps. In the first step, we factorize each of the

elements in the m-dimensional function g(·) as:

g(xt+1,yt+1,xt,yt)i ≡ gi,1(xt+1,yt+1,xt,yt)× gi,2(xt+1,yt+1,xt,yt). (2.4)

Because gi,1(·) could be a constant function, this decomposition is without loss of generality.

However, in many applications, we are interested in equilibrium conditions featuring expected

discounted values (e.g., in Bellman equations), and we may want to deal with different parts

of these expectations separately. For instance, if g(·) = Λt+1Πt+1, where Λt+1 is the discount

factor, many models allow to substitute the expectation of Λt+1 for the risk-free rate rt:

Et[Λt+1] = r−1
t . Also, the same model may admit different factorizations of g(·). Choosing

one depends on their suitability for the economic question being investigated or the available

data (see Drautzburg et al., 2021, for an example in which the decomposition 2.4 is applied).

Writing the terms in equation (2.4) in expected terms and using that, for any two scalar

random variables (xt, yt), we have that Et[xt+1yt+1] = Et[xt+1]Et[yt+1] + Covt[xt+1, yt+1], we

find:

Et[g(xt+1,yt+1,xt,yt)i] ≡ Et[gi,1(xt+1,yt+1,xt,yt)i]× Et[gi,2(xt+1,yt+1,xt,yt)i]

+ Covt[gi,1(xt+1,yt+1,xt,yt)i, gi,2(xt+1,yt+1,xt,yt)i], (2.5)

where i = 1, . . . ,m denotes the rows of g, g1, and g2 that we require.

In the second step, we use an auxiliary statistical model and, depending on the application,

additional equilibrium conditions to come up with an estimator for the covariances in equation

(2.5). If some of the conditional first moments are also missing after using the equilibrium

conditions, the auxiliary statistical model may help us estimate them. With these estimates

in hand, we use equation (2.3) to back out the hidden state vector.

Next, we assume that the lack of explicit conditioning on s− in our estimates is asymp-

totically irrelevant:
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Assumption 2. As T → ∞, supx,y,s− |E[g(x
′,y′, x̃,y)|x̃, s−]− Ê[g(x′,y′, x̃,y)|x̃,y]|a.s.→ 0.

Least-squares estimators can satisfy this assumption in our univariate example.

Example 2. Consider again the model presented in (2.2).

(a) Linear law of motion (η = 0) with bounded domain:

Given η = 0, we have that E[g(x′)|x, s−] = E[g(x′)|x] = cons+(κ1ρ1+2κ2ρ1µx)x+κ2ρ
2
1x

2.

To bound the domain, let X = [x, x̄] and x ∈ X. Let ρ̂1 be a consistent estimator, such

as the OLS estimator ρ̂1
p→ ρ1 as T → ∞. Then:

sup
x∈X

|E[g(x′)|x, s−]− Ê[g(x′)|x, y]|

=sup
x∈X

|(κ1ρ1 + 2κ2ρ1µx)x+ κ2ρ
2
1x

2 − (κ1ρ̂+ 2κ2ρ̂1µx)x− κ2ρ̂
2
1x

2|

≤ sup
x∈X

|(κ1 + 2κ2µx)(ρ1 − ρ̂1)||x|+sup
x∈X

|κ2(ρ
2
1 − ρ̂21)|x2

≤|(ρ1 − ρ̂1)||(κ1 + 2κ2µx)|max{−x, x̄}+ |(ρ21 − ρ̂21)||κ2|max{x2, x̄2}.

Because of the continuous mapping theorem, both ρ1 − ρ̂1 and ρ21 − ρ̂21 converge to zero

in probability. For any ϵ > 0, limT→∞ Pr{|ρ1 − ρ̂1|> ϵ} = 0 and limT→∞ Pr{|ρ21 − ρ̂21|>
ϵ} = 0. Thus, for any ϵ̃ > 0, we can redefine ϵ such that limT→∞ Pr{|(ρ1 − ρ̂1)||(κ1 +

2κ2µx)|max{−x, x̄} > ϵ̃/2} = 0 and limT→∞ Pr{|(ρ21 − ρ̂21)||κ2|max{x2, x̄2} > ϵ̃/2} = 0.

Hence, limT→∞ Pr{|(ρ1−ρ̂1)||(κ1+2κ2µx)|max{−x, x̄}+|(ρ21−ρ̂21)||κ2|max{x2, x̄2} > ϵ̃} =

0 and, thus, supx∈X Pr{|E[g(x′)|x, s−]− Ê[g(x′)|x, y]|> ϵ̃} = 0. Therefore, the expectation

converges uniformly on X.

(b) Non-linear law of motion with linear observation equation (κ2 = 0):

We still have that E[g(x′)|x, s−] = h(x), where h(x) = κ1µx+κ1

(
ρ1 +

η
1+x2

)
x. Chen and

Christensen (2015, Theorem 2.1) show that, under regularity conditions, a least-squares

series estimator such as a B-spline converges uniformly to the true regression function

h(x) and, thus, to E[g(x′)|x, s−] in our setting.

Besides a uniformly consistent estimator for the expectation process, we also require that

the functional equation is continuous in the relevant arguments.

Assumption 3. f(·) is uniformly continuous in x and E[g(·)|·] and E[g(·)|x, ·] is uniformly

continuous in x.

The uniform continuity of f and its arguments along with the uniqueness guarantee con-

sistency of the partial filter.
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Lemma 1. Under Assumptions 1 through 3, if x̂T and Ê[g(x′, y′, x, y)|x, y] converge with

x̂t ∈ Xt ∀t, they converge to xT and E[g(x′, y′, x, y)|x, y] as T → ∞.

Proof. Suppose not. It must be that Ê[·] converges because otherwise Assumption 2 is vi-

olated. Thus, x̂T must diverge from xT . However, because the expectation converges, a

diverging sequence of x̂T contradicts Assumption 1: For any ϵ > 0, there exists a Tϵ such

that for all T > Tϵ the approximation error is uniformly smaller than ϵ. Now, by uniform

continuity (Assumption 3), that bounds the error in {x̂t} by some δϵ. We can pick ϵ to make

δϵ vanish. Thus, if there is convergence, it is to the population values.

For illustrative purposes, we model the covariance and the first moments in the next

subsection using a VAR(1), possibly including non-linear terms. However, other statistical

models are conceptually straightforward to use.

2.2 Algorithms

We specify now a VAR(1) in g1,t, g2,t (or their non-degenerate components), (a subset of nỹ

elements of) yt, and x̂t for t = 1, ..., T as our auxiliary statistical model. A superscript denotes

the whole sequence of a variable. For instance, yT = {y1,y2, ...,yT}. We collect all the VAR

variables in ξt, a (2m+nỹ+nx)×1 vector. By including the possibly non-linear functions g·,t

directly in the VAR, rather than its arguments, even a linear VAR yields an approximation

to the expectation of the non-linear function itself. Some applications may, nevertheless, call

for the inclusion of non-linear terms, which we collect in the vector ϕt = [ϕj,t]j, for example

ϕt = [x2
j,t, y

2
ℓ,t] for some indices j, ℓ to include selected lagged hidden states and observables

as predictors. Then, the VAR is given by:

ξt = µ+Aξt−1 +Bϕt−1 + εt, Var[εt] = Σ.

Using the companion form of the VAR, we can accommodate the general VAR case with more

lags. While, given the structure of many time series, a low-dimensionality VAR will capture

their dynamics well, one can easily adapt our steps to other auxiliary statistical models.

To express the expectation in terms of the VAR elements, order g1,t and g2,t as the first

two variables of the VAR. Also, let ei be a selection vector with a 1 entry in position i and

0 elsewhere. Finally, use that the first 2m elements of the VAR characterize g1 and g2. One

can then write the components of (2.5) as:

Et[g(xt+1,yt+1,xt,yt)]i ≡ e′i(µ+Aξt +Bϕt)e
′
i+nx

(µ+Aξt +Bϕt) + e′iΣei+nx . (2.6)
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With this in hand, the i-th element in equation 2.1 transforms into

f(xt,yt, e
′
i(µ+Aξt +Bϕt)e

′
i+nx

(µ+Aξt +Bϕt) + e′iΣei+nx)i = 0. (2.7)

Note that xt appears inside ξt and possibly inside ϕt.

We propose two approaches to filtering with the previous equation. First, we find the

sequence x̂T that solves equation (2.7) for all i. Because x̂t appears in ξ (and possibly in ϕ)

as well as indirectly in the VAR parameter matrices A, B, and Σ, we search for a fixed point

in equation (2.7). Second, we find x̂T through a Gibbs sampler that quantifies the estimation

uncertainty.

Fixed point. We solve for the fixed point of {x̂t}Tt=1 and {Êt[g(x̂t+1, yt+1, x̂t, yt)]}Tt=1 nu-

merically. In practice, we have found that initializing {x̂t}Tt=1 at a simple starting guess, such

as the steady state of our model of interest plus some added noise, and, then, iterating on

VAR-parameter estimation and filtering until convergence works well.4

Gibbs sampler. A Gibbs sampler allows us to quantify estimation uncertainty. We start

the Gibbs sampler at some appropriate guess, such as, for example, the steady state of the

model or the fixed point found in the previous algorithm. Then, d = 1, . . . , D, we iterate on:

1. Given the previous draw {x̂(d)
t }Tt=1, draw the parameters µ(d),A(d),B(d),Σ(d) from the

posterior for a VAR in ξ
(d)
t with controls ϕ

(d)
t .

2. Given yT and the VAR parameters, solve for {x̂(d+1)
t }Tt=1 using (2.6) in equation (2.3).

In some applications, researchers may have a strong prior over the VAR parameters or

even treat them as known. If the researcher wishes to evaluate a specific model that can

be simulated, the researcher can estimate the VAR on simulated data. Furthermore, we can

add an initial calibration step to either algorithm where we calibrate the first moments to

be model-consistent by treating the (log) deviations of the observed series as (log) deviations

from the model moments.

2.3 Extensions

In our empirical application, we use a model with an occasionally binding constraint. To

ensure that the model multiplier correctly identifies periods with binding constraints, we

4The fixed point algorithm is easier to implement. However, in Monte Carlo experiments with misspecified
and non-linear DGPs, we found that the fixed point algorithm does not lead to convergence for every sample
path because small changes in state estimates can lead to discontinuous changes in parameter estimates and
vice versa. The Gibbs sampler below had a more robust performance but required more effort.
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introduce and subsequently solve for the time-varying intercepts for expected marginal utility,

say, for the period with binding constraints.

Other extensions are conceptually straightforward. For example, one could weaken the

identifying assumptions above or allow for iid measurement error in the filtering equation

(2.1). In the latter case, equation (2.1) would hold only in expectation, and one may need

to adjust the estimator for it. For instance, in the linear model with iid measurement error,

the use of lagged filtered values as an instrument may correct for an attenuation bias. Below,

we introduce measurement error in the simulation but treat it as a form of unknown model

misspecification.

With measurement error and multiple equations identifying the hidden state, it might be

possible to test whether the hidden state is identified consistently by the different equations.

Lastly, when we use a misspecified, inconsistent estimator for Ê[g(·)|·] with a small but non-

zero error, we can use additional assumptions on f to bound the error on the filtered state.

2.4 Testing

The partial filter makes two key assumptions: First, to back out the hidden states, the model

equations must be invertible in population. Second, the population expectations are well

approximated by the statistical model. The first assumption might be difficult to assess in

applications because the estimated state is constructed from current and past observables

only, given parameters. Thus, there is no meaningful test to confirm that we do not need

future information to recover the shock – which would make the hidden state only recoverable

but not identifiable in the language of Chahrour and Jurado (2018). In applications, external

information, such as competing estimates or narrative information, can be used as a joint

test of the partial filter assumptions, as in the application in Drautzburg et al. (2021).

However, we can test whether the statistical model of Et[g(xt+1, yt+1, xt, yt)] is adequate.

This requires both the information set to be rich enough and the statistical model to be flexible

enough. Our proposed test is to assess whether the VAR residuals for the observables, which

include the residuals of g(x̂t+1, yt+1, x̂t, yt), are uncorrelated with their lags and the lagged

residuals for the other observables. If they exhibit significant correlation, we could improve

the model of Et[g(xt+1, yt+1, xt, yt)] by enlarging the information set or by making the model

more flexible.

