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Abstract: Least squares regression with heteroskedasticity consistent standard errors (“OLS-HC regres-
sion”) has proved very useful in cross section environments. However, several major difficulties, which are
generally overlooked, must be confronted when transferring the HC technology to time series environments
via heteroskedasticity and autocorrelation consistent standard errors (“OLS-HAC regression”). First, in
plausible time-series environments, OLS parameter estimates can be inconsistent, so that OLS-HAC infer-
ence fails even asymptotically. Second, most economic time series have autocorrelation, which renders OLS
parameter estimates inefficient. Third, autocorrelation similarly renders conditional predictions based on
OLS parameter estimates inefficient. Finally, the structure of popular HAC covariance matrix estimators is
ill-suited for capturing the autoregressive autocorrelation typically present in economic time series, which
produces large size distortions and reduced power in HAC-based hypothesis testing, in all but the largest
samples. We show that all four problems are largely avoided by the use of a simple and easily-implemented
dynamic regression procedure, which we call DURBIN. We demonstrate the advantages of DURBIN with
detailed simulations covering a range of practical issues.
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1 Introduction

For nearly a century, regression with heteroskedastic and/or autocorrelated disturbances has

featured prominently in empirical economics research. For many decades, attention centered

on modeling the heteroskedasticity or autocorrelation in the context of feasible generalized

least squares (FGLS) estimation.

The dominant estimation approach in recent decades, however, is ordinary least squares

(OLS) with standard errors adjusted to achieve valid asymptotic inference without taking

a stand on the form of heteroskedasticity or autocorrelation. The idea traces to the classic

contribution of White (1980), who considered OLS regression with heteroskedasticity con-

sistent (HC) standard errors (“OLS-HC regression”) in cross-sectional environments, where

sample sizes are typically very large, little or no information is available regarding the form

of any possible heteroskedasticity, and serial correlation is irrelevant. In such environments

HC standard errors are appropriate and justly emphasized (e.g. Angrist and Pischke (2008)).

In an elegant extension, Newey and West (1987) generalize White’s estimator from cross

sections to time series, with possible heteroskedasticity and serial correlation, by replacing

White’s covariance matrix estimator with an appropriate time-series analog based on an esti-

mator of a spectral density at frequency zero.1 Such OLS regression with heteroskedasticity

and autocorrelation consistent (HAC) standard errors (“OLS-HAC regression”) has become

extremely popular in time series environments.

In this paper we argue, however, that, in contrast to cross section OLS-HC regression,

time series OLS-HAC regression as typically implemented is likely to be problematic, for a

variety of reasons:

1. In plausible time-series environments, OLS parameter estimates can be inconsistent,

so that OLS-HAC inference fails even asymptotically.

And moreover, even when OLS parameter estimates are consistent:

2. OLS parameter estimates can be highly inefficient in the presence of serial correlation,

compared to estimators that account for the serial correlation.

3. OLS-HAC regression discards valuable predictive information in serially-correlated dis-

turbances and hence produces sub-optimal (inefficient) forecasts, whereas accurate out-

of-sample prediction is often a central concern in time series econometrics.

1The Newey-West estimator collapses to the White (1980) estimator if serial correlation is absent, but ap-
propriately incorporates serial correlation in the calculation of robust standard errors when serial correlation
is present.



4. Newey-West-style HAC covariance matrix estimators are ill-suited for capturing the

autoregressive autocorrelation typically present in economic time series, which can

produce large size distortions, and large power reductions even when the size is not

distorted.

Claim 1 is not widely appreciated, with the exception of Perron and González-Coya (2022),

whose results and approach complement ours.2 Claim 2 is well known, but its importance

in finite samples is ignored when using OLS-HAC regression. Claim 3 is obvious, but again

ignored when using OLS-HAC regression. Claim 4 is appreciated and has motivated several

important refinements of the Newey-West HAC covariance matrix estimator (e.g.,Andrews

(1991), Kiefer and Vogelsang (2002), Lazarus et al. (2018)), as well as use of spectral den-

sity estimators that differ from the Newey-West lag-window estimator (e.g., Müller (2014)).

However, those refinements have been only partially successful.

Against the background of the above claims 1-4, which we will substantiate in detail,

we proceed to make a constructive contribution. We propose an alternative to OLS-HAC

regression based on so-called “Durbin regressions” (Durbin (1970)). Working in a very

general environment that includes most dynamic specifications of interest as special cases,

we show that the new procedure simultaneously addresses claims 1-4 above. Indeed, the

Durbin regression procedure performs well in all situations, dominating the traditional OLS-

HAC and FGLS procedures.

Our paper proceeds as follows. In section 2 we introduce the basic data-generating

process and estimators, including not only traditional OLS-HAC regression and our Durbin

regression, but also traditional FGLS and a recently-proposed modified FGLS procedure. In

section 3 we present a generalized modeling framework. In section 4 we present extensive

simulation evidence. We conclude in section 5, and we present supplementary results in

three Appendices.

2 Data Generating Process and Estimators

Traditional OLS-HAC regression focuses exclusively on OLS parameter estimation, assuming

consistency and surrendering on efficiency. But, as we emphasize in this section, even OLS

2By now parts of our paper and theirs are entangled. A preliminary version of our paper was presented
at the 2016 NBER-NSF Time Series Conference at Columbia University. Our first-draft working paper was
released in March 2022, with no knowledge of their work-in-progress. Their first-draft working paper was
released in September 2022, with knowledge of ours. Our second-draft working paper was released in June
2022, with knowledge of theirs. This third draft of our paper was released on June 1, 2024.
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consistency cannot be assumed without significant loss of generality. Moreover, aspects of

the consistency and efficiency of OLS and various competitors, under various conditions, are

nuanced and not widely appreciated. Hence in this section we begin by reviewing aspects of

OLS consistency and efficiency in comparison to competitors – in particular, a new procedure

that we propose based on Durbin (1970) regressions, a new modified FGLS procedure, and

traditional FGLS – in a sequence of progressively-richer dynamic environments.

2.1 Data-Generating Process

We start with the standard data-generating process (DGP) in the OLS-HAC regression

literature,

yt = x′tβ + ut, (1)

where t = 1, 2, ..., T , β is a k-vector of parameters, xt is a k-vector of covariance-stationary

covariates and ut is a scalar covariance-stationary disturbance with E(utu
′
t) = σ2Ω.3 DGP

(1) is usually augmented with conditions such that OLS is consistent. Then the econome-

trician generally aims to provide standard error corrections that enable asymptotically valid

inference. Note that such OLS-HAC regression involves just a static regression of yt on xt,

basically imported directly from cross-sectional micro-econometrics, with dynamics allowed

only through ut. We will later argue that such a framework is uncompelling in time-series

environments, but it is the industry standard in OLS-HAC regression, so we maintain it for

now.

Crucial insights will flow from adopting a starting point that allows for significant gen-

erality regarding possible relationships between xt and ut. In particular, consider the Wold

representation of the Gaussian vector process zt = (x′t, ut)
′,

zt =
∞∑
i=0

Ξiεt−i. (2)

3Because ut is covariance-stationary, it can be serially correlated and/or conditionally heteroskedastic.
In this paper we emphasize serial correlation exclusively, because serial correlation is the unique feature of
time-series data relative to cross-section data. Cross sections do of course sometimes have a spatial dimension
and therefore a natural ordering in space if not in time, and spatial correlation has recently begun to receive
attention from a HAC estimation perspective, as in Müller and Watson (2022). Spatial HAC estimation is,
however, beyond the scope of this paper.
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The coefficient matrices are Ξ0 = I and

Ξi =

(
ξx,i ξxu,i

ξ′ux,i ξu,i

)
,

and εt = (ε′x,t, εu,t)
′ is a vector white noise innovation process with E(εt) = 0 and E(εtε

′
s) = 0

for s ̸= t, and contemporaneous covariance matrix E(εtε
′
t) = Σ, where

Σ =

(
Σx Σxu

Σ′
xu σu

)
.

Under mild regularity conditions, the infinite vector moving-average representation (2) is

equivalent to the infinite vector-autoregressive (VAR) representation4

zt =
∞∑
i=1

Ψizt−i + εt, (3)

where

Ψi =

(
Ψx,i Ψxu,i

Ψux,i ψu,i

)
.

This setting encompasses a variety of DGPs, and we will consider the consistency and effi-

ciency properties of different estimators under various restrictions imposed on (3).

We now proceed to consider various estimation strategies that may be appropriate in the

environment given by (1) and (3).

2.2 OLS Parameter Estimation and HAC Covariance Matrix Es-

timation

The OLS estimator of the regression parameter is of course

β̂ = (X ′X)−1X ′Y.

If Ω = I, the limiting distribution of the OLS estimator is

T 1/2
(
β̂OLS − β

)
→ N

(
0, σ2Q−1

)
,

4Such regularity conditions include assumptions on the rate of decline of ∥Ξi∥ towards zero as i → ∞, for
suitable norm ∥.∥, to control the persistence of the process and to avoid phenomena such as long memory
that complicate the analysis. For details see, e.g., Davidson (2002) and references cited therein.
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where Q = p limT→∞ (T−1X ′X).

Based on the V AR representation (3), we define “block diagonality” (BD) as holding

when Ψux,i = Ψxu,i = 0, for all i, and Σxu = 0. The BD condition implies strong exogeneity,

namely that E(us|xt) = 0 for all s and t.5 In the BD environment OLS is consistent but

asymptotically inefficient, with limiting distribution

T 1/2(β̂OLS − β) → N(0, V ),

where V = Q−1ΩQ−1. The key object in V is Ω, which is the spectrum of xtut at frequency

zero. HAC inference estimates V using

V̂ = Q−1Ω̂Q−1,

where Ω̂ is a consistent estimator of Ω, so that V̂ is consistent for V . Different choices for

Ω̂ therefore define different HAC covariance matrix estimators and are the main issue in

implementing OLS-HAC regression, as we discuss subsequently in section 4.2.1.

2.3 FGLS Estimation

If condition BD holds, and if the matrix Ω is known, then GLS is a consistent and asymp-

totically efficient estimator of β. However, Ω is almost always unknown, in which case

attention turns to FGLS as defined by Amemiya (1973), which is again both consistent and

asymptotically efficient provided that condition BD holds.6

The OLS-HAC regression literature was historically motivated by environments where

OLS is consistent for β, but where condition BD simultaneously fails in such a way that

FGLS is inconsistent. Such situations are possible, and we will discuss a classic such situation

(Hansen and Hodrick, 1980) at some length in section 3.4 below, but they are by no means

the only or the most important possibility. Indeed there is much more to investigate when

BD fails, as emphasized in the insightful work of Perron and González-Coya (2022).

We now consider an alternative estimation procedure that avoids the above discussed

OLS-HAC and FGLS complications and always delivers consistent (and sometimes fully

efficient) estimates of β, together with reliable asymptotic inference.

5Strong exogeneity is sometimes called strict exogeneity.
6Recent contributions to the FGLS literature include Romano and Wolf (2017) for heteroskedastic envi-

ronments, and Kapetanios and Psaradakis (2016) for dynamic environments.
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2.4 Durbin Estimation and its Relatives

A natural third approach to estimation and inference, which we will argue is generally

preferable to both OLS-HAC and FGLS, is based on the “Durbin (1970) regression”, given

by

yt = x′tβ +
∞∑
j=1

ϕjyt−j +
∞∑
j=1

x′t−jγj + εy,t, (4)

where εy,t is serially uncorrelated, and uncorrelated with yt−j and xt−j for all j. The Durbin

regression “cleans out” disturbance dynamics by its direct inclusion of yt−j and xt−j, so that

standard OLS estimation and inference are trustworthy. We refer to the Durbin regression,

and the associated estimator of β, as DURBIN. Crucially, note well that the DGP remains

(1) and (3); DURBIN is simply a certain procedure (regression) that can be implemented on

data from that DGP, just as OLS and FGLS are certain procedures that can be implemented

on data from that DGP.

Operationally, it is of course necessary to use a finite order approximation to the infinite

order DURBIN regression (4),

yt = x′tβ +

p∑
j=1

ϕjyt−j +

p∑
j=1

x′t−jγj + εy,t, (5)

with finite lag order p selected using a data based procedure, typically an information cri-

terion, and increasing at a suitable rate. The theoretical validity of such a procedure for

producing valid asymptotic estimation and inference is well known (see, e.g., Lewis and

Reinsel (1985) or Hannan and Deistler (1988)), and we shall have more to say about it when

we later implement DURBIN in the simulations of section 4.

We can also write the finite order DURBIN approximation as

yt =

p∑
j=1

ϕjyt−j +
k∑

i=1

βixi,t +

p∑
j=1

k∑
i=1

γi,jxi,t−j + εy,t, (6)

which emphasizes the extent of the parameterization and lag structure. We will later explore

in greater detail the relationship between the DGP given by (1) and (3) and the DURBIN

regression (6), which is effectively one equation of a VAR and appears to be the originator

of the autoregressive distributed lag (ADL) model model, which is widely used in empirical

econometric work.

An estimator closely related to DURBIN, recently proposed by Perron and González-
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Coya (2022), is a variation on FGLS. We refer to it as FGLS-D (short for “FGLS-Durbin”).

While FGLS uses a first-stage OLS regression, FGLS-D uses a first-stage DURBIN regression

(6). Under BD, it follows that FGLS-D is also efficient. However, when BD does not hold,

FGLS-D may not be efficient or even consistent, while DURBIN remains consistent.

Given that condition BD may not hold, it is important to consider the implications of

its violation for the various methods of estimation and inference. To see the effects of the

various sub-conditions embedded in condition BD, we will relax it in sequential stages. First,

we impose only that Ψux,i = 0 for all i and that Σxu = 0, so that x is weakly exogenous (that

is, E(us|xt) = 0, ∀s, t≤s) but not strongly exogenous.7 xt now depends on lags of ut, but not

vice versa. We refer to this restriction as GEXOG (“GLS exogeneity”). Clearly, OLS is now

inconsistent, as is FGLS, which uses OLS residuals, while FGLS-D remains consistent and

efficient. Importantly, DURBIN remains consistent, even if not fully efficient, throughout.

