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Abstract

Learning models do not in general imply that weakly dominated strategies are
irrelevant or justify the related concept of “forward induction,” because rational
agents may use dominated strategies as experiments to learn how opponents
play, and may not have enough data to rule out a strategy that opponents never
use. Learning models also do not support the idea that the selected equilibria
should only depend on a game’s normal form, even though two games with the
same normal form present players with the same decision problems given fixed
beliefs about how others play. However, playing the extensive form of a game is
equivalent to playing the normal form augmented with the appropriate terminal
node partitions so that two games are information equivalent, i.e., the players
receive the same feedback about others’ strategies.
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1 Introduction

The learning in games literature asks which equilibria are likely to persist in environ-

ments where new players are initially uncertain about the prevailing strategies and

learn about the strategy distribution by repeatedly playing the game. One reason for

the success of strategic stability and associated refinements is that they select intuitive

equilibria in signaling games, as shown by Banks and Sobel (1987) and Cho and Kreps

(1987). Learning models make similar predictions in these games (Fudenberg and Ka-

mada (2018), Fudenberg and He (2020), Clark and Fudenberg (2021)). In this paper,

we show that these two sorts of refinements can have very different predictions in other

games. Specifically, we show that learning models do not in general support either

the iterated deletion of weakly dominated strategies or the related concept of “forward

induction.”1 We also show that learning models support only some of the invariance

axioms proposed by Kohlberg and Mertens (1986) and Elmes and Reny (1994).

There are two distinct reasons that the outcomes of learning models need not satisfy

forward induction or iterated weak dominance. First, a dominated strategy may be

used as an experiment to gain information about opponents’ play at some off-path

information sets, and the opponents may then correctly believe that the rare deviations

from the equilibrium path use this dominated strategy. Second, even if a dominated

strategy is never used, agents in other player roles may not learn this if they start with

a prior belief to the contrary and don’t obtain enough data to learn the truth.

The Kohlberg and Mertens (1986) argument that a solution concept for games

should only depend on the normal form is based on the claim that the differences

between extensive forms with the same normal form are “irrelevant details” because

they do not change the decision problem of a player who faces the same fixed and known

strategies of the opponents. Because the normal form abstracts from many aspects of

1There are many related definitions of forward induction in the literature, see the papers surveyed in
Govindan and Wilson (2009). As far as we know, none of these definitions has been accompanied by
a theory of how players come to have equilibrium beliefs, or why they should maintain their beliefs
in the equilibrium or in others’ rationality after observing a deviation.
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game play that are relevant for how people learn what strategies are used by others,

there is no reason to expect learning to depend only on this very abstract representation

of strategic interaction. Instead, the set of learning outcomes is only invariant to

transformations that are both decision invariant, i.e., lead to the same best responses as

a function of opponent strategies, and information invariant in the sense of providing

the same feedback to the agents in their learning problems. Specifically, learning

outcomes, unlike sequential equilibria, are invariant to the coalescing of consecutive

moves by the same player. However, like sequential equilibria and unlike the various

definitions of strategic stability, learning outcomes are not invariant to replacing an

extensive form game with the corresponding game in normal form: In the latter case

there are no unreached information sets, and the terminal node that is reached reveals

the strategy used by each player.

To capture what is essential for learning outcomes in the normal form, we augment it

with terminal node partitions (Fudenberg and Kamada (2015), Fudenberg and Kamada

(2018)) which describe the information players observe when the game is played. We

show that playing the extensive form game is equivalent to playing the normal form

with the terminal node partitions that gives players the same information as would

be revealed by the terminal nodes in the extensive form, so that the two games are

information invariant. We also show that if agents play the normal form derived from

an extensive form game and observe their opponents’ strategies, the learning outcome

is a refinement of backward induction and of S∞W (Dekel and Fudenberg (1990)), but

does not imply iterated weak dominance.

2 Informal Overview of the Learning Model

We begin with an informal overview of the learning model, deferring the full description

of the learning model until Section 4. We consider an overlapping generations learning

environment where time is discrete and doubly infinite, t ∈ {...,−2,−1, 0, 1, 2, ...}.

There is a continuum of agents of mass 1 in each player role i ∈ {1, ..., I}. The agents
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have geometric lifespans, with i.i.d. survival probability γ per period. Each period

newborn agents replace the departing agents so the sizes of the various populations

are constant, and then agents are anonymously matched to play a fixed extensive form

stage game with perfect recall.

The game has information sets Hi for each player i ∈ {1, ..., I}, with available

actions Ah at each h ∈ Hi. A pure strategy si ∈ Si of i assigns an action si(h) ∈ Ah to

every information set h of i. Denote the set of terminal nodes of game tree as Z, and

let z(s) denote the terminal node reached by strategy profile s. Player i has a utility

function defined on terminal nodes, ui : Z → R and a corresponding utility function

on strategy profiles ui(s) = ui(z(s)).

Each agent has a terminal node partition Pi (Fudenberg and Kamada (2015), Fu-

denberg and Kamada (2018)) over Z, and they observe which partition element contains

the terminal node of their match at the end of each period.2 In previous analyses of

explicit learning models, this partition is discrete, i.e., all agents observe the realized

terminal node, and this will be our default assumption. However, in some settings it

is natural to assume that agents observe less; for example, in a sealed-bid first price

auction, agents might only observe the winning bid.

All agents are rational Bayesians who choose policies (maps from history of past

observations to current play) that maximize their expected discounted payoff. They are

born with priors over the prevailing steady-state distribution of play in the opponent

populations, which they update using their observations. In every period t, the state

of the system is the shares of agents in a given player role with the various possible

histories. The state and the optimal policies induce an aggregate strategy that describes

the distribution of strategies in each player-role population, and thus an update rule

that maps states in period t to states in period t + 1. We study this system’s steady

2Fudenberg and Kamada (2015) analyze settings where each player moves only once, and players who
choose an Out action do not observe the choices made by others. The rationalizable conjectural
equilibria of Rubinstein and Wolinsky (1994) and Esponda (2013) use signal functions to model
what players observe when the game is played. These papers do not explicitly consider extensive
form games so their signal functions are more abstract.
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states, which are the fixed points of the update rule.

Agent’s observations can depend on their play, so their optimal policies may in-

corporate a value for “experimenting” with various strategies that have the potential

to improve payoff. The size of the experimentation incentive depends on their contin-

uation probability, their discount factor δ ∈ [0, 1), and how much they have already

learned: inexperienced agents have more incentive to experiment, and they cease ex-

perimenting when they have enough data.

We focus on the limits of steady-state play when γ tends to 1, so agents can ac-

quire enough observations to outweigh their prior. We also assume that δ goes to 1.

Otherwise, agents may not experiment enough to rule out limits that are not Nash

equilibria. We call the strategy profiles that emerge in this limit patiently stable.

3 Examples

3.1 Failures of Forward Induction and Iterated Weak Dominance

We give simple examples to show that equilibria that violate minimal notions of forward

induction or the related concept of iterated weak dominance can be patiently stable.

3.1.1 Information Value of Dominated Strategies

Consider the following game: P1 chooses from Out, In1, and In2. If P1 chooses Out,

the game is over and each player gets 0. If P1 chooses In1 or In2, P2 plays L or R

without knowing P1’s choice. The figure below shows the game in its extensive-form

and normal-form representations.
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(-1,-1) (-1,1) (2,1) (-5,-1)

P1

P2 P2(0,0)

Out In1 In2

L R L R

L R

Out 0,0 0,0

In1 -1,-1 -1,1

In2 2,1 -5,-1

Figure 1: In1 is strictly dominated by Out but provides the same information as In2
and performs better than In2 against some P2 strategies.

The strategy In1 is strictly dominated by Out for P1, and the iterated-dominance

criterion of Kohlberg and Mertens (1986) requires that “A solution of a gameG contains

a solution of any game G′ obtained from G by deletion of a dominated strategy.” In the

gameG′ that results from the deletion of In1, (In2,L) is the only sequential equilibrium

and so the only strategically stable equilibrium. Thus the Nash equilibrium (Out, In1)

is ruled out by forward induction.

In contrast, when an inexperienced P1 agent plays this game and observes the

terminal node at the each of each match, the agent may find it optimal to play In1.

This is because In1 and In2 are informationally equivalent experiments: they provide

the same signal about how P2s play. But if P1’s current belief puts much higher

probability on P2s playing R than L, then P1’s expected payoff from In1 exceeds

that of In2. A sufficiently patient P1 agent will choose to experiment and learn about

P2’s play in order to figure out whether Out or In2 is a better response against the

aggregate P2 play, but the cheapest such experiment may be In1.3

Claim 1. (Out,R) is a patiently stable strategy profile for the game in Figure 1.

In Section 5.1 we establish more general sufficient conditions for patient stability

in two-player games where each player moves at most once. These conditions give

us a class of games where patiently stable profiles fail forward induction because of

the informational value of dominated strategies. The idea of the proof is to choose

3Fudenberg and Levine (1993b), footnote 10 pointed out the possibility that this might occur in their
closely related learning model but did not provide a proof that it does.
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“supportive” priors that lead the early mover to experiment in a way consistent with

the desired equilibrium (such as choosing In1 instead of In2 in the example above)

unless they have previously seen an out-of-equilibrium response from the second mover.

3.1.2 Insufficient Data to Eliminate Weakly Dominated Opponent Play

In the previous example, there is a dominated strategy that is still used by a rational

agent as it provides information about their opponents’ aggregate play. By contrast,

for the game in Figure 2, the strategy In2 is doubly dominated by In1 for P2 agents:

it provides the same information about opponent play but, whenever these actions can

be played, In2 always gives a strictly lower payoff than In1. A rational P2 agent will

therefore never play In2 even as an experiment, which makes it more surprising that

the learning outcome for patient and long-lived agents can select a profile where P1

and P2 are deterred from entering by P3’s R, which is strictly inferior to L against

In1.