Specifically, we propose the multivariate Ljung and Box (1978) test statistic of residual

autocorrelation and use a wild bootstrap to compute critical values, allowing for heteroskedas-

ticity or stochastic volatility but imposing the Null of zero autocorrelation. As illustrated

below, this test has the power to diagnose misspecification.
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The univariate Ljung and Box (1978) test statistic for lag length k is:

LBk = T (T + 2)
k∑

ℓ=1

r̂2ℓ
T − ℓ

, (2.8)

where r̂ℓ is the ℓth order autocorrelation of yt. In multivariate settings, we use the following

generalization discussed in Tsay (2010, chapter 8.1.4):

LBk = T 2

k∑
ℓ=1

vec(R̂ℓ)
′(R̂−1

0 ⊗ R̂−1
0 ) vec R̂ℓ

T − ℓ
, (2.9)

where Rℓ is the ℓth order autocorrelation matrix of the observables.

3 A scalar example

In this section, we explore the properties of the partial filter using a Monte Carlo exercise.

We also consider possible misspecification in the form of measurement error and a higher-

dimensional state vector to assess the robustness of the proposed filter.

As before, there is a single observable yt that depends on a single hidden state variable

xt that the researcher tries to extract:

yt = µy + xt + Et[κ1xt+1 + κ2x
2
t+1] + σeet (3.1a)

xt = µx +

(
ρ1 +

η

1 + x2
t−1

)
xt−1 + σuut (3.1b)

where et ∼ iid(0, 1) and vt ∼ iid(0, 1). Here, et has the interpretation of measurement error,

while vt is a shock to the hidden state. In the appendix, we consider ARMA(p,1) processes

for xt as well as a non-linear forcing term for xt.

We assume that the researcher considers the misspecified observation equation:

yt = µy + xt + Et[κ1xt+1 + κ2x
2
t+1]. (3.2)

That is, when σe > 0, the model is misspecified. This misspecification vanishes as σe

σu
↘ 0,

akin to the misspecification in Schorfheide (2005). Examples of an observation equation with

such an expectation term include a forward-looking Phillips curve or a consumption Euler

equation. The observation equation depends on the current state variable xt and expectations

of a function of the future state xt+1, which is non-linear when κ2 ̸= 0. Since the system

12



is jointly homogeneous in means, coefficients, and standard deviations, we normalize the

coefficient on the current state to unity: κ1 = 1.

Following Gordon et al. (1993), the state equation (3.1b) is first-order Markov: either a

linear AR(1) (if η = 0) or a non-linear process (if η ̸= 0). In the appendix, we consider

two variations of this equation: first, a variant that includes a cosine function γ0 cos(γ1t) of

calendar time t, where γ0 controls the amplitude and γ1 the frequency, and, second, a variant

of the linear case with an ARMA(p,1) structure for xt.

As stated above, our filtering approach involves three steps. First, we approximate the

state dynamics with a (possibly non-linear) VAR. Second, we evaluate the expectations terms

in the observation equation using the VAR approximation. Third, we back out the hidden

state given the VAR dynamics and the observables. The VAR dynamics can be obtained by

simulating a structural model or by estimation (in the simplest case, iterating between state

inference and VAR estimation). We describe each step in more detail next.

Step 1. We approximate the dynamics of the hidden state xt with a VAR(L) in the hidden

state and the observable yt, as well as an optional non-linear function ϕ(xt, yt). The function

ϕ(·) can be vector-valued and could include g(·) and other non-linear functions of xt or yt: xt

yt

ϕ(xt, yt)

 ≈ a0 +
L∑

ℓ=1

Aℓ

 xt−ℓ

yt−ℓ

ϕ(xt−ℓ, yt−ℓ)

+ εt. (3.3)

Step 2. We substitute for the expectation using the VAR. Defining ϕ(xt, yt) ≡ [x2
t , xt/(1+

x2
t )]

′ we have that:

Ê[g(xt+1, yt+1, xt, yt)|yt] = Ê[κ1xt+1 + κ2xt+1|yt] = [κ1, 0, κ2, 0]
L∑

ℓ=1

Aℓ


xt+1−ℓ

yt+1−ℓ

x2
t+1−ℓ

xt+1−ℓ/(1 + x2
t+1−ℓ)

 .

(3.4)

Step 3. Plugging the above expression into equation (3.2) yields an equation that can be

solved for xt. We iterate over t, taking xt−ℓ, ℓ ≥ 1 as given and only solve for xt. When

ϕ(·) includes a rational function or polynomial terms in xt, the observation equation is a

polynomial equation. The coefficients are functions of current and past yt and xt. The

example above, with g(xt, yt) = x2
t and κ2 ̸= 0 and zero coefficients on xt/(1 + x2

t ), generally

13



yields two solutions.5 In the case of κ2 = 0 and non-zero coefficients on xt/(1 + x2
t ), the

resulting equation can be re-written as a third-order polynomial, which generically has three

solutions. While one could use statistical criteria to choose among solutions, in practice, we

use economic intuition to choose among solutions, for example, choosing a solution that lies

within a certain domain.

The point estimate of the partial filter is a fixed point of the VAR parameters and the

state estimates. Below, we solve for this fixed point iteratively. The VAR parameters are

estimated in the first step, given state estimates. The state estimates are then updated given

the VAR parameter estimates. To quantify estimation uncertainty, this iterative procedure

can incorporate a Gibbs sampler by drawing the VAR parameters from the posterior rather

than using the point estimates.

To test the model, we add the following step:

Test. Compute the Ljung-Box statistic (2.8) with a lag order at least as high as that of the

approximating VAR. We then use the iid wild bootstrap to generate D artificial samples from

equation (3.3). For each artificial sample, we re-estimate the VAR and compute the Ljung-

Box statistic. We reject the partial filter at significance level α if the realized Ljung-Box

statistic lies above the (1− α)× 100 percentile of the bootstrapped distribution.

A number of special cases of the system of equations (3.1) illustrate the challenges and

advantages of the partial filter. We focus on the following three cases:

1. Fully linear case: If κ2 = η = 0, the model is linear. In this case, the Kalman filter

applies and is optimal when the disturbances are normal.

2. Quadratic observation equation, linear state equation: If η = 0, the state equation is

linear. In this case, we restrict µx and bound the support of vt to ensure that the model

is identified. Otherwise, there are generally two sequences {xt} that are consistent with

{yt} and the model is unidentified.

3. Linear observation equation, non-linear state equation: If κ2 = 0, we have an observa-

tion equation that is linear in the forecast Et[xt+1], but we retain the full non-linearity

of the state equation. In this case, even the law of motion is generally a correspondence

that can have disconnected ergodic sets.

These scenarios demonstrate that our method works well if the misspecification is not

severe, i.e., provided that the signal-to-noise ratio σu

σe
is high enough. In case 1, when the

Kalman filter is applicable, we also provide a comparison with the linear Kalman filter.

5In the presence of misspecification or approximation error, these solutions need not be real. We then
proceed by working with the real component of the solution.
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Our Monte Carlo exercise uses N = 100 replications. We consider first-order Markov

processes with low to high values of persistence ρ1 ∈ {0.25, 0.5, 0.75, 0.9, 0.95}. We normal-

ize the variance of the measurement error σ2
e = 1 and vary the conditional variance of the

stochastic component of the hidden state on the following grid: {0.252, 1, 22, 52, 102}. We

use a burn-in in the simulations of 100 periods and a sample of T = 250, a typical length

for quarterly post-WWII applications. Except in the application with the non-linear obser-

vation equations, we assume zero means µy = µx = 0 and Gaussian distributions. We test

for the adequate lag order of the approximating VAR. In Appendix A.3, we report results

using an AR(2), an ARMA(2,1), and an AR(4) process. We show that the specification test

correctly rejects lag lengths that are too short and that the partial filter produces reliably

high correlations between the filtered state and the actual state.

3.1 Fully linear model

To illustrate the mechanics of the partial filter, we first consider a special case in which

the researcher knows the model is correctly specified and imposes this knowledge at the

estimation stage. We then consider the misspecified case. Last, we provide a comparison

with the Kalman filter.

3.1.1 No misspecification (σe = 0)

We can rewrite the observation equation as:

yt = (1 + ρ1)xt, (3.5)

where xt follows a zero mean AR(1) process:

xt = ρ1xt−1 + vt. (3.6)

Due to the perfect collinearity of xt and yt, the partial filter is very simple. We use an

AR(1), yielding Êt[x
(d)
t+1] = Â1,1[x

(d)
t ] + â1, where â1 is a constant term included in the AR(1)

and that is zero in population. While we could update x̂
(1)
t = (1 + ρ̂1)

−1yt given an estimate

ρ̂1 based on an initial guess of x̂
(0)
t ∝ yt, here we iterate until convergence on the following

two steps for comparison with the more complex cases below:

For d = 1, 2, . . . do until convergence of {x(d)
t }Tt=1

Step 1. x
(d)
t = yt − Â11x

(d−1)
t − â

(d−1)
1
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Step 2. Estimate AR(1) coefficients Â(d), â
(d)
0 regressing


x
(d)
1
...

x
(d)
T

 on


x
(d)
0 1
...

x
(d)
T−1 1

 .

ρ1 = 0.25,Var[u] = 1 ρ1 = 0.75,Var[u] = 1 ρ1 = 0.95,Var[u] = 1

Note: Different colors correspond to different Monte Carlo samples. The dashed line is the 45-degree line.

Figure 1: Partial filter in fully linear case without measurement error: Filtered state x̂t vs.
true xt for 100 different T = 250 samples for varying degrees of persistence ρ0.

Figure 1 shows how the fit of the partial filter changes as a function of the persistence of

the true state. Specifically, the left panel is a scatter plot when ρ1 = 0.25, the center panel

when ρ1 = 0.75, and the right panel when ρ1 = 0.95. Within each panel, the true state xt

is measured on the horizontal axis. Different colors correspond to the 100 different Monte

Carlo samples. The dashed lines are the 45-degree lines.

All realizations are close to the 45-degree line. Comparing the left panel to the right

panel shows that the filtered state becomes more concentrated and is relatively closer to the

true state when the persistence is higher. Given these scatter plots, it is not surprising that

the partial filter yields close to perfect correlations and that the relative standard deviations

are just slightly above unity. See Appendix A.1 for details on the correlations and relative

standard deviations.

3.2 Linear case with misspecification

Focusing on the zero-mean AR(1) as DGP, we can rewrite the observation equation as:

yt = (1 + ρ1)xt + σeet. (3.7)

The partial filter for this case is simple. In this version, the researcher is unaware of the

stochastic term, that is, σe > 0. The estimated VAR is linear. When it has a single lag, the

assumed observation equation is Êt[x
(d)
t+1] = Â1,◦[x

(d)
t , yt] + â0x. We iterate until convergence

on the following two steps (ignoring the misspecification by treating et as zero):
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For d = 1, 2, . . . do until convergence of {x(d)
t }t

Step 1. x
(d)
t = yt − Â1xx

(d−1)
t − Â

(d−1)
1y yt − â

(d−1)
0x

Step 2. Estimate VAR coefficients Â(d), â
(d)
0 regressing


y1 x

(d)
1

...

yT x
(d)
T

 on


y0 x

(d)
0 1

...

yT−1 x
(d)
T−1 1

 .

Figure 2 shows scatter plots for low to high persistence of the state. The results are

similar to the case without misspecification. All realizations are close to the 45-degree line.

Comparing the left panel to the right panel shows that the filtered state is relatively closer

to the true state when the persistence is relatively higher. Compared to the case without

misspecification, the scatter plot exhibits more dispersion around the 45-degree line.

ρ1 = 0.25,Var[u] = 1 ρ1 = 0.75,Var[u] = 1 ρ1 = 0.95,Var[u] = 1

Note: Different colors correspond to different Monte Carlo samples. The dashed line is the 45-degree line.

Figure 2: Partial filter in the fully linear case with misspecification: Filtered state x̂t vs. true
xt for 100 different samples for varying degrees of persistence ρ1.

Testing the statistical model underlying the partial filter using the Ljung-Box test reveals

that, at low levels of the signal-to-noise ratio σu

σe
, a VAR(1) approximation is inadequate.

