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Abstract

Standard mechanism design begins with a statement of the problem,

including knowledge on the designer’s part about the distribution of the

characteristics (preferences and information) of the participants who are

to engage with the mechanism. There is a large literature on robust mech-

anism design, much of which aims to reduce the assumed information the

designer has about the participants. In this paper we provide an auction

mechanism that reduces the assumed information assumed of the seller,

and, in addition, relaxes substantially the assumed information of the

participants. In particular, the mechanism performs well when there are

many buyers, even though there is no prior distribution over the accuracy

of buyers’information on the part of the designer or the participants.
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1 Introduction

There is a large literature on robust implementation that addresses a concern

raised in Wilson (1987) concerning mechanisms designed to implement desired

social outcomes in the presence of asymmetric information. Typically, the con-

struction of a proposed optimal mechanism relies on the mechanism designer

having precise knowledge of the probability distribution over the agents’types.

For many problems, this seems implausible, and has prompted researchers to

search for mechanisms that are "robust" to the precise knowledge of the proba-

bility distribution.1The robust implementation literature has made substantial

strides toward understanding the degree to which the assumptions regarding the

mechanism designer’s information can be significantly relaxed and the charac-

teristics of robust mechanisms.

Most of the work on robust implementation focuses on the mechanism de-

signer’s information and says little or nothing about the information of the

agents who will participate in the mechanism. This is not a problem for auc-

tions in which buyers’know their own values: second price auctions are natural

candidates for selling an object. Buyers have a dominant strategy to bid their

value if the auction is one with private values. While there are many auction

problems for which this is the case, there are important problems for which it

fails. Consider an auction for drilling rights on a particular tract. One bidder

for the rights may have a very precise estimate of the amount of oil in the tract

or the depth of the reservoir while another bidder may have a substantially less

precise estimate. In essence, agents may have some relevant information about

the tract to be auctioned that other bidders do not have. Hence, we have left

the realm of private values problems: my value depends on other agents’infor-

mation as well as my own. It is known that in the interdependent value case

(that is, when an agent may have both information of interest to other bidders

and information of interest to her alone), second price auctions may not perform

well.2

Of particular interest to us is the fact that bidding one’s value is not a dom-

inant strategy in a second-price auction with interdependent values. (Indeed,

1See Bergemann and Morris (2012) and Borgers (2015), Chapter 10 for discussions of robust
mechanism design.

2Jackson (2009) presents a simple example illustrating the problem with second price auc-
tions when there is a mix of private and non-private information. In the example, the second
price auction does not have either a symmetric equilibrium or an equilibrium in undomi-
nated strategies. The example shows that equilibrium exists only in the extremes of pure
private and pure common values; existence in the private value model is not robust to a slight
perturbation.
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it is often the case that a bidder doesn’t know her value, as it can depend

on other bidders’ information.) Much of the robust implementation literature

assumes that the mechanism designer sets out the rules of the mechanism, fol-

lowing which the participating agents typically play a Bayes Nash equilibrium of

the game induced by the mechanism. When an agent does not have a dominant

strategy, her bidding strategy is a best response to the probability distribution

over other bidders’strategies.

Wilson’s critique of the mechanism designer’s informational requirements

leads one to also question the plausibility of participants’informational require-

ments. This is particularly a problem when there are many participants who

may not even know how many other participants are present. Our aim in this

paper is to demonstrate a two-stage auction mechanism with the property that

a participant does not necessarily have a probability distribution over other par-

ticipants’types and may only have a rough idea of the number of participants.

The mechanism we construct assumes there are multiple payoff relevant

states, and participants get noisy signals correlated with the state. There are

bounds on the accuracies of the signals, but agents do not have beliefs about

other agents’signal accuracies beyond these bounds. The bounds on signal ac-

curacies assure that as the number of agents increases, they will become infor-

mationally small in the sense of McLean and Postlewaite (2002, 2004).3 When

agents are informationally small, their expected gain from misreporting their

information is small, but often positive. It is easy to construct simple interde-

pendent auction problems in which agents are informationally small, yet it is a

dominant strategy for agents to misreport their types.4 In our various papers

in which informational smallness plays a role5 , small rewards are constructed to

induce truthful announcement. The constructed reward for an agent is "person-

alized," that is, tailored to the information structures of both that agent and

other agents. The main contribution of this paper is a mechanism that does

not rely on such personalized rewards, yet gives the seller almost all the surplus

when there are many agents.

A second contribution of this paper is the solution concept, or rather, the

absence of a solution concept. Much of the literature in mechanism design,

including the literature on robust implementation, employs a familiar solution

concept (e.g., Bayes Nash equilibrium or ex post equilibrium) to describe the

3Roughly, an agent is informationally small if her information has a small expected effect
on the posterior distribution on the states.

4See McLean and Postlewaite (2004) for such an auction example.
5 In addition to the two papers mentioned above, this is the case for McLean and Postlewaite

(2003, 2005, 2009, 2015).
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outcome of the participants’game induced by the mechanism. We deviate from

this and focus not on what the particular outcome of the game will be, but rather

on what will not be the outcome. There is the diffi culty mentioned above with,

for example, Bayes Nash equilibrium: it requires that an agent have probabilistic

beliefs about other agents’behavior. An agent may have far less information

than a probability distribution over other agents’behavior, yet enough to know

that some bids are dominated. We ask only that agents do not make dominated

bids.

1.1 Literature review

McLean and Postlewaite (2004) (hereafter MP2004) analyzed an interdependent

value model similar to the model in this paper. That paper focused on the role

of “informational size”introduced in McLean and Postlewaite (2002). A given

player’s informational size in an asymmetric information problem is, roughly, the

degree to which that player’s information can affect, in expectation, the proba-

bility distribution over states of nature when other players truthfully reveal their

private information. MP2004 shows that when each buyer’s informational size

is small, a seller can use a modified second price auction that generates nearly

the same revenue as would be the case if the common value part of players’

information were public. McLean and Postlewaite (2017) (hereafter MP2017)

shows how one can construct two-stage mechanisms for this kind of interdepen-

dent problem that extract the common value part of private information in the

first stage, transforming the problem in the second stage into a private value

problem. The models in these papers follow the standard mechanism design

approach in which there is a prior that is common knowledge among the mech-

anism designer and the participants in the problem. Bayes equilibrium is the

solution concept in these papers.

A shortcoming of these papers is, as discussed in the introduction above,

that they are not "detail free" in the sense of Wilson (1987). At the center of

most of the models based on informational size are rewards to a given agent

that depend on the distribution of other agents’types, conditional on the given

agent’s type. A mechanism designer thus needs to know the distribution of

agents’types to construct the mechanism. The mechanism in the current paper

does not need to know that distribution, and indeed, does not need to know

even the exact number of participating agents.

