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Abstract

We introduce an evolutionary framework to evaluate competing (mis)specifications in strate-

gic situations, focusing on which misspecifications can persist over correct specifications.

Agents with heterogeneous specifications coexist in a society and repeatedly play a stage

game against random opponents, drawing Bayesian inferences about the environment based

on personal experience. One specification is evolutionarily stable against another if, when-

ever sufficiently prevalent, its adherents obtain higher average payoffs than their counterparts.

Agents’ equilibrium beliefs are constrained but not wholly determined by specifications. En-

dogenous belief formation through the learning channel generates novel stability phenomena

compared to frameworks where single beliefs are the heritable units of cultural transmission.

In linear-quadratic-normal games where players receive correlated signals but possibly mis-

perceive the information structure, the correct specification is evolutionarily unstable against a

correlational error whose direction depends on social interaction structure. We also endogenize

coarse thinking in games and show how its prevalence varies with game parameters.

Keywords: misspecified Bayesian learning, endogenous misspecifications, evolutionary sta-

bility, higher-order beliefs, analogy classes
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1 Introduction

In many economic settings, people draw misspecified inferences about the world: that is, they start
with a prior belief that dogmatically precludes the true data-generating process. For instance, be-
havioral economics documents a number of prevalent statistical biases. When people reason about
economic fundamentals under the spell of one of these biases, they engage in misspecified learn-
ing. Following Esponda and Pouzo (2016), a growing literature has focused on the implications of
Bayesian learning under different misspecifications, taking the errors as exogenously given.

Why and when might we expect such misspecifications to persist? Mistakes that distort learn-
ing are empirically ubiquitous, which is puzzling for two reasons. First, many of these errors
demand even greater computational sophistication than the simple truth, making them hard to jus-
tify on the grounds of bounded cognition or costly attention. Convoluted conspiracy theories fall
into this category. So does a behavioral error called projection bias, where agents overestimate the
similarity between their own information and others’ information. Reasoning with projection bias
in settings with statistical independence requires the learner to keep track of inter-personal cor-
relations, complicating the inference problem. Second, conventional economic wisdom suggests
competitive pressure eliminates mistakes — including misspecifications. Indeed, contemporane-
ous papers that formalize payoff-based criteria for selecting between (mis)specifications find no
strict advantage to deviating from a dogmatically correct view of the data-generating process in
single-agent decision problems (Fudenberg and Lanzani, 2020; Frick, Iijima, and Ishii, 2021b).

This paper introduces a general framework to evaluate competing (mis)specifications based on
their expected objective payoffs, with particular emphasis on which misspecifications are likely to
persist over the correct specification (and in which environments). Agents use their observations
to draw Bayesian inferences, and their equilibrium beliefs play a critical role in selecting between
different specifications and generate novel stability phenomena. We find that when agents with
heterogeneous specifications coexist in a society and repeatedly match with random opponents
to play a stage game, misspecified agents may enjoy a strict payoff advantage compared to their
correctly specified counterparts. Unlike in decision problems, misspecifications in games can lead
to strategically beneficial misinferences about the game parameters. Through several examples
and applications, we discuss how details of the social interaction structure, such as the matching
assortativity between agents with different specifications, shape the stability of different mistakes.
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1.1 Correlational Mistakes in a Linear-Quadratic-Normal Game

We informally describe an application of our framework. Fix a linear-quadratic-normal game of
incomplete information from Vives (1988) as the stage game. There is a population of players who
match in pairs every period to play the stage game. Nature’s type is drawn i.i.d. across games,
and every pair of matched players receive correlated information about Nature’s type in their game
(as in Bergemann and Morris (2013)). For concreteness, think of the pairs of players as pairs of
duopolistic firms competing for the same market and Nature’s type in each game as the demand
state for the market. Firms privately observe a signal about today’s demand shock before choosing
how much to produce.

The population initially consists of a homogeneous group of firms who have correct beliefs
about all game parameters, including the correlation between rival players’ private signals. But
now a small fraction of new firms enter the society. The entrants differ from the incumbents in
two ways. First, they hold a dogmatically wrong belief about the signal correlation. Second, they
are uncertain about a parameter of the stage game — the elasticity of market price with respect to
total supply — and learn this fundamental from the realized prices in their games across different
periods. The entrants therefore engage in misspecified learning: after seeing their own signals,
they hold wrong beliefs about rivals’ signals and hence rivals’ production, so they misinterpret the
market price and mislearn game parameters.

Will the market drive out the mistaken entrants? The answer depends on the nature of the mis-
take and the interaction structure in the society — specifically, the matching assortativity of how
incumbents and entrants are paired with each other. Suppose matching is uniform. If the misspec-
ified entrants are slightly biased in the direction of believing in excessively correlated information
(projection bias), then they will end up with objectively higher profits than the correctly specified
incumbents and grow in relative prominence. On the other hand, if the entrants instead believe in
excessively independent information (correlation neglect), they will underperform compared to the
incumbents and get driven out. But when matching is perfectly assortative between the incumbent
and entrant firms, the conclusion is reversed. In this environment, it is the mistake of correlation
neglect that can invade a rational society.

We also use this game to illustrate that mislearning is crucial to the predictions. The correla-
tional errors that persist in an environment where agents are uncertain about price elasticity and
estimate it from data would instead confer an evolutionary disadvantage if agents start off knowing
the correct price elasticity.
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1.2 A Framework of Competing Specifications

More generally, we propose an evolutionary framework where specifications are encoded in theo-

ries that delineate feasible beliefs and serve as the basic unit of cultural transmission. Each theory
may represent, for example, a scientific paradigm that stipulates a set of (possibly incorrect) re-
lationships between environmental parameters and observables. The theory’s adherents estimate
its parameters and play the stage game based on their calibrated model. Theories rise and fall in
prominence based on the objective welfare of their adherents, as the school of thought that leads
to higher payoffs tends to acquire more resources and attract more followers in the future.

In the example above, the incumbents and the entrants differ in their theories about the signal
correlation of firms that operate in the same market. Every firm learns about a parameter of the
environment (price elasticity) through the lens of its theory. Firms that believe in different cor-
relations interpret the same observation differently when inferring price elasticity, as they make
different estimates about rival firm’s production based on their own demand signal. We suppose
that more future entrepreneurs flock to the theory that leads to objectively higher firm profits.

The fitness of a theory is determined by its average payoff in stage games, and this average
depends on the distribution of opponents. We introduce the concept of a zeitgeist to capture the
relevant social interaction structure in the society — the sizes of the subpopulations with different
theories, and the matchmaking technology that pairs up opponents to play the game. In equilib-
rium, each agent forms a Bayesian belief about her environment using data from all of her interac-
tions, and subjectively best responds to this belief. We define the evolutionary stability of theory
A against theory B based on whether theory A has a weakly higher equilibrium fitness than theory
B when the population share of theory A is close to 1. The example above, for instance, says the
correct specification about the information structure of firms is evolutionarily unstable against ei-
ther projection bias or correlation neglect, depending on the matching assortativity. Using this and
other examples, we articulate how details of the evolutionary environment (e.g., social interaction
structure, the stage game) affect which misspecifications persist.

Adherents of a misspecified theory may come to different conclusions about the economic
fundamentals in different zeitgeists, with these different beliefs translating into different subjec-
tive best-response functions in the stage game. Agents are not endowed with a fixed subjective
preference over strategy profiles in the stage game, but arrive at such a preference as they learn
about the environment through the lens of their misspecified theory. We call this endogeneity of
stage-game preference the learning channel and show that it leads to novel stability phenomena.
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First, we demonstrate the possibility of a strong form of multiplicity in the stability comparison
between two theories: stability reversals. Two theories exhibit stability reversal if (i) theory A’s
adherents strictly outperform theory B’s adherents not only on average, but even conditional on
opponent’s type, whenever theory A is dominant; and (ii) theory B’s adherents strictly outperform
theory A’s adherents, whenever theory B is dominant. Second, we show that the relative stability
of one theory over another may be non-monotonic in matching assortativity. One theory may be
evolutionarily stable against another when assortativity is either high or low, but not when it is
intermediate. Both of these stability phenomena rely on the idea that a fixed misspecification can
lead to different equilibrium beliefs and hence different behavior in different settings. That is, they
never arise in a world where the basic unit of cultural transmission is a single belief about the
economic environment instead of a theory (i.e., a collection of feasible beliefs).

The rest of this section reviews related literature. Section 2 introduces the environment and
the evolutionary framework for assessing the stability of specifications. Section 3 discusses how
the learning channel enables novel stability phenomena. Sections 4 contains application to mis-
specified information structures in linear-quadratic-normal games. Section 5 contains a second
application that shows our framework can endogenize analogy classes, a solution concept that Je-
hiel (2005) introduced to capture simplified strategic thinking in complex environments. It also
illustrates how payoff structure of the stage game can alter the prevalence of analogy-based think-
ing in the society. Section 6 concludes. Appendix A and Online Appendix OA 1 contain proofs of
results from the main text. Online Appendix OA 2 presents sufficient conditions for the existence
and upper hemicontinuity of equilibrium zeitgeists, and Online Appendix OA 3 provides a learning
foundation for equilibrium zeitgeists.

1.3 Related Literature

Our paper contributes to the literature on misspecified Bayesian learning by proposing a framework
to assess which specifications are more likely to persist based on their objective performance. Most
prior work on misspecified Bayesian learning study implications of particular errors in specific
active-learning environments (i.e., when actions affect observations), including both single-agent
decision problems (Nyarko, 1991; Fudenberg, Romanyuk, and Strack, 2017; Heidhues, Koszegi,
and Strack, 2018; He, 2021) and multi-agent games (Bohren, 2016; Bohren and Hauser, 2021; Je-
hiel, 2018; Molavi, 2019; Dasaratha and He, 2020; Ba and Gindin, 2021; Frick, Iijima, and Ishii,
2020; Murooka and Yamamoto, 2021). A number of papers establish general convergence proper-
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ties of misspecified learning (Esponda and Pouzo, 2016; Esponda, Pouzo, and Yamamoto, 2021;
Frick, Iijima, and Ishii, 2021a; Fudenberg, Lanzani, and Strack, 2021). All of the above papers take
misspecifications as exogenously given. By contrast, we propose endogenizing misspecifications
using ideas from evolutionary game theory. This also lets us ask how details of the evolutionary
process (e.g., the matching assortativity) shape the stability of misspecifications.

Another strand of literature shares our central focus on selecting between multiple specifica-
tions for Bayesian learning. Papers in this literature have focused on different criteria, including
performance in financial markets (Sandroni, 2000; Massari, 2020), subjective expectations of pay-
offs (Olea, Ortoleva, Pai, and Prat, 2021; Levy, Razin, and Young, 2021; Eliaz and Spiegler, 2020;
Gagnon-Bartsch, Rabin, and Schwartzstein, 2020), and goodness-of-fit tests (Cho and Kasa, 2015,
2017; Ba, 2021; Schwartzstein and Sunderam, 2021). We instead consider the objective expected
payoffs of agents with different specifications who coexist in the same society and interact strate-
gically. We are implicitly motivated by a story of cultural transmission where agents play “games”
with random opponents and derive welfare based on these interactions, and those with higher wel-
fare are more likely to pass down their theories to future agents.

This paper is closest to two independent and contemporaneous papers, Fudenberg and Lan-
zani (2020) and Frick, Iijima, and Ishii (2021b), who consider welfare-based criteria for selecting
among misspecifications in single-agent decision problems. Fudenberg and Lanzani (2020) study
a framework where a continuum of agents with heterogeneous misspecifications arrive each period
and learn from their predecessors’ data. When the population shares of different misspecifications
change according to their objective performance, Fudenberg and Lanzani (2020) ask which Berk-
Nash equilibria under one misspecification are robust to invasion by a small fraction of mutants
with a different misspecification. Frick, Iijima, and Ishii (2021b) assign a learning efficiency index

to every misspecified signal structure and conduct a robust comparison of welfare under different
misspecifications. For two misspecifications with the property that biased agents still learn the
correct state in the long run, the misspecification with a higher index leads to faster convergence
to the truth and thus higher welfare in any decision problem, provided there is a large enough but
finite number of signals.