Figure 3 illustrates this for the case of ρ1 = 0.75 and σu = σe

4
in Panel (a) and σu = 10σe

in Panel (b). The figure reports the rejection rates by VAR lag length on the horizontal

(a) Var[ut]/V ar[ϵt] =
1
42

(b) Var[ut]/V ar[ϵt] = 102
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Figure 3: Partial filter in the fully linear case: Rejection rate of the Ljung-Box test by VAR
lag length and test lag order
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axis and Ljung-Box lag order on the vertical axis. The shading corresponds to a heat map or

rejection rates using p−values of 10% as the cutoff. If the approximating model were correctly

specified, we would expect to see dark blue shades. Instead, for σu = σe

4
, Figure 3(a) shows

lighter colors corresponding to rejection rates between 38% and 45% for a VAR with one

lag. With two or more lags, the rejection rates are close to or lower than 10%. In Panel (b),

these rejection rates range from 7% to 12% and do not change much with the lag order of

the approximating VAR. We conclude that a VAR(2) is necessary to handle situations with

significant misspecification and proceed using this as our approximating model.

Table 1: Partial filter performance and comparison with Kalman filter: Different AR(1)
DGPs: xt = ρ1xt−1 + σuut, ut ∼ iid(0, 1).

Correlation Relative standard deviation

ρ1 = 0.25 σu = 1
4

σu = 1
σu = 10

Partial Filter KF σe = 0 Correct KF
0.31 [0.23, 0.36] 0.31 0.32
0.79 [0.74, 0.80] 0.79 0.79
0.99 [0.97, 1.00] 1.00 1.00

Partial Filter KF σe = 0 Correct KF
4.03 [3.65, 4.80] 3.27 0.32
1.40 [1.23, 1.62] 1.26 0.79
1.02 [0.94, 1.12] 1.00 1.00

ρ1 = 0.75 σu = 1
4

σu = 1
σu = 10

Partial Filter KF σe = 0 Correct KF
0.50 [0.44, 0.55] 0.55 0.65
0.92 [0.88, 0.93] 0.93 0.94
1.00 [0.99, 1.00] 1.00 1.00

Partial Filter KF σe = 0 Correct KF
2.87 [2.53, 3.38] 1.87 0.66
1.19 [1.10, 1.33] 1.07 0.94
1.01 [0.98, 1.07] 1.00 1.00

ρ1 = 0.95 σu = 1
4

σu = 1
σu = 10

Partial Filter KF σe = 0 Correct KF
0.70 [0.62, 0.76] 0.79 0.89
0.98 [0.95, 0.99] 0.98 0.99
1.00 [1.00, 1.00] 1.00 1.00

Partial Filter KF σe = 0 Correct KF
1.73 [1.44, 2.12] 1.25 0.92
1.07 [1.02, 1.13] 1.02 0.99
1.01 [1.00, 1.04] 1.00 1.00

Note that σu in the table corresponds to σu/σe with σe = 1 in the simulations with misspecification. The

partial filter uses a VAR(2).

Table 1 provides summary statistics for the partial filter that uses a VAR(2) approxima-

tion. It considers different levels of persistence and signal-to-noise ratios. For each parameter

combination, the table reports the median correlation and median relative standard deviation

of the filtered state with the true state, along with 68% confidence intervals across the Monte

Carlo simulations. The table shows that, as the misspecification vanishes, the correlation

approaches one from below, and the relative standard deviation approaches one from above.

For example, for ρ1 = 0.25, the median correlation (relative s.d.) across simulations is 0.31

when σu = 1
4
σe. This grows to 0.79 when σu = σe and is 0.99 when σu = 10σe. The relative

standard deviation falls quickly from 4.03 to 1.40 and 1.02 for these signal-to-noise ratios.

The results improve with higher values of persistence. Even when σu = σe

4
, the median cor-

relation rises from 0.31 when ρ1 = 0.25 to 0.70 when ρ1 = 0.95 and the relative standard

deviation falls from 4.03 with ρ1 = 0.25 to 1.73 with ρ1 = 0.95.
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3.2.1 Kalman filter comparison

Intuitively, the partial filter under misspecification attributes the measurement error to the

true state and, thus, overstates its volatility. We now show that a similar behavior arises

when the Kalman filter is misspecified.

Using standard results, initialized with the steady state variance, the Kalman filter implies

the following state variance Var[xt+1|yt] and gain G(Var[xt+1|yt]):

Var[xt+1|yt] =
σ2
u

2
− 1− ρ21

(1 + κ1ρ1)2
σ2
e

2
+

√
σ2
uσ

2
e +

1

4

(
1− ρ21

(1 + κ1ρ1)2
σ2
e − σ2

u

)2

= σ2
u if σe = 0.

G(Var[xt+1|yt]) =
(1 + κ1ρ1)Var[xt+1|yt]

σ2
e + (1 + κ1ρ1)2Var[xt+1|yt]

=
1

1 + κ1ρ1
if σe = 0.

This gain, in turn, implies the following recursive state estimate, which becomes static

absent measurement error:

E[xt|yt] = ρE[xt−1|yt−1] +G(Var[xt+1|yt])(yt − (1 + κ1ρ1)G(Var[xt+1|yt])ρE[xt−1|yt−1])

=
yt

1 + κ1ρ1
if σe = 0.

Interestingly, the fixed point of the partial filter with a lag length of one period yields the

same estimate absent measurement error. To see this, consider the true parameter values for

the approximating VAR and write:6

x̂t = yt
(1− κ1A1y)

1 + κ1A1x

.

=
yt

1 + κ1ρ1
if σe = 0.

Table 1 above also lists the correlation and relative standard deviation from the misspec-

ified Kalman filter (assuming σe = 0, “KF σe = 0”) and the correctly specified Kalman filter

(“Correct KF”) alongside the partial filter results. Unlike the partial filter, the Kalman filter

is given the true parameter values (except for σe in the misspecified case). Both the partial

filter and the misspecified Kalman filter have similar correlations and relative standard de-

viations that approach unity from above as σu increases. In contrast, the correctly specified

Kalman filter has a relative standard deviation that approaches unity from below because it

6In general, A1x ̸= ρ1 and A1y ̸= 0 as the measurement error σeet makes discovering xt impossible.
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attributes some variability in the data to the measurement error. When σu = 10, all three

models yield correlations and relative standard deviations near unity.

3.3 Quadratic observation equation with misspecification

Next, we allow for a quadratic state equation. The measurement and state equations imply:

yt = µy + xt + κ1Et[xt+1] + κ2Et[x
2
t+1] + et (3.8)

= µy + xt + κ1µx + κ1ρ1xt + 2κ2ρ1µxxt + κ2(µ
2
x + σ2

u) + κ2ρ
2
1x

2
t + et. (3.9)

The case of the quadratic observation equation illustrates an important requirement for

the partial filter: the model has to be identified absent measurement error, i.e., if et = 0.

Otherwise, the model is only set-identified with solutions generically spread across disjoint

regions of the state space. Here, two different values of xt are consistent with a given real-

ization of yt absent measurement error. In typical applications, economic insight can be used

to rule out regions of the state space that give rise to multiplicity (i.e., values of monetary

policy shocks that are wildly different from narrative evidence).

To ensure that our data generating process has a point-identifiable state, we restrict yt

to be increasing in xt, as in Example 1(b). Since this is only possible with bounded shocks,

we now assume that vt follows a truncated normal distribution.7 Retracing the steps of

Example 1(b), we require that:

∂yt
∂xt

= 2ρ21κ2xt + (1 + κ1ρ1 + 2κ2ρ1µx) ≥ 0 ⇔ xt ≥ −1

2

1 + κ1ρ1 + 2κ2ρ1µx

ρ21κ2

. (3.10)

Given bounded shocks, xt is bounded from below by µx+u
1−ρ1

, where u is the lower bound

on the disturbances. Given ρ1 > 0, the sufficient condition becomes a restriction on the

unconditional mean of the state xt:

µx ≥ ρ20(κ1 − 2uκ2)− κ1ρ0 + ρ0 − 1

2κ2ρ0
. (3.11)

We focus on a very non-linear DGP with κ1 = 1
10
, κ2 = 10, µy = 0. We set µx so that

equation (3.11) holds with equality. For comparison, we also consider an almost linear case

with κ1 = 10, κ2 = 1
10
, and µy = 0 to assess whether the extra flexibility impairs the filter.

However, for most sample paths, the performance of the filter continues to be good.

In this setup, given the possible multiplicity of solutions, we need to choose an initial

7We truncated the normal distribution to [−1, 1] and scale it to have the desired variance σ2
u.
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guess with a reasonable scale. Here, we use the following starting guess that assumes that

the state variable has a scale compatible with the observable and the known parameters:

x̂
(0)
t =

1

κ1 + κ2

1

κ2
2 + κ2

1

(
κ2
2

√
yt + κ2

1yt
)
+ 0.1×N (0, 1). (3.12)

We use a VAR with a single lag and a square term in the hidden state xt−1. We initialize the

VAR coefficients to have a persistence in the state of 0.9 and zero loadings otherwise.

We illustrate this DGP for various degrees of persistence, ρ1 ∈ {0.25, 0.75, 0.95}. Since

the non-linearity only enters via the expected future state, when this state is not persistent,

the model is almost linear, as the left panel in Figure 4 shows. For the higher degrees of

persistence, however, the non-linearity is noticeable: One gauge of this non-linearity is the

relative size of the coefficients in a regression of yt on the true xt and x2
t – and the departure

from the 45-degree line in the figures. For ρ1 = 0.25, the non-linearity matters little: the

OLS coefficient on xt is 0.75 and the LS coefficient on x2
t is 0.45. The relative magnitudes

are reversed when ρ1 = 0.75 or ρ1 = 0.95.

ρ1 = 0.25,Var[x] = 1 ρ1 = 0.75,Var[x] = 1 ρ1 = 0.95,Var[x] = 1

Note: The dashed line is the 45-degree line; the solid linear is the fit of an OLS regression on xt and x2
t . Very

non-linear case with κ1 = 1
10 , κ2 = 10.

Figure 4: Quadratic observation equation for varying degrees of persistence ρ1. True state
vs. observation with T=25,000 observations.

Figure 5 shows scatter plots of the true vs. filtered state for the near-linear DGP (right

column) and the very non-linear DGP (left and center columns). For the very non-linear DGP,

we show results for two levels of persistence (ρ1 = 0.25 and ρ1 = 0.75), while σu = σe = 1

remains constant. For comparison, we also show the near-linear DGP with ρ1 = 0.75. Two

features stand out. First, for the higher level of persistence, the partial filter delivers estimates

close to the 90-degree line and, thus, close to the truth. Second, the truth is much more

volatile than the filtered estimates when ρ1 = 0.25. For almost all sample paths, the filter

performs well for both the very non-linear and the near-linear specification.
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Very non-linear DGP Very non-linear DGP Near-linear DGP
ρ1 = 0.25,Var[u] = 1 ρ1 = 0.75,Var[u] = 1 ρ1 = 0.75,Var[u] = 1

Note: Different colors correspond to different Monte Carlo samples. The dashed line is the 45-degree line.

Figure 5: Partial filter with a quadratic observation equation and misspecification: Filtered
state x̂t vs. true xt for 100 different samples for varying degrees of persistence ρ1.

In this model, the partial filter provides adequate forecasts already with a VAR(1) approx-

imation. Table A.1 in the appendix summarizes the corresponding Ljung-Box tests, again

for the near-linear DGP and very non-linear DGP as well as for different levels of persistence

ρ1 in the rows and degrees of misspecification σu

σe
. The absence of rejections of the VAR(1)

approximation in this DGP with a quadratic observation equation contrasts with the lin-

ear DGP, which generated a noticeable amount of rejections with a VAR(1) approximation.

One reason may be that the quadratic observation equation decreases the effective degree of

misspecification as more of the observable yt is driven by xt.

Table 2: Performance: Quadratic observation equation with different AR(1) DGPs: xt =
ρ1xt−1 + σuut, y(t) = x(t) + Et[κ1xt+1 + κ2x

2
t ] + et, ut, et ∼ iid.

