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Abstract

In this paper we use the functional vector autoregression (VAR) framework of

Chang, Chen, and Schorfheide (2024) to study the effects of monetary policy shocks

(conventional and informational) on the cross-sectional distribution of U.S. earnings

(from the Current Population Survey), consumption, and financial income (both from

the Consumer Expenditure Survey). We find that a conventional expansionary mon-

etary policy shock reduces earnings inequality, in large part by lifting individuals out

of unemployment. There is a weakly positive effect on consumption inequality and no

effect on financial income inequality, but credible bands are wide. (JEL C11, C32, C52,

E32)
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1 Introduction

Traditionally, the effects of monetary policy interventions have been studied through the

lens of models that abstract from micro-level heterogeneity, such as structural vector autore-

gressions (VARs) specified in terms of macroeconomic aggregates or as representative agent

New Keynesian (RANK) models. However, in view of concerns about rising inequalities in

advanced economies in the aftermath of the global financial crisis, there is growing interest

in the distributional impacts of conventional and unconventional monetary policies. The

contribution of this paper is to apply the functional VAR framework of Chang, Chen, and

Schorfheide (2024), henceforth CCS, to study the effects of monetary policy shocks (conven-

tional and informational) on the cross-sectional distribution of earnings, consumption, and

financial income.

The textbook effect of an expansionary monetary policy shock is a temporary fall in the

real interest rate that stimulates demand and increases aggregate output and nominal prices.

Kaplan, Moll, and Violante (2018) emphasize that a decomposition into direct and indirect

effects is useful for the analysis of the propagation of monetary policy shocks in the presence

of household heterogeneity. The direct effect is generated through the consumption Euler

equation: an expansionary monetary policy lowers the real rate and creates an incentive for

households to consume in the current period rather than to save for future consumption.

This channel is inactive for households that are unable to save and consume all of their

income even in the absence of the monetary expansion. Indirect effects are generated through

general equilibrium mechanisms that alter the income and wealth distribution. For instance,

increased labor demand might raise wages and employment, which boosts consumption. On

the other hand, a rising price level may generate income losses for recipients of nominal

government transfers. Moreover, to the extent that debt contracts are nominal, inflation

shifts wealth from lenders to borrowers.1 The indirect effect on aggregate consumption

crucially depends on the households’ idiosyncratic marginal propensity to consume (MPC).

The existing empirical literature has considered two related, but distinct questions. First,

what is the effect of a monetary policy shock on the cross-sectional distributions of, say, in-

come and consumption, and inequality measures associated with it? Second, how does

income or consumption of particular households or groups of households respond to a mone-

tary policy shock? Answers to the first question provide guidance to central banks that are

1This channel is due to Fisher (1933) and its quantitative importance has been recently studied in Doepke

and Schneider (2006).
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concerned about distributional effects of their actions. Answers to the second question shed

light on the shock propagation mechanism. In principle, household- or agent-level responses

could be aggregated to derive the response of the cross-sectional distribution, but this re-

quires very accurate measurement of unit-level responses, which often is obstructed by data

availability and nonlinearities. Our functional VAR approach is designed to provide direct

answers to the first question, which is the focus of this paper.

To identify standard and informational monetary policy shocks we use the instrumental

variables (interest rate and stock price surprises) proposed by Jarocinski and Karadi (2020)

as internal instruments in a structural VAR. The empirical analysis generates the follow-

ing findings: First, representing the labor earnings distribution obtained from the Current

Population Survey (CPS) as a mixture of a continuous part, capturing positive earnings

of employed individuals, and a point mass at zero that corresponds to the unemployed in-

dividuals, we find that an expansionary monetary policy shock reduces earning inequality

because the unemployment rate falls and individuals with previously no earnings receive

positive earnings (employment channel). The estimated effects are broadly consistent with

the heterogeneous agent New Keynesian model (HANK) with indivisible labor studied by

Ma (2021). If we focus solely on the continuous part of the earnings distribution, then the

effect on inequality is small and short-lived. Thus, the employment channel dominates.

Second, we generate impulse response functions (IRFs) for the consumption distribution,

obtained from the Consumer Expenditure Survey (CEX). Our analysis captures the indirect

effect of rising earnings onto consumption, but also the direct effect of a real-interest change

on household consumption. We find that an expansionary policy shock slightly increases

consumption inequality measures at the posterior median, but posterior credible bands im-

ply a substantial amount of uncertainty. Third, from the estimation of a functional VAR

with CEX financial income data, we conclude that the monetary policy contraction has no

significant effect of measures of financial income inequality. An important caveat is that

the data set misses households with large financial incomes. Fourth, we compute impulse

responses to a (negative) information shock which leads to an increase in earnings inequality,

mainly due to a rise in unemployment, and leaves measures of consumption inequality largely

unaffected, albeit the posterior median responses of the 90-10 ratio and the Gini coefficient

are negative.

The functional approach used in this paper relies on the availability of repeated cross-

sections of micro-level observations.2 In each time period t the cross-sectional distribution is

2General treatments of functional data analysis are provided in the books by Bosq (2000), Ramsey and
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represented by a log probability density function (pdf), which in turn is approximated by a

finite-dimensional linear sieve. We use cubic splines as the basis function. The advantage of

using log pdfs is that one does not have to impose non-negativity or monotonicity constraints.

The un-normalized log pdfs can be coherently propagated from period to period through a

linear law of motion and then be normalized ex post so that they integrate to one. We showed

in CCS that the estimation of the functional VAR is straightforward: the sieve coefficients

are estimated in each period based on cross-sectional data by maximum likelihood. The

coefficient estimates are then included as (noisy) observations in a linear state-space model

or a VAR, in combination with the macroeconomic aggregates. The resulting time series

model can be estimated with standard techniques. Finally, one can compute IRFs for the

sieve coefficients, which can be converted into IRFs for the cross-sectional densities and

implied summary statistics, such as percentiles or inequality measures.

The functional analysis has several advantages over seemingly simpler approaches such as

the direct inclusion of inequality statistics in a standard VAR, e.g., Coibion, Gorodnichenko,

Kueng, and Silvia (2017), Furceri, Loungani, and Zdzienicka (2018), or Guerello (2018).

First, it provides a single model from which the dynamics of a large set of distributional

statistics (percentiles, Gini coefficient, 90-10 ratio, Theil index) can be derived without

generating internal inconsistencies such as quantile crossings in forward simulations of the

model. Second, CCS provide simulation evidence that the functional approach leads to

tighter credible intervals for the same IRFs than VARs that simply stack percentiles or

inequality measures in part because the sieve coefficients efficiently summarize the cross-

sectional information, which in turn sharpens inference.

As an alternative to stacking cross-sectional distributions or inequality statistics in a

VAR, some authors have used an indirect approach of measuring the effect of monetary

policy shocks on cross-sectional distributions and inequality statistics derived from them.

Examples are Del Canto, Grigsby, Qian, and Walsh (2023), Lenza and Slacalek (2023), and

McKay and Wolf (2023). The indirect approach has a weaker data requirement because it can

be implemented with a single cross section. The basic idea is to extract information from

the micro data about individual-level income and portfolio compositions or consumption

Silverman (2005), and Horvath and Kokoszka (2012). A fundamental model in the functional time series

literature is the functional autoregressive model of order one. An extended version of this model forms

the core of the law of motion of the states in our framework. Applications of functional data analysis in

macroeconometrics are rare but growing. Examples are Diebold and Li (2006), Chang, Kim, and Park

(2016), Hu and Park (2017), Meeks and Monti (2019), Inoue and Rossi (2020), Bjornland, Chang, and Cross

(2023).



This Version: February 14, 2024 4

shares, and then combine this information with IRFs for aggregate wages, hours worked,

interest rates, asset returns, consumption, and so forth, to simulate micro-level outcomes

forward. These, in turn, can be converted into distributional responses. A disadvantages of

this approach is its reliance on the assumption that income and portfolio compositions do

not change in response to the shock.

The most demanding data and modeling requirements are associated with panel ap-

proaches. For many countries, including the U.S., high-quality panel data are not available

at a frequency that is suitable to study fluctuations of inequality measures over the busi-

ness cycle. However, some countries make administrative data available to researchers. For

instance, Holm, Paul, and Tischbirek (2021) use administrative panel data from Norway

to estimate panel local projections with observed group heterogeneity (defined in terms of

liquid asset distribution).3 Amberg, Jansson, Klein, and Rogantini Picco (2022) and An-

dersen, Johannesen, Jorgensen, and Peydro (2021) apply a similar approach to Swedish and

Danish administrative data, respectively. The panel approach is well suited to compare the

IRFs of different groups of individuals, but it is challenging to aggregate those responses to

deduce the response of the cross-sectional distribution, because it is difficult to capture the

time series properties (non-linearities due to health and family status changes, job losses,

job-to-job transitions, promotions) and the full extent of cross-sectional heterogeneity.

Because of the data and modeling challenges, some researchers have considered pseudo

panels as an alternative to actual panels. They can be constructed from rotating panels or

repeated cross sections and cross-sectional averaging smoothes out some of the nonlineari-

ties in the unit-level histories. For instance, Cloyne, Ferreira, and Surico (2020) aggregate

cross-sectional information into three types of individuals: mortgagors, outright owners, and

renters. Anderson, Inoue, and Rossi (2016) track the dynamics of quintiles and Mitman,

Broer, and Kramer (2022) track ventiles. Pseudo-panels are well suited to examine how

different groups respond to policy shocks. But the approach averages over within-group het-

erogeneity which makes it difficult to convert results into statements of inequality statistics.

Our empirical analysis contributes to the growing body of evidence about the heteroge-

neous effects of monetary policy shocks, focusing on the response of cross-sectional distribu-

tions and inequality statistics derived from it.4 Using a different methodological approach,

3Inference methods for panel local projections are studied in Almuzara and Sancibrian (2023).
4There is a large literature that conducts a quantitative analysis of the distributional effects of monetary

policy shocks using calibrated or estimated HANK models. Since our quantitative analysis is more data

driven than theory driven we do not provide a comprehensive survey of this literature.
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our analysis provides further evidence that expansionary monetary shocks reduce labor earn-

ings inequality, see Coibion, Gorodnichenko, Kueng, and Silvia (2017), Furceri, Loungani,

and Zdzienicka (2018), Lenza and Slacalek (2023), Del Canto, Grigsby, Qian, and Walsh

(2023), Mitman, Broer, and Kramer (2022). A subset of the studies also emphasizes that

the effect is driven by the extensive margin, i.e., workers transitioning out of unemployment,

which is consistent with our findings.

With respect to consumption inequality, we obtain fairly wide credible intervals that span

positive and negative responses and results in the literature are more mixed. This has, in

part, to do with the fact that consumption is less well measured than labor earnings. Coibion,

Gorodnichenko, Kueng, and Silvia (2017) find that consumption inequality decreases in

response to an expansionary monetary policy shock. Cloyne, Ferreira, and Surico (2020)

document in their pseudo-panel analysis that when interest rates fall, households with a

mortgage increase their spending considerably, while outright home-owners without mortgage

debt do not change their expenditure at all. Using an indirect approach, McKay and Wolf

(2023) find that the overall consumption response is quite even in the cross section, but there

is heterogeneity in regard to the channels that lead to the consumption response. Holm, Paul,

and Tischbirek (2021) show that in their Norwegian administrative data the consumption

response has the same U-shape as disposable income with the biggest gains accruing at the

bottom and top end of the liquid asset distribution. Andersen, Johannesen, Jorgensen, and

Peydro (2021) use a very limited measure of consumption, namely car purchases. The higher

the household income, the larger the effect of an expansionary monetary policy shock on car

purchases.