In single-agent decision problems, correctly specified agents always perform weakly better than
misspecified agents in the long run (except when there are non-identifiability issues, see Proposi-
tion 1), so welfare-based criteria do not provide a strict advantage in equilibrium to misspecified
individuals compared to the correctly specified ones in the same society.1 Frick, Iijima, and Ishii

1This conclusion relates to the market-selection hypothesis that dates back to at least Friedman (1953). Blume and

5



(2021b) also find that correctly specified agents who know the data-generating process converge
to the truth faster than misspecified agents.2 By contrast, we focus on a theory of welfare-based
selection of misspecifications in games, where strategic concerns may imply that learning under
a misspecification confers a strict evolutionary advantage relative to learning under the correct
specification and relative to dogmatically knowing the true data-generating process.3 The central
concept in our framework, a zeitgeist, captures aspects of the social interaction structure that are
uniquely relevant when agents confront a game as opposed to a decision problem — namely, the
assortativity of the matching technology that pairs up agents with different specifications to play
the stage game, and how agents behave when matched with different types of opponents.

Our framework of competition between different specifications for Bayesian learning is in-
spired by the evolutionary game theory literature. While to the best of our knowledge this literature
has not yet spoken to applications featuring misspecified Bayesian learning, it also uses objective
payoffs as the selection criterion, and studies the evolution of subjective preferences in games
and decision problems (e.g., Dekel, Ely, and Yilankaya (2007), see also the surveys Robson and
Samuelson (2011) and Alger and Weibull (2019)) and the evolution of constrained strategy spaces
(Heller, 2015; Heller and Winter, 2016). Learning does not play a key role in these papers. By
contrast, our work seeks to provide a foundation for the exogenously given misspecifications in the
recent literature on misspecified Bayesian learning, and our results depend crucially on the mis-
learning channel (as highlighted in Section 3 and Section 4.6). In settings where agents entertain
fundamental uncertainty about payoff parameters in the stage game, we can think of our framework
as applying evolutionary forces to sets of preferences, viewing every misspecification (i.e., a set
of feasible stage-game parameters) as a set of preferences over strategy profiles. A few papers in
this literature study the evolution of different belief-formation processes (Heller and Winter, 2020;
Berman and Heller, 2021), but they take a reduced-form (and possibly non-Bayesian) approach and
consider arbitrary inference rules. We require agents to be Bayesians who only differ in the support
of their Bayesian prior (i.e., their specification), given our emphasis on better understanding the
persistence of errors in models of misspecified Bayesian learning.

Easley (2002, 2006) come to the same conclusion in market equilibria where agents act as price-takers, provided the
market environment leads to Pareto efficient outcomes. Our environment where agents pair off into two-player games
and interact as local oligopolies is a natural setting where outcomes are not Pareto efficient.

2But, correctly specified agents who are uncertain about the data-generating process may converge more slowly
than misspecified agents.

3Some papers studying misspecified learning in games also point out that misspecifications can improve an agent’s
welfare in particular situations (e.g., Jehiel (2005) and Ba and Gindin (2021)). We contribute by introducing a general
framework that can be applied broadly.
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2 Environment and Stability Concept

In this section, we introduce the general environment and stability concept. We begin with the
objective stage game and subjective theories that encode specifications. We define the notion of an
equilibrium zeitgeist, which describes the steady-state behavior and beliefs in a society populated
by agents with heterogeneous specifications. We then present the stability concept, based on objec-
tive welfare in equilibrium zeitgeists when one theory is sufficiently prevalent. We also discuss an
extension, equilibrium zeitgeist with strategic uncertainty, where agents may hold wrong beliefs
about others’ strategies in the steady state.

2.1 Objective Primitives

We first set up the objective primitives of the general environment. The stage game is a symmetric
two-player game with a common strategy space A, assumed to be metrizable. When i and −i

choose strategies ai,a−i ∈ A, random consequences yi,y−i ∈ Y are generated for the players from
a metrizable space Y. These consequences determine each player’s utility, according to a utility
function π : Y→ R. Objectively, yi is generated as a function of i and −i’s play. We take this
distribution to be F•(ai,a−i) ∈ ∆(Y), where ∆(Y) is the set of distributions over Y. We denote
the density or probability mass function associated with this distribution by f •(ai,a−i), where
f •(ai,a−i)(y) ∈ R+ for each y ∈ Y.

This general setup can allow for mixed strategies (if A is the set of mixtures over some pure
actions) and incomplete-information games (if S is a space of private signals, A a space of actions,
and A = AS is the set of signal-contingent actions). It can also describe asymmetric games. Sup-
pose there is a game with action sets A1,A2 for player roles P1 and P2, and that the consequences
of P1 and P2 under the action profile (a1,a2)∈ A1×A2 are generated according to the distributions
F•1 (a1,a2) and F•2 (a2,a1) over Y, where we assume the consequence also fully reveals the agent’s
role. We may construct a symmetric stage game by letting A = A1×A2, so the strategies of two
matches agents spell out what actions they would take if they were assigned into each of the player
roles. The agents are then placed into the player roles uniformly at random and play according to
the strategies. That is, the objective distribution over i’s consequence when playing (ai1,ai2) ∈ A
against (a−i1,a−i2) ∈ A is given by the 50-50 mixture over F•1 (ai1,a−i2) and F•2 (ai2,a−i1).
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2.2 Models and Theories

Throughout this paper, we will take the strategy space A, the set of consequences Y, and the utility
function over consequences π to be common knowledge among the agents. But, agents are unsure
about how play in the stage game translates into consequences: that is, they have fundamental un-

certainty about the function F•. For example, the agents may be uncertain about some parameters
of the stage game, such as the market price elasticity in a quantity-competition game.

We will consider a society with two observably distinguishable groups of agents, A and B,
who may behave differently in the stage game (due to each group having a different belief about
the economic fundamentals, for example). All agents entertain different models of the world as
possible resolutions of their uncertainty. A model F :A2→∆(Y) is a conjecture about how strategy
profiles translate into consequences for the agent. Assume each F , like F•, is given by a density
or probability mass function f (ai,a−i) : Y→ R+ for every (ai,a−i) ∈ A2.

A theory Θ is a collection of models: that is, a subset of (∆(Y))A2
. We assume Θ is metrizable.

Each agent enters society with a persistent theory, which depends entirely on whether they are
from group A or group B. We think of this exogenously endowed theory as coming from education
or cultural background, and each agent dogmatically believes that her theory contains the correct
model of the world. A theory Θ is correctly specified if F• ∈Θ.

In general, a theory may exclude the true F• that generates consequences. Such misspecified

theories can represent a scientific paradigm about the economy based on a false premise, a religious
belief system with dogmas that contradict facts about the world, or heuristic thinking stemming
from a psychological bias that deems the true environment as implausible. Each agent plays the
stage game with a random opponent in every period, and uses her personal experience in these
matches to calibrate the most accurate model within her theory in a way that we will make precise
in Section 2.4.

An agent endowed with a theory is called an adherent of the theory. As alluded to above, the
two observable groups A and B in the society correspond to the adherents of the two theories.
This assumes that agents can identify which group their matched opponent belongs to, though we
do not assume that agents know the models contained in other theories or be capable of making
inferences using other theories. Consider hedge funds that regularly trade against each other in
particular stocks. In practice, funds differ in their philosophies about market rationality, with some
focusing on fundamental analysis and others on technical analysis. Each fund’s theory about the
financial market is well known to other market participants, as it is always prominently marketed
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to their clients. For instance, the founders of Dimensional Advisors base their trading strategies
on the efficient-market hypothesis, attributing this to their education at the University of Chicago.
Paul Tudor Jones’s Tudor Investment Corporation, on the other hand, focuses heavily on technical
analysis. Jones is known for his view on price movements that “There’s typically no logic to it;
irrationality reigns supreme, and no class can teach what to do” (Ivanov, 2008). At the same time,
simply observing another fund’s actions would not lead a technical analyst to embrace efficient
markets, or vice versa. Part of the obstacle is that both fundamental analysis and technical analysis
are complex forecasting systems that involve calibrating sophisticated models and take many years
of training and experience to master. So, agents can identify an opponent’s theory without knowing
the models contained in said theory.

2.3 Zeitgeists

To study competition between two theories, we must describe the social composition and interac-
tion structure in the society where learning takes place. We introduce the concepts of zeitgeists
and equilibrium zeitgeists to capture these details. We define a zeitgeist as a landscape of con-
current beliefs from different schools of thought, their relative prominence in the society, and the
interaction among the adherents of different theories.

Definition 1. A zeitgeist Z = (ΘA,ΘB,µA,µB, p,λ ,a) consists of: (1) two theories ΘA and ΘB;
(2) a belief over models for each theory, µA ∈ ∆(ΘA) and µB ∈ ∆(ΘB); (3) relative sizes of the
two groups in the society, p = (pA, pB) with pA, pB ≥ 0, pA + pB = 1; (4) a matching assorta-
tivity parameter λ ∈ [0,1]; (5) each group’s strategy when matched against each other group,
a = (aAA,aAB,aBA,aBB) where ag,g′ ∈ A is the strategy that an adherent of Θg plays against an
adherent of Θg′ .

A zeitgeist outlines the beliefs and interactions among agents with heterogeneous theories liv-
ing in the same society. Parts (1) and (2) of this definition capture the beliefs of each group. Parts
(3) and (4) determine social composition and social interaction—the relative prominence of each
theory and the probability of interacting with one’s own group versus with the population as a
whole. In each period, every agent is matched with an opponent from her own group with prob-
ability λ , and matched uniformly by population proportion with probability 1−λ . Therefore, an
agent from group g has an overall probability of λ +(1−λ )pg of being matched with an opponent
from her own group, and a complementary chance of being matched with an opponent from the
other group. Part (5) describes behavior in the society.
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2.4 Equilibrium Zeitgeists

To determine each theory’s evolutionary fitness, we introduce our equilibrium concept.
An equilibrium zeitgeist (EZ) imposes equilibrium conditions on the beliefs and behavior in

a zeitgeist. Specifically, it is a zeitgeist that satisfies the optimality of inference and behavior,
holding fixed the population shares p and the matching assortativity λ . Optimality of behavior
requires each player to best respond given her beliefs, and optimality of inference requires that the
support of each player’s belief only contains the “best-fitting” models from her theory in the sense
of minimizing Kullback-Leibler (KL) divergence.

EZs have a learning foundation (Online Appendix OA 3) as the social steady state when a
continuum of long-lived Bayesian learners with different theories coexist in the society with pro-
portions p, match up with assortativity λ every period, and learn from personal experience. In the
learning foundation, each agent starts with a full-support prior belief over the models in her theory
and over how others play.4 When matched with an opponent, the agent sees the opponent’s group
and chooses a strategy ai ∈ A. At the end of the game, the agent observes a consequence yi ∈ Y
and an ex-post signal xi about the matched opponent’s strategy a−i. She then updates her belief
using Bayes’ rule. When the ex-post signal is sufficiently informative about the matched oppo-
nent’s strategy, each agent must hold correct beliefs about others’ strategies in the steady state, and
her posterior belief about the fundamental F• concentrates around those models in her theory that
minimize KL divergence.

In an EZ, we abstract away from the issues surrounding learning others’ strategies and focus on
learning parameters of the environment. In the example from the introduction where firms match
into pairs to play an incomplete-information Cournot duopoly, we can imagine that each firm’s
strategy (i.e., mapping from signal realization to production level) corresponds to a manufacturing
process that automatically adjusts production based on daily private information, and each firm
learns something about the matched rival firm’s production process. We consider an extension in
Section 2.7 that allows agents to be misspecified about others’ strategies and hold wrong beliefs
about these strategies in equilibrium: this corresponds to a learning environment where agents only
learn from the consequences yi and do not observe additional feedback about others’ strategies.

To formally give the definition of EZ, we require some new notation.
For two distributions over consequences, Φ,Ψ ∈ ∆(Y) with density functions / probability

4This setup allows agents to make inferences about game parameters using opponents’ strategy, because their prior
may exhibit correlation between strategic uncertainty and fundamental uncertainty.
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mass functions φ ,ψ , define the KL divergence from Ψ to Φ as DKL(Φ ‖Ψ) :=
∫

φ(y) ln
(

φ(y)
ψ(y)

)
dy.

Recall that every model F , like the true fundamental F•, outputs a distribution over consequences
for every profile of own play and opponent’s play, (ai,a−i) ∈A2. For model F, let K(F ;ai,a−i) :=
DKL(F•(ai,a−i) ‖F(ai,a−i)) be the KL divergence from the expected distribution of consequences
F(ai,a−i) to the objective distribution of consequences F•(ai,a−i) under the play (ai,a−i).

For a distribution µ over models, let Ui(ai,a−i; µ) represent i’s subjective expected utility under
the belief that the true model is drawn according to µ. That is, Ui(ai,a−i; µ) :=EF∼µ(Ey∼F(ai,a−i)[π(y)]).