The mechanism in this paper is a two stage mechanism somewhat similar

to that in MP2017, with the second stage being a second price auction. The
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current paper differs in a fundamental way from that paper. There is no assumed

probability distribution over agents’types, and consequently, Bayes equilibrium

cannot be the solution concept. Rather, we assume that potential buyers do not

make dominated bids in the second stage auction. A buyer in the second stage

will not have a well-defined probability distribution over states, hence she will

not be able to compute her expected value for the object to be sold. However,

she will be able to put upper and lower bounds on what the expected value would

be if she knew other buyers’noisy signals about the state and the accuracies of

those signals. We restrict buyers to bid no lower than the minimum possible

expected value over all possible realizations of the signals. While a buyer in the

second stage will be able to put tight bounds on the expected value when there

are many buyers, we want to emphasize that the second stage auction remains

one of interdependent values. We discuss this further in the last section.

Du (2018) presents a mechanism to sell a common value object that maxi-

mizes the revenue guarantee when there is one buyer and shows that the revenue

guarantee of that mechanism converges to full surplus as the number of buy-

ers tends to infinity. Du assumes that the prior distribution of the common

value is known. His mechanism, however, guarantees good revenue for every

equilibrium, while as we discuss in the last section, our result focuses on “truth-

ful revelation”outcomes.6 Brooks and Du, Econometrica (2021) construct an

auction mechanism for a common value problem that focusses on maxmin per-

formance across all information structures. When the number of bidders is large,

the profit guarantee is approximately the entire surplus. This takes care of the

multiplicity problem.

These papers provide mechanisms for important auction problems that ad-

dress the Wilson critique: the mechanism designer needs to know very little

about the agents who will participate in the mechanism. While the designer’s

informational requirements are minimal, the participants’informational require-

ments often remain substantial. It is assumed that the participants will play

a Bayes Nash equilibrium, which typically requires the participants to have

substantial information about other agents. Our mechanism requires partici-

pants to know bounds on the accuracies of other agents’signals, but little more.

In particular, agents are not assumed to have well-defined probabilistic beliefs

about others. A negative aspect about our mechanism relative to these papers

is that their results hold for all equilibria, while our result only guarantees the

existence of at least one outcome with the desirable properties.

Wolitzky (2016) studies mechanism design and the possibility of weakening

6See also a related paper by Bergemann, Brooks and Morris (2017).
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assumptions of agents’ beliefs. Toward this end, he assumes that agents are

maxmin expected utility maximizers a la Gilboa and Schmeidler (1989).7 Our

assumption about what agents know is substantially weaker, but Wolitzky’s

results hold for a fixed (possibly small) number of agents while our result holds

for large numbers of agents.

2 The model

Consider an auction model with n players and a single indivisible object. Player

i’s valuation for the object is the sum of a common value component and an

idiosyncratic private value component. The private value component of player

i is denoted ci and we assume that c1, .., cn are realizations of i.i.d. random

variables taking values in [0, 1]. The distribution function F is assumed satisfy

F (0) = 0 and F (1) = 1 and is differentiable and strictly increasing on [0, 1].

The common value component depends on the realization of one of two equally

likely states of nature a and b. In particular, player i’s valuation for the object

is given by ci + v(a) in state a and ci + v(b) in state b where we assume that

v(a) < v(b). Players observe the state only after the object has been allocated.

However, each player receives a signal ti ∈ {α, β} correlated with the state. The
players’signals are independent conditional on the state and i receives signal

ti = α (signal ti = β) conditional on state a (state b) with probability λi > 1
2 .

For each t = (t1, .., tn) ∈ {α, β}n and each i, let

fnα (t−i) := |{j : tj = α and j 6= i}|

with a similar definition for fnβ (t−i).

The critical feature of this model is the assumption that buyer i does not

know the accuracy parameters of the other buyers nor does he know his own

accuracy parameter λi. Players do however know the lower and upper bounds for

these accuracies, i.e., buyers know the values of the numbers x and y satisfying

1

2
< x ≤ λi ≤ y < 1

for each i. We denote the set of vectors of accuracies Λn = {(λ1, ..., λn) : λi ∈
[x, y]}, and by λ a generic element of Λn.

We propose a two stage auction mechanism whose extensive form is described

as follows.
7Wolitzky also summarizes other recent papers examining the effect of weakening the com-

mon prior assumption.
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Stage 1: Each buyer i observes his signal ti and private value ci and makes a

(not necessarily honest) report of his signal to the auctioneer. If buyer i reports

signal β and at least n2 other buyers report β, then all buyers who have reported

β (including i) advance to the second stage. If buyer i reports signal α and at

least n
2 other buyers report α, then all buyers who have reported α (including

i) advance to the second stage. If buyer i’s report is not a majority report, then

i exits the game with a payoff of 0.

Stage 2: Suppose that k + 1 bidders advance to the second stage where

k ≥ n
2 .With probability ε, the auctioneer will randomly choose (with probability

1
k+1 ) one of the second stage buyers to be awarded the object outright. With

probability 1−ε, the auctioneer will conduct a k+1 bidder second price auction.

In our framework, we will only assume that the bounds x and y are common

knowledge among the buyers. In addition, we do not specify beliefs regarding

the accuracy profile λ ∈ Λn so that, as a result, we cannot specify an equilibrium

in the two stage game. We will instead only assume that, in the second stage,

buyers submit undominated bids.8 More precisely, suppose that buyer i has

advanced to the second stage and will participate in the second stage auction

along with k other buyers. Denote the set of other buyers as S and note that

|S| = k.

Definition: A bid τ i by buyer i in the second stage auction is dominated if
there exists a bid τ ′i such that

a. for every (σj)j∈S and for every λ ∈ Λn, the expected payoff to buyer i

when bidding τ ′i is at least as high as that attained when bidding τ i, and

b. for some (σj)j∈S and λ ∈ Λn, i’s expected payoff is higher when bidding

τ ′i than that attained when bidding τ i.

Before moving to the formal analysis, we will present an example that illus-

trates the basic purpose of the two stages of our mechanism.

The basic idea is to elicit and make public the information that gives rise to

interdependent values in the first stage, turning the second stage into a private

value problem. The interdependency results from buyers’noisy state signals,

and buyers are asked to report those signals in the first stage. In general buyers

may have an incentive to misreport those signals: if the common value is higher

8Chiesa, Micali and Zhu (2015) analyze a private value model in which agents have incom-
plete preferences and are restricted to choosing undominated strategies.
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in state b than in state a, a buyer who gets a noisy signal β that the state is

b has an incentive to report signal α that the state is a. Doing so lowers other

buyers’beliefs that the state is b, which lowers other buyers’expected value of

the object, leading them to bid lower in the second stage.

Our mechanism gives buyers an incentive to truthfully reveal their state

signal by including a buyer in the second stage auction if and only if his an-

nouncement is in the majority. If all other buyers are reporting truthfully, a

buyer has a better chance of being included in the second round by reporting

truthfully than by misreporting.

While a buyer is more likely to get into the second stage auction by reporting

truthfully, this is not enough to assure honest reporting. Consider the following

example.

Suppose there are two equally likely states, a and b, three buyers, and buy-

ers receive conditionally independent signals about the state where P (α|a) =

P (β|b) = .6.9 Player i′s utility function is v(s) + ci, s ∈ {a, b}; the ci’s are
independent draws from the uniform distribution on [0, 1].