The remainder of this paper is organized as follows. Section 2 describes the functional

VAR setup and Section 3 discusses the estimation and model selection. These two sections

review important material from CCS to make this paper self-contained. The empirical results

are presented in Sections 4 to 8. We begin by examining the response of the aggregate

variables to a monetary policy shock in an aggregate VAR and the three functional VAR

specifications considered subsequently, which include an earnings density, a consumption

density, and a financial income density, respectively. In Section 8 we examine responses to

an informational shock, and Section 9 concludes. An Online Appendix contains supplemental

information on the methodology.
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2 A Functional VAR for Cross-Sectional Data

To make this paper self-contained, we provide a summary of the functional VAR frame-

work developed in CCS. The variables in the functional model comprise an ny × 1 vector

of macroeconomic aggregates Yt and a cross-sectional density pt(x). Rather than working

with the densities directly, we take the logarithmic transformation `t(x) = ln pt(x). The ad-

vantage of using log densities, instead of density functions, cumulative distribution functions

(cdfs), or quantiles is that log densities do not have to satisfy monotonicity or non-negativity

restrictions. Thus, they can be easily and coherently propagated using a linear law of motion

and then ex post normalized to integrate to one in each period.

2.1 Sampling and Measurement

We assume that in every period t = 1, . . . , T an econometrician observes the macroeconomic

aggregates Yt as well as a sample of Nt draws xit, i = 1, . . . , Nt from the cross-sectional

density pt(x). In practice, Nt is likely to vary from period to period, but for the subsequent

exposition it will be notationally convenient to assume that Nt = N for all t. We collect

the time t cross-sectional observations in the vector Xt = [x1t, . . . , xNt]
′. The likelihood

function for the functional model is constructed under the assumption that the draws xit

are independently and identically distributed (iid) over the cross-section and independent

over time conditional on pt(x). The measurement equation for the cross-section observations

takes the form

xit | pt(x) ∼ iid pt(x) =
exp{`t(x)}∫
exp{`t(x̃)}dx̃

, i = 1, . . . , N, t = 1, . . . , T. (1)

We are working with repeated cross sections or rotating panels and remove a common com-

ponent from the xit. Thus, the assumption of xit being iid across i and t is a reasonable

approximation. The functional modeling approach does not require the econometrician to

make assumptions about the evolution of xit at the level of an individual, a household, or a

firm.

2.2 State Transition

The log density `t in (1) can be viewed as an infinite-dimensional state variable. We assume

that Yt and `t evolve according to a joint autoregressive law of motion that we express in
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terms of deviations from a deterministic component
(
Y∗, `∗(x)

)
. For notational convenience

we assume that the deterministic component is time-invariant and can be interpreted as a

steady state. This assumption could be easily relaxed by letting (Y∗, `∗) depend on t. Let

Yt = Y∗ + Ỹt, `t = `∗ + ˜̀
t. (2)

The deviations from the deterministic component
(
Yt, `t(x)

)
evolve jointly according to the

following linear functional vector autoregressive (fVAR) law of motion:

Ỹt = ByyỸt−1 +

∫
Byl(x̃)˜̀

t−1(x̃)dx̃+ uy,t (3)

˜̀
t(x) = Bly(x)Ỹt−1 +

∫
Bll(x, x̃)˜̀

t−1(x̃)dx̃+ ul,t(x).

Here uy,t is mean-zero random vector with covariance Ωyy and ul,t(x) is a random element in

a Hilbert space with covariance function Ωll(x, x̃). We denote the covariance function for uy,t

and ul,t(x) by Ωyl(x). For now, (3) should be interpreted as a reduced-form fVAR in which

uy,t and ul,t(x) are one-step-ahead forecast errors. For the empirical analysis below we add

more lags to the system. (3) can be viewed as the state-transition equation in a functional

state-space model.

2.3 Three Simplifications

Equations (1), (2), and (3) define an infinite-dimensional nonlinear state-space model for

the observables {Yt, Xt}Tt=1. Unfortunately, the estimation of this model is not practical,

and we will simplify it in three steps. First, we replace the infinite-dimensional objects by

finite-dimensional objects. Second, we turn the nonlinear state-space model into a linear

state-space model. Third, we let the measurement error variance tend to zero.

A Finite-Dimensional Nonlinear State-Space Model. We replace `t(x) by a collection

of finite-dimensional representations, indexed by the superscript (K). Let

`
(K)
t (x) =

K∑
k=1

αk,tζk(x) =
[
ζ1(x), . . . , ζK(x)

]
·


α1,t

...

αK,t

 = ζ ′(x)αt (4)

and `
(K)
∗ (x) = ζ ′(x)α∗. Here ζ1(x), ζ2(x), . . . is a sequence of basis functions. We dropped

the (K) superscripts from the vectors ζ(x), αt, and α∗ to simplify the notation. We define



This Version: February 14, 2024 8

α̃t = αt − α∗ such that ˜̀(K)(x) = `
(K)
t (x) − `

(K)
∗ (x). We can now write a K’th order

representation of the density of Xt as follows:

p(K) (Xt|αt) = exp
{
NL(K)(αt|Xt)

}
, (5)

L(K)(αt|Xt) =

(
1

N

N∑
i=1

ζ(xit)
′

)
αt − ln

∫
exp {ζ ′(x)αt} dx.

We represent the kernels Bll(x, x̃) and Byl(x̃), the function Bly(x), and the functional

innovation ul,t(x) that appear in the state-transition equation (3) as follows:

B
(K)
ll (x, x̃) = ζ ′(x)Bllξ(x̃), B

(K)
yl (x) = Bylξ(x̃) (6)

B
(K)
ly (x) = ζ ′(x)Bly, u

(K)
l,t (x) = ζ ′(x)uα,t,

where ξ(x) is a second K×1 vector of basis functions and uα,t is a K×1 vector of innovations.

The matrix Bll is of dimension K ×K, Byl is of dimension ny ×K, and Bly is of dimension

K × ny. Combining (2), (3), and (6) yields the following vector autoregressive system for

the macroeconomic aggregates and the sieve coefficients (omitting K superscripts):[
Yt − Y∗
αt − α∗

]
=

[
Byy BylCα

Bly BllCα

][
Yt−1 − Y∗
αt−1 − α∗

]
+

[
uy,t

uα,t

]
, (7)

where Cα =
∫
ξ(x̃)ζ ′(x̃)dx̃. Let u′t = [u′y,t, u

′
α,t]. We subsequently assume that the innovations

are Gaussian:

ut ∼ N (0,Σ). (8)

The finite-dimensional state-space representation is given by the measurement equation (5)

and the state-transition equation (7). To obtain a more compact notation, we define W̃t =

[(Yt−Y∗)′, α′t]′ and absorb the matrix Cα into a general regression coefficient matrix Φ, which

leads to

W̃t = Φ1W̃t−1 + ut, ut ∼ N (0,Σ). (9)

A Finite-Dimensional Linear State-Space Model. To avoid the use of a nonlinear filter

for the evaluation of the likelihood function of the state-space model, one can “linearize” the

measurement equation by taking a second-order Taylor series approximation of ln p(K) (Xt|αt)
in (5) around the maximum likelihood estimator (MLE) α̂t. This approximation can be

written as a linear Gaussian measurement equation:

α̂t = αt +N−1/2ηt, ηt ∼ N
(
0, V̂ −1t

)
, (10)
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where V̂t is the negative inverse Hessian associated with the log likelihood function evalu-

ated at the MLE. Note that the observations Xt enter the measurement equation indirectly

through the MLE α̂t.

A Finite-Dimensional VAR. If N is large relative to K, then the measurement error

N−1/2ηt is close to zero and αt ≈ α̂t. Thus, one can replace and for the empirical analysis we

simply replace αt in (7) by α̂t and estimate a VAR in the macroeconomic variables and the

estimated sieve coefficients. The estimation can be conveniently implemented in two steps:

1. For each period t = 1, . . . , T estimate the log-spline density model for Xt by maximizing

the log likelihood function in (5). This leads to the sequence α̂t.

2. Estimate a version of the VAR in (9), replacing the “true” sieve coefficients αt in the

definition of W̃t by α̂t.

CCS provide rates at which (N, T,K) are allowed to tend to infinity to ensure that the

likelihood functions of the three finite-dimensional models are asymptotically equivalent. In

this paper, we are considering an application in which the cross-sectional dimension N is

large and we will work with the finite-dimensional VAR approximation.

3 Estimation and Model Selection

For the empirical analysis we add additional lags to the VAR in (9) and we write the model

with an intercept rather than in terms of deviations from a mean (or deterministic trend), as

it is common in the VAR literature that includes variables in log levels in the vector Yt. Let

Wt = [Y ′t , α
′
t]
′, or, under the third simplification in Section 2.3 used in the empirical analysis

below, Wt = [Y ′t , α̂
′
t]
′. The reduced-form specification of our VAR takes the form

Wt =

p∑
j=1

ΦjWt−j + Φ0 + ut, ut ∼ N (0,Σ). (11)

3.1 From Reduced-Form to Structural VAR

To identify the effects of monetary policy shocks we include instruments for these shocks in

the definition of Yt (and hence Wt), assuming that the instruments are ordered first. We

partition Wt = [W ′
1t,W

′
2t]
′, where the n1 × 1 vector W1t contains the instruments. In our
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application n1 equals either one (standard monetary policy shock) or two (standard shock

and informational shock). We denote the dimension of W2t by n2. Similarly, we partition

the vector of reduced-form forecast errors ut = [u′1t, u
′
2t]
′.

We now express the forecast errors as functions of structural innovations. First, we let

u1t = Φε
11ε1t, ε1t ∼ N (0, In1) (12)

with the restriction that Φε
11Φ

ε′
11 = Σ11, where Σ11 is the partition of Σ that corresponds to

u1t. Here ε1t are the orthogonalized innovations of the instruments W1t. Second, we assume

that u2t is driven by the policy shocks of interest, denoted by ε̃2.1,t, and non-policy shocks

ε2.2,t. The tilde indicates that the policy shocks are (not yet) normalized. Thus,

u2t = Φε̃
22.1ε̃2.1,t + Φε

22.2ε2.2,t, ε2.2,t ∼ N (0, In2−n1). (13)

Here ε̃2.1,t is of dimension n1×1 and ε2.2,t is of dimension (n2−n1)×1. The object of interest

is Φε̃
22.1 which is the effect of the policy shocks on u2t, and hence the impact effect on W2t.

The key assumption is that the policy shocks can be expressed as a function of the

instrument innovations and an orthogonal component:

ε̃2.1,t = Γ1ε1t + Γ2.1ε2.1,t, ε2.1,t ∼ N (0, In1), E[ε1tε
′
2.1,t] = 0. (14)

This equation resembles the equation xi = γzi + εi in a linear instrumental variable model

with one endogenous regressor, xi, and one instrument, zi. We assume that Γ1 is diagonal.

Thus, each element of the instrument innovation vector ε1t is connected to one single element

of the policy shock vector ε̃2.1,t. The instrument relevance condition corresponds to Γ1 6= 0

and the instrument validity condition is that ε1,t is uncorrelated with the non-policy shocks

ε2.2,t. To ensure that policy shocks ε̃2.1,t and non-policy shocks ε2.2,t are uncorrelated, we

impose that ε2.1,t and ε2.2,t are uncorrelated. Let εt = [ε′1t, ε
′
2.1,t, ε

′
2.2,t]. We deduce that

εt ∼ N (0, In1+n2).