Correlation Relative standard deviation

ρ1 = 0.25 σu = 1
4

σu = 1
σu = 10

Near-linear
0.67 [0.62, 0.70]
0.96 [0.96, 0.97]
1.00 [1.00, 1.00]

Very non-linear
0.10 [0.04, 0.17]
0.82 [0.80, 0.84]
0.94 [0.93, 0.95]

Near-linear
0.61 [0.11, 0.65]
0.42 [0.41, 0.44]
0.40 [0.40, 0.41]

Very non-linear
0.77 [0.74, 0.80]
0.12 [0.11, 0.12]
0.10 [0.09, 0.10]

ρ1 = 0.75 σu = 1
4

σu = 1
σu = 10

Near-linear
0.95 [0.95, 0.96]
1.00 [1.00, 1.00]
1.00 [1.00, 1.00]

Very non-linear
0.96 [0.95, 0.96]
1.00 [1.00, 1.00]
1.00 [1.00, 1.00]

Near-linear
0.99 [0.65, 1.02]
0.94 [0.94, 0.95]
0.94 [0.93, 0.96]

Very non-linear
0.87 [0.85, 0.90]
0.79 [0.78, 0.81]
0.79 [0.77, 0.80]

ρ1 = 0.95 σu = 1
4

σu = 1
σu = 10

Near-linear
0.99 [0.99, 0.99]
1.00 [1.00, 1.00]
0.99 [0.96, 1.00]

Very non-linear
1.00 [1.00, 1.00]
1.00 [1.00, 1.00]
1.00 [1.00, 1.00]

Near-linear
1.15 [1.14, 1.16]
1.14 [1.13, 1.15]
1.12 [1.02, 1.15]

Very non-linear
1.05 [1.05, 1.05]
1.05 [1.05, 1.05]
1.05 [1.05, 1.05]

The partial filter uses a VAR(1). Near-linear: κ1 = 10, κ2 = 0.1 Very non-linear: κ1 = 0.1, κ2 = 10.
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Finally, Table 2 summarizes the performance of the partial filter in terms of correlations

with the truth and relative standard deviations. The correlations are reported in the two

left columns and the relative standard deviations in the two right columns. Confirming the

visual evidence from the scatter plots, the partial filter does well except in the case of very

low persistence. With ρ1 = 0.75 and ρ1 = 0.95 the correlations are essentially one and the

relative standard deviations near one. For a low persistence of ρ1 = 0.25, the partial filter

struggles when misspecification is also pervasive (σu = 1
4
σe), and more so in the very non-

linear case. However, with σu = σe the median correlation is already 0.82 even in the very

non-linear case. The 68% confidence intervals are tight, indicating that the sample that is a

visual outlier in the scatter plots is, indeed, an outlier.

3.4 Linear observation equation, non-linear state equation with

misspecification

We now consider a non-linear state equation with non-linear persistence. Specifically:

yt = xt + κ1Et[xt+1] + et (3.13a)

xt =

(
ρ1 +

η

1 + x2
t−1

)
xt−1 + vt, (3.13b)

where et ∼ iid(0, σ2
e) and vt ∼ iid(0, σ2

u). Here, we set η = 25. As we illustrate below, these

parameter values interact with ρ1 to give rise to rich non-linearities.

ρ1 = 0.25,Var[x] = 1 ρ1 = 0.50,Var[x] = 1 ρ1 = 0.75,Var[x] = 1

Note: The dashed line is the 45-degree line; the solid linear is the fit of an OLS regression on xt and x2
t .

Figure 6: Linear observation equation, non-linear state equation for varying degrees of per-
sistence ρ1. True state vs. observation with T=25,000 observations.

Figure 6 illustrates the non-linear dynamics for three different degrees of persistence ρ1

by plotting the current state xt against the past state xt−1. Even though ρ1 > 0 in all three

cases, when ρ1 = 0.25 the non-linear mean-reversion via η > 0 dominates the autocorrelation
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via ρ1. When ρ1 = 0.5, the linear and non-linear force approximately offset each other, while

the positive, linear autocorrelation dominates for ρ1 = 0.75.

Non-linear VAR Non-linear VAR Linear VAR
ρ1 = 0.25,Var[u] = 1 ρ1 = 0.75,Var[u] = 1 ρ1 = 0.75,Var[u] = 1

Note: Different colors correspond to different Monte Carlo samples. The dashed line is the 45-degree line.

Figure 7: Partial filter with a non-linear state equation: Filtered state x̂t vs. true xt for 100
different samples for varying degrees of persistence ρ1.

Turning to the partial filter, we consider two approximating models. First, a linear VAR

in terms of xt, yt. Second, a non-linear VAR that also includes xt/(1 + x2
t ) and its lags as

observables. Anticipating the results of the specification tests below, each VAR uses two lags.

Figure 7 summarizes the results using once more scatter plots of the filtered vs. true state.

The left and center panels use a non-linear VAR approximation for the case of ρ1 = 0.25 and

ρ1 = 0.75, respectively. The right panel uses a linear VAR approximation for ρ1 = 0.75. The

most salient feature of the scatter plots is that the sample paths of the true model lie in two

disjoint regions. Importantly, for each of the 100 sample paths, the partial filter correctly

identifies the right region of the state and produces estimates near the 90-degree line. The

linear and non-linear VAR exhibit broadly similar performance, although the linear VAR has

occasional sample paths away from the 90-degree line.

Table 3: Partial filter with non-linear state equation and linear VAR(p): Ljung-Box rejection
rates with different lag lengths.

ρ = 0.25
ρ = 0.5
ρ = 0.75
ρ = 0.9
ρ = 0.95

Non-linear VAR(1)
σu = 1

4
σu = 1 σu = 10

0.20 0.27 0.20
0.27 0.30 0.07
0.17 0.20 0.20
0.60 0.60 0.10
1.00 0.67 0.17

Non-linear VAR(2)
σu = 1

4
σu = 1 σu = 10

0.17 0.23 0.03
0.30 0.30 0.03
0.20 0.17 0.20
0.67 0.50 0.10
0.83 0.63 0.10

Linear VAR(2)
σu = 1

4
σu = 1 σu = 10

0.55 0.25 0.04
0.77 0.32 0.05
0.83 0.23 0.04
0.77 0.13 0.07
0.64 0.15 0.04

Table 3 shows the results of the specification tests for the VAR with one or two lags.

The results for the non-linear VAR are in the left panel (VAR(1) case) and the middle panel

24



(VAR(2)). The right panel shows the results for a linear VAR(2) approximation. Within each

panel, the rows represent different degrees of persistence and the columns decreasing degrees

of misspecification. Overall, the specification tests reject the models with high degrees of

misspecification, and the VAR models with two lags tend to perform better than those with

a single lag. For the linear VAR with σu = 10σe, all rejection rates are below 10%. With the

non-linear VAR(2), they are at or below 10% for four out of five levels of persistence ρ1, and

20% for ρ1 = 0.75.

Table 4: Partial filter performance: Non-linear law of motion with different DGPs.
Linear VAR(2)

ρ = 0.25 σu = 1
4

σu = 1
σu = 10

Correlation
0.17 [0.10, 0.24]
0.52 [0.47, 0.56]
0.96 [0.95, 0.96]

Relative s.d.
3.66 [3.16, 4.23]
1.20 [1.06, 1.34]
0.96 [0.92, 1.01]

ρ = 0.75 σu = 1
4

σu = 1
σu = 10

Correlation
0.35 [0.31, 0.39]
0.85 [0.83, 0.87]
0.99 [0.99, 0.99]

Relative s.d.
3.45 [3.24, 4.05]
1.29 [1.20, 1.37]
1.00 [0.98, 1.02]

ρ = 0.95 σu = 1
4

σu = 1
σu = 10

Correlation
0.58 [0.53, 0.64]
0.96 [0.94, 0.97]
1.00 [1.00, 1.00]

Relative s.d.
1.92 [1.73, 2.19]
1.09 [1.04, 1.15]
1.00 [1.00, 1.02]

Non-linear VAR(2)
Correlation

0.15 [0.07, 0.19]
0.54 [0.46, 0.58]
0.97 [0.97, 0.98]

Relative s.d.
3.46 [3.33, 3.82]
1.10 [1.01, 1.24]
0.98 [0.94, 1.01]

Correlation
0.38 [0.33, 0.44]
0.86 [0.84, 0.87]
1.00 [1.00, 1.00]

Relative s.d.
0.38 [0.33, 0.44]
0.86 [0.84, 0.87]
1.00 [1.00, 1.00]

Correlation
0.67 [0.67, 0.70]
0.97 [0.96, 0.98]
1.00 [1.00, 1.00]

Relative s.d.
2.06 [1.58, 2.11]
1.04 [1.03, 1.08]
1.01 [1.00, 1.02]

Table 4 summarizes the performance of the partial filter in terms of the correlation with the

true state and the relative standard deviation. The left panels are for the linear VAR(2), while

the right panels are for the non-linear VAR(2). In terms of correlations, both VARs perform

similarly well. The correlations decrease with σu and are near one when the misspecification

is small, independent of ρ1. However, when ρ1 = 0.25 and misspecification is significant with

σu = 1
4
σe, the median correlation is a mere 0.15 with the non-linear VAR, which rises to 0.67

when ρ1 = 0.95. The relative standard deviation tends to be excessively high, with medians

as high as 3.66, but approaches unity when the misspecification vanishes. Overall, the results

improve with σu and the persistence ρ1.

4 Application I: A sudden stops model

To evaluate the quantitative performance of the partial information filter, we apply it to

a popular non-linear economy: the sudden stops model of Mendoza (2010). The model
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introduces a loan-to-value constraint in the workhorse small open economy real business

cycle model.

4.1 Model structure

Time t is discrete and goes forever. The economy is inhabited by a representative firm

and a representative household. The firm produces a tradable good yt with a technology

yt = eϵ
A
t Akγ

t L
α
t v

η
t , where kt is capital, Lt is labor, vt are imported intermediate goods, ϵAt is

a productivity shock, and γ + α + η = 1. The tradable good is sold at a world-determined

price (normalized as the numeraire). Imported inputs are purchased at an exogenous price

log pt = log p+ϵPt , where ϵ
P
t is a price shock. Working capital loans pay for a fraction ϕ of the

cost of imported inputs and labor in advance of sales. These loans are obtained from foreign

lenders at the beginning of each period and repaid at the end of the period. Lenders charge

the world gross real interest rate logRt = logR + ϵRt on these loans, where ϵRt is an interest

rate shock. The shocks in the economy, st = {ϵAt , ϵPt , ϵRt }, follow a joint first-order Markov

process with unconditional zero means.

The household has a utility function over sequences of consumption ct and labor Lt:

E0

∞∑
t=0

βt

(
ct − Lω

t

ω

)1−σ

1− σ
,

where β is the discount factor, ω determines the elasticity of labor supply, and σ controls

risk aversion. We follow the specification in Mendoza and Villalvazo (2020) with exogenous

discounting instead of the case with endogenous discounting as in Mendoza (2010).

The household can accumulate capital subject to quadratic adjustment costs:

kt+1 = (1− δ)kt + ĩt −
a

2

(kt+1 − kt)
2

kt
, (4.1)

where δ is the depreciation rate, ĩt is gross investment, and a is a constant that scales the

adjustment costs. Because of the adjustment costs, capital has a market price qt possibly

different from one. The household can also trade a one-period, zero-coupon foreign bond bt+1

at a price qbt = R−1
t (where bt < 0 means the household is borrowing).

Since the household owns the firm, the household maximizes its preferences subject to the

budget constraint:

(1 + τ)ct + ĩ = yt − ptvt − ϕ(Rt − 1)(wtLt + ptvt)− qbtbt+1 + bt, (4.2)
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where yt = exp(ϵAt )k
1−α−η
t Lα

t v
η
t . This budget constraint tells us that the resources of this

economy are used for consumption, taxed at a constant rate τ , and gross investment.8 The

resources come from the output net of imported inputs and the servicing of working capital

loans and from the change in the foreign bond position.

In addition, the household is subject to a collateral constraint:

ϕRt(wtLt + ptvt)− qbtbt+1 ≤ κqtkt+1. (4.3)

Equation (4.3) limits the total debt (working capital loans plus negative positions in bonds)

to be less than or equal to a fraction κ of the market value of the end-of-period capital stock.

We define a crisis in our model as a period in which the collateral constraint is binding. The

occasionally binding nature of the constraint prevents the use of the Kalman filter.

The prices qt and wt that appear in equations (4.2) and (4.3) are endogenous market prices

taken as given by the household when solving its optimization problem. Since the wage rate

must be on the labor supply curve (i.e., it must equal the tax-adjusted marginal disutility of

labor), wt = Lω−1(1 + τ). Similarly, the price of capital satisfies qt =
∂ĩt

∂kt+1
.

The equilibrium conditions of the model boil down to:

uc(t) = RtβEt[uc(t+ 1)] + µt(1 + τ) (4.4)

qt =
Et [Mt+1]Et [dt+1 + qt+1] + Covt(Mt+1, dt+1 + qt+1)

RtEt [Mt+1] + µ̃t [(1 + τ)− κ]
(4.5)

Lω−1
t (1 + τ) =

eϵ
A
t Akγ

t L
α
t v

η
t

(1 + ϕ(Rt − 1) + µ̃t(1 + τ)ϕRt)
, (4.6)

where uc(t) ≡
(
ct − Lω

t

ω

)−σ

is the marginal utility of consumption, dt are the dividends from

capital (since we substituted Rq
t+1 ≡ (dt+1 + qt+1)/qt), Mt+1 ≡ βuc(t+1)

uc(t)
is the stochastic

discount factor, and µ̃t ≡ µt

uc(t)
is the multiplier of the budget constraint rescaled by uc(t).