Definition 2. A zeitgeist Z = (ΘA,ΘB,µA,µB, p,λ ,a) is an equilibrium zeitgeist (EZ) if for every
g,g

′ ∈ {A,B}, ag,g′ ∈ argmax
ai∈A

Ui(ai,ag′ ,g; µg) and, for every g ∈ {A,B}, belief µg is supported on

argmin
F∈Θg

{
(λ +(1−λ )pg) ·K(F ;ag,g,ag,g)+(1−λ )(1− pg) ·K(F ;ag,−g,a−g,g)

}
where −g means the group other than g.

In an EZ, each agent from group g chooses a subjective best response ag,g′ against each group
g
′

of opponents, given her belief µg about the fundamental uncertainty. Her belief µg is supported
on the models in her theory that minimize a weighted KL-divergence objective, with the data from
each type of match weighted by the probability of confronting this type of opponent.

An important assumption behind this framework is that agents (correctly) believe the economic
fundamentals are fixed, no matter who they are matched against. That is, the mapping (ai,a−i) 7→
∆(Y) describes the stage game that they are playing, and agents know that they always play the
same stage game even though opponents from different groups may use different strategies in the
game. As a result, the agent’s experience in games against both groups of opponents jointly resolve
the same fundamental uncertainty about the environment. Generally, play between two groups g

and g
′

is not a Berk-Nash equilibrium (Esponda and Pouzo, 2016),5 as the individuals in group g

draw inferences about the game’s parameters not only from the matches against group g
′
, but also

from the matches against the other group −g
′
, who may use a different strategy.

Even as agents adjust their beliefs and behavior to converge to an EZ, the population propor-
tions of different theories pA, pB remain fixed. We imagine a world where the relative prominence
of theories change much more slowly than the rate of convergence to an EZ. Thus, an equilibrium

5A Berk-Nash equilibrium between groups g and g′ would have each player only draw inferences from the data
generated in the match between the two groups g and g′.
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zeitgeist provides snapshot of the society in a given era, and the social transitions between differ-
ent EZs as p evolves takes place on a longer timescale. This assumption about the relative rate of
change in the population sizes follows the previous work on evolutionary game theory (Dekel, Ely,
and Yilankaya, 2007).

2.5 Evolutionary Stability of Theories

In an EZ, define the fitness of each theory as the objective expected payoff of its adherents. Con-
sider an evolutionary story where the relative prominence of the two theories in the society rise
and fall according to their relative fitness. This could happen, for example, if the theories are the
basic heritable units of information passed down to future agents via cultural transmission, and the
school of thought whose adherents have higher average payoff tends to acquire more resources and
attract a larger share of future adherents. We are interested in a notion of stability based on this
“evolutionary” process where two co-existing rival theories compete to create intellectual descen-
dants in a payoff-monotonic way. Can the adherents of a resident theory ΘA, starting at a position
of social prominence, always repel an invasion from a small ε mass of agents who adhere to a
mutant theory ΘB? The definition of evolutionary stability formalizes this idea.

Since we are motivated by situations where a small but strictly positive population of theory
ΘB adherents invades an otherwise homogeneous society all believing in theory ΘA, we begin
with a refinement of EZ that rules out those equilibria with the population share (pA, pB) = (1,0)
that cannot be written as the limit of equilibria with a positive but vanishing pB. This rules out, for
example, EZs with pA = 1 sustained only because group A holds fragile beliefs about the economic
fundamentals that would be discarded after a single match against a group B opponent.

Definition 3. An EZ Z = (ΘA,ΘB,µA,µB, p,λ ,a) with p = (1,0) is approachable if there exists
a sequence of EZs Z(n) = (ΘA,ΘB,µ

(n)
A ,µ

(n)
B ,(p(n)A , p(n)B ),λ ,(a(n)AA,a

(n)
AB,a

(n)
BA ,a

(n)
BB)), where p(n)B > 0

for all n, p(n)B → 0, µ
(n)
A → µA, µ

(n)
B → µB, a(n)→ a.

In this definition, µ
(n)
g → µg refers to convergence in weak* topology on the space ∆(Θg) of

distributions over the models in theory Θg, and a(n) → a means the convergence of the strategy
profile in the metrizable space A4.

We now turn to the definition of evolutionary stability, which is defined only when the set of
approachable EZ with p = (1,0) is non-empty. Stability is defined based on the fitness of theories
ΘA,ΘB in such equilibria. Evolutionary stability is when ΘA has higher fitness than ΘB in all
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approachable equilibria, and evolutionary fragility is when ΘA has lower fitness in all approachable
equilibria. These two cases give sharp predictions about whether a small share of mutant-theory
invaders might grow in size, across all equilibrium selections. A third possible case, where ΘA has
lower fitness than ΘB in some but not all approachable equilibria, correspond to a situation where
the mutant theory may or may not grow in the society, depending on the equilibrium selection.

Definition 4. Suppose there exists at least one approachable EZ with theories ΘA,ΘB, p = (1,0),
and matching assortativity λ . Say ΘA is evolutionarily stable [fragile] against ΘB under λ -
matching if in all approachable EZs, ΘA has a weakly higher [strictly lower] fitness than ΘB.

2.6 Misspecified Theories in Decision Problems

In single-agent problems, evolutionary arguments will always favor a correctly specified theory
over an incorrect one. The stage “game” is a decision problem if (ai,a−i) 7→ F•(ai,a−i) only de-
pends on ai. In decision problems, the correctly specified theory is evolutionarily stable against
any other theory, except when there are identification issues. We adapt the notion of strong identi-
fication from Esponda and Pouzo (2016).

Definition 5. Theory ΘA is strongly identified in EZ Z = (ΘA,ΘB,µA,µB, p,λ ,a) if whenever
F ′,F ′′ ∈ΘA both solve

min
F∈ΘA

{(λ +(1−λ )pA) ·K(F ;aAA,aAA)+(1−λ )(1− pA) ·K(F ;aAB,aBA)} ,

we have F
′
(ai,aAA) = F

′′
(ai,aAA) and F

′
(ai,aBA) = F

′′
(ai,aBA) for all ai ∈ A.

Proposition 1. Suppose the stage game is a decision problem. Let λ and two theories ΘA,ΘB be

given, where ΘA is correctly specified. Suppose there exists at least one approachable EZ with

pA = 1, and ΘA is strongly identified in all such equilibria. Then ΘA evolutionarily stable under

λ -matching against ΘB.

The result that a resident correct specification is immune to invasions from misspecifications
echoes related results in Fudenberg and Lanzani (2020) and Frick, Iijima, and Ishii (2021b). We
focus instead on stage games where multiple agents’ actions jointly determine their payoffs and
characterize which misspecifications can invade a rational society in which environments.
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2.7 Equilibrium Zeitgeist with Strategic Uncertainty

For most of our applications, we focus on misspecified learning about fundamental parameters of
the game. But in some other environments, agents may start with a dogmatically wrong theory
about others’ strategies, and their equilibrium mislearning about others’ behavior is the key driver
of their payoffs.

Our setup of equilibrium zeitgeists can be adapted to allow for such strategic uncertainty. An
extended model is a triplet (aA,aB,F) with aA,aB ∈ A and F : A2→ ∆(Y). Each extended model
contains a conjecture aA about how group A opponents act when matched with the agent, a conjec-
ture aB about how group B opponents act, and a conjecture F about how strategy profiles translate
into consequences for the agent. Assume each F , like F•, is given by a density or probability
mass function f (ai,a−i) : Y→ R+ for every (ai,a−i) ∈ A2. An extended theory Θ is a collection
of extended models: that is, a subset of A2× (∆(Y))A2

. We assume the marginal of the extended
theory on (∆(Y))A2

is metrizable. An extended theory Θ is correctly specified if Θ⊇ A2×{F•},
so the agent can make unrestricted inferences about others’ play and does not rule out the correct
fundamental environment F•.

Definition 6. A zeitgeist with strategic uncertainty Z = (ΘA,ΘB,µA,µB, p,λ ,a) consists of: (1)
two extended theories ΘA and ΘB; (2) a belief over extended models for each extended theory,
µA ∈ ∆(ΘA) and µB ∈ ∆(ΘB); (3) relative sizes of the two groups in the society, p = (pA, pB)

with pA, pB ≥ 0, pA + pB = 1; (4) a matching assortativity parameter λ ∈ [0,1]; (5) each group’s
strategy when matched against each other group, a = (aAA,aAB,aBA,aBB) where ag,g′ ∈ A is the
strategy that an adherent of Θg plays against an adherent of Θg′ .

In this environment with both fundamental uncertainty and strategic uncertainty, agents still
entertain some belief over their conjectures (both about others’ play and about parameters of the
stage game). An agent’s subjective belief about the distribution of consequences in a match de-
pends on both of these dimensions. In equilibrium, the “best-fitting” beliefs are the conjectures that
lead to subjective consequence distributions closest to the true ones in the sense of KL divergence.

Definition 7. A zeitgeist with strategic uncertainty Z= (ΘA,ΘB,µA,µB, p,λ ,a) is an equilibrium

zeitgeist with strategic uncertainty (EZ-SU) if for every g,g
′ ∈ {A,B},

ag,g′ ∈ argmax
â∈A

E(aA,aB,F)∼µg

[
Ey∼F(â,a

g′ )
(π(y))

]
and, for every g ∈ {A,B}, the belief µg is sup-
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ported on

argmin
(âA,âB,F̂)∈Θg

{
(λ +(1−λ )pg) ·DKL(F•(ag,g,ag,g) ‖ F̂(ag,g, âg)))

+(1−λ )(1− pg) ·DKL(F•(ag,−g,a−g,g) ‖ F̂(ag,−g, â−g)

}

where −g means the group other than g.

Approachability and evolutionarily stability with strategic uncertainty are defined analogously
to a world where we require agents to know each others’ strategies in equilibrium.

Definition 8. An EZ-SU Z = (ΘA,ΘB,µA,µB, p,λ ,a) with p = (1,0) is approachable if there
exists a sequence of EZ-SUs Z(n)

= (ΘA,ΘB,µ
(n)
A ,µ

(n)
B ,(p(n)A , p(n)B ),λ ,(a(n)AA,a

(n)
AB,a

(n)
BA ,a

(n)
BB)), where

p(n)B > 0 for all n, p(n)B → 0, µ
(n)
A → µA, µ

(n)
B → µB, a(n)→ a.

Definition 9. Suppose there exists at least one approachable EZ-SU with extended theories ΘA,ΘB,
p = (1,0), and matching assortativity λ . Say ΘA is evolutionarily stable [fragile] with strategic

uncertainty against ΘB under λ -matching if in all such approachable EZ-SUs, ΘA has a weakly
higher [strictly lower] fitness than ΘB.

3 Learning Channel and New Stability Phenomena

This section focuses on how the framework’s learning channel leads to new stability phenomena.
A key feature of our theory-evolution framework is that each agent interprets her observations

through the lens of her theory, thus drawing inferences about her environment (i.e., game parame-
ters). These inferences, in turn, shape her preference over strategy profiles in the stage game. We
call this phenomenon the learning channel: the subjective preferences that the adherents of differ-
ent theories hold over stage-game strategy profiles is endogenously determined in equilibrium. By
contrast, the literature on preference evolution discussed in Section 1.3 precludes such inferences
and endows each agent with a fixed preference.

We first show how preference evolution is embedded as a special case of our framework. We
then explore the implications of the learning channel for evolutionary stability, showing that some
novel stability phenomena arise with theory evolution. Some of the results in our applications (e.g.,
Proposition 7) also show that predictions about evolutionary stability change drastically without
the learning channel.
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A theory Θ is a singleton if Θ = {F} for some F : A2 → ∆(Y). An agent with a singleton
theory does not entertain fundamental uncertainty: she is sure that the stage game is described
by F. We can view every singleton theory as a subjective utility function in the stage game,
(ai,a−i) 7→ Ui(ai,a−i;F) with Ui(ai,a−i;F) := Ey∼F(ai,a−i)[π(y)]. An EZ in a society where all
agents have singleton theories corresponds to an equilibrium in a setting with preference evolu-
tion. The adherents of Θg = {Fg} hold the subjective preference Ui(·, ·;Fg) in the stage game, and
all agents maximize their subjective utilities in all match types.

In a society with matching assortativity λ , an adherent of a theory with population proportion
pg is matched up with someone from the same group with probability λ +(1−λ )pg. This matching
probability is an increasing and linear function in each of λ and pg. Suppose the two subjective
preferences Ui(·, ·;FA) and Ui(·, ·;FB) associated with the two singleton theories ΘA and ΘB in a
society induce a unique equilibrium in matches between groups g and g

′
for all g,g

′ ∈ {A,B}. Then,
the fitness of each theory changes linearly with matching assortativity and with population shares.
This linearity underlies the key distinction between preference evolution and theory evolution.

