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Abstract

When individuals in a social network learn about an unknown state from private
signals and neighbors’ actions, the network structure often causes information loss.
We consider rational agents and Gaussian signals in the canonical sequential social-
learning problem and ask how the network changes the efficiency of signal aggregation.
Rational actions in our model are a log-linear function of observations and admit a
signal-counting interpretation of accuracy. This generates a fine-grained ranking of
networks based on their aggregative efficiency index. Networks where agents observe
multiple neighbors but not their common predecessors confound information, and we
show confounding can make learning very inefficient. In a class of networks where
agents move in generations and observe the previous generation, aggregative efficiency
is a simple function of network parameters: increasing in observations and decreasing
in confounding. Generations after the first contribute very little additional information
due to confounding, even when generations are arbitrarily large.
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1 Introduction

In many economic environments, information about an unknown state of the world is dis-
persed among many agents. As people take actions based on their private signals and their
observations of social neighbors, the process of social learning gradually aggregates their
decentralized information into a group consensus.

We ask how the underlying social network influences the efficiency of this information
aggregation. Understanding social-learning dynamics in different observation networks is
especially relevant today, as communication technology drastically reshapes our networks.
Social media platforms like Facebook and Twitter, for instance, expand our social neighbor-
hoods far beyond the friends and family with whom we interact face-to-face.

Starting with Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch (1992), the eco-
nomic theory literature contains a large body of work on Bayesian models of sequential
social learning, where privately informed individuals move in turn and draw rational infer-
ences from their observations. Yet much of this literature has focused on settings where
individuals see all predecessors or peers (i.e., the complete observation network). Less is
known about how learning compares across different networks, and the existing results in
this area tell us that rational agents will eventually learn completely in all networks within
reasonable parameters.

The primary open questions concern how various social network structures affect the
efficiency of signal aggregation (i.e., the rate of learning), as Golub and Sadler (2016)’s
recent survey points out:

“A significant gap in our knowledge concerns short-run dynamics and rates of
learning in these models. [...] The complexity of Bayesian updating in a network
makes this difficult, but even limited results would offer a valuable contribution
to the literature.”

This paper studies the impact of the social network on the efficiency of private-signal ag-
gregation. We work with the canonical sequential social-learning model, but make two
assumptions to make our analysis tractable. First, we assume the state is binary and agents
have Gaussian private signals about the state. Second, we suppose that agents have suffi-
ciently informative actions so that their behavior fully reveal their beliefs.1 This rich-signals,
rich-actions world strips away some other obstructions to efficient learning (considered by
Harel, Mossel, Strack, and Tamuz 2021; Molavi, Tahbaz-Salehi, and Jadbabaie 2018; Rosen-
berg and Vieille 2019 and others) and isolates the effect of the social network. Our analysis

1The simplest example is that agents choose actions equal to their posterior beliefs given their information.
This framework also applies to any other decision problem where actions fully communicate beliefs.
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provides a fine-grained ranking of networks based on their efficiency for social learning, and
generates rich and interpretable comparative statics results about how network parameters
influence learning.

We emphasize that informational confounds, which appear in almost all realistic social
networks, can cause nearly total information loss in social learning. Suppose an agent only
observes the actions of a pair of neighbors who have both seen the action of an even ear-
lier predecessor. From the agent’s perspective, this unobserved early action confounds the
informational content of her two neighbors’ behavior, as the observation network makes it
impossible to fully incorporate the neighbors’ private information without over-weighting
the early mover’s private information. Even with rich actions, rational agents must solve a
signal-extraction problem to decide how to draw inferences from multiple neighbors’ behav-
ior in light of confounding. Networks differ in the severity of such informational confounds,
so Bayesian social learning can vary in its efficiency and welfare properties across differ-
ent networks that all lead to eventual complete learning. Our main results show that the
information loss generated by confounds can be arbitrarily large.

To formalize these findings, we first describe several general properties of the social-
learning model that allow us to define and calculate the efficiency of learning. The unique
equilibrium of the social-learning game has a log-linear form. We characterize the equilib-
rium strategy profile that solves agents’ signal-extraction problems and give a procedure
to compute every agent’s accuracy in any network. The equilibrium action of each agent is
distributed as if she saw some (possibly non-integer) number of independent private signals.2

This lets us define aggregative efficiency as the fraction of private signals in the society that
are consolidated in the equilibrium actions. Aggregative efficiency is an index of the network
that measures its efficiency for social learning.

As the main application of these general properties, we quantify the information loss
due to confounding in a class of generations networks. Agents are arranged into generations
of size K and each agent in generation t observes some subset of her generation t − 1
predecessors. This network structure could correspond to actual generations in families or
countries, or successive cohorts in organizations like firms or universities. A broad insight
is that these networks cannot sustain much learning: even if generation sizes are large,
additional generations after the first contribute very little extra information.

We first study the rate of signal aggregation in maximal generations networks where each
agent in generation t observes the actions of all predecessors in generation t−1. Society learns

2In our model, if an agent acts on n ∈ N+ independent private signals with conditional variance σ2, then
her log-action has the distribution N (n · 2

σ2 , n · 4
σ2 ) conditional on the binary state being 1. We show that

for any agent i in any network, there exists r ∈ R+ so that i’s equilibrium log-action has the distribution
N (r · 2

σ2 , r · 4
σ2 ) conditional on the state being 1. So, i acts as if she saw “r independent signals.”
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Figure 1: Left: A maximal generations network with generation size K = 3. An arrow from
i to j means i observes j’s action. Middle: Number of signals aggregated per generation
asymptotically in maximal generations networks, as a function of generation size. Right:
Aggregative efficiency in maximal generations networks, as a function of generation size.

completely in the long run for every generation size K, but aggregative efficiency is worse
with larger K. No matter the size of the generations, social learning accumulates no more
than three signals per generation starting with the third generation, and no more than two
signals per generation asymptotically. Therefore, aggregative efficiency is arbitrarily close to
zero when generations are large, as illustrated in Figure 1. A large number of endogenously
correlated observations, such as the actions of all predecessors from the previous generation,
can be less informative than a small number of independent signals.

More generally, consider any symmetric intergenerational observation structure — all
agents observe the same number of neighbors and all pairs of distinct agents in the same
generation share the same number of common neighbors. We prove the same long-run
bound of two signals aggregated per generations holds for all networks in this class and for
all generation sizes K. An arbitrarily small fraction of available signals is included in the
social consensus and agents learn arbitrarily slowly relative to the efficient rate. This failure
to aggregate information reflects an inefficiency of equilibrium behavior, not an inherent
limitation on information flow in the environment: we show that in any strongly connected
symmetric generations network, there is a feasible (but non-equilibrium) log-linear strategy
profile that eventually aggregates more than K0 signals per generation for every K0 < K.

We also compare equilibrium social-learning dynamics across different symmetric gener-
ations networks. We derive a simple formula for aggregative efficiency as a function of the
network parameters. This expression shows the number of signals aggregated per generation
increases in the number of neighbors for each agent and decreases in the level of confounding
(i.e., the number of common neighbors for pairs of distinct agents), thus quantifying the
trade-offs in changing the network. For instance, an improvement in communication tech-
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nology that increases the density of the observation network may bring two countervailing
effects on learning: it can speed up the per-generation learning rate by adding more social
observations, but also slow it down by lowering the informational content of each observation
through extra confounding.

We discuss two economic applications of our results to organization structure. First, we
demonstrate that opening up new channels of communication in an organization, such as
starting a mentorship program where seniors share their private signals with newcomers,
can have large benefits for organizational learning. Also, we show that information silos —
partitioning some employees into insular groups that do not communicate with each other
— improve executives’ information aggregation at the expense of workers’ learning.

Aggregative efficiency also helps characterize social learning in classes of networks that
do not have a generations structure. We apply our techniques to analyze learning in the
canonical random network where each agent observes d > 1 predecessors uniformly at ran-
dom. These random networks, like the symmetric generations networks, also lead to very
inefficient learning: almost surely, society learns in the long run but only aggregates a van-
ishing fraction of the available signals. Unlike in the generations networks, inefficiency is due
to physical constraints on the flow of information and not only informational confounds.

Our analysis focuses on aggregative efficiency because prior work has shown that ratio-
nal agents fully learn the state in the long run on all networks satisfying mild conditions
(Acemoglu, Dahleh, Lobel, and Ozdaglar, 2011).3 Since all “reasonable” networks lead to
long-run learning, the economic questions of interest concern short-run accuracy and rates
of learning. Our framework lets us address these questions, while existing techniques in
the literature are designed to analyze long-run learning outcomes. Efficiency matters for
welfare: agents attain any utility threshold earlier on the more efficient network (provided
private signals are not too precise), and the more efficient network is strictly preferred by all
sufficiently (but finitely) patient social planners.

1.1 Related Literature

We study rational4 learning in a sequential model (as first introduced by Banerjee (1992)
and Bikhchandani, Hirshleifer, and Welch (1992)) with network observations and show in-

3When private signals and actions are coarse, Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch
(1992) show rational agents can herd on incorrect beliefs. Because we allow unboundedly informative private
signals and rich actions, agents learn the true state asymptotically in our framework, given mild conditions
on the network.

4Several papers calculate speed of learning under naive updating heuristics instead of rational learning,
e.g., Ellison and Fudenberg (1993) and Molavi, Tahbaz-Salehi, and Jadbabaie (2018). In the DeGroot
updating model, Golub and Jackson (2012) show that speed of learning is determined by a simple network
statistic that also measures the amount of homophily in the network.
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complete observation networks can lead to very inefficient learning.
There is considerable interest in comparing rational learning across social networks, but

fewer analytical results that distinguish learning on different incomplete networks. Several
papers deliver the message that network structure matters little for social learning. Ace-
moglu, Dahleh, Lobel, and Ozdaglar (2011) and Lobel and Sadler (2015) show that all
networks satisfying weak sufficient conditions guarantee complete long-run learning. Rosen-
berg and Vieille (2019) use a different criterion for good social learning, but come to the
same conclusion that “the nature of the feedback on previous choices matters little.”

In addition, several prior examples and numerical simulations suggest network struc-
ture can affect learning considerably in finite populations.5 Lobel, Acemoglu, Dahleh, and
Ozdaglar (2009) compare the rate of rational learning in two specific network structures
where each agent has one neighbor. Sgroi (2002) shows that networks with autarkic agents
can improve social welfare relative to the complete network, and uses a numerical simula-
tion to study comparative statics of welfare as a function of the number of autarkic agents.
Arieli and Mueller-Frank (2019) consider multi-dimensional networks of different connectiv-
ity p ∈ [0, 1]. They prove networks with large p < 1 lead to better learning than the complete
network (p = 1), and use numerical simulations to compare different incomplete networks.
The prevalence of simulations in this literature suggests that comparing social learning on
more complex networks is a relevant (if difficult) question. Our framework can analytically
compare incomplete networks and networks that lead to the same long-run learning accuracy.

In another related setting, Board and Meyer-ter-Vehn (2021) also study the role of the
social network in a continuous-time product adoption model featuring random entry times
and perfectly informative private signals. They show that starting from a network where none
of i’s direct neighbors share common indirect neighbors, adding links among i’s neighbors
always leads to slower adoption for i. These additional links would not affect i’s learning
in a sequential social-learning model, since they do not generate what we call informational
confounds — that is, multiple neighbors of i learning from a common source that i does not
observe.

Several strands of the social learning literature have studied other obstructions to efficient
learning. Harel, Mossel, Strack, and Tamuz (2021) study a social-learning environment with
coarse communication and find, as in our generations network, that agents learn at the
same rate as they would if they perfectly observed an arbitrarily small fraction of private

5In a different class of non-sequential social-learning models where a finite set of agents repeatedly observe
their neighbors in a fixed network and simultaneously choose actions every period, Gale and Kariv (2003) and
Goyal (2012) have compared learning dynamics in specific networks to highlight a possible trade-off between
the accuracy of the long-run consensus and the speed of convergence to said consensus. In our setting with
rich actions, this trade-off is absent as the long-run consensus is correct in all reasonable networks.
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signals. The mechanism behind their result, “rational groupthink,” relies on agents’ finite
action spaces. In fact, social learning in their environment would proceed at the efficient
rate if actions revealed posterior beliefs, as they do in ours. The coarseness of the action
space serves as the primary obstruction to the efficient rate of social learning in several other
papers, including Rosenberg and Vieille (2019) and Hann-Caruthers, Martynov, and Tamuz
(2018).6 We highlight a different mechanism for inefficient aggregation of decentralized
information: an observation network that generates informational confounds can also lead
to rates of learning far below the optimum even in a setting with rich actions.