(1, 1, 1) (-1, -1, -1) (1, 0, -1) (-1, -2, 1)

P2

P3 P3

Out In1 In2

L R L R

(-1,  0, 0)

P1
Out

(0, 0, 0)

In

P3

L R

(1, 0,  0)

Figure 2: A three-player game where the strategy In2 is doubly dominated by In1
for P2. The dotted lines connecting two terminal nodes represent P2’s terminal node
partition.

Here we suppose that P1 and P3 always observe the terminal node, but P2’s termi-

nal node partition is such that they do not learn how P3 plays if they choose Out. Note

that once the doubly dominated In2 is deleted for P2, L is a strictly better strategy

than R for P3 against any strictly mixed play of P1 and P2. But:
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Claim 2. (Out,Out,R) is a patiently stable strategy profile for the game in Figure 2.

The presence of a third player is critical to this conclusion. The idea is that although

aggregate P2 play puts zero probability on In2 (as required by the elimination of weakly

dominated strategies) and positive probability on In1, a P3 agent may not have enough

data to learn this aggregate play, as P3s only observe a P2 agent entering when they

encounter both a P1 and a P2 agent experimenting with some In action. The incentive

for P2 to experiment is weak because they are located off the equilibrium path and

do not expect to play often, as in Fudenberg and Levine (2006). As a result, most P3

agents will never obtain any data to correct a prior belief that says it is more likely

for P2’s to choose In2 than In1, so they find it optimal to play R. Even though the

aggregate steady-state play of the P2s puts zero probability on the weakly dominated

strategy, most P3s fail to learn this. We formally analyze this example in Section 5.2.

3.2 Invariance

The refinements literature following Kohlberg and Mertens (1986) argues that the

selected set of equilibria should only depend on the normal form, so that any two

extensive forms with the same normal form generate the same predictions. Kohlberg

and Mertens (1986) say that this follows from the fact that the normal form “captures

all the relevant information for decision purposes...” To this we would add “for fixed

beliefs about the play of the opponents.” Simply splitting a decision node for one

player, without changing any of the information sets of the opponents, does not change

what any player observes either during the game or at the end of it, and so has no

effect on the patiently stable outcomes, as in the following example.

In Figure 3, both games have the same set of patiently stable profiles (by Claim 3

below), but the outcome Out is only a sequential equilibrium outcome in the extensive

form on the left.4

4In any sequential equilibrium of the game on the right, P1 must play action 2 so P2 must play L, so
P1 must play In.
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(-1,-1) (-6,1) (2,1) (-5,-1)

P1

P2 P2

Out In2In1

L R L R

( 0, 0 )

(-1,-1) (-6,1) (2,1) (-5,-1)

P1

P2 P2

Out

21

L R L R

( 0, 0 )

P1

In

Figure 3: Both games have the same set of patiently stable profiles. But Out is only
a sequential equilibrium outcome for the game on the left.

More generally, suppose extensive form Ĝ is obtained by coalescing two consecutive

information sets h
′
i and h

′′
i of i in G into one information set h?i in Ĝ (according to

Elmes and Reny (1994)’s “COA” definition of coalescence, as in Figure 4). Then they

must have the same set of patiently stable profiles.

x1

y1

a

d e

x2

y2

b

f g

x3

y3

c

h i

P1

P1

COA

x1

a d e

x2

b f g

x3

c h i

P1

1

Figure 4: The coalesce operation is applied to two information sets of P1: {x1, x2, x3}
and {y1, y2, y3}.

Claim 3. If G and Ĝ are related by coalescing h
′
i and h

′′
i into h?i , then they have the

same set of patiently stable profiles (up to identifying i’s two actions at h
′
i and h

′′
i in G

with their one action at h?i in Ĝ.)

When two information sets of i are coalesced, the domain of −i’s prior beliefs about

i’s play must be modified so that they are about i’s single action at the combined
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information set. Appendix A.1 gives the proof of Claim 3, which establishes a bijection

between non-doctrinaire prior densities g in the game G and ĝ in the game Ĝ, so that

the set of steady states are the same under g in G and ĝ in the Ĝ for any 0 ≤ δ, γ < 1.

However, other transformations of extensive form that leave the normal form un-

changed can change the feedback players obtain in the course of play and so change

the set of patiently stable outcomes.

P1

P2

P3

Pass

Pass

Pass

Drop

Drop

Drop

(1,0,0)

(0,1,0)

(0,0,1)

(2,2,2)

Drop

Pass

Drop

Pass

Pass Drop

Pass Drop
Pass:

Drop:

(1,0,0)

(0,0,1)

(1,0,0)

(2,2,2)

(1,0,0)

(0,1,0)

(1,0,0)

(0,1,0)

1

Pass

Pass Drop

Pass 2,2,2 0,1,0

Drop 1,0,0 1,0,0

Drop

Pass Drop

Pass 0,0,1 0,1,0

Drop 1,0,0 1,0,0

Figure 5: The two games have the same normal form, and (Pass, Pass, Pass) is the
unique backward-induction profile for the extensive form on the left. (Drop, Drop,
Pass) is patiently stable for the game on the left, but not for the game on the right.

As an example, compare the two games in Figure 5. In the game on the left,

the unique backwards induction outcome is (Pass, Pass, Pass), but we know from

Fudenberg and Levine (2006) that the outcome (Drop, Drop, Pass) is also patiently

stable: in the steady state, the P2s play so rarely that they choose not to experiment

with Pass and so never learn that the P3s Pass. But this outcome is ruled out when

agents play the normal form.

Claim 4. Suppose agents play the normal form on the right of Figure 5 and observe

opponents’ strategies at the end of each match. Then the only patiently stable outcome

is (Pass, Pass, Pass).
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This claims follows from Proposition 4 that we discuss later in Section 6.1. In

the game on the right of Figure 5, P3s always Pass because they have full-support

beliefs about what others do. Unlike for the game on the left, now P2s do not need

to experiment to learn this. Once P2s learn that P3s play Pass, they themselves play

Pass. This means that, when agents are long-lived, the vast majority of P2s in the

population play Pass, so P1s learn to play Pass over Drop as well.

As these examples suggest, the problem is that the normal form does not distinguish

between extensive forms that differ in what is observable during the learning process5.

We should only expect the set of learning outcomes to be invariant to transformations

that are both decision invariant, i.e., lead to the same best responses as a function

of opponent strategies, and information invariant in the sense of providing the same

feedback to the agents in their learning problems. In the example above, this can be

done by augmenting the normal form with the terminal node partition shown in Figure

6.

P1Drop Pass

P2 P2

Drop Pass PassDrop

P3 P3 P3P3

Drop Pass
Drop Pass PassDrop

PassDrop

(1,0,0) (1,0,0) (1,0,0) (1,0,0) (2,2,2)(0,0,1)(0,1,0)(0,1,0)

1

Figure 6: The game on the right of Figure 5 equipped with terminal node partitions.
This game provides the same feedback to players as the game on the left of Figure 5.

The partition, which is common to all three players, says that if P1 plays Drop,

players do not observe the choices of P2 and P3, and that if P1 plays Pass and P2

plays Drop then they do not observe the choice of P3. Under this partition, (Drop,

5Fudenberg and Levine (1993a) point out the implications of this for self-confirming equilibrium, and
Sorin (1995) discusses its implication for the equilibria of repeated extensive form games.

10



Drop, Pass) again becomes patiently stable. Section 6 discusses how the terminal

node partitions influence which profiles are patiently stable.

4 The Learning Model

There is a unit mass population of agents who play each role 1 ≤ i ≤ I in the game.

In every period, each agent is anonymously matched with opponents from the other

populations uniformly at random to play the stage game. At the end of each play of the

game, each agent observes the element of their terminal node partition Pi that contains

the realized terminal node of the game, where we require that ui(z) = ui(z
′) if z and

z′ are in the same cell of i’s terminal node partition. The agent uses this information

to update their beliefs about the distribution of play in opponent populations.

As in Fudenberg and He (2018) and Clark and Fudenberg (2021), we assume that

the agents have geometrically distributed lifetimes: At the end of every period, each

agent exits the system with probability 0 < 1 − γ ≤ 1, and a mass of newcomers is

added to each population to replace the departing agents.6 Agents maximize expected

discounted utility, discounting future payoffs with a psychological discount factor 0 ≤

δ < 1.

Denote the set of pure strategies of i in the game as Si and the set of behavior

strategies of i as Πi. Agents believe that the aggregate distribution of play in the

opponent population is constant, but they do not know what that distribution is.

Each agent in population i starts with a prior belief gi ∈ ∆(×h∈H−i∆(Ah)) about the

aggregate behavior strategy profile that describes play in opponent populations j 6= i

at different information sets. We assume that, for each i, the prior gi is non-doctrinaire,

meaning that it has a density which is strictly positive on the interior of ×h∈H−i∆(Ah).
7

6Previous work by Fudenberg and Levine (1993b) and Fudenberg and Levine (2006) assumed agents
have fixed finite lifetimes. All of our results extend to this alternate lifetime specification.

7The strict positivity assumption lets us appeal to the classic Diaconis and Freedman (1990) result
on the rate of convergence of Bayesian posteriors to the empirical distribution. Note that if agents
believe that they know their opponents’ payoff functions, strict positivity requires that they assign
positive probability to opponent strategies they believe are dominated. We discuss this issue more
in the conclusion.
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As agents play the game and accumulate histories of past play and observations,

they update their beliefs using Bayes’ rule (which is always applicable because the

priors assign positive probability to any finite sequence of observations) and modify

their behavior. Let Yi,t = (Si×Pi)t be the set of possible histories that can be observed

by an i agent of age t. (By convention, Ω0 = ∅ for any set Ω.) Let Yi = ∪t∈NYi,t be

the collection of all possible histories of agents from population i. We assume that all

agents in each population i use the same optimal dynamic policy sδ,γi : Yi → Si that

depends on both their discount factor, δ, and their lifetime parameter γ.8

In every period t, the state of the system, denoted µt = (µ1,t, ..., µI,t) ∈ ×i∆(Yi),

gives the shares of agents in the different player roles with the various possible histories.