See Mendoza and Villalvazo (2020, p. 86) for details.

4.2 Calibration and solution

To enhance the comparability of our exercise with previous results in the literature, we borrow

all our parameter values from Mendoza and Villalvazo (2020), except the discount factor β,

8A constant consumption tax τ helps us to match the average share of government expenditures in GDP in
the data. Given the structure of the utility function, a constant tax does not distort the savings-consumption
margin, and it does not create a time-varying distortion on labor supply. The tax revenues are used for
government consumption, which does not enter into the utility function. Therefore, we do not need to discuss
the government further.
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which we lower marginally from 0.92 to 0.918 to yield an average crisis probability of 30.8%

(see Table 5 below). The calibration is annual (although in the empirical application, we

scale flows to quarterly data).

Parameter value
Average productivity: A 6.982
Capital share: γ 0.31
Labor share: α 0.59
Imported inputs share: η 0.10
Working capital parameter: ϕ 0.2579
Discount factor: β 0.918
Labor elasticity coefficient: ω 1.8461
Risk aversion coefficient: σ 2.0
Depreciation rate: δ 0.088
Capital adjustment cost: a 2.75
Tax on consumption: τ 0.17
Collateral coefficient: κ 0.20
Productivity shock: persistence 0.537
Productivity shock: s.d. 1.340
Imported input price shock: persistence 0.737
Imported input price shock: s.d. 3.345
Interest rate shock: persistence 0.572
Interest rate shock: s.d. 1.958

Table 5: Model calibration.

While the goal of the partial filter is to allow a researcher to study the data without solving

the model, we need to compute the model to generate pseudo-true data and perform a Monte

Carlo experiment. We do so following the fixed-point iteration (FiPIt) algorithm developed

in Mendoza and Villalvazo (2020). The algorithm works by conjecturing the decision rule for

bonds and the capital pricing function, deriving a set of implied decision rules that follow

from these conjectures, and solving the Euler equations for bonds and capital via fixed-point

iteration to find new values of the bonds decision rule and capital pricing function.

Since this algorithm works over a discrete state space, we define discrete grids for the three

states of the economy, (b, k, s). For the endogenous states, we define grids with M nodes for

bonds and N nodes for capital, respectively. The grid for the shock triples s ∈ S comes from

Mendoza (2010), who assumes that S has eight triples (i.e., each shock has two realizations)

and an associated 8× 8 Markov transition probability matrix. Mendoza (2010) computes S

and its transition matrix to match the persistence and volatility of total factor productivity,

the intermediate input prices, and the world real interest rate. The solution algorithm runs

on average in 114 seconds.
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4.2.1 The partial filter

Because static observables reveal the shocks, we focus on filtering the unobserved co-state

variables. Let us assume that the goal of a researcher is to filter the multiplier on the collateral

constraint, expressed in units of consumption µ̃t =
µt

uc,t
, and the price of capital qt without

having to solve for the whole model. Our assumption represents the goals of many researchers:

to learn about two variables of key importance for the behavior of the model that is either

unobservable, µ̃t, or hard to measure, qt. In fact, the indices of capital prices are subject to

much controversy, and the researcher might want to avoid taking a position in the debate.

Also, we can implement our filter in two scenarios: when the researcher is willing to assume

some parameter values and when the parameter values are unknown. We will focus on the

former case but briefly discuss the latter.

We assume that we can measure Ct and Lt (which gives us uc,t), Rt, and dt. These four

series are readily available for many countries. For example, dt can be construed from national

income and product accounts. Hence, we define the vector of observables yt = [uc, Lt, Rt, dt].

The first step is to define the hidden state vector xt = [µ̃t, qt] and select two equilibrium

conditions of the model that are likely to be informative about xt. We can rewrite the Euler

equation (4.4) as:

µ̃t =
uc(t)−RtβEt[uc(t+ 1)]

(1 + τ)

1

uc(t)
, (4.7)

and the relative price of capital (4.5) becomes:

qt =

β
uc,t

Et [uc,t+1]Et [dt+1 + qt+1] +
β

uc,t
Covt(uc,t+1, dt+1 + qt+1)

Rt
β

uc,t
Et [uc,t+1] + µ̃t [(1 + τ)− κ]

, (4.8)

when we substitute Mt+1 ≡ βuc(t+1)
uc(t)

. This last expression is particularly convenient because

we will specify our VAR in terms of the marginal utility of consumption. Notice that we can

filter out µ̃t with uc, Lt, Rt. In contrast, to filter out qt, we also need dt.

In addition to equations (4.7) and (4.8), we will also use the slackness condition:

µ̃t

[
qbtbt+1 − ϕRt [wtLt + ptvt] + κqtkt+1

]
= 0, (4.9)

which we can simplify further by taking advantage of the fact that, in equilibrium the (measur-

able) fraction ϕRt

1+ϕ(Rt−1)−η
of output is spent on labor and imported inputs (see Appendix B.2).

We use this condition to adjust our state estimates. Specifically, when the borrowing con-

straint is binding, but µ̃t is not estimated to be positive, we lower our estimate of the expected

future utility, and vice versa when the borrowing is slack and yet the estimated µ̃t is inferred
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to be positive.9

Mapping the equilibrium conditions into the notation of the partial information filter, we

have a 2-dimensional g-function:

g(xt+1,yt+1,xt,yt) = [y1,t+1;y4,t+1 + x2,t+1; βy1,t+1/y1,t] (4.10)

and an f -function:

f(xt,yt,Et[xt+1,yt+1,xt,yt]) =

 −µ̃t +
uc(t)−RtβEt[uc,t+1]

(1+τ)
1

uc(t)

−qt +
β

uc,t
Et[uc,t+1]Et[dt+1+qt+1]+

β
uc,t

Covt(uc,t+1,dt+1+qt+1)

Rt
β

uc,t
Et[uc,t+1]+µ̃t[(1+τ)−κ]

 = 0.

(4.11)

When the borrowing constraint is slack, we solve f for [µ̃t, qt]. When the borrowing

constraint is binding (or violated), but µ̃t = 0, we add a time-varying intercept in the VAR

that lowers Et[uc,t+1] to be consistent with the binding constraint at time t. Similarly, when

the constraint is not binding but µ̃t > 0, we introduce a time-varying intercept that raises

Et[uc,t+1] to lower the inferred µ̃t.

The second step in implementing the partial filter is to run a VAR(x) on yt,xt, and use

it to approximate the expectations and covariances in f(·). In the VAR(1) case, we collect

the VAR variables in the vector ξ
(d)
t = [uc,t, Lt, Rt, dt, µ̃

(d)
t , q

(d)
t ]. The case of more lags can be

handled via the companion form of the VAR.

Then, we use the fact that ξ
(d)
t = a(d) +A(d)ξ

(d)
t−1 + ε

(d)
t and Σ(d) = V̂ar[ε

(d)
t ] to write:

f1(x
(d)
t ,yt, Ê

(d)
t [g(x

(d−1)
t+1 ,yt+1,x

(d−1)
t ,yt]) ≈ −x

(d)
1,t +

uc(t)−Rtβe
′
1(a

(d) +A(d)x
(d−1)
t )

(1 + τ)

1

uc(t)

and

f2(x
(d)
t ,yt, Ê

(d)
t [g(x

(d−1)
t+1 ,yt+1,x

(d−1)
t ,yt]) ≈ −x

(d)
2,t

+

β
uc(t)

e′1(a
(d) +A(d)x

(d−1)
t )(e′4 + e′6)(a

(d) +A(d)x
(d−1)
t )

Rt
β

uc(t)
e′1(a

(d) +A(d)x
(d−1)
t ) + µ̃t

(d)[(1 + τ)− κ]

+

β
uc(t)

[(Σ
(d)
1,4 +Σ

(d)
1,6)]

Rt
β

uc(t)
e′1(a

(d) +A(d)x
(d−1)
t ) + µ̃t

(d)[(1 + τ)− κ]
.

For numerical stability, we do not immediately update the state estimates. Instead, we

9We do not use this equation to filter Tobin’s q because of measurement error. The observed debt is
averaged across maturities and is not risk-free, causing a discrepancy between the model and the data. In the
data for Mexico, we would otherwise infer an implausible increase in Tobin’s q when the borrowing constraint
binds. Given observables, only an increased collateral value could otherwise justify the observed borrowing.
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use a third step to update the guesses slowly. Specifically, we update the state estimates

for q̂t and ̂̃µt, using iterative rules of the form q̂
(d)
t = (1 − s)q̂

(d−1)
t + sx

(d)
2,t . Updating the

state estimates slowly improves convergence. Because in the model µ̃t ≥ 0, we also censor ̂̃µt

at −5e−4 and, for numerical stability, we restrict q̂t to lie within [0.9, 1.1] and to average 1.

These bounds have minor effects on the simulated data but improve the numerical stability

in the empirical application. See Appendix B.3 for a detailed algorithm.

All the steps we have taken so far follow directly from the partial information filter ap-

proach described earlier: (i) we selected two equilibrium conditions plus the slackness condi-

tion of the model based on their informativeness about the states we wanted to learn about

and performed basic algebraic manipulations with them; (ii) we ran a VAR on four observ-

ables and used the results to substitute variances and covariances on the three equations from

step (i); and (iii) we slowly updated our estimates for q̂t and ̂̃µt. None of these steps requires

much computational effort. The total run time of the algorithm is 47 seconds.

4.3 Simulation study

We simulate the model 100 times for 250 periods using the solution method presented in

Subsection 4.2. Since our experiments with univariate processes in Section 3 suggested that

the partial filter recovers the hidden state more reliably when the persistence of the state is

higher, we look at sample paths from our economy with different properties.

More concretely, we retain only simulated samples when we are in a crisis (e.g., µt > 0)

between 10 and 15% of the periods, when we are in a crisis between 30 and 35% of the periods,

and when we are in a crisis between 50 and 55% of the periods until we have accumulated

100 samples each. These are the most useful samples to test our partial filter. Since in all

simulated samples we are using the same calibration, this choice means that we are implicitly

selecting the shock realizations that give us the patterns that we are looking for.10 Then, we

apply our partial filter as outlined above to the selected simulated samples.

4.3.1 Results

We begin by assessing the adequacy of the auxiliary statistical model. Figure 8 shows the

results of the autocorrelation test for the residuals of the observed variables. Panel (a) shows

the case with a sudden stop frequency of 10%–15%. Panel (b) does the same for the case with

10Average technology declines, and the average import price increases as the frequency of crises increases.
Technology shocks average 1.002 when the crisis frequency is in [10%, 15%], but they only average 0.9995
when the crisis frequency is in [50%, 55%]. Import price shocks average 1.0250 with a low crisis probability
and 1.032 with a high crisis frequency. While the second moments remain stable, some higher moments also
differ. For example, in the high crisis frequency sample, the interest rate shock has a skewness of 0.36, as
opposed to -0.09 in the low crisis simulation.

31



a sudden stop frequency of 50%–55%. The horizontal axis of each panel shows the number of

lags of the approximating VAR; the vertical axis shows the number of lags of the test statistic.

The colors represent the fraction of simulations for which the bootstrapped Ljung-Box test

failed to reject the Null of no autocorrelation. Whereas the dark blue color represents values

near zero, shades of green values near 0.5, and bright yellow signify that we failed to reject

in (nearly) all simulations. Both panels show that VAR models with few lags are rejected,

while models with two or more lags capture even higher-order autocorrelation.

(a) Sudden stop frequency: 10-15% (b) Sudden stop frequency: 50-55%
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Figure 8: Rejection rate for the Null of zero residual autocorrelation as a function of the lags
of the approximating VAR and the lags in the test

Since the data-generating process features both shocks and decision rules that are first-

order Markov, our simulation indicates that the non-linear nature of the model or the dis-

cretization of the shock processes push us toward using a higher-order VAR. In what follows,

we focus on the VAR approximation with two lags.