Every non-singleton theory may be thought of as a set of preferences over stage game strategy
profiles, viewing each model F : A2→ ∆(Y) as one such preference. As matching assortativity or
population shares change, each agent encounters a different distribution over opponent strategies.
This may lead a misspecified agent to draw a different inference about the stage game parameters
and may change the agent’s best-response function. By contrast, in a world of preference evolution,
a game between two agents with a given pair of subjective preferences always plays out in the same
way, regardless of the social composition or matching assortativity of the ambient society where
the game takes place.

We exhibit two stability phenomena that only happen with non-singleton theories.

3.1 Stability Reversals

Stability reversal refers to a strong kind of multiplicity in the relative stability of two theories
ΘA and ΘB under uniform matching. Recall that in an EZ, the fitness of a theory is the objec-
tive expected payoffs of its adherents, where this expectation averages across expected payoffs in
matches against each of the two groups. Let a theory’s conditional fitness against group g refer to
the expected payoff of the theory’s adherents in matches against group g.

Definition 10. Two theories ΘA,ΘB exhibit stability reversal if (i) in every EZ with λ = 0 and
(pA, pB) = (1,0), ΘA has strictly higher conditional fitness than ΘB against group A opponents
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and against group B opponents, but also (ii) in every EZ with λ = 0 and (pA, pB) = (0,1), ΘB has
strictly higher fitness than ΘA.

If at least one EZ is approachable with λ = 0, (pA, pB) = (1,0), then the first part in the
definition of stability reversal is stronger than requiring ΘA to be evolutionarily stable against ΘB.
It imposes the more stringent condition that ΘA outperforms ΘB not only on average, but also
conditional on the opponent’s group. The linearity of fitness in population share discussed above
then implies that stability reversal cannot take place if both theories are singletons (i.e., if we are
in the world of preference evolution).

Proposition 2. Two singleton theories (i.e., two subjective preferences in the stage game) cannot

exhibit stability reversal in any stage game.

Stability reversal is unique to the world of theory evolution. For an example, consider a two-
player investment game where player i chooses an investment level ai ∈ {1,2}. A random produc-
tivity level P is realized according to b•(ai +a−i)+ ε where ε is a zero-mean noise term, b• > 0.
Player i gets ai ·P− 1{ai=2} · c. So P determines the marginal return on investment, and c > 0
is the cost for choosing the higher investment level, with the cost of the lower investment level
normalized to 0. At the end of the game, players observe y = (ai,a−i,P). The payoff matrix below
displays the objective expected payoffs for different investment profiles.

1 2

1 2b•,2b• 3b•,6b•− c

2 6b•− c,3b• 8b•− c,8b•− c

Condition 1. 5b• < c < 6b•.

Condition 1 ensures that ai = 1 is a strictly dominant strategy in the stage game, and the invest-
ment profile (2,2) Pareto dominates the investment profile (1,1). Higher investment has a positive
externality as it also increases opponent’s productivity.

Consider two theories in the society. Theory ΘA is a correctly specified singleton – its adher-
ents understand how investment profiles translate into distributions over productivity. Theory ΘB

wrongly stipulates P = b(xi + x−i)−m+ ε , where m > 0 is a fixed parameter of the theory and
b∈R is a parameter that the adherents infer. We require the following condition, which is satisfied
whenever m > 0 is large enough — that is, ΘB is sufficiently misspecified.

Condition 2. c < 4b•+ 1
3m and c < 5b•+ 1

4m.
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We show that in contrast to the impossibility result when all theories are singletons, in this
example theories ΘA and ΘB exhibit stability reversal.

Example 1. In the investment game, under Condition 1 and Condition 2, ΘA and ΘB exhibit
stability reversal.

The idea is that the adherents of ΘB overestimate the complementarity of investments, and this
overestimation is more severe when they face data generated from lower investment profiles. As
a result, the match between ΘA and ΘB plays out in a different way depending on which theory is
resident: it results in the investment profile (1,2) when ΘA is resident, but results in (1,1) when
ΘB is resident.

Let b∗(ai,a−i) solve minb∈RDKL(F•(ai,a−i) ‖ F̂(ai,a−i;b,m))), where F•(ai,a−i) is the ob-
jective distribution over observations under the investment profile (ai,a−i), and F̂(ai,a−i;b,m) is
the distribution under the same investment profile in the model where productivity is given by
P = b(xi + x−i)−m+ ε . We find that b∗(ai,a−i) = b•+ m

ai+a−i
. That is, adherents of ΘB end up

with different beliefs about the game parameter b depending on the behavior of their typical oppo-
nents, which in turn affects how they respond to different rival investment levels. Stability reversal
happens because when ΘA is resident and the adherents of ΘB always meet opponents who play
ai = 1, they end up with a more distorted belief about the fundamental than when ΘB is resident.

In this example, stability reversal happens because the misspecified agents hold different beliefs
about a stage-game parameter depending on which theory is resident. Also, note the stage game
involves non-trivial strategic interaction between the players — the complementarity in investment
levels implies an agent’s best response may vary with the rival’s strategy. Both of these turn out to
be necessary conditions for stability reversal in general stage games.

Definition 11. A theory Θ is strategically independent if for all µ ∈ ∆(Θ), argmax
ai∈A

Ui(ai,a−i; µ)

is the same for every a−i ∈ A.

The adherents of a strategically independent theory believe that while opponent’s action may
affect their utility, it does not affect their best response.

Proposition 3. In any stage game, suppose ΘA,ΘB exhibit stability reversal and ΘA is the correctly

specified singleton theory. Then, the beliefs that the adherents of ΘB hold in all EZs with p = (1,0)
and the beliefs they hold in all EZs with p = (0,1) form disjoint sets. Also, ΘB is not strategically

independent.
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The first claim of Proposition 3 shows that stability reversal must operate through the learning
channel. So in particular, it cannot happen if the group B agents simply have a different subjective
preference in the stage game. The second claim shows that stability reversal can only happen if
the misspecified agents respond differently to different rival play. In particular, it cannot happen in
decision problems.

3.2 Non-Monotonic Stability in Matching Assortativity

We now turn to the role of matching assortativity on the stability of theories. In the world of
preference evolution, the linearity of fitness in matching assortativity discussed before implies that
if a theory ΘA is evolutionarily stable against a theory ΘB both under uniform matching (λ = 0)
and perfectly assortative matching (λ = 1), then the same must also hold under any intermediate
level of assortativity λ ∈ (0,1).

Proposition 4. Suppose ΘA,ΘB are singleton theories (i.e., subjective preferences in the stage

game) and ΘA is evolutionarily stable against ΘB with λ -matching for both λ = 0 and λ = 1.
Then, ΘA is also evolutionarily stable against ΘB with λ -matching for any λ ∈ [0,1].

This result does not always hold with non-singleton general theories. We use an example to
show that stability need not be monotonic in matching assortativity. In this example, a correctly
specified singleton theory is evolutionarily stable against another misspecified theory both when
λ = 0 and when λ = 1, but evolutionarily fragile for some intermediate values of λ .

Consider a stage game where each player chooses an action from {a1,a2,a3}. Every player then
receives a random prize, y∈ {g,b}, which are worth utilities π(g) = 1, π(b) = 0. The payoff matrix
below displays the objective expected utilities associated with different action profiles, which also
correspond to the probabilities that the row and column players receive the good prize g.

a1 a2 a3

a1 0.25, 0.25 0.50, 0.20 0.70, 0.15

a2 0.20, 0.50 0.40, 0.40 0.40, 0.20

a3 0.15, 0.70 0.20, 0.40 0.20, 0.20

Let ΘA be the correctly specified singleton theory. The action a1 is strictly dominant under the
objective payoffs, so an adherent of ΘA always plays a1 in all matches. Let ΘB be a misspecified
theory ΘB = {FH ,FL}. Each model FH ,FL stipulates that the prize g is generated the probabilities
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in the following table, where b and c are parameters that depend on the model. The model FH has
(b,c) = (0.8,0.2) and FL has (b,c) = (0.1,0.4).

a1 a2 a3

a1 0.10, 0.10 0.10, c 0.10, 0.15

a2 c, 0.10 b,b b, 0.20

a3 0.15, 0.10 0.20, b 0.20, 0.20

The learning channel for the biased mutants leads the correctly specified theory to have non-
monotonic evolutionarily stability in terms of matching assortativity.

Example 2. In this stage game, ΘA is evolutionarily stable against ΘB under λ -matching when
λ = 0 and λ = 1, but it is also evolutionarily fragile under λ -matching when λ ∈ (λl,λh), where
0 < λl < λh < 1 are λl = 0.25, λh ≈ 0.56.

To understand the intuition, examine the match between two adherents of ΘB. If they believe
in FH , they will play the action profile (a2,a2) and generate the objective payoff profile (0.4,0.4),
a Pareto improvement compared to the correctly specified outcome (a1,a1). The problem is that
the data generated from the (a2,a2) profile provides a better fit for FL than FH , since the objective
40% probability of getting prize g is closer to FL’s conjecture of 10% than FH’s conjecture of 80%.
A belief in FH — and hence the profile (a2,a2) — cannot be sustained if the mutants only play
each other. On the other hand, when an adherent of ΘB plays a correctly specified ΘA adherent,
both models FH and FL prescribe a best response of a2 against the ΘA adherent’s play a1. The data
generated from the (a2,a1) profile lead biased agents to the model FH that enables cooperative
behavior within the mutant community. But, these matches against correctly specified opponents
harm the mutant’s welfare, as they only get an objective payoff of 0.2.

Therefore, the most advantageous interaction structure for the mutants is one where they can
calibrate the model FH using the data from matches against correctly specified opponents, then ex-
trapolate this optimistic belief about b to coordinate on (a2,a2) in matches against fellow mutants.
This requires the mutants to match with intermediate assortativity. Figure 1 depicts the equilib-
rium fitness of the mutant theory ΘB as a function of assortativity. While payoffs of ΘB adherents
increase in λ at first, eventually they drop when mutant-vs-mutant matches become sufficiently
frequent that a belief in FH can no longer be sustained. The preference evolution framework does
not allow this non-linear and even non-monotonic change in fitness with respect to λ , which the
theory evolution framework accommodates.
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Figure 1: The EZ fitness of ΘB for different values of matching assortativity λ when pB = 0. (The
EZ fitness of the resident theory ΘA is always 0.25.) In the blue region, there is a unique EZ where
the adherents of ΘB infer FH and receive linearly increasing average payoffs across all matches as
λ increases. In the red region, there is an EZ where the adherents of ΘB infer FL and receive payoff
0.2 in all matches, regardless of λ .

While this analysis fixes the population sizes at pA = 1, pB = 0 and varies the matching assor-
tativity, we find a similar conclusion if we fix the matching assortativity and vary the population
sizes. For instance, fix assortativity at λ = 0.5 and consider the equilibrium fitness of the misspec-
ified theory ΘB as a function of its population share x ∈ [0,1]. The probability that a misspecified
agent meets another misspecified agent is 0.5+ 0.5x, which is the same as when the ΘA theory
is dominant and λ = 0.5+ 0.5x. By this equivalence, it is easy to show that the fitness of ΘB

is non-monotonic in its population share. Specifically, ΘB has strictly higher EZ fitness than ΘA

whenever its share is lower than 0.128, but strictly lower EZ fitness when its share is high enough.

4 Higher-Order Misspecifications in LQN Games

We apply our framework to study the stability of misperceptions of the information structure in
linear quadratic normal (LQN) games. LQN games have been used as a tractable workhorse model
for studying comparative statics of equilibrium outcomes with respect to changes in information
(e.g., Bergemann and Morris (2013)). In this application, we exploit the same tractability to study
the evolutionary stability of correct beliefs about the information structure to misspecifications
— in particular, misspecifications about the correlation in information between different players.
The key conclusion is that a society of rational residents with correct beliefs about how private
signals are correlated is evolutionarily fragile against misspecified mutants who suffer from either
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correlation neglect or projection bias. The type of bias that gets selected depends on the matching
assortativity λ in the society.

4.1 Stage Game and Misperceptions of Information Structure

In the LQN setup we consider, we interpret the players as competing firms that possess correlated
private information about market demand. At the start of the stage game, Nature’s type (i.e., a
demand state) ω is drawn from N (0,σ2

ω), where N (µ,σ2) is the normal distribution with mean
µ and variance σ2. Each of the two players i (i.e., firms) receives a private signal si = ω + εi,

then chooses an action qi ∈ R (i.e., a quantity). Market price is then realized according to P =

ω− r• · 1
2(q1+q2)+ζ , where ζ ∼N (0,(σ•

ζ
)2) is an idiosyncratic price shock that is independent

of all the other random variables. Firm i’s profit in the game is qiP− 1
2q2

i .