Given µt, the player i policy sδ,γi induces a player i behavior strategy σδ,γi (µi,t) ∈ Πi that

we call the aggregate strategy of population i. We call σδ,γ(µt) = (σδ,γi (µi,t))i ∈ ×iΠi

the aggregate strategy profile.9

A policy profile generates an update rule f δ,γ : ×i∆(Yi)→ ×i∆(Yi), taking the state

in period t to the state in period t+1, and the mappings Rδ,γ
i : Π−i → Πi that describes

the limit of the aggregate i strategy as t→∞ when the aggregate −i strategy is fixed

at π−i. We refer to the mapping Rδ,γ(π) ≡ (Rδ,γ1
1 (π−1), ...,R

δ,γ
I (π−I)) as the aggregate

response mapping. Similar arguments to those in Clark and Fudenberg (2021) show

that this mapping is continuous.

We study this system’s steady states, those µ satisfying f δ,γ(µ) = µ. We call the

corresponding aggregate strategy profiles the steady state profiles, and denote them by

Π∗(g, δ, γ) ⊆ ×1≤i≤IΠi. Again, similar arguments to those in Clark and Fudenberg

(2021) show that these are the fixed points of the aggregate response mapping. Con-

tinuity of the aggregate response mapping, along with Brouwer’s fixed point theorem,

then implies that steady state profiles always exist.

Proposition 1. Π∗(g, δ, γ) consists of the strategy profiles that are fixed points of the

8This does not mean that they all play in the same way, as agents with the same policy may meet
different opponents, and so have different histories and play different strategies.

9Formally, σδ,γ(µt)[si] =
∑
yi∈Yi s.t. sδ,γi (yi)=si

µi,t[yi].
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aggregate response mapping, and it is non-empty for all g, δ, and γ.

When the agents are short-lived they have little chance to learn, and simply play a

best response to their priors. When agents are long-lived but impatient, they do learn

the steady state path of play, but need not learn how opponents respond to deviations,

so any self-confirming equilibrium in strategies that are not weakly dominated could

arise. We will focus on steady states where agents are both long-lived and patient.

More specifically, we focus on steady state profiles in the limit where agents become

long lived (γ → 1) and patient (δ → 1). Moreover, following the literature, we assume

continuation probability γ converges to 1 faster than δ. We call these the patiently stable

strategy profiles. The order of limits corresponds to an environment where agents are

long-lived relative to their effective discount factors. This implies that people spend

most of their lives myopically responding to their current beliefs.

Definition 1. Strategy profile π is patiently stable if there are sequences {δj}j∈N,

{γj,k}j,k∈N and associated steady-state profiles {πj,k ∈ Π∗(g, δj, γj,k)}j,k∈N such that

limj→∞ δj = 1, limk→∞ γj,k = 1 for each j and limj→∞ limk→∞ πj,k = π.

The literature has previously shown that patiently stable strategy profiles must be

Nash equilibria when agents observe the realized terminal nodes in the games they

play.10

Appendix A.2 shows that this is also true for the game and terminal node partition

given in Figure 2, which is the only example in the paper that uses a non-discrete

terminal node partition to exhibit a patiently stable profile that is ruled out by classic

refinements. We conjecture that patiently stable profiles must be Nash equilibria in

any game provided each agent’s payoff is measurable with respect to their terminal

node partition, but we have not shown this. Instead, Appendix A.3 gives a number of

other examples from the literature where this conclusion does hold.

10Fudenberg and Levine (1993b) established this in a learning model where players had fixed finite
lifetimes rather than geometric lifespans. The adaptations of these arguments given in the sup-
plementary information of Fudenberg and He (2018) show that this extends to geometric lifespans
in general games, although the main text of Fudenberg and He (2018) only states this result for
signaling games.
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5 Patient Stability, Forward Induction, and Dominance

5.1 Dominated Actions in a Family of Two-Player Games

This section provides a sufficient condition for patient stability that generalizes the

example from Section 3.1.1. We consider a family of two-player games where P1 first

chooses an action a1 ∈ A1, which may end the game or give the play to P2. For each

P2 information set h2, P2 chooses among the actions A2(h2), and we let ρ(h2) denote

the P1 actions that lead to h2. Write ui(a1, a2) for i’s utility at the terminal node

reached by P1 playing a1 and P2 playing a2. We also write ui(π1, π2) for i’s expected

utility when players use behavior strategies π1 and π2.

We will show that equilibria of the following form are patiently stable under some

non-doctrinaire prior that we construct.

1. P1 plays a single action a∗1 ∈ A1 that uniquely maximizes their payoff given P2’s

strategy. (Formally, π∗1(a∗1) = 1 for the a∗1 that satisfies u1(a
∗
1, π

∗
2) > u1(a1, π

∗
2) for

all a1 6= a∗1.)

2. For each P2 information set h2, P2 plays some response a∗2(h2) that is optimal

given some a∗1(h2) ∈ ρ(h2). Moreover, out of ρ(h2), a
∗
1(h2) is optimal for P1 given

that P2 plays a∗2(h2).

3. If a∗1 leads to P2 information set h∗2, then a∗2(h
∗
2) uniquely maximizes P2’s payoff

against a∗1.

The (Out, In2) equilibrium from Section 3.1.1 is of this form: Out serves the role of

a∗1, and for P2’s only information set, P2’s prescribed response of R is the unique best

response to In1. In turn, In1 is the best action out of {In1, In2} for P1 when P2

chooses R.

In the equilibria we construct, P2 may best reply to dominated P1 actions a∗1(h2)

at some information sets h2. Nevertheless, we show in Proposition 2 below that every

such equilibrium is patiently stable, which implies Claim 1.

Proposition 2. Suppose that π∗ is an equilibrium of the form given above. Then π∗
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is patiently stable for any pair of non-doctrinaire P1 and P2 priors that are supportive

of π∗.

The key is to choose priors that are “supportive” of the equilibrium. A supportive

P1 prior is such that, for every off-path P2 information set h2, a P1 agent prefers

to experiment with a∗1(h2) over any other action in ρ(h2) unless they have previously

experienced a P2 response at h2 for which a∗1(h2) is not conditionally optimal. Similarly,

a supportive P2 prior leads P2 agents to want to play a∗2(h2) at an information set h2

unless they have previously witnessed a P1 agent play some action in ρ(h2) other than

a∗1(h2). These properties are formalized in Appendix A.4, which also contains the proof

of Proposition 2.

5.2 Stability and Doubly Dominated Actions: An Example

The example from Section 3.1.2 does not fit with the sufficient conditions for stability

we gave in Section 5.1: it involves P3 best replying to the action In2 by P2, a doubly

dominated action that is not optimal among the P2 actions {In1,In2} that reach the

same P3 information set. We use a different argument to show that the (Out,Out,R)

outcome is patiently stable.

Proposition 3. For the game in Figure 2, (Out, Out, R) is a patiently stable pro-

file for any non-doctrinaire P1 prior g1, non-doctrinaire P2 prior g2 under which the

expected probability of L is strictly less than 1/2, and non-doctrinaire P3 prior g3 that

leads a P3 agent to only play L when they have previously observed a P2 agent play

In1.

This proposition specifies the prior beliefs that make patient stability hold in Claim

2. The proof of this result in Appendix A.5 first notes that P1 observes P3’s play if

and only if they experiment with In. This lets us bound the number of periods that

P1s will typically experiment with In before becoming pessimistic and switching to

Out forever in a steady state where P3s play R with high enough probability, so most
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P2 agents will learn that their information set is rarely reached. Thus they will choose

Out instead of experimenting with In1, since they do not value information they will

rarely get to use. This lets us construct a steady state where most P3 agents have never

observed any instance of matched P2 agents choosing any action other than Out, and

therefore choose R based on their prior belief.

6 Observability and Patiently Stable Profiles

In this section, we study the effect of what agents observe at the end of each play of the

game on the patiently stable profiles. Sections 6.1 and 6.2 show that in normal forms

arising from simple games, where agents always observe matched opponents’ extensive-

form strategies, patiently stable profiles must select the same outcome as the backward

induction outcome of the original game. Section 6.3 says that if the normal form of an

extensive form is equipped with the right terminal node partitions, it leads to the same

patiently stable profiles as the extensive form. Section 6.4 provides an example where

patiently stable profiles satisfy the iterated deletion of weakly dominated strategies

with coarser observations but not finer ones.

6.1 Backward Induction in Simple Games when Agents Observe Strategies

A simple game is an extensive-form game of perfect information where no one moves

more than once along any path and no player is indifferent between any two terminal

nodes, so there exists a unique backward induction strategy profile.

Consider the normal form of the simple game where agents simultaneously choose

strategies from the extensive-form game tree and observe opponents’ strategies at the

end of the match. The next result shows that the only patiently stable profile of the

normal form is the backward induction strategy profile. In fact, we show something

stronger: this is the only profile that is δ-stable.

Definition 2. For 0 ≤ δ < 1 and non-doctrinaire prior g, strategy profile π is δ-stable
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under g if there is a collection of parameter sequences {γk}k∈N and associated steady-

state profiles {πk ∈ Π∗(g, δ, γk)}k∈N such that limk→∞ γk = 1 and limk→∞ πk = π.

Proposition 4. Suppose agents play the normal-form representation of a simple game.

Then, every δ-stable profile puts probability 1 on a backward-induction outcome.

In particular, this implies that for the normal form in Figure 5, (Pass, Pass, Pass)

is the only learning outcome when agents are sufficiently long lived. As we show in

Appendix A.7, Proposition 4 follows from a more general result in the next section

about patient stability in normal form games.