Sudden stop

freq. [ %] corr(q̂t, qt) corr(̂̃µt, µ̃t) Rel. std. dev. qt Rel. std. dev. µ̃t

[10.0, 15.0] 0.77 [0.64, 0.87] 0.85 [0.66, 0.91] 1.29 [1.01, 1.57] 1.66 [0.79, 2.88]
[30.0, 35.0] 0.74 [0.55, 0.87] 0.84 [0.71, 0.92] 1.32 [1.12, 1.66] 1.40 [0.96, 1.84]
[50.0, 55.0] 0.70 [0.45, 0.81] 0.84 [0.68, 0.91] 1.18 [1.00, 1.52] 1.28 [1.02, 1.74]

Table 6: Medians [68% CI] of correlations, relative standard deviations, and classification
errors

Table 6 reports the correlation and relative standard deviation for the two filtered variables

for each of the three crisis frequency scenarios. The partial filter does well in recovering the

price of capital qt, independently of the crisis frequency in the sample: the median correlation

across simulations ranges from 0.70 to 0.77 in the three scenarios. The median standard

deviation of the estimated q̂t relative to the true qt ranges from 1.18 to 1.32. The inner 68%

confidence intervals for the correlations are skewed to the left, while the confidence intervals

for relative standard deviations are skewed to the right. The performance is comparable for µ̃t,
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with correlations around 0.85. The relative standard deviation of the filtered µ̃t is higher, with

the median ranging from 1.66 to 1.28. Again, the confidence intervals are skewed.11 With

a Minnesota prior rather than a flat prior, the correlations improve for Tobin’s q without

impacting those for the crisis indicator much. The relative standard deviations for Tobin’s q

rise, while those for the crisis indicator fall. See Table B.4 in the Appendix.

Sudden stop Crisis classification
Frequency False positives False negatives False(any)

[10.0, 15.0] 3.3 [1.4, 5.4] 0.0 [0.0, 8.1] 3.7 [2.0, 5.3]
[30.0, 35.0] 5.5 [3.1, 8.1] 0.0 [0.0, 7.8] 4.9 [2.8, 6.8]
[50.0, 55.0] 8.7 [5.3, 11.6] 0.8 [0.0, 5.5] 4.9 [3.3, 6.9]

Table 7: Crisis classification errors

It might be more relevant for policymakers to gauge how well our partial filter does

at learning when the borrowing constraint binds. Table 7 lists the false positive and false

negative rates when classifying crises, i.e., how often we estimate that the constraint is binding

when it is not and, vice versa, how often we miss that the constraint is actually binding. Here,

our partial filter displays a great performance, with median false positives between 3.3%, when

the true crisis frequency is 10%-15%, and 8.7%, when the true crisis frequency is between 50%

and 55%. The false negative rates are near zero. The probability of any false classification

is 4 to 5%. With a Minnesota prior, the results are broadly similar, but with a lower false

positive rate at the cost of a higher false negative rate (see Table B.5 in the appendix). Table

7 shows that the partial information filter performs very well in classifying crises correctly.

Figure 9 shows the data underlying the previous tables.12 The top panels show the time

path of the true (blue) and estimated (orange) time series for the sample with the median

correlation. In line with Table 6, the two lines track each other well in all three cases. There

appears to be less excess volatility for µ̃t when the crisis frequency is higher, in line with

a relative standard deviation closer to one. Comparing the simulated time series with the

filtered counterparts shows that the partial filter reliably recovers the large movements in qt

and µ̃t. This includes even short-lived crises, such as the one around period 230 in the middle

panel of the top row.

The bottom panel shows scatter plots of the relationship between the true and the filtered

series, with different colors indicating different sample paths. While there is some dispersion

around the 45-degree line and the filtered series tend to have a wider range, the scatter plots

11Out of a total of 300 simulations for the three crisis frequencies, all but six converge. We drop the
simulations that have not converged. The results remain virtually unchanged, however, if they are included.

12Figures B.9 and B.10 in the Appendix show the sample paths for true and filtered q and µ̃ for all three
crisis frequencies.
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Tobin’s q Multiplier µ̃t Multiplier µ̃t
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Figure 9: Sample paths for qt and µ̃t with the median correlation (top panels) and scatter
plot pooling all samples (bottom panels) for different in-sample crisis frequencies.

show that the partial filter recovers the right pattern of q. For µ̃t, the relationship is noisier,

but the excess volatility decreases with the crisis frequency, resulting in a more compact

distribution that is also reflected in narrower axes. While there is some mass on the axes,

which represent classification errors, a substantial mass is inside, reflecting the correct crisis

classification.

5 Application II: Using Mexican data

Having established that the filter performs well in a Monte Carlo experiment, we apply it to

Mexican quarterly data (OECD; Banco de México; CEPALSTAT) from 1980Q1 to 2018Q4.

Data and partial filter specification. To account for trends outside the model, we de-

trend the variables (in logs) using the HP filter and re-center them at the model-implied

means (in levels). We use data on real consumption and hours worked to construct marginal

utility. Our measure of the world real interest rate is the LIBOR (ICE Benchmark Adminis-

tration) spliced with the 3-month U.S. T-bill rate (Board of Governors of the Federal Reserve

System) and converted to real terms using the U.S. CPI (U.S. BLS). We take dividends from

the S&P/IFCG M MEXICO index, spliced after 2008Q3 with the MSCI MEXICO index
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(Datastream International). We construct the annual capital stock using the perpetual in-

ventory method and linearly interpolate it to obtain a quarterly series. See Appendix B.2 for

details.

We use the same specification of the partial filter as in our earlier simulation study. This

algorithm is a fixed point algorithm that ignores uncertainty about the parameters of the

approximating VAR. The step that updates parameters uses point estimates. Here, we also

provide results using the Gibbs sampler, which takes a draw from the posterior distribution

of the approximating VAR. For each parameter draw, we then solve for filtered sequences.13

We initialize qt = 1 and µ̃
(0)
t = 0.01 and add white noise to each series to avoid singularity in

the initial VAR estimates. We then set a(0),A(0),Σ(0) to the OLS estimates associated with

ξ
(0)
t = [uc,t, Lt, Rt, dt, µ̃

(0)
t , q

(0)
t ].14

Specification tests. We report p-values of the Ljung-Box result for residual autocorrela-

tion in Panel (a) of Figure 10, while Panel (b) reports the results of the Kolmogorov-Smirnov

test. Both sets of tests suggest that a VAR with three or more lags adequately models the

behavior of the VAR observables.

(a) Mult. Ljung-Box tests: p-values (b) Kolmogorov-Smirnov tests: Frac. of p-values≤ 0.1
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Figure 10: Bootstrapped specification tests for residual autocorrelation and equality of dis-
tribution

Consider the tests for multivariate residual autocorrelation first. The figure reports p-

values for one through six lags of the VAR for Ljung-Box test lags also ranging from one to

six periods. For a VAR with a single lag, the p-values range from less than 0.01 (one lag in the

test, dark blue) to 0.14 (lighter blue, two lags in the test). Starting with a VAR of lag length

three, we cannot reject the Null of zero residual autocorrelation at any horizon considered,

13The filtering step is again parameterized the same as in the simulation study. For successive parameter
draws, we initialize the algorithm with the filtered sequence from the previous draws, unless in the rare event
that this leads to a divergent filtering sequence. In the case where the current initial condition leads to
divergence, we re-initialize the filtering sequence with the initial draw.

14As before, we use the slackness condition to shift the future expected marginal utility up or down to
ensure the slackness condition binds during a reasonable fraction of the sample. Specifically, we lower (raise)
future expected marginal utility if the borrowing constraint is violated and µ̃t = 0 (if the slackness condition
is above its 15th percentile and µ̃t > 0).
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as evidenced by the light blue to yellow colors in the figure, which indicate p-values of 0.29

and higher.

The Kolmogorov-Smirnov test provides an auxiliary test of the adequacy of the approx-

imating statistical model. Under the Null of equality of the unconditional distribution from

the approximating VAR, the bootstrapped p-values should be distributed uniformly on [0, 1],

and about 10% of them should be below 0.1. Figure 10 (b) reports this fraction. With a single

lag, between 19% and 49% of p-values are below 0.1, indicating meaningful misspecification.

This performance improves, and with four lags, between 5% and 23% of p-values are below

0.1 (or 13% when averaged across variables). We conclude that a VAR with sufficiently many

lags captures both the dynamics and the distribution adequately.

We thus focus on a VAR with four lags below. For comparison, we report the results with

various numbers of lags. Overall, the results are insensitive to the lag length, but at lower

lag lengths, the volatility of µ̃t is understated.

Results. Does our partial filter recover the Mexican debt crises during our sample? Yes.

Panel (a) of Figure 11 shows the filtered multiplier on the borrowing constraint, µ̃t, and plots

a number of economic events that we suspect could lead to a binding borrowing constraint.

These events are: (1) the debt crisis of 1982Q3; (2) the collapse of oil prices in 1986 that

predated Black Friday in 1987Q3; (3) the “Tequila Crisis” of 1994Q4; (4) the Asian crisis of

1997Q3; (5) the Russian crisis and LTCM crisis of 1998Q3; and (6) the collapse of Lehman

Brothers in 2008Q3. The partial filter is successful in identifying all these crisis events except

the Asian crisis of 1997Q3. Interestingly, it is unclear whether the Asian crisis should have

much of an impact on Mexico. The fixed point of the algorithm identifies a crisis event around

2003 that might be a false positive. Indeed, when taking parameter uncertainty into account,

this event disappears (see Panel (a) of Figure 12).

The initial guess, a 0-1 dummy for whether the collateral constraint would be violated

given a counterfactual qt = 1, does well in capturing the crises. Furthermore, the filtered re-

sults do not inherit the false positive from the initial guess. Indeed, starting from a completely

random initial guess yields a similar crisis classification. See Figure B.12.

Panel (b) of Figure 11 shows the corresponding movement in qt. The blue line represents

the filtered value for qt. The same crisis events that are associated with a binding borrowing

constraint are also associated with a lower price of capital (the binding borrowing constraint

drives up the rate of return the representative household requires). Moreover, the filter shows

that our initial guess does not drive the inference about Tobin’s q.
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Figure 11: Filtered values of µ̃t and qt.

Parameter uncertainty. While we treated the estimated expectations as certain in the

analysis so far, we can quantify the effect of parameter uncertainty on expectations and thus

the filtered estimates using a Gibbs sampler. We iterate between estimating the VAR with a

Minnesota prior and filtering µ̃t and qt, which, in turn, enter the VAR as data.15

(a) µ̃t (b) qt

Posterior median and 68% and 90% credible sets

Figure 12: Filtered values of µ̃t and qt.

Allowing for parameter uncertainty broadly confirms the results from the fixed point

algorithm obtained so far. First, the partial filter with parameter uncertainty identifies

almost the same crises as the fixed point algorithm. Panel (a) of Figure 12 shows 68%

and 90% credible sets, the posterior median, and the fixed point estimates of the multiplier

on the borrowing constraint. While the credible sets are wide in some periods, the filter

15Our prior for the VAR parameters centers the VAR parameters at independent, stationary AR(1)s with
the persistence of 0.9 and standard deviations given by the training sample.
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rarely identifies positive multipliers outside crisis times. During these times, the multiplier

is positive with at least 95% posterior probability. Unlike the fixed point algorithm, now we

do not see significant false positives. The other crisis events appear to be both statistically

significant and economically meaningful.

Another feature of the posterior uncertainty is its asymmetry. The asymmetry is more

noticeable in the multiplier estimates. However, large right tails in the estimates of µ̃t also

manifest themselves as asymmetric credible sets for Tobin’s q (Panel (b) of Figure 12), for

example during the 2007-2008 financial crisis. Overall, the effects of parameter uncertainty

are small.

6 Conclusion

The partial information filter allows researchers to evaluate the historical implications of their

models without solving them or even fully specifying them. The latter point is important

because non-linear dynamic models are often matched to certain moments but without spec-

ifying enough shock processes and shock dynamics required for full information methods.

Even when full information non-linear filters are available, the computational cost of these

filters may discourage researchers from evaluating the historical implications of their model.

Our partial information filter thus has the potential to allow for better scrutiny of dynamic

macroeconomic models. It is, therefore, an important complement to likelihood-free methods

in model estimation.

Our analysis points to two requirements for the partial information filter. First, the

measurement equations need to identify the state absent measurement error uniquely. Second,

the results are robust to misspecification if the measurement is not too noisy, and the state

needs to exhibit enough persistence. Based on our experience, we conjecture that a large

class of models of interest satisfy these two requirements.
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Appendix

A Monte Carlo study in the scalar case

A.1 No measurement error

Here, we provide additional correlation and standard deviation plots for the linear case with-

out measurement error.
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Shown are the 68% and 90% confidence intervals across Monte Carlo simulations, along with the median.