Another group of papers point out that if signals about the state comes from myopic
agents’ information-acquisition choices, then individuals can make socially inefficient choices
and slow down learning (Burguet and Vives, 2000; Mueller-Frank and Pai, 2016; Ali, 2018;
Lomys, 2020; Liang and Mu, 2020). We abstract away from this source of slow learning by
giving agents exogenous signals, following most of the literature on sequential social learning.
This allows us to focus on the role of the network structure on social learning.

2 Model

There are two equally likely states of the world, ω ∈ {0, 1}. An infinite sequence of agents
indexed by i ∈ N+ move in order, each acting once. On her turn, agent i observes a private
signal si ∈ R and the actions of her neighbors, N(i) ⊆ {1, ...i− 1}. Agent i then chooses an
action ai ∈ (0, 1) to maximize the expectation of ui(ai, ω) := −(ai−ω)2 given her belief about
ω. So, she will pick the action equal to the probability she assigns to the event {ω = 1}.

We consider a Gaussian information structure where private signals (si) are conditionally
i.i.d. given the state. We have si ∼ N (1, σ2) when ω = 1 and si ∼ N (−1, σ2) when ω = 0,
where N (a, b2) is the normal distribution with mean a and variance b2, and 0 < 1/σ2 < ∞
is the private signal precision.

Neighborhoods of different agents define a deterministic network M , where there is a
directed link i → j if and only if j ∈ N(i). We also view M as the adjacency matrix,
with Mi,j = 1 if j ∈ N(i) and Mi,j = 0 otherwise. Since N(i) ⊆ {1, ..., i − 1}, M is upper
triangular. The network M is common knowledge. The goal of this paper is to map the
structure of this network to the efficiency of information aggregation via social learning.

With the network M fixed, let di := |N(i)| denote the number of i’s neighbors. A strategy
for agent i is a function Ai : (0, 1)di × R → (0, 1), where Ai(aj(1), ..., aj(di), si) specifies i’s

6Slow learning from coarse actions is also related at a conceptual level to incomplete learning with coarse
actions (e.g., Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch (1992)) and slow learning with noisy
observations of others’ actions (e.g., Vives (1993)).
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play after observing actions aj(1), ..., aj(di) from neighbors7 N(i) = {j(1), ..., j(di)} and when
own private signal is si.8 A Bayesian Nash equilibrium (equilibrium for short) is a strategy
profile (A∗

i )i∈N+ so that for all i and for all observations of i, A∗
i maximizes the Bayesian

expected utility given the posterior belief about ω.9

The sequential nature of the social-learning game and the existence of a unique optimal
action at any belief imply there is a unique equilibrium. Agent 1 has no social observations,
so must use the same strategy A∗

1(s1) in all equilibria. This implies agent 2 also only has one
equilibrium strategy A∗

2, as the behavior of agent 1 is unique across all equilibria. Proceeding
inductively, there is a unique equilibrium profile (A∗

i )i∈N+ .
The quadratic-loss form of the utility functions is not crucial for the results, and all results

remain unchanged if actions are “rich” enough to fully reflect beliefs in the following sense.
Let each agent i have an arbitrary action set Âi and utility function ûi : Âi × {0, 1} → R.
Suppose Âi and ûi are such that â∗

i (p) := argmaxâi∈Âi
Ep[ûi(âi, ω)] is single-valued for every

p ∈ (0, 1), where Ep is the expectation under the belief that assigns p chance to {ω = 1}.
Finally, suppose that â∗

i : (0, 1) → Âi is one-to-one. In equilibrium, agents who have i as a
neighbor can exactly infer i’s belief using the on-path observation of i’s action in Âi, just as
they can when i has the quadratic-loss utility function and reports own belief through the
action ai.

3 Equilibrium

3.1 Linearity of Equilibrium

As is common in analyzing social-learning problems, we will find it convenient to work with
the following log-transformations of variables: λi := ln

(
P[ω=1|si]
P[ω=0|si]

)
, ℓi := ln

(
ai

1−ai

)
. We call

λi the log-signal of i and ℓi the log-action of i. These changes are bijective, so it is without
loss to use the log versions. Write L∗

i (ℓj(1), ..., ℓj(di), λi) for i’s equilibrium log-strategy: the
(unique) equilibrium map between the log-actions of i’s neighbors and i’s own log-signal to
i’s log-action.

In this section, we show that every L∗
i is a linear function of its arguments, with co-

efficients that only depend on the network M and not on the precision of private signals.
7We use j(k) to indicate the k-th neighbor of i and suppress the dependence of j on i when no confusion

arises.
8It is without loss for equilibrium analysis to focus on pure strategies, since every belief about the state

induces a unique optimal action for each agent.
9We will see that in any equilibrium, si 7→ A∗

i (aj(1), ..., aj(di), si) is a surjective function onto (0, 1) for all
i and aj(1), ..., aj(di). So all observations are on-path in equilibrium, and therefore the posterior beliefs are
well-defined.
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We also show that there exist constants (ri)i∈N+ with 1 ≤ ri ≤ i so that in equilibrium,
(ai, ω) is jointly distributed as if i chose ai solely based on ri independent private signals.10

The constants ri depend on the network and may be interpreted as the number of signals
that social learning in M aggregates by agent i. This gives a sufficient statistic to compare
society’s short-run accuracy in different networks.

In general, the actions of i’s neighbors are correlated even after conditioning on the
state. Intuitively, agent i would like to put enough weight on the actions of her neighbors
to incorporate their private signals, but doing so would also over-count the signals of the
earlier agents observed by several members of N(i) but not by i. The social network M thus
creates an informational confound that generally prevents i from fully extracting the signals
of the individuals in N(i). The equilibrium strategy of i represents the optimal aggregation
of her neighbors’ actions. The next result shows the optimal aggregation is linear and gives
an explicit expression for the coefficients. All proofs are in the Appendix.

Proposition 1. For each agent i with N(i) = {j(1), ..., j(di)}, there exist constants (βi,j(k))di
k=1

so that i’s equilibrium log-strategy is given by

L∗
i (ℓj(1), ..., ℓj(di), λi) = λi +

di∑
k=1

βi,j(k)ℓj(k).

The vector of coefficients β⃗i is given by

β⃗i = 2
(
E[(ℓj(1), ..., ℓj(di)) | ω = 1] × Cov[ℓj(1), ..., ℓj(di) | ω = 1]−1

)
,

where Cov[ℓj(1), ..., ℓj(di) | ω = 1]−1 is the inverse of the conditional covariance matrix for
i’s neighbors’ log-actions given ω = 1. These coefficients do not depend on the conditional
variance of the private signals 1/σ2.

The interpretation of the inverse covariance matrix in β⃗i is that i rationally discounts
the actions of two neighbors j(1) and j(2) if their actions are conditionally correlated in
equilibrium.

For general private signal distributions, models of Bayesian updating in networks have
tractability issues, as Golub and Sadler (2016) point out. The key lemma to proving Propo-
sition 1 is the following property of the Gaussian information structure in our model, which
ensures that i’s observations have a jointly Gaussian distribution conditional on ω. This
permits us to study optimal inference in closed form.

10The constants ri need not be integers, and we will formalize the meaning this claim for non-integer ri

in Definition 1.
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Lemma 1. For each i, the log-signal λi has a Gaussian distribution conditional on ω, with
E[λi | ω = 0] = −2/σ2, E[λi | ω = 1] = 2/σ2, and Var[λi | ω = 0] = Var[λi | ω = 1] = 4/σ2.

Proposition 1 implies that we may find weights (wi,j)j≤i so that the realizations of equi-
librium log-actions are related to the realizations of log-signals by ℓi = ∑i

j=1 wi,jλj. Let
W be the matrix containing all such weights. Since none of the β⃗i vectors depends on σ2,

neither does W.
Proposition 1 leads to an inductive procedure to compute the coefficients in the unique

equilibrium profile and the matrix W. We start with the first row of W, W1 = (1, 0, 0, ...).
Proceeding iteratively, once the first i − 1 rows of W have been constructed, we know the
weights that each of i’s neighbor’s log-actions ℓj(k) puts on different log-signals, hence we
can compute E[(ℓj(1), ..., ℓj(di)) | ω = 1] and Cov[ℓj(1), ..., ℓj(di) | ω = 1]. We can find β⃗i using
Proposition 1, and hence construct the i-th row of W.

3.2 Measure of Accuracy

We would like to evaluate networks in terms of their short-run social-learning accuracy, so
as to compare the rates of Bayesian learning in different networks. Towards a measure of
accuracy, imagine that agent i’s only information about ω consists of n ∈ N+ indepen-
dent private signals. Then, the Bayesian i would play the log-action equal to the sum of
the n log-signals, so by Lemma 1 her behavior would follow the conditional distributions
ℓi ∼ N

(
±n · 2

σ2 , n · 4
σ2

)
, with the positive and negative means in states ω = 1 and ω = 0

respectively. We quantify learning accuracy using distributions of this form that allow for
non-integer n, thus denominating accuracy in the units of private signals.

Definition 1. Social learning aggregates r ∈ R+ signals by agent i if the equilibrium log-
action ℓi has the conditional distributions N

(
±r · 2

σ2 , r · 4
σ2

)
in the two states. If this holds

for some r ∈ R+, then we say i’s behavior has a signal-counting interpretation.

When agents use a non-equilibrium strategy profile, in general the conditional distribu-
tions of ℓi need not equal N

(
±r · 2

σ2 , r · 4
σ2

)
for any r, even when the strategy profile is

log-linear (i.e., each agent’s log-action is a linear function of her log-signal and neighbors’
log-actions). Indeed, if this profile results in i putting weights (wi,j)j≤i on log-signals (λj)j≤i,

then ℓi has a signal-counting interpretation if and only if ∑i
j=1 wi,j = ∑i

j=1 w
2
i,j.

But as the next result shows, the equilibrium log-actions always admit a signal-counting
interpretation in any network.

Proposition 2. In any network, every agent’s behavior has a signal-counting interpretation.
That is, there exist (ri)i≥1 so that social learning aggregates ri signals by agent i. These (ri)i≥1

depend on the network M, but not on private signal precision.
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We can use ri/i ∈ [0, 1] to measure the fraction of all available signals that get incorpo-
rated into agent i’s action, with some signals lost during social learning.

Definition 2. If limi→∞(ri/i) exists, it is called the aggregative efficiency of the network.

Aggregative efficiency measures the fraction of signals in the entire society that individ-
uals manage to aggregate under social learning. Networks that induce faster social learning
in the long run are equivalently those with higher levels of aggregative efficiency. The limit
defining aggregative efficiency need not exist in all networks, but does exist in almost all of
the examples we focus on.

The signal-counting interpretation of behavior is closely identified with the rational learn-
ing rule. Even if all of i’s predecessors are rational, one can show that i’s log-action does
not admit a signal-counting interpretation under “generic” log-linear strategies. Conversely,
a rational agent’s behavior always admits a signal-counting interpretation even when her
predecessors use arbitrary non-rational log-linear strategies.

Corollary 1. Fix arbitrary log-linear strategies for agents i < I, that is i’s log-action is
βi,0λi +

∑di
k=1 βi,j(k)ℓj(k) for any constants (βi,j(k))di

k=0 where N(i) = {j(1), ..., j(di)}. If agent I
best responds to the strategies of i < I, then I’s behavior has a signal-counting interpretation.

This result provides one way to extend the definitions of ri and aggregative efficiency
to analyze the rate of social learning under any log-linear heuristic. For a given heuristic,
consider a rational outside observer who has no private signal and who only sees the action
of the i-th heuristic learner. It follows from Corollary 1 that this observer’s log-action
has the conditional distributions N

(
±ri · 2

σ2 , ri · 4
σ2

)
for some ri. Here ri measures the

informativeness of the heuristic learner i’s behavior in the units of private signals and leads
to an upper-bound on i’s utility.