The stage game is parametrized by the strictly positive terms σ2
ω ,r
•, and (σ•

ζ
)2, which represent

variance in market demand, the elasticity of market price with respect to average quantity supplied,
and the variance of price shocks. These parameters remain constant through all matches. But in
every match, demand state ω, signals (si), and price shock ζ are redrawn, independently across
matches. The environment can be interpreted as a market with daily fluctuations in demand, but
the fluctuations are generated according to a fixed set of fundamental parameters.

In the LQN game, market prices and quantity choices may be positive or negative. To interpret,
when P > 0, the market pays for each unit of good supplied, and market price decreases in total
supply. When P < 0, the market pays for disposal of the good. Firms make money by submitting
negative quantities, which represent offers to remove the good from the market. The per-unit
disposal fee decreases as the firms offer to dispose more. The cost 1

2q2
i represents either a convex

production cost or a convex disposal cost, depending on the sign of qi.

We now turn to the information structure of the stage game — that is, the joint distribution of
(ω,si,s−i). The firms’ signals si = ω + εi are conditionally correlated given ω. The error terms
εi are generated by εi =

κ√
κ2+(1−κ)2

z+ 1−κ√
κ2+(1−κ)2

ηi, where ηi ∼N (0,σ2
ε ) is the idiosyncratic

component of the error generated i.i.d. across i, and z∼N (0,σ2
ε ) is the common component for

both i. Here, κ ∈ [0,1] parametrizes the conditional correlation of the two firms’ signals. Higher κ

leads to an information structure with higher conditional correlation. When κ = 0, si and s−i are
conditionally uncorrelated given the state. When κ = 1, we always have si = s−i. The functional
form of εi ensures the variance of the signals Var(si) remains constant across all values of κ.

We consider a family of misspecifications about the information structure parametrized by mis-
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perceptions of κ . The objective information structure is given by κ = κ•. Note that a misspecified
information structure associated with a wrong κ leads to a higher-order misspecification about the
state ω in the stage game. Suppose agents are correct about the distributions of ω, ηi, and z. Write
Eκ for expectation under the information structure with correlational parameter κ. Then Eκ [ω | si]

is the same for all κ — in particular, even an agent who believes in some κ 6= κ• makes a correct
first-order inference about the expectation of the market demand, given her own information. But,
one can show (Lemma 1) there exists a strictly increasing and strictly positive function ψ(κ) so
that Eκ [s−i | si] = ψ(κ) · si for all si ∈ R,κ ∈ [0,1]. The misspecified agent holds a wrong belief
about the rival’s signal, and thus a wrong belief about the rival’s belief about ω.

Many experiments have found that subjects do not form accurate beliefs about the beliefs of
others. We draw a connection between the misperception we study and the statistical biases that
have been previously documented:

Definition 12. Let κ̃ be a player’s perceived κ . A player suffers from correlation neglect if κ̃ < κ•.
A player suffers from projection bias if κ̃ > κ•.

Under correlation neglect, agents believe signals are more independent from one another than
they really are. Under projection bias, agents “project” their own information onto others and
exaggerate the similarity between others’ signals and their own signals. We are agnostic about the
origin of these misspecifications about correlation. They may be psychological in nature and come
directly from the agents’ cognitive biases, or they could be driven by more complex mechanisms.6

We instead ask whether such misspecifications could persist in the society on an evolutionary basis
once they appear.

4.2 Formalizing Strategies and Theories

We translate the environment described above into the formalism from Section 2.
A strategy in the stage game is a function Qi : R→ R that assigns a quantity Qi(si) to every

signal si. The strategy is called linear if there exists an αi ≥ 0 so that Qi(si) = αisi for every si ∈R.
We will later show that the best response to any linear strategy is linear, regardless of the agent’s
belief about the correlation parameter and market price elasticity (Lemma 2). We therefore restrict

6For example, Hansen, Misra, and Pai (2021) show that multiple agents simultaneously conducting algorithmic
price experiments in the same market may generate correlated information which get misinterpreted as independent
information, a form of correlation neglect for firms. Goldfarb and Xiao (2019) structurally estimate a model of thinking
cost and find that bar owners over-extrapolate the effect of today’s weather shock on future profitability.
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attention to linear strategies and let A= [0,M̄α ] for some M̄α < ∞, where a typical element αi ∈A
corresponds to the linear strategy with coefficient αi.

We suppose all parameters of the stage game are common knowledge except for r•,κ•, and
σ•

ζ
. To investigate the evolutionary implications of higher-order misspecifications about the state,

we consider theories that are dogmatic and possibly wrong about κ, but allow agents to make
inferences about r and σζ . We let the space of consequences be Y = R3, where a typical con-
sequence y = (si,qi,P) shows the agent’s signal, quantity choice, and the market price. The
consequence y delivers the utility π(y) := qiP− 1

2q2
i . We consider theories parametrized by κ,

Θ(κ) := {Fr,κ,σζ
: r ∈ [0,M̄r],σζ ∈ [0,M̄σζ

]} for some M̄r,M̄σζ
< ∞. So each Θ(κ) is a set of con-

jectures of the game environment indexed by the parameters (r,κ,σζ ), but all reflecting a dogmatic
belief in the correlation parameter κ . Each Fr,κ,σζ

:A×A→∆(Y) is such that Fr,κ,σζ
(αi,α−i) gives

the distribution over i’s consequences in a stage game with parameters (r,κ,σζ ), when i uses the
linear strategy αi against an opponent using the linear strategy α−i.

While agents learn about both r and σζ , it is their (mis)inferences about the market price
elasticity r that drives the main results. Since each firm’s profit is linear in the market price, an
agent’s belief about the variance of the idiosyncratic price shock does not change her expected
payoffs or behavior. We use inference over σζ to simplify our analysis: this parameter absorbs
changes in the variance of market price under different correlation structures. A Bayesian agent
whose data are all generated from the same strategy profile only learn about r using the mean of
the market price in the data, not its variance.

In formalizing the stage game and translating misperceptions of the information structure into
theories, we have assumed that the space of feasible linear strategies αi ∈ [0,M̄α ] and the domain
of inference over game parameters r ∈ [0,M̄r],σζ ∈ [0,M̄σζ

] are compact sets. These compactness
assumptions help ensure that EZ exist. In analyzing evolutionary stability, we will focus on the
case where the bounds M̄α ,M̄r,M̄σζ

are finite but sufficiently large, so that the optimal behavior
and beliefs are interior. We introduce the following shorthand:

Notation 1. A result is said to hold “with high enough price volatility and large enough strategy

space and inference space” if, whenever the strategy space [0,M̄α ] has M̄α ≥ 1/σ2
ε

1/σ2
ε +1/σ2

ω

, there exist

0 < L1,L2,L3 < ∞ so that for any objective game F• with (σ•
ζ
)2 ≥ L1 and with theories where the

parameter spaces r ∈ [0,M̄r], σζ ∈ [0,M̄σζ
] are such that M̄2

σζ
≥ (σ•

ζ
)2+L2 and M̄r ≥ L3, the result

is true.

24



4.3 Subjective Best Response and Misspecified Inference

In order to determine which theories (i.e., perceptions of κ) are stable against rival theories, we
must characterize the relevant equilibrium zeitgeists. This section develops a number of prelimi-
nary results that relate beliefs about the game parameters to best responses, and conversely strategy
profiles to the KL-divergence minimizing inferences.

We begin by proving the result alluded to earlier: every agent’s inferences about the state and
about opponent’s signal are linear functions of her own signal. The linear coefficient on the latter
increases with the correlation parameter κ .

Lemma 1. There exists a strictly increasing function ψ(κ), with ψ(0)> 0 and ψ(1) = 1, so that

Eκ [s−i | si] = ψ(κ) · si for all si ∈ R, κ ∈ [0,1]. Also, there exists a strictly positive γ ∈ R so that

Eκ [ω | si] = γ · si for all si ∈ R, κ ∈ [0,1].

Linearity of E[ω | si] and E[s−i | si] in si allows us explicitly characterize the corresponding
linear best responses, given beliefs about κ and elasticity r. For Qi,Q−i (not necessarily linear)
strategies in the stage game and µ ∈ ∆(Θ(κ)), let Ui(Qi,Q−i; µ) be i’s subjective expected utility
from playing Qi against Q−i, under the belief µ.

Lemma 2. For α−i a linear strategy, Ui(αi,α−i; µ) = E[s2
i ] ·
(
αiγ− 1

2 r̂α2
i − 1

2 r̂ψ(κ)αiα−i− 1
2α2

i
)

for every linear strategy αi, where r̂ =
∫

r dµ(r,κ,σζ ) is the mean of µ’s marginal on elasticity.

For κ ∈ [0,1] and r > 0, αBR
i (α−i;κ,r) := γ− 1

2 rψ(κ)α−i
1+r best responds to α−i among all (possibly

non-linear) strategies Qi : R→ R for all σζ > 0.

Lemma 2 shows that αBR
i (α−i;κ,r) is not only the best-responding linear strategy when oppo-

nent plays α−i and i believes in correlation parameter κ and elasticity r, it is also optimal among
the class of all strategies Qi(si) against the same opponent play and under the same beliefs.

Call a linear strategy more aggressive if its coefficient αi ≥ 0 is larger. One implication of
Lemma 2 is that agent i’s subjective best response function becomes more aggressive when i be-
lieves in lower κ or lower r. We have ∂αBR

i
∂κ

< 0 because the agent can better capitalize on her
private information about market demand when her rival does not share the same information. We
have ∂αBR

i
∂ r < 0 because the agent can be more aggressive when facing an inelastic market price.

We now turn to equilibrium inference about the market price elasticity r•. The following lemma
shows that any linear strategy profile generates data whose KL-divergence can be minimized to 0
by a unique value of r. We also characterize how this inference about elasticity depends on the
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strategy profile and the agent’s belief about the correlation parameter κ . As mentioned earlier, we
focus on the case where the bounds on the inferences r ∈ [0,M̄r], σζ ∈ [0,M̄σζ

] are sufficiently
large to ensure that the KL-divergence minimization problem is well-behaved.

Lemma 3. With high enough price volatility and large enough strategy space and inference space,

for every αi,α−i ∈ [0,M̄α ], we have DKL(Fr•,κ•,σ•
ζ
(αi,α−i) ‖ Fr̂,κ,σ̂ζ

(αi,α−i)) = 0 for exactly one

pair r̂ ∈ [0,M̄r], σ̂ζ ∈ [0,M̄σζ
]. This r̂ is given by rINF

i (αi,α−i, ;κ•,κ,r•) := r•αi+α−iψ(κ•)
αi+α−iψ(κ) .

Lemma 3 implies that an agent’s inference about r is strictly decreasing in her belief about
the correlation parameter κ. To understand why, assume player i uses the linear strategy αi and
player −i uses the linear strategy α−i. After receiving a private signal si, player i expects to
face a price distribution with a mean of γsi− r(1

2αisi +
1
2α−iEκ [s−i | si]). Under projection bias

κ > κ•, Eκ [s−i | si] is excessively steep in si. For example, following a large and positive si, the
agent overestimates the similarity of −i’s signal and wrongly predicts that −i must also choose a
very high quantity, and thus becomes surprised when market price remains high. The agent then
wrongly infers that the market price elasticity must be low. Therefore, in order to rationalize the
average market price conditional on own signal, an agent with projection bias must infer r < r•.
For similar reasons, an agent with correlation neglect infers r > r•.

Combining Lemma 2 and Lemma 3, we find that increasing κ has an a priori ambiguous impact
on the agent’s equilibrium aggressiveness. Increasing κ has the direct effect of lowering aggression
(by Lemma 2), but it also causes the indirect effect of lowering inference about r (by Lemma 3)
and therefore increases aggression (by Lemma 2). Nevertheless, we show in the results below
that the indirect effect through the learning channel dominates, and the evolutionary stability of
correlational errors are driven by this channel. We show in Section 4.6 that the results are reversed
when we shut down the learning channel.

Lemma 3 considers the problem of KL-divergence minimization when all of the data are gen-
erated from a single strategy profile, (α−i,α−i). It implies that if λ ∈ {0,1} and (pA, pB) = (1,0),
that is matching is either perfectly uniform or perfectly assortative in a homogeneous society, then
every agent can find a model to exactly fit her equilibrium data. This is because agents only match
with opponents from one group in the EZ. The self-confirming property lends a great deal of
tractability and allows us to provide sharp comparative statics and assess the stability of theories.