Second, we impose only Σxu = 0, so that x is neither strongly nor weakly exogenous. We

denote this condition by EBD (“error variance block diagonal”). ut now depends on lags of

xt, and the finite-ordered FGLS autoregression for ut is no longer valid. Therefore, neither

FGLS nor FGLS-D is consistent. DURBIN, however, remains consistent under EBD, and

moreover it is also efficient.

To see the consistency and efficiency of DURBIN under EBD, note that, using (3) and

ut = yt − x′tβ, we can write (1) as

yt = x′tβ + ut (7)

= x′tβ +
∞∑
j=1

ψu,jut−j +
∞∑
j=1

Ψxu,jxt−j + εu,t

= x′tβ +
∞∑
j=1

ψu,j

(
yt−j − x′t−jβ

)
+

∞∑
j=1

Ψxu,jxt−j + εu,t

= x′tβ +
∞∑
j=1

ψu,jyt−j +
∞∑
j=1

x′t−j

(
Ψ′

xu,j − ψu,jβ
)
+ εu,t.

Noting that the relationship γj = Ψxu,j − ψu,jβ gives a one-to-one mapping between γj and

Ψxu,j, given values for ψu,j and β, we immediately obtain efficiency for DURBIN.8

Finally, we impose no restrictions at all, in which case all methods become inconsistent

and the use of instrumentation appears to be the only way forward.

7Weak exogeneity is sometimes called predeterminedness. See Mikusheva and Sølvsten (2023).
8Of course, if Ψxu,j = 0, then DURBIN, which estimates γj , is over-parameterized, providing a simple

argument showing that DURBIN is inefficient under GEXOG.
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In summary, OLS requires stronger conditions for consistency than the FGLS variants.

The FGLS variants, in turn, require stronger conditions for consistency than DURBIN.

Hence, overall, DURBIN has attractive consistency features in comparison with OLS and

the FGLS variants. On the other hand, when the FGLS variants are consistent, they are

also fully efficient. We shall see how such trade-offs resolve themselves in the simulations of

section 4 below.

3 A Generalized Data-Generating Process

We now move from the basic DGP (1) to a generalized version that subsumes all cases of

interest.

3.1 Data-Generating Process

Henceforth we work with the data-generating process given by

yt =

p∑
j=1

ϕjyt−j +
k∑

i=1

βixi,t +

p∑
j=1

k∑
i=1

γi,jxi,t−j + ut. (8)

We emphasize that ut may also be a dynamic process, to allow, for example, for missing

covariates. In particular, we continue to allow (x′t, ut)
′ to follow the the vector moving

average (2), or equivalently, the vector autoregression (3). This generalized DGP covers

most linear dynamic relationships of conceivable interest. We use NDY (“no dynamics in

y”) to refer to the restriction imposed on the generalized DGP (8) to get the basic DGP (1),

namely ϕj = γi,j = 0 ∀i, j.
We also emphasize that (8) is now the data generating process, and various regressions

could be fit to its data realizations in various attempts at estimation and inference for β. One

such regression, for example, is FGLS. Clearly the use of FGLS in environments characterized

by the generalized DGP (8) accounts only for x′tβ and therefore ignores all terms involving

lags, resulting in misspecification of the conditional mean part of the fitted regression. That

is, the only way lagged information is used in FGLS is through estimation of the error

covariance matrix, which neglects the problem of misspecification of the conditional mean.

DURBIN is another such regression that can be fit to the generalized DGP (8). Indeed

DURBIN can perfectly accommodate the generalized DGP, because, in precise parallel to

8



(7), we have

yt = x′tβ +
∞∑
j=1

λjyt−j +
∞∑
j=1

x′t−jθj + ut

= x′tβ +
∞∑
j=1

λjyt−j +
∞∑
j=1

x′t−jθj +
∞∑
j=1

ψu,jut−j +
∞∑
j=1

x′t−jψxu,j + εu,t

= x′tβ +
∞∑
j=1

λjyt−j +
∞∑
j=1

x′t−jθj

+
∞∑
j=1

ψu,j

(
yt−j − x′t−jβ −

∞∑
s=1

λsyt−j−s −
∞∑
s=1

x′t−j−sθs

)
+

∞∑
j=1

x′t−jΨxu,j + εu,t

= x′tβ +
∞∑
j=0

(
λj + ψu,j −

j−1∑
s=1

ψu,sλj−s

)
yt−j +

∞∑
j=1

x′t−j

(
Ψxu,j − ψu,jβ −

j−1∑
s=1

ψu,sθj−s

)
+ εu,t,

which is a DURBIN regression with

ϕj = λj + ψu,j −
j−1∑
s=1

ψu,sλj−s

γj = ψxu,j − ψu,jβ−
j−1∑
s=1

ψu,sθj−s.

The above relationships between the parameters of the generalized DGP (8) and the

DURBIN regression (6) also show that the generalized DGP is so richly parameterized that

not all parameters are identified through estimation of (6) alone. β is always identified and

consistently estimable via DURBIN, however, even in cases where OLS, FGLS, and FGLS-D

are inconsistent.

3.2 Estimator Comparisons

In Table 1 we summarize the consistency and efficiency properties of all estimators in the

leading environments that we have considered, all of which are specializations of the gen-

eralized DGP given by (8) and (3). Table 1 makes clear the important trade-off between

the occasional efficiency of FGLS/FGLS-D and the robust consistency of DURBIN. That

is, although FGLS is sometimes efficient when DURBIN is not (under NDY + BD and

NDY +GEXOG), DURBIN is always at least consistent, and FGLS is not.

9



Table 1: Estimator Consistency and Efficiency Under Various Conditions

Restriction Estimator
OLS DURBIN FGLS FGLS-D

NDY +BD ✓× ✓× ✓✓ ✓✓
NDY +GEXOG × × ✓× × × ✓✓
NDY + EBD × × ✓✓ × × × ×

EBD × × ✓✓ × × × ×
None × × × × × × × ×

Notes: We show the consistency and efficiency properties of various estimators under various restrictions on
the generalized DGP (8) with (xt, ut)

′ governed by (3). In each cell of the table, the first checkmark, or lack
thereof, relates to consistency and the second to efficiency.

Indeed the EBD row of Table 1 is starkly revealing, as for example it includes simple

and natural DGPs like

yt = xtβ + ϕyt−1 + xt−1γ + ut.

The conventional FGLS procedure would be to regress yt on xt, and then to regress the

residuals on lagged residuals, thereby obtaining the Cochrane-Orcutt filter to apply to the

yt and xt series. One strongly suspects, and our subsequent simulations in section 4 show

clearly, that FGLS will perform poorly in this environment unless γ ≈ βϕ, in which case the

DGP reduces (approximately) to just a static regression of yt on xt with AR(1) disturbances.
9

3.3 Hausman Tests

Table 1 also highlights the potential usefulness of tests for validity of the various restrictions.

If for example, one “knew” that NDY +GEXOG held, then FGLS or FGLS-D would be fully

appealing estimators (consistent and efficient) whereas DURBIN would be less appealing

(consistent but not efficient). Alternatively, if one knew that instead NDY + EBD held,

then FGLS or FGLS-D would be highly unappealing (inconsistent) whereas DURBIN would

be fully appealing (consistent and efficient).

Hausman tests are available, as follows. Clearly, restrictions on the parameters of (3)

determine the comparative desirability of alternative methods of estimation and inference

for β. The key restriction is BD. Under the null hypothesis that BD holds with u serially

correlated, OLS is consistent but not efficient, while FGLS is both consistent and efficient.

Under the alternative hypothesis that BD fails, OLS and FGLS are generally both inconsis-

9The restriction γ ≈ βϕ is known as the common factor restriction.
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tent but have different limits, which depend on the parameters of (3). As a result, Hausman

tests can be used.

In particular, one may wish to query whether β1 = β2, where

E(yt|xt) = x′tβ1

and

E(yt|xt, xt−1, yt−1, xt−2, yt−2, ...) = x′tβ2 +
∞∑
j=1

ϕjyt−j +
∞∑
j=1

x′t−jγj.

Under the null hypothesis, FGLS should be used. Otherwise one should consider using

FGLS-D or DURBIN if one is interested in β2 as would typically be the case, or consider

using OLS if for some reason β1 is of interest.

Overall, however, we find it preferable simply to use DURBIN under all circumstances,

unless there is some compelling reason to do otherwise. There are three reasons:

1. An acceptable HAC estimator of the variance of the OLS estimator may not be available

when implementing a Hausman test. Indeed the poor performance of OLS-HAC is the

theme of this paper.

2. As regards consistent/efficient estimation, it will be clear from the simulation results in

section 4 below that the MSE cost of using DURBIN when a more efficient estimator

is available (i.e., when BD or at least GEXOG holds) is generally small, whereas the

MSE cost of not using DURBIN can be very large when neither BD nor GEXOG

holds.

3. As regards consistent inference, it will also be clear from the simulation results in

section 4 below that DURBIN-based inference performs well in all circumstances that

we investigate, both in terms of test size and power, in contrast to all other methods

that we consider, where inference often fails.

We will shortly turn to the extensive simulation results alluded to in points 2 and 3 above, but

first we briefly consider DURBIN vs other estimation approaches in the important context

of predictive inference.

3.4 Predictive Inference

As is clear from Table 1, OLS is rarely consistent in time-series situations of interest. One

case where OLS is consistent and simultaneously FGLS is inconsistent involves multi-step
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forecast evaluation, where one tests whether a forecast xt is unbiased for yt+k. That is, one

tests whether

E(yt+k|xt) = xt,

for k ≥ 1.

One of the earliest analyses of this problem was by Hansen and Hodrick (1980), where yt+k

represented the k-period-ahead spot exchange rate and xt represented the current k-period

forward rate. The null hypothesis of β = 1 implies moving-average disturbances, producing

a violation of strong exogeneity while nevertheless satisfying weak exogeneity. Hansen and

Hodrick (1980) recognized that FGLS can be inconsistent in such a situation, whereas OLS

remains consistent, albeit inefficient. They recognized, moreover, that the OLS standard

error was inconsistent and therefore required a “correction” – and OLS-HAC was born.

Note however, that DURBIN is also perfectly applicable in the Hansen-Hodrick environ-

ment, delivering not only consistent standard errors, but also efficient as opposed to merely

consistent parameter estimates.10 In particular, under the null of unbiasedness, the error

term,

ut+k = yt+k − xt,

satisfies Cov(ut+jut) = 0 for j > k, which implies that ut+k can be represented by an

MA(k − 1) process. Hence we can write

yt+k = xtβ + θ(L)εt, (9)

where εt is a white noise process and θ(L) is a polynomial in the lag operator of order k− 1.

Conceptually, equation (9) is merely a restricted DURBIN model, because on using the

filter θ(L)−1 we obtain

{
θ(L)−1yt+k

}
= β

{
θ(L)−1xt

}
+ εt+k. (10)

The filtered explanatory variable is uncorrelated with current and future innovations, εt+k, so

that estimation of equation (10) by OLS will produce consistent and asymptotically efficient

estimates of the regression parameters. In practice it is convenient to use the approximation

θ(L)−1 ≈ π(L), where π(L) = (1− π1L− ...− πpL
p) is a pth-order lag-operator polynomial

10For a full empirical analysis, see Baillie et al. (2023).
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with all roots outside the unit circle. DURBIN will then be

π(L)yt+k = βπ(L)xt + εt+k, (11)

which is a restricted version of the generalized DGP (8) and can also be estimated by

restricted OLS.

4 Simulation Evidence on Estimation and Testing

In this section we examine, via simulation, the sampling properties of the various estimators,

the properties of forecasts that use those estimated parameters, and crucially, the size and

power of associated hypothesis tests.

4.1 Simulation Design

The main simulation results will comprise four data generation processes that impose differ-

ent assumptions on the generalized DGP given by (8) and (3):

1. Autoregressive Disturbances, AR(1) (NDY +BD)

yt = βxt + ut(
xt

ut

)
=

(
0.7 0

0 ρ

)(
xt−1

ut−1

)
+

(
εx,t

εu,t

)
(12)

2. Triangular vector autoregression (VAR) on (3) (NDY +GEXOG)

yt = βxt + ut(
xt

ut

)
=

(
ψ11 ψ12

0 ψ22

)(
xt−1

ut−1

)
+

(
εx,t

εu,t

)
(13)

3. Unrestricted VAR on (3) (NDY + EBD)

yt = βxt + ut(
xt

ut

)
=

(
ψ11 ψ12

ψ21 ψ22

)(
xt−1

ut−1

)
+

(
εx,t

εu,t

)
(14)
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4. Dynamic Regression (EBD)

yt = βxt + ρyt−1 − 0.5xt−1 + ut(
xt

ut

)
=

(
0.7 0

0 0

)(
xt−1

ut−1

)
+

(
εx,t

εu,t

)
. (15)

In all cases, (εx,t, εu,t)
′ ∼ iidN(0, I) with t = 1, ..., T . We explore T ∈ {50, 200, 600, 2500},

which also spans the relevant range for macroeconomics, where structural change and other

considerations tend to keep sample spans to roughly “the most recent fifty years”; that is,

sample sizes of 50 years, 200 quarters, 600 months, or approximately 2500 weeks. Including

T = 2500 also lets us check our Monte Carlo results against known large-sample results.

The autoregressive DGP in (12) matches the design in Lazarus et al. (2018). We explore

ρ ∈ {0, .3, .5, .7, .9, .95, .99}, which spans the relevant range for economics. All ρ values are

positive, as economic time series are generally positively serially correlated, and they range

from white noise to the very strong serial correlation often of relevance in macroeconomic

series. Including the white noise case (ρ = 0) allows us to check our Monte Carlo results

against known results for the iid case.

In the simulations for the triangular VAR DGP in (13), we consider the following values

for the matrix Ψ:

Ψ1 =

(
0.4 0.7

0 0.5

)
Ψ∗

1 =

(
0.4 0.7

0 0.6

)
.