3.3 Long-Run Learning

Before turning to our main results about the efficiency of signal aggregation in different
networks, we perform a sanity check on our model by developing necessary and sufficient
conditions for long-run learning. These conditions turn out to be similar to those in the
existing literature, which shows our model is comparable to the standard models on this
dimension. But the key innovation of our model is that it is tractable enough to provide a
rich ranking of different network structures based on the rate of social learning, which will
be the focus of the next section.

We say society learns completely in the long run if (ai) converges to ω in probability.
For a given network M, write PL(i) ∈ N to refer to the length of the longest path in M

originating from i (this length is 0 if N(i) = ∅).
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Proposition 3. The following are equivalent: (1) late enough agents have arbitrarily long
observational paths, that is lim

i→∞
PL(i) = ∞; (2) there are not infinitely many agents whose

neighborhoods are contained in the same finite set, that is lim
i→∞

[
maxj∈N(i) j

]
= ∞; (3) social

learning eventually aggregates arbitrarily many signals, that is limi→∞ ri = ∞; (4) society
learns completely in the long run.

Condition (2) is the analog of Acemoglu, Dahleh, Lobel, and Ozdaglar (2011)’s expand-
ing observations property for a deterministic network. It says if we consider the most recent
neighbor observed by each agent, then this sequence of most recent neighbors tends to in-
finity. Acemoglu, Dahleh, Lobel, and Ozdaglar (2011) show that expanding observations is
necessary and sufficient for long-run learning in a random-networks model with unbound-
edly informative signals and binary actions. With continuous actions, the same result is a
consequence of Proposition 3.

The key takeaway message from Proposition 3 is that whether society learns in the long
run is not a useful criterion for comparing different networks in this setting, as the condi-
tions (1) and (2) that guarantee long-run learning are very mild. It is of course possible
that limi→∞ ri = ∞ but aggregative efficiency limi→∞(ri/i) is close to 0, which corresponds
to a network where agents learn completely but do so very slowly. We will therefore focus
on comparing how quickly (ri)i≥1 grows across different networks and the aggregative effi-
ciency of different networks. Comparisons of aggregative efficiency also translate into welfare
comparisons, as Section 6 will show.

4 Rate of Learning in Generations Networks

This section shows that informational confounding can lead to arbitrarily large information
losses and derives a closed-form expression for how confounding influences learning in a class
of networks. We study generations networks11 and find that they can lead to very inefficient
learning due to confounding. We also compare aggregative efficiency across these networks.

Agents are sequentially arranged into generations of size K, with agents within each
generation placed into positions 1 through K. Agents in the first generation (i.e., i = 1, ..., K)
have no neighbors. A collection of observation sets, Ψk ⊆ {1, ..., K} for k = 1, ..., K define
the network M for agents in later generations. The agent in position k in generation t ≥
2 observes agents in positions Ψk from generation t − 1 (and no agents from any other

11This class of networks follows a strand of social-learning literature where agents move in generations,
for instance Wolitzky (2018), Banerjee and Fudenberg (2004), Burguet and Vives (2000), and Dasaratha,
Golub, and Hak (2020).
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Figure 2: A generations network with K = 3 agents per generation and the observation sets
Ψ1 = {1, 2}, Ψ2 = {2, 3}, and Ψ3 = {1, 3}.

generation). That is, for i = (t − 1)K + k where t ≥ 2 and 1 ≤ k ≤ K, network M has
N(i) = {(t− 2)K + ψ : ψ ∈ Ψk}.12 Figure 2 shows an example with K = 3.

4.1 Full Observations and the Role of Generation Size

We first focus on the maximal generations network where Ψk = {1, ..., K} for all k, so agents
in generation t for t ≥ 2 have all agents in generation t−1 as their neighbors.13 The following
result relates the generation size K to the speed of signal aggregation.

Proposition 4. Consider a maximal generations network with K ≥ 1. We have limi→∞(ri/i) =
(2K−1)

K2 , so aggregative efficiency is lower with larger K, and social learning aggregates no more
than two signals per generation asymptotically for any K. Starting from the third generation,
every generation aggregates at most three signals more than the previous one: for any K and
any agents i, i′ in generation t and t− 1 with t ≥ 3, ri − ri′ ≤ 3.

Proposition 4 contains two parts. First, it shows that even though society learns com-
pletely with any K, the aggregative efficiency is lower with higher K. Indeed, if K = 1, then
every agent perfectly incorporates all past private signals and the speed of social learning
is the highest possible. Not only does this result about the aggregative efficiency imply an
asymptotic ranking on the speed of learning, but the same comparative statics about speed
also hold numerically for all agents i ≥ 16 when comparing among K ∈ {2, 3, 4, 5}, as shown
in Figure 3.

Second, Proposition 4 bounds the number of signals that social learning aggregates per
generation in the maximal generations network. The proof of Proposition 3 shows ri ≥

12Stolarczyk, Bhardwaj, Bassler, Ma, and Josić (2017) study a related model where only the first generation
observes private signals. Their main results characterize when no information gets lost between generations,
i.e., social learning is completely efficient.

13This network is similar to the “multi-file” treatment in the laboratory experiment of Eyster, Rabin, and
Weizsacker (2018), except agents only observe the actions of the immediate past generation, not those of
all previous generations. In the multi-file treatment, unlike in the maximal generations network, Bayesian
agents can perfectly infer the private signals of all previous movers in equilibrium.
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Figure 3: Number of signals aggregated by social learning in maximal generations networks
with different generation sizes, K ∈ {2, 3, 4, 5}.

PL(i) + 1 in all networks and thus provides a lower bound of 1: each generation must
aggregate at least one signal, since each agent i in generation t has PL(i) = t−1. Proposition
4 shows this lower bound is not too far from the actual learning rate. No matter how large
K is, social learning aggregates fewer than two signals per generation asymptotically. There
is also a short-run version of this result: starting with generation 3, fewer than three signals
are aggregated per generation for any K. For K large, these bounds of two or three signals
per generation constitute an arbitrarily small fraction of available signals.

This result relates to a statistical intuition that says a small number of independent
signals can contain more information than an arbitrarily large number of pairwise correlated
signals. In the social-learning setting, neighbors’ actions serve as signals about the state of
the world. The actions of these neighbors are endogenously correlated due to the structure of
the maximal generations networks. The correlation is so strong that observing K neighbors’
actions is less informative than just one of these actions and one additional private signal.

4.2 Partial Observations and Aggregative Efficiency

Proposition 4 shows that social learning aggregates fewer than two signals per generation
asymptotically in maximal generations networks with any K. We now provide an exact
expression for the aggregative efficiency in a broad class of generations networks with more
general observation sets. In particular, this result will imply the same two signals per
generation bound holds for all networks in this larger class.

We only impose one regularity assumption on the observation sets (Ψk)k: symmetry.
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Definition 3. The observation sets are symmetric if all agents observe d ≥ 1 neighbors and
all pairs of agents in the same generation share c common neighbors, i.e. |Ψk| = d for every
1 ≤ k ≤ K and |Ψk1 ∩ Ψk2| = c for distinct positions 1 ≤ k1 < k2 ≤ K.

A generations network defined by symmetric observation sets is called a symmetric
network. To give a class of examples of symmetric networks, fix any non-empty subset
E ⊆ {1, ..., K}, and let (Ψk)k be such that for all 1 ≤ k ≤ K, Ψk = E. Here we have
d = c = |E|. To interpret, E represents the prominent positions in the society, and agents
only observe predecessors in these prominent positions from the past generation. The max-
imal generations network is the special case of E = {1, ..., K}. For another class of ex-
amples, suppose K ≥ 2 and each agent observes a different subset of K − 1 predecessors
from the previous generation. Specifically, Ψk = {1, ..., K}\{k − 1} for 2 ≤ k ≤ K, and
Ψ1 = {1, ..., K−1}. This network is symmetric with d = K−1 and c = K−2. (The network
in Figure 2 has this structure, with d = 2 and c = 1.) There remains a large variety of other
symmetric networks that are not covered by these two classes of examples: one enumeration
shows there are at least 103 pairs of feasible (d, c) parameters in the range of 3 ≤ d ≤ 41 and
1 ≤ c ≤ d − 2 that correspond to at least one symmetric network, typically with multiple
non-isomorphic networks for each feasible parameter pair (Mathon and Rosa, 1985). The
next result applies to all such networks.

Theorem 1. Given any symmetric observation sets (Ψk)k where every agent observes d

neighbors and every pair of agents in the same generation share c common neighbors, ag-
gregative efficiency is

lim
i→∞

(ri/i) =
(

1 + d2 − d

d2 − d+ c

)
1
K

with the convention 0/0 = 0. For c ≥ 1, the number of signals aggregated per generation is
strictly increasing in d and strictly decreasing in c.

Theorem 1 gives the exact aggregative efficiency for a broader class of generations net-
works and quantifies the information loss due to confounding. The interpretation of the
comparative statics result is that more observations speed up the rate of learning per gener-
ation but more confounding slows it down, all else equal. This result lets us compare learn-
ing dynamics across different symmetric networks characterized by different (d, c) parameter
pairs. Changing from one network to the other typically affects both d and c. Theorem 1
decomposes the repercussions of such changes on the per-generation learning rate into their
effects on the two primitive network parameters that have monotonic influences on said rate.

Theorem 1 specializes to the expression for aggregative efficiency in Proposition 4 by let-
ting d = c = K. In fact, the maximal generations networks lead to the slowest per-generation
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rate of learning among all symmetric networks with the same number of observations per
agent, since they feature the most severe confounding. Nevertheless, Theorem 1 provides
a uniform learning-rate bound of two signals per generation across all symmetric networks
(as d2−d

d2−d+c
≤ 1), even though these networks may involve much less confounding than the

maximal generations networks. To provide some intuition for this bound, imagine that in-
stead of observing their predecessors, all agents in generation t observe a common set of n
independent private signals, in addition to their own private signal. We can show an agent
in generation t + 1 who observes d of these generation t predecessors puts a weight of n+1

dn+1

on each of their log-actions, and aggregates n(2d−1)+1
nd+1 more signals than they do. As n → ∞,

the number of extra signals aggregated approaches 2d−1
d

≤ 2. In any generations network for
late enough t, each generation t agent’s social observation constitutes a highly informative
signal of the state, so it is analogous to observing n independent private signals with n → ∞.

Formalizing this intuition is more subtle because different agents may observe different
predecessors. This somewhat alleviates the informational confounding for generation t + 1,
but the benefits are limited by the fact that in any symmetric network, actions in the same
generation have a conditional correlation approaching 1 when t → ∞. Even agents with very
different observation sets end up observing highly correlated information in the long run, so
no symmetric network aggregates more than two signals per generation asymptotically. To
prove the correlation coefficient converges to 1, we construct a stochastic process with the
state space given by the different network positions and the transition probabilities given by
the observation structure. We then apply a mixing argument to show that the actions of two
agents in the same generation are influenced in very similar ways by the signal realizations
of their common ancestors from many generations ago.

This bound of two signals per generation does not always apply to non-symmetric gen-
erations networks. Section 4.5 shows there are generations networks with K agents per
generation where agents in the first position aggregate up to K − 1 signals per generation
in the long run. Even if we restrict attention to environments with a generations structure,
learning dynamics can depend greatly on the details of the social network.

Finally, we show that the aggregative efficiency in symmetric networks depends only on
the generation size. An insight that extends from maximal generations networks to any
symmetric networks is that aggregative efficiency is worse with larger generations. Compare
the symmetric network from Figure 2 with d = 2, c = 1, K = 3 with the maximal generations
network with K = 3. Theorem 1 implies they have the same aggregative efficiency. The
extra social observations in the second network exactly cancel out the reduced informational
content of each observation, due to the more severe informational confounds in equilibrium.
It turns out that more generally, any symmetric network with parameters (d, c,K) where

15



d ≥ 2, c < d has the same aggregative efficiency as the maximal generations network with
the same generation size K. Therefore, the idea of worse efficiency with larger generations
depicted in Figure 3 for maximal generations networks also holds in the broader class of
symmetric networks.