With interior population shares, agents can observe consequences from matches against the
adherents of both ΘA and ΘB. Thus, they must find a single set of parameters for the stage game
that best fits all of their data, and even this best-fitting model will have positive KL divergence in
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equilibrium. The next lemma shows the LQN game satisfies the sufficient conditions from Online
Appendix OA 2 (Assumptions OA1 through OA5) for the existence and upper hemicontinuity of
EZs. So, the tractable analysis in homogeneous societies remains robust to the introduction of a
small but non-zero share of a mutant theory.

Lemma 4. For every r•,σ•
ζ
≥ 0, λ ∈ [0,1], κ•,κ ∈ [0,1], M̄α ,M̄σζ

,M̄r < ∞, the LQN with objec-

tive parameters (r•,κ•,σ•
ζ
), strategy space A= [0,M̄α ] and theories Θ(κ•),Θ(κ) with parameter

spaces [0,M̄r], [0,M̄σζ
] satisfy Assumptions OA1, OA2, OA3, OA4, and OA5. Therefore, EZs in

LQN are upper hemicontinuous in population sizes.

4.4 Uniform Matching (λ = 0) and Projection Bias

We now describe our main results on the evolutionary instability of correctly specified beliefs about
the information structure. Our first main result is that in a society where agents are uniformly
matched, a correctly specified κ will be evolutionarily fragile against some amount of projection
bias. The proof of this result involves characterizing the asymmetric equilibrium strategy profile in
matches between the correctly specified residents and the projection-biased mutants, and proving
that a small amount of projection bias leads the mutants to have higher payoffs in the resident-vs-
mutant matches than the residents’ payoffs in the resident-vs-resident matches.

Proposition 5. Let r• > 0, κ• ∈ [0,1] be given. With high enough price volatility and large enough

strategy space and inference space, there exist κ < κ• < κ̄ so that in societies with two theories

(ΘA,ΘB) = (Θ(κ•),Θ(κ)) where κ ∈ [κ, κ̄], there is a unique EZ with uniform matching (λ = 0)

and (pA, pB) = (1,0). The equilibrium fitness of Θ(κ) is strictly higher than that of Θ(κ•) if

κ > κ•, and strictly lower if κ < κ•.

Combining this result with Lemma 4, we conclude that in societies with theories Θ(κ•) and
Θ(κ) where κ is slightly above κ•, the unique EZ is approachable. Hence, the correct specification
is evolutionarily fragile against a small amount of projection bias. We illustrate this in Figure 2.
Around the true κ• = 0.3, the payoff of the mutant increases as their κ increases. However, in this
example, misperception only helps the mutant to a point, and we see that the correct specification
will in fact be evolutionarily stable against sufficiently large κ .

Intuitively, as discussed after Lemma 3, projection bias generates a commitment to aggres-
sion as it leads the biased agents to under-infer market price elasticity. It is well known that in
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Figure 2: Fitness of the mutant theory as a function of κ , with a correctly specified resident theory
and uniform matching. In this numerical example, κ• = 0.3, r• = 1, σ2

ω = σ2
ε = 1.

Cournot oligopoly games, such commitment can be beneficial. For instance, if quantities are cho-
sen sequentially, the first mover obtains a higher payoff compared to the case where quantities are
chosen simultaneously. A similar force is at work here, but the source of the commitment is dif-
ferent. Misspecification about signal correlation leads to misinference about r•, which causes the
mutants to credibly respond to their opponents’ play in an overly aggressive manner. The rational
residents, who can identify the mutants in the population, back down and yield a larger share of
the surplus. While projection bias is beneficial in small measure, it is also intuitive that excessive
aggression would be detrimental as well, as overproduction can be individually suboptimal.

4.5 Fully Assortative Matching (λ = 1) and Correlation Neglect

Turning to the case of perfectly assortative matching, we obtain the opposite result: evolutionary
stability now selects for theories with correlation neglect. The fragility of the correct specification
is even starker here, as any level of correlation neglect leads to higher equilibrium fitness.

Proposition 6. Let r• > 0, κ• ∈ [0,1] be given. With high enough price volatility and large enough

strategy space and inference space, in societies with two theories (ΘA,ΘB) = (Θ(κA),Θ(κB))

where κA ≤ κB, the fitness of ΘA is weakly higher than that of ΘB in every EZ with any popu-

lation proportion p and perfectly assortative matching (λ = 1).

Combining this result with Lemma 4, we conclude that under Proposition 6’s conditions with
(pA, pB) = (1,0), at least one EZ is approachable, and each theory’s fitness is invariant across all
approachable EZs. Furthermore, this fitness is strictly decreasing in κ. Hence, for any κA < κB,

theory Θ(κA) is evolutionarily stable against theory Θ(κB). Specializing to κB = κ•, we conclude
that the correct specification is evolutionarily fragile against any level of correlation neglect.
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Figure 3: Fitness of the mutant theory as a function of κ , with a correctly specified resident theory
and perfectly assortative matching. In this numerical example, κ• = 0.3, r• = 1, σ2

ω = σ2
ε = 1.

As discussed after Lemma 3, correlation neglect makes agents over-infer market price elastic-
ity, and thus lets them commit to more cooperative behavior (i.e., linear strategies with a smaller
coefficient αi). Rational opponents would take advantage of such agents, but the biased agents
never match up against rational opponents in a society with perfectly assortative matching. Note
also that in the uniform matching case, projection bias leads to higher payoff for the mutant at the
expense of the rational opponent’s payoff. With perfectly assortative matching, correlation neglect
Pareto improves both biased agents’ payoffs. This contrast is illustrated in Figure 3, which uses
the same parameter choices as Figure 3. Here, we see that the misspecified agents’ payoffs are
decreasing in κ around the κ•. Also, mutant fitness is monotonically larger when their κ is lower,
as implied by Proposition 6.

To understand why equilibrium fitness is a monotonically decreasing function of κ with per-
fectly assortative matching, let αT EAM denote the symmetric linear strategy profile that maximizes
the sum of the two firms’ expected objective payoffs. We can show that among symmetric strategy
profiles, players’ payoffs strictly decrease in their aggressiveness in the region α >αT EAM. We can
also show that with λ = 1 and any κ ∈ [0,1], the equilibrium play among two adherents of Θ(κ)

strictly increases in aggression as κ grows, and it is always strictly more aggressive than αT EAM.
Lowering perception of κ confers an evolutionary advantage by bringing play monotonically closer
to the team solution αT EAM in equilibrium.

4.6 The Necessity of the (Mis)Learning Channel

The key mechanism behind Proposition 5 and Proposition 6 is that misperceptions about κ confer
an evolutionary advantage through the learning channel: they cause the misspecified agents to
misinfer some other parameter of the stage game. This mislearning is strategically beneficial as it
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commits the agents to certain behavior that increases their equilibrium payoffs against their typical
opponents, given the matching assortativity. Section 3 showed that the learning channel unique to
the world of theory evolution permits novel stability phenomena in general games, and here we
find the same channel is also indispensable for the predictions in this particular application. The
results about the evolutionary fragility of the correct specification in Proposition 5 and Proposition
6 would be reversed without it.

Proposition 7. Let r• > 0, κ• ∈ [0,1] be given. With high enough price volatility and large enough

strategy space and inference space, there exists ε > 0 so that for any κl,κh ∈ [0,1], κl < κ• < κh ≤
κ•+ ε , the correctly specified theory Θ(κ•) is evolutionarily stable against the singleton theory

{Fr•,κh,σ
•
ζ
} under uniform matching (λ = 0), and evolutionarily stable against the singleton theory

{Fr•,κl ,σ
•
ζ
} under perfectly assortative matching (λ = 1).

In this proposition, we consider agents with singleton theories who misperceive the signal cor-
relation structure but hold dogmatic and correct beliefs about the other game parameters, including
the elasticity of market price. Once the mislearning channel is shut down, we find that mispercep-
tions about κ that used to confer an evolutionary advantage under a certain matching assortativity
can no longer invade a society of correctly specified residents.

4.7 Evolutionary Stability in Incomplete-Information Games

We turn to general incomplete-information games and provide a condition for a theory to be evolu-
tionarily fragile against a “nearby” misspecified theory. This condition shows how assortativity and
the learning channel shape the evolutionary selection of theories for a broader class of stage games
and biases. We also relate the condition to the specific results studied so far in this application.

Consider a stage game where a state of the world ω is realized at the start of the game. Players 1
and 2 observe private signals s1,s2 ∈ S⊆R, possibly correlated given ω. The objective distribution
of (ω,s1,s2) is P•. Based on their signals, players choose actions q1,q2 ∈ R and receive random
consequences y1,y2 ∈Y. The distribution over consequences as a function of (ω,s1,s2,q1,q2) and
the utility over consequences π :Y→R are such that each player i’s objective expected utility from
taking action qi against opponent action q−i in state ω is given by u•i (qi,q−i;ω), differentiable in
its first two arguments.

For an interval of real numbers [κ, κ̄] with κ < κ̄ and κ• ∈ (κ, κ̄), suppose there is a family of
theories (Θ(κ))κ∈[κ,κ̄]. Fix λ ∈ [0,1] and a strategy space A⊆RS, representing the feasible signal-
contingent strategies. Suppose the two theories in the society are ΘA = Θ(κ•) and ΘB = Θ(κ) for
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some κ ∈ [κ, κ̄]. The next assumption requires there to be a unique EZ with (pA, pB) = (1,0) in
such societies with any κ ∈ [κ, κ̄], and further requires the EZ to feature linear equilibria. Linear
equilibria exist and are unique in a large class of games outside of the duopoly framework, and in
particular in LQN games under some conditions on the payoff functions (see, e.g., Angeletos and
Pavan (2007)).

Assumption 1. Suppose there is a unique EZ under λ -matching and population proportions

(pA, pB) = (1,0) with ΘA = Θ(κ•), ΘB = Θ(κ) for every κ ∈ [κ, κ̄]. Suppose the κ-indexed

EZ strategy profiles (σ(κ)) = (σAA(κ),σAB(κ),σBA(κ),σBB(κ)) are linear, i.e., σgg′ (κ)(si) =

αgg′ (κ) · si with αgg′ (κ) differentiable in κ . Suppose that in the EZ with κ = κ•, αAA(κ
•) is

objectively interim-optimal against itself.7 Finally, assume for every κ , Assumptions OA1, OA2,

OA3, OA4, and OA5 are satisfied.

Proposition 8. Let α• := αAA(κ
•). Then, under Assumption 1, if

E•
[
E•
[

∂u•1
∂q2

(α•s1,α
•s2,ω) · [(1−λ )α

′
AB(κ

•)+λα
′
BB(κ

•)] · s2 | s1

]]
> 0,

then there exists some ε > 0 so that Θ(κ•) is evolutionarily fragile against theories Θ(κ) with

κ ∈ (κ•,κ•+ ε]∩ [κ, κ̄]. Also, if

E•
[
E•
[

∂u•1
∂q2

(α•s1,α
•s2,ω) · [(1−λ )α

′
AB(κ

•)+λα
′
BB(κ

•)] · s2 | s1

]]
< 0,

then there exists some ε > 0 so that Θ(κ•) is evolutionarily fragile against theories Θ(κ) with

κ ∈ [κ•− ε,κ•)∩ [κ, κ̄]. Here E• is the expectation with respect to the objective distribution of

(ω,s1,s2) under P•.

Proposition 8 describes a general condition to determine whether a correctly specified theory
is evolutionarily fragile against a nearby misspecified mutant theory. The condition asks if a slight
change in the mutant theory’s κ leads mutants’ opponents to change their equilibrium actions such
that the mutants become better off on average. These opponents are the residents under uniform
matching λ = 0, so α

′
AB(κ

•) is relevant. These opponents are other mutants under perfectly assor-
tative matching λ = 1, so α

′
BB(κ

•) is relevant.
Proposition 8 implies that one should only expect the correctly specified theory to be stable

against all nearby theories in “special” cases — that is, when the expectation in the statement
7More precisely, for every si ∈ S, αAA(κ

•) · si maximizes the agent’s objective expected utility across all of R when
−i uses the same linear strategy αAA(κ

•).
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of Proposition 8 is exactly equal to 0. One such special case is when the agents face a decision
problem where 2’s action does not affect 1’s payoffs, that is ∂u•1

∂q2
= 0. This sets the expectation to

zero, so the result never implies that the correctly specified theory is evolutionarily fragile against
a misspecified theory in such decision problems.

In the duopoly game analyzed previously, we have ∂u•1
∂q2

(q1,q2,ω)=−1
2r•q1. Player 1 is harmed

by player 2 producing more if q1 > 0, and helped if q1 < 0. From straightforward algebra, the
expectation in Proposition 8 simplifies to

E•[s2
1] · (−

1
2

ψ(κ•)r•α•) · [(1−λ )α
′
AB(κ

•)+λα
′
BB(κ

•)].