Suppose buyer 1 receives signal β. His belief is now that P (b|β) = .6. If he

announces β he will be in the majority unless the two other buyers both receive

signal α. The probability of this is .16 if the state is b and .36 if the state is

a. Thus, conditional on having received signal β, buyer 1’s report of β will be

a majority report with probability .76. If buyer 1 reports α, he will be in the

majority unless the two other buyers both receive signal β. The probability of

this is .36 if the state is b and .16 if the state is a. Thus, conditional on having

received signal β, buyer 1’s report of α will be a majority report with probability

.72. Hence, as is expected, he has a greater chance of being in the majority by

announcing truthfully when his signal is β than by misreporting.

However, there is a possible gain from misreporting. The probability that the

buyer is in the majority when he reports α after seeing β is .72. When all buyers

report truthfully and are informed of the numbers of reports of α and β, all

buyers who participate in the second stage auction have the same beliefs about

the probabilities of the states; that is, the asymmetry of information regarding

the common value components of buyers’information has been eliminated. But

when buyer 1 reports α when he has seen signal β, the buyer distorts the beliefs

of the other buyers. For example, if buyers 2 and 3 both report α, they observe

that all three second stage buyers reported α. Consequently, P (b|α, α, α) = .064

and the expected value of the common value component to them is .064 · v(b) +

.936 · v(a). Player 1, however, knows that his signal was β, and P (b|2 α′s and
9For this example we assume that the set of vectors of accuracies is a singleton.
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1 β) = .288. The expected value of the common value component to buyer

1 is .288 · v(b) + .712 · v(a). Similarly, when one of the other buyers received

signal α and one received β, and buyer 1 reports α when he received β, buyer 1’s

posterior probability of state b is higher than other buyers’posterior probability.

For buyer 1 then, there is a potential benefit from reporting α when he sees β:

conditional on a majority of buyers announcing α, buyer 1 will have distorted

other buyers’ expected values so that their expectation of the common value

component is lower than it would be if those buyers knew his true signal. This

translates into lower bids by those buyers in the second stage auction, and hence,

a lower price that buyer 1 will pay should he win the object.

This potential benefit to buyer 1 of announcing α when he sees β must be

weighed against the probability of getting to the second stage. The expected

gain from misreporting depends on v(b) − v(a): when this difference is large

enough, buyer 1 will do better by misreporting when he sees β. Thus, the

greater chance of getting into the second stage auction may not alone be enough

to incentivize truthful reporting.

The above discussion points out a buyer’s trade-off between maximizing the

chance of getting to the second stage auction and the benefits of distorting

other buyers’beliefs. But it is clear that when the accuracy of buyers’signals is

uniformly bounded below by x > 1/2 and above by y < 1, the degree to which

a buyer believes that he can alter other buyers’beliefs by misreporting goes to

zero as the number of buyers goes to infinity.

To summarize, we have so far argued that the gain to a buyer from mis-

reporting his state signal when other buyers report truthfully goes to zero as

the number of buyers goes to infinity. To ensure that there is no gain to such

misreporting we modify the second stage. With probability 1−ε the buyers will
engage in a second price auction; with probability ε the object for sale will be

given at no charge to one of the majority announcers who have advanced to

the second stage. We will show that, when there are many buyers, this small

modification will be suffi cient to assure that a buyer has a strict incentive to

announce truthfully if other buyers are doing so.

It is useful to provide a sketch of the argument. Choose ε > 0. Fix buyer i

and suppose that buyer i receives signal β and all other buyers report honestly

in the first stage and choose undominated bids in the second stage.

If i reports β along with k other buyers and advances to the second stage

then he is awarded the object outright with probability ε
k+1 . With probability

1 − ε, i participates in a k+1 buyer auction in which exactly k+1 buyers have

9



received signal β. If Ai(fnβ (t−i) = k, ti = β) denotes the payoff to i in the

auction, then i’s second stage payoff is

z(fnβ (t−i) = k, ti = β) = (1−ε)×Ai(fnβ (t−i) = k, ti = β)+
ε

k + 1
×[expected lottery payoff].

If i instead reports α and advances to the second stage then he is awarded

the object outright with probability ε
k+1 . With probability 1− ε, i participates

in a k+1 buyer auction in which exactly k buyers have received signal α. If

Ai(f
n
α (t−i) = k, ti = β) denotes the payoff to i in the auction, then i’s second

stage payoff is

z(fnα (t−i) = k, ti = β) = (1−ε)×Ai(fnα (t−i) = k, ti = β)+
ε

k + 1
×[expected lottery payoff].

Buyer i will honestly report β if∑
k≥n

2

z(fnβ (t−i) = k, ti = β)P (fnβ (t−i) = k|ti = β) ≥
∑
k≥n

2

z(fnα (t−i) = k, ti = β)P (fnα (t−i) = k|ti = β)

and the following steps outline why this is true if n is suffi ciently large. In

particular, the argument proceeds by showing that, for suffi ciently large n, there

exists an integerm(n) > n
2 for which the following steps are valid whenever each

ci < 1.10 .

Step 1: Suppose that k ≥ m(n).

Then for every admissible accuracy profile, we have

P (b|fnβ (t−i) = k, ti = β) ≈ 1

implying that i’s expected lottery payoff is

ci + E[v|fnβ (t−i) = k, ti = β] ≈ ci + v(b).

Similarly,

P (b|fnα (t−i) = k, ti = β) ≈ 0

implying that i’s expected lottery payoff is

ci + E[v|fnα (t−i) = k, ti = β] ≈ ci + v(a).

Step 2: Suppose that k ≥ m(n). Then11

10 In the proof, m(n) = x(n− 1)− (n− 1)
2
3 .

11When ci < 1, the payoff to the winning bidder converges to zero at an exponential rate.
This is shown in Step 5 of the proof.
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λiAi(f
n
β (t−i) = k, ti = β)− (1− λi)Ai(fnα (t−i) = k, ti = β) ≈ o( 1

k + 1
)

where mo( 1m )→ 0 as m→∞ and

λi[i’s expected lottery payoff | fnβ (t−i) = k, ti = β]

−(1− λi)[i’s expected lottery payoff | fnα (t−i) = k, ti = β]

>
ε

(k + 1)

[
v(b)− v(a)

2

]
.

Step 3: Combining steps 1 and 2, we conclude that for all k ≥ m(n) and

for any accuracy profile, we have

λiz(f
n
β (t−i) = k, ti = β)− (1− λi)z(fnα (t−i) = k, ti = β)

> o(
1

k + 1
) +

ε

(k + 1)

[
v(b)− v(a)

2

]
>

ε

(k + 1)

[
v(b)− v(a)

4

]
.

Step 4: For each k ≥ m(n) and for any accuracy profile, an application of

the law of large numbers yields∑
k≥n

2

z(fnβ (t−i) = k, ti = β)P (fnβ (t−i) = k|ti = β)

−
∑
k≥n

2

z(fnα (t−i) = k, ti = β)P (fnα (t−i) = k|ti = β)

≈
∑

k≥m(n)

z(fnβ (t−i) = k, ti = β)P (fnβ (t−i) = k, ti = β|b)

−
∑

k≥m(n)

z(fnα (t−i) = k, ti = β)P (fnα (t−i) = k, ti = β|a).

