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Abstract

This paper studies the estimation of multi-dimensional heterogeneous parameters

in a nonlinear panel data model with endogeneity. These heterogeneous parameters

are modeled with group patterns. Through estimating multiple memberships for each

unit, the proposed method is robust to sparse interactions; in other words, certain

combinations of unobserved features are less common compared to other combinations.

We estimate the memberships along with the group-specific and common parameters

in a nonlinear GMM framework and derive their large sample properties. Finally,

we apply this approach to the estimation of production function and re-evaluate the

trajectory of the aggregate markup.
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1 Introduction

Firms, individuals, and countries are heterogeneous in multiple dimensions. For example,

firms can differ in their productivities, in their output elasticities of variable inputs (hence-

forth labor elasticities), and in their output elasticities of capital (henceforth capital elas-

ticities). A flexible specification of the production function ideally allows for heterogeneity

in all of these features. In practice, the key questions for estimation are how to specify a

flexible yet parsimonious econometric model that is consistent with multi-dimensional unob-

served heterogeneity in the data, and how to estimate these heterogenenous parameters in a

nonlinear model with endogeneity.

Building on recent developments in modeling parameter heterogeneity through group

(cluster) patterns, this paper (i) proposes a framework to assign multiple group memberships

to each cross-sectional unit, where each group membership is determined by one particular

characteristic of the unit, and (ii) estimate the memberships as well as group-specific and

common parameters in a nonlinear generalized method of moments (GMM) framework. In

the context of production function estimation, we consider a setting in which there are

multiple (say, low, medium, and high) productivity, labor elasticity, and capital elasticity

groups. A firm may, for instance, belong to the low productivity group, the medium labor

elasticity group, and the high capital elasticity group.

We employ the K-mean type classification algorithm to estimate the cluster structure

and study its asymptotic properties as in Bonhomme and Manresa (2015). We show that

this algorithm leads to classification consistency of the multi-dimensional cluster structure

and derive the asymptotic distribution of the group-specific and common parameters in a

nonlinear panel data model with endogeneity. This nonlinear panel data analysis builds on

some important theoretical results developed by Su, Shi, and Phillips (2016), who proposed

a new clustering algorithm by shrinkage methods. The asymptotic results are obtained as

N and T pass to infinite jointly, but allow T to grow much slower than N . Thus, they are

compatible with relatively short panels with a large number of cross-sectional observations.

The traditional one-dimensional clustering approach is sensitive to sparse interactions

among different features in the data. In the production function setting with three produc-

tivity, labor elasticity, and capital elasticity levels, respectively, there exists a total of 33 = 27

possible combinations. A standard one-dimensional clustering approach would allocate the

firms to 27 different groups and estimate three parameters for each group. Unfortunately,

this approach requires a large number of observations from each of these 27 clusters, and
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implicitly also requires that the cluster sizes are balanced. When the cluster sizes are im-

balanced, we say the smaller clusters represent sparse interactions among the corresponding

features.1 In the presence of such sparse interactions, the standard one-dimensional clus-

tering approach faces challenges to detect the relatively small clusters and to estimate their

parameters accurately, evidenced by the violation of regularity conditions that guarantee

their consistency.

In contrast, the multi-dimensional clustering approach proposed in this paper is robust

to the shape of the joint distribution of these multiple features. It investigates the clusters

in each dimension, e.g., productivity, labor elasticity, and capital elasticity in the production

function context, separately, and only has to estimate 3 · 3 = 9 parameters in the running

example.2 Thus, inference with respect to cluster memberships and group-specific parameters

is sharpened by pooling units that are homogeneous in one dimension, e.g., productivity, but

heterogeneous in the other dimensions, e.g., labor and capital elasticities. This raises the

number of observations available to estimate each parameter and makes the model more

parsimonious by reducing the overall number of parameters.

We model the multi-dimensional heterogeneity symmetrically by assuming all heteroge-

neous parameters follow group patterns, with the added flexibility that they are associated

with different memberships. Once the memberships are consistently estimated, we impose

the estimated cluster structure and construct a pooled GMM criterion to obtain the more

efficient two-step estimator. In this setup, all cluster-specific and common parameters are

estimated at the
√
NT rate with asymptotically unbiased normal distributions.

We conduct Monte Carlo simulations to illustrate the small sample properties of our

multi-dimensional clustering estimator. The Monte Carlo designs are closely modeled after

the empirical application, albeit they use a simplified version of the production function that

abstracts from capital as an input. The main objective of the experiments is to examine

the effect of unknown group membership on the precision of the parameter estimates, and

to compare the accuracy of our proposed multi-dimensional clustering estimator to that of

a conventional one-dimensional clustering estimator. We find that the multi-dimensional

approach exhibits good small sample properties and generates sharper estimates than the

one-dimensional clustering estimator.

1They resemble the weak factors in factor analysis.
2More generally, suppose there are m heterogeneous features, characterized by one parameter each, and

k clusters for each feature. The one-dimensional approach involves km unknown parameters, whereas the
multi-dimensional approach involves only km unknown parameters. Admittedly, the more parsimonious
approach assumes a product structure of the unknown group-specific parameters in different dimensions.
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We use the proposed multi-dimensional clustering technique to estimate firm-level pro-

duction functions for a subset of two digit sectors defined by the North American Industry

Classification System (NAICS). Within each two-digit sector, we allow for multi-dimensional

group heterogeneity in terms of total factor productivity, and output elasticities with respect

to variable inputs and capital. The production functions are estimated on panel data sets

for publically traded firms. Using the approach of De Loecker and Warzynski (2012), we

scale the estimated variable-input elasticities by the revenue-to-variable-cost ratio to obtain

an approximation of firm-level markups. We then aggregate the firm-level markups to com-

pute an aggregate markup and re-examine the rise of aggregate markups documented by

De Loecker, Eeckhout, and Unger (2020). Overall, we conclude that in our setting allowing

for group heterogeneity within two-digit NAICS sectors increases the estimated aggregate

markup compared to the specification that imposes within-sector homogeneity.

Our paper is related to various strands of the literature. There is a large literature on

cluster analysis of heterogeneity in panel data models. Hahn and Moon (2010) studied the

incidental parameter problem when the fixed effect has a finite support. In practical estima-

tion, the cluster membership could be known (e.g., Bester and Hansen, 2016) or estimated

with various classification methods (e.g., Lin and Ng, 2012; Bonhomme and Manresa, 2015;

Ando and Bai, 2016; Su, Shi, and Phillips, 2016; Ke, Li, and Zhang, 2016; Gu and Volgushev,

2019; Wang and Su, 2021; Chetverikov and Manresa, 2022; Krasnokutskaya, Song, and Tang,

2022; Zhang, 2023, among others). Similar to clusters, finite mixtures models can be fruit-

fully applied to model group-wise heterogeneity (e.g., Sun, 2005; Kasahara and Shimotsu,

2009; Henry, Kitamura, and Salanie, 2014). In a Bayesian setting, correlated random effects

distributions modeled flexibly with Dirichlet process mixture priors can also capture forms

of group heterogeneity, e.g., (e.g., Liu, 2023).

Our theoretical analysis of the K-mean classification builds on related results in Bon-

homme and Manresa (2015). The main difference is that we estimate group memberships by

a nonlinear GMM criterion instead of a linear least square criterion.3 Our asymptotic anal-

ysis of the nonlinear GMM problem uses technical results from Su, Shi, and Phillips (2016),

who developed a classifier-LASSO approach. They considered two panel settings: a nonlin-

ear model without endogeneity and a linear model with instrumental variables. Liu, Shang,

Zhang, and Zhou (2020) considered classification in a nonlinear M-estimation framework

that allows for an over-specification of the number of clusters.

3We do not allow the parameters to be time-varying as in Bonhomme and Manresa (2015). We also do
not consider the non-discrete population heterogeneity as in Bonhomme, Lamadon, and Manresa (2022).
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A few recent papers have utilized the assignment of multiple memberships. For instance,

Leng, Chen, and Wang (2023) applied the multi-dimensional clustering method to study

quantile estimation of a linear model with multiple heterogeneous coefficients and two-way

fixed effects. Cytrynbaum (2020) considered a blocked clusterwise regression with least

squares estimation of a linear model with multiple heterogeneous coefficients.

There exists a large literature on production function estimation. Since we are using our

production function estimates to compute markups using the approach of De Loecker and

Warzynski (2012), we only highlight a three closely related papers: De Loecker, Eeckhout,

and Unger (2020) and Demirer (2022) use the so-called proxy-variable approach to estimate

production functions, based on the Compustat data set of publically traded US firms, that

are assumed to be homogeneous within sectors. In contrast, we use a dynamic panel data

approach that is robust to the identification problems discussed in Flynn, Gandhi, and Traina

(2019) and allows for group heterogeneity. Kasahara, Schrimpf, and Suzuki (2023) studied

unobserved heterogeneity in production function estimation in a finite-mixture framework

and provided nonparametric identification results under a fixed number of time periods.

The remainder of the paper is organized as follows. Section 2 describes the model and the

estimation procedure.Section 3 studies the theoretical properties of the proposed method.

Section 4 compares the proposed multi-dimensional clustering method to the standard one-

dimensional clustering method in a Monte Carlo simulation design for the production func-

tion estimation. The empirical analysis is presented in Section 5. Finally, Section 6 concludes.

Proofs, derivations and additional results for the Monte Carlo experiment, and details on

the construction of the data set used for the empirical analysis are collected in an Online

Appendix.

Throughout the paper, we adopt the following notations. For vectors a, b, we use (a, b)

to denote (a′, b′)′, unless the dimension is defined otherwise. Let ||A|| denote the Frobenius

norm of a matrix A. When A is symmetric, let µmax(A) and µmin(A) denote the largest and

smallest eigenvalues of A. Let 1{·} denote the indicator function.

2 The Nonlinear GMM Framework

We first present a framework of nonlinear GMM estimation of heterogeneous coefficients

with multiple unknown group patterns. For the ease of presentation, we focus on a setup
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with two group memberships. The generalization to more group memberships is straightfor-

ward, as done in the empirical application. Our model assumes that all the heterogeneous

coefficients are group-specific, excluding individual-specific parameters. The model explic-

itly incorporates homogeneous parameters that are shared among all individuals. The model

specification and estimation are presented in Section 2.1, a production function example is

provided in Section 2.2, and implementation details are discussed in Section 2.3.

2.1 Model Specification and Estimation

We have panel data {wit : i = 1, ..., N ; t = 1, ..., T} and use them to estimate the unknown

parameters θi = (ai, bi, λ) ∈ Rdα+dβ+dλ based on moment conditions. We envision N to be

significantly larger than T such that it is difficult to obtain accurate estimates of θi based

on the times series {wit : t = 1, . . . , T} alone. We consider a parsimonious model of ai and

bi with group patterns. Instead of assigning each individual i to one group membership and

requiring (ai, bi) to depend on this membership, we allow each coefficient to have its own

unknown membership. Let gi ∈ {1, ..., ng} denote the membership for ai and hi ∈ {1, ..., nh}
denote the membership for bi. Then

ai =


α1 if gi = 1
...

...

αng if gi = ng

and bi =


β1 if hi = 1
...

...

βnh if hi = nh

. (2.1)

Let

α = (α1, . . . , αng) ∈ Rdαdng and β = (β1, . . . , βnh) ∈ Rdβdnh (2.2)

denote the group-specific values. We can write

ai = α(gi) and bi = β(hi), (2.3)

where α(gi) = αgi denotes the subvector of α associated with the gthi group, and similarly,

β(hi) = βhi denotes the subvector of β associated with the hthi group. With the two-

dimensional group pattens, the unknown parameters are

θ = (α, β, λ), G = (g1, . . . , gN), H = (h1, . . . , hN). (2.4)
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The parameter space is (θ,G,H) ∈ Θ × ΓG × ΓH , where Θ = Ang × Bnh × Λ, and ΓG and

ΓH are sets of all possible partitions of {1, . . . , N} into ng and nh groups, respectively. We

assume ng and nh are known for now. In practice, they can be selected by the quasi Bayesian

information criterion (BIC) presented in (2.9) below.