Figure A.1: Partial filter in the linear case without measurement error. Correlation and
relative standard deviation of the filtered state x̂t vs. true xt for varying ρ0.

Figure A.1 plots the median correlation between the true and filtered states (along with

68% and 90% confidence intervals) in the top row, and the relative standard deviations of

the filtered state relative to the true state in the bottom row. The two panels on the left

vary σu, for fixed ρ1 = 0.75. The two panels on the right fix σu = 1 and vary ρ1. The top

row shows that the median correlation is close to one in all cases shown and always above
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0.95 with tight confidence intervals. The bottom row shows that the standard deviation of

the estimated state is slightly above that of the true state for all levels of σu and ρ0.

A.2 Additional results: Quadratic observation equation

ρ = 0.25
ρ = 0.5
ρ = 0.75
ρ = 0.9
ρ = 0.95

Near-linear observation equation
σu = 1

4
σu = 1 σu = 2 σu = 5 σu = 10

0.00 0.00 0.00 0.01 0.00
0.00 0.00 0.02 0.00 0.01
0.00 0.00 0.00 0.01 0.03
0.00 0.01 0.02 0.00 0.01
0.01 0.00 0.00 0.00 0.00

Very non-linear observation equation
σu = 1

4
σu = 1 σu = 2 σu = 5 σu = 10

0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

Table A.1: VAR(1) rejection rates in different DGPs. Near-linear: κ1 = 10, κ2 = 0.1 Very
non-linear: κ1 = 0.1, κ2 = 10.

A.3 Linear model with ARMA(p,q) laws of motion

We now generalize the linear law of motion (3.1) with η = 0 to an ARMA(p,1) model:

yt = µy + xt + Et[κ1xt+1 + κ2x
2
t+1] + σeet (A.1a)

xt = µx +

p∑
ℓ=1

ρℓxt−ℓ + σuut (A.1b)

ut =
ϕ0vt + ϕ1vt−1√

ϕ2
0 + ϕ2

1

, (A.1c)

Here we summarize the performance of four different linear DGPs for the case of the linear

observation equation. In all cases, yt = xt + Et[xt+1] + et and [et, ut]
′ iid∼ N (0, I2).

1. Figure A.2 considers the case in the main text, where xt = 0.95xt−1 + σuut.

2. Figure A.3 considers the case in the main text, where xt = 0.5xt−1 + 0.4xt−2 + σuut.

3. Figure A.4 considers the case in the main text, where xt = 0.5xt−1+0.4xt−2+σuvt and

vt =
1

||[1,4]||ut +
4

||[1,4]||ut−1.

4. Figure A.5 considers the case in the main text, where xt = 0.9xt−4 + σuut.
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Within each figure, the top panel shows the fraction of rejected draws according to a

Ljung-Box test with a significance level of 10% (with a lag order equal to the maximum

lag of the AR coefficients in the DGP) as a function of the lags of the approximating VAR.

Within the top panel, the different lines reflect decreasing degrees of misspecification of the

approximating model by increasing the standard deviation σu of the state xt relative to

the measurement error. In each figure, the rejection rate falls as the lag order of the VAR

increases. The Ljung-Box test successfully rejects models with lag lengths that are too short.

However, in the case of the back-loaded AR(4), the test is conservative and rejected about

60% of the time.

The center and bottom panels of each figure show the correlation of the filtered and the

true state across simulations with the median and 68% confidence intervals as a function of

the lag length of the approximating VAR, separately for accepted and rejected simulations.

The center panel shows the result for the highest degree of misspecification and the bottom

for the lowest degree of misspecification. While there are a few differences in the performance

of the partial filter for accepted and rejected draws, the correlations are stable across lag

lengths of the approximating model. For the high degrees of misspecification, the median

correlations range from 0.4 with the AR(4) as DGP to 0.85 in the ARMA(2,1). With the

low degree of misspecification, the correlations are between 0.8 in the case of the AR(4) and

almost one in the other cases.

Overall, the specification test has bite, and the partial filter performance with the linear

observation equation is robust to different DGPs.
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Figure A.2: AR(1) with ρ = 0.95. yt has measurement error.
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Figure A.3: xt AR(2) process with ρ1 = 0.5, ρ2 = 0.4. yt has measurement error.

45



1 1.5 2 2.5 3 3.5 4

lags of approximating VAR

0

0.5

1

fr
a

c
ti
o

n

re
je

c
te

d
 s

im
s

u
=0.25

   
u
=1

   
u
=2

   
u
=5

  
u
=10

  
u
=20

1 1.5 2 2.5 3 3.5 4

lags of approximating VAR

0.6

0.8

1

c
o

rr
e

la
ti
o

n
 

w
it
h

 t
ru

th

correlation with truth low signal to noise ratio

accepted

rejected

1 1.5 2 2.5 3 3.5 4

lags of approximating VAR

0.99

0.995

1

c
o

rr
e

la
ti
o

n
 

w
it
h

 t
ru

th

correlation with truth high signal to noise ratio

accepted

rejected

Figure A.4: xt ARMA(2,1) process with ρ1 = 0.5, ρ2 = 0.4, ϕ0 = 1
||[1,4]|| , ϕ1 = 4

||[1,4]|| . yt has
measurement error.
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Figure A.5: xt AR(4) process with ρ1 = ρ2 = ρ3 = 0, ρ4 = 0.9, ϕ0 =
1

||[1,4]|| , ϕ1 =
4

||[1,4]|| . yt has
measurement error.
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A.4 Non-linear law of motion with cosine forcing term

To generate more persistence and non-linearity, we introduce a cosine term:

yt = xt + κ1Et[xt+1] + et (A.2a)

xt = γ0 cos(γ1(t− 1)) +

(
ρ0 +

ρ1
1 + x2

t−1

)
xt−1 + ut, (A.2b)

Below, we use γ0 = 4, γ1 = 1.2.

ρ1 = 0.25,Var[x] = 1 ρ1 = 0.50,Var[x] = 1 ρ1 = 0.75,Var[x] = 1

Note: The dashed line is the 45-degree line; the solid linear is the fit of an OLS regression on xt and x2
t .

Figure A.6: Linear observation equation, non-linear state equation with cosine forcing term
for varying degrees of persistence ρ1. True state vs. observation with T=25,000 observations.

Figure A.6 shows a long simulation from the DGP for xt+1 vs. xt. It shows that the

hidden state xt can live in nearly disjoint regions. With ρ1 = 0.25, within each region, the

persistence is negative, but it is positive across regions. For ρ1 = 0.75, the DGP generates a

donut-shaped relationship between xt and xt+1.

ρ1 = 0.25,Var[u] = 1 ρ1 = 0.75,Var[u] = 1 ρ1 = 0.95,Var[u] = 1

Note: Different colors correspond to different Monte Carlo samples. The dashed line is the 45-degree line.

Figure A.7: Partial filter with a non-linear state equation with cosine forcing term: Filtered
state x̂t vs. true xt for 100 different samples for varying degrees of persistence ρ1.

Despite this challenging environment, the performance of the filter is still acceptable; see
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Figure A.7. However, the partial filter does not consistently pass the specification tests; see

Table A.2.

Table A.2: Partial filter with non-linear state equation with cosine forcing term and non-linear
VAR(p): Ljung-Box rejection rates with different lag lengths.

ρ = 0.25
ρ = 0.5
ρ = 0.75
ρ = 0.9
ρ = 0.95

Non-linear VAR(1) approximation
σu = 1

4
σu = 1 σu = 2 σu = 5 σu = 10

0.10 0.12 1.00 0.94 1.00
0.92 0.92 1.00 0.34 0.84
1.00 0.96 0.18 0.64 0.06
0.98 0.16 0.08 0.78 0.38
0.96 0.14 0.22 0.42 0.48

Non-linear VAR(2) approximation
σu = 1

4
σu = 1 σu = 2 σu = 5 σu = 10

0.12 0.20 0.98 1.00 1.00
0.90 0.90 1.00 0.46 0.84
0.98 1.00 0.20 0.32 0.14
1.00 0.56 0.42 0.30 0.24
0.98 0.44 0.20 0.14 0.12
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Figure A.8: Rejection rates and correlation of filtered state with truth in non-linear law of
motion with cosine forcing term. (ρ1 = 0.9)

B Sudden stops model

This appendix presents additional results for the simulation as well as for the empirical

filtering exercise on the sudden stops model.
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Table A.3: Partial filter performance: Non-linear law of motion with cosine forcing term.
Non-linear VAR(2)

ρ = 0.25 σu = 1
4

σu = 1
σu = 10

Correlation
0.43 [0.37, 0.47]
0.74 [0.71, 0.95]
NaN [NaN, NaN]

Relative s.d.
1.58 [1.50, 1.80]
0.80 [0.75, 0.96]
NaN [NaN, NaN]

ρ = 0.75 σu = 1
4

σu = 1
σu = 10

Correlation
0.76 [0.76, 0.76]
NaN [NaN, NaN]
0.99 [0.99, 1.00]

Relative s.d.
0.76 [0.76, 0.76]
NaN [NaN, NaN]
0.99 [0.99, 1.00]

ρ = 0.95 σu = 1
4

σu = 1
σu = 10

Correlation
0.80 [0.80, 0.80]
0.96 [0.95, 0.98]
0.99 [0.99, 1.00]

Relative s.d.
1.27 [1.27, 1.27]
0.93 [0.92, 0.95]
0.98 [0.96, 0.99]

B.1 Additional simulation results

Sudden stop

freq. [ %] corr(q̂t, qt) corr(̂̃µt, µ̃t) Rel. std. dev. qt Rel. std. dev. µ̃t

[10.0, 15.0] 0.90 [0.80, 0.96] 0.81 [0.53, 0.93] 1.35 [1.19, 1.61] 0.63 [0.39, 1.12]
[30.0, 35.0] 0.90 [0.82, 0.95] 0.88 [0.79, 0.94] 1.39 [1.20, 1.57] 0.86 [0.57, 1.20]
[50.0, 55.0] 0.81 [0.76, 0.89] 0.90 [0.81, 0.96] 1.39 [1.13, 1.64] 1.06 [0.83, 1.33]

Table B.4: Medians [68% CI] of correlations, relative standard deviations, and classification
errors. VAR with Minnesota prior.

Sudden stop Crisis classification
frequency False positives False negatives False(any)

[10.0, 15.0] 1.0 [0.0, 3.1] 10.9 [0.0, 40.3] 3.0 [1.2, 6.1]
[30.0, 35.0] 4.3 [1.2, 7.5] 1.3 [0.0, 10.1] 3.7 [2.4, 5.9]
[50.0, 55.0] 7.7 [2.5, 11.7] 0.0 [0.0, 2.7] 4.1 [2.4, 5.7]

Table B.5: Crisis classification errors. VAR with Minnesota prior.
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Figure B.9: Sample paths for qt with the median correlation (top panels) and scatter plot
pooling all samples (bottom panels) as a function of the in-sample crisis frequency.
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Figure B.10: Sample paths for the multiplier on the borrowing constraint µ̃t for the sample
paths with the median correlation (top panels) and scatter plot pooling all samples (bottom
panels) as a function of the in-sample crisis frequency.
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B.2 Data

Mapping data to the model. Mendoza (2010) defines GDP as output minus intermediate

inputs.

GDP ≡ exp ϵAF (k, L, v)− pv.

Thus, F is gross output, not GDP:

y ≡ exp ϵAF (k, L, v) = GDP + pv.

The static optimality conditions yield that:

η
y

v
= p(1 + ϕ(R− 1)) ⇔ pv = η

y

1 + ϕ(R− 1)
.

Plugging in:

GDP = y − pv = y
1 + ϕ(R− 1)− η

1 + ϕ(R− 1)
⇔ y =

1 + ϕ(R− 1)

1 + ϕ(R− 1)− η
GDP

The static optimality conditions yield that:

α
y

L
= w(1 + ϕ(R− 1))

η
y

v
= p(1 + ϕ(R− 1))

so that:

(wL+ pv)(1 + ϕ(R− 1)) = (α + η)y ⇔ (1 + ϕ(R− 1))
wL+ pv

y
= (α + η).

Plugging in for y in terms of GDP:

(1 + ϕ(R− 1)− η)
wL+ pv

GDP
= (α + η).