Ψ∗
1 has a larger leading eigenvalue than Ψ1 (0.6 versus 0.5) and hence exhibits stronger

autoregressive features.

For the unrestricted VAR DGP in (14), we consider the following values:

Ψ2 =

(
0.4 0.7

0.3 0.5

)
Ψ∗

2 =

(
0.4 0.7

0.3 0.6

)

As before, Ψ∗
2 was selected to be similar to Ψ2 but with a larger leading eigenvalue (0.97 for

Ψ∗
2 and 0.91 for Ψ2).

For the dynamic regression DGP in (15), we consider various parameter values for the

the coefficient on yt−1, namely ρ ∈ {0, 0.5, 0.7, 0.95}. When ρ = 0.5, the common factor

restriction introduced in footnote 9 holds, in which case we expect FGLS and FGLS-D to

perform well.

For all DGPs in our simulations we perform 10,000 Monte Carlo replications. We simulate
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exact realizations of x and u by drawing x0 and u0 from their stationary distribution at each

Monte Carlo replication, and we use common random numbers whenever appropriate.

4.2 Operational Considerations

Next, we detail operational matters relating to our implementation of the various estimators

we use in our simulations.

4.2.1 OLS-HAC

OLS-HAC estimation proceeds from the approach previously outlined in section 2.2; namely

T 1/2(β̂OLS − β) → N(0, V ),

where V = Q−1ΩQ−1 and

Ω =
∞∑

τ=−∞

Γ(τ)

where Γ(τ) = cov(xtut, xt−τut−τ ), and τ = 0,±1, ...

The key object in V is Ω, the spectrum of xu at frequency zero. The OLS-HAC approach

uses

V̂ = Q−1Ω̂Q−1,

where Ω̂ is a consistent estimator of Ω and hence V̂ delivers a consistent estimator of V .

A large literature on consistent estimation of Ω can be traced back to at least Hansen

and Hodrick (1980). The most popular approach is due to Newey and West (1987), who

propose lag-window estimation with linearly-decreasing (Bartlett) lag window:

Ω̂ =

(
1

T

T∑
t=1

(xtx
′
t)û

2
t +

h∑
τ=1

(
1− τ

h+ 1

)
(Γ̂τ + Γ̂−τ )

)
, (16)

where

Γ̂τ =
1

T

T∑
t=1

ûtxtx
′
t−τ ût−τ ,

the ût are OLS regression residuals, and T is sample size. Indeed, many leading HAC

estimators are of the form (16), distinguished only by their choice of truncation lag h.

We will explore several leading truncation lag choices, including:
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1. NW: Newey-West (16) with h = ⌈(T/100)2/9⌉. This h choice is a standard textbook

recommendation (e.g.,Wooldridge (2015)).

2. NW-A: Newey-West (16) with h = ⌈0.75T 1/3⌉. This h choice is also standard, arising

when a formula in Andrews (1991) is specialized to the case of a first-order autoregres-

sion with coefficient 0.25.

3. NW-LLSW: Newey-West (16) with h = ⌈1.3T 1/2⌉, as proposed by Lazarus et al. (2018).

Its use of T 1/2 rather than T 2/9 or T 1/3 as in NW or NW-A, respectively, produces higher

truncation lags. For example, if T = 200, then NW selects h = 5 but NW-LLSW selects

h = 19.

4. NW-KV: Newey-West (16) with h = T , as proposed by Kiefer and Vogelsang (2002),

which builds on Kiefer et al. (2000). Setting h = T is of course the maximum possible

truncation lag.

We will also explore the Müller (2014) HAC estimator (we denote it by M), which is not

in the Newey-West family. Instead, it is an orthogonal series estimator, that uses a type-II

discrete cosine transform to produce an equally-weighted average of projections on cosines.

The M estimator is:

Ω̂ =
1

ν

ν∑
j=1

Λ̂jΛ̂
′
j,

where

Λ̂j =

√
2

T

T∑
t=1

(xtût) cos

(
πj

(
t− 1/2

T

))
The M truncation parameter, ν, is the total number of cosines included in the average

projection. Lazarus et al. (2018) suggest setting ν = ⌊0.4T 2/3⌋, producing the M-LLSW

estimator.

4.2.2 FGLS and FGLS-D

If the data follow the DGP in (1), namely yt = xtβ + ut, and there exists a known lag

operator polynomial (filter) Φ(L) that reduces ut to white noise εt (i.e., Φ(L)ut = εt),

then GLS estimation of β is appropriate, and it amounts to running an OLS regression on

transformed data. Specifically, one regresses ỹt on x̃t, where ỹt = Φ(L)yt and x̃t = Φ(L)xt.

In practice, however, Φ(L) is unknown and needs to be approximated. The FGLS esti-

mator uses ϕ(L) = 1− ϕ1L− ϕ2L
2 − ...− ϕpL

p and proceeds as follows:
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1. Run an OLS regression of yt on xt, and obtain the residuals ût.

2. Fit an AR(p) model to ût (in particular, run an OLS regression of ût on ût−1, ..., ût−p,

with p selected by AIC or BIC), and obtain the coefficients ϕ̂1, ..., ϕ̂p.

3. Construct the transformed data,

x̃t = xt − ϕ̂1xt−1 − ...− ϕ̂pxt−p

ỹt = yt − ϕ̂1yt−1 − ...− ϕ̂pyt−p.

4. Run an OLS regression of ỹt on x̃t to obtain the FGLS estimator of β.

The FGLS-D estimator relies on a different first-stage procedure, replacing the regressions

in steps 1 and 2 above with a single DURBIN regression, proceeding as follows:

1. Run the OLS DURBIN regression (with p selected by AIC or BIC),

yt =

p∑
j=1

φjyt−j +
k∑

i=1

βixi,t +

p∑
j=1

k∑
i=1

γi,jxi,t−j + εt.

2. Use the estimated coefficients on the lags of yt, φ̂1, ..., φ̂p, to construct the transformed

data,

x̃t = xt − φ̂1xt−1 − ...− φ̂pxt−p

ỹt = yt − φ̂1yt−1 − ...− φ̂pyt−p.

3. Run the OLS regression of ỹt on x̃t to obtain the FGLS-D estimator of β.

4.2.3 DURBIN

As previously noted, the DURBIN regression augments regression (1) with lags of y and x to

capture dynamics, very much in the spirit of an arbitrary equation in a vector autoregression,

as suggested by Durbin (1970).11 The pth-order DURBIN regression is

yt =

p∑
j=1

ϕjyt−j +
k∑

i=1

βixi,t +

p∑
j=1

k∑
i=1

γi,jxi,t−j + εt, (17)

11Also related is the important recent work of Montiel Olea and Plagborg-Møller (2021), who study lag-
augmented local projection estimators of impulse-response functions in vector autoregressions.
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which has p+ k + kp parameters.

If ut in equation (1) is a finite-ordered AR(p) process with p known, then DURBIN holds

exactly. In particular, we have12

yt =

p∑
j=1

ϕjyt−j +
k∑

i=1

βixi,t +

p∑
j=1

k∑
i=1

βiϕjxi,t−j + εt (18)

=

p∑
j=1

ϕjyt−j +
k∑

i=1

βixi,t +

p∑
j=1

k∑
i=1

γi,jxi,t−j + εt.

Hence the usual asymptotic inference is immediately available:

T 1/2(ϑ̂OLS − ϑ) → N(0, Q−1), (19)

where ϑOLS is the vector of DURBIN parameters,

Q = plim

(
T−1

T∑
t=1

ztz
′
t

)
, (20)

and z′t = (yt−1, ..., yt−p, x1,t, ..., xk,t, x1,t−1, ..., xk,t−1, ..., x1,t−p, ..., xk,t−p).

In the more compelling case where p is unknown and must be selected (implemented

in our Monte Carlo below), the DURBIN regression (17) is approximate rather than exact.

However, the limiting distribution (19) remains valid if p is selected suitably (Grenander,

1981; Hannan and Deistler, 1988), as achieved by standard criteria with well-known opti-

mality properties.13 In particular, if a pmax is known such that p ≤ pmax, then a consistent

selection criterion (in the model selection sense) like BIC is a natural choice. Alternatively,

in the absence of a pmax, an efficient selection criterion (in the model selection sense) like

AIC is a natural choice.14

12Note that DURBIN does not impose the common factor restriction embedded in (18), namely that
γi,j = βiϕj ∀i, j, in which case DURBIN coincides with FGLS. See Sargan (1964) and Hendry and Mizon
(1978).

13OLS-HAC regression, in contrast, typically relies on one or another of various “rules of thumb” for
bandwidth (truncation, h or ν) selection. “Automatic” bandwidth selection has, however, been considered
in Andrews-Newey-West environments by Andrews (1991), Andrews and Monahan (1992), and Newey and
West (1994), among others.

14In the Gaussian case, we have BIC = T log(SSE)+log(T )(p+k+kp) and AIC = T log(SSE)+2(p+k+kp),
where SSE is the DURBIN regression sum of squared errors.
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Figure 1: Efficiency of DURBIN Relative to OLS
DGP: Autoregressive Disturbances, NDY +BD

Notes: All shocks are N(0, 1) white noise. We select DURBIN lag order using BIC. We perform 10000
Monte Carlo replications, drawing x0 and u0 from their stationary distributions and using common random
numbers whenever possible. We do not plot values for ρ = 0.99, due to their extreme magnitude as shown
in Table 2. See text for details.

4.3 Estimation Accuracy

We first examine the accuracy of our four estimators (OLS, FGLS, FGLS-D, and DURBIN)

under our four DGPs (NDY +BD, NDY +GEXOG, NDY +EBD, BD). The key object of

interest is REest, the efficiency of DURBIN relative to OLS, FGLS or FGLS-D. For example:

REest(OLS) =
MSE(OLS)

MSE(DURBIN)
.

We also show MSE and bias.15

Autoregressive Disturbances DGP (NDY +BD). Results appear in Table 2. Let us

begin directly with the REest results for DURBIN relative to OLS. For any fixed sample size

T , REest is increasing in serial correlation strength ρ. Consider, for example, a leading case

like T = 200 corresponding, to fifty years of quarterly data. For ρ = 0, REest is close to 1, as

it should be since there is no serial correlation. REest grows quickly as ρ increases, however,

reaching 2.9 when ρ = 0.7 and 36.3 when ρ = 0.95.

In contrast, for any fixed serial correlation strength ρ, REest stabilizes quickly in sample

size T and remains approximately constant. Consider, for example, a realistic case like ρ =

15Note that all OLS-HAC estimators simply use the OLS estimator of β. Particular HAC estimators will
have particular effects on the standard errors of β̂, but not on β̂ itself, which always remains just β̂OLS .
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Table 2: Bias, MSE, and Relative Efficiency
Estimators: OLS, FGLS, FGLS-D, DURBIN

DGP: Autoregressive Disturbances, NDY +BD

T=50
ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

Bias

OLS 0.0006 -0.0021 -0.0008 0.0025 0.0093 0.0098 -0.0270
FGLS 0.0006 -0.0015 -0.0002 0.0000 0.0030 -0.0002 -0.0068
FGLS-D 0.0007 -0.0016 -0.0002 0.0006 0.0021 -0.0002 0.0014
DURBIN 0.0006 -0.0010 0.0006 0.0001 0.0034 -0.0006 0.0006

MSE

OLS 0.0112 0.0180 0.0289 0.0599 0.3013 1.3368 80.0070
FGLS 0.0121 0.0174 0.0216 0.0237 0.0251 0.0304 0.2953
FGLS-D 0.0114 0.0179 0.0222 0.0231 0.0207 0.0198 0.0183
DURBIN 0.0131 0.0201 0.0237 0.0229 0.0226 0.0234 0.0227

REest

OLS 0.8597 0.8952 1.2189 2.6140 13.3211 57.1114 3530.5932
FGLS 0.9261 0.8666 0.9116 1.0356 1.1115 1.2986 13.0298
FGLS-D 0.8685 0.8869 0.9370 1.0063 0.9142 0.8476 0.8092

T=200
ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

Bias

OLS -0.0003 -0.0006 -0.0007 -0.0012 0.0029 -0.0082 -0.0441
FGLS -0.0003 -0.0008 -0.0004 -0.0009 -0.0005 -0.0008 0.0001
FGLS-D -0.0003 -0.0008 -0.0004 -0.0008 -0.0005 -0.0005 0.0000
DURBIN -0.0002 -0.0009 -0.0003 -0.0009 -0.0002 -0.0004 -0.0003

MSE

OLS 0.0026 0.0043 0.0072 0.0147 0.0635 0.1884 8.9415
FGLS 0.0027 0.0039 0.0048 0.0051 0.0048 0.0046 0.0048
FGLS-D 0.0026 0.0040 0.0048 0.0051 0.0048 0.0045 0.0044
DURBIN 0.0027 0.0051 0.0052 0.0051 0.0052 0.0052 0.0051

REest

OLS 0.9611 0.8526 1.3750 2.8763 12.3138 36.3636 1753.3931
FGLS 0.9761 0.7730 0.9319 1.0083 0.9296 0.8909 0.9385
FGLS-D 0.9614 0.7801 0.9306 1.0024 0.9221 0.8767 0.8567

T=600
ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

Bias

OLS 0.0001 0.0001 -0.0008 0.0009 0.0005 0.0007 0.0119
FGLS 0.0001 0.0000 -0.0006 0.0001 0.0002 0.0002 -0.0006
FGLS-D 0.0001 0.0000 -0.0006 0.0001 0.0002 0.0002 -0.0006
DURBIN 0.0001 0.0001 -0.0005 0.0001 0.0003 0.0004 -0.0006

MSE

OLS 0.0009 0.0015 0.0024 0.0048 0.0203 0.0493 1.1932
FGLS 0.0009 0.0013 0.0016 0.0017 0.0015 0.0015 0.0015
FGLS-D 0.0009 0.0013 0.0016 0.0017 0.0015 0.0015 0.0014
DURBIN 0.0009 0.0017 0.0017 0.0017 0.0016 0.0017 0.0017

REest

OLS 0.9900 0.8551 1.3794 2.8902 12.4793 29.5992 705.7406
FGLS 0.9959 0.7625 0.9287 1.0027 0.9257 0.8918 0.8731
FGLS-D 0.9899 0.7622 0.9278 1.0026 0.9250 0.8912 0.8464

T=2500
ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

Bias

OLS 0.0000 0.0002 -0.0001 0.0001 -0.0008 0.0008 -0.0010
FGLS 0.0000 0.0002 0.0000 0.0001 0.0002 0.0002 -0.0001
FGLS-D 0.0000 0.0002 0.0000 0.0001 0.0002 0.0002 -0.0001
DURBIN 0.0000 0.0004 0.0001 0.0001 0.0001 0.0003 0.0000

MSE

OLS 0.0002 0.0003 0.0006 0.0011 0.0048 0.0106 0.1116
FGLS 0.0002 0.0003 0.0004 0.0004 0.0004 0.0004 0.0004
FGLS-D 0.0002 0.0003 0.0004 0.0004 0.0004 0.0004 0.0004
DURBIN 0.0002 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

REest

OLS 0.9946 0.8436 1.4542 2.8534 12.0802 26.5763 272.6119
FGLS 0.9954 0.7551 0.9355 0.9998 0.9212 0.8891 0.8598
FGLS-D 0.9946 0.7549 0.9353 1.0000 0.9213 0.8887 0.8569

Notes: All shocks are N(0, 1) white noise. We select FGLS, FGLS-D, and DURBIN lag orders using BIC.
REest denotes the relative estimation efficiency of DURBIN. We perform 10000 Monte Carlo replications,
drawing x0 and u0 from their stationary distributions and using common random numbers whenever possible.
See text for details. 20



0.9. REest remains at approximately REest = 12 for all sample sizes T ∈ {50, 200, 600, 2500}.
Hence REest is clearly driven by serial correlation strength and not by sample size.