6.2 An Iterative Deletion Refinement in Normal Forms

The next proposition discusses the implications of patient stability in environments of

“maximal observability”: that is, agents play the normal form derived from an extensive

form game and observe their opponents’ strategies. This result gives us a benchmark

of what long-lived agents will learn in games if they do not need to experiment. The

result takes the form of an iterative procedure that eliminates at each step some of

the remaining strategies that do not best respond to strictly mixed conjectures that

put arbitrarily low conditional probabilities on eliminated opponent strategies. Let

S = {×iS̃i : ∀i, S̃i ⊆ Si} be the set of product spaces generated by the subsets of the

player strategy spaces.

Definition 3. A sequence (S(0), D(0)), (S(1), D(1))... ∈ S2 is a valid elimination se-

quence if

1. For each i, S
(0)
i = Si \ D(0)

i , and D
(0)
i is any subset of i’s weakly dominated

strategies,

2. For each i and m > 0, D
(m)
i is a subset of S

(m−1)
i such that, for every si ∈ D(m)

i ,

there exists some ε > 0 where Eσ−i [ui(si, s−i)] < maxs′i∈Si Eσ−i [ui(s
′
i, s−i)] for all

correlated opponent strategy profiles σ−i ∈ ∆(S−i) satisfying σ−i(S
(m−1)
j |s−ij) ≥

1− ε for every j 6= i and s−ij ∈ S−ij, and
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3. For each i and m > 0, S
(m)
i = S

(m−1)
i \D(m)

i .

In a valid elimination sequence, at every stage of the iteration, the only player i

strategies that can be eliminated are those for which the following condition holds:

There is an ε > 0 such that the strategy is suboptimal under any conjecture that, for

each opponent j, puts probability at least 1− ε on j strategies that have not yet been

eliminated conditional on any strategy profile of the opponents other than j.

Proposition 5. For a valid elimination sequence (S(0), D(0)), (S(1), D(1))... ∈ S2, let

S∗i = ∩∞m=0S
(m)
i . If agents observe matched opponents’ strategy choices at the end of

each game, then every δ-stable strategy profile is supported on the non-empty set ×iS∗i .

The idea behind the proof is that agents never use weakly dominated strategies in

D
(0)
i because they have full-support beliefs about others’ play, and experienced agents

learn that these strategies are rarely used by an extension of Diaconis and Freedman

(1990)’s result in Fudenberg, Lanzani, and Strack (2021). This implies strategies inD
(1)
i

only get used with very low probabilities in the steady state, as they are only played

by the very young agents. Iterating this argument lets us eliminate the strategies in

D
(2)
i , D

(3)
i , and so forth.

Different valid elimination sequences may lead to different strategy sets S∗i in the

end. Proposition 5, which we prove in Appendix A.6 gives a family of necessary

conditions of patient stability, corresponding to different valid elimination sequences.

Some of the valid elimination sequences correspond to well-known solution con-

cepts. One example is backward induction in simple games: Proposition 4 follows

from Proposition 5 by letting D
(m)
i be those extensive-form strategies of i that are

inconsistent with backward induction at some decision node m + 1 steps away from

the terminal nodes, but agree with it at all decision nodes m or fewer steps away from

the terminal nodes. The proof of Proposition 4 verifies that these D
(m)
i form a valid

elimination sequence.

A second example is the solution concept S∞W (Dekel and Fudenberg (1990)),

which Börgers (1994) shows is equivalent to players having full support beliefs about
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the play of others and that this and the rationality of the players are “almost common

knowledge.” This solution concept corresponds to choosing D
(0)
i to be all weakly domi-

nated strategies of i in the original game, and, at each step m, choosing D
(m+1)
i ⊆ S

(m)
i

to be the strictly dominated strategies of i in the reduced game where i has the strategy

set S
(m)
i . To see that this is a valid elimination sequence, note that if si is strictly dom-

inated, then there is some σi ∈ ∆(S
(m)
i ) and η > 0 so that ui(σi, s−i) > ui(si, s−i) + η

for all s−i ∈ S(m)
−i . By continuity, there exists some ε > 0 so that for any full-support

correlated opponent strategy σ−i of the original game where σ−i(S
(m)
−i ) ≥ 1−ε, we have

ui(σi, σ−i) > ui(si, σ−i)+η/2, so in particular si is not a best response to any such σ−i.

While the refinement in Proposition 5 is stronger than S∞W , it is weaker than

iterated elimination of weakly dominated strategies. This is because in defining D
(m)
i

in the iterative procedure, we consider conjectures where the probabilities assigned to

deleted strategies can be arbitrarily small, but need not be zero. Provided there are at

least two remaining strategies, this does not imply that the highest probability assigned

to a deleted strategy must be lower than the lowest probability assigned to a remain-

ing strategy. This distinguishes the Proposition 5 refinement from other refinement

concepts like the “iterated admissibility” of Brandenburger, Friedenberg, and Keisler

(2008) and the “consistent pairs” of Börgers and Samuelson (1992).11 For instance,

for the game in Figure 7, there is no valid elimination sequence that uniquely selects

the (A, X) strategy profile, even though (A, X) is the unique iteratively admissible

profile. From a learning perspective, the idea is that although C is strictly dominated

for P1, if P1 always play B then P2 can still maintain a belief that C is relatively more

likely than A and thus choose Y. Indeed, it is easy to see that (B, Y) is a steady-state

profile for any 0 ≤ δ, γ < 1 (and therefore, patiently stable) if P1 starts with a strong

prior belief that P2s play Y and P2s start with a Dirichlet prior with weights (1, 1,

10) on the P1 actions (A, B, C).

11Consistent pairs capture the implications of assuming that players maximize expected utility, and
that players form “cautious expectations.” Such pairs are only defined for two-player games, and
do not always exist.
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X Y

A 2, 2 0, 0
B 1, 1 1, 1
C -10, 0 -10, 1

Figure 7: In this game, (A, X) is the unique iteratively admissible outcome (Branden-
burger, Friedenberg, and Keisler, 2008), but (B, Y) is also patiently stable.

6.3 Information-Equivalent Normal Forms

For an extensive form G and terminal node partitions P , consider the normal form N

whose terminal nodes correspond to strategy profiles in G, that is ×iSi. Learning from

the terminal node partition P in G and learning in N (with the standard assumption

that the normal-form strategies played are observed by all the players at the end of each

game) lead to different patiently stable profiles in general, as shown above. However,

when N is equipped with the appropriate terminal node partitions, it will have the

same set of patiently stable profiles as G.

The P−equivalent terminal node partitions are P̂i for i in N are such that P̂i(s) =

P̂i(s′) if and only if Pi(z(s)) = Pi(z(s′)). Players hold beliefs over opponents’ behavior

strategies in G and mixed strategies in N , but we can transform a non-doctrinaire

belief over behavior strategies into one over mixed strategies and vice versa when G

has perfect recall, by Kuhn’s theorem.

Proposition 6. The patiently stable profiles of (G,P) are the same as the patiently

stable profiles of N with the P−equivalent terminal node partitions.

Intuitively, the definition of P̂i implies agents have the same feedback in the two

games, so the problems are information invariant, and the normal form and extensive

form are decision invariant. We formally show this in Appendix A.8.12

12Note that unlike the “normal form information sets” of Mailath, Samuelson, and Swinkels (1993),
the equivalent terminal node partition cannot be derived from the normal form alone.
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Figure 8: In the game on the left, both players observe the terminal node. In the game
on the right, P1 does not observe P2’s play if they choose Out. The (Out, R) profile
is patiently stable for the game on the left, but not for the game on the right.

6.4 Coarser Terminal Partitions May Eliminate Patiently Stable Profiles

Sections 6.1 and 6.2 show that coarser observations of opponents’ strategies can expand

the set of patiently stable profiles. But this is not always true, and coarser terminal

node partitions can shrink rather than expand the set of patiently stable profiles in

other games.

Consider the two games in Figure 8 that only differ in the terminal node partition

of P1. In the game on the left with the finer terminal node partitions, (Out, R) is

patiently stable. It is easy to see that if P1 and P2 both start with a strong prior

belief in the (Out, R) equilibrium and P2 thinks In1 is more likely than In2 when

they have only seen P1s play Out, then it is a steady state under any 0 ≤ δ, γ < 1 for

(Out, R) to be played in every match.

But, (Out, R) is not patiently stable in the game on the right with the coarser

terminal node partitions, as we show in Claim 5.13 The proof idea, which we rigorously

demonstrate in Appendix A.9, is that patient P1 players will spend many periods

experimenting with In2, since they cannot learn P2’s play by choosing Out. This

teaches P2s that P1s are much more likely to use In2 than In1, so that they should

not play R.

13Technically, Claim 5 imposes additional restrictions on the P2 prior, but the class of priors allowed
is broad and includes those with densities that are strictly positive and continuous everywhere as
well as Dirichlet distributions.

21



Claim 5. For the game on the right in Figure 8, suppose P2’s prior belief satisfies

Condition P from Fudenberg, He, and Imhof (2017). Then, every patiently stable

profile satisfies π(R) = 0.

Note that In1 is strictly dominated for P1, and if P2 thinks that P1 never plays

In1, then L is strictly better than R for P2 given any conjecture that puts positive

probabilities on both Out and In2. Thus (Out, R) is ruled out by iterated elimination

of weakly dominated strategies, and stable learning outcomes in the example violate

this refinement with a finer terminal node partition, but not with a coarser one.

7 Conclusion

The implications of learning depend crucially on the structure of the game and on what

agents observe about others’ play. When the game and the feedback structure make

it profitable for patient players to experiment with dominated strategies (for instance,

when agents get no information from choosing a safe action but can use a worse safe

action to learn about the consequences of a risky action), patiently stable profiles may

violate forward induction or iterated weak dominance. When agents must experiment

to learn about off-path play, patiently stable profiles may violate backward induction.

But if agents observe opponents’ strategies regardless of their own play, patiently stable

profiles always satisfy backward induction in simple games. This shows that ruling out

some Nash equilibria requires close attention to the details of the game and the learning

environment.