We assume group patterns and moment conditions hold for the true values of

the parameters. For each i, let g0
i and h0

i denote the true group memberships and

θ0
i = (α0(g0

i ), β
0(h0

i ), λ
0) denote the true value for θi = (α(gi), β(hi), λ). For some known

finite-dimensional function m(wit; ·) ∈ Rdm , the following moment conditions hold:

E
[
m
(
wit; θ

0
i

)]
= 0, for all i and t. (2.5)

We consider the GMM estimator(
θ̂, Ĝ, Ĥ

)
= arg min

(θ,G,H)∈Θ×ΓG×ΓH

Q̂(θ,G,H), where (2.6)

Q̂(θ,G,H) = N−1

N∑
i=1

Q̂i(θ, gi, hi) and

Q̂i(θ, gi, hi) =

[
T−1

T∑
t=1

m (wit;α(gi), β(hi), λ)

]′
WiNT

[
T−1

T∑
t=1

m (wit;α(gi), β(hi), λ)

]

for some weighting matrix WiNT .
4 The individual GMM criterion Q̂i(θ, gi, hi) is a quadratic

form of the sample analog of the moment condition (2.5) for unit i, obtained by taking a

time series average. The quadratic forms are then averaged across i to obtain the estimation

objective function Q̂(θ,G,H).

Note that the criterion function Q̂(θ,G,H) is invariant to relabeling the group member-

ships in (θ,G,H). Without loss of generality, we assume (θ̂, Ĝ, Ĥ) is already suitably rela-

beled such that we can show below in Section 3 that α̂ = (α̂1, . . . , α̂ng) and β̂ = (β̂1, . . . , β̂nh)

are consistent estimators of α0 = (α0
1, . . . , α

0
ng) and β0 = (β0

1 , . . . , β
0
ng), respectively, and that

the classification is consistent.

Given the group membership Ĝ and Ĥ, we re-estimate θ0 = (α0
1, . . . , α

0
ng , β

0
1 , . . . , β

0
nh
, λ0)

4 Fernandez-Val and Lee (2013), Su, Shi, and Phillips (2016), among others, use the same type of criterion
in the presence of heterogeneous parameters for panel data.
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in a second step by minimizing a pooled GMM criterion5

θ̃ = arg min
θ∈Θ

Q̃(θ), where Q̃(θ) = m̃(θ)′WNT m̃(θ), with (2.7)

m̃(θ) = (NT )−1

N∑
i=1

T∑
t=1

m
(
wit;α(ĝi), β(ĥi), λ

)
,

and WNT is a weighting matrix which could depend on Ĝ and Ĥ. In a linear instrumental

variable model with clustered coefficients, Su, Shi, and Phillips (2016) showed that a pooled

two-step estimator like θ̃ is preferred to a one-step estimator obtained simultaneously with

the classification algorithm, because the latter typically is less efficient and suffers from

asymptotic bias. Our Monte Carlo simulations also confirm that the two-step estimator θ̃

has better finite-sample properties in a nonlinear GMM problem designed for the production

function estimation.

The number of groups, ng and nh, can be determined based on a (quasi) BIC. Let Ω̂ be a

consistent estimator of the asymptotic covariance matrix Ω of m̃(θ̃), derived in Section 3.2;

see (3.15). The GMM criterion with the optimal weighting matrix is

Q̃(ng, nh) = m̃(θ̃)′Ω̂−1m̃(θ̃), (2.8)

where we make it clear that m̃(θ) and Ω̂ are constructed with classification based on ng and

nh groups for α and β, respectively. A BIC for the problem is

BIC(ng, nh) = Q̃(ng, nh) + (ngdα + nhdβ + dλ)
log(NT )

NT
. (2.9)

In practice, we choose (ng, nh) to minimize BIC(ng, nh) with 1 ≤ ng ≤ gmax and 1 ≤ nh ≤
hmax for some user-selected upper bounds gmax and hmax. In the current setup, (NT ) Q̃(ng, nh)

is an analog of the log-likelihood, and BIC in (2.9) is a natural choice for selecting the number

of clusters.6

5The objective function corresponds to the averaged moment condition N−1ΣN
i=1E

[
m
(
wit; θ

0
i

)]
= 0,

which would not be suitable to estimate the group memberships.
6Besides BIC, a wide range of penalty coefficients can deliver model selection consistency, as shown by

Bonhomme and Manresa (2015), Su, Shi, and Phillips (2016), and others for clustering problems. A testing
procedure to determine the number of clusters is provided by Lu and Su (2017).



This Version: September 19, 2023 8

2.2 A Production Function Example

The following model will serve as a data generating process (DGP) for the Monte Carlo

analysis in Section 4. A more elaborate version will be used for the empirical analysis in

Section 5. The production function takes the form

yit = b0
i vit + ωit + εit, (2.10)

where yit is the observed log output and vit represents log variable inputs (including labor,

intermediate inputs, materials, etc), ωit is an unobserved productivity shock that is known

to the firm, and εit is a zero-mean unobserved output shock that is realized after the factor

input has been chosen optimally to maximize profits. The productivity shock ωit follows an

AR(1) process

ωit = a0
i + ρ0ωit−1 + ξit, (2.11)

where the zero-mean innovation ξit is uncorrelated with input choices prior to period t. The

output shock εit is uncorrelated with the variable input choice at period t and before.

Heterogeneity in the input elasticity b0
i is modeled with a group structure. Moreover,

instead of relying on firm fixed effects, we also model productivity heterogeneity a0
i across

firms with a separate group structure. In empirical applications that include the capital stock

as factor of production (e.g., the model that we estimate in Section 5), using firm fixed effects

often leads to unusually low capital elasticity estimates in applications; Ackerberg, Caves,

and Frazer (2015). The production function literature theorizes that fixed effect estimators

that rely on the within-transformation amplify the highly-persistent measurement error noise

in capital stock. The GMM estimation of our group-specific parameters avoids this concern.

To control for the endogeneity of the production inputs when estimating elasticities, the

literature has focused on two types of estimation strategies. The first strategy is based on

an observable proxy variable that can be used to control for unobserved productivity and is

known as the Olley and Pakes (1996) method. The second is the dynamic panel method that

quasi-differences the production function and uses lagged input choices as instruments. The

proxy variable approach relies on observables that are monotonic in the firm’s productivity.

Examples include capital investment, e.g., Olley and Pakes (1996), and material inputs, e.g.,

Levinsohn and Petrin (2003). The recent literature has moved toward material inputs as

proxy, assuming that the capital stock, labor, and material inputs are observed separately

to achieve identification; see Ackerberg, Caves, and Frazer (2015). Unfortunately, the data
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set used for the empirical analysis does not contain material inputs as a separate firm-level

variable. Thus, we use dynamic panel method in this example, which will be the basis for

the Monte Carlo experiment in Section 4, and the empirical application in Section 5.

Let

∆yit(ρ) = yit − ρyit−1, ∆vit(ρ) = vit − ρvit−1 (2.12)

denote the differencing terms given the parameter ρ. Then we have

∆yit(ρ
0)− a0

i − b0
i∆vit(ρ

0) = ξit +
(
εit − ρ0εit−1

)
. (2.13)

Let zit denote a vector comprising variable input choices prior to period t and the constant

term. This ensures that zit is uncorrelated with the right hand side of (2.13). We obtain the

moment condition

E
[
zit
(
∆yit(ρ

0)− a0
i − b0

i∆vit(ρ
0)
)]

= 0. (2.14)

With the two-dimensional group membership gi and hi for ai and bi, respectively, we have

m (wit; θi) = zit (∆yit(ρ)− ai − bi∆vit(ρ)) , (2.15)

ai = α(gi), bi = β(hi).

The common parameter is λ = ρ. This model will be used in the Monte Carlo experiment

in Section 4. In the empirical estimation in Section 5, we consider a trans-log specification

of the production function with capital, additional quadratic terms of the regressors, and a

time trend added to (2.10).

2.3 Implementation Details

In practice, we compute the GMM estimator in (2.6) by Lloyd’s Algorithm, as in Bonhomme

and Manresa (2015), and generalize the iteration to multiple types of memberships. Given

G and H, θ̂ is a GMM estimator based on Q̂(θ,G,H). Given θ and H, we minimize the

GMM criterion function with respect to G to obtain the group membership estimator Ĝ.

After re-estimating θ and holding G fixed, the group memberships H are also determined

by the GMM criterion function. In the subsequent description of the algorithm, M is a

large number ensuring that the algorithm does not terminate after one iteration and ε is a

number close to zero that characterizes the tolerance level for improvements in the objective

function. The computation details is listed in algorithm 1.
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Algorithm 1 Lloyd’s Algorithm

Initialization, s = 0: Provide an initial guess (Ĝ(0), Ĥ(0)). Let Q̂(0) = M .
Iterations, s = 1, 2, 3, . . . :

1. Using the last iteration’s estimate of group memberships (Ĝ(s−1), Ĥ(s−1)), estimate the

parameter θ: θ̂ = arg min
θ∈Θ

Q̂
(
θ, Ĝ(s−1), Ĥ(s−1)

)
.

2. For i = 1, . . . , N , determine the g-group membership: ĝ
(s)
i = arg min

gi∈{1,...,ng}
Q̂i

(
θ̂, gi, ĥ

(s−1)
i

)
.

3. Re-estimate the parameter θ: θ̂(s) = arg min
θ∈Θ

Q̂
(
θ, Ĝ(s), Ĥ(s−1)

)
.

4. For i = 1, . . . , N , determine the h-group membership: ĥ
(s)
i = arg min

hi∈{1,...,nh}
Q̂i

(
θ̂, ĝ

(s)
i , hi

)
.

5. Assess convergence: let Q̂(s) = Q̂
(
θ(s), Ĝ(s), Ĥ(s)

)
and stop if

∣∣Q̂(s) − Q̂(s−1)
∣∣ ≤ ε.

To resolve the label indeterminacy, we assume that α1 < α2 < . . . < αng and β1 <

β2 < . . . < βnh . Because the objective function of the algorithm does not depend on the

labeling, we relabel the groups such that the inequality restrictions are satisfied, after it

has converged. For the Monte Carlo experiment in Section 4 we initialized the algorithm

at the true membership indicators G0 and H0. For the empirical analysis we executed

the optimization conditional on multiple starting values (Ĝ(0), Ĥ(0)). One of the starting

values was generated by using K-means clustering based on log output yit, and the observed

production inputs. The remaining starting points were generated by drawing membership

indicators independently from a uniform distribution. The results reported in Section 5 are

based on the optimization associated with the lowest value of the objective function.

3 Asymptotic Properties

In this section, we study the asymptotic properties of the nonlinear GMM estimator and

classification of group memberships. Section 3.1 provides a set of assumptions and shows

that the one-step GMM estimator θ̂ in (2.6) is consistent on average across i and in estimating

the group-specific parameters. However, to consistently estimate the parameters for each

individual, we need the consistent classification results in Section 3.2. Section 3.2 also

establishes the asymptotic distribution of the recommended two-step estimator θ̃ in (2.7).

We verify all the general assumptions with specific conditions for the production function
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estimation example. Among all the regularity assumptions, we highlight that the proposed

method with multiple memberships is robust to sparse interactions across the groups for

different coefficients.

3.1 Consistent Estimation under Sparse Interactions

First, we assume the following identification and regularity conditions.