In Figure 1 we provide a visual representation of the REest of DURBIN relative to OLS

presented in Table 2. It reveals clearly that REest is driven entirely by the degree of serial

correlation and not by sample size.

Now consider separately the MSEs for OLS and DURBIN that underlie REest. For any

fixed sample size T , the MSE of OLS is strongly increasing in serial correlation strength ρ

(because the OLS estimator ignores serial correlation), whereas the MSE from DURBIN is

invariant to serial correlation strength (because the DURBIN estimator controls for serial

correlation). That is why the REest ratio is also strongly increasing in ρ, as documented

earlier. In contrast, for any fixed serial correlation strength ρ, the MSEs for both OLS and

DURBIN decrease with sample size T (as they must, since both OLS and DURBIN are

consistent), but they decrease proportionately, so that the REest ratio is invariant to T , as

documented earlier.

Next, let us examine the bias and variance components that underlie the MSEs. First

consider bias. Both the OLS and DURBIN estimators are theoretically unbiased for any serial

correlation strength and sample size, and the Monte Carlo confirms the theory: the estimated

biases are always negligible and invariant to ρ.16 Moreover, given the scale of the bias, the

patterns mentioned above for MSE will correspond to patterns in variance: OLS variance

increases sharply with serial correlation strength (because OLS ignores serial correlation),

whereas DURBIN variance does not (because DURBIN controls for serial correlation), and

both variances decrease with sample size (by consistency), but they do so proportionately.

That is, the MSE patterns between OLS and DURBIN, and hence the corresponding REest

patterns, are driven entirely by variance.

Triangular and Unrestricted VAR DGPs (NDY +GEXOG, NDY +EBD). Results

appear in Table 3. Ψ1 and Ψ∗
1 correspond to different parameterizations of the NDY +

GEXOG DGP, and Ψ2 and Ψ∗
2 correspond to different parameterizations of theNDY +EBD

DGP.17 For all sample sizes, OLS and FGLS exhibit large bias and MSE, which is expected

since they are indeed inconsistent under both NDY + GEXOG and NDY + EBD. As

a result, the REest’s for DURBIN relative to OLS and FGLS in Table 3 are very large:

DURBIN dominates both.

16Moreover the estimated biases decrease with T , as expected, by consistency.
17Recall that Ψ∗

1 has a larger leading eigenvalue than does Ψ1, and Ψ∗
2 has a larger leading eigenvalue than

Ψ2.
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Dynamic Regression DGP (EBD). Results appear in Table 4. In the EBD case, OLS,

FGLS and FGLS-D are in general inconsistent, whereas DURBIN remains consistent. This

is reflected in the large biases and MSEs of the other estimators compared to DURBIN, and

hence the high efficiency of DURBIN relative to OLS and FGLS.

A notable exception is when ρ = 0.5, in which case the common factor restriction holds,

so that it is possible to write the dynamic regression as a single-regressor equation (with just

xt) and a disturbance with AR(1) serial correlation. Put differently, in this case the DGP

in (15) can be rewritten in the form of (12), so that FGLS and FGLS-D are consistent and

efficient and should have lower MSE than Durbin. Table 4 shows that this is the case for all

sample sizes. This result highlights the role that the common factor restriction plays; if it

holds, it guarantees that all dynamics enter through the disturbance term, so that FGLS and

FGLS-D dominate DURBIN, but if it does not hold (and there is no reason why it should

hold), DURBIN dominates.

4.4 Prediction Accuracy

One of the primary uses of regression and dynamic regression is for ex ante prediction.

There is substantial previous literature related to the task of prediction. In particular,

Baillie (1979) has considered the situation of predictions from the regression model with

AR(p) errors and the properties of prediction from static regressions and also with optimal

multi-step predictions in the sense of minimum MSE predictions. Baillie (1979) also derived

results on the efficiency of these predictors with and without estimated parameters. One

conclusion concerns the importance of including the full effects of dynamics from the AR(p)

regression model in the predictor. In this case, the complete structural dynamic predictor

generally has substantial asymptotic and small sample efficiency gains over predictors from

static regressions. Similar effects and properties are found in more complicated dynamic

models such as the DGP considered in section 3 of this paper.

We now consider one-step-ahead predictions relying on the OLS and DURBIN estimation

strategies. The results reflect that an explicit modeling of autocorrelation can be used

for improved prediction. OLS estimators neglect this and therefore produce suboptimal

predictions. To see this, first consider the case of a DGP with autoregressive disturbances
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Table 3: Bias, MSE, and Relative Efficiency
Estimators: OLS, FGLS, FGLS-D, DURBIN

DGPs: (1) Triangular VAR, NDY +GEXOG, (2) Unrestricted VAR, NDY + EBD

T=50
Ψ1 Ψ∗

1 Ψ2 Ψ∗
2

Bias

OLS 0.2376 0.3054 0.5286 0.6828
FGLS 0.1083 0.1484 0.4622 0.6367
FGLS-D 0.0708 0.0520 0.1889 0.2902
DURBIN 0.0637 0.0386 0.0268 0.0074

MSE

OLS 0.0705 0.1082 0.2989 0.4834
FGLS 0.0286 0.0400 0.2494 0.4385
FGLS-D 0.0384 0.0352 0.0980 0.1672
DURBIN 0.0408 0.0374 0.0409 0.0300

REest

OLS 1.7284 2.8912 7.3025 16.1337
FGLS 0.7021 1.0693 6.0917 14.6353
FGLS-D 0.9430 0.9393 2.3938 5.5796

T=200
Ψ1 Ψ∗

1 Ψ2 Ψ∗
2

Bias

OLS 0.2445 0.3174 0.5621 0.7252
FGLS 0.1001 0.1413 0.5037 0.6986
FGLS-D 0.0033 0.0034 0.1947 0.3410
DURBIN 0.0009 -0.0007 -0.0003 0.0002

MSE

OLS 0.0632 0.1045 0.3206 0.5291
FGLS 0.0141 0.0246 0.2644 0.4944
FGLS-D 0.0052 0.0051 0.0557 0.1451
DURBIN 0.0052 0.0051 0.0052 0.0052

REest

OLS 12.0344 20.6612 62.1667 101.5652
FGLS 2.6880 4.8570 51.2578 94.9083
FGLS-D 0.9968 1.0006 10.8053 27.8557

T=600
Ψ1 Ψ∗

1 Ψ2 Ψ∗
2

Bias

OLS 0.2460 0.3218 0.5721 0.7378
FGLS 0.0980 0.1409 0.5045 0.7176
FGLS-D 0.0000 0.0012 0.2007 0.3667
DURBIN -0.0008 -0.0002 0.0001 0.0008

MSE

OLS 0.0617 0.1048 0.3288 0.5454
FGLS 0.0110 0.0214 0.2592 0.5169
FGLS-D 0.0017 0.0017 0.0464 0.1454
DURBIN 0.0017 0.0017 0.0017 0.0017

REest

OLS 37.0807 61.9455 199.1306 329.6430
FGLS 6.6214 12.6578 156.9929 312.4485
FGLS-D 1.0163 1.0083 28.1260 87.8873

T=2500
Ψ1 Ψ∗

1 Ψ2 Ψ∗
2

Bias

OLS 0.2472 0.3220 0.5756 0.7438
FGLS 0.0984 0.1400 0.4654 0.7213
FGLS-D 0.0004 0.0001 0.2034 0.3763
DURBIN 0.0002 -0.0003 0.0001 -0.0001

MSE

OLS 0.0614 0.1040 0.3316 0.5534
FGLS 0.0100 0.0200 0.2179 0.5209
FGLS-D 0.0004 0.0004 0.0430 0.1444
DURBIN 0.0004 0.0004 0.0004 0.0004

REest

OLS 153.9376 258.1795 830.3128 1370.2607
FGLS 25.1163 49.6206 545.5996 1289.7121
FGLS-D 1.0261 1.0147 107.5807 357.5905

Notes: All shocks are N(0, 1) white noise. We select FGLS, FGLS-D, and DURBIN lag orders using BIC.
REest denotes the relative estimation efficiency of DURBIN. We perform 10000 Monte Carlo replications,
drawing x0 and u0 from their stationary distributions and using common random numbers whenever possible.
See text for details. 23



Table 4: Bias, MSE, and Relative Efficiency
Estimators: OLS, FGLS, FGLS-D, DURBIN

DGP: Dynamic Regression, EBD

T=50
ρ = 0 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95

Bias

OLS -0.3366 -0.0003 0.2531 0.6886 0.8700
FGLS -0.3369 -0.0002 0.0329 -0.1000 -0.1536
FGLS-D -0.3336 -0.0004 0.0170 -0.1317 -0.1891
DURBIN -0.0484 -0.0001 -0.0009 0.0000 -0.0004

MSE

OLS 0.1275 0.0292 0.1305 0.9036 1.9497
FGLS 0.1297 0.0215 0.0303 0.0423 0.0597
FGLS-D 0.1275 0.0220 0.0267 0.0400 0.0570
DURBIN 0.0435 0.0234 0.0224 0.0231 0.0234

REest

OLS 2.9300 1.2443 5.8337 39.1776 83.4520
FGLS 2.9827 0.9161 1.3561 1.8348 2.5563
FGLS-D 2.9310 0.9401 1.1944 1.7358 2.4410

T=200
ρ = 0 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95

Bias

OLS -0.3462 -0.0004 0.2678 0.7371 0.9235
FGLS -0.3464 -0.0004 0.0082 -0.1369 -0.1895
FGLS-D -0.3457 -0.0004 0.0049 -0.1422 -0.1946
DURBIN 0.0000 -0.0003 0.0004 0.0005 0.0005

MSE

OLS 0.1231 0.0071 0.0879 0.6648 1.1970
FGLS 0.1236 0.0047 0.0061 0.0242 0.0408
FGLS-D 0.1231 0.0047 0.0060 0.0254 0.0425
DURBIN 0.0051 0.0050 0.0051 0.0053 0.0051

REest

OLS 24.1127 1.4081 17.2231 124.8315 232.6470
FGLS 24.1985 0.9384 1.2010 4.5375 7.9253
FGLS-D 24.0998 0.9342 1.1725 4.7644 8.2576

T=600
ρ = 0 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95

Bias

OLS -0.3489 0.0005 0.2734 0.7502 0.9393
FGLS -0.3488 0.0002 0.0036 -0.1431 -0.1938
FGLS-D -0.3486 0.0002 0.0026 -0.1447 -0.1952
DURBIN -0.0002 0.0002 0.0009 -0.0001 0.0010

MSE

OLS 0.1228 0.0024 0.0803 0.6050 0.9995
FGLS 0.1229 0.0015 0.0020 0.0221 0.0391
FGLS-D 0.1227 0.0015 0.0020 0.0226 0.0396
DURBIN 0.0017 0.0017 0.0017 0.0017 0.0017

REest

OLS 73.7851 1.4430 46.0534 364.0187 596.3733
FGLS 73.8221 0.9363 1.1720 13.3167 23.3308
FGLS-D 73.7053 0.9356 1.1602 13.5727 23.6306

T=2500
ρ = 0 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95

Bias

OLS -0.3495 0.0001 0.2740 0.7544 0.9374
FGLS -0.3494 0.0002 0.0007 -0.1453 -0.1959
FGLS-D -0.3494 0.0002 0.0005 -0.1456 -0.1962
DURBIN 0.0003 0.0002 0.0000 -0.0002 0.0002

MSE

OLS 0.1224 0.0006 0.0764 0.5791 0.9073
FGLS 0.1224 0.0004 0.0005 0.0215 0.0387
FGLS-D 0.1223 0.0004 0.0004 0.0216 0.0388
DURBIN 0.0004 0.0004 0.0004 0.0004 0.0004

REest

OLS 311.2664 1.4398 193.3029 1445.5630 2249.2027
FGLS 311.1810 0.9367 1.1432 53.6830 96.0556
FGLS-D 311.1251 0.9365 1.1370 53.8808 96.2890

Notes: All shocks are N(0, 1) white noise. We select FGLS, FGLS-D, and DURBIN lag orders using BIC.
REest denotes the relative estimation efficiency of DURBIN. We perform 10000 Monte Carlo replications,
drawing x0 and u0 from their stationary distributions and using common random numbers whenever possible.
See text for details. 24



and known parameter β = 1.18 Specifically consider the DGP given by

yt = xt + ut

xt = ρxt−1 + ϵx,t

ut = ρut−1 + ϵu,t,

with all shocks N(0, 1) and orthogonal at all leads and lags. For this DGP, the optimal

prediction accounting for serial correlation in u is

yoptt+1,t = xt+1,t + ut+1,t

= ρxt + ρut,
(21)

and the corresponding prediction error is eoptt+1 = εx,t+1+εu,t+1, with variance σ2
opt=2.