The proof of Proposition 5 shows that when λ = 0, α
′
AB(κ

•) < 0. The proof of Proposition 6
shows that when λ = 1, α

′
BB(κ

•)> 0. The uniqueness of EZ also follow from these results, for an
open interval of κ containing κ•. We restrict A to the set of linear strategies, and Lemma 2 implies
linear strategies played by two correctly specified firms against each other are interim optimal.
Finally, Lemma 4 verifies that Assumptions OA1 through OA5 are satisfied. So, the conditions of
Proposition 8 hold for λ ∈ {0,1}, and we deduce the correctly specified theory is evolutionarily
fragile against slightly higher κ (for λ = 0) and slightly lower κ (for λ = 1).

5 Evolutionary Stability of Analogy Classes

The next application illustrates how our framework accommodates strategic uncertainty and pro-
vides a justification for coarse thinking in games. Coarse thinking can be evolutionarily beneficial
as it allows players to sustain more cooperative behavior. We show how game parameters affect
the prevalence of coarse thinking.

Jehiel (2005) introduces the solution concept of analogy-based expectation equilibrium (ABEE)
in extensive-form games, where agents group opponents’ nodes in an extensive-form game into
analogy classes and only keep track of aggregate statistics of opponents’ average behavior within
each analogy class. An ABEE is a strategy profile where agents best respond to the belief that
at all nodes in every analogy class, opponents behave according to the average behavior in the
analogy class. In the ensuing literature that applies ABEE to different settings, analogy classes
are usually exogenously given and interpreted as arising from coarse feedback or agents’ cognitive
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limitations.8 We show through an example that we can encode analogy classes using suitably de-
fined extended theories (that is, sets of conjectures about how others play and about parameters of
the game) whose marginals on opponents’ play are restricted subsets of extensive-form strategies,
and that the matches between any two groups in an EZ-SU constitute ABEEs. We then investigate
which analogy classes are more likely to arise by studying the stability of different theories (i.e.,
analogy classes), including the correctly specified theory (i.e., the finest analogy class). Finally,
we derive predictions about how the prevalence of analogy-based reasoning may vary with the
objective environment: that is, the payoff structure of the stage game.

Consider a centipede game, shown in Figure 4. P1 and P2 take turns choosing Across (A) or
Drop (D). The non-terminal nodes are labeled nk, 1≤ k≤K where K is an even number. P1 acts at
nodes n1,n3, ...,nK−1, P2 acts at nodes n2,n4, ...,nK , and choosing Drop at nk leads to the terminal
node zk. If Across is always chosen, then the terminal node zend is reached. If P1 chooses Drop at
the first node, the game ends with the payoff profile (0, 0). Every time a player i chooses Across,
the sum of payoffs grows by g > 0, but if the next player chooses Drop then i’s payoff is ` > 0
smaller than what i would have gotten by choosing Drop. If zend is reached, both get Kg/2. That
is, if uk

j is the utility of j at the terminal node zk, and i moves at nk, then uk
−i = uk−1

−i − ` while

uk
i = (uk−1

i + uk−1
−i + g)− uk

−i. This works out to uk
j =

g(k−1)
2 for both players when k is odd, and

uk
1 =

k−2
2 g− `, uk

2 =
k
2g+ ` when k is even.

Figure 4: The centipede game. There are 2K non-terminal nodes and players 1 (blue) and 2 (red)
alternate in choosing Across (A) or Drop (D). Payoff profiles are shown at the terminal nodes.

While this is an asymmetric stage game, we study the symmetrized version mentioned in
Section 2.1, where two matched agents are randomly assigned into the roles of P1 and P2. Let
A = {(dk)K

k=1 ∈ [0,1]K}, so each strategy is characterized by the probabilities of playing Drop
at various nodes in the game tree. When assigned into the role of P1, the strategy (dk) plays
Drop with probabilities d1,d3, ...,dK−1 at nodes n1,n3, ...nK−1. When assigned into the role of
P2, it plays Drop with probabilities d2,d4, ...,dK at nodes n2,n4, ...nK . The set of consequences is

8Section 6.2 of Jehiel (2005) mentions that if players could choose their own analogy classes, then the finest
analogy classes need not arise, but also says “it is beyond the scope of this paper to analyze the implications of this
approach.” In a different class of games, Jehiel (1995) similarly observes that another form of bounded rationality
(having a limited forecast horizon about opponent’s play) can improve welfare.
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Y= {1,2}× ({zk : 1≤ k≤ K}∪{zend}), where the first dimension of the consequence returns the
player role that the agent was assigned into, and the second dimension returns the terminal node
reached. The objective distribution over consequences as a function of play is F• : A2→ ∆(Y).

Consider a learning environment where agents know the game tree (i.e., they know F•), but
some agents mistakenly think that when their opponents are assigned into a role, these opponents
play Drop with the same probabilities at all of their nodes. Formally, define the restricted space of
strategies AAn := {(dk)∈ [0,1]K : dk = dk′ if k≡ k

′
(mod 2)}⊆A. The correctly specified extended

theory is Θ
• := A×A×{F•}. The misspecified theory with a restriction on beliefs about oppo-

nents’ play is Θ
An :=AAn×AAn×{F•}, reflecting a dogmatic belief that opponents play the same

mixed action at all nodes in the analogy class. It is important to remember that these restriction on
strategies only exists in the subjective beliefs of the theory Θ

An adherents. All agents, regardless
of their theory, actually have the strategy space A. Also, consistent with our framework of theory
evolution, agents are born with a theory and cannot choose their own analogy classes.

The next proposition provides a justification for why we might expect agents with coarse anal-
ogy classes given by AAn to persist in the society.

Proposition 9. Suppose K ≥ 4 and g > 2
K−2`. For any matching assortativity λ ∈ [0,1], the cor-

rectly specified extended theory Θ
• is evolutionarily stable with strategic uncertainty against itself,

but it is not evolutionarily stable with strategic uncertainty against the misspecified extended theory

Θ
An
. Also, Θ

An is not evolutionarily stable against Θ
•, unless λ = 1.

In contrast to the results from the previous section, which predict different biases may arise
under different matching assortativities, we find in this environment that the correctly specified
extended theory is not evolutionarily stable against the extended theory Θ

An with coarse analogy
classes under any level of assortativity. In the previous application to LQN games, agents with
projection bias commit to acting more aggressively, which increases their equilibrium welfare in
matches against rational agents but decreases their equilibrium welfare in matches against other
agents with the same bias — and vice versa for agents with correlation neglect. But in the current
application, the conditional fitness of Θ

An against both Θ
• and Θ

An can strictly improve on the
correctly specified residents’ equilibrium fitness. This is because the matches between two adher-
ents of Θ

• must result in Dropping at the first move in equilibrium, while matches where at least
one player is an adherent of Θ

An either lead to the same outcome or lead to a Pareto dominating
payoff profile as the misspecified agent misperceives the opponent’s continuation probability and
thus chooses Across at almost all of the decision nodes.
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But, Θ
An is not evolutionarily stable against Θ

• either. The correctly specified agents can ex-
ploit the analogy reasoners’ mistake and receive higher payoffs in matches against them, compared
with the payoffs that two misspecified agents receive when matched with each other.

This result suggests that neither a homogeneous population of rationals nor a homogeneous
population of analogy reasoners can be stable in the long-run, as the resident theory can have
lower fitness than the mutant theory in equilibrium. The remaining possibility is that the two com-
peting theories coexist, each with a sizable share of adherents. Our framework makes predictions
about the long-run prevalence of analogy-based reasoning in the society, and how such prevalence
changes with the stage game.

Definition 13. Fix an interior population share, p ∈ (0,1) and an EZ-SU. Then p is said to be a
stable population share given the EZ-SU if both theories have the same fitness.

Whereas evolutionary stability predicts that the resident theory will dominate the society and
resist invasion from the mutant theory, an EZ-SU with a stable population share p is a steady state
of the evolutionary dynamic where adherents of both theories are equally successful. One issue
with this solution concept for the games we analyze in this section is the multiplicity of EZ-SUs, as
there is always the trivial EZ-SU where all agents in both groups always play Drop, and thus learn
nothing about others’ play. We focus on the EZ-SU where Across is played as often as possible.

Let there be uniform matching in a society with ΘA =Θ•, ΘB =ΘAn, population sizes (pA, pB),
and suppose K ≥ 4 and g > 2

K−2`. Consider the maximal continuation EZ-SU in the centipede
game: this is the strategy profile where dk

AA = 1, dk
BB = 0 for every k < K, dK

BB = 1, dk
AB = 0 for

k ≤ K−2, dK−1
AB = dK

AB = 1, dk
BA = 0 for k < K, and dK

BA = 1. That is, agents always play Across,
except the misspecified agents always Drop at node K, the correctly specified agent Drop at nodes
K−1 and K when matched with a misspecified agent, and Drop at every node when matched with
another correctly specified agent. (The next result verifies that the maximal continuation EZ-SU is
indeed an EZ-SU.)

We find the stable population share under maximal continuation. This is the unique population
size (p∗A, p∗B) such that the two theories have the same fitness under the maximal continuation EZ-
SU. Intuitively, p∗B shows what fraction of the society is expected to be analogy reasoners in the
long run as the adherents of ΘA and ΘB rise and fall according to their fitness, assuming the focal
equilibrium is the one with the highest amount of continuation.

Proposition 10. Suppose K ≥ 4 and g > 2
K−2`. The two theories have the same fitness in the

maximal continuation EZ-SU of the centipede game if and only if the population size of the mis-
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specified theory ΘB is p∗B = 1− `
g(K−2) . This p∗B is strictly increasing in g and K, strictly decreasing

in `.

Under the maintained assumption g > 2
K−2`, the stable population share of misspecified agents

is strictly more than 50%, and the share grows when there are more periods and when the increase
in payoffs is larger across periods. The main intuition is that the misspecified theory has a higher
conditional fitness than the rational theory against rational opponents. The former leads to many
periods of continuation and a high payoff for the biased agent when the rational agent eventually
drops, but the latter leads to 0 payoff from immediate dropping. The size of the fitness advantage
grows with g and K. On the other hand, the misspecified theory has a lower conditional fitness than
the rational theory against misspecified opponents. For the two groups to have the same expected
fitness, there must be fewer rational opponents (i.e., a smaller stable population share p∗A) when g

and K are higher.
In the centipede game, two successive periods of continuation lead to a strict Pareto improve-

ment in payoffs. Consider instead the dollar game (Reny, 1993) in Figure 5, a variant of the
centipede game with a more “competitive” payoff structure, where an agent always gets zero pay-
off when the opponent plays Drop, no matter how far along in the game tree. Total payoff increases
by 1 in each round. If the first player stops immediately, the payoffs are (1, 0), and if the second
player continues at the final node nK , payoffs are (K +2,0).

(1,0)  (0, 2) (3, 0)

n1 n2 n3

D D D

A A A

  ( K-1, 0) (0, K)

nK-1 nK

D D

A... A (K+2, 0)A

Figure 5: The dollar game. There are K non-terminal nodes and players 1 (blue) and 2 (red)
alternate in choosing Across (A) or Drop (D). Payoff profiles are shown at the terminal nodes.

Proposition 11. For every population size (p,1− p) with p ∈ [0,1], the maximal continuation
EZ-SU is an EZ-SU where the fitness of Θ

• is strictly higher than that of Θ
An.

While the maximal continuation EZ-SU remains an EZ-SU in the dollar game, the rational
theory always has strictly higher fitness than the misspecified theory with analogy classes with any
population sizes. So, provided the maximal continuation EZ-SU remains focal, then we should
expect no analogy reasoners in the long run with this different stage game. This is because the
misspecified theory now has a lower conditional fitness than the rational theory against rational
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opponents. A misspecified P1 gets 0 in the maximal continuation EZ-SU against a rational P2 who
drops at their penultimate decision node, whereas a rational P1 gets 1 from immediate dropping.

In a recent survey article on ABEEs, Jehiel (2020) points out that the misspecified Bayesian
learning approach to analogy classes should aim for “a better understanding of how the subjective
theories considered by the players may be shaped by the objective characteristics of the environ-
ment.”9 We find that a framework of theory evolution can deliver such results. Taken together, the
analyses of maximal continuation EZ-SUs in the centipede game and the dollar game suggest that
analogy-based reasoning should be more prevalent in the former than the latter because the payoff
structure is “less competitive” in the former. Also, in the centipede game, the prevalence of this
bias should increase with a longer horizon and with faster payoff growth.