Assumption ID. For any η, inf
N

min
1≤i≤N

inf
||θi−θ0i ||>η

||E[m(wit; θi)]|| > 0.

Assumption R. (i) {wit, t = 1, 2, . . .} are independently distributed across i. For each

i, {wit : t = 1, 2, . . . , } is stationary strong mixing with mixing coefficients αi(·), where

α(·) = sup
N

max
1≤i≤N

αi(·) satisfies α(τ) ≤ cαr
τ for some cα > 0 and r ∈ (0, 1).

(ii) The true value θ0
i lies in the interior of the convex compact set Θ = A×B ×Λ for all i.

(iii) There exists a function f(wit) such that sup
θi∈Θ
||m(wit; θi)|| ≤ f(wit) and ||m(wit, θi) −

m(wit, θi)|| ≤ f(wit)||θi − θi|| for all θi, θi ∈ Θ. E|f(wit)|q <∞ for some q ≥ 6.

Assumption NT. N = O(T q/2−1), where q ≥ 6 is the constant in Assumption R(iii).

Assumption W. There exists nonrandom matrices Wi such that max
1≤i≤N

‖WiNT −Wi‖ =

op(1) and inf
N

min
1≤i≤N

µmin(Wi) > 0 and sup
N

max
1≤i≤N

µmax(Wi) <∞.

These assumptions are comparable to Assumptions A1 and A2 of Su, Shi, and Phillips

(2016). Assumption ID ensures that θ0
i is identifiable based on the moment condition (2.5).

Assumption R and NT comprise various regularity conditions to guarantee that the sample

moment function converges to the population moment function for each unit i uniformly

over the parameter space Θ and over units i = 1, . . . , N at a desired rate. The observations

are assumed to be cross-sectionally independent, and the temporal dependence is controlled

by a mixing condition. The moment function m(wit, θi) is uniformly (in θi ∈ Θ) bounded

by the function f(wit) and f(wit) also serves as a Lipschitz bound. We assume that the qth

moment of f(wit) exists, where q ≥ 6.7 The asymptotic results are obtained as N and T

pass to infinite jointly. According to Assumption NT, the larger q, the more slowly the time

series dimension of the panel can grow. Finally, Assumption W ensures that for each unit i

the sequence of weight matrices is convergent.

7Alternatively, one can also impose tail condition on f(wit) directly, as in Bonhomme and Manresa
(2015) and Liu, Shang, Zhang, and Zhou (2020).
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Under Assumptions R and NT, Su, Shi, and Phillips (2016) established in their

Lemma S1.2(ii) the uniform convergence result

max
1≤i≤N

P

{
sup
θi∈Θ

∥∥∥∥∥T−1

T∑
t=1

m (wit; θi)− E[m (wit; θi)]

∥∥∥∥∥ ≥ η

}
= o(N−1) (3.1)

for any η > 0, as N, T → ∞. To show the classification consistency for the memberships

among N units, the o(N−1) rate is useful.

To consistently estimate of the group specific parameters α0 = (α0
1, . . . , α

0
ng) and β0 =

(β0
1 , . . . , β

0
ng), Assumption S states that each group is well separated from the rest and each

group size is a non-degenerate portion of the whole population.

Assumption S. (i) For all g 6= g̃, h 6= h̃, ||α0
g−α0

g̃||2 > c and ||β0
h−β0

h̃
||2 > c for some c > 0.

(ii) N−1Σn
i=11{g0

i = g} → πg > 0 and N−1Σn
i=11{h0

i = h} → ψh > 0 for all g ∈ {1, . . . , ng}
and h ∈ {1, . . . , nh}.

Assumption S(ii) allows for sparse interactions between two types, i.e.,

N−1

N∑
i=1

1{gi = g and hi = h} → 0 for some (g, h). (3.2)

One can handle the two-dimensional clustering model with the one-dimensional method

by calling {i : gi = g and hi = h} a cluster. However, the standard one-dimensional

method does not allow for sparse interactions, because the number of observations in this

intersection cluster is too small compared to larger clusters. The two-dimensional clustering

method solves this problem because we estimate α(gi) with all observations that share the

membership gi, regardless of hi. The same argument holds for the estimation of β(hi).

Lemma 3.1 Suppose Assumptions ID, R, NT, W hold. Then,

N−1

N∑
i=1

(
α̂(ĝi)− α0(g0

i )
)2 →p 0, N−1

N∑
i=1

(
β̂(ĥi)− β0(h0

i )
)2

→p 0, λ̂→p λ
0.

Lemma 3.2 Suppose Assumptions ID, R, NT, W, and S hold. Then,

θ̂ →p θ
0, i.e., α̂→p α

0, β̂ →p β
0, λ̂→p λ

0.
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It is worth pointing out that N−1ΣN
i=1(α̂(ĝi)− α0(g0

i ))
2 in Lemma 3.1 and ||α̂ − α0||2 in

Lemma 3.2 are two different measures between the estimator and the true value. The former

is based on α̂(ĝi), where the group membership ĝi could be possibly misclassified. The later

α̂ does not consider the group membership classification.

Production Function Example of Section 2.2 (Continued). To verify these assump-

tions (and Assumption E below), we assume the following conditions hold for the production

function estimation example discussed above.

(i) {(vit, ξit, εit) : t = 1, 2, . . .} are independently distributed over i. For each i, {(vit, ξit, εit) :

t = 1, 2, . . .} is stationary strong mixing that satisfies Assumption R(i). Note that (ξit, εit)

are exogenous shocks and one would typically assume that they are also i.i.d. across time.

The variable input choice vit is endogenous and depends indirectly on ξit through the AR(1)

process ωit and the production function parameters θi. It also depends on product demand

and factor prices, which have not been explicitly modeled at this stage.

(ii) θi = (ai, bi, ρ) ∈ Θ = A×B× [0, ρ] for some ρ < 1, where A,B ∈ R are both convex and

compact. The true value θ0
i is in the interior of Θ. The assumption 0 ≤ ρ < 1 ensures that

ωit is stationary which is necessary for vit to satisfy the mixing assumption.

(iii) Let eit = ωit + εit and define xit(ρ) = (1,∆vit(ρ), eit−1). Identification in this model

depends on

E[mθ

(
wit; θ

0
i

)
] = −E[zitx

′
it(ρ

0)]. (3.3)

Thus, we require that E[zitx
′
it(ρ

0)] has full rank.

(iv) Consider the bound

‖m(wit; θi)‖ ≤ ‖zityit‖+ |ρ| · ‖zityit−1‖+ |ai| · ‖zit‖+ |bi| · ‖zitvit‖+ |ρ| · |bi| · ‖zitvit−1‖,

‖mθ(wit; θi)‖ ≤ ‖zit‖+ ·‖zitvit‖+ |ρ| · ‖zitvit−1‖+ ‖zityit−1‖+ |bi| · ‖zitvit−1‖. (3.4)

Because Θ is compact, there exists a finite constant M such that we can define the bounding

function f(wit) as

f(wit) = M
(
‖zit‖+ ‖zityit‖+ ‖zityit−1‖+ ‖zitvit‖+ ‖zitvit−1‖

)
. (3.5)

(v) Let dit = (1, yit, yit−1, vit, vit−1). Let q∗ be the largest q such that E||zitd′it||q ≤ ∞.

Then Assumption NT with q replaced by q∗ provides the slowest rate at which the time

series dimension T can grow in relative to the cross-sectional dimension N . Note that the

production function implicitly determines the moments of yit as a function of the moments
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of (vit, ξit, εit).

(v) Consider WiNT = (T−1ΣT
t=1zitz

′
it)
−1. It corresponds to the optimal weighting matrix if

the conditional variance of the shocks are constant over time, although it may vary across

i. For this choice of WiNT , Assumption W holds by (3.1) and the condition E[zitz
′
it] has full

rank and E||zit||2 <∞. �

3.2 Classification and Asymptotic Distribution

Given θ̂, Ĝ and Ĥ are K-mean type estimators of the group memberships that minimize

the nonlinear GMM criterion function Q(θ̂, G,H). Bonhomme and Manresa (2015) provide

consistency of the K-mean type classification method based on linear least squares estimation.

We extend such classification consistency to nonlinear GMM problems with endogeneity and

incorporate multiple-dimensional classification. Before presenting the formal result, we first

illustrate the intuition and key arguments. For the ease of notation in subsequent arguments,

write

mit(θ, g, h) = m(wit;α (g) , β(h), λ), (3.6)

for any g ∈ {1, . . . , ng} and h ∈ {1, . . . , nh}. Because θ̂ →p θ0, it is sufficient to consider θ̂ ∈
Nη = {θ ∈ Θ : ||θ− θ0|| ≤ η} for some positive number η. Given θ̂, for any (gi, hi) 6= (g0

i , h
0
i ),

we have

P
{
ĝi = gi, ĥi = hi

}
≤ P

{
Q̂i(θ̂, gi, hi) < Q̂i(θ̂, g

0
i , h

0
i )
}
. (3.7)

Because the limit of the weighting matrix has bounded eigenvalues by Assumption W,

Q̂i(θ̂, gi, hi) ≥ c1

∥∥∥∥∥ 1

T

T∑
t=1

mit(θ̂, gi, hi)

∥∥∥∥∥
2

,

Q̂i(θ̂, g
0
i , h

0
i ) ≤ c2

∥∥∥∥∥ 1

T

T∑
t=1

mit(θ̂, g
0
i , h

0
i )

∥∥∥∥∥
2

(3.8)

for some positive constants c1 and c2, with probability approaching 1. To bound the proba-

bility of misspecifying the membership of i to (gi, hi), it is therefore sufficient to bound

Pi,gh(θ̂) = P

c1

∥∥∥∥∥ 1

T

T∑
t=1

mit(θ̂, gi, hi)

∥∥∥∥∥
2

≤ c2

∥∥∥∥∥ 1

T

T∑
t=1

mit(θ̂, g
0
i , h

0
i )

∥∥∥∥∥
2
 . (3.9)
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With a decomposition,

1

T

T∑
t=1

mit(θ̂, gi, hi) =
1

T

T∑
t=1

mit(θ̂, gi, hi)− E[mit(θ̂, gi, hi)]︸ ︷︷ ︸
noise

+E[mit(θ̂, gi, hi)]︸ ︷︷ ︸
signal

, (3.10)

where (i) the first term on the right hand side is an op(1) noise term and (ii) the second term

E[mit(θ̂, g, h)] is a signal term that is strictly positive. This positive signal for misspecified

group memberships is ensured by the separability condition in Assumption S and the identi-

fication condition in Assumption ID. By a similar decomposition for T−1ΣT
t=1mit(θ̂, g

0
i , h

0
i ) as

in (3.10), we can show that (i) the noise is also op(1) and (ii) the signal term E[mit(θ̂, g
0
i , h

0
i )]

is close to 0 with θ̂ ∈ Nη because E[mit(θ
0, g0

i , h
0
i )] = 0. We can show that, under Assumption

R and NT, the probability of the noise terms being larger than the positive signal term con-

verges to 0 at rate o(N−1) uniformly, following results as in (3.1). Therefore, we have Pi,gh(θ̂)

converges to 0 at rate o(N−1) uniformly and the whole group can be classified consistently.

The result is presented in Theorem 3.3 below and its formal proof is given in the Appendix.

Theorem 3.3 Suppose Assumptions ID, R, NT, W, S hold.

P
{
Ĝ = G0 and Ĥ = H0

}
→ 1 as N, T →∞,

where G0 = {g0
1, . . . , g

0
N} and H0 = {h0

1, . . . , h
0
N} are the true memberships.

