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Abstract: We propose a reduced-form benchmark predictive model (BPM) for fixed-target
forecasting of Arctic sea ice extent, and we provide a case study of its real-time performance
for target date September 2020. We visually detail the evolution of the statistically-optimal
point, interval, and density forecasts as time passes, new information arrives, and the end
of September approaches. Comparison to the BPM may prove useful for evaluating and
selecting among various more sophisticated dynamical sea ice models, which are widely used
to quantify the likely future evolution of Arctic conditions and their two-way interaction
with economic activity.
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1 Introduction

The Arctic is warming much faster than the rest of the planet, and it has emerged as a crucial

focal point of climate change study. The path and pattern of Arctic sea ice diminution is

of particular interest, and sea ice forecasting has received significant attention. From a real-

time online perspective, there are two key forecast types: fixed-horizon (e.g., each month

we might forecast one month ahead, month after month, ongoing) and fixed-target (e.g.,

each month we forecast a fixed future target month, month after month, ending when we

arrive at the target month). In this paper we consider the fixed-target scenario, which has

generated substantial interest in highlighting Arctic sea ice diminution both within years (as

September 30 is approached, say) and across years (comparing the sequence of Septembers,

say).1

For example, each summer since 2008 the Sea Ice Prediction Network (SIPN) has spon-

sored the Sea Ice Outlook (SIO) competition for fixed-target prediction of September aver-

age daily Arctic sea ice extent.2 September extent forecasts are produced by many research

groups mid-month in June, July, and August, and evaluated once September ends and the

outcome is known. Insightful post-season SIO assessments have been produced annually

(the most recent is Meier et al. (2021)), and similarly-insightful multi-year retrospective SIO

assessments have been produced occasionally (Stroeve et al., 2014; Hamilton and Stroeve,

2016; Hamilton, 2020). Those assessments focus primarily on the forecasting skill of the SIO

point-forecast ensembles.

In this paper we take an approach different from the SIO analyses, drilling very far down,

focusing not on a point-forecast ensemble but rather on the point, interval, and density fore-

cast paths for a single and very simple model (which we call the Benchmark Predictive

Model, or BPM) in a single season (2020). The broad insights gained – associated in partic-

ular with the evolution of forecast uncertainty from a simple yet sophisticated reduced-form

sea ice forecasting model as time progresses and the target date is approached – are of wide

use. Indeed the BPM approach and results feature prominently in the “glide chart” climate

model evaluation and comparison framework developed in Diebold et al. (2022), in which

the BPM is used as the “naive” reference model in climate model skill scores.

We proceed as follows. In section 2 we introduce the target-date forecasting framework

1A third forecast type arises from an offline perspective – the so-called extrapolation forecast, with a
fixed origin and an expanding range of horizons, as with a forecast for every month from now until the end
of the century.

2See https://www.arcus.org/sipn for SIPN, and see https://www.arcus.org/sipn/

sea-ice-outlook for SIO.

https://www.arcus.org/sipn
https://www.arcus.org/sipn/sea-ice-outlook
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and the BPM. In section 3 we provide the 2020 case study. We consider forecasts made

on the SIO dates, as well as a generalized set of forecasts made daily from June through

September, and we pay particular attention to forecast uncertainty as the target date is

approached. We conclude in section 4.

2 A Benchmark Predictive Model for Arctic Sea Ice

Extent

We consider target-date forecasting for September average daily sea ice extent, SIE9, con-

ditioning on the expanding historical sample as we move from June through the end of

September. We forecast using a simple reduced-form model, which we call the “benchmark

predictive model” (BPM), regressing September extent on four covariates:

SIE9 → c, T ime, SIELastMonth, SIEThisMonthSoFar, SIEToday, (1)

where SIEp denotes average daily extent during period p (hence, for example, SIE9 denotes

September extent), “→” denotes “is regressed on”, and the rest of the notation is obvious.

Approximately following SIO, we make SIE9 forecasts on four days: 6/10, 7/10, 8/10

and 9/10.3 Immediately, the 6/10 regression used to produce the June forecast is

SIE9 → c, T ime, SIE5, SIE6/1 6/10, SIE6/10,

the 7/10 regression used to produce the July forecast is

SIE9 → c, T ime, SIE6, SIE7/1 7/10, SIE7/10,

the 8/10 regression used to produce the August forecast is

SIE9 → c, T ime, SIE7, SIE8/1 8/10, SIE8/10,

and the 9/10 regression used to produce the September forecast is

SIE9 → c, T ime, SIE8, SIE9/1 9/10, SIE9/10.