As in previous work, we have assumed that agents have non-doctrinaire priors in

order to appeal to the Diaconis and Freedman (1990) result on the speed of convergence

of Bayesian posteriors to the empirical distribution. Fudenberg, Lanzani, and Strack

(2021) extends their convergence result to priors without full support, but if the true

state is outside of the support of the priors then agents need not stop experimenting in

finite time, as shown by Fudenberg, Romanyuk, and Strack (2017). This raises a suite

of new issues, as patiently stable states might not be Nash equilibria.
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Also, the assumption that agents have non-doctrinaire priors over aggregate play in

the other populations rules out settings where agents place probability 0 on opponent

strategies that they believe are strictly dominated. Since much of the refinements

literature implicitly assumes all players know the payoff functions of the others, it is

natural to wonder if adding some forms of restrictions on the priors would bring the

patiently stable outcomes closer to the predictions of classic equilibrium refinements.

In the case of signaling games with independent priors, Fudenberg and He (2020) shows

that the answer is “yes,” but the implications of payoff information in general games

are unclear. One issue is that, as we have seen, agents may choose to use dominated

strategies for their information value, and an agent whose prior gave these strategies

probability 0 would be unable to form a Bayesian posterior.14 Of course, this problem

does not arise with myopic players, for they will never pay a current cost to obtain

information. But with myopic players there is no reason to expect learning to lead to

a Nash equilibrium, let alone a refinement of it.

14This problem does not arise in signaling games with independent priors, as there the senders would
never experiment with dominated strategies, and receivers never experiment at all.
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Appendix

A Omitted Proofs

A.1 Proof of Claim 3

Suppose we have Ah′i
= {a1, ..., am, apass} with the action apass leading to h′′i , Ah′′i =

{am+1, ..., am+n}, and Ah?i = {a1, ..., am, am+1, ..., am+n}. (For example, in Figure 4,

m = 1 and n = 2.) Let ∆◦(X) the distributions on X that assign strictly positive

probability to each very element in X. We define φ : ∆◦(Ah′i
) ×∆◦(Ah′′i ) → ∆◦(Ah?i ),

such that φ(αh′i
, αh′′i

)(ak) = αh′i
(ak) for 1 ≤ k ≤ m, while φ(αh′i

, αh′′i
)(ak) = αh′i

(apass) ·

αh′′i
(ak) for m + 1 ≤ k ≤ m + n. That is, φ(αh′i

, αh′′i
) is a way to choose an element

of Ah?i by using αh′i
and αh′′i

sequentially: first draw an element from Ah′i
according to

αh′i
and then, if the chosen element is apass, draw an element from Ah′′i

according to

αh′′i
. The map φ is one-to-one, because φ(αh′i

, αh′′i
) and φ(βh′i

, βh′′i
) generate different

distributions on {a1, ..., am) if αh′i
6= βh′i

, while φ(αh′i
, αh′′i

) and φ(αh′i
, βh′′i

) generate

different distributions on {am+1, ..., am+n} if αh′′i
6= βh′′i

and αh′i
a positive probability

to apass. Also, φ is onto, because for a given αh?i ∈ ∆◦(Ah?i ), let αh′i ∈ ∆◦(Ah′i
) be

such that αh′i(ak) = αh?i (ak) for 1 ≤ k ≤ m, αh′i(apass) = 1 −
∑m

k=1 αh?i (ak), and

αh′′i (ak) =
αh?
i
(ak)∑m+n

j=m+1 αh?i
(aj)

for m + 1 ≤ k ≤ m + n. It is clear that by construction,

φ(αh′i , αh′′i ) = αh?i . We have φ(αh′i
, αh′′i

) = αh?i if and only if (αh′i
, αh′′i

) and αh?i generate

the same choice probabilities over the final actions {a1, ..., am, am+1, ..., am+n}.

For each agent j in game G, let gj : ×h∈H−j∆(Ah)→ R+ be j’s prior prior density

over −j’s strategies. Let Ĥi represent i’s information sets in Ĝ, and continue to use Hj

for j’s information sets in Ĝ for agents j 6= i. Let ĝj : ×h∈Ĥ−j∆(Ah)→ R+ be a density

of j’s belief about −j’s play in Ĝ such that (1) if j 6= i, then ĝj(αh?i , (αh)h∈Ĥ−j\{h?i }
) =

gj(φ
−1(αh?i ), (αh)h∈H−j\{h′i,h′′i })/(φ

−1(αh?i )(apass))
n−1 for all strictly mixed actions αh?i , (αh)h∈Ĥ−j\{h?i }

;

(2) for i, ĝi = gi. That is, ĝj is over a different domain than gj since i has one fewer

information set in Ĝ than G, but we identify each strictly mixed αh?i in the domain of
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ĝj with φ−1(αh?i ) in the domain of gj and re-normalize appropriately. Note gj is strictly

positive on the interior and 0 < φ−1(αh?i )(apass) < ∞, so ĝj is also strictly positive on

the interior. This shows the constructed prior ĝ is non-doctrinaire.

By the definition of φ, each action in {a1, ..., am, am+1, ..., am+n} has the same like-

lihood under αh?i and φ−1(αh?i ). Also, for every open set E ⊆ ∆◦(Ah′i
) × ∆◦(Ah′′i ),

the probability that gj assigns to E is the same as the probability that ĝj assigns to

φ(E) ⊆ ∆◦(Ah?i ). Note that for each αh′i
∈ ∆◦(Ah′i

), the projection Eα
h
′
i

:= {αh′′i ∈

∆◦(Ah′′i ) : (αh′i
, αh′′i

) ∈ E} can be viewed as a subset of ∆1
n := {xm+1, ..., xm+n−1 ≥

0 s.t. xm+1 + ...+ xm+n−1 ≤ 1} ⊆ Rn−1. On the other hand, the image of this projec-

tion φ({αh′i} × Eαh′i
) can be viewed as a subset of ∆

α
h
′
i
(apass)

n := {xm+1, ..., xm+n−1 ≥

0 s.t. xm+1 + ... + xm+n−1 ≤ αh′i
(apass)} ⊆ Rn−1. Both ∆1

n and ∆
α
h
′
i
(apass)

n are n − 1

dimensional polytopes, and the latter’s volume is (αh′i
(apass))

n−1 that of the former.

The normalizing factor 1/(φ−1(αh?i )(apass))
n−1 ensures gj(E) = ĝj(φ(E)),

Combining the two observations in the previous paragraph, we see that no matter

which terminal node is observed, the posterior of gj will again assign the same proba-

bility to E as the posterior of ĝj assigns to φ(E). This discussion shows that for any

0 ≤ δ, γ < 1, the set of steady states with ĝ in Ĝ is the same as the set of steady states

with g in G.

Conversely, given a prior density ĝj for every agent j in the game Ĝ, we can consider

a prior density gj in G where gj(αh′i
, αh′′i

, (αh)h∈H−j\{h′i,h′′i }) = ĝj(φ(αh′i
, αh′′i

), (αh)h∈Ĥ−j\{h?i }
)·

(αh′i
(apass))

n−1 for j 6= i. The same argument as above shows for any 0 ≤ δ, γ < 1, the

set of steady states with g in G is the same as the set of steady states with ĝ in Ĝ.
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A.2 Patiently Stable Profiles for Figure 2 Are Nash Equilibria

(0, 1, 0) (0, -1, 0) (0, 0, 0) (0, -2, 0)

P2

P3 P3

Out In1 In2

L R L R

P1
Out

(0, 0, 0)

In

(0, 0, 0)

Figure 9: A game with fully revealing terminal node partitions in which the learning
problem of a P2 agent with a given prior is identical to the learning problem of a P2
agent with the same prior in the Figure 2 game.

Proof. Consider the auxiliary game depicted in Figure 9, which modifies payoffs to

make P1 and P3 indifferent between all terminal nodes, and ends the game immediately

if P2 chooses Out. For any 0 ≤ δ, γ < 1, any P1 or P3 policy used in the original

steady state is an optimal policy for the corresponding agent in the auxiliary game,

so any steady state profile π∗ ∈ Π∗(g, δ, γ) for the original game is also a steady state

profile of the auxiliary game. And P2 faces the same learning problem in the auxiliary

game as in the original game, since each strategy profile gives them the same payoff

and the same feedback in both games. But we know in every patiently stable profile in

the auxiliary game, P2 must not have a profitable deviation, so the same must apply to

the patiently stable profiles of the original game. Likewise, we can construct auxiliary

games for P1 and P3 to show that they must not have profitable deviations in patiently

stable profiles of the original game. �
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A.3 Examples of Games with Terminal Node Partitions That Have Aux-

iliary Games with Discrete Partitions

The argument in the previous section can be used to show that patient stability selects

only Nash equilibria whenever the game and feedback structure are such that, for each

player role, there is an auxiliary game with a discrete terminal node partition that

leads to the same learning problem for agents in that role. We give some examples of

games from the previous literature that meet this condition below.

In Fudenberg and Kamada (2015), Figure 1 Game B and Figure 3 present two

games where three players P1, P2, and P3 simultaneously choose actions, P2 and P3

always see the terminal node, and P1 sees the terminal node when they choose In

but not when they choose Out. P1 always gets 0 payoff from choosing Out. For P2

and P3, consider the auxiliary game where every player always observes the terminal

node. This clearly does not affect P2 and P3’s learning problems. For P1, consider an

auxiliary game where P1 moves first and the game ends with P1 getting 0 payoff if P1

chooses Out. If P1 chooses In, then P2 and P3 choose their actions simultaneously

as before. All players observe terminal nodes. P1’s learning problem in the auxiliary

game is the same as in the original game. Thus for Figure 1 Game B and Figure 3 with

their original terminal node partitions, patiently stable profiles are Nash equilibria.