Furthermore,

P (fnβ (t−i) = k, ti = β|b) = λiQk(n)

and

P (fnα (t−i) = k, ti = β|a) = (1− λi)Qk(n)

where ∑
k≥m(n)

Qk(n) ≈ 1.
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Step 5: Combining the previous steps, we conclude that∑
k≥n

2

z(fnβ (t−i) = k, ti = β)P (fnβ (t−i) = k|ti = β)−
∑
k≥n

2

z(fnα (t−i) = k, ti = β)P (fnα (t−i) = k|ti = β)

≈
∑

k≥m(n)

z(fnβ (t−i) = k, ti = β)P (fnβ (t−i) = k, ti = β|b)

−
∑

k≥m(n)

z(fnα (t−i) = k, ti = β)P (fnα (t−i) = k, ti = β|a)

≈
∑

k≥m(n)

z(fnβ (t−i) = k, ti = β)λiQk(n)−
∑

k≥m(n)

z(fnα (t−i) = k, ti = β)(1− λi)Qk(n)

≈
∑

k≥m(n)

[
λiz(f

n
β (t−i) = k, ti = β)− (1− λi)z(fnα (t−i) = k, ti = β)

]
Qk(n)

≈
∑

k≥m(n)

ε

(k + 1)

[
v(b)− v(a)

4

]
Qk(n)

≥ ε
[
v(b)− v(a)

4(n+ 1)

] ∑
k≥m(n)

Qk(n)

≈ ε
[
v(b)− v(a)

4(n+ 1)

]
implying that∑

k≥n
2

z(fnβ (t−i) = k, ti = β)P (fnβ (t−i) = k|ti = β)−
∑
k≥n

2

z(fnα (t−i) = k, ti = β)P (fnα (t−i) = k|ti = β) > 0.

3 The result

Proposition: Suppose that v(b) > v(a) ≥ 0 and xv(a) > (1 − x)v(b). Then

for each ε > 0, there exists an N such that for each n ≥ N the following holds:

for every accuracy profile (λ1, .., λn) satisfying 1
2 < x ≤ λj ≤ y < 1 for each

j, for every characteristic profile (c1, .., cn) with ci ∈ [0, 1[ and for every profile

(σ1, .., σn) of undominated bids, the auction game is strictly interim individually

rational and strictly incentive compatible at the first stage. That is∑
k≥n

2

z(fβ(t−i) = k, ti = β)P (fβ(t−i) = k|ti = β)−
∑
k≥n

2

z(fα(t−i) = k, ti = β)P (fα(t−i) = k|ti = β) > 0

and∑
k≥n

2

z(fα(t−i) = k, ti = α)P (fα(t−i) = k|ti = α)−
∑
k≥n

2

z(fβ(t−i) = k, ti = α)P (fβ(t−i) = k|ti = α) > 0.
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Remark: For large n, the seller’s expected revenue is close to

1 +
v(a) + v(b)

2
.

To see this, suppose that n is large. If the second stage auction has k ≥ n
2

bidders who have reported α and are choosing undominated bids, then the

bidders estimate the value of the common component to be approximately v(a)

so the winning bidder pays approximately v(a) plus the second highest value of

the private valuations of the other k−1 bidders. For large n this is approximately

1 + v(a). If the second stage auction has k ≥ n
2 bidders who have reported β

and are choosing undominated bids, then the bidders estimate the value of

the common component to be approximately v(b) so the winning bidder pays

approximately v(b) plus the second highest value of the private valuations of

the other k − 1 bidders. For large n this is approximately 1 + v(b). Therefore

the seller’s expected revenue from the mechanism is approximately equal to

[1 + v(a)]P (fα(t) ≥ n

2
) + [1 + v(b)]P (fβ(t) ≥ n

2
) = 1 +

v(a) + v(b)

2
.

4 Proof

Assume that i sees β and ci where 0 ≤ ci < 1.12

For a profile t of signals, note that

fα(t−i) + fβ(t−i) = n− 1

Let

πβk(n) = E[v|fβ(t−i) = k, ti = β]

π∗k(n) = E[v|fα(t−i) = k, ti = β]

and note that

πβk(n) > π∗k(n).

The dependence of fα(t−i) and fβ(t−i) on n and the dependence of π
β
k(n) and

π∗k(n) on λ1, .., λn are suppressed for notational ease.

Step 1: To begin, note that there exists an integer N0 such that for each i
and for all n ≥ N0, we have
n

2
< x(n−1)−(n−1)

2
3 ≤ λi(n−1)−(n−1)

2
3 < λi(n−1)+(n−1)

2
3 ≤ y(n−1)+(n−1)

2
3 < n .

12 In this proof, the assumption that v(b) > v(a) plays an important role. The case in which
player i sees signal α employs essentially symmetric computations but now the assumption
that xv(a) > (1− x)v(b) comes into play.
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Applying Hoeffding’s inequality, it follows that

P

(∣∣∣∣fβ(t−i)

n− 1
−
∑
j 6=i λi

n− 1

∣∣∣∣ > 1

(n− 1)
1
3

|b
)
≤ 2 exp

(
−2(n− 1)

1

(n− 1)
2
3

)
.

Therefore,

P
(
fβ(t−i) > y(n− 1) + (n− 1)

2
3 |b
)
≤ P

fβ(t−i) >
∑
j 6=i

λj + (n− 1)
2
3 |b

 ≤ 2 exp[−2(n−1)
1
3 ]

and

P
(
fβ(t−i) < x(n− 1)− (n− 1)

2
3 |b
)
≤ P

fβ(t−i) <
∑
j 6=i

λj − (n− 1)
2
3 |b

 ≤ 2 exp(−2(n−1)
1
3 ).

Similarly,

P

(∣∣∣∣fα(t−i)

n
−
∑
j 6=i λj

n

∣∣∣∣ > 1

(n− 1)
1
3

|a
)
≤ 2 exp(−2(n− 1)

1

(n− 1)
2
3

)

implying that

P
(
fα(t−i) > y(n− 1) + (n− 1)

2
3 |a

)
≤ P

fα(t−i) >
∑
j 6=i

λj + (n− 1)
2
3 |a

 ≤ 2 exp(−2(n−1)
1
3 )

and

P
(
fα(t−i) < x(n− 1)− (n− 1)

2
3 |a
)
≤ P

fα(t−i) <
∑
j 6=i

λj − (n− 1)
2
3 |a

 ≤ 2 exp(−2(n−1)
1
3 ).

We also will need the following probability bounds that follow from the bounds

computed above:

(i)

P
(
fα(t−i) < x(n− 1)− (n− 1)

2
3 , ti = β|a

)
= (1− λi)P

(
fα(t−i) < x(n− 1)− (n− 1)

2
3 |a
)

≤ 2(1− λi) exp(−2(n− 1)
1
3 ).