Under Theorem 3.3, the proposed estimator θ̃ has the same asymptotic distribution as

the oracle estimator, which is defined analogous to θ̃ but imposing the true memberships G0

and H0. Thus, we derive the asymptotic distribution of θ̃ by studying this oracle estimator.

We first look at the first order derivative of the moment conditions. We assume that the

function m(wit, ·) is differentiable in all parameters. Define

mθ

(
wit; θ

0
i

)
=

[
∂

∂α
m
(
wit; θ

0
i

)
:
∂

∂β
m
(
wit; θ

0
i

)
:
∂

∂λ
m
(
wit; θ

0
i

)]
∈ Rdm×(dang+dβnh+dλ),

(3.11)

where

∂

∂α
m
(
wit; θ

0
i

)
=

[
∂

∂α1

m
(
wit; θ

0
i

)
: · · · : ∂

∂αng
m
(
wit; θ

0
i

)]
∈ Rdm×(dαng),

∂

∂β
m
(
wit; θ

0
i

)
=

[
∂

∂β1

m
(
wit; θ

0
i

)
: · · · : ∂

∂βnh
m
(
wit; θ

0
i

)]
∈ Rdm×(dβnh). (3.12)
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Under the group structure, m(wit, θ
0
i ) does not depend on αg for g 6= g0

i or βh for h 6= h0
i .

Thus, we have

∂

∂αg
m
(
wit; θ

0
i

)
= 1

{
g0
i = g

} ∂

∂ai
m
(
wit; a

0
i , b

0
i , λ

0
)

for g = 1, . . . , ng,

∂

∂βh
m
(
wit; θ

0
i

)
= 1

{
h0
i = h

} ∂

∂bi
m
(
wit; a

0
i , b

0
i , λ

0
)

for h = 1, . . . , nh. (3.13)

The Jacobian matrix is

J = lim
N→∞

N−1

N∑
i=1

E
[
mθ

(
wit; θ

0
i

)]
. (3.14)

The covariance of the moment condition is

Ω = lim
N→∞

lim
T→∞

N−1

N∑
i=1

ΩiT (θ0
i ), where (3.15)

ΩiT (θ0
i ) = T−1

T∑
t=1

T∑
s=1

E
[
m
(
wit; θ

0
i

)
m
(
wis; θ

0
i

)′]
. (3.16)

We add the following regularity condition to derive the distribution of θ̃.

Assumption E. (i) m(wit, θi) is differentiable in θi ∈ Θ; J and Ω exist and both have full

rank.

(ii) WNT →p W for some full rank matrix W as N, T →∞.

(iii) Assumption R(iii) holds with m(wit; θi) replaced by mθ(wit; θi) and Θ replaced by a

neighborhood around θ0.

Theorem 3.4 Suppose Assumptions ID, R, NT, W, S, E hold. Then,

√
NT

(
θ̃ − θ0

)
→d N(0, V ), where V = (J ′WJ)

−1
J ′WΩW (J ′WJ)

−1
.

In the estimation, αg only shows up in the moment function m(wit;α(ĝi), β(ĥi), λ) if

ĝi = g, i.e., individuals whose coefficient ai belong to the gth group. However, the estimator

α̂g also depends on individuals in other groups through the joint estimation of β and λ.

Production Function Example of Section 2.2 (Continued). The estimators (θ̂, Ĝ, Ĥ)

and θ̃ require the choice of weighting matrices WiNT , i = 1, . . . , N , and WNT , respectively.
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A two-step GMM approach uses a preliminary weighting matrix in the first stage and a

consistent estimate of the optimal weighting matrix in the second stage.

The optimal weighting matrix for (θ̂, Ĝ, Ĥ) is given by Ω−1
iT

(θ0
i ); see (3.16). Recall from

Section 2.2 that

m(wit; θ
0
i ) = zit(ξit + εit − ρ0εit−1) = zituit. (3.17)

The vector of instruments zit typically comprises a constant and lags of the production inputs,

e.g., zit = (1, vit−1, vit−2, . . .)
′. For the instruments to be valid, zit has to be uncorrelated

with (ξit, εit, εit−1). Suppose that s ≤ t− 2, then

E
[
m
(
wit; θ

0
i

)
m
(
wis; θ

0
i

)′]
= E

[
zitz

′
is(ξit + εit − ρ0εit−1)(ξis + εis − ρ0εis−1)

]
= E

[
Es
[
zit(ξit + εit − ρ0εit−1)

]
z′is(ξis + εis − ρ0εis−1)

]
= 0. (3.18)

Now define

ûit = ∆yit(ρ̂)− α̂(ĝi)− β̂(ĥi)∆vit(ρ̂), (3.19)

to obtain the following estimator for ΩiT :

Ω̂iT = T−1

T∑
t=1

zitz
′
itû

2
it +

1

T

T∑
t=2

(
zitz

′
it−1 + zit−1z

′
it

)
ûitûit−1, (3.20)

which allows us to set WiNT = Ω̂−1
iT . The optimal weighting matrix for θ̃ is given by Ω−1; see

(3.15). The matrix Ω can be consistently estimated by

Ω̂ = N−1

N∑
i=1

Ω̂iT , (3.21)

and we let WNT = Ω̂−1.

In order to obtain an estimate of the asymptotic covariance matrix V of θ̃ in Theorem 3.4

we require an estimate of the Jacobian J in (3.14), which is a function of E[mθ

(
wit; θ

0
i

)
],

previously given in (3.3). Define êit = yit − β̂(ĥi)vit such that

Ĵ = −(NT−1)
N∑
i=1

T∑
t=1

zit(1,∆vit(ρ̂), êit−1)′. (3.22)
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In applications with less structure one can replace the previously derived estimators of Ω̂iT

and Ω̂ by a heteroskedasticity and autocorrelation consistent (HAC) covariance estimator,

see Newey and West (1987) and Andrews (1991). In our Monte Carlo experiment and the

empirical application we use a set of instruments that lead to exact identification which

means that there is no need to construct optimal weighting matrices. However, to conduct

inference on θ̃ the estimators Ω̂ and Ĵ are still required. �

4 Monte Carlo Experiment

In the Monte Carlo experiment we repeatedly simulate observations on production inputs

and outputs for a panel of firms, to assess the small sample properties of our proposed

estimator. The Monte Carlo design is based on a simplified version of the production function

estimated in the empirical analysis: we abstract from capital as a factor of production

and use a log-linear functional form. We compare the accuracy of the multi-dimensional

clustering estimator to that of an estimator that only clusters in a single dimension. The data

generating process (DGP) and the GMM moment conditions are described in Section 4.1, the

DGP parameterization and simulation design are described in Section 4.2, and the results

are summarized in Section 4.3.

4.1 Data Generating Process and Moment Conditions

The production function is identical to the one used in Section 2.2. Log output as a function

of the log variable inputs is given by (2.10) and the unobserved productivity shock ωit

evolves according to the AR(1) law of motion (2.11). We make the following distributional

assumptions about the innovations:

ξit
iid∼ N(0, σ2

ξ ), εit
iid∼ N(0, σ2

ε ) (4.1)

with the understanding that εit is an ex post productivity shock that is realized after the

firm makes its period t input decisions.

In order to generate a variable input series vit that is internally consistent with the

production function, we add more structure to the economic environment in which the firms
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are operating and derive the profit-maximizing input choice. Each firm i faces a downward-

sloping demand curve of the form

Pit(Q) = exp(ηit)Q
−κ, (4.2)

where the demand shifter ηit evolves according to

ηit = di + φηit−1 + νit, di
iid∼ N(µd, σ

2
d), νit

iid∼ N(0, σ2
ν). (4.3)

The firm-specific intercept di generates heterogeneity in the average level of demand and the

innovations νit trigger fluctuations over time.

The state variables for the firms’ decision problem are the demand shifter ηit and the

ex ante productivity process ωit. Because the state variables are exogenous, conditional on

knowing (ηit, ωit) the firms solve the static problem

max
Vit,Qit

Eεit
[
Pit(Qit)Qit

∣∣ ηit, ωit]− Vit (4.4)

s.t. Qit = exp(ωit + εit)V
bi
it ,

where the expectation is taken over εit and Vit = exp(vit). The first-order condition for

this optimization determines the law of motion for the variable input Vit as a function of

the exogenous processes ηit and ωit. We show in the Online Appendix that vit follows an

ARMA(2,1) process. To generate a single sample (yit, vit), i = 1, . . . , N and t = 1, . . . , T ,

we simulate the model based on the law of motion of ηit in (4.3), the law of motion of ωit

in (2.11), the optimal variable input choice vit provided in the Online Appendix, and the

loglinear production function (2.10). The initial values ηi0 and ωi0 are drawn from their

respective stationary distributions.

The estimation proceeds as outlined in Section 2.2. The moment conditions are given

by (2.14) with zit = (1, vit−1, vit−2). Instrument validity follows from the model implication

that factor inputs vit−h, h = 1, 2, do not depend on ex post productivity shocks and are

also independent of ex ante productivity shock innovations dated t and later. Because yit−1

is a function of vit−1 instrumental relevance is satisfied with respect to the regressor yit−1.

Moreover, because vit follows an ARMA(2,1) process, the instruments are also correlated

with the regressor vit − ρ0vit−1. The moment conditions exactly identify the parameter

vector θ0 = (α0, β0, ρ0).
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Table 1: Parameterization of DGP

Para Value
Variable cost elasticity bi {0.2, 0.5, 0.8}
Ex ante productivity: intercept ai {−6,−3, 0}
Ex ante productivity: AR coefficient ρ 0.64
Ex ante productivity: innovation std. dev. σξ 1
Ex post productivity: innovation std. dev. σε 0.01
Price elasticity of demand −1/κ -3
Demand shifter: intercept mean µd 0.01
Demand shifter: intercept std. dev. σd 0.35
Demand shifter: AR coefficient φ 0.9
Demand shifter: innovation std. dev. σv 1

4.2 DGP Parameterization and Simulation Design

The parameterization of the DGP is partly based on features of the actual data that we are

using in the empirical analysis. A summary of the parameter values is provided in Table 1.

We consider three values each for the average level of productivity and the input elasticity:

ai ∈ {−6,−3, 0} and bi ∈ {0.2, 0.5, 0.8}. We let σξ = 1. Thus, the standard 90% confidence

intervals of
1

T − 1

T∑
t=2

(ωit − ρωit−1) = ai +
1

T − 1

T−1∑
t=2

ξit (4.5)

overlap for different ai types for T = 2 but not for T = 10. The negative price elasticity of

demand is set to 1/κ = 3.

We now turn to the calibration of the parameters φ and ρ. We set φ = 0.9 and choose

ρ to match the cross-sectional average of the first-order autocorrelation of the log variable

input in the data set used in the empirical analysis, which is

1

N

N∑
i=1

Ĉovi(vit, vit−1)

V̂i(vit)
≈ 0.867. (4.6)

We let σν = 1 and show in the Online Appendix how a model-implied formula for the

autocorrelation coefficient can be solved for ρ, conditional on κ, φ, σξ, and σν . Based on this

calculation, we set ρ = 0.64.

The standard deviation of the ex post productivity shock is set to σε = 0.01 such that

the ex ante productivity shock dominates. Finally, we set µd = −0.01, and σd = 0.35. Under
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Table 2: Monte Carlo Designs - Group Sizes

Design 1 Design 2 Design 3 Group Labels
β1 β2 β3 β1 β2 β3 β1 β2 β3 β1 β2 β3

α1 100 100 100 40 130 130 220 40 40 SS SM SL
α2 100 100 100 130 40 130 40 220 40 MS MM ML
α3 100 100 100 130 130 40 40 40 220 LS LM LL

Notes: The table reports the cross-sectional sample size N for the various groups which are denoted by SS
through LL, where S refers to “small”, M to “medium”, and L to “large” (in absolute value) ai and bi values;
see Table 1. The α parameters determine the productivity and the β parameters determine variable cost
elasticity. The time series dimensions considered in the Monte Carlo are T ∈ {4, 6, 8, 10, 12, 14, 16, 18, 20}.