Corollary 2. In any symmetric network with K agents per generation, every agent observing
d ≥ 2 neighbors, and every pair of agents in the same generation sharing c < d common
neighbors, limi→∞(ri/i) = (2 − (1/K)) · 1

K
.

This corollary follows from the fact that the symmetry condition imposes some combi-
natorial constraints on the feasible (d, c) parameter pairs when we hold the generation size
K constant. It turns out these constraints allow us to simplify the expression in Theorem 1
when we know the generation size. While Corollary 2 gives a simple expression of aggregative
efficiency that just depends on K, Theorem 1 lets us compare networks that differ in d and
c (and possibly also K) more transparently.

4.3 Social Planner’s Benchmark

The uniformly slow speed of signal aggregation across all symmetric networks comes from
an inefficiency generated by decentralized social learning, not from an inherent limitation on
information flow in these networks. To illustrate this point, we study the social planner’s
problem and show there exists a feasible (but non-equilibrium) log-linear strategy profile
such that social learning eventually aggregates more than K0 signals per generation for
every K0 < K.

We study a class of networks where agents can plausibly include most predecessors’ signals
in their estimates.

Definition 4. The observation sets (Ψk)k are strongly connected if for every 1 ≤ k1 ≤ k2 ≤
K, there exist t1 < t2 so that there is a path from t2K + k2 to t1K + k1 in M.

This rules out the cases such as when the second agent in every generation is always
excluded from the indirect neighborhood of the first agent of every future generation, which
would mean agents in the first position cannot aggregate more than K − 1 signals per
generation.

A social planner can choose a log-linear strategy that achieves nearly perfect information
aggregation:

Proposition 5. Suppose the observation sets (Ψk)k are strongly connected and symmetric
with c ≥ 1. There is a log-linear (but non-equilibrium) strategy profile such that, for every

16



positive real number K0 < K, there exists a corresponding T so that for all t ≥ T and
1 ≤ k ≤ K, social learning aggregates more than (t− 1)K0 signals by agent (t− 1)K + k.

As K grows large, Theorem 1 and Proposition 5 combine to say that in strongly connected
and symmetric generations networks with c ≥ 1, individuals only manage to aggregate an
arbitrarily small fraction of the private signals that can be feasibly aggregated by a social
planner using a log-linear strategy. The idea behind the construction is that the social
planner can counteract the muddling of private signals when a group of individuals share
common social observations by asking each individual to put extra weight on her own private
signal in choosing her action.14

4.4 Application 1: Value of Mentorship

We provide an economic application of our results in terms of the value of mentors who share
their private signals with mentees in the next generation.

Many organizations with cohort structures, such as universities and firms, have mentor-
ship programs that pair newcomers with members of a previous cohort. Our results suggest
that one benefit of such programs is that mentors provide information that helps newcomers
interpret others’ actions, thus increasing the speed of learning within the organization.

Formally, we model a mentor as someone who shares her private signal with a mentee
in the subsequent generation. Equivalently, the mentor could share a sufficient statistic
describing her best estimate of the state based on her social observations. If we begin with
the maximal generations network and add mentorship relationships in this way, learning is
nearly efficient.

Corollary 3. Suppose each agent observes the actions of all members of the previous gener-
ation and the private signal of one member of the previous generation. Then social learning
aggregates more than i−K signals by every agent i, so aggregative efficiency is 1.

If an agent observes the actions of the previous generation along with one of their private
signals, she can calculate the common confounding information and fully compensate for this
confound. In networks with large K, showing each agent just one extra signal (of someone
from the previous generation) increases aggregative efficiency from nearly 0 to 1.

In the context of the application, incumbents in the organization act based on private
information and shared organizational knowledge. A newcomer ignorant of the organiza-
tional knowledge cannot fully separate these two forces that shape others’ behavior. But by

14If non-log-linear strategies are allowed, then the social planner can achieve close to perfect information
aggregation in every generation using exotic strategies that encode individuals’ signals far into the decimal
expansions of their actions, for example.
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describing her perspective, a mentor can help a newcomer interpret everyone else’s behav-
ior. This removes the informational confound facing the newcomer and lets her extract the
private information underlying these predecessors’ actions. A related force is described in
management literature:

“Mentors can be powerful socializing agents as an individual adjusts to a new job
or organization. As protégés learn about their roles within the organization, men-
tors can help them correctly interpret their experiences within the organization’s
expectations and culture.” – Chao (2007)

Our result formalizes this intuition in a social-learning environment. Our stylized model of
mentorship abstracts away from many of its other benefits (e.g., the expertise of the mentor
in terms of being able to generate more precise signals than the mentee), and shows how the
“interpretive” value of mentorship improves learning within the organization.

If each mentor instead generates a new, independent private signal for their mentee, rather
than sharing the realization of their own private signal from the past, then social learning
does not speed up very much. Compared to a world without mentoring, this intervention
would at most double the number of signals aggregated by each agent. Using Proposition
4, this limits the organization to eventually aggregating at most four signals per cohort. In
organizations with large cohorts, mentors who share their personal experience increase the
rate of social learning much more than mentors who generate new signals. The comparison
between the signal-sharing mentors and the signal-generating mentors shows that Corollary
3 relies critically on the “interpretative” channel of mentoring: almost all of the additional
learning under mentoring comes not from the mentor giving the mentee an extra signal about
the state, but from the mentee using the mentor’s past experience to clarify other people’s
behavior and to extract substantially more information from said behavior.

4.5 Application 2: Information Silos

Within some organizations, information is fragmented among various subgroups (depart-
ments, product divisions, trading desks) that fail to communicate with each other, creating
information silos.15 These silos have a number of causes: compensation structures that
discourage collaboration between teams, different subunits storing information in mutually
incompatible databases, or technical language barriers that stop ideas from flowing between

15We thank Suraj Malladi for suggesting this application.
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specialties.16 Tett (2015) documents the prevalence of information silos in government bu-
reaucracies, technology firms, and banks, noting that many of these silos persist for many
decades. She joins a number of other authors and management consultants in arguing that
information silos are a necessary evil for running a complex workforce, but they hurt the
organization by obstructing internal information exchange.17

We use a generations network to show that information silos may benefit the organization
compared with fully transparent data sharing,18 when the organization’s success primarily
depends on the actions of a few executives who can observe and process the behavior in all
the silos.

Corollary 4. In a generations network with K ≥ 2 agents per generation, suppose positions
{2, ..., K} are partitioned into N ≥ 1 silos S1, ..., SN so that each position k only observe
predecessors in the same silo, Ψk = Sn for k ∈ Sn, while agents in the first position can
observe all of the silos, Ψ1 = {2, ..., K}. Agents in the first position eventually aggregate
limt→∞

r(t−1)K+1
t

= ∑N
n=1

2|Sn|−1
|Sn| signals per generation. Agents in position k ∈ Sn in silo n

eventually aggregate limt→∞
r(t−1)K+k

t
= 2|Sn|−1

|Sn| signals per generation.

The agents in positions Sn form an information silo for each 1 ≤ n ≤ N . As a new
cohort of workers join the organization, each newcomer learns by observing their seniors
from the same silo, and information does not flow across different silos. Agents in position
1 are executives who observe all predecessors in silos. Corollary 4 shows that executives can
aggregate up to K − 1 signals per generation, depending on the sizes of the silos. Figure 4
shows an example with two information silos that contain one and two agents respectively
in each generation. Social learning can aggregate more than three signals per generation for
the executives when there are silos. By contrast, the executives’ information improves by no
more than three signals per generation starting from generation 3 in the maximal generations
network (Proposition 4), which represents an organization with full data transparency.

If the organization’s payoff is closely identified with the utility of its executive’s action
in each generation, then information silos can improve the organization’s welfare. Such an

16Sethi and Yildiz (2016) show that a silo-like information segregation may become endogenously en-
trenched in an organization as each agent learns the subjective perspectives of the people she talks to most
often. This encourages the agent to keep consulting the same people’s opinions in the future, as she can
better account for their subjective biases and extract more precise information from their opinions.

17Arguments in favor of eliminating information silos are common in the popular press: see for example,
Gleeson and Rozo (2013) and Casciaro, Edmondson, and Jang (2019).

18Similar network structures can also improve social learning in experimentation settings. In a model where
a sequence of short-lived, behavioral agents take turns interacting with a multi-armed bandit, Immorlica,
Mao, Slivkins, and Wu (2020) show that an observation structure featuring many information silos ensures
at least one silo produces a large amount of information about the payoffs of each bandit arm, thus improving
the welfare of later agents who observe all the information generated in every silo.
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Figure 4: A generations network with executives in the first position and two information
silos, S1 = {2} and S2 = {3, 4}.

organization structure provides less confounded information to the key decision-makers by
sacrificing the rate of learning within silos. Indeed, behavior in different silos are condition-
ally independent of each other. If the organization is instead one where every member’s
action significantly contributes to its welfare, then information silos are detrimental to the
organization. Newcomers could learn better by observing all incumbents in the organization,
instead of only those in the same silo.

The negative case studies that Tett (2015) and others use to advocate breaking down
silos mostly involve workers in silos who take actions that severely harm the company, or
executives who are unable to process the data from multiple silos. For instance, Tett (2015)
discusses two product divisions of Sony simultaneously producing two very similar music
players that ended up competing with each other on the market, a situation where the
organization’s welfare depends on the actions taken within the silos rather than the action
of a single executive who oversees all silos.

An important qualification is that if employees communicate private signals along with
actions (perhaps as in the application in Section 4.4), then information silos will be harmful
for social learning. When full information sharing is possible, information silos will lead to
less informed workers without meaningfully improving executives’ actions.

5 Aggregative Efficiency of Random Networks

Much of our analysis so far has focused on networks with a generational structure, but
learning can also be very inefficient on quite different networks. In this section, we suppose
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the network is random and give a class of networks where, with probability one, there is
long-run learning but aggregative efficiency is zero.

Formally, we consider a distribution over the set of directed networks among the agents
{1, 2, 3, ...}, i.e., those networks where each agent only has links to others that came before
her. At the beginning of time, Nature draws a network M from this distribution, and we
maintain the assumption that the realization of M is common knowledge among the agents.
In this environment, each ri is a random variable that depends on the network realization.
We can still study the asymptotic behavior of the stochastic processes (ri) and (ri/i) and
investigate their almost-sure limits with respect to the network realization (when these limits
exist).

Consider the fixed-degree random network, perhaps the most canonical random network
in the setting where agents arrive sequentially (see, for example, Chapter 5.1 of Jackson,
2010). Let d ≥ 2 and consider the random network where each agent i ≤ d is always linked
to all predecessors, but each agent i ≥ d + 1 is linked to d different predecessors sampled
uniformly at random. That is, N(i) is equally likely to be any size-d subset of {1, ..., i− 1},
and the neighborhoods of different agents are independently drawn. In the fixed-degree
random network, almost all agents have out-degree d.

The fixed-degree random network with any d ≥ 2 almost surely leads to complete but
arbitrarily inefficient learning.

Proposition 6. In any fixed-degree random network, almost surely limi→∞ ri = ∞ and
limi→∞(ri/i) = 0.

An agent who arrives late enough in the sequence has arbitrarily long observation paths
with probability near 1, so there is complete learning almost surely. But at the same time,
we can also show that this agent’s indirect neighbors (i.e., those that are reachable through
paths of any length) account for an arbitrarily small fraction of all her predecessors with
probability near 1, so she cannot access a vast majority of the available signals. Unlike in
generations networks, inefficient learning in fixed-degree random networks is due to physical
constraints and not solely information confounding.

Intuitively, these physical constraints arise because a “typical” neighbor of an agent i
has index considerably smaller than i, as neighbors are chosen uniformly at random from all
predecessors. For an agent n, no matter how large n is, with high probability “long paths”
from n do not stay in the interval [ϵn, n]. At the same time, we can bound the number of
agents reachable through “short paths” from n, and this bound becomes a vanishingly small
fraction of n as n grows. So altogether, through paths of any lengths, n can reach no more
than 2ϵ fraction of the predecessors.
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6 Aggregative Efficiency and Welfare Comparisons

In this section, we show that aggregative efficiency comparisons translate into two kinds of
welfare comparisons.