By combining (13) and (14) we obtain

u2t = Φε̃
22.1Γ1ε1t + Φε̃

22.1Γ2.1ε2.1,t + Φε
22.2ε2.2,t, (15)

which implies that the response of W2t to the instrument innovation ε1t measures the effect

of the policy shock up to the scale normalization Γ1. Equations (12) and (15) lead to a

block-triangular system that determines ut as a function of εt. We can write

ut = Φεεt, Φε =

[
Φε

11 0n1×n2

Φε̃
22.1Γ1

[
Φε̃

22.1Γ2.1 Φε
22.2

]] . (16)
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Let Σtr be the lower-triangular Cholesky factor of the covariance matrix Σ and Ω be an

orthogonal matrix, which has the property that ΩΩ′ = Ω′Ω = I. Now factorize Φε = ΣtrΩ

which ensures that E[utu
′
t] = ΦεΦε′ = Σ. Partion Σ and Ω such that Σij and Ωit conform

with the partions of ut. The block diagonal structure of (16) implies that Ω12 = 0. In turn,

Ω22 has to be full rank and its columns span Rn2 . Thus, the only vector satisfying λ′Ω22 = 0

is λ = 0. We deduce that the columns of [Ω′11 Ω′21]
′ can only be orthogonal to the columns

of [0n2×n1 Ω′22]
′ if Ω21 = 0. Overall, this leads to

ut = ΣtrΩεt, Ω =

[
Ω11 0n1×n2

0n2×n1 Ω22

]
. (17)

Because we are only interested in the response to ε1t, the value of Ω22 is irrelevant for the

subsequent analysis. This implementation of VAR shock identification through instrumental

variables has been used, for instance, in Anderson, Inoue, and Rossi (2016) for fiscal policy

shocks and Jarocinski and Karadi (2020) for monetary policy shocks. A more detailed

theoretical analysis is provided in Plagborg-Møller and Wolf (2021).5

3.2 Bayesian Estimation

Because the vector αt, and hence Wt, can potentially be large, we use the VAR parameteri-

zation and prior proposed by Chan (2022). His specification is suitable for high-dimensional

settings because it leads to equation-by-equation estimation while allowing for some asym-

metry of the prior across equation.

Likelihood Function. The structural VAR by (11) and (17) can be rewritten as follows:

AWt =

p∑
j=1

BjWt−j +B0 + ηt, ηt = D1/2Ωεt, (18)

where D is a diagonal matrix with diagonal elements Di and A is a lower-triangular matrix

with ones on the diagonal. Multiplying both sides of the equality by A−1 we deduce that

A−1D1/2 = Σtr and A−1Bj = Φj, j = 0. . . . , p. Note that ηt ∼ N (0, D).

Using the lower-triangular structure of the A matrix, define the (i− 1)× 1 vectors

Ai = [Ai,1, . . . , Ai,i−1], W̃<i,t = −[W1,t, . . . ,Wi−1,t]
′, i = 2, . . . , n.

5Alternative implementations of Bayesian estimation of structural VARs identified by instruments are

discussed in Caldara and Herbst (2019) and Arias, Rubio-Ramirez, and Waggoner (2022).
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Moreover, let ki = k + i− 1 and define the ki × 1 vectors

Zit =
[
W̃ ′
<i,t,W

′
t−1, . . . ,W

′
t−p, 1

]
, βi =

[
A′i, B′i·,1, . . . , B′i·,p, B′i·,0

]′
,

where Bi·,j is the ith row of the matrix Bj. Finally, define Wi to be the T × 1 vector with

elements Wit, Zi the T × ki matrix with rows Z ′it, and ηi the T × 1 vector with elements ηit.

Then we can write the ith equation in matrix form as

Wi = Ziβi + ηi. (19)

Because A is lower-triangular with ones on the diagonal, the Jacobian associated with the

change-of-variables from ηt to Wt in (18) is equal to one. In turn, the likelihood function for

the system is the product of the likelihood functions for each variable i. Let β = (β1, . . . , βn).

Then:

p(W |β,D) ∝
n∏
i=1

|Di|−1/2 exp

{
− 1

2Di

(Wi − Ziβi)′(Wi − Ziβi)
}
. (20)

As always in structural VAR settings, the rotation matrix Ω does not enter the likelihood

function.

Prior Distribution. Chan (2022) proposes a prior distribution that assumes that pa-

rameters are independent across equations. This implies that the model can be estimated

equation-by-equation, speeding up the Bayesian computations in high-dimensional settings

considerably. The prior takes the form

p(β,D|λ) =
n∏
i=1

p(βi|Di, λ)p(Di|λ), (21)

where λ is a vector of hyperparameters. For each pair (βi, Di) we use a Normal-Inverse

Gamma (NIG) distribution of the form

βi|(Di, λ) ∼ N
(
β
i
, DiV

β
i

)
, Di|λ ∼ IG

(
νi, Si

)
. (22)

The prior distribution loosely follows that of a Minnesota prior. The mean vectors β
i

are chosen such that the implied prior for the reduced form parameters Φ is centered at

univariate random-walk specifications for those elements of Yt that correspond to log levels

of macroeconomic aggregates. For other elements of Yt and the elements of the αt vector the

priors are centered at zero. We introduce a hyperparameter λ1 that controls the overall prior

precision [V β
i ]−1 and a hyperparameter λ2 that controls the relative precision of coefficients

that capture the effect of lagged αts on current Yts. As λ2 −→∞, the cross-sectional density
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does not Granger-cause the aggregate variables and the system becomes block-triangular.

Further details on the specification of β
i
, V β

i , νi, and Si, the posterior distribution, and the

MDD are provided in the Online Appendix.6

If n1 = 1 then Ω11 is simply equal to one. For the case n1 = 2, we impose sign restrictions

on the impulse response functions, described in Section 4, to set-identify the responses of W1t

to ε1t. We start from a prior for Ω11 that is uniform on the space of orthogonal matrices and

then truncate the prior so that the sign restrictions are satisfied. We denote the resulting

prior by p(Ω11|β,D).

Posterior Sampling. The conjugate form of the prior implies that the posterior distribution

of (β,D) also belongs to the NIG family. Thus, we can generate posterior draws of (β,D)

by direct sampling and because both likelihood and prior factorize in terms of (βi, Di),

i = 1, . . . , n we can sample the parameters for each equation separately. Because Ω11 does

not enter the likelihood function, this prior does not get updated and the posterior equals

the prior.

For each draw (βs, Ds,Ωs
11), s = 1, . . . , Nsim we iterate (18) forward to obtain a draw

from the posterior distribution of the Wt = [Y ′t , αt]
′ IRFs. The αt IRFs are converted into

density IRFs using

p(K)(x|αt) =
exp {ζ ′(x)αt}∫
exp {ζ ′(x̃)αt} dx̃

. (23)

Based on the draws from the IRF posterior we compute summary statistics that are then

plotted in the figures.

Model Selection. Our model for (Y1:T , X1:T ) depends on the sieve approximation order

K, the number of lags p in the VAR (11), and the hyperparameter vector λ for the prior

distribution in (21). We select these model features by maximizing the the Bayesian MDD

over grid of candidate values. It is important to recognize that the MDD cannot be directly

calculated based on the likelihood function for Wt in the reduced-form VAR specification (11)

because the definition of Wt depends on the dimensionality k through the sieve coefficient

vector at. Formally, the MDD for the underlying finite-dimensional nonlinear state-space

model is defined as

p(K)(Y1:T , X1:T |λ) =

∫ ( T∏
t=1

p(K)(Yt, Xt|Y1:t−1, X1:t−1, θ)

)
p(K)(θ|λ)dθ, (24)

where θ is the generic parameter vector of the state-space model.

6As in Jarocinski and Karadi (2020), we modify the VAR in (11) to impose that Φ1· = 0.
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CCS show that once the measurement error variance in (10) is set to zero, one obtains

the MDD approximation

p(K)
∗ (Y1:T , X1:T |λ) (25)

=

∫ ( T∏
t=1

p
(K)
G (Yt, αt = α̂t|Yt−p:t−1, αt−p:t−1 = α̂t−p:t−1, θ)

)
p(K)(θ|λ)dθ

×

(
T∏
t=1

p(K)
pen (Xt|α̂t)

)

=

[∫
(I · II) dθ

]
· III,

say. Here θ = (β,D), term I is the likelihood function (20) associated with the Wt = [Y ′t , α̂
′
t]
′

VAR, term II is the prior in (21). The integral
[∫
I · IIdθ

]
is the standard MDD associated

with the Wt VAR. Under the conjugate prior that we are using, this expression can be

evaluated analytically.

Term III turns the MDD for W1:T = (Y1:T , α̂1:T ) into a MDD for (Y1:T , X1:T ). The

expression p
(K)
pen (Xt|α̂t) that appears in term III is the Laplace approximation

p(K)
pen (Xt|α̂t) = exp

{
NL(K)(α̂t|Xt)

}(2π

N

)K/2
|V̂t|1/2

of the MDD associated with the likelihood function for the cross-sectional observations Xt,

ignoring the dynamic aspects of the model. The first part, exp
{
NL(K)(α̂t|Xt)

}
, is the

maximized likelihood function that is non-decreasing in K. Note that the dimension of V̂t

depends on K. The second part, (2π/N)K/2|V̂t|1/2, is a penalty for the dimensionality K,

and hence avoids overfitting.

3.3 Further Implementation Details

As explained in detail in CCS, a few additional steps are required for the implementation.

First, we conduct a preliminary data transformation of the form x = g(z|ϑ), where z are

the raw data and x are the transformed data. We explain in each of the empirical sections,

which transformation we apply. Second, we need to choose basis functions ζ1(x), . . . , ζK(x).

We use a cubic spline basis and provide further details below. Third, some of the the cross-

sectional data are top-coded, which means that the likelihood function in (5) needs to be

adjusted accordingly. This adjustment is described in detail in the Online Appendix. Forth,

the cross-sectional data are typically not seasonally adjusted, whereas the aggregate data
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are. If empirically necessary, we project the α̂t estimates on seasonal dummies which can be

interpreted as replacing α∗ in (7) by α∗,t.

Fifth, there might be linear dependencies in the estimated α̂t vectors. Thus, after sub-

tracting estimates of α∗ (or α∗,t in case of the seasonal adjustment), we use principal compo-

nents analysis to compress α̂t, t = 1, . . . , T into the lower-dimensional vectors ât, respectively.

This leads to (αt − α∗,t)′ = a′tΛ. We replace α̂t by ât in the definition of Wt. We treat Λ,

which is constructed from the α̂ts, as fixed and use the relationship to adjust the affected

model equations. If there are no exact linear dependencies, this step does not lead to a

dimensionality reduction but it normalizes the log density coefficients to have unit variance.

Sixth, before plotting cross-sectional densities, we undo the change of variables x = g(z) and

report densities for the original and not the transformed cross-sectional data.

In addition to estimating functional VARs that include the cross-sectional data through

α̂t in the definition of Wt, we also estimate VARs for Yt, excluding the cross-sectional data.

These VARs are obtained by simply dropping α̂t from the Wt vector. The structure of the

prior is left unchanged.

4 Shock Instruments and Aggregate Responses

We are using two types of data in the Yt vector: high-frequency instruments for monetary

policy shocks and macroeconomic time series. The Yt data will be combined with three

types of cross-sectional data: earnings data in Section 5, consumption data in Section 6, and

financial income data in Section 7. In addition to providing details on the series included

in Yt, in this section we also report the impulse response functions (IRFs) of the aggregate

variables to a monetary policy shock, based on the various functional VAR specifications

studied subsequently.