Design 1 (see below) and T = 20, we are able to reproduce the empirical estimate based on

our sample:

1

N

N∑
i=1

V̂i(vit)

V̂(vit)
≈ 0.109, (4.7)

where V̂i(·) is the variance across time for unit i and V̂(·) is the variance across i and t. For

both the numerator and the denominator we demean variable costs for each i separately.

In terms of group size, we consider three designs which are summarized in Table 2. The

total number of firms is always N = 900. The table reports the number of units in each

combination of parameter groups. Under Design 1 all cells are of equal size. Under Design 2

the diagonal cells are sparsely populated relative to the off-diagonal cells and vice versa

under Design 3. For each of these designs we report results for multiple choices of T , ranging

from 4 to 20. Note that in Table 2, α1 = 0, α2 = −3, α3 = −6 are the three group-specific

values for ai and β1 = 0.2, β2 = 0.5, β3 = 0.8 are the three group-specific values for bi.

4.3 Monte Carlo Results

All results presented subsequently are based on Nsim = 300 Monte Carlo repetitions. We

begin by examining the MSEs associated with the estimation of the group-specific parameters

under Design 1. Recall that the variable input elasticity can take three group-specific values:

β1 = 0.2, β2 = 0.5, and β3 = 0.8. For each of these values we have an estimator β̂j. We use

Monte Carlo averaging to approximate the MSE E[(β̂j−βj)2] and compute an average across

j, weighted by the group size. The panels in the top row of Figure 1 show the MSE as a

function of the time series dimension T of the panel for our proposed two-dimensional (2D)
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Figure 1: MSE of Group-specific Parameters, Weighted by Group Size, Design 1
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Notes: MSE associated with group-level parameter estimators averaged across groups, weighted by group
size, as a function of T . Cyan dashed lines are 2D clustering. Red dashed-dotted lines are 1D clustering.

clustering estimator and the standard one-dimensional (1D) clustering estimator. MSEs for

α̂j are displayed in the bottom row of the figure. The MSEs in all four panels are decreasing

in the time-series dimension T of the panel. The larger T , the more precisely the unit-specific

coefficients can be estimated by temporal averaging.

The results in the left column of Figure 1 are obtained under the assumption that the

true group membership of each firm i is known. The 2D estimator is computed based on

Step (c) of Algorithm 1. Due to the known group membership there is no need anymore

to iterate. The 1D estimator partitions the sample of firms into nine bins, where each bin

corresponds to a combination of βj and αk, delivering estimators β̂j|k and α̂k|j, j = 1, 2, 3

and k = 1, 2, 3. For the estimation of βj, this leads to the MSEs E[(β̂j|k − βj)2], k = 1, 2, 3;

and likewise for the estimation of αk. The nine resulting MSEs are averaged by bin size.

Because the groups under 2D clustering are larger than the bins under 1D clustering, the

2D estimator is associated with a smaller MSE. The MSE reductions for β̂ range from 16

(T = 4) to 48 (T = 20) percent, whereas the MSE reductions for α̂ are between 5 (T = 20)

and 16 percent (T = 4). For both parameters the MSE is dominated by a nonlinear GMM

bias, which is reduced at a smaller rate through 2D clustering than the variance component.



This Version: September 19, 2023 23

Figure 2: MSE Ratios 2D/1D Clustering
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Notes: MSE ratios 2D/1D clustering. Magenta is elasticity βi and bi, and ocre is productivity αi and ai. Top
row: MSEs for group-specific parameter estimates averaged across groups, weighted by group size. Bottom
row: MSEs for unit-level parameter estimates averaged across i.

The panels in the right column of Figure 1 are obtained under the assumption that the

group membership for each unit has to be estimated using the clustering algorithm. This

drastically increases the MSEs and amplifies the benefit of multi-dimensional clustering. The

top-left panel of Figure 2 shows the MSE ratio for 2D versus 1D clustering. A value below

one indicates that 2D clustering yields a lower MSE than 1D clustering. For T = 5 this ratio

is roughly 0.5 for the productivity values and 0.4 for the input elasticity values, implying

an MSE reduction of 50 to 60 percent. For larger values of T the ratio for the productivity

parameters stays roughly constant, whereas it increases to about 0.9 for the elasticity values.

The percentage gain from multi-dimensional clustering is very similar across Monte Carlo

designs.

The bottom panels of Figure 2 contain MSE ratios for the unit-level parameters, that

is, in case of the elasticity, N−1ΣN
i=1E[(b̂i − bi)2]. Here the 2D clustering leads to a larger

MSE reduction for the productivity parameter (approximately 75%) than for the elasticity

(approximately 50%). As a value of the sample size, the reduction stays fairly constant for

values of T larger than 6.
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Figure 3: Average Classification Errors (Percent)

Design 1 Design 2 Design 3

Notes: Magenta lines refer to elasticity bi and ocre lines to productivity ai classification errors (in percent)
which are defined as the number of incorrectly classified firms divided by the total number of firms multiplied
by 100.

Figure 3 shows the average classification errors. A firm i is counted as misclassified in

terms of its elasticity, if the elasticity group membership is incorrectly estimated. The average

classification errors are larger for the asymmetric Designs 2 and 3 than for the symmetric

Design 1. Moreover, the classification errors are larger for the elasticities bi than for the

productivities ai. We computed symmetric two-standard-deviation (of the 2D clustering

estimator) intervals around the true bi and ai values. For the elasticity parameter values

these bands overlap for T = 4 and T = 20. For the productivity values, on the other hand,

there is no overlap, even for T = 4. The sharper estimates translate into smaller classification

errors. Even though the classification errors depicted in Figure 3 are all below 15%, the MSE

increase due to group membership estimation documented in Figure 1 is quite large. This

indicates that the cost of misclassification is substantial. The parameter value differences

generate a large bias in the estimates.

Thus far, we have focused on the performance of the one-step estimator, that jointly

estimates the group membership indicators and model parameters (Algorithm 1). In Figure 4

we compare the MSE of the one-step estimator to the two-step-estimator, that re-estimates

the model parameters conditional on the first-step membership estimates. The second-step

estimation reduces the MSE by roughly 50%.

Finally, we turn from point to interval estimation and report coverage probabilities for

95% confidence intervals in Figure 5. The confidence intervals are based on the two-step

estimator and its associated standard-error estimates. The horizontal line in each panel in-

dicate the nominal coverage probability. The bi and ai panels show three different symbols,
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Figure 4: One-Step versus Two-Step Estimation MSEs, Design 1

Elasticity βi Productivity αi AR Coefficient

Notes: MSE associated with group-level parameter estimators averaged across groups, weighted by group
size. MSE of homogeneous AR coefficient ρ. Cyan dashed-dotted lines are 2D one-step estimators. Purple
dashed lines are 2D two-step estimators.

Figure 5: Coverage Probabilities
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Notes: The horizontal lines indicate the nominal coverage probability of 95%. The three symbols in the left
and center panels correspond to the three group-specific elasticity and productivity values.

corresponding to the three values that each parameter can take. The top row shows con-

fidence intervals that are constructed under the assumption that the group membership is

known. Deviations from the nominal coverage probability are due to small-sample behavior

of the GMM estimator and unrelated to the clustering approach. For T > 15 the actual
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coverage probability for all parameters is close to the nominal level. For smaller values of T

the coverage probability of the AR coefficient and some of the elasticity values is less than

the nominal level. When the true group memberships are replaced by the estimated group

memberships, the discrepancy between actual and nominal coverage increases only slightly

for T < 15, but essentially stays close to zero for T ≥ 15.

Overall, the proposed 2D clustering estimator exhibits good small sample properties in

the simulation experiment and sharper estimates than the 1D clustering approach.

5 Empirical Analysis

We now estimate firm-level trans-log production functions using our multi-dimensional clus-

tering approach. Each firm is part of a sector s which we take to be a two-digit NAICS

sector. The production function is given by

yit = ai + bikit + civit + div
2
it + ζvitkit + ψt+ ωit + εit, (5.1)

where kit is the capital stock and all variables are in logs. As in the Monte Carlo design of

Section 4 we assume that the total factor productivity has two components. The component

that is known to the firm ex ante follows the AR(1) process:

ωit = ρωit−1 + ξit. (5.2)

The ex post productivity shock εit is assumed to be independent over time. The intercept and

the coefficients on capital, variable inputs, and squared variable inputs are group-specific. In

addition to α(·) and β(·), we define γ(·) and δ(·) to characterize the group-specific values of

ci and di. Rather than introducing separate group structures for ci and di, we assume that

a third set of groups determines (ci, di) jointly.

We use `i to indicate the group membership of unit i in the third dimension, L̂ to

denote the collection of all memberships, and n` to denote the number of (ci, di) groups.

The interaction coefficient ζ and the time trend coefficient ψ are assumed to be homo-

geneous. As in Section 2, the production function is quasi-(ρ)-differenced to eliminate

the serial correlation in ωit. The GMM estimation is based on the instrument vector
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zit = (1, kit, kit−1, vit−1, v
2
it−1, vit−1kit−1, t) which leads to the moment conditions

E[zit(εit − ρεit−1 + ξit)] = 0 (5.3)

at the “true” parameter values.

Based on the estimated variable input elasticities we compute an estimate of the firms’

markups. De Loecker and Warzynski (2012) show that if vit induces no dynamic constraints

in the firm’s cost minimization problem and if the firm’s capital is predetermined, then the

markup can be expressed as a function of the revenue-to-variable-cost ratio

muit = ϕit
pyit exp[yit]

pvit exp[vit]
, (5.4)

where pyit and pvit are firm-specific prices of the output and the variable input, respectively.

Here, ϕit is the elasticity of output with respect to variable input. For the translog production

function (5.1) this elasticity is given by

ϕit = ci + 2divit + ζkit. (5.5)

5.1 Data Set, Model Specifications, and Estimation

As in Flynn, Gandhi, and Traina (2019) and De Loecker, Eeckhout, and Unger (2020),

the firm-level data set is constructed from the Compustat Fundamentals (North America)

database. We take a time period t to be one year. The firms’ Sales of Goods and Cost of

Goods Sold are used as output and variable input, respectively. The firms’ capital stocks

are calculated based on the perpetual inventory method using the Net Property, Plant, and

Equipment series. Nominal variables are converted to real variables using the appropriate

deflators. Our sample starts in 1999 and ends in 2019. Further details on data definitions,

transformations, and subsample selection are provided in the Online Appendix.

The subsequent analysis is conducted for firms that are associated with the same two-

digit NAICS sector. The estimation for each sector includes firms for which we have at least

one observation between 1999 and 2019. There are 24 two-digit NAICS sectors. Following

conventions in the literature on markup estimation, we exclude the following sectors from the

subsequent analysis: Utilities (NAICS 22), Finance and Insurance (NAICS 52), Real Estate

and Rental and Leasing (NAICS 53), Management of Companies and Enterprises (NAICS
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Table 3: Two-Digit-Level Sectors Used in Estimation of Models with Group Heterogeneity

NAICS Description
21 Mining, Quarrying, and Oil and Gas Extraction
23 Construction
31 Manufacturing (Food, Apparel, and other Consumer Goods)
32 Manufacturing (Paper, Wood, Petroleum, Chemical,

and Non-Metallic Minerals Related)
33 Manufacturing (Furniture, Metal, Electronic, and Machinery Related)
42 Wholesale Trade
44 Retail Trade (Food, Apparel, Vehicles, and other Consumer Goods)
45 Retail Trade (Entertainment, Department Stores, Online, etc.)
48 Transportation
51 Information
54 Professional, Scientific, and Technical Services
56 Administrative and Support Services, etc.
62 Health Care and Social Assistance
72 Accommodation and Food Services

55), and Public Administration (NAICS 92). For these sectors, the cost minimization as-

sumptions underlying (5.4) are not compelling. Five sectors (NAICS 11, 49, 61, 71, 81) have

relatively few firms so that there are not enough observations in the cross section to esti-

mate group-specific effects. We will estimate production functions for firms in these sectors

by imposing homogeneity. The 14 sectors for which we estimate group-specific firm-level

production functions are listed in Table 3.