Figure 5 of Fudenberg and Kamada (2015) is a three-player game where P1, P2 and

P3 simultaneously choose In or Out. When P1 chooses In, they learn P2 and P3’s

choices, but P1 does not learn how others play if they choose Out. P2 always learns

how P1 plays, but they only learn how P3 plays if they choose In rather than Out.

Similarly, P3 always learns how P1 plays, but they only learn how P2 plays if they

choose In rather than Out. Players who choose Out always get 0. For P1, consider

the auxiliary game where they move first and choose In or Out. If they choose Out,

the game ends with them getting 0. If they choose In, then P2 and P3 simultaneously

choose In or Out. All players observe terminal nodes. This is the same learning

problem as in the original game for P1. Next, consider the auxiliary game where P1
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and P2 move simultaneously at the start of the game. If P2 chooses Out, the game

ends with P2 getting 0. If P2 chooses In, then P3 chooses between In or Out without

knowing P1’s choice. All players observe terminal nodes. This is the same learning

problem as in the original game for P2, because the terminal node always reveals P1’s

play, even when P2 chooses Out. But if P2 chooses Out, then the terminal node

does not show what P3 would have played. Similarly, we can construct an analogous

auxiliary game for P3. This shows that for the game in Figure 5, patiently stable

profiles are Nash equilibria.

Section 5.1.1 of Fudenberg and He (2021) studies the “restaurant game” where three

players P1, P2, and P3 move simultaneously. P1 is a restaurant that chooses between

high and low ingredient qualities, while P2 and P3 are two potential customers who

decide whether to go to the restaurant (In) or eat at home (Out). P1 always sees

P2 and P3’s choices. P2 sees how others play if they choose In, but not if they

choose Out. Similarly, P3 sees how others play if they choose In, but not if they

choose Out. Choosing Out always gives 0 payoff. For P1, the auxiliary game where

everyone sees the terminal node does not affect their learning problem. For P2, consider

the auxiliary game where they move first, choosing between In and Out. If they

choose Out, the game ends with payoff 0 for them. If they choose In, then P1 and

P3 move simultaneously. All players observe terminal nodes. This auxiliary game

presents the same learning problem for P2 as in the original game. Similarly, there is

an analogous auxiliary game with discrete terminal node partitions that preserves P3’s

learning problem, so patiently stable profiles are Nash equilibria in this game.

A.4 Proof of Proposition 2

We first formally define supportive priors that are used to facilitate the proof.

Definition 4. Priors g1 and g2 are supportive priors for π∗ if, for every off-path

P2 information set h2, (1) Eg1 [u1(a∗1(h2), a2(h2))|y1] ≥ Eg1 [u1(a1, a2(h2))|y1] for all

a1 ∈ ρ(h2) and P1 histories y1 that have never recorded a P2 agent play some action
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other than a∗2(h2) at h2, and (2) Eg2 [u2(a1, a∗2(h2))|y2, h2] ≥ Eg2 [u2(a1, a2))|y2, h2] for

all a2 ∈ A2(h2) and histories y2 that have never recorded a P1 agent play any a1 ∈

ρ(h2)\{a∗1(h2)}.

Proof of Proposition 2. Throughout this proof, we think of P1 actions that end the

game as leading to singleton P2 information sets where P2 only has one action. Denote

the P2 information set reached when P1 plays a∗1 with h∗2, and use Hoff
2 = H2 \{h∗2} to

denote the set of P2 information sets that are off-path under π∗. Let Π̃1 = {π1 ∈ Π1 :

∀h2 ∈ Hoff
2 , π1(a1) = 0 ∀a1 ∈ ρ(h2) \ {a∗1(h2)}} be the set of P1 behavior strategies

that, for every h2 ∈ Hoff
2 , put probability 0 on any action in ρ(h2) that is not a∗1(α1).

Further, let Π̃2 = {π2 ∈ Π2 : ∀h2 ∈ Hoff
2 , π2(a

∗
2(h2)|h2) = 1} be the set of P2 behavior

strategies which respond with a∗2(h2) at any off-path information set h2. Throughout

the proof, we restrict attention to strategy profiles π ∈ Π̃1 × Π̃2.

By continuity, there is an η > 0 such that (1) for any π1 ∈ Π1 satisfying π1(a
∗
1) ≥

1− η, the unique optimal action for P2 to play at h∗2 is a∗2(h
∗
2), and (2) for any π2 ∈ Π̃2

for which π2(a
∗
2(h
∗
2)|h∗2) ≥ 1−η, the unique P1 best response is a∗1. We focus on steady

state profiles in which the aggregate probabilities that P1 plays a∗1 and that P2 plays

a∗2(h
∗
2) at h∗2 both exceed 1 − η. We argue that such steady state profiles exist in the

limit, and that the corresponding aggregate probabilities that P1 plays a∗1 and P2 plays

a∗2(h2) in response to any information set h2 converge to 1.

Let ξ : Π̃1 → Π̃1 be the continuous mapping given by

ξ(π1)(a1) =

max{π1(a∗1), 1− η} if a1 = a∗1(
1− 1(π1(a

∗
1) < 1− η)

1−η−π1(a∗1)
1−π1(a∗1)

)
π1(a1) if a1 6= a∗1

.

This function transforms each π1 into a P1 behavior strategy that puts probability

at least 1 − η on a∗1 and satisfies ξ(π1) = π1 whenever π1(a
∗
1) ≥ 1 − η. Similarly, let
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φ : Π̃2 → Π̃2 be the continuous mapping such that

φ(π2)(a2|h∗2) =

max{π2(a∗2(h∗2)|h∗2), 1− η} if a2 = a∗2(h
∗
2)(

1− 1(π2(a
∗
2(h
∗
2)|h∗2) < 1− η)

1−η−π2(a∗2(h∗2)|h∗2)
1−π2(a∗2(h∗2)|h∗2)

)
π2(a2|h∗2) if a2 6= a∗2(h

∗
2)

.

This takes each π2 into a P2 behavior strategy that uses a∗2(h
∗
2) at h∗2 with probability at

least 1− η. Note that φ coincides with the identity mapping whenever π2(a
∗
2(h
∗
2)|h∗2) ≥

1− η.

Since g1 is supportive of π∗, for any π2 ∈ Π̃2, Rδ,γ
1 (π2)(a1) = 0 for all a1 ∈ ρ(h2)

for all h2 ∈ Hoff
2 . This means that Rδ,γ

1 (π2) ∈ Π̃1 for all π2 ∈ Π̃2. Likewise, since g2

is supportive of π∗, for any π1 ∈ Π̃1, Rδ,γ
2 (π1)(a2|h2) = 0 for all a2 6= a∗2(h2) for all

h2 ∈ Hoff
2 . Thus, Rδ,γ

2 (π1) ∈ Π̃2 for all π1 ∈ Π̃1. Consequently, Rδ,γ maps Π̃1 × Π̃2

into itself regardless of δ, γ ∈ [0, 1), so the mapping R̃δ,γ : Π̃1 × Π̃2 → Π̃1 × Π̃2

given by R̃δ,γ(π1, π2) = (ξ(Rδ,γ
1 (π2)), φ(Rδ,γ

2 (π1))) is well-defined. Since this mapping

is continuous, Brouwer’s fixed point theorem guarantees the existence of a fixed point

πδ,γ = (πδ,γ1 , πδ,γ2 ) for any δ, γ ∈ [0, 1).

Consider some arbitrary collection of parameter sequences {δj}j∈N, {γj,k}j,k∈N such

that limj→∞ δj = 1, limk→∞ γj,k = 1 for all j ∈ N, and limj→∞ limk→∞ π
δj ,γj,k = π̂ for

some π̂ ∈ Π̃1×Π̃2. Using the fact that the unique P1 best response is a∗1 to any π2 ∈ Π̃2,

limj→∞ limk→∞R
δj ,γj,k
1 (π

δj ,γj,k
2 )(a∗1) = 1 can be shown using a similar auxiliary game

argument to the one given when arguing that patient stability selects Nash equilibria

in the Figure 2 game. Thus, limj→∞ limk→∞R
δj ,γj,k
1 (π

δj ,γj,k
2 ) = π∗1. As ξ(π1) = π1 if

π1(a
∗
1) ≥ 1− η, it follows that R

δj ,γj,k
1 (π

δj ,γj,k
2 ) = π

δj ,γj,k
1 whenever j is sufficiently large

and k is sufficiently large given j. Similarly, since a∗2(h
∗
2) is the uniquely optimal action

to use at h∗2 given any π1 ∈ Π̃1, limj→∞ limk→∞R
γj,k
2 (π

δj ,γj,k
1 )(a∗2(h

∗
2)|h∗2) = 1 must

hold. This means that limj→∞ limk→∞R
γj,k
2 (π

δj ,γj,k
1 ) = π∗2. Moreover, as φ(π2) = π2 if

π2(a
∗
2(h
∗
2)|h∗2) ≥ 1−η, it follows that R

δj ,γj,k
2 (π

δj ,γj,k
1 ) = π

δj ,γj,k
2 whenever j is sufficiently

large and k is sufficiently large given j. Collecting these findings reveals that πδj ,γj,k

is a fixed point of the aggregate response mapping Rδj ,γj,k , and thus a steady state
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profile by Proposition 1, whenever j is sufficiently large and k is sufficiently large given

j. Since limj→∞ limk→∞ π
δj ,γj,k = π∗, we conclude that π∗ is stable. �

A.5 Proof of Proposition 3

We first establish three lemmas.

Lemma 1. Fix δ ∈ [0, 1) and a non-doctrinaire P1 prior g1. For each γ ∈ [0, 1), fix

a P1 policy that is optimal given g1 and never prescribes In after it has previously

prescribed Out. There is some κ ∈ R+ such that, for arbitrary γ ∈ [0, 1), when the

aggregate P3 strategy puts probability πδ,γ3 (L) ≤ 1/4 on L, the aggregate P1 strategy

satisfies πδ,γ1 (In)/(1− γ) ≤ κ.