The suboptimal prediction, failing to account for serial correlation in u, is just the first

term in (21),

ysuboptt+1,t = ρxt,

with corresponding prediction error esuboptt+1 = εx,t+1+ut+1, and variance σ2
subopt=1+ 1

1−ρ2
.

Both predictions are unbiased, so the prediction efficiency of DURBIN relative to OLS

(REpred) is just the relative variance, which is

REpred =
σ2
subopt

σ2
opt

=
1

2
+

1

2(1− ρ2)
. (22)

REpred is bounded below by 1, which occurs when ρ=0, and REpred→∞ monotonically as

ρ→1.

Now we consider the case of estimated parameters, which is more complicated. In Table 5

we show REpred estimated by Monte Carlo, accounting for parameter estimation uncertainty.

For all but the most extreme cases (e.g., T = 50 with ρ = 0.99) the Monte Carlo results are

almost identical to the analytic result (22) that ignores parameter estimation uncertainty.19

Hence REpred depends strongly on ρ but not on T . More precisely, for any T we of course

obtain REpred = 1 in the white noise case (ρ = 0), but then REpred grows quickly in ρ, and

for any ρ, REpred stabilizes extremely quickly in T and is basically constant.

18We start with the case of known parameter β, as it can easily be solved analytically.
19This is because the effects of parameter estimation uncertainty on MSPE vanish quickly (like 1/T rather

than 1/
√
T ), as is well known. Hence the earlier-documented poor estimation efficiency of OLS relative to

DURBIN, although a large problem for some purposes, is not an important problem for prediction.
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Table 5: Prediction Efficiency of DURBIN Relative to OLS
DGP: Autoregressive Disturbances, NDY + EBD

Relative Prediction Efficiency (REpred)
T ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99
50 0.989 1.042 1.160 1.452 3.033 5.865 391.908
200 0.997 1.051 1.168 1.476 3.121 5.698 47.361
600 1.000 1.047 1.152 1.505 3.214 5.605 25.569
2500 1.000 1.049 1.163 1.469 3.101 5.656 25.648

Notes: All shocks are N(0, 1) white noise. REpred is the relative predictive efficiency of DURBIN,
REpred=MSPE(OLS)/MSPE(DURBIN), where MSPE is 1-step-ahead mean squared prediction error. We
select the DURBIN lag order using BIC. We perform 10000 Monte Carlo replications, drawing x0 and u0

from their stationary distributions and using common random numbers whenever possible. See text for
details.

4.5 Inference

Now we consider the finite-sample properties of hypothesis tests associated with the vari-

ous estimation procedures. We first consider test sizes, after which we consider rejection

frequencies. In all tables in this section we consider the following estimators: OLS with

unadjusted standard errors, five OLS-HAC estimators (NW, NW-A, NW-LLSW, NW-KV,

and M-LLSW), FGLS, FGLS-D, and two implementations of DURBIN, one using BIC for

lag order selection and the other using AIC. Additionally, we have included two Hausman

tests; the first null hypothesis is that FGLS is efficient relative to OLS, and the second is

that FGLS-D is efficient relative to DURBIN.

4.5.1 Size

Table 6 contains results for the autoregressive disturbances DGP, NDY + BD. First, tests

based on OLS are incorrectly sized for all (ρ, T ) combinations, except when ρ = 0, and the

size distortions become huge as ρ grows. Second, the various NW HAC corrections reduce

but do not eliminate the size distortion. In particular, distortion generally remains in the

economically crucial region of ρ ∈ [0.5, 0.99], depending on the sample size and the precise

NW version used. NW and NW-A are worst, NW-LLSW are better, and NW-KV is the best.

The M-LLSW HAC correction is different in that it exhibits an approximately correct size

across (ρ, T ) combinations. Finally, tests based on FGLS, FGLS-D and DURBIN, in contrast,

are correctly sized for all (ρ, T ) combinations, even with extremely strong autocorrelation.

This holds regardless of whether DURBIN lag order selection is done with BIC or AIC.
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Table 6: Empirical Size of Nominal 5% t-test of H0 : β = 1
DGP: Autoregressive Disturbances, NDY +BD

T=50
Truncation ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

OLS − 0.051 0.106 0.167 0.245 0.346 0.380 0.407

NW h = ⌈4(T/100)2/9⌉ 0.066 0.088 0.113 0.141 0.200 0.227 0.263

NW-A h = ⌈0.75T 1/3⌉ 0.064 0.093 0.121 0.160 0.230 0.264 0.294

NW-LLSW h = ⌈1.3T 1/2⌉ 0.064 0.078 0.091 0.110 0.123 0.137 0.196
NW-KV h = T 0.061 0.075 0.081 0.097 0.091 0.090 0.155

M-LLSW ν = ⌊4(T/100)2/9⌋ 0.065 0.069 0.077 0.087 0.086 0.102 0.167
FGLS BIC 0.066 0.076 0.082 0.076 0.076 0.084 0.054
FGLS-D BIC 0.054 0.095 0.090 0.069 0.057 0.059 0.052
DURBIN BIC 0.060 0.099 0.082 0.058 0.053 0.058 0.051
DURBIN AIC 0.086 0.093 0.088 0.078 0.076 0.080 0.076
Hausman 1 OLS vs FGLS 0.738 0.632 0.446 0.253 0.239 0.274
Hausman 2 DURBIN vs FGLS-D 0.052 0.091 0.121 0.119 0.118 0.100

T=200
Truncation ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

OLS − 0.051 0.110 0.174 0.252 0.352 0.386 0.413

NW h = ⌈4(T/100)2/9⌉ 0.059 0.067 0.085 0.107 0.142 0.157 0.174

NW-A h = ⌈0.75T 1/3⌉ 0.059 0.067 0.085 0.107 0.142 0.157 0.174

NW-LLSW h = ⌈1.3T 1/2⌉ 0.059 0.060 0.068 0.072 0.080 0.076 0.084
NW-KV h = T 0.053 0.056 0.061 0.060 0.061 0.049 0.032

M-LLSW ν = ⌊4(T/100)2/9⌋ 0.060 0.059 0.063 0.063 0.066 0.063 0.076
FGLS BIC 0.055 0.054 0.056 0.055 0.052 0.053 0.048
FGLS-D BIC 0.051 0.061 0.054 0.054 0.053 0.051 0.050
DURBIN BIC 0.053 0.064 0.049 0.052 0.051 0.053 0.049
DURBIN AIC 0.066 0.055 0.053 0.056 0.056 0.057 0.052
Hausman 1 OLS vs FGLS 0.622 0.455 0.212 0.126 0.115 0.123
Hausman 2 DURBIN vs FGLS-D 0.048 0.067 0.093 0.074 0.066 0.062

T=600
Truncation ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

OLS − 0.049 0.117 0.175 0.249 0.351 0.379 0.408

NW h = ⌈4(T/100)2/9⌉ 0.049 0.065 0.070 0.086 0.114 0.120 0.134

NW-A h = ⌈0.75T 1/3⌉ 0.049 0.064 0.068 0.082 0.104 0.109 0.121

NW-LLSW h = ⌈1.3T 1/2⌉ 0.051 0.057 0.057 0.057 0.065 0.058 0.050
NW-KV h = T 0.049 0.050 0.053 0.053 0.050 0.042 0.017

M-LLSW ν = ⌊4(T/100)2/9⌋ 0.051 0.054 0.054 0.055 0.057 0.051 0.052
FGLS BIC 0.050 0.055 0.051 0.049 0.047 0.051 0.051
FGLS-D BIC 0.049 0.055 0.050 0.049 0.047 0.051 0.051
DURBIN BIC 0.049 0.055 0.049 0.049 0.045 0.048 0.049
DURBIN AIC 0.063 0.056 0.050 0.050 0.046 0.048 0.051
Hausman 1 OLS vs FGLS 0.533 0.296 0.115 0.088 0.077 0.069
Hausman 2 DURBIN vs FGLS-D 0.052 0.052 0.089 0.059 0.051 0.054

T=2500
Truncation ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

OLS − 0.050 0.110 0.179 0.246 0.352 0.376 0.405

NW h = ⌈4(T/100)2/9⌉ 0.050 0.053 0.063 0.068 0.088 0.093 0.093

NW-A h = ⌈0.75T 1/3⌉ 0.050 0.052 0.060 0.065 0.081 0.085 0.082

NW-LLSW h = ⌈1.3T 1/2⌉ 0.051 0.048 0.052 0.052 0.057 0.056 0.042
NW-KV h = T 0.050 0.047 0.050 0.049 0.050 0.046 0.027

M-LLSW ν = ⌊4(T/100)2/9⌋ 0.051 0.047 0.052 0.051 0.053 0.051 0.042
FGLS BIC 0.050 0.048 0.051 0.050 0.048 0.050 0.052
FGLS-D BIC 0.049 0.048 0.050 0.050 0.048 0.050 0.053
DURBIN BIC 0.050 0.050 0.049 0.050 0.048 0.053 0.049
DURBIN AIC 0.064 0.050 0.049 0.050 0.047 0.052 0.050
Hausman 1 OLS vs FGLS 0.429 0.155 0.072 0.068 0.066 0.049
Hausman 2 DURBIN vs FGLS-D 0.051 0.050 0.086 0.052 0.052 0.052

Notes: All shocks are N(0, 1) white noise. We perform 10000 Monte Carlo replications, drawing x0 and
u0 from their stationary distributions and using common random numbers whenever possible. See text for
details.
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Table 7: Empirical Size of Nominal 5% t-test of H0 : β = 1
DGPs: (1) Triangular VAR, NDY +GEXOG, (2) Unrestricted VAR, NDY + EBD

T=50
Truncation Ψ1 Ψ∗

1 Ψ2 Ψ∗
2

OLS − 0.613 0.787 0.969 0.992

NW h = ⌈4(T/100)2/9⌉ 0.558 0.730 0.954 0.989

NW-A h = ⌈0.75T 1/3⌉ 0.568 0.743 0.959 0.990

NW-LLSW h = ⌈1.3T 1/2⌉ 0.507 0.676 0.928 0.980
NW-KV h = T 0.438 0.586 0.874 0.958

M-LLSW ν = ⌊4(T/100)2/9⌋ 0.447 0.607 0.899 0.970
FGLS BIC 0.221 0.322 0.883 0.959
FGLS-D BIC 0.309 0.248 0.505 0.627
DURBIN BIC 0.276 0.200 0.124 0.070
DURBIN AIC 0.133 0.099 0.087 0.078
Hausman 1 OLS vs FGLS 0.880 0.899 0.693 0.740
Hausman 2 DURBIN vs FGLS-D 0.006 0.009 0.427 0.640

T=200
Truncation Ψ1 Ψ∗

1 Ψ2 Ψ∗
2

OLS − 0.990 0.999 1.000 1.000

NW h = ⌈4(T/100)2/9⌉ 0.983 0.999 1.000 1.000

NW-A h = ⌈0.75T 1/3⌉ 0.983 0.999 1.000 1.000

NW-LLSW h = ⌈1.3T 1/2⌉ 0.974 0.998 1.000 1.000
NW-KV h = T 0.872 0.959 0.999 1.000

M-LLSW ν = ⌊4(T/100)2/9⌋ 0.969 0.996 1.000 1.000
FGLS BIC 0.453 0.688 0.999 1.000
FGLS-D BIC 0.125 0.123 0.735 0.903
DURBIN BIC 0.047 0.047 0.048 0.052
DURBIN AIC 0.047 0.051 0.054 0.054
Hausman 1 OLS vs FGLS 0.994 0.998 0.516 0.457
Hausman 2 DURBIN vs FGLS-D 0.000 0.000 0.910 0.978

T=600
Truncation Ψ1 Ψ∗

1 Ψ2 Ψ∗
2

OLS − 1.000 1.000 1.000 1.000

NW h = ⌈4(T/100)2/9⌉ 1.000 1.000 1.000 1.000

NW-A h = ⌈0.75T 1/3⌉ 1.000 1.000 1.000 1.000

NW-LLSW h = ⌈1.3T 1/2⌉ 1.000 1.000 1.000 1.000
NW-KV h = T 0.997 1.000 1.000 1.000

M-LLSW ν = ⌊4(T/100)2/9⌋ 1.000 1.000 1.000 1.000
FGLS BIC 0.831 0.978 1.000 1.000
FGLS-D BIC 0.122 0.128 0.956 0.998
DURBIN BIC 0.048 0.051 0.051 0.048
DURBIN AIC 0.049 0.053 0.052 0.047
Hausman 1 OLS vs FGLS 1.000 1.000 0.669 0.273
Hausman 2 DURBIN vs FGLS-D 0.000 0.000 1.000 1.000

T=2500
Truncation Ψ1 Ψ∗

1 Ψ2 Ψ∗
2

OLS − 1.000 1.000 1.000 1.000

NW h = ⌈4(T/100)2/9⌉ 1.000 1.000 1.000 1.000

NW-A h = ⌈0.75T 1/3⌉ 1.000 1.000 1.000 1.000

NW-LLSW h = ⌈1.3T 1/2⌉ 1.000 1.000 1.000 1.000
NW-KV h = T 1.000 1.000 1.000 1.000

M-LLSW ν = ⌊4(T/100)2/9⌋ 1.000 1.000 1.000 1.000
FGLS BIC 1.000 1.000 1.000 1.000
FGLS-D BIC 0.123 0.129 1.000 1.000
DURBIN BIC 0.048 0.050 0.050 0.050
DURBIN AIC 0.048 0.049 0.050 0.050
Hausman 1 OLS vs FGLS 1.000 1.000 0.999 0.465
Hausman 2 DURBIN vs FGLS-D 0.000 0.000 1.000 1.000