5.2 Empirical Results

We begin with evidence of firm heterogeneity within two-digit industries, discuss estimation

results for one of the manufacturing sectors (NAICS 33) in more detail, and then present

summaries of the results across all sectors.

Model Selection. The first step of the empirical analysis is to determine the sector-specific

degree of heterogeneity in the production function coefficients. To do so, we use the quasi-

Bayesian information criterion introduced in (2.9). Because our panel is unbalanced we

replace NT by the total number of observations in the sector-specific panel. We restrict the

number of groups for ai, bi, and ci to be identical, i.e., ng = nh = n` = n ≤ 6. Thus, for a

model specification with n groups the number of parameters in the penalty term is 3n+ 3.
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Table 4: Model Selection: BIC Values

Number of Groups n
NAICS 1 2 3 4 5 6 n̂ Nobs
21 188.66 126.28 122.4 122.75 122.95 130.12 3 544
23 31818.89 30701.5 28601.19 24809.54 10013.01 7429.59 6 139
31 1822.03 939.01 735.98 513.06 513.08 513.13 4 370
32 408.82 180.91 180.92 180.94 180.96 181.04 2 1428
33 178.14 121.11 88.17 88.2 88.22 88.21 3 2394
42 422.09 380.12 261.89 261.94 262.1 262.14 3 347
44 3974.77 3268.47 2114.14 2114.21 2114.3 2114.35 3 268
45 5106.68 4876.12 4351.22 3771.87 3401.2 3401.57 4 205
48 305.722 305.81 305.91 306.08 306.16 306.14 1 257
51 166.51 106.42 79.21 35.31 21.12 21.31 5 1651
54 120.94 121.02 121.08 121.14 122.21 122.11 1 576
56 159.81 115.33 75.71 75.8 75.87 75.92 3 265
62 321.03 248.76 160.34 151.97 152.12 152.21 4 224
72 421.26 348.82 268.62 268.7 268.86 268.97 3 245

Notes: All table entries are rounded. For each industry the minimal BIC value appears in bold face. The
last column contains the selected number of groups.

Table 4 summarizes the results from applying the information criteria. The number of

selected groups varies strongly across sectors, ranging from n̂ = 1 for NAICS 48 and 54 to

n̂ = nmax = 6 for NAICS 23. In general, increasing the number of groups from n = 1 to

the optimal value leads to a drastic reduction of BIC because the goodness of in-sample fit

improves. Increasing n beyond the optimal value leads to comparatively small increases in

the information criterion, which are mostly caused by the penalty term.

As a sanity check, we compute the residual autocorrelation functions (ACFs) for the esti-

mated quasi-differenced sectoral production functions under the selected group heterogeneity

specification and under a specification that imposes coefficient homogeneity. The results are

plotted in Figure 6. If the model is correctly specified, the autocorrelation of order h > 1

should be zero. The left panel of the figure shows the ACF for the selected level of group

heterogeneity. Each line corresponds to a different sector. The residual autocorrelations

are generally close to zero. The right panel shows the ACF under the assumption that the

coefficients are homogeneous. Here the residual autocorrelations are generally much higher,

indicating misspecification. The autocorrelation patterns are consistent with the selection

of multiple groups based on the BIC in Table 4.
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Figure 6: Residual Autocorrelation in Quasi-differenced Production Function

Group Heterogeneity Homogeneity

Notes: The x-axis is the temporal shift. Each line corresponds to a sector.

Group Size Distribution. If the selected number of groups for each of heterogeneous

parameter is n, then there exist n3 parameter combinations (cells). Figure 7 provides some

information about the number of firms associated with each parameter combination. We

show Lorenz curves for each industry, indicating the fraction y of firms belonging the fraction

x of smallest cells. For all but one industry, the cell size distribution is very skewed, meaning

that there are many cells that contain very few observations. This implies that the alternative

approach of using a one-dimensional clustering approach that assigns firms to the n3 cells

would have very little information to estimated the parameters of sparsely-populated cells.8

Parameter Estimates. Our empirical analysis generates a large amount of parameter

estimates. Coefficient and standard error estimates for NAICS 33 are summarized in Table 5.

There is a substantial difference in the level of productivity of Group 1, on the one hand,

and Groups 2 and 3, on the other hand. The values for the capital coefficient bi range from

0.139 to 0.491. Finally, there is also substantial heterogeneity in (ci, di).

Elasticity and Markup Distribution Across Sectors. In the top-left panel of Figure 8

we plot quantiles of the cross-sectional distribution (across firms in the two-digit industries

included in the analysis) of ϕit, the elasticity of output with respect to variable input, defined

in (5.5).9 The cross-sectional variation is due to the group-heterogeneity of the coefficients

8Granted, a selection criterion might elimate some of the sparsely-populated cells.
9To generate the top-row panels in Figure 8, we deleted firms with negative elasticity/markup estimates.
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Figure 7: Cell Size Distribution Across Industries

Notes: Lorenz curves indicating the fraction y of firms belonging to the fraction x of smallest cells. Each
solid hairline corresponds to a sector. Dashed-dotted line is the 45-degree line.

Table 5: Parameter Estimates NAICS 33

Para. Set 1 Para. Set 2 Para. Set 3
Productivity Capital Var. [ Input, Input2 ]

Value 1 0.314
(0.133)

0.139
(0.099)

[
−1.875

(0.007)
, 0.009

(0.003)

]
Value 2 2.221

(0.240)
0.174
(0.026)

[
0.076
(0.182)

, 0.023
(0.032)

]
Value 3 2.270

(0.075)
0.491
(0.014)

[
0.412
(0.004)

, 0.525
(0.001)

]

(ci, di) and the input choice heterogeneity (vit, kit). The time series variation in ϕit is solely

due to fluctuations in (vit, kit). Most of the time series variation of the ϕit distribution is

visible at the median which rises above 0.5 from 2007 to 2014 and is below 0.5 in the other

years. The 10th and 90th percentiles, on the other hand, are fairly flat over time. For

comparison, we plot in the bottom-left panel the ϕit elasticities based on estimates that

impose parameter homogeneity within sector. The cross-sectional distribution of the ϕit

values is more concentrated, because for each sector there is only a single parameter value.

The median value of ϕit is approximately one and it is essentially time invariant.

The top-right panel of the figure shows the distribution of markups under group het-

We conjecture that for these firms the “variable” input is not flexible and the markup formula does not hold.
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Figure 8: Distribution of Elasticities and Markups

Elasticities ϕit Markups muit

G
ro

u
p

H
et

er
og

en
ei

ty
H

om
og

en
ei

ty

Notes: The graphs depict the 10%, 25%, 50%, 75%, and 90% quantiles of the cross-sectional distributions
of the estimated elasticities and markups across the firms in the two-digit sectors included in the analysis.

erogeneity. A value of 1 implies that the firm charges marginal costs. The median of the

cross-sectional distribution is close to one. Most of the time variation is concentrated in the

90th percentile. Here muit increased from slightly over 3 to above 5. Because the 90th per-

centile of ϕit is flat, much of the increase is due to an increase in the revenue-to-variable-cost

ratio for high ϕit elasticity firms. The markup distribution under parameter homogeneity,

depicted in the bottom-right panel is less dispersed because of the lower variance of the ϕit

distribution. At the median the markup is higher (around 50%) under homogeneity, which is

consistent with the larger median (1.0 instead of approximately 0.5) of the ϕit distribution.
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Aggregate Markup. In an influential paper, De Loecker, Eeckhout, and Unger (2020) doc-

umented that the aggregate markup has been steadily rising over the past six decades. The

aggregate markup can be defined as the sales-share weighted average of firm-level markups:

mut =
N∑
i=1

(
pyit exp[yit]∑N
i=1 p

y
it exp[yit]

)
muit. (5.6)

The authors estimated Cobb-Douglas production functions (in our notation di = ζ = 0) for

the two-digit NAICS sectors using five-year rolling windows to obtain the ϕits. Endogeneity

of the production inputs is handled through a variant of the proxy variable approach proposed

by Levinsohn and Petrin (2003), which inverts the relationship between firms’ input choices

and productivity to replace ωit in (5.1). De Loecker, Eeckhout, and Unger (2020) documented

an increase of the aggregate markup from 1.25 in 1960 to 1.45 in the year 2000, and a

subsequent rise to 1.6 by 2016.

Demirer (2022) considered a more general production function that also allows for labor-

augmenting productivity. He extended the Olley and Pakes (1996) framework to multidimen-

sional productivity and obtained markup estimates for US manufacturing that are generally

lower than those obtained under the De Loecker, Eeckhout, and Unger (2020) production

function specification. His markup estimate for the year 2000 is about 1.35 and it is only

slightly higher in 2012.

De Loecker, Eeckhout, and Unger (2020) pointed out that Compustat does not report

labor and material inputs separately. The two inputs are bundled together as cost of goods

sold. The authors also highlight the difficulty to impute the material cost for the vast

majority of firms, because Compustat reports wage bills for only a small percentage of firms.

Thus, their main results use the sum of labor and material inputs as both a production

function factor input and a proxy variable. This setup poses a challenge for the proxy variable

approach to identify the production function, as shown in Gandhi, Navarro, and Rivers

(2020). Demirer (2022) worked on a smaller subsample for which the wage bill information

is available to impute the material inputs. We avoid this data issue by using the dynamic

panel method over the proxy variable approach. However, we have to assume productivity is

an autoregressive process instead of a more general Markovian process allowed by the proxy

variable setup.

In Figure 9 we plot two aggregate markup time series based on our production function

estimates: one is based on group heterogeneity in each sector and the other one based on
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Figure 9: Evolution of Aggregate Markup

Notes: Aggregate markup is computed based on (5.6) with estimates obtained under group heterogeneity
(blue line and grey bands) and within-sector homogeneity (red line).

within-sector homogeneity. The grey band captures 95% confidence intervals that reflect

sampling uncertainty associated with the estimates of the production function parameters

under group heterogeneity. Our estimates of ϕit are based on a single sample from 1999 to

2019. This longer sample facilitates the identification of coefficient heterogeneity. Despite the

use of a single estimation sample, the aggregate markups are time varying for two reasons.

First, the translog production function leads to time-varying input elasticities ϕit, see (5.5).

Second, the firm-level markup depends on time-varying factor costs shares, see (5.4), and

the aggregate markup depends on time-varying sales shared, see (5.6).

The group-heterogeneity elasticity estimates imply that the aggregate markup rises

steadily from 1.54 in 2000 to 1.92 in 2015. It spikes above 2.08 in 2017 and then drops

to approximately 1.95 in 2019. Under the assumption of within-sector homogeneity the

rise in markup is less pronounced: in 2000 the markup is 1.57, slightly higher than under

group heterogeneity, but it rises to only about 1.82 in 2019. We obtain a higher level of

markup and a more rapid rise between 1999 and 2019 than De Loecker, Eeckhout, and

Unger (2020) and Demirer (2022). In addition to using a somewhat different production

function specification and allowing for more cross-sectional heterogeneity, we also use a

different approach of controlling for endogeneity of the input choices: we quasi-difference

the production function, whereas the other authors use the control function approach.