Proof. We first establish that there is some N ∈ N such that all P1 agents who have

lived at t ≥ N periods and have been matched with P3 agents that would play L

fewer than t/3 periods would play Out. By Theorem 4.2 of Diaconis and Freedman

(1990), there is an N ∈ N such that a P1 agent who has played In at least N times

and for whom, when they have played In, the share of times they have observed

their P3 opponent play R is at least 2/3, will put probability at least 3/(4 − δ) on

the true probability with which a randomly selected P3 agent plays R being weakly

more than 2/3. Such an agent thus puts at least probability 3/(4 − δ) on aggregate

opponent behavior strategy profiles for which the expected payoff from playing In is

no more than −1/3. This N satisfies the desired properties given at the beginning

of the paragraph. To see this, consider a P1 agent who has lived at least N periods

and for whom the fraction of time periods where they were matched with a P3 agent

that would play L that periods is less than 1/3. Then, either that agent has played

Out in the past, in which case they will again play Out, or that agent has actually

observed the consequences of playing In at least N times. Restricting attention to the

latter case, the agent must have a posterior belief that puts probability p > 3/(4− δ)

on aggregate opponent behavior strategy profiles for which the expected payoff from

playing In is no more than −1/3. An upper bound on the agent’s expected discounted
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future lifetime payoff from playing In is (1− δ)(1−4p/3)+ δ(1−p), since the expected

current period payoff to playing In is weakly less than p(−1/3) + 1 − p = 1 − 4p/3

and the agent’s continuation payoff is bounded above by δ(1−p), since P1’s maximum

payoff is 1. As p > 3/(4− δ), it follows that (1− δ)(1− 4p/3) + δ(1− p) < 0, so such

an agent must play Out.

We now combine this fact with Hoeffding’s inequality to derive the desired con-

straint on the P1 aggregate strategy. By Hoeffding’s inequality, there is some c > 0

such that, for any aggregate P3 strategy satisfying πδ,γ3 (L) ≤ 1/4, the share of P1

agents who have lived n periods and for whom the fraction of time periods where they

were matched with a P3 agent that would play L is less than 1/3 is at least 1− e−cn.

Thus, we have that

πδ,γ1 (In)

1− γ
≤ 1

1− γ

(
1− γN +

∞∑
t=N

(1− γ)γte−ct

)

=
1− γN

1− γ
+

γNe−cN

1− γe−c
.

Observe that the right-hand side of the inequality converges to N + 1/(ecN − ec(N−1))

as γ → 1. Since πδ,γ1 (In)/(1 − γ) can never be more than 1/(1 − γ), it follows that

πδ,γ1 (In)/(1− γ) must be uniformly bounded from above by some κ ∈ R+. �

Lemma 2. Fix δ ∈ [0, 1) and a non-doctrinaire P2 prior g2 under which the expected

probability of L is strictly less than 1/2. Consider a sequence of steady states such that

the probability of In under the aggregate P1 strategy satisfies πδ,γ1 (In)/(1− γ) ≤ κ for

all γ ∈ [0, 1) for some κ ∈ R+. Then limγ→1 π
δ,γ
2 (Out) = 1.

Proof. Fix an ε > 0 such that the expected probability of L under g2 is weakly less

than (1 − ε)/2. We first establish that there is some N0 ∈ N such that, regardless of

γ ∈ [0, 1), every P2 agent who has lived at least N0 periods and has never observed

a P1 agent play In will play Out. Theorem 4.2 of Diaconis and Freedman (1990)

implies that there is an N ∈ N such that, under the posterior belief of a P2 agent

who has at least N observations of P1 agents playing Out and no observations of a P1
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agent playing In, the expected value of the probability with which a randomly selected

P1 agent will play In, ν, is strictly less than (1 − δ)ε/δ. This N satisfies the desired

properties given at the beginning of the paragraph. To see this, consider a P2 agent

who has lived at least N periods and has never observed a P1 agent play In. An upper

bound on the agent’s expected discounted future lifetime payoff from playing In1 is

−(1− δ)ε+ δν, which is strictly negative since ν < (1− δ)ε/δ, so such an agent must

play Out.

Inductively applying similar arguments to the one given above shows that there is

a sequence of {Nj}j∈N ⊆ N such that the following holds. For all γ ∈ [0, 1) and j ∈ N,

every P2 agent who has lived at least Nj periods, has at most j observations of P1

agents playing In, and witnessed no P1 agents playing In in their first Nj observations

will play Out. Observe that, when the probability of a randomly selected P1 agent

playing In is π1(In), the share of P2 agents who have lived at least Nj + j periods and

have exactly j observations of P1 agents playing In, all of which came after their first

Nj periods, is

∞∑
t=Nj+j

(1− γ)γt
(t−Nj)!

(t−Nj − j)!j!
πδ,γ1 (In)j

(
1− πδ,γ1 (In)

)t−j
=γNj+j

(
1− πδ,γ1 (In)

)Nj πδ,γ1 (In)j(
1− γ + γπδ,γ1 (In)

)j+1

=γNj+j
(

1− πδ,γ1 (In)
)Nj  1 +

πδ,γ1 (In)

1−γ

1 + γ
πδ,γ1 (In)

1−γ

j+1
(
πδ,γ1 (In)

1−γ

)j
(

1 +
πδ,γ1 (In)

1−γ

)j+1 .
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It thus follows that, for a given γ ∈ [0, 1) and steady-state strategy profile,

πδ,γ2 (Out) ≥
∞∑
j=0

γNj+j
(

1− πδ,γ1 (In)
)Nj  1 +

πδ,γ1 (In)

1−γ

1 + γ
πδ,γ1 (In)

1−γ

j+1
(
πδ,γ1 (In)

1−γ

)j
(

1 +
πδ,γ1 (In)

1−γ

)j+1

= 1−
∞∑
j=0

1− γNj+j
(

1− πδ,γ1 (In)
)Nj  1 +

πδ,γ1 (In)

1−γ

1 + γ
πδ,γ1 (In)

1−γ

j+1
(
πδ,γ1 (In)

1−γ

)j
(

1 +
πδ,γ1 (In)

1−γ

)j+1

≥ 1−
∞∑

j=K+1

(
πδ,γ1 (In)

1−γ

)j
(

1 +
πδ,γ1 (In)

1−γ

)j+1

− sup

1− γNj+j
(

1− πδ,γ1 (In)
)Nj  1 +

πδ,γ1 (In)

1−γ

1 + γ
πδ,γ1 (In)

1−γ

j+1
j∈{0,1,...,K}

for arbitrary K ∈ N. Fix an arbitrary η > 0 and take K to be large enough so that∑∞
j=K+1 κ

j/(1 + κ)j+1 < η. Then the right-hand side of the first line of the final

inequality is greater than 1− η for all πδ,γ1 (In)/(1− γ) ≤ κ. Observe that the elements

of the set over which the supremum is taken in the final line converge to 0 as γ → 1

uniformly over πδ,γ1 (In)/(1 − γ) ≤ κ. Thus, lim infγ→1 π
δ,γ
2 (Out) ≥ 1 − η. Since this

holds for all η > 0, we have limγ→1 π
δ,γ
2 (Out) = 1. �

Lemma 3. Fix δ ∈ [0, 1) and a non-doctrinaire P3 prior g3 that leads a P3 agent to only

play L when they have previously observed a P2 agent play In1. Consider a sequence

of steady-states such that the probability of In under the aggregate P1 strategy satisfies

πδ,γ1 (In)/(1 − γ) ≤ κ for all γ ∈ [0, 1) for some κ ∈ R+ and limγ→1 π
δ,γ
2 (In1) = 0.

Then limγ→1 π
δ,γ
3 (L) = 0.
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Proof. Observe that

πδ,γ3 (L) ≤
∞∑
t=0

(1− γ)γt(1− (1− πδ,γ1 (In)πδ,γ2 (In1))t)

= 1− 1− γ
1− γ(1− πδ,γ1 (In)πδ,γ2 (In1))

= 1− 1

1 + γ
πδ,γ1 (In)

1−γ πδ,γ2 (In1)

since the right-hand side of the inequality is the share of P3 agents who have previ-

ously observed a P2 agent play In1. By Lemma 1, there is some κ ∈ R+ such that

lim supγ→1 π
δ,γ
1 /(1 − γ) ≤ κ, while limγ→1 π

δ,γ
2 (In1) = 0 by Lemma 2. It follows that

limγ→1 1 + γ(πδ,γ1 (In))/(1− γ)πδ,γ2 (In1) = 1, which implies limγ→1 π
δ,γ
3 (L) = 0. �

Proof of Proposition 3. Lemmas 1, 2, and 3 together imply that, for fixed δ ∈ [0, 1),

the aggregate response mapping maps the set of aggregate strategy profiles where

πδ,γ3 (L) ≤ 1/4 into itself when γ is close enough to 1. Brouwer’s fixed point theorem

then guarantees the existence of a steady state profile satisfying this inequality for all

sufficiently high γ. Lemmas 1, 2, and 3 further imply that, in the γ → 1 limit of such

a sequence of steady state profiles, limγ→1 π
δ,γ
1 (Out) = 1, limγ→1 π

δ,γ
2 (Out) = 1, and

limγ→1 π
δ,γ
3 (R) = 1 must be satisfied. Since δ ∈ [0, 1) is arbitrary, we conclude that

(Out,Out, In) is patiently stable. �

A.6 Proof of Proposition 5

We first state a supporting lemma that shows that, with enough data, a given agent’s

posterior beliefs will, for every opponent population, put high probability on the empir-

ical distribution of strategies they have previously observed agents in that population

use.

Lemma 4. For any fixed non-doctrinaire prior and every η > 0, there is some M such

that, whenever an agent has at least M observations, for each opponent population, the
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agent’s posterior belief puts probability 1 − η on strategy distributions within η, under

the sup norm, of the empirical distribution they have observed.