Dividends are net of depreciation:

dt = (1− α− η)
yt
kt

− δ +

(
kt+1 − kt

kt

)2

Ψ′
(
kt+1 − kt

kt

)
.
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In terms of GDP:

dt =
1 + ϕ(R− 1)

1 + ϕ(R− 1)− η
(1− α− η)

GDPt

kt
− δ +

(
kt+1 − kt

kt

)2

Ψ′
(
kt+1 − kt

kt

)
.

Then, the total dividends in the economy are:

ktdt =
1 + ϕ(R− 1)

1 + ϕ(R− 1)− η
(1− α− η)GDPt − δkt +

(
kt+1 − kt

kt

)2

Ψ′
(
kt+1 − kt

kt

)
kt

The slackness condition depends on ϕRt(wtLt + ptvt). Relative to GDP:

qbtbt+1

GDPt

− ϕRt

1 + ϕ(Rt − 1)− η
(α + η) + κ

qtkt+1

GDPt

≥ 0.

Data sources. When we filter the model with Mexican data, our measure for real con-

sumption and real GDP are also taken from FRED (mnemonics NAEXKP02MXQ661S and

NAEXKP01MXQ661S; OECD). See Table B.6 for access information.

Our measure for hours worked is an index of monthly hours worked in the Mexican

manufacturing sector (FRED mnemonic: HOHWMN03MXQ661N; OECD). We convert the

measure to logs and regress it on quarterly dummies to remove seasonalities. Because man-

ufacturing hours are about twice as volatile as overall hours, we divide the fluctuations by a

factor of two.16

With respect to the interest rate, when available, we use the LIBOR as our measure of

the world interest rate (ICE Benchmark Administration; since 2022 this series is no longer

available on FRED). Prior to the availability, we use the 3-month U.S. Treasury rate (Board

of Governors of the Federal Reserve System), shifted so that the two measures agree during

the first period of overlap. To convert these nominal measures into real rates, we subtract

the one-year realized change in the log of the U.S. CPI (U.S. BLS).

We construct the dividend series using the dividends from the S&P/IFCG M MEXICO

(IFGMMX) index, appended after 2008Q3 with the MSCI MEXICO index (MSMEXFL;

Datastream International). We rescale the latter series to have the same mean as the IFG-

MMX series, calculated over the 1988Q1 to 2008Q3 sample. We then denominate dividends

in 1980Q1 dollars, take the log, use the x13 filter to deseasonalize them, and then detrend

16In the U.S., the ratio of standard deviations of average weekly hours in manufacturing relative to the
total private sector is 2.51 at a quarterly frequency and 1.95 at an annual frequency from 1965 to 2021 (based
on the series with mnemonics AWHMAN and AWHNONAG; U.S. BLS). For Mexico, where we can compare
it to annual data only from 1995 onward Penn World Table 10.01, the ratio is 1.52. While the annual data
from Mexico indicate lower volatility, applying the same ratio of annual to quarterly volatility from the U.S.

to Mexican data suggests an adjustment by a factor of 1.96:
sdq

mfg,US

sda
mfg,US

sdmfg,MX = 2.51
1.951.52 = 1.96.
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Source Title Link

OECD

Gross Domestic Product by
Expenditure in Constant Prices:
Private Final Consumption
Expenditure for Mexico
[NAEXKP02MXQ661S]

https://fred.stlouisfed.org/series/

NAEXKP02MXQ661S

(Accessed November 2021).

OECD

Gross Domestic Product by
Expenditure in Constant Prices:
Total Gross Domestic Product for
Mexico [NAEXKP01MXQ661S]

https://fred.stlouisfed.org/series/

NAEXKP01MXQ661S

(Accessed November 2021).

OECD
Monthly Hours Worked:
Manufacturing for Mexico
[HOHWMN03MXQ661N]

https://fred.stlouisfed.org/series/

HOHWMN03MXQ661N

(Accessed November 2021).

U.S. BLS

Average Weekly Hours of
Production and Nonsupervisory
Employees, Manufacturing
[AWHMAN]

https://fred.stlouisfed.org/series/

AWHMAN

(Accessed November 2021).

U.S. BLS

Average Weekly Hours of
Production and Nonsupervisory
Employees, Total Private
[AWHNONAG]

https://fred.stlouisfed.org/series/

AWHNONAG

(Accessed November 2021).

U.S. BLS
Consumer Price Index for All
Urban Consumers: All Items in
U.S. City Average [CPIAUCNS]

https://fred.stlouisfed.org/series/

CPIAUCNS

(Accessed November 2021).

OECD
Average Annual Hours Worked by
Persons Engaged for Mexico
[AVHWPEMXA065NRUG],

https://fred.stlouisfed.org/series/

AVHWPEMXA065NRUG

(Accessed November 2021).

ICE Benchmark
Administration

3-Month London Interbank Offered
Rate (LIBOR), based on U.S.
Dollar [USD3MTD156N]

https://fred.stlouisfed.org/series/

USD3MTD156N

(Accessed July 2020 – no longer available).

Board of Governors
of the Federal
Reserve System

3-Month Treasury Bill Secondary
Market Rate, Discount Basis
[DTB3]

https://fred.stlouisfed.org/series/

DTB3

(Accessed July 2020).
Note: All data retrieved from FRED, Federal Reserve Bank of St. Louis.

Table B.6: Mexican and international data retrieved from FRED: Sources with links.

log real dividends using the (quarterly) HP filter. Last, we rescale the mean to match the

model mean marginal product of capital.

To evaluate the slackness condition, we need data on GDP and capital formation. We use

annual data from CEPALSTAT; see Table B.7. Specifically, we splice Annual Gross Domestic

Product (GDP) by Expenditure at constant prices in National Currency [various base years]

and similarly for Gross Fixed Capital Formation. To construct capital, we assume the capital

stock starts at the same average value of GDP in 1960 as in the model, and then we add the

investment series to the capital stock estimate, using depreciation of 8.8%. This is correct
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Source Title Link

Banco de México
Deuda Neta Total del Sector
Público, saldo promedio y final -
(CG7)

https://www.banxico.org.mx/

SieInternet/

consultarDirectorioInternetAction.do

?sector=9&accion=

consultarCuadro&idCuadro=CG7&locale=

es

(Accessed January 2022).

CEPALSTAT

Producto interno bruto anual (PIB)
por objeto del gasto a precios
corrientes en moneda nacional:
Producto interno bruto (PIB),
México [año base 1960, . . . , 2013]

https://statistics.cepal.org/portal/

cepalstat/

dashboard.html?theme=2&lang=es

(Accessed January 2022).

CEPALSTAT

Producto interno bruto anual (PIB)
por objeto del gasto a precios
corrientes en moneda nacional:
Formaćıon bruta de capital fijo,
México [año base 1960, . . . , 2013]

https://statistics.cepal.org/portal/

cepalstat/

dashboard.html?theme=2&lang=es

(Accessed January 2022).

Table B.7: Mexican public debt and annual national account data: Sources with links.

according to the model up to a first-order approximation.

We obtain data for debt from Banco de México.17 We compute the quarterly debt in

current prices of pesos using the end-of-quarter value. We convert the resultant values to a

2013 base year like the other variables in the slackness condition.

We center all variables at the model-implied means before detrending with the HP filter.

Results with the Baxter-King filter are similar.

17See Table B.7 for access information.
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B.3 Details of the implementation of the filter

Algorithm 1 Fixed-point algorithm for the sudden stops model

Step 0 Initialize the starting guesses as q
(0)
t = 1 + U [−600−1, 600−1] and µ̃t as a dummy

for the event of a violated borrowing constraint at qt = 1, i.e., as a dummy for
ϕRt(wtLt + ptvt)− qbtbt+1 > κkt+1. Set d = 0 and an upper bound on iterations D.

Step 1 Set d = d+ 1.

Step 2 Estimate the VAR parameters â(d), Â(d), Σ̂(d) using OLS on the data and the scaled
guesses for [q

(d−1)
t /q̄(d−1), µ̃

(d−1)
t ].

Step 3 Solve for the latent variables [q
(d)
t , µ̃

(d)
t ]T given â(d), Â(d), Σ̂(d).

(a) Solve equations (4.10) and (4.11) for [q
(d)
∗t , µ̃

(d)
∗t ]

T with Et[uc,t+1] = Ê(d)
t [uc,t+1] +

∆
(d)
t = e′u,c(a

(d) +A(d)x̂
(d−1)
t ) + ∆

(d−1)
t .

(b) Update ∆
(d)
t : If the implied solution violates the borrowing constraint at time s

but µ̃
(d)
∗t = 0(≤ 0), set ∆

(d)
s = ∆

(d−)
s − 4e− 6 for all s with binding constraints. If

µ̃
(d)
∗t > 0, but the borrowing constraint is higher than in pth percentile in sample,

set ∆
(d)
s = ∆

(d−)
s +4e−6. In the simulation, we set p equal to the target in-sample

frequency plus 10p.p. (i.e., p ∈ {0.25, 0.45, 0.55}). In the empirical application,
we set p = 0.15.

(c) Set q
(d)
t = (1 − s

(d−1)
q )q

(d−1)
t + s

(d−1)
q q

(d)
∗t and µ̃

(d)
t = max{(1 − s

(d−1)
µ )µ̃

(d−1)
t +

s
(d−1)
µ µ̃

(d)
∗t ,−5e − 4}. Here, s

(d−1)
q = s

(d−1)
µ = 0.01 for d = 1, . . . , D/10, s

(d−1)
q =

s
(d−1)
µ = 0.02 for d = D/10 + 1, . . . , D/5, and s

(d−1)
q = s

(d−1)
µ = 0.0025 for

d = D/5, . . . , D.

(d) For d ≤ D/20 truncate q
(d)
t at 1± 0.1 and and q

(d)
t =

q
(d)
t

T−1
∑

s q
(d)
S

.

Step 4 If T−1
∑T

t=1|q
(d)
t − q∗t |> 1e−6 or the number of periods with positive multipliers µ̃t

changes within the last 100 iterations, go to Step 1. Otherwise, save and report the
estimates.

Panels (a) and (b) of Figure B.11 show the inferred µ̃t and qt over time for a VAR with

a flat prior and lag lengths ranging from one to six. The VAR with four lags is highlighted

as the thicker, solid, and purple line. In both cases, VARs with more than one lag give

a consistent answer. The VAR with a single lag yields smaller values for µ̃t and different

dynamics for qt. Figure B.13 suggests that this is due to the dividend dynamics, which the

VAR(1) may not adequately capture. Panels (c) and (d) of Figure B.11 show the analogous

results for a VAR estimated with a weak Minnesota prior. The results are very similar to the
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results with a flat prior. Overall, the results suggest that once the VAR is sufficiently rich,

the results are insensitive to the lag length.

(a) µ̃t: flat prior (b) qt: flat prior
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(c) µ̃t: MN prior (d) qt: MN prior
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Figure B.11: Filtered values of µ̃t and qt for different VAR lag lengths.

Panels (a) and (b) of Figure B.12 show that the initial period aside, the inference on

the crisis periods does not hinge on the initial guess. Still, there are some differences in the

inferred severity of the crisis. These, in turn, have some effects on the inferred values of

Tobin’s q during crisis times, such as in the period following 1995. Overall, however, the

inference depends little on the initial conditions.

Figure B.13 shows that the filtered Tobin’s q closely tracks the fluctuations in measured

dividends, crisis periods aside.

Figure B.14 shows that the Gibbs posterior has converged. It compares the 90% and 68%

credible sets as well as the medians for the hidden co-state variables qt and µ̃t for the initial

500 draws (after discarding a burn-in; shown as area plots) and the subsequent 500 draws

(shown as dashed lines). The credible sets are hard to tell apart, and only small inaccuracies

are visible for the 90% credible set. For example, the lower panel shows that, in the 2007-2008

financial crisis, the 95th percentile is slightly higher in the second half of the posterior than
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(a) µ̃t: Initial guess based on constraint (b) µ̃t: Random initial guess
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(c) qt: Initial guess based on constraint (d) qt: Random initial guess
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Figure B.12: Filtered values of µ̃t (top) and qt (bottom) given different initial guesses.

(a) VAR(1) (b) VAR(4)
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Figure B.13: Comparison of qt in the partial filter and the dividends series.

in the first half. However, even for other local extremes in the Lagrange multiplier, such as

in the mid-1990s, the credible sets are hard to distinguish. The estimates for Tobin’s q line

up even more closely than those for µ̃.
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(a) Tobin’s q

(b) Lagrange multiplier µ̃

Shown are the median, 68% and 90% credible sets for the first half and the second half of the posterior draws.

Figure B.14: Comparison of the posterior based on the first half and the second half of the
Gibbs sampler draws.
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