(ii)

P
(
fα(t−i) ≥

n

2
, ti = β|b

)
= λiP

(
fα(t−i) ≥

n

2
|b
)

= λiP
(
fβ(t−i) <

n

2
|b
)

≤ λiP
(
fβ(t−i) < x(n− 1)− (n− 1)

2
3 |b
)

≤ 2λi exp(−2(n− 1)
1
3 ).
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(iii)

P
(
fβ(t−i) < x(n− 1)− (n− 1)

2
3 , ti = β|b

)
= λiP

(
fβ(t−i) < x(n− 1)− (n− 1)

2
3 |b
)

≤ 2λi exp(−2(n− 1)
1
3 )

(iv)

P
(
fβ(t−i) ≥

n

2
, ti = β|a

)
= (1− λi)P

(
fβ(t−i) ≥

n

2
|a
)

= (1− λi)P
(
fα(t−i) <

n

2
|a
)

≤ (1− λi)P
(
fα(t−i) < x(n− 1)− (n− 1)

2
3 |a
)

≤ 2(1− λi) exp(−2(n− 1)
1
3 ).

Step 2: We first compute bounds for πβk(n) = E[v|fβ(t−i) = k, ti = β] that

hold for all suffi ciently large n. To begin, note that

πβk(n) = v(a)P (a|fβ(t−i) = k, ti = β) + v(b)P (b|fβ(t−i) = k, ti = β)

= v(b)− [v(b)− v(a)]P (a|fβ(t−i) = k, ti = β).

Since

P (fβ(t−i) = k, ti = β|a) = (1− λi)
∑

S⊆N\i
:|S|=k

∏
j∈S

(1− λj)

 ∏
j /∈S∪i

λj


and

P (fβ(t−i) = k, ti = β|b) = λi
∑

S⊆N\i
:|S|=k

∏
j∈S

λj

 ∏
j /∈S∪i

(1− λj)


we conclude that for all n ≥ N0,

P (a|fβ(t−i) = k, ti = β) =
P (fβ(t−i) = k, ti = β|a)

P (fβ(t−i) = k, ti = β|a) + P (fβ(t−i) = k, ti = β|b)

=
1

1 +

λi
∑
S⊆N\i
:|S|=k

∏
j∈S

λj


 ∏
j /∈S∪i

(1−λj)


(1−λi)

∑
S⊆N\i
:|S|=k

∏
j∈S

(1−λj)


 ∏
j /∈S∪i

λj


≤ 1

1 +
(

x
1−x

)2k−n+2
15



Let d = 2x− 1. Then there exists an integer N1 > N0 such that n ≥ N1 and
k ≥ x(n− 1)− (n− 1)

2
3 imply that

(
x

1− x

) (n−1)d
2

≤
(

x

1− x

)2k−(n−1)
.

To see this choose N1 so that d− 2(n− 1)−
1
3 > d

2 for all n ≥ N1. Next, suppose
that note that k ≥ x(n− 1)− (n− 1)

2
3 . Then x

1−x > 1 implies that

(
x

1− x

)2k−(n−1)
≥
(

x

1− x

)2(x(n−1)−(n−1) 23 )−(n−1)
and it follows that(

x

1− x

)2k−(n−1)
≥
(

x

1− x

)2(x(n−1)−(n−1) 23 )−(n−1)
=

(
x

1− x

)(n−1)[d−2(n−1)− 1
3

]
≥
(

x

1− x

) (n−1)d
2

.

In particular, (
x

1− x

)2k−n+2
≥
(

x

1− x

) (n−1)d
2 +1

Therefore, n ≥ N1 implies (since v(a) < v(b)) that for each k ≥ x(n− 1)−
(n− 1)

2
3 we have

v(b) ≥ πβk(n)

= v(b)− [v(b)− v(a)]P (a|fβ(t−i) = k, ti = β)

≥ v(b)−

 1

1 +
(

x
1−x

) (n−1)d
2 +1

 [v(b)− v(a)].

Step 3: We next compute bounds for π∗k(n) = E[v|fα(t−i) = k, ti = β] that

hold for all n suffi ciently large. To begin, note that

π∗k(n) = v(a)P (a|fα(t−i) = k, ti = β) + v(b)P (b|fα(t−i) = k, ti = β)

= v(a) + [v(b)− v(a)]P (b|fα(t−i) = k, ti = β).

Since

P (fα(t−i) = k, ti = β|a) = (1− λi)
∑

S⊆N\i
:|S|=k

∏
j∈S

λj

 ∏
j /∈S∪i

(1− λj)



16



and

P (fα(t−i) = k, ti = β|b) = λi
∑

S⊆N\i
:|S|=k

∏
j∈S

(1− λj)

 ∏
j /∈S∪i

λj


we conclude that

P (b|fα(t−i) = k, ti = β) =
P (fα(t−i) = k, ti = β|b)

P (fα(t−i) = k, ti = β|a) + P (fβ(t−i) = k, ti = β|b)

=
1

1 +

(1−λi)
∑
S⊆N\i
:|S|=k

∏
j∈S

λj


 ∏
j /∈S∪i

(1−λj)


λi
∑
S⊆N\i
:|S|=k

∏
j∈S

(1−λj)


 ∏
j /∈S∪i

λj


≤ 1

1 +
(

x
1−x

)2k−n .
If n ≥ N1 and k ≥ x(n− 1)− (n− 1)

2
3 then we conclude from step 2 that(

x

1− x

)2k−(n−1)
≥
(

x

1− x

) (n−1)d
2

implying that(
x

1− x

)2k−n
=

(
x

1− x

)2k−(n−1)(
1− x
x

)
≥
(

x

1− x

) (n−1)d
2

(
1− x
x

)
=

(
x

1− x

) (n−1)d
2 −1

.

Therefore,

v(a) ≤ π∗k(n)

= v(a) + [v(b)− v(a)]P (b|fα(t−i) = k, ti = β).

≤ v(a) +

 1

1 +
(

x
1−x

) (n−1)d
2 −1

 [v(b)− v(a)].

Step 4: For each n, define

ηn =

 1

1 +
(

x
1−x

) (n−1)d
2 −1

 [v(b)− v(a)]

and note that

ηn ≥

 1

1 +
(

x
1−x

) (n−1)d
2 +1

 [v(b)− v(a)].
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Summarizing Steps 2 and 3, we conclude the following: for every n ≥ N1 and

for each k ≥ x(n− 1)− (n− 1)
2
3 , we conclude that

v(b) ≥ πβk(n) ≥ v(b)−

 1

1 +
(

x
1−x

) (n−1)d
2 +1

 [v(b)− v(a)] ≥ v(b)− ηn

v(a) ≤ π∗k(n) ≤ v(a) +

 1

1 +
(

x
1−x

) (n−1)d
2 −1

 [v(b)− v(a)] = v(a) + ηn.

Step 5: We now compute estimates of player i’s expected payoff in the

second stage auction if player i reports α and advances to the second stage. In

this case, i will join k ≥ n
2 other players that have reported α. Therefore, i’s

expected payoff in the presence of k other players is equal to

(1− ε)× [expected auction payoff} + ε

k + 1
× [expected lottery payoff]

= (1− ε)Ai(fα(t−i) = k, ti = β) +
ε

k + 1
[ci + π∗k(n)]

So we must estimate player i’s expected payoff in the auction.