Let vi := E[ui(a∗
i , ω)] denote the expected equilibrium welfare of agent i, and recall

that −0.25 < vi < 0 for every i in any network and with any private signal precision
0 < 1/σ2 < ∞. If society learns completely in a network, then limi→∞ vi = 0. Given a
threshold level v ∈ (−0.25, 0) of utility, we might ask when does social learning first attain
vi ≥ v. We say social learning strongly attains v by agent I if I is the smallest integer such
that vi ≥ v for all i ≥ I. We say social learning weakly attains v by agent i if i is the earliest
agent with vi ≥ v (but the expected utilities of some later agents may fall below v).

Proposition 7. Suppose in networks M and M ′, social learning aggregates ri and r′
i signals

by agent i, respectively, with strictly ranked aggregative efficiency limi→∞(ri/i) > limi→∞(r′
i/i) >

0. For every utility threshold v ∈ (−0.25, 0), M strongly attains v strictly earlier than M ′

weakly attains the same threshold, provided signals are not too precise. That is, there exists
a bound π > 0 on private signal precision so that whenever 0 < 1/σ2 ≤ π, social learning
strongly attains v by agent I in M and weakly attains v by agent i′ in M

′
, with I < i

′.

Now fix the signal precision and consider the expected welfare profiles (vi)i≥1 and (v′
i)i≥1 in

two networks M and M ′ that both lead to complete social learning. A planner could compare
these two profiles through a social welfare function Γ with Γ(v) = ∑∞

i=1 γivi +γ∞(limi→∞ vi),
where γ1, γ2, ..., γ∞ ≥ 0 is a summable sequence of welfare weights that combine utilities
across agents. Here γ∞ is the welfare weight on “the end of time,” and comparing two
networks based on whether they lead to complete social learning corresponds to an “infinitely
patient” Γ∞ with the weights γi = 0 for all i ∈ N+ and γ∞ = 1. A social welfare function
ΓT is called T -patient if γi = 0 for all i < T and γi > 0 for all finite i ≥ T . That is,
the planner is blind to the welfare of the first T − 1 agents, but strictly cares about the
welfare of all later agents. One example is γi = δi−T for i ≥ T where the welfare of agents
later than T are discounted at rate δ ∈ (0, 1). For large T, we can interpret a T -patient
social welfare function as corresponding to a “very patient” but not “infinitely patient”
planner. The next result implies that all very patient planners will rank M and M ′ based on
their aggregative efficiency, even though the degenerate limiting case of the infinitely patient
planner is indifferent between them.

Proposition 8. Suppose in networks M and M
′, social learning aggregates ri and r

′
i sig-

nals by agent i, respectively, with strictly ranked aggregative efficiency, limi→∞(ri/i) >

limi→∞(r′
i/i). There exists a T ∈ N+ such that for all T ≥ T , any T -patient social wel-

fare function ΓT is strictly higher on M than on M
′
.
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7 Conclusion

This paper presents a tractable model of sequential social learning that lets us compare social-
learning dynamics across different observation networks. Generally, observation networks
confound the informational content of neighbors’ behavior and slow down learning. Rational
agents face an optimal signal-extraction problem, whose solution takes a log-linear form in
our environment. The efficiency of learning can be measured in terms of the fraction of
available signals incorporated into beliefs. This allows us to make precise comparisons about
the rate of learning and welfare across different networks, where additional links may trade
off extra observations against the reduced informational content of each observation.

For a class of symmetric networks where agents move in generations, we derive an analytic
expression for aggregative efficiency and quantify the information loss due to confounding.
Additional observations speed up learning but extra confounding slows it down. Confounding
severely limits the rate of signal aggregation — in any network in this class, social learning
aggregates no more than two signals per generation in the long run, even for arbitrarily large
generations. Inefficient aggregation is not particular to generations networks: learning is
even less efficient in fixed-degree random networks, where individuals aggregate a vanishing
fraction of private signals.

We have focused on how the network structure affects social learning and abstracted
away from many other sources of learning-rate inefficiency. These other sources may real-
istically co-exist with the informational-confounding issues discussed here and complicate
the analysis. For instance, even though the complete network allows agents to exactly infer
every predecessor’s private signal, it could lead to worse informational free-riding incentives
in settings where agents must pay for the precision of their private signals (compared to
networks where agents have fewer observations). Studying the trade-offs and/or interactions
between network-based information confounds and other obstructions to fast learning could
lead to fruitful future work.
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Appendix

A Proofs

A.1 Proof of Lemma 1

Proof. We show that λi = 2
σ2 si. This is because

λi = ln
(
P[ω = 1|si]
P[ω = 0|si]

)
= ln

(
P[si|ω = 1]
P[si|ω = 0]

)
= ln

exp
(

−(si−1)2

2σ2

)
exp

(
−(si+1)2

2σ2

)


= −(s2
i − 2si + 1) + (s2

i + 2si + 1)
2σ2 = 2

σ2 si.

The result then follows from scaling the conditional distributions of si, (si | ω = 1) ∼
N (1, σ2) and (si | ω = 0) ∼ N (−1, σ2).

26



A.2 Proof of Proposition 1

Proof. Agent 1 does not observe any predecessors, so clearly L∗
1(λ1) = λ1. Suppose by way of

induction that the equilibrium strategies of all agents j ≤ I − 1 are linear. Then each ℓj for
j ≤ I − 1 is a linear combination of (λh)I

h=1, which by Lemma 1 are conditionally Gaussian
with conditional means ±2/σ2 in states ω = 1 and ω = 0 and conditional variance 4/σ2

in each state. This implies (ℓj(1), ..., ℓj(nI)) have a conditional joint Gaussian distribution
with (ℓj(1), ..., ℓj(nI)) ∼ N (µ⃗,Σ) conditional on ω = 1, and t (ℓj(1), ..., ℓj(nI)) ∼ N (−µ⃗,Σ)
conditional on ω = 0, where µ⃗ = E[(ℓj(1), ..., ℓj(di))′ | ω = 1] and Σ = Cov[ℓj(1), ..., ℓj(di) |
ω = 1].

From the the multivariate Gaussian density, (writing (ℓj(1), ..., ℓj(nI))′ = a⃗),

ln
(
P[ℓj(1), ..., ℓj(nI) | ω = 1]
P[ℓj(1), ..., ℓj(nI) | ω = 0]

)
= ln

(
exp(−1

2 (⃗a− µ⃗)′Σ−1(⃗a− µ⃗))
exp(−1

2 (⃗a+ µ⃗)′Σ−1(⃗a+ µ⃗))

)
= a⃗′Σ−1µ⃗+ µ⃗′Σ−1a⃗

which is 2 (µ⃗′Σ−1) · (ℓj(1), ..., ℓj(nI))′ because Σ is symmetric. This then shows agent I’s
equilibrium strategy must also be linear, completing the inductive step. This argument also
gives the explicit form of β⃗I,·.

For the final statement, we first prove a lemma.

Lemma A.1. Let Ŵ be the submatrix of W with rows N(i) and columns {1, ..., i− 1}.Then
β⃗i = 1⃗′

(i−1) × Ŵ ′(ŴŴ ′)−1 and the i-th row of W is Wi =
(
(β⃗′

i,· × Ŵ ), 1, 0, 0, ...
)
.

Proof. SupposeN(i) = {j(1), ..., j(di)} with j(1) < ... < j(di). By Lemma 1 and construction
of Ŵ , we have E[ℓj(k) | ω = 1] = 2

σ2
∑i−1

h=1 Ŵk,h. So, E[(ℓj(1), ..., ℓj(di)) | ω = 1] = 2
σ2 (Ŵ ·

1(i−1))′ = 2
σ2 1′

(i−1)Ŵ
′. Also, again by Lemma 1 and construction of Ŵ , we can calculate

that for 1 ≤ k1 ≤ k2 ≤ di, Cov[ℓj(k1), ℓj(k2) | ω = 1] = 4
σ2
∑i−1

h=1(Ŵk1,hŴk2,h), meaning
Cov[ℓj(1), ..., ℓj(di) | ω = 1] = 4

σ2 ŴŴ ′. It then follows from what we have shown above that
β⃗i,· = 2 · 2

σ2 1′
(i−1)Ŵ

′ ×
[

4
σ2 ŴŴ ′

]−1
= 1⃗′

(i−1) × Ŵ ′(ŴŴ ′)−1.

Since i puts weight 1 on λi and weights β⃗i,· on (ℓj(1), ..., ℓj(di))′ = Ŵ × (λ1, ..., λi−1)′, this
shows the first i− 1 elements in the row Wi must be β⃗′

i,· · Ŵ while the i-th element is 1.

To prove the final statement of Proposition 1, W1 = (1, 0, 0, ...) does not depend on σ2.

The same applies to β⃗1,·. By way of induction, suppose rows Wi and vectors β⃗i,· do not
depend on σ2 for any i ≤ I. If Ŵ is the submatrix of W with rows N(I + 1), then since
N(I + 1) ⊆ {1, ..., I}, by the inductive hypothesis Ŵ must be independent of σ2. Thus the
same independence also applies to β⃗I+1,· since this vector only depends on Ŵ by the result

27



just derived. In turn, since WI+1 is only a function of β⃗′
I+1,· and Ŵ , and these terms are

independent of σ2 as argued before, same goes for WI+1, completing the inductive step.

A.3 Proof of Proposition 2

Proof. It suffices to show that E[ℓi | ω = 1] = 1
2Var [ℓi | ω = 1]. By Proposition 1, ℓi = λi +∑di

k=1 βi,j(k)ℓj(k). From Lemma 1, we have E[λi | ω = 1] = 1
2Var [λi | ω = 1]. Furthermore,

λi is independent from ∑di
k=1 βi,j(k)ℓj(k), as the latter term only depends on λ1, ..., λi−1. So we

need only show E[∑di
k=1 βi,j(k)ℓj(k) | ω = 1] = 1

2Var
[∑di

k=1 βi,j(k)ℓj(k) | ω = 1
]

Let µ⃗ = E[(ℓj(1), ..., ℓj(di))′ | ω = 1] and Σ = Cov[ℓj(1), ..., ℓj(di) | ω = 1]. Using the
expression for β⃗i,· from Proposition 1, E

[∑di
k=1 βi,j(k)ℓj(k) | ω = 1

]
= 2 (µ⃗′Σ−1) · µ⃗. Also,

Var
 di∑

k=1
βi,j(k)ℓj(k) | ω = 1

 =
(
2µ⃗′Σ−1

)
Σ
(
2µ⃗′Σ−1

)′
= 4µ⃗′Σ−1µ⃗

using the fact that Σ is a symmetric matrix. This is twice E
[∑di

k=1 βi,j(k)ℓj(k) | ω = 1
]

as
desired.

A.4 Proof of Corollary 1

Proof. When i < I use log-linear strategies, each ℓi is some linear combination of (λh)h≤I−1.

Thus, (ℓj)j∈N(I) are conditionally jointly Gaussian, (ℓj)j∈N(I) | ω ∼ N (±µ⃗,Σ). This is
sufficient for the the proofs of Propositions 1 and 2 to go through, implying that the ℓI

maximizing I’s expected utility using the information in (ℓj)j∈N(I) is a log-linear strategy
and has a signal-counting interpretation.

A.5 Proof of Proposition 3

We first state and prove an auxiliary lemma.

Lemma A.2. For any 0 < ϵ < 0.5, P[ai > 1 − ϵ | ω = 1] = 1 − Φ
(

ln( 1−ϵ
ϵ )−ri

2
σ2√

ri
2
σ

)
,where

Φ is the standard Gaussian distribution function. This expression is increasing in ri and
approaches 1. Also, P[ai < ϵ | ω = 0] = Φ

(
ln( 1−ϵ

ϵ )+ri
2

σ2√
ri

2
σ

)
. This expression is increasing in ri

and approaches 1.