3We include a 9/10 forecast even though the 2020 SIO did not. The 9/10 forecast is of interest because
September average extent is not known with certainty until the last day of September, well after 9/10.
Indeed subsequent installments of the SIO will solicit 9/10 forecasts.
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Perhaps surprisingly given their simplicity, the BPM forecasts are quite sophisticated in

certain respects of relevance for forecasting Arctic sea ice:

1. They capture low-frequency trend dynamics, via conditioning on Time.

2. They capture medium-frequency inertial (autoregressive) dynamics around trend, via

conditioning on SIELastMonth.

3. They capture high-frequency dynamics by augmenting the conditioning on historical

monthly information (via SIELastMonth) with potentially-invaluable recent daily infor-

mation, via SIEThisMonthSoFar,t and SIEToday,t.

4. They readily enable probabilistic quantification of forecast uncertainty, which lets us

move easily from point forecasts to interval and density forecasts.

5. They are based on a BPM estimated using direct rather than iterated projections.4

Direct projections are theoretically superior under model misspecification (which is

always the relevant case), because they directly minimize the relevant multi-step pre-

dictive loss.5

6. They are easily made day-by-day, using model parameter estimates optimized day-by-

day to the remaining predictive horizon, thanks to the BPM’s simplicity. We exploit

this fact below to make and examine not only the monthly SIO forecasts, but also 120

daily forecasts from June through September.

The BPM combination of trivial simplicity and subtle sophistication makes it an appropriate

benchmark for skill score comparisons, as in Diebold et al. (2022). On the one hand, one

would hope that a best-practice scientific model (e.g., a sophisticated structural climate

model) should outperform the simple BPM, but on the other hand, it may not be easy!

3 Forecasting 2020 September Arctic Sea Ice Extent

3.1 Estimation

The left-hand-side variable of the BPM is September extent. September 2020 extent data

were obviously unavailable on June 10, July 10, August 10, or September 10. Hence all

4One makes a multi-period “iterated” forecast with a one-period-ahead estimated model, iterated forward
for the desired number of periods. In contrast, one makes a multi-period “direct” forecast with a horizon-
specific multi-period-ahead estimated model.

5See Ing (2003), Theorem 4 and Corollary 3.
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Table 1: September 2020 Arctic Sea Ice Extent: Regression Results and Forecasts

June 10 July 10 Aug 10 Sept 10

c -2.75 -2.87 -1.83 -0.77

Time -0.04 -0.02 -0.003 0.003

SIELastMonth -0.13 0.18 0.25 0.39

SIEThisMonthSoFar -1.94 -0.61 -0.45 -0.28

SIEToday 2.93 1.38 1.26 0.97

σ̂ 0.462 0.403 0.267 0.100

R̄2 0.83 0.87 0.94 0.99

µ̂ (Sept. point forecast) 4.32 3.84 4.34 3.93

µ̂± 2σ̂ (Sept. interval forecast) [3.40,5.25] [3.03,4.65] [3.80,4.87] [3.73 ,4.13]

Sept realization: 3.92

Notes: The left-hand-side variable in each of the four regression models is September extent (monthly average
of daily values). The estimation samples have 41 annual observations, 1979-2019. Our daily extent measure
is the National Snow and Ice Data Center (NSIDC) Sea Ice Index, Version 3 (https://doi.org/10.7265/
N5K072F8). Until August 1986, data are reported only every other day, and we fill missing days observations
with the average of the two adjacent days. Forecasts are made on the 10th of each month, on June 10 using
the estimated June model, on July 10 using the estimated July model, and so on through September 10
using the estimated September model. The point forecast is µ̂, and the interval forecast is µ̂± 2σ̂. See text
for details.

estimation samples are 1979-2019, for a total of 41 annual observations.6

Estimation results appear in the top and middle panels of Table 1. Several points

are worth noting. First, the negative linear trend becomes progressively less important

as September approaches, whereas the positive autoregressive effect SIELastMonth becomes

progressively more important as September approaches. This is completely natural. The

conditioning on May extent in the June 10 forecast, for example, is of little value for fore-

casting September extent, so the trend plays an important role. In contrast, moving to the

end of the summer, the conditioning on August extent in the September 10 forecast is of

great value for forecasting September extent, so the trend plays almost no role.

6Our daily extent measure is the National Snow and Ice Data Center (NSIDC) Sea Ice Index, Version 3
(https://doi.org/10.7265/N5K072F8), which uses the NASA team algorithm to convert microwave bright-
ness readings into ice coverage (Fetterer et al., 2017). Until August 1986, data are reported only every other
day, and we fill missing days with the average of the two adjacent days.