Notes: All shocks are N(0, 1) white noise. We perform 10000 Monte Carlo replications, drawing x0 and
u0 from their stationary distributions and using common random numbers whenever possible. See text for
details.
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Table 8: Empirical Size of Nominal 5% t-test of H0 : β = 1
DGP: Dynamic Regression, EBD

T=50
Test Truncation ρ = 0 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95
OLS − 0.785 0.162 0.441 0.504 0.406

NW h = ⌈4(T/100)2/9⌉ 0.779 0.105 0.302 0.330 0.247

NW-A h = ⌈0.75T 1/3⌉ 0.783 0.117 0.331 0.372 0.282

NW-LLSW h = ⌈1.3T 1/2⌉ 0.742 0.087 0.237 0.228 0.159
NW-KV h = T 0.662 0.082 0.200 0.184 0.122

M-LLSW ν = ⌊4(T/100)2/9⌋ 0.687 0.075 0.194 0.170 0.124
FGLS BIC 0.775 0.077 0.097 0.113 0.183
FGLS-D BIC 0.768 0.085 0.078 0.124 0.198
DURBIN BIC 0.205 0.078 0.052 0.055 0.059
DURBIN AIC 0.098 0.082 0.071 0.078 0.078
Hausman 1 OLS vs FGLS 0.782 0.624 0.583 0.491 0.332
Hausman 2 DURBIN vs FGLS-D 0.770 0.085 0.565 0.930 0.955

T=200
Test Truncation ρ = 0 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95
OLS − 1.000 0.169 0.820 0.903 0.779

NW h = ⌈4(T/100)2/9⌉ 1.000 0.081 0.656 0.738 0.516

NW-A h = ⌈0.75T 1/3⌉ 1.000 0.081 0.656 0.738 0.516

NW-LLSW h = ⌈1.3T 1/2⌉ 0.999 0.063 0.560 0.620 0.352
NW-KV h = T 0.979 0.058 0.421 0.447 0.248

M-LLSW ν = ⌊4(T/100)2/9⌋ 0.999 0.060 0.536 0.583 0.319
FGLS BIC 1.000 0.053 0.066 0.415 0.683
FGLS-D BIC 1.000 0.051 0.062 0.441 0.716
DURBIN BIC 0.049 0.047 0.050 0.055 0.052
DURBIN AIC 0.051 0.051 0.054 0.058 0.058
Hausman 1 OLS vs FGLS 0.714 0.443 0.827 0.899 0.665
Hausman 2 DURBIN vs FGLS-D 1.000 0.061 0.974 1.000 1.000

T=600
Test Truncation ρ = 0 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95
OLS − 1.000 0.174 0.995 0.999 0.989

NW h = ⌈4(T/100)2/9⌉ 1.000 0.075 0.971 0.991 0.928

NW-A h = ⌈0.75T 1/3⌉ 1.000 0.072 0.970 0.991 0.920

NW-LLSW h = ⌈1.3T 1/2⌉ 1.000 0.058 0.950 0.985 0.882
NW-KV h = T 1.000 0.050 0.801 0.843 0.646

M-LLSW ν = ⌊4(T/100)2/9⌋ 1.000 0.057 0.946 0.984 0.864
FGLS BIC 1.000 0.049 0.066 0.912 0.995
FGLS-D BIC 1.000 0.049 0.065 0.922 0.997
DURBIN BIC 0.050 0.047 0.053 0.050 0.050
DURBIN AIC 0.051 0.048 0.055 0.050 0.050
Hausman 1 OLS vs FGLS 0.675 0.293 0.997 1.000 0.990
Hausman 2 DURBIN vs FGLS-D 1.000 0.053 1.000 1.000 1.000

T=2500
Test Truncation ρ = 0 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95
OLS − 1.000 0.173 1.000 1.000 1.000

NW h = ⌈4(T/100)2/9⌉ 1.000 0.062 1.000 1.000 1.000

NW-A h = ⌈0.75T 1/3⌉ 1.000 0.060 1.000 1.000 1.000

NW-LLSW h = ⌈1.3T 1/2⌉ 1.000 0.053 1.000 1.000 1.000
NW-KV h = T 1.000 0.050 0.997 0.998 0.981

M-LLSW ν = ⌊4(T/100)2/9⌋ 1.000 0.053 1.000 1.000 1.000
FGLS BIC 1.000 0.051 0.056 1.000 1.000
FGLS-D BIC 1.000 0.051 0.053 1.000 1.000
DURBIN BIC 0.049 0.048 0.049 0.052 0.050
DURBIN AIC 0.049 0.049 0.050 0.052 0.050
Hausman 1 OLS vs FGLS 0.636 0.154 1.000 1.000 1.000
Hausman 2 DURBIN vs FGLS-D 1.000 0.051 1.000 1.000 1.000

Notes: All shocks are N(0, 1) white noise. We perform 10000 Monte Carlo replications, drawing x0 and
u0 from their stationary distributions and using common random numbers whenever possible. See text for
details.
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Table 7 contains results for the two VAR DGPs, NDY + GEXOG and NDY + EBD.

In the NDY+ GEXOG environment, OLS and FGLS are inconsistent, which produces large

size distortions. In contrast, DURBIN and FGLS-D are consistent; they should outperform

OLS and FGLS, and they do. DURBIN and FLGS-D should perform similarly, and they do.

In the NDY +EBD environment, OLS, FGLS, and FGLS-D are inconsistent, and all have

large size distortions. DURBIN, however, remains consistent and performs admirably.

Finally, Table 8 contains results for the dynamic regression DGP, EBD. In this environ-

ment DURBIN should perform well, and it does, whereas all other test sizes are distorted,

except at or near the very special common-factor case of ρ = 0.5.

4.5.2 Power

Only tests that are correctly sized are of real interest, because only correctly-sized tests

produce trustworthy and interpretable rejections. As we have shown, DURBIN satisfies that

requirement, whereas OLS-HAC regression does not. One could simply stop there, but it is

of interest to compare rejection frequencies in a few laboratory environments where the DGP

is known. We do so in Figure 2 for three of our DGPs with T = 200 and various persistence

parameters, comparing OLS-HAC (Kiefer-Vogelsang, LLSW), FGLS, and FGLS-D.

In the top row Figure 2 we show rejection frequencies for the autoregressive disturbances

environment, NDY +BD. All estimators are consistent, and all tests have correct size when

β = 1, i.e., when the true parameter equals its value under the null hypothesis. Moving away

from the null however, it is clear that OLS-HAC power is inferior to that of DURBIN, because

OLS is inefficient relative to DURBIN. Moreover, the inferior power performance of OLS-

HAC increases with disturbance persistence (ρ), precisely because the relative inefficiency

of OLS increases with persistence. Finally, DURBIN, FGLS and FGLS-D have virtually

identical power curves.

In the middle row Figure 2 we show rejection frequencies for the triangular VAR case,

NDY +GEXOG. OLS-HAC and FGLS are so badly mis-sized that it is not worth discussing

them, whereas FGLS-D is asymptotically correctly sized but is still over-sized for T = 200.

Only DURBIN is trustworthy. Moving from the middle-left to middle-right panel (higher

persistence), the superiority of Durbin is amplified.

In the bottom row Figure 2 we show rejection frequencies for the unrestricted VAR case,

NDY +EBD. FGLS-D fails even asymptotically, so it is not surprising that its finite-sample

performance is much worse than in the middle-row triangular VAR NDY +GEXOG case.

DURBIN, however, remains trustworthy. Moving from the bottom-left to bottom-right panel
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Figure 2: Empirical Rejection Frequencies of Nominal 5% t-Tests of H0: β=1, T = 200

Notes: DGPs: NDY + BD (top row), NDY + GEXOG (middle row), and NDY + EBD (bottom row).
See text for details.
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(higher persistence), the superiority of DURBIN is amplified, just as in the triangular case.

5 Concluding Remarks and Directions for Future Re-

search

We have considered issues surrounding the time-series application of OLS regression with

HAC standard errors. Although the OLS-HAC methodology is often sensible in cross-section

regression situations, we argued that it is not generally an effective procedure in time-series

regressions. Such regressions usually possess persistent autocorrelation, which causes OLS-

HAC regressions to be highly sub-optimal for parameter estimation (in terms of efficiency),

inference (in terms of both test size and power), and prediction.

We showed that the OLS-HAC problems are largely avoided by the use of a simple

dynamic regression procedure, DURBIN. We demonstrated the significant advantages of

DURBIN with detailed simulations covering a range of practical environments and issues.

Effectively, DURBIN is a powerful tool for pre-whitened HAC estimation, in the tradition of

Andrews and Monahan (1992) – indeed such a good pre-whitening tool that there’s rarely

any need for subsequent HAC estimation.

On the other hand, DURBIN is of course not a panacea. For example, DURBIN may

struggle in small samples when dynamics have a strong moving-average component. Our

Monte Carlo makes clear, however, that for all but the most extreme environments, DURBIN

with lag order selected using standard information criteria performs consistently well. Indeed

that is the key message of our paper.

In future work, one could generalize the DURBIN regression in various ways. For ex-

ample, one could allow different lag lengths for y and the xi’s. One could also allow for

heteroskedasticity, which we suppressed in this paper so as to focus exclusively on autocor-

relation, for example by allowing for GARCH disturbances in the DURBIN regression.
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Appendices

A Additional Monte Carlo: AR Disturbances

Table A1: Selected Lags by test
Estimators: FGLS, DURBIN AIC, DURBIN BIC
DGP: Autoregressive Disturbances, NDY +BD

T ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95 ρ = 0.99

50

Median
FGLS BIC 1 1 1 1 1 1 1
DURBIN BIC 0 0 1 1 1 1 1
DURBIN AIC 0 1 1 1 1 1 1

Mean
FGLS BIC 1.2 1.2 1.3 1.2 1.3 1.3 1.5
DURBIN BIC 0.1 0.4 0.9 1.1 1.1 1.1 1.1
DURBIN AIC 2.0 2.5 2.9 3.0 3.0 3.1 3.1

200

Median
FGLS BIC 1 1 1 1 1 1 1
DURBIN BIC 0 1 1 1 1 1 1
DURBIN AIC 0 1 1 1 1 1 1

Mean
FGLS BIC 1.1 1.1 1.1 1.1 1.1 1.1 1.5
DURBIN BIC 0.0 0.9 1.0 1.0 1.0 1.0 1.0
DURBIN AIC 1.1 2.1 2.2 2.2 2.2 2.2 2.2

600

Median
FGLS BIC 1 1 1 1 1 1 1
DURBIN BIC 0 1 1 1 1 1 1
DURBIN AIC 0 1 1 1 1 1 1

Mean
FGLS BIC 1.0 1.0 1.0 1.0 1.0 1.0 1.5
DURBIN BIC 0.0 1.0 1.0 1.0 1.0 1.0 1.0
DURBIN AIC 0.7 1.8 1.7 1.7 1.8 1.8 1.7

2500

Median
FGLS BIC 1 1 1 1 1 1 1
DURBIN BIC 0 1 1 1 1 1 1
DURBIN AIC 0 1 1 1 1 1 1

Mean
FGLS BIC 1.0 1.0 1.0 1.0 1.0 1.0 1.1
DURBIN BIC 0.0 1.0 1.0 1.0 1.0 1.0 1.0
DURBIN AIC 0.7 1.7 1.7 1.7 1.7 1.7 1.7

Notes: All shocks are N(0, 1) white noise. We perform 10000 Monte Carlo replications, drawing x0 and
u0 from their stationary distributions and using common random numbers whenever possible. See text for
details.
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B Additional Monte Carlo: MA Disturbances

Table B1: Selected Lags by test
Estimators: FGLS, DURBIN AIC, DURBIN BIC

DGP: Moving Average Disturbances

T θ = 0 θ = 0.3 θ = 0.5 θ = 0.7 θ = 0.9 θ = 0.95 θ = 0.99

50

Median
FGLS 1 1 1 2 2 3 3
DURBIN BIC 0 0 1 1 2 2 2
DURBIN AIC 0 1 2 3 5 5 5

Mean
FGLS 1.3 1.3 1.6 2.2 2.9 3.0 3.1
DURBIN BIC 0.1 0.3 0.8 1.4 1.9 2.0 2.0
DURBIN AIC 2.0 2.6 3.4 4.2 5.2 5.6 5.6

200

Median
FGLS 1 1 2 3 5 5 5
DURBIN BIC 0 1 1 2 3 3 3
DURBIN AIC 0 1 2 4 8 9 10

Mean
FGLS 1.1 1.2 1.9 3.1 4.9 5.2 5.4
DURBIN BIC 0.0 0.8 1.4 2.3 3.3 3.5 3.5
DURBIN AIC 1.1 2.4 3.6 5.4 9.1 10.7 11.5

600

Median
FGLS 1 1 2 4 7 8 9
DURBIN BIC 0 1 2 3 5 6 6
DURBIN AIC 0 2 3 6 12 14 16

Mean
FGLS 1.0 1.4 2.5 4.3 7.6 8.5 8.9
DURBIN BIC 0.0 1.1 2.1 3.4 5.4 5.9 6.1
DURBIN AIC 0.7 2.4 3.8 6.2 12.3 15.2 17.0

2500

Median
FGLS 1 2 3 6 12 15 17
DURBIN BIC 0 2 3 5 9 11 12
DURBIN AIC 0 2 4 8 17 24 28

Mean
FGLS 1.0 2.0 3.4 5.9 12.2 15.3 17.3
DURBIN BIC 0.0 1.6 2.9 4.9 9.5 11.2 12.0
DURBIN AIC 0.7 3.0 4.8 8.1 18.1 24.1 27.2

Notes: The data-generating process is yt = xt + ut, xt = 0.7xt−1 + ϵx,t, ut = θϵu,t−1 + ϵu,t, t = 1, ..., T . All
shocks are N(0, 1) white noise. We perform 10000 Monte Carlo replications, drawing x0 and u0 from their
stationary distributions and using common random numbers whenever possible. See text for details.