Suppose that n ≥ N1 and k ≥ x(n−1)− (n−1)
2
3 . As summarized in Step 3,

we have computed a bound for π∗k(n), so we must estimate player i’s expected

payoff in the auction.

Suppose that each bidder i submits an undominated bid ci + zi where zi is

bidder i’s estimate of the expectation of the common value component. Then

v(a) + ηn ≥ zi ≥ v(a)

for every i. Note that the rv cj + zj takes values in [zj , 1 + zj ]. Next, note that

for each ζ ∈ [maxj 6=i zj , 1 + maxj 6=i zj ] we have

Prob

(
max
j 6=i
{cj + zj} ≤ ζ

)
=
∏
j 6=i

F (ς − zj).

Next, note that for suffi ciently large n, we have

ci + zi ≤ 1 + max
j 6=i

zj

18



so we consider two cases. If maxj 6=i zj ≥ ci + zi, then i’s auction payoff is 0. If

maxj 6=i zj < ci + zi, then then i’s auction payoff is∫ ci+zi

maxj 6=i zj

[ci + π∗k(n)− ζ]
d

dy

∏
j 6=i

F (ζ − zj)

 dy = (π∗k(n)−zi)
∏
j 6=i

F (ci+zi−zj)+(ci+zi−max
j 6=i

zj)
∏
j 6=i

F (µ−zj)

for some µ satisfying

ci + zi > µ > max
j 6=i

zj .

Since |zi − zj | < ηn for each j and |zi − maxj 6=i zj | < ηn, there exists an

integer N2 > N1 and δ > 0 such that 0 ≤ |ci+zi−zj | ≤ ci+ |zi−zj | < ci+δ < 1

and 0 ≤ |ci + zi −maxj 6=i zj | < ci + δ < 1 whenever n ≥ N2. Therefore, n ≥ N2
and k ≥ x(n− 1)− (n− 1)

2
3 imply that

Ai(fα(t−i) = k, ti = β) = (π∗k(n)− zi)
∏
j 6=i

F (ci + zi − zj) + (ci + zi −max
j 6=i

zj)
∏
j 6=i

F (µ− zj)

≤ ηnF (ci + δ)k + F (ci + δ)k+1.

Step 6: Suppose that n ≥ N2 = max{N0, N1, N2} and k ≥ x(n− 1)− (n−
1)

2
3 .

Let

B = max{z(fβ(t−i) = k, ti = β), z(fα(t−i) = k, ti = β) : t ∈ T, λ ∈ {x, y}n}.

Recalling that

P
(
fα(t−i) ≥

n

2
, ti = β|b

)
≤ 2λi exp(−2(n− 1)

1
3 )

and

P
(
fα(t−i) < x(n− 1)− (n− 1)

2
3 , ti = β|a

)
≤ 2(1− λi) exp(−2(n− 1)

1
3 )

we conclude that

∑
k≥n

2

z(fα(t−i) = k, ti = β)P (fα(t−i) = k|ti = β)

=
∑

n
2≤k<x(n−1)−(n−1)

2
3

z(fα(t−i) = k, ti = β)P (fα(t−i) = k, ti = β|a)

+
∑

k≥x(n−1)−(n−1)
2
3

z(fα(t−i) = k, ti = β)P (fα(t−i) = k, ti = β|a)

+
∑
k≥n

2

z(fα(t−i) = k, ti = β)P (fα(t−i) = k, ti = β|b)

≤
∑

k≥x(n−1)−(n−1)
2
3

z(fα(t−i) = k, ti = β)P (fα(t−i) = k, ti = β|a) + 2B exp(−2(n− 1)
1
3 ).
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Recalling that

P
(
fβ(t−i) ≥

n

2
, ti = β|a

)
≤ 2(1− λi) exp(−2(n− 1)

1
3 )

and

P
(
fβ(t−i) < x(n− 1)− (n− 1)

2
3 , ti = β|b

)
≤ 2λi exp(−2(n− 1)

1
3 )

we conclude that∑
k≥n

2

z(fβ(t−i) = k, ti = β)P (fβ(t−i) = k|ti = β)

=
∑

n
2≤k<x(n−1)−(n−1)

2
3

z(fβ(t−i) = k, ti = β)P (fβ(t−i) = k, ti = β|b)

+
∑

k≥x(n−1)−(n−1)
2
3

z(fβ(t−i) = k, ti = β)P (fβ(t−i) = k, ti = β|b)

+
∑
k≥n

2

z(fβ(t−i) = k, ti = β)P (fβ(t−i) = k, ti = β|a)

≥
∑

k≥x(n−1)−(n−1)
2
3

z(fβ(t−i) = k, ti = β)P (fβ(t−i) = k, ti = β|b)− 2B exp(−2(n− 1)
1
3 ).

Defining

Qk(n) =
∑

S⊆N\i
:|S|=k

∏
j∈S

λj

 ∏
j /∈S∪i

(1− λj)


it follows that

P (fα(t−i) = k, ti = β|a) = (1− λi)P (fα(t−i) = k|a) = (1− λi)Qk(n)

and

P (fβ(t−i) = k, ti = β|b) = λiP (fβ(t−i) = k|b) = λiQk(n).

Therefore,∑
k≥n

2

z(fβ(t−i) = k, ti = β)P (fβ(t−i) = k|ti = β)−
∑
k≥n

2

z(fα(t−i) = k, ti = β)P (fα(t−i) = k|ti = β)

≥
∑

k≥x(n−1)−(n−1)
2
3

[λiz(fβ(t−i) = k, ti = β)− (1− λi)z(fα(t−i) = k, ti = β)]Qk(n)− 4B exp(−2(n− 1)
1
3 ).

Step 7: Suppose that n ≥ N2 = max{N0, N1, N2} and k ≥ x(n− 1)− (n−
1)

2
3 .
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In this step we estimate

λiz(fβ(t−i) = k, ti = β)− (1− λi)z(fα(t−i) = k, ti = β).

Recall that

z(fβ(t−i) = k, ti = β) = (1− ε)Ai(fβ(t−i) = k, ti = β) +
ε

k + 1
[ci + πβk(n)]

and

z(fα(t−i) = k, ti = β) = (1− ε)Ai(fα(t−i) = k, ti = β) +
ε

k + 1
[ci + π∗k(n)].

Applying Step 5, it follows that

−(1−λi)Ai(fα(t−i) = k, ti = β) ≥ −(1−λi)
(
ηn(ci + δ)k + (ci + δ)k+1

)
> −

(
ηn(ci + δ)k + (ci + δ)k+1

)
.

Steps 2 and 3 imply that πβk(n) → v(b) and π∗k(n) → v(a). So choose N3 > N2

so that for all n > N3,

λiπ
β
k(n)− (1− λi)π∗k(n) >

λiv(b)− (1− λi)v(a)

2
≥ xv(b)− (1− x)v(a)

2
> 0.