Proof. Note that ai > 1 − ϵ if and only if ℓi > ln
(

1−ϵ
ϵ

)
> 0. Given that (ℓi | ω = 1) ∼

N
(
ri · 2

σ2 , ri · 4
σ2

)
by Proposition 2, the expression for P[ai > 1 − ϵ | ω = 1] follows. To see
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that it is increasing in ri, observe that d
dri

ln( 1−ϵ
ϵ )−ri

2
σ2√

ri
2
σ

has the same sign as

−2
σ2 (√ri

2
σ2 ) − (ln

(1 − ϵ

ϵ

)
− ri

2
σ2 )(1

2r
−0.5
i

2
σ

) = − 2
σ3

√
ri − ln

(1 − ϵ

ϵ

)
r−0.5

i

1
σ
< 0.

Also, it is clear that limri→∞
ln( 1−ϵ

ϵ )−ri
2

σ2√
ri

2
σ

= −∞, hence limri→∞ P[ai > 1 − ϵ | ω = 1] = 1.
The results for P[ai < ϵ | ω = 0] follow from analogous arguments.

We now turn to the proof of Proposition 3.

Proof. By Proposition 2, there exist (ri)i≥1 so that social learning aggregates ri signals by
agent i. We first show that (3) and (4) in Proposition 3 are equivalent. Let ϵ′

> 0 be given
and suppose limi→∞ ri = ∞. Putting ϵ = min(ϵ′

, 0.4), we get that P[|ai −ω| < ϵ | ω = 1] → 1
and P[|ai − ω| < ϵ | ω = 0] → 1 since the two expressions in Lemma A.2 increase in ri and
approach 1, hence also P[|ai − ω| < ϵ

′ ] → 1. So society learns completely in the long run.
Conversely, if we do not have limi→∞ ri = ∞, then for some K < ∞ we have ri < K for
infinitely many i. By Lemma A.2 we will get that P[|ai − ω| < 0.1 | ω = 1] are bounded by
1 − Φ

(
ln(9)−K 2

σ2√
K 2

σ

)
for these i, hence society does not learn completely in the long run.

Next, we show that Conditions (1) and (2) in the proposition are both equivalent to
Condition (3), limi→∞ ri = ∞.

Condition (1): limi→∞ PL(i) = ∞.
Necessity: Suppose limi→∞ ri = ∞. For h ∈ N, let I(h) := {i : PL(i) = h}. We show

by induction that I(h) is finite for all h ∈ N. For every i ∈ I(0), ri = 1, so limi→∞ ri = ∞
implies |I(0)| < ∞. Now suppose |I(h)| < ∞ for all h ≤ L. If i ∈ I(L + 1), then every j

that can be reached along M from i must belong to I(h) for some h ≤ L. The subnetwork
containing i is therefore a subset of ∪L

h=0I(h), a finite set by the inductive hypothesis. Thus
ri ≤ 1 + ∑L

h=0 |I(h)| for all i ∈ I(L + 1). So limi→∞ ri = ∞ implies I(L + 1) is finite,
completing the inductive step and proving I(h) is finite for all h. Hence limi→∞ PL(i) = ∞.

Sufficiency: First note if j ∈ N(i), then ri ≥ rj + 1. This is because in equilibrium,
ℓj ∼ N

(
±rj · 2

σ2 , rj · 4
σ2

)
conditional on the two states, and furthermore ℓj is conditionally

independent of si. So, ℓj + λi is a possibly play for i, which would have the conditional
distributions N

(
±(rj + 1) · 2

σ2 , (rj + 1) · 4
σ2

)
in the two states. If ri < rj + 1, then i would

have a profitable deviation by choosing ℓi = ℓj +λi instead, since it follows from Lemma A.2
that a log-action that aggregates more signals leads to higher expected payoffs.

Condition (2): limi→∞
[
maxj∈N(i) j

]
= ∞.

Necessity: If Condition (2) is violated, there exists some j̄ < ∞ so that there exist
infinitely many i’s with N(i) ⊆ {1, ..., j̄}. The subnetwork containing any such i is a subset
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of {1, ..., j̄}, so ri ≤ j̄ + 1. We cannot have limi→∞ ri = ∞.

Sufficiency: Construct an increasing sequence C1 ≤ C2 ≤ ... as follows. Condition
(2) implies there exists C1 so that maxj∈N(i) j ≥ 1 for all i ≥ C1. So, PL(i) ≥ 1 for all
i ≥ C1. Suppose C1 ≤ ... ≤ Cn are constructed with the property that PL(i) ≥ k for all
i ≥ Ck, k = 1, ..., n. Condition (2) implies there exists Cn+1 so that maxj∈N(i) j ≥ Cn for all
i ≥ Cn+1. But since all j ≥ Cn have PL(j) ≥ n by the inductive hypothesis, all i ≥ Cn+1

must have PL(i) ≥ n + 1, completing the inductive step. This shows limi→∞ PL(i) = ∞.
By the sufficiency of Condition (1) for limi→∞ ri = ∞, we see that Condition (2) implies the
same.

A.6 Proof of Theorem 1

Proof. If d = 1, then exactly one signal is aggregated per generation so ri/K → 1 as required.
Also, if c = 0, then we must have d = 1. From now on we assume d ≥ 2 and c ≥ 1.

Lemma A.3. For d ≥ 2, each generation t and each i ̸= i′ in generation t, Var [ℓi | ω = 1]
and Cov [ℓi, ℓi′ | ω = 1] depend only on t and not on the identities of i or i′, which we call
Vart and Covt, respectively. Similarly, for i in generation t and each j ∈ N(i), the weight
βi,j depends only on t, which we call βt.

Proof. The results hold by inductively applying the symmetry condition. Clearly they are
true for t = 2. Suppose they are true for all t ≤ T . For an agent i in generation t = T + 1,
the inductive hypothesis implies Var[ℓj | ω = 1] is the same for all j ∈ N(i), and all pairs
j, j

′ ∈ N(i) with j ̸= j
′ have the same conditional covariance. Also, using Proposition 2,

E[ℓj | ω = 1] is the same for all j ∈ N(i). Thus by Proposition 1, i places the same weight,
say βt, on all neighbors. Using the fact that ℓi = λi + ∑

j∈N(i) βtℓj, we have the recursive
expressions Var[ℓi | ω = 1] = 4

σ2 + β2
t (dVart−1 + (d2 − d)Covt−1) for all i in generation t,

and Cov[ℓi, ℓi′ | ω = 1] = β2
t (cVart−1 + (d2 − c)Covt−1) for all agents i ̸= i

′ in generation
t. This shows the claims for t = T + 1, and completes the proof by induction.

Taking the difference of the two expressions for Vart and Covt gives:

Vart − Covt = 4
σ2 + β2

t (d− c)(Vart−1 − Covt−1). (1)

We now require two auxiliary lemmas.

Lemma A.4. Consider the Markov chain on {1, ..., K} with state transition matrix p, with
pi,j = P[i → j] = 1/d if j ∈ Ψi, 0 otherwise. Suppose (Ψk)k is symmetric with c ≥ 1. Then
p∞

i := limt→∞(pt)i ∈ [0, 1]K exists, and it is the same for all 1 ≤ i ≤ K.
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Proof. For existence of p∞
i , consider the decomposition of the Markov chain into its commu-

nication classes, C1, ..., CL ⊆ {1, ..., K}. Without loss suppose the first L′ communication
classes are closed and the rest are not.

We show that each closed communication class is aperiodic when (Ψk)k is symmetric and
c, d ≥ 1. Let i ∈ Cm for 1 ≤ m ≤ L

′
. Let Ψi = {j1, ..., jd}. If i ∈ Ψi, then i’s periodicity

is 1. Otherwise, Ψi ⊆ Cm since Cm is closed, so for every 1 ≤ h ≤ d there exists a cycle of
some length Qh starting at i, where the h-th such cycle is i → jh → ... → i. Since c ≥ 1, i
and j1 share a common neighbor, which must be jh∗ for some 1 ≤ h∗ ≤ d. We can therefore
construct a cycle of length Qh∗ + 1 starting at i, i → j1 → jh∗ → ... → i. Since cycle lengths
Qh∗ and Qh∗ + 1 are coprime, i’s periodicity is 1.

By standard results (see e.g., Billingsley (2013)) there exist ν∗
m, 1 ≤ m ≤ L

′
, so that

limt→∞(pt)i = ν∗
m whenever i ∈ Cm. If i /∈ ∪1≤m≤L′Cm, then starting the process at i, almost

surely the process enters one of the closed communication classes eventually. This shows
limt→∞(pt)i exists and is equal to ∑L

′

m=1 qmν
∗
m, where qm is the probability that the process

started at i enters Cm before any other closed communication class.
To prove that p∞

i is the same for all i, we inductively show that for all i ̸= j, ∥ p∞
i −

p∞
j ∥max≤

(
d−c

d

)t
for all t ≥ 1. Since c ≥ 1, this would show that in fact p∞

i = p∞
j for all i, j.

For the base case of t = 1, enumerate Ψi = {n1, ..., nc, nc+1, ..., nd},Ψj = {n1, ..., nc, n
′
c+1, ..., n

′
d}

where all n1, ..., nd, n
′
c+1, ..., n

′
d ∈ {1, ..., K} are distinct. Then

p∞
i = 1

d

(
c∑

k=1
p∞

nk

)
+ 1
d

 d∑
k=c+1

p∞
nk

 ,

p∞
j = 1

d

(
c∑

k=1
p∞

nk

)
+ 1
d

 d∑
k=c+1

p∞
n

′
k

 , so

∥ p∞
i − p∞

j ∥max ≤ 1
d

d∑
k=c+1

∥ p∞
nk

− p∞
n

′
k

∥max≤ d− c

d
· 1

where the 1 comes from ∥ x− y ∥max≤ 1 for any two distributions x, y.
The inductive step just replaces the bound ∥ x− y ∥max≤ 1 with

∥ p∞
nk

− p∞
n

′
k

∥max≤
(
d− c

d

)t−1

from the inductive hypothesis.

Lemma A.5. βt → 1/d.
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Proof. For i in generation t + 1, ℓi = λi + βt+1
∑

j∈N(i) ℓj, so as in the proof of Lemma
A.3, Var[ℓi | ω = 1] = 4

σ2 + β2
t+1(dVart + (d2 − d)Covt). Using the definition of signal-

counting interpretation and Proposition 2, E[ℓj | ω = 1] = 1
2Vart for each j ∈ N(i), and so

E[ℓi | ω = 1] = 2
σ2 + dβt+1(1

2Vart). By the same argument we also have Var[ℓi | ω = 1] =
2 · E[ℓi | ω = 1], and this lets us solve out

βt+1 = Vart

Vart + (d− 1)Covt

≥ 1
d
.

It is therefore sufficient to show that Vart/Covt → 1. The weight wi,i′ that an agent i
in generation t places on the private signal of an agent i′ in generation t− τ is equal to the
product of ∏τ

j=1 βt+1−j and the number of paths from i to i′ in the network M.

We can compute the number of paths as follows. Consider a Markov chain with states
{1, . . . , K} and state transition probabilities P[k1 → k2] = 1/d if k2 ∈ Ψk1 , P[k1 → k2] = 0.
The number of paths from i in generation t to j in generation t− τ is equal to dτ times the
probability that the state is j after τ periods.

By Lemma A.4, there exists a stationary distribution π∗ ∈ RK
+ with ∑K

k=1 π
∗
k = 1 of the

Markov chain. Given ϵ > 0, we can choose τ0 such that the number of paths from i in
generation t to j = (τ − 1)K + k in generation τ is in [dτ (π∗

k − ϵ), dτ (π∗
k + ϵ)] for all t and all

τ ≥ τ0.
Fixing distinct agents i and i′ in generation t:

Vart = 4
σ2 + 4

σ2

t−1∑
τ=1

K∑
k=1

w2
i,(t−τ)K+k and Covt = 4

σ2

t−1∑
τ=1

K∑
k=1

wi,(t−τ)K+kwi′ ,(t−τ)K+k.

We want to show that

Vart/Covt =
1 +∑t−1

τ=1
∑K

k=1 w
2
i,(t−τ)K+k∑t−1

τ=1
∑K

k=1 wi,(t−τ)K+kwi
′
,(t−τ)K+k

→ 1.