Overall, we conclude that in our setting allowing for group heterogeneity within two-digit
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NAICS sectors increases the estimated aggregate markup compared to the specification

that imposes within-sector homogeneity.

6 Conclusion

Explicitly modeling and estimating heterogeneous parameters is an important development

in the panel data literature. Our paper contributes to this literature by developing a nonlinear

GMM framework that allows for multi-dimensional group heterogeneity. In this framework,

each unit is associated with multiple groups, where each group is formed for a different

unobserved characteristic of the unit. A feature of this approach is its robustness to sparse

interactions of different characteristics. In the application, we cluster firms based on multiple

unknown coefficients in a trans-log production function, which allows for heterogeneity in

productivity and elasticities of output with respect to variable inputs and capital. In our

application, we show that accounting for multi-dimensional group heterogeneity leads to

higher estimates of the level and growth of aggregate markups than specifications that assume

production technologies are homogeneous within two-digit NAICS sectors.
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Application to Production Function Estimation
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The Online Appendix consists of the following parts:

A. Proofs

B. Derivations and Additional Results for Monte Carlo
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A Proofs

Proof of Lemma 3.1. Define the population criterion

QN(θ,G,H) = N−1

N∑
i=1

Qi(θ, gi, hi), where

Qi(θ, gi, hi) = E[mit (θ, gi, hi)]
′WiE[mit (θ, gi, hi)]. (A.1)

Define δi(θ, gi, hi) =
1

T
ΣT
t=1mit(θ, gi, hi) − E[mit(θ, gi, hi)]. We can deduce from (3.1) that

‖δi(θ, gi, hi)‖ = op(1) uniformly over i and (θ, gi, hi) ∈ Θ× ΓG × ΓH , i.e., for any η > 0,

P

{
max

1≤i≤N
sup

(θ,gi,hi)∈Θ×ΓG×ΓH

‖δi(θ, gi, hi)‖ ≥ η

}
(A.2)

≤
N∑
i=1

P

{
sup

(θ,gi,hi)∈Θ×ΓG×ΓH

‖δi(θ, gi, hi)‖ ≥ η

}

≤ N · max
1≤i≤N

P

{
sup

(θ,gi,hi)∈Θ×ΓG×ΓH

‖δi(θ, gi, hi)‖ ≥ η

}

= N · o
(

1

N

)
= o(1).

By Assumption W, ‖WiNT − Wi‖ = op(1) uniformly over i. Therefore, by the Slutsky’s

theorem, |Q̂i(θ, gi, hi)−Qi(θ, gi, hi)| = op(1) uniformly over i and (θ, gi, hi) ∈ Θ× ΓG × ΓH .
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The uniform convergence of the individual criterion function implies convergence of the

average criterion, i.e.,

sup
(θ,G,H)∈Θ×ΓG×ΓH

|Q̂N(θ,G,H)−QN(θ,G,H)| = op(1). (A.3)

Define

d(θ,G,H) = N−1

N∑
i=1

di (θi) ,

where

di(θi) =
(
α(gi)− α0(g0

i )
)2

+
(
β(hi)− β0(h0

i )
)2

+ ||λ− λ0||2.

We show that, for any δ > 0, there exists ε > 0 such that for all N

inf
d(θ,G,H)>δ

QN(θ,G,H) ≥ ε. (A.4)

Given that θi has a compact support Θ for all i, let C = sup
N

max
1≤i≤N

sup
θi∈Θ

di(θi) < ∞. Let

S = {i : di(θi) > δ/2} and NS = ΣN
i=11{i ∈ S}. Note that di(θi) ≤ C for i ∈ S and

di(θi) ≤ δ/2 for i /∈ S. Thus, NSC + (N −NS)δ/2 ≥ Nd(θ,G,H) ≥ Nδ, which implies that

NS ≥ Nδ/(2C − δ) > Nδ/(2C). Then,

inf
d(θ,G,H)>δ

QN(θ,G,H) ≥ inf
d(θ,G,H)>δ

N−1
∑
i∈S

Qi(θ, gi, hi)

≥ NS

N
min
i∈S

Qi(θ, gi, hi) ≥
δ

2C
ε∗, (A.5)

where the last step holds because min
i∈S

Qi(θ, gi, hi) ≥ ε∗ for some ε∗ > 0 by Assumption ID

and W. Thus, the identification condition for QN(θ,G,H) in (A.4) holds with ε = δε∗/(2C).

This argument is analogous to that used to show Lemma A.1 of Liu, Shang, Zhang, and

Zhou (2020).

Finally, we show the consistency result by combining (A.3) and (A.4). For any δ > 0,

there exists ε > 0, such that

P
{
d(θ̂, Ĝ, Ĥ) > δ

}
≤ P

{
QN(θ̂, Ĝ, Ĥ) ≥ ε

}
= P {da + db + dc ≥ ε} , where

da = QN(θ̂, Ĝ, Ĥ)− Q̂N(θ̂, Ĝ, Ĥ),

db = Q̂N(θ̂, Ĝ, Ĥ)− Q̂N(θ0, G0, H0),

dc = Q̂N(θ0, G0, H0)−QN(θ0, G0, H0). (A.6)

Because db ≤ 0 by definition of the estimator, and both da = op(1) and dc = op(1) by (A.3),
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(A.6) implies that P{d(θ̂, Ĝ, Ĥ) > δ} → 0 for any δ > 0. This completes the proof. �

Proof of Lemma 3.2. Given Lemma 3.1 and Assumption S, this Lemma follows from

the same arguments used to show Lemma B.3 of Bonhomme and Manresa (2015). The

arguments can be applied to α and β separately in our set-up. There is no need to take

sample average over time here because our parameters are not time-varying. Lemma B.3 of

Bonhomme and Manresa (2015) also shows how to relabel the groups and shows that this is

a one-to-one mapping with probability approaching 1. �

Proof of Theorem 3.3. Let EW = 1{max
i
‖WiNT −Wi‖ ≤ η} for some small positive

constant η. Assumption W shows that EW = 1 with probability approaching 1. Conditional

on EW = 1, for (gi, hi) 6= (g0
i , h

0
i ), we have shown in (3.7)-(3.9) that

P
{
ĝi = gi, ĥi = hi

}
≤ P

{
Q̂i(θ̂, gi, hi) < Q̂i(θ̂, g

0
i , h

0
i )
}

≤ P

c1

∥∥∥∥∥ 1

T

T∑
t=1

mit(θ̂, gi, hi)

∥∥∥∥∥
2

≤ c2

∥∥∥∥∥ 1

T

T∑
t=1

mit(θ̂, g
0
i , h

0
i )

∥∥∥∥∥
2
 (A.7)

for constants c2 > c1 > 0. Using the decomposition in (3.10) and the triangle inequality,∥∥∥∥∥ 1

T

T∑
t=1

mit(θ̂, gi, hi)

∥∥∥∥∥
2

≥
∥∥∥bi(θ̂, gi, hi)∥∥∥− ∥∥∥δi(θ̂, gi, hi)∥∥∥2

, where (A.8)

δi(θ̂, gi, hi) =
1

T

T∑
t=1

mit(θ̂, gi, hi)− E[mit(θ̂, gi, hi)],

bi(θ̂, gi, hi) = E[mit(θ̂, gi, hi)].

By a similarly decomposition,∥∥∥∥∥ 1

T

T∑
t=1

mit(θ̂, g
0
i , h

0
i )

∥∥∥∥∥
2

≤
∥∥∥bi(θ̂, g0

i , h
0
i )
∥∥∥+

∥∥∥δi(θ̂, g0
i , h

0
i )
∥∥∥2

. (A.9)

Below we analyze the four terms δi(θ̂, gi, hi), bi(θ̂, gi, hi), δi(θ̂, g
0
i , h

0
i ), bi(θ̂, g

0
i , h

0
i ).
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For θ̂ ∈ Nη = {θ ∈ Θ : ||θ − θ0||2 ≤ η2}, we have∥∥∥bi(θ̂, gi, hi)∥∥∥2

=
∥∥∥E[mit(θ̂, gi, hi)]− E[mit(θ

0, g0
i , h

0
i )]
∥∥∥2

≥ b1,i

(
θ0, gi, hi

)
− b2,i

(
θ̂, gi, hi

)
, where

b1,i

(
θ0, gi, hi

)
=
∥∥E[mit

(
θ0, gi, hi

)
]− E[mit(θ

0, g0
i , h

0
i )]
∥∥2
,

b2,i

(
θ̂, gi, hi

)
=
∥∥∥E[mit(θ̂, gi, hi)]− E[mit(θ

0, gi, hi)]
∥∥∥2

, (A.10)

where the first term b1,i(θ
0, gi, hi) is due to misspecification of groups and the second term

b2,i(θ̂, gi, hi) is due to the estimation error between θ̂ and θ0. By Assumption ID and S,

b1,i(θ
0, gi, hi) ≥ m0 for some m0 > 0 for any (gi, hi) 6= (g0

i , h
0
i ). By Assumption R(iii),

b2,i(θ̂, gi, hi) ≤M0η
2 for some M0 <∞. Therefore,∥∥∥bi(θ̂, gi, hi)∥∥∥2

≥ m0 −M0η
2. (A.11)

Similarly, we have∥∥∥bi(θ̂, g0
i , h

0
i )
∥∥∥ =

∥∥∥E [mit

(
θ̂, g0

i , h
0
i

)]
− E[mit(θ

0, g0
i , h

0
i )]
∥∥∥2

≤M0η
2. (A.12)

Combining (A.7) with (A.8), (A.9), (A.11), (A.12), we obtain

P
{
ĝi = gi, ĥi = hi

}
≤ P

{
c1m0 − c1M0η

2 − c2M0η
2 ≤ c1

∥∥∥δi(θ̂, gi, hi)∥∥∥2

+ c2

∥∥∥δi(θ̂, g0
i , h

0
i )
∥∥∥2
}
. (A.13)

Take η > 0 small enough such that s = c1m0 − c1M0η
2 − c2M0η

2 > 0. Note that δi(θ̂, gi, hi)

and δi(θ̂, g
0
i , h

0
i ) both are differences between sample mean and population mean. By Lemma

S1.2(ii) of Su, Shi, and Phillips (2016),

max
1≤i≤N

P
{
c1

∥∥∥δi(θ̂, gi, hi)∥∥∥2

≥ s/2

}
= o(N−1),

max
1≤i≤N

P
{
c2

∥∥∥δi (θ̂, gi, hi)∥∥∥2

≥ s/2

}
= o(N−1). (A.14)

Therefore, for any (gi, hi) 6= (g0
i , h

0
i ),

max
1≤i≤N

P
{
ĝi = gi, ĥi = hi

}
= o(N−1) (A.15)
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for θ̂ ∈ Nη. Because gi and hi both have finite support, we obtain

max
1≤i≤N

P
{
ĝi 6= g0

i , ĥi 6= h0
i

}
= o(N−1) (A.16)

for θ̂ ∈ Nη. Finally, conditional on θ̂ ∈ Nη and EW = 1, we have

P
{
Ĝ = G0 and Ĥ = H0

}
= 1− P

{
1
{

(ĝi, ĥi) 6= (g0
i , h

0
i )
}

for some i
}

≥ 1−N max
1≤i≤N

P
{

(ĝi, ĥi) 6= (g0
i , h

0
i )
}
→ 1. (A.17)

By Lemma 3.2 and Assumption W, P{θ̂ ∈ Nη} → 1 and P{EW = 1} → 1, which gives the

desired result together with (A.17). �

Proof of Theorem 3.4. Because Ĝ = G0 and Ĥ = H0 with probability approaching 1, θ̃

has the same asymptotic distribution as the oracle estimator θ that is obtained by assuming