High-frequency Instruments. The empirical analysis in the main part of the paper is

based on instrumental variables taken from Jarocinski and Karadi (2020), who consider two

surprise variables that allow them to separate unanticipated changes in monetary policy

(monetary policy shocks) from the central bank’s revelation of information about the state

of the economy that is conveyed through interest rates (information shocks). The variables

are surprises in the three-month fed funds futures (ff4 hf) and surprises in the S&P 500

stock market index (sp500 hf). Sign restrictions are used to separate the two shocks of

interest. It is assumed that a contractionary monetary policy shock generates an interest
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rate increase and a drop in stock prices, whereas a positive information shock is associated

with an increase in both interest rates and stock prices.7

Aggregate Variables. Following Jarocinski and Karadi (2020), all of our empirical models

include the following monthly macroeconomic variables: the monthly average of the one-year

constant-maturity Treasury yield serves as the monetary policy indicator. The advantage of

using a one-year rate is that it remains a valid measure of monetary policy stance also when

the federal funds rate is constrained by the zero lower bound (ZLB). The monthly average

of the S&P 500 stock price index in log levels. Real GDP and GDP deflator in log levels

interpolated to monthly frequency based on Stock and Watson (2010). The excess bond pre-

mium (EBP) as indicator of financial conditions. In addition, we include an unemployment

rate constructed from micro data. For the functional VARs with cross-sectional consumption

data we include aggregate per capita consumption from the National Income and Product

Accounts (NIPA). For the functional VAR with the financial income distribution we add the

fraction of units with zero financial income.

Sample Periods. The functional VAR with earnings data in Section 5 is estimated based on

monthly data, using the sample period 1990:M2 to 2016:M12. This sample has one missing

value (the financial market disruption after the 9/11 terrorist attack in 2001:M9), which

is replaced with zero. Because of cross-sectional data availability, the estimation results

reported in Sections 6 and 7 are based on quarterly data from 1990:Q2 to 2016:Q4. The

quarterly aggregate data are generated by time-aggregating the monthly series.

Model Selection. The lag length p, the hyperparameters λ, and the approximation order

K for the functional VARs, are chosen to maximize the MDD in (25). Table 1 contains

some information about model selection for the empirical analysis. Each row corresponds

to a different sieve approximation order K. We report the optimal choice of λ1, λ2, and

p conditional on K.8 The last column shows MDD differentials relative to K = 4. For

example, the preferred specification for the earnings fVAR is K = 10 with a lag order of

p̂ = 1. For smaller values of K the selected lag order is larger, because the dimension of

Wt−j is smaller. For instance, for K = 4 with p̂ = 4 there are 4 · (6 + 4) + 1 = 41 regressors.

For K = 10 with p̂ = 1 there are 1 · (6+10)+1 = 17 regressors. This number would increase

to 4 · (6 + 10) + 1 = 64 regressors in a four-lag specification. Thus generally, the larger

7As a robustness exercise we also considered the instruments from Nakamura and Steinsson (2018). The

empirical results turned out to be very similar to the ones reported in this paper.
8We use an equally-spaced grid with 31 points for lnλj , ranging from -10 to 20. We consider lag lengths

p ∈ {1, 2, 3, 4}.
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Table 1: Hyperparameter Estimates and Log MDD Differentials

Specification K λ̂1 λ̂2 p̂ MDD

Earnings fVAR 4 403.43 0.37 4 0

6 403.43 0.37 2 25,073

8 1096.63 0.14 3 27,625

10 54.60 54.60 1 27,893

Consumption fVAR 4 403.43 0.14 1 0

6 403.43 0.37 1 551.37

8 148.41 1.00 1 362.63

10 54.60 20.09 1 97.41

Financial Inc. fVAR 4 403.43 1.00 1 0

6 403.43 1.00 1 299.33

8 403.43 1.00 1 511.84

10 403.43 1.00 1 511.84

Aggregate VAR 148.41 4

Notes: The log MDD differentials for each model specification are computed with respect to K = 4, λ1 =

λ̂1, λ2 = λ̂2, p = p̂. For each K we maximized the MDD with respect to λ and p to obtain λ̂j(K) and p̂(K).
The K = 8 and K = 10 entries for the financial income fVAR are identical because a compression step
described in the Online Appendix equalizes the effective dimension of the specifications.

the regressor space, the higher the selected prior precision tends to be. The cross-sectional

distribution of consumption is smoother than that of earnings. Hence, K = 6 suffices and

the MDD selects p̂ = 1 one lag. The consumption and financial income fVARs contain 7

macroeconomic variables and the selected lag order is always p̂ = 1. For financial income

K = 8 and K = 10 deliver the same MDD because there is a perfect collinearity between

elements of the α̂t sequence that we eliminate. This reduces the effective dimension of the

approximation and leads to identical MDDs.

Response of Aggregate Variables to a Monetary Policy Shock. Figure 1 depicts

impulse responses of the aggregate variables to an unanticipated monetary policy shock.

We show results for four empirical models: a VAR that only includes aggregate variables,

and three functional VAR specifications that include cross-sectional information on labor

earnings, consumption, and financial income, respectively. The responses are normalized

such that the surprise reduction in the three-month federal funds rate is 25 basis points

(bp). In the first two columns the time period for the IRFs is a month. In columns three

and four the period is one quarter.
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Figure 1: Responses of Aggregate Variables to Monetary Policy Shock

Functional VARs
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Notes: Responses to a 25 basis point monetary policy shock based on Jarocinski and Karadi (2020). The
Aggregate VAR uses aggregate variables only. In addition, the functional VARs use cross-sectional data on
earnings, consumption, or financial income. The system is in steady state at h = −1 and the shock occurs
at h = 0. The plots depict 10th (dashed), 50th (solid), and 90th (dashed) percentiles of the posterior. GDP
defl. and real GDP responses are percentage deviations from the steady state, whereas the other responses
are absolute percentages. x-axis horizon is months in columns 1 and 2 and quarters in columns 3 and 4.
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The responses in the first two columns are very similar to each other and also quanti-

tatively similar to the responses reported in Figure 2 of Jarocinski and Karadi (2020) after

the latter are scaled by minus five. The presence of the cross-sectional variables has no

substantial effect on the impulse response inference. The main difference is that the GDP

deflator response in the functional VAR (earnings) is slightly weaker. The width of the

bands depends on the number of lags and the hyperparameters selected by the MDD. Recall

from Table 1 that the results for the aggregate VAR are based on four lags, whereas the

functional VAR (earnings) only uses one lag. At the posterior median, the one-year bond

rate moves approximately one-for-one with the federal funds rate surprise and then reverts

back to steady state. The expansionary monetary policy leads to an increase of real GDP by

about 1.2% and a reduction of the unemployment rate by 0.3 percentages after three years

at the posterior median. Prices increase by about 0.25% upon impact in the aggregate VAR

and 0.15% in the functional VAR and slightly fall subsequently.

The responses in columns 3 and 4 of Figure 1 are based on functional VARs estimated

on quarterly data. Therefore, the x-axis now refers to quarters. Qualitatively, the aggregate

responses from the quarterly models are similar to the responses from the monthly models.

Quantitatively, there is a difference in magnitude. The reason is that a 25 basis point

surprise at monthly frequency is only roughly a third of a 25 basis point surprise over an

entire quarter. In calculations not reported in the paper we time aggregated the responses

from the monthly earnings VAR to quarterly frequency and rescaled the IRFs such that the

instrument moves by 25 basis points over the quarter. After this re-scaling, the magnitude

of the aggregate responses from the VARs estimated with monthly and quarterly data,

respectively, were indeed very similar. The last row of the figure contains responses for

fVAR-specific variables, namely, consumption per capita and the fraction of households with

zero financial income, respectively.

5 Earnings Response to a Monetary Policy Shock

The first part of the empirical analysis examines the response of labor earnings to a monetary

policy shock. The micro data are discussed in Section 5.1, the IRF results are presented in

Section 5.2, and Section 5.3 relates the empirical findings to the existing literature.
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Figure 2: Fit of the Estimated Densities

2006:M8 Percentiles
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Notes: Left panel: the continuous part of the density integrates to one minus the unemployment rate. Right
panel: percentiles (10, 20, 50, 80, 90) computed from the estimated densities (red) and directly from the
cross-sectional observations (blue).

5.1 Micro Data on Earnings and Density Representation

The micro-level earnings data are constructed in the same way as in the application in CCS.

Weekly earnings (PRERNWA) are obtained from the monthly Current Population Survey

(CPS) through the website of the National Bureau of Economic Research (NBER) and

scaled to annual earnings by multiplying with 52. Based on the CPS variable PREXPLF

“Experienced Labor Force Employment” we construct an employment indicator which is

one if the individual is employed and zero otherwise. This indicator is used to compute an

aggregate unemployment rate which we include in the Yt vector; see Section 4.

We standardize individual-level earnings by (2/3) of nominal per-capita GDP and apply

the inverse hyperbolic sine transformation, which is given by

x = g(z|θ) =
ln(θz + (θ2z2 + 1)1/2)

θ
=

sinh−1(θz)

θ
, z =

Earnings

(2/3) · per-capita GDP
(26)

with θ = 1. For small values of z the function is approximately equal to z and for large

values of z it is equal to ln(z) + ln(2). Below we will refer to x as transformed data and to z

as original data. We assume that the transformed earnings are located on the interval [0, x̄]

and use a cubic spline as basis functions. We construct the spline from x = x̄ to x = 0, using

a linear element for the right tail:

ζK(x) = max {x̄− x, 0}, ζk(x) =
[

max {xk−1 − x, 0}
]3

for k = K − 1, . . . , 1. (27)

In the left panel of Figure 2 we plot the estimated density for the non-transformed

earnings data zit, see (26), for the period 2006:M8. We overlay a histogram constructed
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from the raw data. We regard the earnings distribution as a mixture of a point mass at zero

and a continuous part. The point mass equals the unemployment rate and the continuous

part integrates to one minus the unemployment rate. The density estimate smoothes out

the histogram and distributes the point mass at the top coded value into the right tail of the

distribution. In the right panel we overlay empirical percentiles with percentiles computed

from the estimated densities to show that the two measures are very similar.

5.2 Earnings Distribution Response

Panel (i) of Figure 3 depicts the response of the continuous part of the earnings distribution

to a monetary policy shock. The panels show the difference between the steady state earnings

density and the shocked density for h = 0 (impact of the shock), h = 4, h = 8, and h = 12.

The x-axis in these plots correspond to the level of earnings. Recall that a value of one means

that the earnings of the individual are equal to 2/3 (approximately the labor share) of GDP

per capita. As mentioned previously, the earnings densities are normalized to integrate to

one minus the unemployment rate. Because the unemployment rate drops in response to

an expansionary monetary policy shock, the probability mass increases along the density

response, relative to the steady state density.

Earnings above 2 are essentially not affected by the monetary policy intervention. The

IRFs provide some evidence that the probability mass of individuals earning between 0.5

and 1 times GDP per capita drops and the mass of individuals earning between 1 and 2

times GDP increases upon impact. However, the 80% bands are wide and the sign of the

responses is mostly ambiguous. The density differential for earnings between 1 and 2 reverts

quickly to zero, whereas the differential for earnings between 0.5 and 1 becomes positive in

the medium run before the earnings density reverts back to its steady state in the long run.

The density response can be converted into IRFs for statistics derived from the earnings

distribution. Panel (ii) of Figure 3 shows the responses of the percentiles of the earnings

distribution as a function of the horizon h. The percentile responses account for a point mass

of zero labor earnings that corresponds to the number of individuals that are unemployed.

They are reported as percentage changes relative to the base level. For instance, suppose in

steady state the earnings level is 0.2 times the labor share of GDP per capita at the 10th

percentile and after the shock earnings rise to 0.21. This corresponds to a 5% increase.