Take ϵ > 0 smaller than π∗
k for all k. For τ ≥ τ0, we have

wi,(t−τ)K+kwi′ ,(t−τ)K+k ≥ (dτ
τ∏

j=1
βt+1−j)2(π∗

k − ϵ)2 and w2
i,(t−τ)K+k ≤ (dτ

τ∏
j=1

βt+1−j)2(π∗
k + ϵ)2

The covariance grows at least linearly in t since each β ≥ 1/d, while the contribution from
periods t− τ0 + 1, . . . , t is bounded and therefore lower order. Thus,

lim sup
t→∞

Vart/Covt ≤ lim sup
t→∞

∑K
k=1

∑t−1
τ=τ0(dτ ∏τ

j=1 βt+1−j)2(π∗
k + ϵ)2∑K

k=1
∑t−1

τ=τ0(dτ
∏τ

j=1 βt+1−j)2(π∗
k − ϵ)2 ≤ max

1≤k≤K

(π∗
k + ϵ)2

(π∗
k − ϵ)2 .
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Since ϵ is arbitrary, this completes the proof of the lemma.

We return to the proof of Theorem 1. Fix small ϵ > 0. By Lemma A.5, we can choose
T such that βt ≤ 1+ϵ

d
for all t ≥ T . Therefore, β2

t (d− c) ≤ (1+ϵ)2

d2 (d− c) for t ≥ T . Consider
the contraction map φ(x) = 4

σ2 + (1+ϵ)2

d2 (d− c)x. Iterating Equation (1) starting with t = T ,
we find that Vart − Covt ≤ φ(t−T )(VarT − CovT ), so this shows

lim sup
t→∞

(Vart − Covt) ≤ 4
σ2 · d2

d2 − (1 + ϵ)2d+ (1 + ϵ)2c

where the RHS is the fixed point of φ. Since this holds for all small ϵ > 0,we get lim supt→∞(Vart−
Covt) ≤ 4

σ2
d2

d2−d+c
.

At the same time, βt ≥ 1
d

for all t. Consider the contraction map φ(x) = 4
σ2 + 1

d2 (d− c)x.
Iterating Equation (1) starting with t = 1, we find that Vart−Covt ≥ φ(t−1)(Var1−Cov1),
so this shows

lim inf
t→∞

(Vart − Covt) ≥ 4
σ2 · d2

d2 − d+ c

where the RHS is the fixed point of φ. Combining with the result before, we get limt→∞(Vart−
Covt) = 4

σ2 · d2

d2−d+c
.

As in the proof of Lemma A.5, for i in generation t+1, E[ℓi | ω = 1] = 2
σ2 +dβt+1(1

2Vart).
Using the definition of signal-counting interpretation and Proposition 2, we have Vart+1 =
2 · E[ℓi | ω = 1] = 2(βt+1d(Vart/2) + 2/σ2), so

Vart+1 − Vart = (βt+1d− 1)Vart + 4
σ2

= ( dVart

Vart + (d− 1)Covt

− 1)Vart + 4
σ2

= ( dVart

dVart − (d− 1)(Vart − Covt)
− 1)Vart + 4

σ2

Using limt→∞(Vart − Covt) = 4
σ2 · d2

d2−d+c
, we conclude

lim
t→∞

(Vart+1 − Vart) = lim
t→∞

 Vart

Vart − 4
σ2

d2−d
d2−d+c

− 1
Vart + 4

σ2 .

= lim
t→∞

 4
σ2

d2 − d

d2 − d+ c
· Vart

Vart − 4
σ2

d2−d
d2−d+c

+ 4
σ2

Since Vart → ∞, the asymptotic increase in conditional variance across successive gener-
ations is limt→∞ (Vart+1 − Vart) = 4

σ2

(
d2−d

d2−d+c
+ 1

)
. Since agent i is in generation ⌊i/K⌋,
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we therefore have ri =
(
1 + d2−d

d2−d+c

)
i

K
+ o(i). So limi→∞(ri/i) =

(
1 + d2−d

d2−d+c

)
1
K
.

A.7 Proof of Proposition 4

Proof. Regardless of K, for each agent i in generation t, PL(i) = t−1, so limi→∞ PL(i) = ∞.

By Proposition 3, society learns completely in the long run. The expression for ri comes
from specializing Theorem 1 (whose proof does not depend on Proposition 4) to the case of
d = c = K. Observe (2K−1)

K2 ·K = (2K − 1)/K < 2 for any K ≥ 1.
To bound ri starting with the 3rd generation, we first establish a lemma that expresses

β⃗i,· in closed-form for an agent i in generation t+ 1. Let ℓsum be the sum of the log-actions
played in generation t − 1 in equilibrium. By the linearity of equilibrium (Proposition 1),
there must exist some µsum, σ

2
sum > 0 so that the conditional distributions of ℓsum in the two

states are N (±µsum, σ
2
sum).

Lemma A.6. Each element in β⃗i,· is
(

µ2
sum

σ2
sum

+ 1
σ2

)
/
(
K µ2

sum
σ2

sum
+ 1

σ2

)
.

Proof. An application of Proposition 1 shows each agent j in generation t aggregates ℓsum

and own private signal λj according to ℓj = 2 · µsum
σ2

sum
ℓsum + λj.

Next, consider the problem of someone in generation t + 1 who observes the log-actions
ℓj of the K agents j = (t− 1)K + k for 1 ≤ k ≤ K from generation t. By symmetry, i places
the same weight on these K log-actions in equilibrium. To find this weight, we calculate

E
[

K∑
k=1

ℓ(t−1)K+k | ω = 1
]

= 2Kµ2
sum
σ2

sum
+ 2K 1

σ2

Var
[

K∑
k=1

ℓ(t−1)K+k | ω = 1
]

= K ·
(

4 · µ
2
sum
σ2

sum
+ 4 · 1

σ2

)
+K · (K − 1) · 4 · µ

2
sum
σ2

sum

So by Proposition 1,

βi,j =
2 ·
(
2K µ2

sum
σ2

sum
+ 2K 1

σ2

)
K ·

(
4 · µ2

sum
σ2

sum
+ 4 · 1

σ2

)
+K · (K − 1) · 4 · µ2

sum
σ2

sum

=
µ2

sum
σ2

sum
+ 1

σ2

K µ2
sum

σ2
sum

+ 1
σ2

for every j = (t− 1)K + k for 1 ≤ k ≤ K, as desired.

Consider an agent i in generation t. From Proposition 2, there is some xold > 0 so that
ℓi ∼ N (±xold, 2xold) conditional on the two states. In fact, from Proposition 1, xold =
2 · µ2

sum
σ2

sum
+ 2

σ2 . For an agent in generation t + 1, using the same argument and applying the

formula for β⃗i,· from Lemma A.6, we have xnew =
2K( µ2

sum
σ2

sum
+ 1

σ2 )2

K
µ2

sum
σ2

sum
+ 1

σ2

+ 2
σ2 .
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A hypothetical agent who observes ℓsum (the sum of log-actions in generation t− 1) with
conditional distributions N (±µsum, σ

2
sum) and three independent private signals would play

a log-action with conditional distributions N (±y, 2y) where y =
[
2µ2

sum
σ2

sum
+ 6

σ2

]
+ 2

σ2 . We have

(y − xnew) · (Kµ2
sum
σ2

sum
+ 1
σ2 ) =

[
2µ

2
sum
σ2

sum
+ 6
σ2

]
·
[
K
µ2

sum
σ2

sum
+ 1
σ2

]
− 2K(µ

2
sum
σ2

sum
+ 1
σ2 )2

=(2 + 6K) · µ
2
sum
σ2

sum
· 1
σ2 + 6

σ4 − 4K · µ
2
sum
σ2

sum
· 1
σ2 − 2K 1

σ4

≥2K 1
σ2

(
µ2

sum
σ2

sum
− 1
σ2

)
.

We must have P[ℓsum > 0 | ω = 1] ≥ P[λ1 > 0 | ω = 1], a probability that just depends
on the ratio of the mean and standard deviation. So µsum

σsum
≥ 1

σ
, i.e. µ2

sum
σ2

sum
≥ 1

σ2 . Hence the
difference above is positive. This shows xnew − xold ≤ 3 · 2

σ2 .

A.8 Proof of Corollary 2

Proof. When d ≥ 2 and c < d, the collection of symmetric observation sets with these
parameters correspond to the collection of symmetric balanced incomplete block designs by
Theorem 2.2 from Chapter 8 of Ryser (1963). If there exists at least one symmetric network
with parameters (d, c,K) under the previous inequalities, then K = d2−d+c

c
by Equation

(3.17) from Chapter 8 of Ryser (1963).
Applying this result to the expression for aggregative efficiency from our Theorem 1,

limi→∞(ri/i) =
(
1 + d2−d

d2−d+c

)
1
K

=
(
2 − c

d2−d+c

)
1
K

= (2 − 1
K

) · 1
K

.

A.9 Proof of Proposition 5

Proof. We first construct weights such that agent i’s action need not admit a signal-counting
interpretation, but has distribution close to the distribution of the action that aggregates i
signals for i large. We will then rescale these weights to obtain a nearby strategy that admits
a signal-counting interpretation.

Consider a Markov process with states {1, ..., K} and state transition probabilities P[k1 →
k2] = 1/|Ψk1| if k2 ∈ Ψk1 , P[k1 → k2] = 0 otherwise. (Each Ψk is non-empty, since the
observation sets are strongly connected.) This process is irreducible by strong connectivity.
Also, since the observation sets are symmetric with c ≥ 1, the proof of Lemma A.4 implies
the process is aperiodic. By standard results (see e.g., Billingsley (2013)), there exists a
stationary distribution π∗ ∈ RK

++ with ∑K
k=1 π

∗
k = 1, such that limτ→∞(MΨ)τ e⃗k = π∗ for

every 1 ≤ k ≤ K, where e⃗k ∈ RK is a vector with 1 in position k and 0 in other positions,
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and MΨ is the stochastic matrix for the Markov process.
For t ≥ 1, 1 ≤ k ≤ K, abbreviate agent i = (t− 1)K + k as [t, k]. Consider the strategy

profile β⃗′
i where agent i = [1, k] puts weight 1/π∗

k on her log-signal, while agent i = [t, k]
for t ≥ 2 puts weight β′

i,j = 1/|Ψk| on each observed log-action and weight 1/π∗
k on her

log-signal. We will call the actions under this strategy profile ℓ′
i.

The weight that [t, k] puts on the log-signal of [t′
, k

′ ] for t′
< t is (1/π∗

k′ ) · ((MΨ)t−t
′
e⃗k)k′ .

Noting this quantity only depends on the difference t − t
′ and on k, k

′
, we abbreviate it as

ct−t′ ,k,k′ and observe that maxk,k′ |cτ,k,k′ − 1| → 0 as τ → ∞, since limτ→∞(MΨ)τ e⃗k = π∗ for
every k.

We show that under this strategy profile, ℓ′
i with i = [t, k] has the conditional distributions

N (±((t − 1)K + o(i)) 2
σ2 , ((t − 1)K + o(i)) 4

σ2 ). Let ϵ > 0 be given. We show for all large
enough i = [t, k], |E[ℓi | ω = 1]/(2/σ2) − ((t− 1)K)| < ϵi. This is because there is T so that
maxk,k′ |cτ,k,k′ − 1| < ϵ/4 for all τ ≥ T, which shows

|E[ℓ′
i | ω = 1]/(2/σ2) − ((t− 1)K)| ≤ (ϵ/4)(t− 1 − T )K + max

k,k′ ,τ<T
|cτ,k,k′ − 1| · (TK) + 1/π∗

k.

Because there are finitely many values of cτ,k,k′ with τ < T , the maximum maxk,k′ ,τ<T |cτ,k,k′ −
1| is constant in i. Thus the bound is a constant term in i plus a term no larger than (ϵ/4) · i.
By similar reasoning,

|Var[ℓ′
i | ω = 1]/(4/σ2)−((t−1)K)| ≤ (ϵ/2+ϵ2/16)(t−1−T )K+ max

k,k′ ,τ<T
|c2

τ,k,k′ −1|·(TK)+(1/π∗
k)2.