Table B2: Bias, MSE, and Relative Efficiency
Estimators: OLS, FGLS, FGLS-D, DURBIN

DGP: Moving Average Disturbances

T=50
θ = 0 θ = 0.3 θ = 0.5 θ = 0.7 θ = 0.9 θ = 0.95 θ = 0.99

Bias

OLS 0.0004 -0.0013 0.0008 0.0018 0.0024 -0.0002 -0.0034
FGLS 0.0004 -0.0010 0.0004 0.0018 0.0027 -0.0008 -0.0014
FGLS-D 0.0004 -0.0010 0.0013 0.0009 0.0028 -0.0022 -0.0022
DURBIN 0.0004 -0.0002 0.0028 0.0011 0.0032 -0.0020 -0.0028

MSE

OLS 0.0112 0.0165 0.0208 0.0279 0.0329 0.0344 0.0360
FGLS 0.0121 0.0167 0.0195 0.0224 0.0231 0.0237 0.0246
FGLS-D 0.0114 0.0168 0.0203 0.0235 0.0248 0.0256 0.0267
DURBIN 0.0131 0.0192 0.0237 0.0275 0.0314 0.0334 0.0350

REest

OLS 0.8570 0.8612 0.8795 1.0140 1.0485 1.0300 1.0288
FGLS 0.9250 0.8730 0.8225 0.8167 0.7355 0.7084 0.7032
FGLS-D 0.8668 0.8755 0.8573 0.8542 0.7900 0.7654 0.7638

T=200
θ = 0 θ = 0.3 θ = 0.5 θ = 0.7 θ = 0.9 θ = 0.95 θ = 0.99

Bias

OLS -0.0008 -0.0005 -0.0005 0.0001 -0.0006 -0.0015 -0.0004
FGLS -0.0008 -0.0003 -0.0004 0.0004 -0.0005 0.0001 -0.0004
FGLS-D -0.0008 -0.0004 -0.0003 0.0003 -0.0004 -0.0001 -0.0002
DURBIN -0.0007 0.0000 -0.0001 0.0000 -0.0005 0.0000 -0.0005

MSE

OLS 0.0026 0.0039 0.0049 0.0064 0.0076 0.0083 0.0088
FGLS 0.0026 0.0037 0.0043 0.0044 0.0040 0.0039 0.0040
FGLS-D 0.0026 0.0037 0.0043 0.0045 0.0044 0.0045 0.0047
DURBIN 0.0027 0.0050 0.0053 0.0056 0.0061 0.0063 0.0066

REest

OLS 0.9666 0.7802 0.9311 1.1610 1.2500 1.3162 1.3237
FGLS 0.9824 0.7383 0.8057 0.7966 0.6489 0.6166 0.6115
FGLS-D 0.9673 0.7484 0.8185 0.8160 0.7254 0.7078 0.7102

T=600
θ = 0 θ = 0.3 θ = 0.5 θ = 0.7 θ = 0.9 θ = 0.95 θ = 0.99

Bias

OLS 0.0004 0.0001 0.0003 -0.0004 0.0005 0.0001 -0.0011
FGLS 0.0004 0.0000 0.0006 -0.0001 0.0002 0.0005 -0.0006
FGLS-D 0.0004 0.0000 0.0005 -0.0002 0.0001 0.0005 -0.0007
DURBIN 0.0003 0.0001 0.0007 0.0000 0.0005 0.0005 -0.0015

MSE

OLS 0.0009 0.0013 0.0017 0.0021 0.0026 0.0027 0.0029
FGLS 0.0009 0.0012 0.0014 0.0014 0.0010 0.0009 0.0009
FGLS-D 0.0009 0.0012 0.0014 0.0014 0.0012 0.0011 0.0011
DURBIN 0.0009 0.0017 0.0017 0.0017 0.0018 0.0019 0.0020

REest

OLS 0.9762 0.7668 0.9680 1.2116 1.4440 1.4420 1.4588
FGLS 0.9805 0.7113 0.7987 0.7756 0.5660 0.4812 0.4708
FGLS-D 0.9761 0.7112 0.8060 0.7905 0.6386 0.5750 0.5733

T=2500
θ = 0 θ = 0.3 θ = 0.5 θ = 0.7 θ = 0.9 θ = 0.95 θ = 0.99

Bias

OLS 0.0001 0.0003 0.0000 0.0001 -0.0001 0.0002 0.0004
FGLS 0.0001 0.0002 0.0000 0.0002 -0.0001 0.0001 0.0001
FGLS-D 0.0001 0.0002 0.0000 0.0002 -0.0001 0.0002 0.0001
DURBIN 0.0001 0.0002 0.0000 0.0000 0.0000 0.0003 0.0001

MSE

OLS 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0007
FGLS 0.0002 0.0003 0.0003 0.0003 0.0002 0.0002 0.0001
FGLS-D 0.0002 0.0003 0.0003 0.0003 0.0002 0.0002 0.0002
DURBIN 0.0002 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

REest

OLS 0.9948 0.7708 0.9920 1.2350 1.5383 1.5773 1.5744
FGLS 0.9952 0.7127 0.8024 0.7610 0.4866 0.3710 0.3012
FGLS-D 0.9948 0.7146 0.8034 0.7692 0.5248 0.4369 0.3862

Notes: The data-generating process is yt = xt + ut, xt = 0.7xt−1 + ϵx,t, ut = θϵu,t−1 + ϵu,t, t = 1, ..., T . All shocks are N(0, 1)
white noise. We select FGLS, FGLS-D, and DURBIN lag orders using BIC. REest denotes the relative estimation efficiency
of DURBIN. We perform 10000 Monte Carlo replications, drawing x0 and u0 from their stationary distributions and using
common random numbers whenever possible. See text for details.
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Table B3: Empirical Size of Nominal 5% t-test of H0 : β = 1
DGP: Moving Average Disturbances

T=50
Truncation θ = 0 θ = 0.3 θ = 0.5 θ = 0.7 θ = 0.9 θ = 0.95 θ = 0.99

OLS − 0.051 0.097 0.115 0.132 0.129 0.129 0.130

NW h = ⌈4(T/100)2/9⌉ 0.066 0.082 0.085 0.094 0.092 0.088 0.093

NW-A h = ⌈0.75T 1/3⌉ 0.064 0.084 0.088 0.097 0.096 0.093 0.095

NW-LLSW h = ⌈1.3T 1/2⌉ 0.064 0.074 0.080 0.083 0.082 0.082 0.086
NW-KV h = T 0.061 0.073 0.077 0.079 0.075 0.075 0.076

M-LLSW ν = ⌊4(T/100)2/9⌋ 0.065 0.072 0.072 0.073 0.076 0.072 0.077
FGLS BIC 0.067 0.076 0.082 0.097 0.101 0.099 0.104
FGLS-D BIC 0.054 0.092 0.095 0.093 0.092 0.092 0.094
DURBIN BIC 0.060 0.096 0.094 0.075 0.075 0.074 0.078
DURBIN AIC 0.086 0.096 0.087 0.080 0.085 0.085 0.088
Hausman 1 OLS vs FGLS 0.753 0.680 0.574 0.477 0.466 0.449
Hausman 2 DURBIN vs FGLS-D 0.047 0.073 0.088 0.097 0.099 0.095

T=200
Truncation θ = 0 θ = 0.3 θ = 0.5 θ = 0.7 θ = 0.9 θ = 0.95 θ = 0.99

OLS − 0.050 0.090 0.110 0.132 0.123 0.133 0.134

NW h = ⌈4(T/100)2/9⌉ 0.054 0.060 0.065 0.070 0.064 0.070 0.066

NW-A h = ⌈0.75T 1/3⌉ 0.054 0.060 0.065 0.070 0.064 0.070 0.066

NW-LLSW h = ⌈1.3T 1/2⌉ 0.053 0.057 0.055 0.059 0.056 0.066 0.062
NW-KV h = T 0.049 0.055 0.056 0.059 0.053 0.057 0.060

M-LLSW ν = ⌊4(T/100)2/9⌋ 0.056 0.057 0.056 0.059 0.053 0.062 0.061
FGLS BIC 0.052 0.053 0.059 0.063 0.056 0.057 0.059
FGLS-D BIC 0.050 0.059 0.057 0.061 0.053 0.055 0.056
DURBIN BIC 0.052 0.062 0.050 0.051 0.055 0.055 0.055
DURBIN AIC 0.067 0.053 0.054 0.056 0.059 0.063 0.058
Hausman 1 OLS vs FGLS 0.666 0.545 0.385 0.224 0.208 0.199
Hausman 2 DURBIN vs FGLS-D 0.049 0.055 0.059 0.059 0.064 0.060

T=600
Truncation θ = 0 θ = 0.3 θ = 0.5 θ = 0.7 θ = 0.9 θ = 0.95 θ = 0.99

OLS − 0.052 0.094 0.117 0.125 0.132 0.130 0.134

NW h = ⌈4(T/100)2/9⌉ 0.054 0.057 0.063 0.066 0.060 0.060 0.066

NW-A h = ⌈0.75T 1/3⌉ 0.054 0.056 0.062 0.065 0.060 0.058 0.065

NW-LLSW h = ⌈1.3T 1/2⌉ 0.055 0.055 0.056 0.059 0.055 0.054 0.057
NW-KV h = T 0.052 0.050 0.047 0.054 0.052 0.051 0.049

M-LLSW ν = ⌊4(T/100)2/9⌋ 0.055 0.053 0.055 0.057 0.054 0.052 0.055
FGLS BIC 0.053 0.047 0.058 0.053 0.047 0.040 0.043
FGLS-D BIC 0.052 0.046 0.058 0.050 0.047 0.039 0.041
DURBIN BIC 0.053 0.051 0.055 0.052 0.049 0.050 0.052
DURBIN AIC 0.067 0.051 0.054 0.056 0.048 0.050 0.052
Hausman 1 OLS vs FGLS 0.588 0.421 0.242 0.101 0.095 0.088
Hausman 2 DURBIN vs FGLS-D 0.050 0.051 0.049 0.048 0.054 0.054

T=2500
Truncation θ = 0 θ = 0.3 θ = 0.5 θ = 0.7 θ = 0.9 θ = 0.95 θ = 0.99

OLS − 0.046 0.098 0.115 0.132 0.133 0.131 0.127

NW h = ⌈4(T/100)2/9⌉ 0.047 0.057 0.057 0.057 0.058 0.059 0.056

NW-A h = ⌈0.75T 1/3⌉ 0.046 0.056 0.057 0.055 0.058 0.058 0.056

NW-LLSW h = ⌈1.3T 1/2⌉ 0.047 0.053 0.054 0.052 0.055 0.052 0.050
NW-KV h = T 0.050 0.049 0.046 0.050 0.050 0.047 0.048

M-LLSW ν = ⌊4(T/100)2/9⌋ 0.046 0.055 0.053 0.051 0.054 0.051 0.050
FGLS BIC 0.046 0.055 0.051 0.053 0.047 0.045 0.034
FGLS-D BIC 0.046 0.053 0.051 0.053 0.044 0.039 0.035
DURBIN BIC 0.046 0.049 0.050 0.050 0.048 0.051 0.050
DURBIN AIC 0.058 0.049 0.050 0.049 0.049 0.051 0.048
Hausman 1 OLS vs FGLS 0.473 0.291 0.119 0.067 0.057 0.054
Hausman 2 DURBIN vs FGLS-D 0.052 0.050 0.052 0.053 0.050 0.053

Notes: The data-generating process is yt = xt + ut, xt = 0.7xt−1 + ϵx,t, ut = θϵu,t−1 + ϵu,t, t = 1, ..., T . All
shocks are N(0, 1) white noise. We perform 10000 Monte Carlo replications, drawing x0 and u0 from their
stationary distributions and using common random numbers whenever possible. See text for details.
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Figure B1: Empirical Rejection frequencies of Nominal 5% t-Test of H0: β=1
DGP: Moving Average Disturbances, T = 200

Notes: The data-generating process is yt = βxt + ut, xt = 0.7xt−1 + ϵx,t, ut = ρϵu,t−1 + ϵu,t, t = 1, ..., 200.
All shocks are N(0, 1) white noise. We perform 10000 Monte Carlo replications, drawing x0 and u0 from
their stationary distributions and using common random numbers whenever possible. See text for details.
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Figure B2: Empirical Rejection frequencies of Nominal 5% t-Test of H0: β=1
DGP: Moving Average Disturbances, θ = 0.7

Notes: The data-generating process is yt = βxt + ut, xt = 0.7xt−1 + ϵx,t, ut = 0.7ϵu,t−1 + ϵu,t, t = 1, ..., T .
All shocks are N(0, 1) white noise. We perform 10000 Monte Carlo replications, drawing x0 and u0 from
their stationary distributions and using common random numbers whenever possible. See text for details.
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C Additional Monte Carlo: ARMA Disturbances

Table C1: Selected Lags by test
Estimators: FGLS, DURBIN AIC, DURBIN BIC

DGP: ARMA Disturbances

T θ = 0 θ = 0.3 θ = 0.5 θ = 0.7 θ = 0.9 θ = 0.95 θ = 0.99

50

Median
FGLS 1 1 2 2 2 2 1
DURBIN BIC 1 1 2 2 2 3 3
DURBIN AIC 1 2 3 4 6 6 6

Mean
FGLS 1.2 1.6 2.1 2.6 2.9 2.7 2.0
DURBIN BIC 1.1 1.3 1.7 2.3 2.9 3.0 3.1
DURBIN AIC 3.0 3.5 4.1 5.0 6.0 6.2 6.3

200

Median
FGLS 1 2 3 4 5 5 4
DURBIN BIC 1 2 2 3 4 4 4
DURBIN AIC 1 2 3 5 9 10 11

Mean
FGLS 1.1 2.0 2.6 3.7 4.9 4.9 3.9
DURBIN BIC 1.0 1.6 2.3 3.1 4.2 4.4 4.5
DURBIN AIC 2.2 3.4 4.4 6.3 10.2 11.6 12.5

600

Median
FGLS 1 2 3 5 7 8 7
DURBIN BIC 1 2 3 4 6 7 7
DURBIN AIC 1 3 4 6 12 15 17

Mean
FGLS 1.0 2.2 3.3 4.9 7.5 8.0 7.1
DURBIN BIC 1.0 2.0 2.9 4.2 6.3 6.8 7.0
DURBIN AIC 1.7 3.3 4.7 7.0 13.1 16.1 18.0

2500

Median
FGLS 1 3 4 7 12 14 15
DURBIN BIC 1 2 4 6 10 12 13
DURBIN AIC 1 3 5 8 18 25 28

Mean
FGLS 1.0 2.8 4.2 6.7 12.3 14.6 14.9
DURBIN BIC 1.0 2.3 3.7 5.8 10.3 12.0 13.0
DURBIN AIC 1.7 3.8 5.6 8.9 18.9 24.7 27.5