4

https://doi.org/10.7265/N5K072F8
https://doi.org/10.7265/N5K072F8
https://doi.org/10.7265/N5K072F8


Second, SIEThisMonthSoFar has a negative effect and SIEToday has a positive effect. Hence

the estimates, and the forecasts that we construct from them, are influenced not just by

SIEToday, but also by SIEToday relative to SIEThisMonthSoFar.

Finally, adjusted R-squared (R̄2) naturally increases toward 1.0 as September approaches,

because the value of the conditioning information (SIELastMonth, SIEThisMonthSoFar, SIEToday)

increases as September approaches. In parallel, the standard error of the regression (σ̂) natu-

rally decreases toward 0 as September approaches, again because the value of the conditioning

information increases as September approaches.

3.2 Forecasting

To use an estimated forecasting model to make a point forecast, we simply insert the rel-

evant right-hand-side variables, all of which are known at the time the forecast is made.

For example, to form the July 10 forecast we evaluate the fitted July model at Time=42,

SIELastMonth=SIE6/2020, SIEThisMonthSoFar=SIE7/1/2020 7/10/2020, SIEToday=SIE7/10/2020.
7

This point forecast is an estimate of the mean of SIE7/2020 conditional on Time=42,

SIELastMonth=SIE6/2020, SIEThisMonthSoFar=SIE7/1/2020 7/10/2020, and SIEToday=SIE7/10/2020.

Hence we denote the point forecast by µ̂ in Table 1.

Now consider interval forecasts (predictive intervals). Let us stay with the same July

example. To make an interval forecast we need an estimate of the standard deviation of

SIE7/2020 conditional on the same covariates: Time=42, SIELastMonth=SIE6/2020,

SIEThisMonthSoFar= SIE7/1/2020 7/10/2020, and SIEToday=SIE7/10/2020. The standard error

of the regression, denoted σ̂ in Table 1, is precisely such an estimate.8 An interval forecast

(ignoring parameter estimation uncertainty) is then µ̂±2σ̂. If the regression disturbances are

approximately Gaussian, then the µ̂±2σ̂ interval is an approximate 95% predictive interval.9

Finally, again ignoring parameter estimation uncertainty, consider density forecasts (pre-

dictive densities). If the regression disturbances are approximately Gaussian, then the full

predictive density is approximately N(µ̂, σ̂2).10

7There is typically a 1-day data availability lag, so we would actually insert SIELastMonth= SIE6/2020,
SIEThisMonthSoFar= SIE7/1/2020 7/9/2020, SIEToday= SIE7/9/2020.

8Note that σ̂ measures true forecast uncertainty, which is a very different concept from the cross-section
dispersion in the ensemble of forecasts, d̂. We want σ̂, and in general σ̂ 6=d̂.

9One could use simulation-based bootstrap procedures to accommodate parameter estimation uncertainty
and/or non-Gaussian disturbances in forming interval forecasts, but we do not pursue that here.

10As with the interval forecast case, bootstrap procedures could be used to accommodate parameter
estimation uncertainty and/or non-Gaussian disturbances.
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Figure 1: Arctic Sea Ice Extent: Four Predictive Densities for September 2020

Notes: We show four predictive densities for September 2020 Arctic sea ice extent (monthly average of daily
values). Forecasts are made on the 10th of the month. The vertical black line is the realized September
value. See text for details.

3.2.1 Four Month-by-Month Predictive Densities

In Figure 1 we show the four monthly predictive densities (June, July, August, and Septem-

ber) corresponding to our generalized SIO exercise that includes a September 10 forecast.

The density locations (their means, the µ̂’s in Table 1) naturally evolve throughout the

summer as the conditioning information evolves, but they eventually get closer to the end-

of-September value. The density mean is above the realization in June, below in July, above

again in August, and then almost spot-on in September.

Not unrelated, and importantly, the forecast uncertainty as captured by the predictive

density dispersion (σ̂ in Table 1) decreases monotonically moving through the summer: from

Table 1 it is 0.46, 0.40, 0.27, 0.10 for June, July, August, and September, respectively.

3.2.2 120 Day-by-Day Predictive Densities

There is nothing sacrosanct about the set of once-per-month SIO forecast dates examined

thus far. Given the simplicity of our forecasting model and its estimation, we can examine
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7Figure 2: Arctic Sea Ice Extent: Day-by-Day Predictive Densities for September 2020

Notes: We show the sequence of 120 day-by-day predictive densities for September 2020 average daily Arctic
sea ice extent as September 30 is approached. The horizontal axis represents the number of days until the
end of September, and the green line is the point forecast (the mean of the predictive density). Top: we
show the entire [-120, 0] sequence. Bottom: we zoom in on [-120, -20], to enhance visualization detail.