This follows from the Fudenberg, Lanzani, and Strack (2021) extension of the path-

wise concentration result of Diaconis and Freedman (1990) to priors that do not have

full support. The support restriction arise because the agent’s prior is concentrated on

distributions that can be generated by independent randomizations of their opponents.

Proof of Proposition 5. Fix a discount factor δ ∈ [0, 1), and consider a sequence of sur-

vival probabilities {γk}∞k=1 with an associated sequence of steady-state strategy profiles

{πk}∞k=1 such that πk → π∗. We show that π∗i (si) = 0 for each i and each si /∈ S∗i .

First, it is clear that π∗i (si) = 0 for each i and each si /∈ S
(0)
i . This is because

agents have full-support posterior beliefs after every history and their observations do

not depend on their play, so they never use weakly dominated strategies.

By Lemma 4, for a given η > 0, there is some M such that, whenever a player has

at least M observations, their posterior belief over the prevailing strategy distribution

in each of their opponent populations puts probability 1− η on strategy distributions

within η of the empirical distribution they have observed. By the law of large numbers,

we can choose this M to be such that the posterior beliefs of an agent in an arbitrary

player role i who has lived at least M periods will be accurate with high probability

in the following sense. With probability 1− 2η, at the end of the period, following any

possible observation in the period itself, the agent’s posterior belief puts probability at

least 1 − 2η on strategy distributions within 2η of the true prevailing distribution for

each opponent role j 6= i.

Now suppose inductively that π∗i (si) = 0 for each i and si /∈ S(m)
i for some m. Fix

arbitrary ε, ν > 0 and restrict attention to k large enough so that |πi,k − π∗i | < ε/2 for

all player roles i. By the preceding argument, we know that for all sufficiently large k,

in a given period the share of player i agents whose posterior beliefs at the end of the

period, regardless of their observations during the period, for each opponent role j put

probability at least 1− ε on strategy distributions within 1− ε of ∆(S
(m)
j ) will exceed
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1 − ν. Let σ ∈ ∆(S−i) be the expectation held by such an agent about the play of

their opponents in the current period. The properties of the agent’s beliefs imply that

σ is full support and that σ(S
(m)
j |s−ij) ≥ (1− ε)2 for all s−ij ∈ S−ij. For all sufficiently

small ε, every si 6∈ S(m)
i must be suboptimal for such an agent, so π∗i (si) ≤ ν must hold

for each i and si /∈ S(m+1)
i . Since this is true for all ν > 0, we conclude that π∗i (si) = 0

for each i and si /∈ S(m+1)
i .

�

A.7 Proof of Proposition 4

Proof. Let D
(m)
i be those extensive-form strategies of i that choose an action incon-

sistent with backward induction at a decision node that is m+ 1 steps away from the

terminal nodes, but do not do so at any decision nodes closer to the terminal nodes.

To see these choices are valid for the iterative procedure, first note D
(0)
i are weakly

dominated for i: For any si ∈ D(0)
i , consider a different strategy s′i that changes one

of the non-backward-induction actions at one of i’s decision nodes hi one step away

from terminal nodes to a backward-induction action. Then ui(s
′
i, s−i) ≥ ui(si, s−i) for

all s−i. Moreover, there exists at least one s∗−i such that hi is reached (since the game

is simple), so ui(s
′
i, s
∗
−i) > ui(si, s

∗
−i).

By definition, S
(m)
i are the strategies where i uses the backward-induction action

at all decision nodes m + 1 steps or fewer away from terminal nodes. To see that

each si ∈ D(m+1)
i fails to be a best response for i to full-support conjectures of their

opponents’ play that put high conditional probabilities on S
(m)
j for each j 6= i, let hi

be a decision node m + 2 steps away from terminal nodes where si does not choose

the backward-induction action, and let s′i be the strategy that only differs from si in

that s′i by selecting a backward-induction action at hi. Let J be the set of players who

have decision nodes in the subgame starting at hi, not counting hi itself. Because the

game is simple, i /∈ J . For the same reason, whether play reaches hi does not depend

on the strategy of i or the strategies of the players in J . Let Sreach−iJ ⊆ S−iJ be the set
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of strategies of −iJ that reach hi.

For any s−i ∈ S
(m)
−i , i’s payoff in the subgame starting at hi is strictly higher

with s′i than with si, which we write as ui(si, s−i | hi) < ui(s
′
i, s−i | hi). This uses

the fact that i’s payoff in the subgame starting at hi only depends on i’s action at

hi and on the strategies of players in J . Consider any strictly mixed profile σ−i

where σ−i(S
(m)
J |s−iJ) ≥ 1 − ε for each s−iJ ∈ S−iJ . When −iJ choose a strategy

profile in Sreach−iJ , i’s payoff is equal to i’s payoff in the subgame starting at hi. When

−iJ choose a strategy outside of Sreach−iJ , i is indifferent between si and s′i. Therefore,

ui(si, σ−i)− ui(s′i, σ−i) = σ−i(S
reach
−iJ ) · [E[ui(si, s−i | hi)|Sreach−iJ ]− ui(s′i, s−i | hi)|Sreach−iJ ]].

We have σ−iJ(Sreach−iJ ) > 0 since each opponent’s strategy is strictly mixed, and we have

ui(si, (σj)j∈J | hi)− ui(s′i, (σj)j∈J | hi) < 0 for all sufficiently small ε > 0. �

A.8 Proof of Proposition 6

Proof. First note that for every non-doctrinaire prior g over behavior strategies in G,

there is a non-doctrinaire prior ĝ over mixed strategies in G that generates the same

set of steady states for every 0 ≤ δ, γ < 1. This is because each −i behavior strategy

(αh−i)h−i∈Hi is associated with an equivalent mixed strategy σ−i ∈ ∆(S−i), defined

by σ−i(s−i) = ×h−i∈H−iαh−i(s−i(h−i)) for each s−i ∈ S−i. This association maps the

interior of the set of behavior strategies onto the interior of the set of mixed strategies,

so the non-doctrinaire gi generates a non-doctrinaire ĝi over −i’s mixed strategies.

Conversely, if we start with a non-doctrinaire prior ĝ over mixed strategies in G, then

by applying Kuhn’s theorem in a game with perfect recall, we can identify a non-empty

set of equivalent behavior strategies for every mixed strategy. Consider the prior gi over

−i behavior strategies where i believes −i first draw a mixed strategy σ−i according

to ĝi, and then randomize uniformly over all behavior strategies equivalent to it. Then

gi is strictly positive on the interior because ĝi enjoys the same property.

Learning with a non-doctrinaire prior ĝ over mixed strategies in G with terminal

node partitions P and learning with the same ĝ in N with the P-equivalent partitions
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generate the same set of steady states for every 0 ≤ δ, γ < 1. This is because both

environments generate the same dynamic optimization problem for each agent: in both

environments, they start with the same prior beliefs, receive the same payoffs for each

strategy profile (si, s−i) played, and observe the same information (up to identifying

elements of the Pi partition with those in the equivalent P̂i partition.) �

A.9 Proof of Claim 5

Proof. Suppose there is a prior g satisfying the hypotheses of the claim, parameters

{δj}j∈N, {γj,k}j,k∈N, and associated steady-state profiles {πj,k ∈ Π∗(g, δj, γj,k)} such

that limj→∞ δj = 1, limk→∞ γj,k = 1 for each j, and limj→∞ limk→∞ πj,k = π.

For arbitrary ε > 0, we will show π(R) < 2ε. The idea is to show that all P2

agents except the very young and those with unusual samples will have seen enough

instances of P1 choosing In2 and no instance of P1 choosing Out as to play L at their

information set.

By Proposition 1 from Fudenberg, He, and Imhof (2017), there exists some x ≥ 1

so that if a P2 agent has n observations of P1’s play and in each of their observations

P1 never chose In1, then their mean posterior probability of P1 choosing In1 is lower

than 2x
n+x

. By Theorem 1 from Fudenberg, He, and Imhof (2017), there exists N ≥ 1

such that in any steady state π̂ where π̂(In2) ≥ q, with probability at least 1− ε a P2

agent with age at least N/q will have a mean posterior belief of P1 playing In2 that

is higher than (1− ε)q.

Define the constant K = 16Nx
ε

and find some β < 1 so that, whenever δ ≥ β and

γ ≥ β, a P1 agent will always choose In2 in the first K periods of life.

Consider any j large enough so that δj ≥ β. For large k, using the fact that P1

agents experiment with In2 for at least K periods, πj,k(In2) ≥ (1 + γj,k + ...+ γK−1j,k ) ·

(1 − γj,k) ≥ 1
2
(1 − γj,k) · K. So, a P2 agent aged at least N

1
2
(1−γj,k)·K

= ( ε
2

1
1−γj,k

) · 1
4·x

has at least 1 − ε chance of believing that P1 plays In2 with probability at least

1
4
(1 − γj,k) · K. This age is no larger than ε

2
times the expected P2 lifespan, which
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contains at least 1− ε fraction of the P2 population. Also, a P2 agent with age at least

ε
2

1
1−γj,k

has a mean posterior belief about P1 playing In1 that is always smaller than

2x
ε
2

1
1−γj,k

+x
=

2x(1−γj,k)
1
2
ε+(1−γj,k)x

≤ 4x
ε

(1 − γj,k). Taking the ratio of the mean posterior beliefs

assigned to P1 playing In2 and In1, we get
1
4
(1−γj,k)·K
4x
ε
(1−γj,k)

= 1
16
K · ε

x
= N ≥ 1.

Therefore, except for a mass of smaller than ε of P2s younger than ε
2
· 1
1−γj,k

and

another mass ε of P2s with unusual samples, P2s respond to In1 and In2 with L. This

shows in the steady state with δj and k large enough, πj,k(R) < 2ε. This implies also

that limk→∞ πj,k(R) < 2ε for all large enough j, therefore π(R) < 2ε. �
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