Notes: The data-generating process is yt = xt + ut, xt = 0.7xt−1 + ϵx,t, ut = 0.7ut−1 + θϵu,t−1 + ϵu,t,
t = 1, ..., T . All shocks are N(0, 1) white noise. We perform 10000 Monte Carlo replications, drawing x0 and
u0 from their stationary distributions and using common random numbers whenever possible. See text for
details.
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Table C2: Bias, MSE, and Relative Efficiency
Estimators: OLS, FGLS, FGLS-D, DURBIN

DGP: ARMA Disturbances

T=50
θ = 0 θ = 0.3 θ = 0.5 θ = 0.7 θ = 0.9 θ = 0.95 θ = 0.99

Bias

OLS -0.0026 -0.0017 -0.0022 0.0006 0.0023 -0.0039 -0.0234
FGLS -0.0002 0.0009 0.0009 0.0018 0.0005 -0.0046 0.0023
FGLS-D 0.0001 0.0006 0.0008 0.0030 -0.0006 -0.0024 0.0021
DURBIN 0.0003 0.0004 0.0002 0.0031 0.0001 -0.0053 0.0014

MSE

OLS 0.0559 0.0945 0.1271 0.1698 0.3421 0.8138 15.4933
FGLS 0.0242 0.0250 0.0244 0.0232 0.0276 0.0358 0.1380
FGLS-D 0.0235 0.0231 0.0219 0.0198 0.0191 0.0199 0.0200
DURBIN 0.0234 0.0245 0.0268 0.0292 0.0349 0.0369 0.0376

REest

OLS 2.3893 3.8547 4.7469 5.8198 9.8056 22.0441 411.8199
FGLS 1.0369 1.0207 0.9108 0.7964 0.7900 0.9687 3.6672
FGLS-D 1.0059 0.9441 0.8198 0.6778 0.5486 0.5383 0.5310

T=200
θ = 0 θ = 0.3 θ = 0.5 θ = 0.7 θ = 0.9 θ = 0.95 θ = 0.99

Bias

OLS 0.0002 0.0016 -0.0029 -0.0022 -0.0004 -0.0032 -0.0024
FGLS -0.0006 0.0009 -0.0010 -0.0007 -0.0001 -0.0003 -0.0005
FGLS-D -0.0006 0.0008 -0.0009 -0.0003 0.0000 0.0001 -0.0004
DURBIN -0.0006 0.0007 -0.0008 -0.0004 -0.0006 0.0010 -0.0006

MSE

OLS 0.0146 0.0238 0.0318 0.0420 0.0591 0.0932 1.0482
FGLS 0.0051 0.0048 0.0042 0.0034 0.0026 0.0029 0.0046
FGLS-D 0.0051 0.0048 0.0042 0.0034 0.0026 0.0027 0.0027
DURBIN 0.0051 0.0052 0.0053 0.0057 0.0060 0.0066 0.0068

REest

OLS 2.8789 4.5810 5.9923 7.3801 9.7832 14.1853 155.2254
FGLS 1.0071 0.9277 0.7980 0.5970 0.4372 0.4432 0.6771
FGLS-D 1.0026 0.9303 0.7937 0.5921 0.4311 0.4053 0.3961

T=600
θ = 0 θ = 0.3 θ = 0.5 θ = 0.7 θ = 0.9 θ = 0.95 θ = 0.99

Bias

OLS -0.0007 0.0007 -0.0012 -0.0007 -0.0005 0.0004 -0.0019
FGLS 0.0007 0.0000 -0.0001 0.0001 0.0000 0.0003 -0.0003
FGLS-D 0.0007 0.0000 0.0000 0.0002 -0.0001 0.0004 -0.0003
DURBIN 0.0007 -0.0001 0.0002 -0.0001 0.0002 0.0007 -0.0006

MSE

OLS 0.0049 0.0082 0.0106 0.0135 0.0178 0.0227 0.1273
FGLS 0.0016 0.0015 0.0013 0.0009 0.0006 0.0005 0.0007
FGLS-D 0.0016 0.0015 0.0013 0.0010 0.0006 0.0006 0.0005
DURBIN 0.0016 0.0017 0.0017 0.0017 0.0019 0.0019 0.0020

REest

OLS 2.9909 4.8906 6.1570 7.8409 9.6024 11.9589 63.9303
FGLS 0.9998 0.9163 0.7628 0.5497 0.3109 0.2779 0.3544
FGLS-D 0.9988 0.9152 0.7705 0.5623 0.3314 0.2911 0.2746

T=2500
θ = 0 θ = 0.3 θ = 0.5 θ = 0.7 θ = 0.9 θ = 0.95 θ = 0.99

Bias

OLS 0.0002 0.0006 0.0004 0.0002 -0.0005 -0.0003 0.0020
FGLS -0.0003 0.0003 0.0000 0.0002 0.0001 0.0000 0.0000
FGLS-D -0.0003 0.0003 0.0000 0.0002 0.0001 0.0000 0.0000
DURBIN -0.0003 0.0004 0.0000 0.0001 0.0002 0.0002 0.0002

MSE

OLS 0.0011 0.0019 0.0026 0.0033 0.0041 0.0044 0.0111
FGLS 0.0004 0.0004 0.0003 0.0002 0.0001 0.0001 0.0001
FGLS-D 0.0004 0.0004 0.0003 0.0002 0.0001 0.0001 0.0001
DURBIN 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

REest

OLS 2.8997 4.6975 6.4698 7.9824 9.8683 10.4866 25.2690
FGLS 0.9991 0.9153 0.7524 0.5116 0.2320 0.1695 0.1637
FGLS-D 0.9989 0.9183 0.7556 0.5188 0.2460 0.1876 0.1657

Notes: The data-generating process is yt = xt + ut, xt = 0.7xt−1 + ϵx,t, ut = 0.7ut−1 + θϵu,t−1 + ϵu,t, t = 1, ..., T . All shocks
are N(0, 1) white noise. We select FGLS, FGLS-D, and DURBIN lag orders using BIC. REest denotes the relative estimation
efficiency of DURBIN. We perform 10000 Monte Carlo replications, drawing x0 and u0 from their stationary distributions and
using common random numbers whenever possible.
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Table C3: Empirical Size of Nominal 5% t-test of H0 : β = 1
DGP: ARMA Disturbances

T=50
Truncation θ = 0 θ = 0.3 θ = 0.5 θ = 0.7 θ = 0.9 θ = 0.95 θ = 0.99

OLS − 0.237 0.263 0.277 0.279 0.291 0.299 0.325

NW h = ⌈4(T/100)2/9⌉ 0.136 0.143 0.151 0.150 0.136 0.119 0.045

NW-A h = ⌈0.75T 1/3⌉ 0.154 0.165 0.172 0.172 0.164 0.148 0.065

NW-LLSW h = ⌈1.3T 1/2⌉ 0.103 0.107 0.109 0.111 0.090 0.071 0.021
NW-KV h = T 0.088 0.096 0.097 0.093 0.073 0.052 0.013

M-LLSW ν = ⌊4(T/100)2/9⌋ 0.081 0.084 0.088 0.084 0.061 0.045 0.014
FGLS BIC 0.076 0.084 0.086 0.081 0.081 0.081 0.104
FGLS-D BIC 0.068 0.068 0.068 0.065 0.062 0.060 0.061
DURBIN BIC 0.055 0.057 0.063 0.062 0.074 0.073 0.073
DURBIN AIC 0.074 0.078 0.082 0.075 0.088 0.085 0.081
Hausman 1 OLS vs FGLS 0.312 0.250 0.213 0.164 0.120 0.038
Hausman 2 DURBIN vs FGLS-D 0.129 0.124 0.105 0.104 0.104 0.107

T=200
Truncation θ = 0 θ = 0.3 θ = 0.5 θ = 0.7 θ = 0.9 θ = 0.95 θ = 0.99

OLS − 0.248 0.269 0.274 0.285 0.283 0.296 0.304

NW h = ⌈4(T/100)2/9⌉ 0.106 0.105 0.112 0.114 0.102 0.101 0.042

NW-A h = ⌈0.75T 1/3⌉ 0.106 0.105 0.112 0.114 0.102 0.101 0.042

NW-LLSW h = ⌈1.3T 1/2⌉ 0.074 0.074 0.077 0.078 0.068 0.063 0.022
NW-KV h = T 0.065 0.062 0.063 0.061 0.056 0.045 0.016

M-LLSW ν = ⌊4(T/100)2/9⌋ 0.066 0.066 0.068 0.067 0.053 0.045 0.017
FGLS BIC 0.051 0.053 0.051 0.049 0.038 0.040 0.039
FGLS-D BIC 0.051 0.051 0.048 0.045 0.037 0.040 0.039
DURBIN BIC 0.049 0.048 0.050 0.056 0.052 0.056 0.055
DURBIN AIC 0.053 0.053 0.055 0.057 0.058 0.060 0.061
Hausman 1 OLS vs FGLS 0.140 0.123 0.108 0.095 0.087 0.034
Hausman 2 DURBIN vs FGLS-D 0.076 0.052 0.058 0.063 0.060 0.060

T=600
Truncation θ = 0 θ = 0.3 θ = 0.5 θ = 0.7 θ = 0.9 θ = 0.95 θ = 0.99

OLS − 0.257 0.278 0.276 0.276 0.281 0.298 0.298

NW h = ⌈4(T/100)2/9⌉ 0.086 0.090 0.088 0.087 0.089 0.091 0.052

NW-A h = ⌈0.75T 1/3⌉ 0.081 0.084 0.083 0.082 0.082 0.086 0.047

NW-LLSW h = ⌈1.3T 1/2⌉ 0.058 0.064 0.061 0.061 0.058 0.060 0.030
NW-KV h = T 0.054 0.054 0.051 0.053 0.048 0.045 0.019

M-LLSW ν = ⌊4(T/100)2/9⌋ 0.054 0.058 0.056 0.058 0.051 0.047 0.020
FGLS BIC 0.046 0.050 0.049 0.045 0.038 0.033 0.024
FGLS-D BIC 0.046 0.049 0.047 0.044 0.038 0.034 0.031
DURBIN BIC 0.046 0.050 0.050 0.050 0.050 0.050 0.053
DURBIN AIC 0.047 0.051 0.049 0.051 0.052 0.049 0.054
Hausman 1 OLS vs FGLS 0.089 0.082 0.074 0.071 0.073 0.037
Hausman 2 DURBIN vs FGLS-D 0.052 0.050 0.052 0.054 0.056 0.058

T=2500
Truncation θ = 0 θ = 0.3 θ = 0.5 θ = 0.7 θ = 0.9 θ = 0.95 θ = 0.99

OLS − 0.247 0.273 0.284 0.284 0.282 0.278 0.300

NW h = ⌈4(T/100)2/9⌉ 0.067 0.067 0.076 0.072 0.074 0.068 0.057

NW-A h = ⌈0.75T 1/3⌉ 0.063 0.064 0.071 0.068 0.069 0.064 0.053

NW-LLSW h = ⌈1.3T 1/2⌉ 0.051 0.051 0.056 0.056 0.053 0.050 0.043
NW-KV h = T 0.045 0.050 0.053 0.052 0.050 0.045 0.033

M-LLSW ν = ⌊4(T/100)2/9⌋ 0.048 0.049 0.054 0.053 0.052 0.045 0.029
FGLS BIC 0.047 0.050 0.050 0.047 0.038 0.029 0.026
FGLS-D BIC 0.047 0.050 0.049 0.047 0.039 0.033 0.032
DURBIN BIC 0.047 0.050 0.051 0.052 0.048 0.051 0.051
DURBIN AIC 0.047 0.051 0.052 0.053 0.049 0.050 0.050
Hausman 1 OLS vs FGLS 0.063 0.067 0.065 0.060 0.056 0.047
Hausman 2 DURBIN vs FGLS-D 0.051 0.050 0.053 0.051 0.054 0.055

Notes: The data-generating process is yt = xt + ut, xt = 0.7xt−1 + ϵx,t, ut = 0.7ut−1 + θϵu,t−1 + ϵu,t,
t = 1, ..., T . All shocks are N(0, 1) white noise. We perform 10000 Monte Carlo replications, drawing x0 and
u0 from their stationary distributions and using common random numbers whenever possible. See text for
details. 41



Figure C1: Empirical Rejection Frequencies of Nominal 5% t-Test of H0: β=1,
DGP: ARMA Disturbances, T = 200

Notes: The data-generating process is yt = βxt + ut, xt = 0.7xt−1 + ϵx,t, ut = 0.7ut−1 + θϵu,t−1 + ϵu,t,
t = 1, ..., 200. All shocks are N(0, 1) white noise. We perform 10000 Monte Carlo replications, drawing x0

and u0 from their stationary distributions and using common random numbers whenever possible. See text
for details.
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Figure C2: Empirical Rejection Frequencies of Nominal 5% t-Test of H0: β=1,
DGP: ARMA Disturbances, θ = 0.5

Notes: The data-generating process is yt = βxt + ut, xt = 0.7xt−1 + ϵx,t, ut = 0.7ut−1 + 0.5ϵu,t−1 + ϵu,t,
t = 1, ..., T . All shocks are N(0, 1) white noise. We perform 10000 Monte Carlo replications, drawing x0 and
u0 from their stationary distributions and using common random numbers whenever possible. See text for
details.
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