According to the plots in Panel (ii), in percentage terms, the monetary policy shock has

the largest impact on the earnings distribution at the 10th percentile, capturing in part the
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Figure 3: Response of Earnings to Monetary Policy Shock
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Panel (iii): Inequality Measures
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Notes: Responses to a 25bp monetary policy shock. The system is in steady state at h = −1 and the shock
occurs at h = 0. The plots depict 10th (dashed), 50th (solid), and 90th (dashed) percentiles of the posterior
distribution. Panel (i): earnings level is on the x-axis. As distributional responses we depict differences
between the shocked and the steady state cross-sectional density (continuous part, normalized to 1− URt)
of earnings / (2/3) GDP per capita at various horizons. Panels (ii) and (iii): horizon h is on the x-axis.
The percentile responses are computed from distribution of actual earnings and account for the pointmass
at zero.

individuals moving from unemployment into employment. The posterior median response of

the 10th percentile ranges from about 0 to 5%. For the 20th percentile the response ranges

from 0 to 1 percent and for the 80th and 90th percentiles the responses are essentially zero.

We proceed by computing four measures of earnings inequality from the cross-sectional

densities (accounting for the pointmass at zero): the fraction of individuals earning less than

the labor share of GDP, the Gini coefficient, the ratio of the 90th and the 10th percentile of

the income distribution (90-10 ratio), and the cross-sectional standard deviation. Impulse
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responses for the inequality measures are depicted in Panel (iii) of Figure 3. At the posterior

median the fraction of individuals earning less than two-thirds of GDP per capita slightly

rises, from 44% to 44.3% after 36 months. The cross-sectional standard deviation increases,

from 1.08 to 1.09, upon impact of the monetary policy shock. However, the 80% credible

bands are wide, leaving the signs of the initial response ambiguous. Subsequently, the

standard deviation drops below its initial level, to about 1.07. The IRFs imply that the Gini

coefficient and the 90-10 ratio fall in response to the expansionary monetary policy shock.

At the posterior median, the 90-10 ratio drops from 12.27 to 11.76 after 36 months. The

path of the Gini coefficient resembles the path of the 90-10 ratio, falling from 0.431 to 0.428.

Thus, overall the expansionary monetary policy shock lowers income inequality by raising

incomes at the 10th and 20th percentiles.

5.3 Discussion

Our empirical analysis focuses, in the terminology of Kaplan, Moll, and Violante (2018),

on indirect effects of household heterogeneity on the propagation of monetary policy inter-

ventions. An expansionary monetary policy lowers the real interest rate temporarily, which

creates a disincentive to save, and stimulates economic activity in the current period. Labor

demand rises and earnings increase. As we have shown in Section 5.2, this increase is most

pronounced at the 10th percentile, which is consistent with the notion that low-productivity

workers move out of unemployment. In turn inequality as measured through the 90-10 ratio

and the Gini coefficient falls.

This result mirrors the finding in regard to the response of the earnings distribution

to a technology shock reported in CCS. It is also broadly consistent with a heterogeneous

agent model with indivisible labor supply as in Chang and Kim (2006). This class of models

generates a negative correlation between idiosyncratic productivity and reservation wage. In

turn, low-skill workers enter the labor market during booms, when the demand for labor is

sufficiently high such that the wage per efficiency unit exceeds their reservation wage. At this

point the labor earnings switch from zero to a positive value, which reduces labor earnings

inequality. Ma (2021) incorporates this mechanism into a HANK model and shows that in

his model an expansionary monetary policy shock raises wages and more low productivity

individuals are starting to work, which raises earnings in the left tail of the distribution.

Under his calibration the Gini coefficient for labor earnings (on a scale from 0 to 1) drops
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Figure 4: Responses of Inequality Measures: With and Without Pointmass
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Notes: Responses to a 25 basis point monetary policy shock. The system is in steady state at h = −1 and
the shock occurs at h = 0. The plot depicts 10th (dashed), 50th (solid), and 90th (dashed) percentiles of
the posterior distribution. The inequality measures in the top row are computed from the continuous part
of the distribution of actual earnings, not assigning labor earnings of zero for the unemployed. The bottom
row includes the pointmass at zero in the computation of the inequality statistics.

by approximately 0.001 upon impact.9 In our estimated VAR the drop is between 0.001 and

0.003, which is very similar.

As in Ma (2021)’s HANK model, the reduction in the earnings inequality is mainly driven

by the fall in unemployment. We recomputed the response of the earnings distribution and

the derived inequality measures by excluding the pointmass at zero and normalizing the

continuous part of the earnings density to one. The results are plotted in Figure 4. The

comparsion of the IRFs in the top row (no pointmass at zero for the unemployed) to the

IRFs in the bottom row (which are identical to the ones previously shown in Figure 3),

shows that the effect of monetary policy shocks on earnings inequality is mostly driven by

individuals switching between unemployment and employment.

There are a number of earlier studies that examined the effect of monetary policy shocks

on earnings inequality. Some studies typically included the inequality measures directly into

9See Figure 3 in Ma (2021). He considers a 100 bp monetary policy shock and measures the Gini

coefficient on a scale from 0 to 100. Thus, −0.4/(4 · 100) = −0.001.
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a VAR or linear projections. For instance, Coibion, Gorodnichenko, Kueng, and Silvia (2017)

report IRFs to a 100 bp increase in the monetary policy rate, estimated on U.S. data. They

find that in the medium run the Gini coefficient on earnings rises by about 0.0025. Adjusting

for the different shock size, their estimate is slightly smaller than ours. Furceri, Loungani,

and Zdzienicka (2018) consider a panel of 32 advanced and emerging market economies. They

report an estimate (converted into our scale) of 0.005, which is larger, but in the same order

of magnitude as our estimates. Other studies did not aggregate their results into the response

of inequality statistics, but they also find that monetary policy shocks predominately affect

the left tail of the earnings distribution, and that the effects are driven to a large extent by

transitions into and out of employment, e.g., Amberg, Jansson, Klein, and Rogantini Picco

(2022), Mitman, Broer, and Kramer (2022), and Lenza and Slacalek (2023).

6 Consumption Response to Monetary Policy

In the second part of the empirical analysis we estimate the response of the cross-sectional

consumption distribution to a monetary policy shock. The micro data are discussed in

Section 6.1, and the IRF results are summarized in Section 6.2, and Section 6.3 relates

the empirical findings to the existing literature. As mentioned in Section 4 the vector of

aggregate variables Yt now also includes aggregate personal consumption expenditures per

capita series.

6.1 Micro Data on Consumption and Density Representation

The consumption data are obtained from the Consumer Expenditure Survey (CEX), con-

ducted by the Bureau of Labor Statistics. Although interviews about consumption expendi-

tures are conducted at monthly frequency, we aggregate to quarterly frequency to smooth out

unit-level expenditures and reduce reporting errors. Each consumption unit (CU) provides

expenditure data for three consecutive months. If a CU was surveyed in 1990Q1, consump-

tion responses could refer to one of three possible combination of months: (i) Oct. 1989,

Nov. 1989, Dec. 1989; (ii) Nov. 1989, Dec. 1989, Jan. 1990; or (iii) Dec. 1989, Jan. 1990,

Feb. 1990. To convert this information into quarterly expenditure data, we add the three

monthly values and assign the sum to the quarter that covers at least two of the months for

which responses were obtained. Lastly, we use the count of males and females over 16 years
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old within a CU to compute per capita expenditures. Following this approach, we compile

cross-sectional observations for the periods 1990:Q1 to 2016:Q4.

We construct four measures of consumption: (i) consumption of nondurable goods in-

cludes food and beverages, clothing and footware, gasoline and other fuel, personal care,

readings, and tobacco. (ii) Consumption of services encompasses child-care spending, hospi-

tal and nursery services, household utilities and energy, recreation services, financial services,

accommodations, telecommunication, transportation. (iii) Total consumption encompasses

consumption of nondurables and services and also covers spending on items such as recre-

ational goods, furniture and furnishing, jewelry and watches, housing and rent (or imputed

rental value), health care and insurance, education, cash support for college students, vehi-

cle purchases. (iv) Finally, we define consumption of durables as total consumption minus

consumption of nondurables and services.10

The micro-level consumption data are scaled by aggregate nominal consumption from

NIPA, divided by the population over 16 years old. It is well known that CEX consumption

per capita does not aggregate to NIPA consumption per capita. Thus, we assume that only a

fraction c̃ of total individual consumption c∗it is reported to the CEX: cit = c̃c∗it. We compute

separate constants for each consumption category: total (T), non-durables (N), services (S),

and durables (D):

c̃s =
1

T

T∑
t=1

median(cs1t, . . . , c
s
Nt)/Ct, s ∈ {T,N, S,D}. (28)

The scaling constants are c̃T = 0.46, c̃D = 0.02, c̃S = 0.07, c̃N = 0.05 and capture both the

underreporting and the fraction of the components N,S,D as part of total consumption.

We then define zsit = csit/(c̃
s ·Ct) such that a value of one means that the unit approximately

consumes at the aggregate per capital level. Finally, as for the earnings data, we apply the

inverse hyperbolic sine transformation to obtain xit.

6.2 Consumption Distribution Response

Figure 5 summarizes the response of the cross-sectional consumption distribution to a mon-

etary policy shock. Panel (i) shows density differentials, Panel (ii) depicts the responses

10Starting point of the definition of consumption and its components is Coibion, Gorodnichenko, Kueng,

and Silvia (2017), but then we made some adjustments to add items that were excluded from their analysis.

Detailed information on the data construction can be obtained from our replication files.
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Figure 5: Response of Consumption to Monetary Policy Shock

Panel (i): Density Responses

h = 0 h = 4 h = 8 h = 12

0 1 2 3
-0.1

-0.05

0

0.05

0.1

0 1 2 3

-0.05

0

0.05

0.1

0 1 2 3

-0.05

0

0.05

0.1

0 1 2 3

-0.05

0

0.05

0.1

Panel (ii): Percentile Responses (percent)

10th Pctl 20th Pctl 80th Pctl 90th Pctl

0 5 10

-5

0

5

10

0 5 10

-5

0

5

10

0 5 10

-5

0

5

10

0 5 10

-5

0

5

10

Panel (iii): Inequality Measures

Fraction Expend. Cross-sectional 90-10 Ratio Gini Coefficient
< NIPA/Cap. Standard Dev.

0 5 10
0.38

0.4

0.42

0.44

0.46

0 5 10
1

1.05

1.1

1.15

1.2

0 5 10
5.2

5.4

5.6

5.8

6

0 5 10
0.37

0.38

0.39

0.4
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Panels (ii, iii): The x-axes refer to quarters. The responses are computed from distribution of consumption
expenditures/aggregate consumption per capita. Percentile responses are in percent from steady state value.

of percentiles of the consumption distribution, and Panel (iii) documents the response of

inequality measures. The differentials in Panel (i) are with respect to a steady state distri-

bution with a median of 1.0 (which corresponds to NIPA per capita consumption). While

the credible bands span zero, at horizons h = 8 and h = 12, according to the pointwise

posterior median estimates, probability mass shifts from units consuming more than scaled

per-capita consumption to those that are consuming less.

The percentile responses reported in Panel (ii) are in percentage deviations from per-
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centiles of the steady state distribution. For instance, a 5% increase at the median would

imply that consumption rises from 1 to 1.05. Based on the posterior median the 10th and

20th percentiles rise above their steady state values at h = 1, before they revert back to

zero four quarters after impact. Over the subsequent quarters the responses stay 0.9% (20th

percentile) to 1.3% (10th percentile) below their baseline values. The responses of the 80th

and 90th percentiles are similar in shape but quantitatively slightly larger, which is most

apparent from the credible bands. The responses of normalized unit-level consumption could

be converted into dollar values of individual level consumption by combining the responses

in Panel (ii) with the positive response of aggregate consumption in Figure 1.