The bound is a constant term in i plus a term no larger than (2ϵ/3) · i for ϵ near 0.
We next use ℓ′

i to construct a strategy profile such that actions admit a signal-counting
interpretation and continue to have the conditional distributions N (±((t−1)K+o(i)) 2

σ2 , ((t−
1)K + o(i)) 4

σ2 ). Define

bi = 2E[ℓ′
i | ω = 1]

Var[ℓ′
i | ω = 1]

and ℓi = biℓ
′
i , so that

2E[ℓi | ω = 1] = Var[ℓi | ω = 1].

Thus, the actions ℓi admit a signal-counting interpretation. Because the log-actions ℓ′
i with

i = [t, k] have conditional distributions N (±((t − 1)K + o(i)) 2
σ2 , ((t − 1)K + o(i)) 4

σ2 ), the
constants bi → 1. Therefore, the log-actions ℓi with i = [t, k] have conditional distributions
N (±((t− 1)K + o(i)) 2

σ2 , ((t− 1)K + o(i)) 4
σ2 ) as well. Therefore, given K0 < K, there exists

T > 0 such that social learning aggregates at least (t − 1)K0 signals by agent (t − 1)K + k

for all t ≥ T and all 1 ≤ k ≤ K.
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Finally, we observe that because ℓi is a linear transformation of ℓ′
i for each i, these

log-actions correspond to a feasible strategy profile for the social planner. In particular,
agent i in position k puts weight biβ

′
i,j

1
bj

on ℓj (i.e., weight biβ
′
i,j on ℓ′

j) for each neighbor
j, and weight bi/π

∗
k on own log-signal. This is equal to biℓ

′
i because we know that ℓ′

i =
(1/π∗

k)λi +∑
j∈N(i) β

′
i,jℓ

′
j.

A.10 Proof of Corollary 3

Proof. We claim that for any agent i in generation t, the action ℓi is equal to the sum of λi

and λj for all agents j in generations 1, . . . , t− 1. The proof is by induction on t. The claim
holds for the first generation because all agents in the first generation choose ℓi = λi.

Consider an agent in generation t. By the inductive hypothesis, she observes neighbors’
actions ℓj = λj + ∑

j′≤(t−2)K λj′ for all j in generation t − 1 and observes sj for one such j.
Therefore, she can compute ∑j′≤(t−2)K λj′ and λj for all j in generation t − 1. Since these
signals are independent and she has access to no information about other signals from her
generation, she chooses ℓi = λi+

∑
j≤(t−1)K λj. By induction, we have ri = K(t−1)+1 > i−K

for all agents in generation t.

A.11 Proof of Corollary 4

Each information silo is equivalent to a maximum generations network, so the expression for
ri for agents in information silos follows immediately from Proposition 4.

The actions of agents in separate information silos are conditionally independent. For an
agent in position (t−1)K+1, we have r(t−1)K+1

t
≥ ∑N

n=1
2|Sn|−1

|Sn| for t large, because that agent
observes conditionally independent actions of agents with limt

ri

t
= 2|Sn|−1

|Sn| for 1 ≤ n ≤ N .
On the other hand, even if agent knew all the actions and private signals of her neighbors, we
would have r(t−1)K+1

t
= ∑N

n=1
2|Sn|−1

|Sn| + o(t) , because there a constant number of such signals.
This gives an upper bound, so we conclude limt→∞

r(t−1)K+1
t

= ∑N
n=1

2|Sn|−1
|Sn| .

A.12 Proof of Proposition 6

Proof. Let ϵ > 0. We show that for all n sufficiently large, with sufficiently high probability,
n’s indirect neighborhood contains no more than ϵn agents, so rn/n ≤ ϵ.

For each n, let kn be the largest even integer such that dkn < ϵn/4. Also, let δn satisfy
(1 − δn)kn/2 = ϵ/2. Note that δn → 0 as n → ∞. Let An(ϵ) be the event there is a path
of length kn from agent n to an agent in [ϵn/2, n]. We bound the probability of the event
An(ϵ), which in turns will give a bound on the probability of the event {rn/n ≥ ϵ}.
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For a path of length kn from agent n that ends at an agent in [ϵn/2, n], there must exist
at least kn/2 agents i along the path with each such i observing an agent in [(1 − δn)i, i− 1].
This is because the first time an agent i observes someone earlier than (1 − δn)i along the
path, the observed neighbor has the index (1−δn)n or earlier, since i ≤ n. When this happens
for a second time, the observed neighbor has index (1 − δn)2n or earlier, since the observer
has an index of no larger than (1 − δn)n, and so forth. If there were more than kn/2 agents
i who observe a neighbor earlier than (1 − δn)i along this path, then the path would end at
an agent earlier than (1 − δn)kn/2n = ϵn/2, by the construction of δn.

Because each agent’s neighbors are chosen uniformly at random from the predecessors,
the probability of a uniformly randomly chosen neighbor of i being earlier than (1 − δn)i
has probability at least 1 − 2δn. Consider a stochastic process where we place a particle
at n on the realized network, move the particle to a random neighbor of n, then move it
again to a random neighbor of this neighbor, and so on until the particle reaches agent
1. The probability that the particle stays within [ϵn/2, n] for at least kn steps is at most(

kn

kn/2

)
(2δn)kn/2 — this is because by the analysis above, at least kn/2 of the particle’s jumps

along the path must be from some i to a random neighbor no earlier than (1 − δn)i.
There are at most dkn paths of length kn beginning with agent n, so the expected number

of such paths ending at an agent in [ϵn/2, n] is at most dkn

(
kn

kn/2

)
(2δn)kn/2. By Stirling’s

approximation applied to the factorials k! and (k/2)!, there exists a constant C1 > 0 so that
the following holds for every δ and k:

dk

(
k

k/2

)
(2δ)k/2 ≤C1 ·

√
2πk · (k/e)k

(
√

2πk/2 · ((k/2)/e)k/2)2
· (2δd2)k/2

= C1√
πk/2

2k · (2δd2)k/2

= C1√
πk/2

(8δd2)k/2.

By our choice of k, we have

kn ≥ logd(ϵn/4) − 1 ≥ logd(ϵn/4) logd(e)/2

for n sufficiently large. Substituting into the exponent,

C1√
πkn/2

(8δnd
2)kn/2 ≤ C1√

πkn/2
[(8δnd

2)logd(e)/4]logd(ϵn/4).

When the quantity (8δnd
2)logd(e)/4 is small enough, [(8δnd

2)logd(e)/4]logd(ϵn/4) tends to 0
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faster than 1/n2. Since δn → 0 with n, there exists some N so that for n ≥ N, the expected
number of paths of length kn from agent n to agents in [ϵn/2, n] is smaller than 1/n2. The
probability of the event An(ϵ) is bounded above by the said expectation, so for large enough
n, P[An(ϵ)] ≤ 1/n2.

We show that for large enough n, outside of the event An(ϵ), n’s indirect neighborhood
contains no more than ϵn agents. If the event An(ϵ) does not hold, then n does not have
any path with length kn or longer that ends at an agent in [ϵn/2, n] (any such path with
length larger than kn contains a subpath of length kn that ends in this region). So agent
n’s indirect neighbors are either reachable by paths of length kn − 1 or shorter, or else they
belong to the set [1, ϵn/2]. There are at most ∑kn−1

j=1 dj ≤ dkn indirect neighbors of the first
kind, and at most ϵn/2 of the second kind. By our choice of kn, we have dkn < ϵn/4. So for
n large, n has no more than ϵn indirect neighbors on the complement of the event An(ϵ),
which means rn/n ≤ ϵ. Also, for n large, P[An(ϵ)] ≤ 1/n2. By the Borel-Cantelli lemma, this
implies that almost surely, lim sup

n→∞
(rn/n) ≤ ϵ. Since this holds for every ϵ > 0, we must have

the almost sure convergence of rn/n → 0.
We now show ri → ∞ for all d ≥ 2. For each network realization, Proposition 3 shows

that ri → ∞ if and only if for every k, there are only finitely many agents who have no direct
neighbors outside of {1, ..., k}. For fixed k, let En be the event that N(n) ⊆ {1, ..., k}. For
n ≥ k + 1, P[En] ≤ k

n
· k−1

n−1 since d ≥ 2. This shows ∑n P[En] < ∞, so by the Borel–Cantelli
lemma, the set of networks where N(n) ⊆ {1, ..., k} for infinitely many n has probability
0. This result holds for every k, so except on a zero-probability set of network realizations,
ri → ∞.

A.13 Proof of Proposition 7

We first show that expected utility is increasing in ri.

Lemma A.7. Agent i’s expected utility is a strictly increasing function of ri.

Proof. Let ri > r
′
i ≥ 1. Consider an agent j who observes two conditionally indepen-

dent Gaussian signals of the state, sA and sB. When ω = 1, sA ∼ N (1, σ2/r
′
i) and

sB ∼ N (1, σ2/(ri − r
′
i)). When ω = 0, sA ∼ N (−1, σ2/r

′
i) and sB ∼ N (−1, σ2/(ri − r

′
i)).

If this agent chooses an action aj using only sA, then the conditional distributions of the
log-action are ℓj ∼ N (±r′

i · 2
σ2 , r

′
i · 4

σ2 ). If the agent instead chooses an action a∗
j using both

sA and sB, then the conditional distributions of the log-action are ℓ∗
j ∼ N (±ri · 2

σ2 , ri · 4
σ2 ), by

the conditional independence of sA and sB. Action a∗
j gives strictly higher expected utility

to j than action aj since it is based on an extra informative signal, and this implies i has
strictly higher expected utility when social learning aggregates ri instead of r′

i signals.
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We now prove Proposition 7.

Proof. From the hypotheses, there exist 0 < ρL < ρH and a finite I so that ri ≥ ρHi and
r

′
i ≤ ρLi for all i ≥ I. Without loss we can choose I > ρH

ρH−ρL
. Let R := maxi≤I r

′
i < ∞.

We choose π so that for any 0 < 1/σ2 ≤ π, an agent who aggregatesR signals has expected
utility strictly lower than v. To see this is possible, note that we can choose ϵ > 0 small enough
so that −(1 − ϵ)(0.5 − ϵ)2 < v. Find ζ > 0 so that if y ≤ ζ, then exp(y)

1+exp(y) ≤ 0.5 + ϵ. Suppose
some agent j’s log-action has the conditional distributions ℓj ∼ N (±R · 2

σ2 , R · 4
σ2 ). Then

P [ℓj > ζ | ω = 1] → 0 as 1/σ2 → 0, since ζ is σ2δ−2R
2Rσ

standard deviations above the mean
when ω = 1, a quantity that tends to infinity as σ → ∞. But whenever P [ℓj > ζ | ω = 1] ≤ ϵ,
j’s conditional expected payoff when ω = 1 is bounded above by P[aj ≤ 0.5 + ϵ | ω =
1] · (−(0.5 − ϵ)2) ≤ −(1 − ϵ)(0.5 − ϵ)2, and symmetrically the same goes for j’s conditional
expected payoff when ω = 0.

For a given 1/σ2 ≤ π, let i′′ be the least integer in the set {I+ 1, I+ 2, ...} such that ρLi
′′

signals lead to an expected utility of at least v. This i′′ exists since ρL > 0. Utility v is weakly
attained by no earlier than i

′′ in network M
′ . This is because M ′ cannot weakly attain v

before agent I + 1 by construction of π, while agents i′ ≥ I + 1 and later aggregate no more
than ρLi

′ signals in network M
′ and their utilities are strictly increasing in the number of

signals aggregated by Lemma A.7. On the other hand, M strongly attains v by no later than
I = i

′′ − 1. This is because ρH(i′′ − 1) − ρLi
′′ = (ρH − ρL)i′′ − ρH ≥ (ρH − ρL)I − ρH > 0

by choice of I, so ri ≥ ρLi
′′ for all i ≥ i

′′ − 1. We again appeal to Lemma A.7 to deduce all
agents i′′ − 1 and later in M have expected utilities at least v.

A.14 Proof of Proposition 8

Proof. As in the proof of Proposition 7, there exists some I so that ri > r
′
i for all i ≥ I.

Now let T = I. Since welfare is a strictly increasing function in r by Lemma A.7, network
M leads to strictly higher welfare than M

′ for all agents i ≥ I.
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