Figure 3: Arctic Sea Ice Extent: Day-by-Day Predictive Intervals for September 2020

Notes: We show the sequence of day-by-day prediction intervals for September 2020 average daily Arctic sea
ice extent as September 30 is approached. The horizontal axis represents the number of days until the end
of September, the green line is the point forecast (the midpoint of the prediction interval), and the shaded
area is the ±2 standard error band. The horizontal black line is the realized September value.

many other dates. We simply generalize the BPM from

SIE9 → c, T ime, SIELastMonth, SIEThisMonthSoFar, SIEToday (2)

to

SIE9 → c, T ime, SIELastMonth, SIELast30Days, SIEToday, (3)

and the framework is otherwise unchanged.

In Figure 2, we show predictive densities for the 120 days leading to the end of September,

produced using 120 different estimated models. In the top panel we plot the entire sequence

[-120, 0], and in the bottom panel we plot only [-120, -20] to enhance visualization detail.

Throughout, the horizontal axis represents the number of days until the end of September,

and the green line is the evolving point forecast (the mean of the predictive density). One

can readily see the densities wandering left and right as new information arrives, but never-

theless eventually rising sharply and clustering tightly around the realized value as the end

of September nears.
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In Figure 3 we reduce the predictive densities to predictive intervals. As the target date

approaches, the interval forecast midpoint (the point forecast, µ̂) evolves as the conditioning

information evolves, converging to the eventually-realized September value. Simultaneously

the interval forecast width (4σ̂) also evolves as information accumulates, converging to zero

by the target date.11

4 Concluding Remarks

We earlier asserted that our benchmark predictive model (BPM) is quite sophisticated in

certain respects. As it turned out, its performance in the 2020 Sea Ice Outlook competition

was in the middle of the pack, a thoroughly respectable performance for a simple BPM. And

the point, of course, is not that the BPM should dominate its competitors, but rather that it

should serve as a simple benchmark against which allegedly more sophisticated competitors

can be compared.

Following that path, one may use the BPM as the reference model in “skill score glide

charts” for climate model evaluation and comparison, tracking relative forecasting perfor-

mance of competitors vs BPM as time evolves and the target date is approached. Such

competitor vs BPM skill score glide charts are proposed and explored in work in progress

(Diebold et al., 2022).

Skill score competitors may include more sophisticated reduced-form models, including,

for example, models that:

1. incorporate nonlinearity, whether parametrically (e.g., Diebold and Rudebusch (2022)),

or nonparametrically as in a variety of statistical machine learning methods (e.g., Hastie

et al. (2009));

2. incorporate and forecast the entire daily sea ice extent history (note that we do not

model the entire daily history – we model the monthly history augmented with certain

aspects of the very recent daily history);

11Of course the densities of Figure 2 and the intervals of Figure 3 are isomorphic in a Gaussian environment
– if one knows the density, then one knows the interval, and conversely, so that nothing new is learned by
reduction of densities to intervals. Nevertheless the sequence of intervals may be visually revealing in certain
ways that the sequence of densities is not, more clearly emphasizing both the point forecast trajectory and
its associated uncertainty, and hence serving as a complement rather than a substitute for the sequence of
densities. Moreover, and importantly, the environment may not be Gaussian, in which case the ±2σ̂ intervals
are still a useful and transparent quantification of forecast uncertainty, even if they lose their interpretation
at 95% confidence intervals.
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3. drop the normality assumption for calculating predictive densities, instead using simulation-

based bootstrap procedures to approximate them nonparametrically by sampling with

replacement from regression residuals (Efron, 1979);

4. broaden the information set from univariate to multivariate, conditioning as well on

natural covariates like sea ice thickness, surface air temperature, and radiative forcings,

as for example in Goulet Coulombe and Göbel (2021).

Alternatively, and of great interest, competitors may include large-scale structural dy-

namical climate models. That is, given a particular dynamical climate model, one could

compare its “model-based theoretical Figure 3” to the “data-based BPM Figure 3” via skill

score glide charts.

In any event, comparison to the BPM may prove useful for evaluating and selecting

among various more sophisticated sea ice models – whether reduced-form or structural –

which are widely used to quantify the likely future evolution of Arctic conditions and their

two-way interaction with economic activity.
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