G0 and H0 are known, i.e.,

θ = arg min
θ∈Θ

Q(θ), where

Q(θ) = m(θ)′WNTm(θ) and m(θ) = (NT )−1
N∑
i=1

T∑
t=1

m
(
wit;α(g0

i ), β(h0
i ), λ

)
. (A.18)

Now we derive the asymptotic distribution of θ. This is a standard GMM problem. By

Assumption ID, E(ii), and (3.1), we have the typical identification and uniform convergence

conditions for the consistency of θ. To get the asymptotic distribution, it is sufficient to

show for some η > 0,

N−1

N∑
i=1

sup
||θi−θ0i ||≤η

∥∥∥∥∥T−1

T∑
t=1

mθ (wit; θi)− E [mθ (wit; θi)]

∥∥∥∥∥→p 0 (A.19)

and

(NT )−1/2
N∑
i=1

T∑
t=1

m
(
wit; θ

0
i

)
→d N(0,Ω) (A.20)

as N, T → ∞. The first result in (A.19) follows from the same arguments used to obtain

(A.2), under Assumption R and E(iii). The second result in (A.20) follows from verifying

a Lindeberg-Feller central limit theorem. Under the same set of conditions as those in this

Theorem, part (ii) of the proof of Lemma S1.12 of Su, Shi, and Phillips (2016) provides the

details of the verification; see page 29 of the Supplement to Su, Shi, and Phillips (2016). �



Online Appendix – This Version: September 19, 2023 A-6

B Derivations and Additional Results for Monte Carlo

B.1 Derivations

First-order Conditions for Vit. Plugging (4.2) into (4.4), using the production function

constraint to substitute out Qit, and differentiating with respect to Vit yields the first-order

condition

Vit =
[
(1− κ)bi exp(ηit + (1− κ)ωit)

] 1
1−(1−κ)bi exp

(
(1− κ)2

1− (1− κ)bi

σ2
ε

2

)
. (A.1)

In turn, we can write the logged variable input as

vit =
1

1− (1− κ)bi

((
ηit −

di
1− φ

)
+ (1− κ)

(
ωit −

ai
1− ρ

))
+ ãi, (A.2)

where

ãi =
1

1− (1− κ)bi

(
ln
(
(1− κ)bi

)
+ (1− κ)2σ

2
ε

2
+

di
1− φ

+
(1− κ)ai

1− ρ

)
.

Combining the two expressions we can eliminate some constants and obtain

vit =
1

1− (1− κ)bi

(
ηit + (1− κ)ωit + ln

(
(1− κ)bi

)
+ (1− κ)2σ

2
ε

2

)
, (A.3)

The endogeneity of the marginal cost regressor vit is apparent from its dependence on ηit

and ωit; see (A.3).

Because ωit and ηit are AR(1) processes, the logged variable input vit evolves according

to an ARMA(2,1) process which we write as

vit = (1− ψ1 − ψ2)ãi + ψ1vit−1 + ψ2vit−2 + ζit + ψ3ζit−1, ζit
iid∼ N(0, σ2

ζ ). (A.4)

The ARMA coefficients (ψ1, ψ2, ψ3, σ
2
ζ ) can be derived by multiplying (A.2) by the lag poly-

nomials (1− φL) and (1− ρL) associated with the AR(1) processes ηit and ωit in (4.3) and

(2.11). In particular,

ψ1 = φ+ ρ and ψ2 = −φρ. (A.5)
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ψ3 and σ2
ζ can be backed out from the equations

(1 + φ2
3)σ2

ζ =
1(

1− (1− κ)bi
)2

(
(1 + ρ2)σ2

ν + (1− κ)2(1 + φ2)σ2
ξ

)
, (A.6)

ψ3σ
2
ζ = − 1(

1− (1− κ)bi
)2

(
ρσ2

ν + (1− κ)2φσ2
ξ

)
.

Calibration of ρ. Using (A.2), note that in our model

Vi(vit) =
1(

1− (1− κ)bi
)2

(
σ2
ν

1− φ2
+ (1− κ)2

σ2
ξ

1− ρ2

)
, (A.7)

Covi(vit, vit−1) =
1(

1− (1− κ)bi
)2

(
φ

σ2
ν

1− φ2
+ (1− κ)2ρ

σ2
ξ

1− ρ2

)
.

Thus, the first-order autocorrelation is given by a variance-weighted average of φ and ρ

Covi(vit, vit−1)

Vi(vit)
=

σ2
ν

1−φ2

σ2
ν

1−φ2 + (1− κ)2
σ2
ξ

1−ρ2

φ+
(1− κ)2 σ2

ξ

1−ρ2

σ2
ν

1−φ2 + (1− κ)2
σ2
ξ

1−ρ2

ρ. (A.8)

Given σν , σξ = 1, the autocorrelation coefficient on the left-hand side, and values for κ and

φ, one can solve (A.8) for ρ.

Jacobian of GMM Objective Function. The population Jacobian matrix is given by

∂Mi(θi)

∂θ′i
=

 E[yit−1 − bivit−1] E[vit − ρvit−1] 1

E[vit−1(yit−1 − bivit−1)] E[vit−1(vit − ρvit−1)] E[vit−1]

E[vit−2(yit−1 − bivit−1)] E[vit−2(vit − ρvit−1)] E[vit−2]

 . (A.9)
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To obtain the entries for this matrix, first calculate

E[ηit] =
di

1− φ
, (A.10)

E[ωit] =
ai

1− ρ
,

E[ω2
it−1], = V(ωit−1) + (E[ωit−1])2 =

σ2
ξ

1− ρ2
+

(
ci

1− ρ

)2

,

E[ωit−1ωit−2] = ρ
σ2
ξ

1− ρ2
+

(
ai

1− ρ

)2

,

E[η2
it−1] = V(ηit−1) + (E[ηit−1])2 =

σ2
ν

1− φ2
+

(
di

1− φ

)2

,

E[ηitηit−1] = φ
σ2
ν

1− φ2
+

(
di

1− φ

)2

.

For κ = 1/3 the entries of the Jacobian matrix are as follows:

a∗i =
3

3− 2bi
ln

(
2

3
bi

)
+

2

3− 2bi

σ2
ε

3
, (A.11)

E[vit−1] = E[vit−2] = ãi = a∗i +
3

3− 2bi

(
di

1− φ
+

2

3

ai
1− ρ

)
,

E[yit−1 − bivit−1] =
ai

1− ρ
,

E[vit − ρvit−1] = (1− ρ)ãi = (1− ρ)a∗i +
3

3− 2bi
(di

1− ρ
1− φ

+
2

3
ai),

E[vit−1(yit−1 − bivit−1)] =
2

3− 2bi

(
σ2
ξ

1− ρ2
+

(
ai

1− ρ

)2
)

+
ai

1− ρ
a∗i ,

E[vit−2(yit−1 − bivit−1)] =
2

3− 2bi

[
ρ

σ2
ξ

1− ρ2
+

(
ai

1− ρ

)2
]

+
ai

1− ρ
a∗i ,

E[vit−1(vit − ρvit−1)] = E[vit−1]

(
3di + 2ai
3− 2bi

+ (1− ρ)a∗i

)
+

3

3− 2bi
(φ− ρ)

(
3

3− 2bi

(
σ2
ν

1− φ2
+

(
di

1− φ

)2
)

+
di

1− φ
a∗i

)
,

E[vit−2(vit − ρvit−1)] = E[vit−2]

(
3di + 2ai
3− 2bi

+ (1− ρ) a∗i

)
+

3

3− 2bi
(φ− ρ)

(
3

3− 2bi

(
φ

σ2
ν

1− φ2
+

(
di

1− φ

)2
)

+
di

1− φ
a∗i

)
.
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B.2 Additional Empirical Results

Figure A-1: MSE of Group-specific Coefficients, Weighted by Group Size, All Designs

Design 1 Design 2 Design 3
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Notes: MSE associated with group-level parameter estimators averaged across groups, weighted by group
size. Red dashed-dotted lines are 1D clustering. Cyan dashed lines are 2D clustering.
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Figure A-2: MSE (Averaged Across i) of Unit-Level Coefficients, All Designs

Design 1 Design 2 Design 3
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Notes: MSE associated with unit-specific estimators averaged across i. Red dashed-dotted lines are 1D
clustering. Cyan dashed lines are 2D clustering.
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Figure A-3: Estimation Precision

T = 4 T = 20

E
la

st
ic

it
y
b i

P
ro

d
u
ct

iv
it

y
a
i

Notes: Horizontal bars represent true value ± 1.96 times the standard deviation of the estimator. The true
values are {0.2, 0.5, 0.8} for bi and {−6,−3, 0} for ai. Red lines are 1D clustering and cyan lines are 2D
clustering.
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Figure A-4: One-Step versus Two-Step Estimation MSEs, All Designs

Design 1 Design 2 Design 3
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Notes: MSE associated with group-level parameter estimators averaged across groups, weighted by group
size. MSE of homogeneous AR coefficient ρ. Cyan dashed-dotted lines are 2D one-step estimators. Purple
dashed lines are 2D two-step estimators.
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C Data Construction for the Empirical Analysis

The firm-level data set is constructed from the Compustat Fundamentals (North America)

database. The time period t is one year. The sample starts in 1999 and ends in 2019. The

variables in the raw data set include (using Compustat acronyms):

• year - Year (to determine period t)

• conm - Business Name (to determine firm index i)

• NAICS - North American Industry Classification System

• sale - Sales of Goods [millions of dollars]

• cogs - Cost of Goods Sold [millions of dollars]

• ppent - Property, Plant and Equipment - Total (Net) [millions of dollars]

• ppegt - Property, Plant and Equipment - Total (Gross) [millions of dollars]

In addition, we used the following series from the Bureau of Economic Analysis (BEA):

• def gdp - GDP Deflator (2012 base year)

• def inv - nonresidential fixed investment good deflator (2012 base year)

The following steps are executed to select and transform the raw data:

1. We removed the following sectors: Utilities (22); Finance and Insurance (52); Real Es-

tate Rental and Leasing (53); Management of Companies and Enterprises (55); Public

Administration (92).

2. We only kept US incorporated firms.

3. We removed firms listed in Canadian or Mexican Stock Exchange.

4. We removed observations having “NA” or non-positive cogs and sale.

5. We removed observations having non-positive ppent or ppegt.

6. We deflated cogs, sale, and xsga by def gdp.
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7. Capital stock construction by perpetual inventory method:

k0 = ppegtt, kt+1 = kt +
ppentt+1 − ppentt

def invt+1

.

Here we deflated changes in ppent by def inv. Note that only flow, not stock variables

can be deflated by a yearly deflator. Stock variables accumulate nominal prices over

different years.

8. We deleted observations with negative capital kt.

9. We defined variable input as

vt =
xoprt

def gdpt
.

10. We defined production output as

yt =
salet

def gdpt
.

11. We deleted firms with gap years during their lifespan.

12. We deleted firms with a single period observation.

13. We deleted firms with no NAICS code.

14. We removed firms with acquisition acq greater than 5% of its total assets.


	23-016 Cover Page
	Main 52p
	Introduction
	The Nonlinear GMM Framework
	Model Specification and Estimation
	A Production Function Example
	Implementation Details

	Asymptotic Properties
	Consistent Estimation under Sparse Interactions
	Classification and Asymptotic Distribution

	Monte Carlo Experiment
	Data Generating Process and Moment Conditions
	DGP Parameterization and Simulation Design
	Monte Carlo Results

	Empirical Analysis
	Data Set, Model Specifications, and Estimation
	Empirical Results

	Conclusion
	Proofs
	Derivations and Additional Results for Monte Carlo
	Derivations
	Additional Empirical Results

	Data Construction for the Empirical Analysis