Therefore,

λiz(fβ(t−i) = k, ti = β)− (1− λi)z(fα(t−i) = k, ti = β) =

λi(1− ε)Ai(fβ(t−i) = k, ti = β) +
ε

k + 1
λi[ci + πβk(n)]

−(1− ε)(1− λi)Ai(fα(t−i) = k, ti = β)− (1− λi)
ε

k + 1
[ci + π∗k(n)]

≥ ε

k + 1

[
xv(b)− (1− x)v(a)

2

]
− (1− ε)ηn(ci + δ)k + (ci + δ)k+1

=
1

(k + 1)

(
ε

[
xv(b)− (1− x)v(a)

2

]
− (1− ε)(k + 1)

(
ηn(ci + δ)k + (ci + δ)k+1

))
.

Step 8: Since F (ci + δ) < 1, it follows that for k large enough,

ε

[
xv(b)− (1− x)v(a)

2

]
−(1−ε)(k+1)

(
ηnF (ci + δ)k + F (ci + δ)k+1

)
> ε

[
xv(b)− (1− x)v(a)

4

]
Furthermore, for n large enough,

ε

[
xv(b)− (1− x)v(a)

4

]
(1−2 exp(−2(n−1)

1
3 )−4B(n+1) exp(−2(n−1)

1
3 ) > 0

Consequently, there exists an N > N3 such that for all n ≥ N and k ≥ x(n −
1)− (n− 1)

2
3 , and we conclude that
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∑
k≥n

2

z(fβ(t−i) = k, ti = β)P (fβ(t−i) = k|ti = β)−
∑
k≥n

2

z(fα(t−i) = k, ti = β)P (fα(t−i) = k|ti = β)

≥
∑

k≥x(n−1)−(n−1)
2
3

[λiz(fβ(t−i) = k, ti = β)− (1− λi)z(fα(t−i) = k, ti = β)]Qk(n)− 4B exp(−2(n− 1)
1
3 )

≥
∑

k≥x(n−1)−(n−1)
2
3

1

(k + 1)

(
ε

[
xv(b)− (1− x)v(a)

2

]
− (1− ε)(k + 1)

(
ηn(ci + δ)k + (ci + δ)k+1

))
Qk(n)

−4B exp(−2(n− 1)
1
3 )

≥
∑

k≥x(n−1)−(n−1)
2
3

1

(k + 1)

(
ε

[
xv(b)− (1− x)v(a)

4

])
Qk(n)− 4B exp(−2(n− 1)

1
3 )

≥ 1

(n+ 1)

 ∑
k≥x(n−1)−(n−1)

2
3

(
ε

[
xv(b)− (1− x)v(a)

4

])
Qk(n)− 4B(n+ 1) exp(−2(n− 1)

1
3 )


≥ 1

(n+ 1)

(ε [xv(b)− (1− x)v(a)

4

]) ∑
k≥x(n−1)−(n−1)

2
3

Qk(n)

− 4B(n+ 1) exp(−2(n− 1)
1
3 )


=

1

(n+ 1)

[(
ε

[
xv(b)− (1− x)v(a)

4

]) [
P (fβ(t−i) ≥ x(n− 1)− (n− 1)

2
3 |b)

]
− 4B(n+ 1) exp(−2(n− 1)

1
3 )

]
≥ 1

(n+ 1)

[(
ε

[
xv(b)− (1− x)v(a)

4

])
(1− 2 exp(−2(n− 1)

1
3 )− 4B(n+ 1) exp(−2(n− 1)

1
3 )

]
> 0

5 Discussion

1. When the number of buyers is large, the information of a single agent will

generally have a small influence on the expected value of the common compo-

nent. As discussed above, this is related to the idea of informational size that

we have employed in other papers but differs in important ways. Our previous

work assumed common knowledge of the information structure. Thus, if we

were able to induce truthful revelation of agents’private information about the

common component and make that information public, there would be common

knowledge of the expected value of that common component. This turns the

second stage auction into a private value auction. In the current paper there is

no common knowledge prior over agents’information - no assumption is made

about agents’beliefs about either the accuracy of their own signal or the signals
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of others. For every probability distribution over buyers’accuracies, one can

compute the expected value of the common component. To prove our main re-

sult we show that there is a lower bound on these expected values that converges

to the expected value given the true state.

The following example illustrates that the convergence is NOT driven by

revelation of all information relevant to the common component, but holds even

if the second stage auction is one of interdependent values. Consider a problem

like that analyzed in the paper in which bidders get noisy signals about the

state where the accuracy is between x and y, where x > 1/2 and y < 1. Suppose

that in addition to the signal about the state, each bidder learns whether the

accuracy of her signal was above or below x+y
2 . The process is as before -

bidders announce their signal (but not the signal about the accuracy) and those

in the majority participate in a second price auction in the second stage. Now,

even though every bidder has information relevant to all other bidders but not

available to them, our result still obtains. This follows since we proved that for

every vector of accuracies the conclusion of the theorem holds.

2. We demonstrate that in our mechanism, if it is assumed that buyers do

not make dominated bids should they reach the second stage auction, then it is

optimal for a buyer to correctly reveal his state signal when there were many

buyers and other buyers reported truthfully.13 It would, however, also have

been optimal for a buyer to misreport his signal if all other buyers did so, for

more or less the same reasons that truthful revelation is often not the unique

equilibrium in a standard direct mechanism. To get to the second stage in our

model, a buyer wants to be in the majority; if all other buyers misreport, my

doing so as well maximizes my chance to move to the second stage. It should be

noted, however, that whether all buyers report truthfully or all buyers lie (that

is, each buyer announces the opposite of her signal), the same set of buyers

will advance to the second stage and having advanced to the second stage, the

constraints on the bids that are undominated is the same. Hence, the lower

bound on the seller’s expected revenue is the same whether buyers unanimously

announce truthfully or untruthfully in the first stage. This does not, however,

mean that the lower bound is the same for all equilibria. For example, it is an

equilibrium for all buyers to report state a regardless of the signal they receive,

and the lower bound on the seller’s expected revenue would typically be lower

13Note that we do not say that correctly reporting the state signal is an equilibrium. Since
a buyer who reaches the second stage does not necessarily have a well defined probability
distribution over his possible values of the object, he does not have a well defined expected
utility conditional on getting to the second stage.
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for this equilibrium.

3. We treat the case in which there are two equally likely states of nature.

An extension to an arbitrary finite number of equally likely states would be

straightforward. Let {θ1, .., θm} denote the set of states and let {α1, .., αm}
denote the set of signals where 1

2 < x ≤ Pi(αi|θi) ≤ y < 1. That is, the

probability that player i’s signal is "correct" is bounded by x and y. Suppose

that v(θk) denotes the common value in state θk and that v(θi)P (θi|αi) >

v(θj)P (θj |αi) for i 6= j. Then, as in the case analyzed above, if more buyers

have announced state αk than any other state, those buyers proceed to the

second stage auction. As in the case above, a small lottery will induce buyers

to truthfully announce their signals when other buyers do so.