Panel (iii) of Figure 5 depicts the implied responses of our four inequality measures. The

posterior median response of the fraction of households consuming less than the aggregate

per capita amount falls initially, but stays above its steady state value from horizon h = 5

onwards. The other three inequality measures – the cross-sectional standard deviation, the

90-10 ratio, and the Gini coefficient peak upon impact (h = 0) and stay above their steady

state levels subsequently. Thus, according to the posterior median estimates, consumption

inequality generally increases in response to an interest rate cut. However, there is a consid-

erable amount of uncertainty as the credible bands cover both positive and negative values.

In Figure 6 we compare the responses of the distribution of consumption components.

The first column of the figure reproduces the percentile and Gini coefficient responses for

total consumption from Figure 5, except that we now report the percentile responses in

levels rather than in percentage changes relative to the steady state distribution. The re-

maining columns show the responses of durables, nondurables, and services. Because of the

normalization constants defined in (28), the steady state levels for the percentiles of the

consumption components are roughly the same. The responses of the inequality statistics

associated with the consumption of durables look very similar to the responses of total con-

sumption. The response of the distribution of nondurables and services, on the other hand,

is quite different. Even at the posterior median, the Gini coefficient response is essentially

zero. The posterior medians of the percentile responses of nondurable consumption oscillate

at short horizons and then fall below the steady state level. The service percentiles drop

upon impact below their steady state values and remain low for the subsequent ten quarters,

indicating a shift from services to durables. Recall, however, from Figure 1 that total per

capita consumption, used to normalize unit-level consumption, also rises, which mitigates

the drop in service consumption.
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Figure 6: Responses of Consumption Distribution By Components
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Notes: Responses to a 25 basis point monetary policy shock. The system is in steady state at h = −1 and
the shock occurs at h = 0. The plots depict 10th (dashed), 50th (solid), and 90th (dashed) percentiles of
the posterior distribution. The x-axes refer to quarters. The responses are computed from the distribution
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to those in Figure 5.

6.3 Discussion

The slight increase in consumption inequality may appear puzzling in view of the decrease

in earnings inequality documented in Section 5. The consumption response is determined
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by the income response in combination with the marginal propensity to consume (MPC)

and low-income households, i.e., those that experience a strong rise in labor earnings, tend

to be those with high MPCs. However, in Section 5 we only considered labor income.

Wealthy households typically also have a significant amount of unearned income, which may

be directly affected by the monetary policy intervention, e.g., rising stock and bond prices in

response to an interest rate cut. For instance, using Swedish administrative data Amberg,

Jansson, Klein, and Rogantini Picco (2022) find that high-income individuals experience

a substantial rise of capital income, more so than other individuals. This channel is also

present in a calibrated DSGE model by Lee (2021), who finds that consumption inequality

rises in his model in response to an expansionary monetary policy shock because it boosts

profits and equity prices which benefits wealthy households with high level of consumption.

7 Financial Income Response to Monetary Policy

In view of the findings in the previous two sections we now turn to the analysis of the

response of the financial income distribution, as measured by the CEX, to a monetary policy

shock.

Micro Data. The cross-sectional densities of household level financial income are con-

structed from the public-use income data of the CEX.11 We use the CEX family interview

files from 1990:Q1 to 2016:Q4, defining financial income as the sum of the following compo-

nents: (i) amount earned as interest on savings accounts or bonds (intearnx), (ii) amount

of regular income earned from dividends, royalties, estates, or trusts (finincx), (iii) amount

received from pensions or annuities from private companies, military, or government (pen-

sionx), (iv) amount of net income or loss received from roomers or boarders (inclossa), (v)

amount of net income or loss received from payments from other rental properties (inclossb).

If a component of income is missing, we set it to zero.

The survey asks consumption units (CU) about their financial income in the aforemen-

tioned categories. Ideally, we would like to know the income over the past three months

11The CPS, used in Section 5, has accurate information on wages and salaries, but misses more than

one third of investment income; see Brady and Brass (2021). Alternative sources for financial income are

the Survey of Consumer Finances (SCF) and the Panel Study of Income Dynamics (PSID). Both SCF and

PSID are rich data sources, but only available at low frequency (mostly tri-annual for the SCF and bi-annual

for PSID), which makes them unsuitable to study the link between income inequality and business cycle

fluctuations.
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Figure 7: Cross-Sectional Distribution of Financial Income in the CEX
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prior to the interview. Unfortunately, the survey asks for the income over a twelve-month

period which leads us to adopt the following convention: if a CU is surveyed in 2001:Q1,

we record the income response for 2000:Q4. Implementing a more careful mixed-frequency

analysis requires assumptions about the unit-level income processes and is beyond the scope

of this paper. Individual-level income is calculated by dividing the household level income

by the number of CU members over 16 years old. We scale the financial income data using

the (approximate) capital share of nominal GDP per capita, which we take to be one-third

of its quarterly value.

We define the pointmass κt as the fraction of individuals earning less than x = 0.0014.12

The time series of κt is plotted in Panel (1,1) of Figure 7 and fluctuates between 0.65

and 0.82 over the sample period. We regard the fraction of CUs κt as not having any

substantial financial income. This includes the 3% of households that report small negative

12Given the prevalence of households with modest yet positive financial income, we use x as a threshold for

households lacking substantial financial income. x represents the 10th percentile of pooled financial income

data standardized by the capital share of GDP across the sample periods.
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financial income. There is a substantial drop of κt in 2004, which is caused by a change in

the imputation approach for unreported financial income. As discussed in Section 4, κt is

included as an aggregate variable in the functional VAR specifications. We compute separate

means for the pre- and post-2004 κt values and include the demeaned series in the vector of

aggregate variables.

In Panel (1,2) we plot a the histogram for financial income in 2007:Q3, conditional on

being larger than x. Despite excluding households with an income less than 0.0014 of the

capital share of per capita GDP, there is still a large mass near zero. In the bottom row of

Figure 7 we show percentiles (10, 20, 50, 80, 90) of the financial income distribution. One set

of percentiles is computed from the estimated densities and the other one directly from the

cross-sectional observations. Both of them are essentially identical. We loosely treat κt as a

pointmass at zero, just like we treated the unemployment rate in Section 5 as a pointmass

of zero (labor) earnings. If κt is included in the calculation of the percentiles, then the 10th,

20th, and 50th percentiles are zero; see Panel (2,1). In Panel (2,2) we show the percentiles

for the distribution of x conditional on x ≥ x which are by virtue of the conditioning larger

than the ones plotted in Panel (2,1).

Financial Income Distribution Response. Impulse responses for the financial income

distribution are plotted in Figure 8. Panel (i) summarizes the responses of the percentiles,

and Panel (ii) shows the responses of the inequality measures. For both panels, we compute

the cross-sectional statistics with and without κt. In view of Panel (2,1) of Figure 7 it is not

surprising that the 10th and 20th percentiles do not respond to the monetary policy shock

because they are zero throughout the sample. Even if κt is excluded from the percentile

calculations, the responses are essentially zero. There is more movement in the 80th and

90th percentiles. In three out of four cases the posterior mean response is negative but the

bands are wide and include zero.

The fraction of households with financial income less than the (capital share of) GDP

per capita tends to increase. The cross-sectional standard deviation and the Gini coefficient

essentially don’t respond to the monetary policy shock, regardless of whether the κt point-

mass is included in the calculation or not. The 90-10 ratio is not defined if κt is included

in the computation of the percentiles, because the 10th percentile is zero. Conditional on

x ≥ x the 90-10 ratio drops, which is due to the fall in the 90th percentile, shown in Panel

(i).

We conjecture that the reason for not finding an unambiguous increase in financial income
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Figure 8: Response of Financial Income to Monetary Policy Shock
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in the right tail of the distribution, as documented in other studies, is that the CEX excludes

many of the wealthy households that are present in other studies. We plot the empirical

cumulative distribution function (cdf) of financial income for the year 2012 in Figure 9. The

graph overlays cdfs obtained from our CEX data and from the more comprehensive SCF.

Relative to the SCF, the CEX misses the top-10 percent of households with the highest
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Figure 9: Financial Income Distribution in 2012: CEX vs. SCF
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from both sources is standardized by 1/3 (approximate capital share) of GDP per capita.

financial income, who may benefit from the interest cut. The households included in our

study are likely to experience lower interest on their savings account without benefiting from

stock market gains or dividend payouts.

Despite the CEX missing high financial income households, it does cover the same set of

households that underly our analysis of the consumption distribution response. Thus, the

slight increase in consumption inequality shown in Figure 5 may be due to other factors.

First, even wealthier households with a relatively high level of consumption may be close to

their borrowing constraint (wealthy hand-to-mouth consumers) and have a relatively high

marginal propensity to consume which could explain the larger response in the right tail

of the distribution. Second, the direct effect of monetary policy on consumption may be

heterogeneous, whereby high consumption/income households’ consumption decisions are

more interest rate sensitive.

8 Response to an Informational Shock

Thus far, we have focused on responses to a conventional monetary policy shock. The JK

instruments also allow us to compute IRFs for an information shock, meaning the unantici-

pated change in the interest rate conveys private information of the central bank about the

state of the economy. For instance, a reduction in interest rates may signal that aggregate

output and prices will be lower than expected by the public. The shock is set identified
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through the assumption that surprises in interest rates have the same sign as surprises to

the stock market index. Summary statistics for the earnings and consumption distribution

responses are depicted in Figure 10.

Aggregate Responses. Panel (i) summarizes the responses of the aggregate variables: a

reduction of bond yields indicates that real activity and prices will be below expectation. At

the posterior median real GDP drops 20 bp, consumption falls, and the unemployment rate

increases up to 0.15 percentages after one year. The posterior mean responses revert back

to zero after three years, except for consumption which exhibits a more persistent response.

Earnings Distribution Response. The top row of Panel (ii) contains the responses of

the earnings density percentiles. Most notably, earnings at the 10th percentile experience

a persistent drop of about 2% at the posterior median, whereas there is a small and short-

lived increase for the other percentiles. Panel (iii) contains responses of inequality measures.

The fraction of individuals earning less than GDP per capita drops in the short run. The

cross-sectional standard deviation increases and eventually reverts back to its initial level.

According to the response of the 90-10 ratio and the Gini coefficient inequality rises in the

long run. Thus, overall the simultaneous unanticipated drop in interest rates and stock

prices increases earnings inequality because the contraction is associated with an increase in

unemployment.

Consumption Distribution Response. The bottow rows of Panels (ii) and (iii) of Fig-

ure 10 depict the response of percentiles and inequality statistics to an informational shock

derived from the consumption distribution. According to the posterior medians, consump-

tion rises at the 10th and 20th percentiles, stays essentially flat at the 80th percentile, and

slightly drops and subsequently reverts back to the steady state level at the 90th percentile.

As a consequence, inequality as measured by the 90-10 ratio and the Gini coefficient de-

creases. As in Section 6, it is important to note that we measure unit-level consumption

relative to aggregate per capita consumption. The latter, shown in the right most graph in

Panel (i), drops in response to the information shock. Thus, the rise of relative consump-

tion at the 10th and 20th percentiles is dampened by the simultaneous drop in aggregate

consumption.
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Figure 10: Aggregate and Distribution Responses to Information Shock

Panel (i): Response of Aggregate Variables
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9 Conclusion

We estimated a functional VAR that stacks macroeconomic aggregates and the cross-sectional

distribution of earnings, consumption, and financial income, respectively, to present semi-

structural evidence about the distributional effects of monetary policy shocks. The empirical

results in our paper could be used to assess the quantitative implications of HANK models

more formally. We only provided an informal discussion and leave a more rigorous quantita-

tive assessment for future research. Finally, there is a broader normative question whether

central banks should track the effect of their policy interventions on inequality statistics.

In regards to earnings inequality, our results suggest that distributional effects can be un-

derstood from the response of the unemployment rate. The small and uncertain responses

of consumption and financial income inequality measures provide, in our view, a case for

central banks to focus on the effects of their policies on macroeconomic aggregates as they

have been doing traditionally.
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This Appendix consists of the following sections:

A. Density Estimation

B. Prior and Posterior Computations

C. Data Used in the Empirical Analysis
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A Density Estimation

A.1 Top Coding

Likelihood Function with Censoring. We define the censoring point ct as

ct = max
i=1,...,N

xit

Moreover, we let

Nt,max =
N∑
i=1

I{xit = ct}.

If Nt,max = 1, we assume that the observed sample is not constrained by the top-coding

and use the standard likelihood function described in the main text. If Nt,max > 1 we use a

likelihood function that assumes that any earnings value exceeding ct is coded as ct.

Recall that in the main text we ignored the dependence of the cross-sectional sample size

N on t in the notation and defined p(K)(Xt|αt) = exp
{
NL(K)(αt|Xt)

}
, where

L(K)(αt|Xt) = ζ̄ ′(Xt)αt − ln

∫ ∞
0

exp
{
ζ ′(x)αt

}
dx, ζ̄(Xt) =

1

N

Nt∑
i=1

ζ(xit).

We introduce the unknown parameter πt = P{xit ≥ ct}. We drop the top-coded obser-

vations from the definition of ζ̄(Xt) und make the time dependence explicit in the notation.

Let

ζ̄t(Xt) =
1

Nt

Nt∑
i=1

ζ(xit)I{xit < ct}. (A.1)

The log likelihood function is obtained as follows: the sample contains Nt,max top-coded

observations where the probability of sampling a top-coded observation is πt. The probability

of samping an observation that is not top-coded is (1 − πt). Conditional on not being top-

coded, the observation xit < ct is sampled from a continuous density with a domain that is

truncated at ct. Thus, dividing the log-likelihood by the sample size Nt, we obtain

L(K)(αt, πt|Xt) =
Nt,max

Nt

lnπ +
Nt −Nt,max

Nt

ln(1− πt) (A.2)

+ζ̄ ′t(Xt)αt −
Nt −Nt,max

Nt

ln

∫ ct

0

exp
{
ζ ′(x)αt

}
dx.
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Notice that regardless of the value of αt, the MLE of πt is

π̂t = argmaxπ∈[0,1] L(K)(αt, πt|Xt) = Nt,max/Nt. (A.3)

Moreover, regardless of the value of πt, the MLE of αt is given by

α̂t = argmaxαt L
(K)(αt, πt|Xt) (A.4)

= argmaxαt ζ̄
′
t(Xt)αt −

Nt −Nt,max

Nt

ln

∫ ct

0

exp
{
ζ ′(x)αt

}
dx.

The objective function for αt is almost identical to what we had without top coding, except

for a definition of ζ̄t(Xt) that drops the top-coded observations in the summation and the

factor of (Nt −Nt,max)/Nt in front of the normalization constant of the density.

Recovering the Density for Uncensored Observations. To reconstruct the full density

we can use

p(x|αt) =
exp

{∑K
k=1 αk,tζk(x)

}
∫∞
0

exp
{∑K

k=1 αk,tζk(x)
}
dx
. (A.5)

Note that here we dropped the censoring indicator function and the integration is now from

0 to∞. Once the αt’s have been estimated based on the censored observations, we work with

the full density in the functional state-space model and its K-dimensional approximation.

Modification of Hessian Matrix. We now re-compute the score and the Hessian. Drop-

ping the (K) superscript we obtain the following first derivatives with respect to αk for

k = 1, . . . , K:

L(1)
k (αt|πt, Xt) = ζ̄t,k(Xt)−

(
Nt −Nt,max

Nt

)∫ ct

0

ζk(x)p̄(x|αt)dx,

where

p̄(x|αt) =
exp

{∑K
k=1 αk,tζk(x)

}
∫ ct
0

exp
{∑K

k=1 αk,tζk(x)
}
dx

I{x < ct}.

We can now deduce from our previous calculations that

L(2)
kl (αt|πt, Xt) (A.6)

= −
(
Nt −Nt,max

Nt

)∫ ct

0

(
ζk(x)−

∫ ct

0

ζk(x)p̄(x|αt)dx
)

×
(
ζl(x)−

∫ ct

0

ζl(x)p̄(x|αt)dx
)
p̄(x|αt)dx.
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Thus, compared to the standard case, the limits of integration change and there is an addi-

tional factor (Nt −Nt,max)/Nt.

A.2 Transformations of the α̂ts

Compression/Standardization. The vector ˆ̃αt = α̂t − α∗ may exhibit collinearity. Even

though K basis functions may be necessary to approximate the cross-sectional densities, the

time variation might be concentrated in a lower-dimensional space, because, for instance,

only the means of the cross-sectional distributions are varying over time. This feature can

be captured by assuming that the time-variation is captured by a K̃ < K dimensional factor

at:

(αt − α∗)′ = a′tΛ, (A.7)

where Λ is a K̃ × K matrix. As is well known from the factor model literature, Λ and at

are only identified up to a K̃ × K̃ dimensional invertible matrix. In principle, the matrix Λ

and the sequence of vectors at, t = 1, . . . , T have to be estimated simultaneously under this

factor structure,

To avoid the simultaneous estimation of the cross-sectional densities, we take the following

short cut. First, we compute the α̂ts period-by-period without imposing any restrictions.

Second, conditional on α∗ we compute the demeaned (and potentially seasonally adjusted)

MLEs ˆ̃αt = α̂t−α∗ and arrange them in a T×K matrix ˆ̃α with rows ˆ̃α′t. Third, we conduct a

principal components analysis which is based on the eigenvalue decomposition of the sample

covariance matrix ˆ̃α′ ˆ̃α/T . Let M̂ be K × K̃ matrix of eigenvectors associated with the K̃

non-zero eigenvalues (in practice greater than 10−10).13 Then, let

â = ˆ̃αM̂, Λ̂ = (â′â)−1â′ ˆ̃α, (A.8)

where â is the T×K̃ matrix with rows â′t. Even if K̃ = K this operation standardizes the basis

function coefficients αt. To evaluate the MDD formula (25), we replace K by K̃, L(K)(α̂t|Xt)

by L(K̃)(α∗ + Λ̂′ât|Xt), and we change the term
∑T

t=1 ln |V̂t|1/2 to
∑T

t=1 ln |(Λ̂V̂ −1t Λ̂′)−1|1/2.
13Because our goal is to eliminate perfect collinearities, we choose an eigenvalue cut-off that yields α∗ +

Λ̂′ât = α̂t.
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Seasonal Adjustments. Deterministic seasonal adjustments of the cross-sectional densities

can be incorporated in the model, as needed, by replacing the vector of constants α∗ = αt−α̃t
by a time-varying process. In our application the time period t is either a quarter or a month.

For quarterly data we let α∗,t =
∑4

q=1 αq,tsq(t), where sq(t) = 1 if period t is associated with

quarter q and sq(t) = 0 otherwise. For monthly data we we use α∗,t =
∑12

m=1 αm,tsm(t),

where sm(t) = 1 if period t is associated with month m and sm(t) = 0 otherwise.

A.3 Recovering Cross-Sectional Densities

Based on the estimated state-transition equation we can generate forecasts and impulse

response functions for the compressed coefficients at. However, the dynamics of these coef-

ficients in itself are not particularly interesting. Thus, we have to convert them back into

densities using the following steps (which can be executed for each prior/posterior draw of

at from the relevant posterior distribution). First, use (A.7) with Λ = Λ̂ to transform at into

αt. If the estimation is based on a seasonal adjustment, α∗ can be replaced by α∗,t, or, if the

goal is to compute impulse responses, one could use the average of the seasonal dummies as

intercept. Second, compute

p(K)(x|αt) =
exp

{
ζ ′(x)αt

}∫
exp

{
ζ ′(x̃)αt

}
dx̃
.

B Prior and Posterior Computations

B.1 More Details on the Prior

Recall that the ith equation of the Wt VAR is given by (19). We assume that the parameters

(βi, Di) are a priori independent across equations, i.e.,

p(β,D) =
n∏
i=1

p(βi|Di)p(Di). (A.9)

For each pair (βi, Di) we use a Normal-Inverse Gamma (NIG) distribution of the form

βi|Di ∼ N
(
β
i
, DiV

β
i

)
, Di ∼ IG

(
νi, Si

)
. (A.10)
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The prior density takes the form

p(βi, Di) = (2π)−ki/2|V β
i |−1/2

S
νi
i

Γ(νi)
D
−(νi+1+ki/2)
i

× exp

{
− 1

Di

[
Si +

1

2
(βi − βi)

′(V β
i )−1(βi − βi)

]}
.

In the remainder of this subsection we discuss the construction of β
i
, V β

i , νi, and Si. The

prior is obtained by transforming a prior for the reduced-form parameters (Φ,Σ) into a prior

for the quasi-structural parameters (β1, . . . , βnw , D).

Prior for Di and the αi component of βi. We start from a prior for Σ = A−1
′
DA−1:

Σ ∼ IW
(
ν, S

)
, S = diag(s21, . . . , s

2
n). (A.11)

Chan (2021) shows that this prior implies

Di ∼ IG

(
ν + i− n

2
,
s2i
2

)
, i = 1, . . . , n. (A.12)

Thus, a comparison with (A.10) indicates that we are setting

νi =
ν + i− n

2
, Si =

s2i
2
. (A.13)

Moreover, (A.11) implies that

Aij|Di ∼ N
(

0,
Di

s2j

)
, 1 ≤ j < i, i = 2, . . . , n, (A.14)

which determines the prior for the αi component of βi.

Prior for the B·i component of βi. Recall that B·i consists of np coefficients on lagged

elements of yt and an intercept. The overall dimension of the vector is k× 1. The prior will

take the form

B·i ∼ N
(
B·i, V

B
i

)
, (A.15)

where the k × k matrix V B
i is assumed to be diagonal.