4. We assume two equally likely states. While it is not critical that the states

be exactly equally likely, the analysis above will break down if the states have

dramatically different probabilities. Suppose the probability of state a is p and

buyers get a state signal that has accuracy .6. If p = .5 and my signal indicates

that the state is a, my belief is that a is the more likely state, and consequently,

other people are more likely to get the signal indicating state a than a signal

indicating state b. However, if p = .01, my posterior beliefs are that state b is

more likely than a, and I have a better chance of getting to the second stage by

misreporting my state signal than by reporting truthfully. If the states are not

equally likely, there will be a minimum accuracy ρ of the signal for which, when

I observe a signal for state a, my belief is that a is the most likely state. It is

necessary and suffi cient that the signal accuracy be at least this high to elicit

truthful reporting.

5. We assume that the common value components of utility (v(a) and v(b))

are the same for all buyers. One would expect that a similar argument would

hold for some variation in these values across buyers. Similarly, one would

expect a similar result would hold for some variations of the problem when the

private and common values of buyers are not additively separable.

6. We assume that the bounds on the accuracies of buyers’signals is common

knowledge. The intuition underlying the arguments above holds for deviations

from common knowledge that are not too large. Suppose that there is a subset

of buyers for whom the bounds on accuracies are common knowledge among

themselves. If the subset consists of a proportion of the number of buyers that

is close to, but less than, one, the intuition of our result carries over: bidding in
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the second stage will generate expected revenue close to the maximum possible,

and it will be strictly incentive compatible for buyers in the subset to report

truthfully if others in the group do so.

7. We demonstrate that, for a particular auction problem, the incentive

problem stemming from interdependent values can be ameliorated when there

are many buyers. The structure of the argument suggests a general message.

A buyer gains by misreporting that part of his private information that affects

other buyers’values. By doing so the buyer alters other buyers’values by dis-

torting their beliefs. The information structure in our problem has the property

that as the number of buyers gets large, the degree to which a buyer can dis-

tort others’beliefs gets small, hence small rewards for truthful revelation induce

truthful reporting. When the number of buyers gets large, the aggregate reward

necessary to induce truthful reporting is small because the amount by which a

buyer can distort other buyers’beliefs decreases faster than rate at which the

number of buyers increases.

While there are information structures for which this is not the case, many

natural information structures share this property. When this property holds,

an important part of agents’asymmetric information —the part leading to in-

terdependent values —can be dealt with at small cost.

8. MP2017 constructs a two-stage mechanism that uses the first-stage an-

nouncements to convert the initial interdependent value problem into a private

value problem in the second stage, assuming truthful reporting in the first stage.

This makes the analysis of agents’second stage bidding behavior easier: in the

standard second-price auction, bidding below one’s expected value is weakly

dominated. In the current paper the second period problem is not private

value: agents do not have a probability distribution over the accuracies of the

signals received, hence, they do not have a probability distribution over their

value of the object being auctioned. However, the lower bound on the possible

accuracies puts a lower bound on the probability of the correct state of nature

over all possible accuracies. This, in turn, puts a lower bound for any agent

on her expected values across all possible accuracies, and bidding below this

lower bound is dominated. As the number of agents increases, this lower bound

converges (with probability one) to the value of the object had the underlying

state of nature been known.

We outline a simple variant of the problem we have analyzed for which the

second stage is necessarily interdependent value. Suppose each agent gets a

noisy signal of the state of nature, with upper and lower bounds x and y on
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the accuracy. Suppose that, unlike in our problem, each agent also learns that

the accuracy is above or below x+y
2 , that is, above or below the midpoint of the

possible accuracies.14 How does this affect the performance of our mechanism

(in which agents report their signal about the state but not whether their signal

accuracy was above or below x+y
2 ).

The incentive in our mechanism for an agent to honestly report her signal

when other agents do so is unchanged: the chance to participate in the lottery

open to those whose reports are in the majority outweighs any incentive to mis-

represent when there are many agents. The second stage second price auction,

however, will not be a private value auction since each agent now has private

information —whether her signal accuracy is above or below x+y
2 —that is un-

known to other agents but payoff relevant to them. The second stage auction

may be close to a private value auction, since in the second stage the non-public

information any single agent has is of little importance when there are many

agents. But the example in Jackson (2009) discussed above makes clear that

auctions that are almost, but not quite, private value can be problematic.

Despite the fact that the second stage auctions for this problem are not

private value, the performance of the mechanism when the number of agents

increases will be the same as in our initial problem. The fact that the second

stage auction is now an interdependent value problem makes determining an

optimal bid even more diffi cult. But if agents truthfully report their stage

signal in the first period, the lower bound on an agent’s expected value will still

converge to her value had the state been known when the number of agents

increases.

9. The first stage of our two stage mechanism functions as a way to pro-

vide information to agents in the second stage that is useful in constructing

an accurate estimate of the true state θ ∈ {a, b}. This estimate is then used
to compute expected payoffs that determine those second stage bids that are

undominated. In this paper, all agents report their signals and those making

a majority report move to the second stage. In an equilibrium in which agents

are truthful in the first stage, a player who advances to the second stage can

compute the relative frequency vector and, consequently, construct an accurate

estimate of the state θ as an application of the law of large numbers. Our

choice of the first stage construction ensures strict interim individual rationality

and strict incentive compatibility, properties that we view as desirable. If these

strictness requirements are relaxed, then one can find alternative constructions

14We make no assumptions on the probability distribution of these.
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of the first stage such that the information learned by second stage participants

allows them to compute an accurate estimate of the state θ.

10. Our mechanism provides the incentive to truthfully report agents’state

signals in the first stage by giving the object for free with probability ε to a

randomly chosen member of the first stage majority. One could think of this

as a metaphor for some advantage that accrues to being on the “winning side”.

For example, one could think of firms looking at applicants’announcements and

limiting attention for promotion to those who had been in the majority.

11. Our main result takes an asymptotic perspective as the number of bid-

ders gets large. A "small numbers" result is possible if signals are suffi ciently

accurate. Suppose that there are at least three bidders and each bidder gets a

noisy signal about theta, with accuracy xi, and xi ≥ x∗ < 1. Let x∗ be close to

1, meaning that all agents are getting signals that are highly accurate, but not

perfectly accurate. Agents as usual announce the state, a or b. The majority

go to the second stage (ignoring ties). Given the assumptions on the signal

structure, an agent’s expected effect on possible posteriors is small when other

agents are announcing truthfully. A small prize (get the object for free with

probability ε) is enough to get truth as an equilibrium if x∗ suffi ciently close to

1.

12. We can extend the analysis to multidimensional states. Suppose for the

oil field example, the state θ has two attributes that bidders (might) value, say,

the amount of oil and the depth of oil. Suppose that each of the attributes is

binary: the amount is High or Low and depth is Deep or Shallow. Bidders may

care about these differentially, that is, some may care more about amount than

depth while for others it is the reverse. Suppose now each agent is going to

receive a signal correlated with one of the attributes, but not the other. This

violates our assumption that for any state, an agent receives a signal that has

accuracy above .5 that his signal is the true state; now agents won’t know about

states that differ on the attribute signal they do not receive. Now, instead of

asking an agent to "predict" the state, we ask him to predict the attribute with

which his signal is correlated and the majority announcers go to the second

stage. While not a private values problem in the second stage, our method of

restricting bids to be undominated will still deliver the same result.
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