To specify a prior for B·i, we loosely map a priori beliefs about (αi,Φ·i) into beliefs about

B·i. To simplify the notation a bit, let φi = Φ·i and suppose that the researcher starts with

the belief that

φi ∼ N
(
φ
i
, DiV

φ
i

)
(A.16)
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with φ
i

= 0. Because the macroeconomic variables are in log-level we let for i = 1, . . . , ny:

[φ
i
]j =

 1 if j = i

0 otherwise
j = 1, . . . , k. (A.17)

The k × k prior covariance matrix V φ
i is assumed to be diagonal with elements l = 1, . . . , k:

[V φ
i ]ll =



1
λ1

1
s2i h

λ4
for coeff. on the h-th lag if vars (i, j) belong to same block

1
λ1

1
λ2s2i h

λ4
for coeff. on the h-th lag if var i belongs to Y and j belongs to a

1
λ1

1
λ3s2i h

λ4
for coeff. on the h-th lag if var i belongs to a and j belongs to Y

1
λ5

for the intercept

We now turn the prior for φi into a prior for B·i, utilizing the relationship between

the quasi-structural-form coefficients, B, and the reduced form coefficients, Φ. For the

coefficients on lagged elements of yt we obtain:

[Bh]ij = [Φh]ij +
i−1∑
l=1

Ail[Φh]lj. (A.18)

Likewise, the n× 1 vector of intercepts, B0, is related to the reduced form intercept via

[B0]i = [Φ0]i +
i−1∑
l=1

Ail[Φ0]l. (A.19)

Taking expectations of (A.18) and (A.19), and using E[Aij] = 0, we deduce that

E
[
[Bh]ij

]
= E

[
[Φh]ij

]
, E

[
[B0]i

]
= E

[
[Φ0]i

]
(A.20)

We use a prior covariance matrix V B
i that is diagonal. The entries on the diagonal are

specified as follows: we first express the variance of a generic element [Bh]ij in terms of the

variances of Aij and [Φh]ij:

V
[
[Bh]ij

]
= E

[
V
(
[Bh]ij

)
|A
]

+ V
[
E
(
[Bh]ij

)
|A
]

= E

[
V
(
[Φh]ij

)
+

i−1∑
l=1

A2
ilV
(
[Φh]lj

)]
+ V

[
E([Φh]ij) +

i−1∑
l=1

AilE([Φh]lj)

]

= V
(
[Φh]ij

)
+

i−1∑
l=1

V(Ail)V
(
[Φh]lj

)
+

i−1∑
l=1

V(Ail)
(
E([Φh]lj)

)2
.
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The same calculation for the variance of the intercept leads to:

V
[
[B0]i

]
= E

[
V
(
[B0]i

)
|A
]

+ V
[
E
(
[B0]i

)
|A
]

= E

[
V
(
[Φ0]i

)
+

i−1∑
l=1

A2
ilV
(
[Φ0]l

)]
+ V

[
E([Φ0]i) +

i−1∑
l=1

AilE([Φ0]l)

]

= V
(
[Φ0]i

)
+

i−1∑
l=1

V(Ail)V
(
[Φ0]l

)
+

i−1∑
l=1

V(Ail)
(
E([Φ0]l)

)2
.

To arrange the first np V
[
[Bh]ij

]
terms on the diagonal of the k × k matrix V B

i we use

the index function

f(j, h) = (h− 1)n+ j. (A.21)

Here h corresponds to the lag and j is the index for the element of the yt−h vector. Using

the definition of the index function, the expressions for V[Ail] and E([Φh]lj) from the Normal

distribution in (A.14), and the expression for V
(
[Φh]lj

)
from the Normal distribution in

(A.16), we can write

V
[
[Bh]ij

]
= Di[V

φ
i ]f(j,h) +

i−1∑
l=1

Di

s2l

[
Dl[V

φ
l ]f(j,h) + [φ

l
]2f(j,h)

]
.

For the intercept in equation i we obtain

V
[
[B0]i

]
= Di

Di

λ5
+

i−1∑
l=1

DiDl

s2l λ5
.

We now replace the variance parameter Dl by the hyperparameter s2l . This ensures

that V B
i is not a function of the (unknown) variance parameter Di and simplifies posterior

calculations. Using

V
[
[Bh]ij

]
= Di[V

B
i ]f(j,h) and V

[
[B0]i

]
= Di[V

B
i ]np+1

we obtain

[V B
i ]f(j,h) = [V φ

i ]f(j,h) +
i−1∑
l=1

(
[V φ

l ]f(j,h) +
1

s2l
[φ
l
]2f(j,h)

)
. (A.22)

[V B
i ]np+1 =

1

λ5
+

i−1∑
l=1

1

λ5
=

i

λ5
. (A.23)
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Table A-1: Hyperparameters for VAR Prior

Parameter Description

ν = 2n Degrees of freedom for IG distribution

si = StDev(Wi) Shape para for IG; use sample standard dev.

λ1 Overall precision of prior

λ2 Relative precision for a to Y transmission

λ3 = 1 Relative precision for Y to a transmission

λ4 = 2 Decay rate for prior variance on lags

λ5 = 0.001 Relative precision for intercept

Summary. The overall prior takes the form (A.10). The prior for Di is given by (A.12).

The prior for βi is obtained by combining (A.14) with (A.15), where mean and variance are

given in (A.20) and (A.22), respectively. The hyperparameters for the prior are summarized

in Table A-1. We set si equal to the sample standard deviation of Wi.

B.2 Posterior Sampling and MDD

Model and prior are set up so that the coefficients can be estimated equation by equation:

p(W,β,D) =
N∏
i=1

(
(2πDi)

−1/2 exp

{
− 1

2Di

(Wi − Ziβi)′(Wi − Ziβi)
}
p(βi|Di)p(Di).

)
(A.24)

Because the prior is conjugate, the posterior stays in the NIG family. It takes the form

βi|(Di,Wi) ∼ N
(
β̄i, DiV̄

β
i

)
, Di ∼ IG

(
ν̄i, S̄i

)
, (A.25)

Instead of working with covariance matrices, it is more efficient to work with precision

matrices. Define:

P β
i =

(
V β
i

)−1
, P̄ β

i =
(
V̄ β
i

)−1
.
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The updating equations for the posterior take the form

P̄ β
i = P β

i + Z ′iZi

β̄i =
(
P̄ β
i

)−1(
P β
i βi + Z ′iWi)

ν̄i = νi + T/2

S̄i = Si +
1

2

(
W ′
iWi + β′

i
P β
i βi − β̄

′
iP̄

β
i β̄i
)
.

When using the JK instruments, we set the coefficients on the lags and the intercept

equal to zero: Bi = 0 for i = 1, 2. Thus, β1 = 0(np+1)×1 and β2 = [A2,1, 01×(np+1)]
′. The

updating equations for the posterior change as follows. For i = 1:

P̄ β
1 = N/A

β̄1 = 0(np+1)×1

ν̄1 = νi + T/2

S̄1 = S1 +
1

2
W ′

1W1.

For i = 2 we are regressing W2t on the single regressor W1t. Partition β2 = [β1,2, 01×(np+1)]
′

and denote the precision associated with the first element of the β2 vector by [P β
1 ]11. Then,

we can write the updating equations as

[P̄ β
2 ]11 = [P β

2 ]11 +W ′
1W1

β̄2,1 =
(
[P̄ β

2 ]11
)−1(

[P β
2 ]11β2,1

+W ′
1W2

)
ν̄2 = ν2 + T/2

S̄2 = S2 +
1

2

(
W ′

2W2 + [P β
2 ]11β

2

2,1
− [P̄ β

2 ]11β̄
2
2,1

)
.

The MDD can be computed analytically as follows:

ln p(W ) = −Tn
2

ln(2π) +
n∑
i=1

[
1

2

(
ln |P β

i | − ln |P̄ β
i |
)

(A.26)

+νi ln |Si| − ν̄i ln |S̄i| − ln Γ(νi) + ln Γ(ν̄i)

]
,

with the understanding that for i = 1 the expression ln |P β
i | − ln |P̄ β

i | = 0 and for i = 2 it

gets replaced by ln[P β
i ]11 − ln[P̄ β

i |]11.
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C Data Used in the Empirical Analysis

Aggregate Data. Following Jarocinski and Karadi (2020) we use six monthly macroeco-

nomic variables in the empirical model: (i) the monthly average of the one-year constant-

maturity Treasury yield serves as the monetary policy indicator. (ii) The monthly average

of the S&P 500 stock price index in log levels. (iii,iv) Real GDP and GDP deflator in log

levels interpolated to monthly frequency based on Stock and Watson (2010). (v) The excess

bond premium (EBP) as indicator of financial conditions. (vi) An aggregate employment

rate constructed from the micro data (see below). The functional VAR with micro-level

consumption data includes an additional aggregate variable: real personal consumption ex-

penditures per capita in log levels. We use Personal Consumption Expenditures (PCE from

FRED) and divide it by population level (CNP16OV from FRED) to get per capita values.

Then we use GDP deflator to get the real values.

Micro-Level Earnings Data. The CPS raw data are downloaded from

http://www.nber.org/data/cps basic.html.

The raw data files are converted into STATA using the do-files available at:

http://www.nber.org/data/cps basic progs.html.

We use the series PREXPLF (“Experienced Labor Force Employment”), which is the same

as in the raw data, and the series PRERNWA (“Weekly Earnings”), which is constructed

as PEHRUSL1 (“Hours Per Week at One’s Main Job”) times PRHERNAL (“Hourly Earn-

ings”) for hourly workers, and given by PRWERNAL for weekly workers. STATA dictionary

files are available at:

http://www.nber.org/data/progs/cps-basic/

We pre-process the cross-sectional data as follows. We drop individuals if (i) the em-

ployment indicator is not available; and (ii) if they are coded as “employed” but the weekly

earnings are missing. In addition, we re-code individuals with non-zero earnings as employed

and set earnings to zero for individuals that are coded as not employed. A CPS-based un-

employment rate is computed as the fraction of individuals that are coded as not employed.

By construction this is one minus the fraction of individuals with non-zero weekly earnings,
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which is used to normalize the cross-sectional density of earnings. It turns out that the CPS-

based unemployment rate tracks the aggregate unemployment rate (UNRATE from FRED)

very closely. The levels of the two series are very similar, but the CPS unemployment rate

exhibits additional high-frequency fluctuations, possibly due to seasonals that have been

removed from the aggregate unemployment rate.

Micro-Level Consumption Data. We use public use microdata (PUMD) from the Con-

sumer Expenditure Survey (CEX) conducted by the Bureau of Labor Statistics (BLS). Quar-

terly expediture (by respondent ID and expenditure category) are computed as the sum over

three months in a quarter. We divide the expenditures by the number of individuals with

age 16 and over belonging to the consumption unit (i.e. household or family) to obtain per

capita expenditures. Because CEX per capita expenditures capture less than 50% of NIPA

per capita expenditures we rescale them as follows. Let Ct be aggregate per capita con-

sumption from NIPA. We calculate 1
T

∑T
t=1 median(c1t, . . . , cNt)/Ct ≈ 0.46. We then define

zit = cit/(0.46 · Ct). Thus, if zit = 1 the individual approximately consumes at the level of

aggregate consumption per capita. Finally, as for the earnings data, we apply the inverse

hyperbolic sine transformation to obtain xit.

Transformation of Micro Data. We transform the micro data (earnings-GDP ratio, or

consumption relative to aggregate per capita consumption), denoted by z below, using the

inverse hyperbolic sine transformation, which is given by

x = g(z|θ) =
ln(θz + (θ2z2 + 1)1/2)

θ
=

sinh−1(θz)

θ
(A.27)

wth θ = 1. Note that g(0|θ) = 0 and g(1)(0|θ) = 1, that is, for small values of z the transfor-

mation is approximately linear. For large values of z the transformation is logarithmic:

g(z|θ) ≈ 1

θ
ln(2θz) =

1

θ
ln(2θ) +

1

θ
ln(z).

The inverse of the transformation takes the form

z = g−1(x|θ) =
1

θ
sinh(θx) =

1

2θ
(eθx − e−θx).

Most of the calculations in the paper are based on px(x). But in some instances, it is

desirable to report for pz(z). From a change of variables (omitting the θ), we get

pz(z) = px(g(z))|g′(z)|,
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where

g′(z) =
1 + θz

(θ2z2+1)1/2

θz + (θ2z2 + 1)1/2
=

1

(θ2z2 + 1)1/2
.

Whenever we do convert the estimated densities back from z to x, we recycle the density

evaluations at xj. Thus, we evaluate pz(z) for grid points zj = g−1(xj), which leads to

pz(zj) = px(xj)
∣∣g′(g−1(xj))∣∣,

where

∣∣g′(g−1(xj))∣∣ =
1(

1
4
(eθxj − e−θxj)2 + 1

)1/2 =
2

(e2θxj + e−2θxj + 2e2θxje−2θxj)
1/2

=
2

eθxj + e−θxj
.
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