6 Concluding Discussion

This paper presents an evolutionary selection criterion to endogenize (mis)specifications when
agents learn about a strategic environment. We introduce the concept of a zeitgeist to capture the
ambient social structure where learning takes place: the prominence of different theories in the
society and the interaction patterns among their adherents. These details matter because different
types of opponents behave differently, inducing different beliefs about the economic fundamen-
tals for a misspecified agent. Evolutionary stability of a theory is defined based on the expected
objective payoffs (fitness) of its adherents in equilibrium.

We have highlighted settings where the correct specification is not evolutionarily stable against
some misspecifications. We view our main contributions as two fold. First, we point out how
details of the zeitgeist (e.g., the matching assortativity) change which learning biases may persist
in an otherwise rational society. Second, we emphasize that the learning channel, unique to a world
where evolutionary forces act on specifications (sets of feasible beliefs) instead of single beliefs,
generates novel stability phenomena. This allows us to extend the evolutionary approach to new
applications.

Our framework evaluates whether a misspecification is likely to persist once it emerges in a
society, but does not account for which errors appear in the first place. It is plausible that some

9Jehiel (2020) interprets ABEEs as players adopting the “simplest” explanations of observed aggregate statistics
of play in environments with physically or psychologically coarse feedback. An objectively coarse feedback structure
can lead agents to adopt the subjective theory that others behave in the same way in all contingencies in the same
coarse analogy class. Our approach suggests that the very prevalence of analogy classes may also be shaped by other
objective environmental primitives, including the payoff structure of the stage game.

37



first-stage filter prevents certain obvious misspecifications from ever reaching the stage that we
study in the evolutionary framework. In the applications, we have focused on misspecifications
that seem psychologically plausible or harder to detect, such as misspecified higher-order beliefs.

We have used the simplest evolutionary framework where fitness is identified with the expecta-
tion of objective payoffs, as opposed to some more exotic function of the payoffs. The goal of this
paper is not to identify the suitable definition of fitness to justify a particular error (which is the
focus for many of the papers that Robson and Samuelson (2011) survey). Rather, we hope that our
stability notions are reasonably simple and universal that they may become a part of the applied
theory toolkit in the future. Studies on the implications of misspecifications in various strategic
environments may further enrich our understanding of these errors by paying more attention to
their evolutionary stability.
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Appendix

A Proofs of Key Results from the Main Text

A.1 Proof of Proposition 1

Proof. In any approachable EZ, let F ∈ supp(µA) and note that F• ∈ ΘA since ΘA is correctly
specified. Both F and F• solve the weighted minimization problem, the former because it is in
the support of µA, the latter because it attains the lowest minimization objective of 0. By strong
identification, the set of best responses to aAA and aBA under the belief µA is the same as set of
actions that maximize payoffs in the decision problem given by F•. Therefore, adherents of ΘA

obtain the highest possible objective payoffs in the stage game, so ΘA has weakly higher fitness
than ΘB in the approachable EZ.

A.2 Proof of Proposition 2

Proof. Let two singleton theories ΘA,ΘB be given. By contradiction, suppose they exhibit stability
reversal. Let Z = (ΘA,ΘB,µA,µB, p = (0,1),λ = 0,(a)) be any EZ where ΘB is resident. By the
definition of EZ, Z

′
= (ΘA,ΘB,µA,µB, p = (1,0),λ = 0,(a)) is also an EZ where ΘA is resident.

Let ug,g′ be theory Θg’s conditional fitness against group g
′
in the EZ Z

′
. Part (i) of the definition of

stability reversal requires that uAA > uBA and uAB > uBB. These conditional fitness levels remain the
same in Z. This means the fitness of ΘA is strictly higher than that of ΘB in Z, a contradiction.

A.3 Proof of Proposition 3

Proof. To show the first claim, by way of contradiction, suppose Z=(ΘA,ΘB,µA,µB, p=(1,0),λ =

0,(aAA,aAB,aBA,aBB)) is an EZ, and Z̃ = (ΘA,ΘB,µA,µB, p = (0,1),λ = 0,(ãAA, ãAB, ãBA, ãBB))

is another EZ where the adherents of ΘB hold the same belief µB (group A’s belief cannot change
as ΘA is the correctly specified singleton theory). By the optimality of behavior in Z, aBA best
responds to aAB under the belief µB, and aAB best responds to aBA under the belief µA, therefore
Z̃
′
= (ΘA,ΘB,µA,µB, p = (0,1),λ = 0,(ãAA,aAB,aBA, ãBB)) is another EZ. This holds because the
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distributions of observations for the adherents of ΘB are identical in Z̃ and Z̃
′
, since they only face

data generated from the profile (ãBB, ãBB). At the same time, since ãBB best responds to itself under
the belief µB, we have that Z

′
= (ΘA,ΘB,µA,µB, p = (1,0),λ = 0,(aAA,aAB,aBA, ãBB)) is an EZ.

Part (i) of the definition of stability reversal applied to Z
′
requires that U•(aAB,aBA)>U•(ãBB, ãBB)

(where U• is the objective expected payoffs), but part (ii) of the same definition applied to Z̃
′

re-
quires U•(ãBB, ãBB)≥U•(aAB,aBA), a contradiction.

To show the second claim, by way of contradiction suppose ΘB is strategically independent and
Z = (ΘA,ΘB,µA,µB, p = (0,1),λ = 0,(aAA,aAB,aBA,aBB)) is an EZ. By strategic independence,
the adherents of ΘB find it optimal to play aBB against any opponent strategy under the belief µB.
So, there exists another EZ of the form Z

′
=(ΘA,ΘB,µ

′
A,µB, p=(0,1),λ = 0,(aAA,a

′
AB,aBB,aBB)),

where a
′
AB is an objective best response to aBB. The belief µB is sustained because in both Z and

Z
′
, the adherents of ΘB have the same data: from the strategy profile (aBB,aBB). In Z

′
, ΘA ’s fitness

is U•(a
′
AB,aBB) and ΘB’s fitness is U•(aBB,aBB). We have U•(a

′
AB,aBB)≥U•(aBB,aBB) since a

′
AB

is an objective best response to aBB, contradicting the definition of stability reversal.

A.4 Proof of Proposition 4

Proof. Let λ ∈ [0,1] be given and let Z = (ΘA,ΘB,µA,µB, p = (1,0),λ ,(a)) be an EZ. Since
ΘA,ΘB are singleton theories, Z0 =(ΘA,ΘB,µA,µB, p=(1,0),λ = 0,(a)) and Z1 =(ΘA,ΘB,µA,µB, p=

(1,0),λ = 1,(a)) are also EZs. Furthermore, they are all approachable since the same beliefs and
behavior are sustained as EZs with any population proportions. Let ug,g′ represent theory Θg’s con-
ditional fitness against group g

′
in each of these three EZs. From the hypothesis of the proposition,

uA,A ≥ uB,A and uA,A ≥ uB,B. This means the fitness of ΘA in Z, which is uA,A, is weakly larger than
the fitness of ΘB in Z, which is λuB,B+(1−λ )uB,A. This shows ΘA has weakly higher fitness than
ΘB in every approachable EZ with λ and p = (1,0). Also, at least one such approachable EZ exists
with assortativity λ , for at least one approachable EZ exists when λ = 0, and the same equilibrium
belief and behavior also constitutes an EZ for any other assortativity.

A.5 Proof of Proposition 5

Proof. We can take L1,L2,L3 as given by Lemma 3. Suppose there is an EZ with behavior α =

(αAA,αAB,αBA,αBB) and beliefs over parameters µA ∈ ∆(Θ(κ•)), µB ∈ ∆(Θ(κ)). By Lemma 3,
both µA and µB must be degenerate beliefs that induce zero KL divergence, since both groups
match up with group A with probability 1. Furthermore, since ΘA is correctly specified, it is easy
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to see that the model Fr•,κ•,σ•
ζ

generates 0 KL divergence, hence the belief of the adherents of ΘA

must be degenerate on this correct model.
In terms of behavior, from Lemma 2, αBR

i (α−i;κ,r)≤ γ for all α−i ≥ 0,κ ∈ [0,1],r≥ 0. Since
the upper bound M̄α ≥ γ , the adherents of each theory must be best responding (across all linear
strategies in [0,∞)) in all matches, given their beliefs about the environment.

Using the equilibrium belief of group A, we must have αAA = αBR
i (αAA;κ•,r•), so αAA =

γ− 1
2 r•ψ(κ•)αAA

1+r• . We find the unique solution αAA = γ

1+r•+ 1
2 r•ψ(κ•)

. Next we turn to αAB,αBA, and µB.

We know µB puts probability 1 on some rB. For adherents of groups A and B to best respond to each
others’ play and for group B’s inference to have 0 KL divergence (when paired with an appropriate

choice of σζ ), we must have αAB =
γ− 1

2 r•ψ(κ•)αBA
1+r• , αBA =

γ− 1
2 rBψ(κ)αAB

1+rB
, and rB = r•αBA+αABψ(κ•)

αBA+αABψ(κ)

from Lemma 3. We may rearrange the expression for αBA to say αBA = γ− rBαBA− 1
2rBψ(κ)αAB.

Substituting the expression of rB into this expression of αBA, we get

αBA = γ− rB · (αBA +αABψ(κ)− 1
2

αABψ(κ))

= γ− r•αBA + r•αABψ(κ•)

αBA +αABψ(κ)
· (αBA +αABψ(κ)− 1

2
αABψ(κ))

= γ− r•αBA− r•αABψ(κ•)+
1
2

ψ(κ)αAB
r•αBA + r•αABψ(κ•)

αBA +αABψ(κ)

Multiply by αBA +αABψ(κ) on both sides and collect terms by powers of α ,

(αBA)
2 ·[−1− r•]+(αBAαAB)·[−ψ(κ)− 1

2
r•ψ(κ)−r•ψ(κ•)]−(αAB)

2 ·[1
2

r•ψ(κ•)ψ(κ)]+γ[αBA+αABψ(κ)]= 0.

Consider the following quadratic function in x,

H(x) := x2 [−1− r•]+(x · `(x))·[−ψ(κ)− 1
2

r•ψ(κ)−r•ψ(κ•)]−(`(x))2 ·[1
2

r•ψ(κ•)ψ(κ)]+γ [x+ `(x)ψ(κ)]= 0,

(1)

where `(x) := γ− 1
2 r•ψ(κ•)x
1+r• is a linear function in x. In an EZ, αBA is a root of H(x) in [0, γ

1
2 r•ψ(κ•)

].

To see why, if we were to have αBA > γ
1
2 r•ψ(κ•)

, then αAB = 0. In that case, rB = r• and so αBA =

αBR
i (0;κ•,r•) = γ

1+r• . Yet γ

1+r• <
γ

1
2 r•ψ(κ•)

, contradiction. Conversely, for any root x∗ of H(x) in

[0, γ
1
2 r•ψ(κ•)

], there is an EZ where αBA = x∗, αAB = `(x∗) ∈ [0,γ], and rB = r•αBA+αABψ(κ•)
αBA+αABψ(κ) .

Claim A.1. There exist some κ1 < κ• < κ̄1 so that H has a unique root in [0, γ
1
2 r•ψ(κ•)

] for all

κ ∈ [κ1, κ̄1]∩ [0,1].

By Claim A.1 (proved in the Online Appendix), for κ ∈ [κ1, κ̄1]∩ [0,1], group B has only one
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possible belief about elasticity (denoted by rB(κ)) in EZ), since there is only one possible outcome
in the match between group A and group B. This means αBB is also pinned down, since there is only
one solution to αBB = αBR

i (αBB;κ,rB(κ)). So for every κ ∈ [κ1, κ̄1]∩ [0,1], there is a unique EZ,
where equilibrium behavior is given as a function of κ by α(κ)= (αAA(κ),αAB(κ),αBA(κ),αBB(κ)).

Recall from Lemma 2 that the objective expected utility from playing αi against an oppo-
nent who plays α−i is U•i (αi,α−i) = E[s2

i ] · (αiγ − 1
2r•α2

i − 1
2r•ψ(κ•)αiα−i− 1

2α2
i ). If −i plays

the rational best response, then the objective expected utility of choosing αi is Ūi(αi) := E[s2
i ] ·

(αiγ − 1
2r•α2

i − 1
2r•ψ(κ•)αi

γ− 1
2 r•ψ(κ•)αi

1+r• − 1
2α2

i ). The derivative in αi is Ū
′
i (αi) = γ − r•αi −

1
2

r•
1+r• γψ(κ•)+ 1

2
(r•)2ψ(κ•)2

1+r• αi−αi. We also know that αAA = γ

1+r•+ 1
2 r•ψ(κ•)

satisfies the first-order

condition that γ− r•αAA− 1
2r•ψ(κ•)αAA−αAA = 0, therefore

Ū
′
i (αAA) =−

1
2

r•

1+ r•
γψ(κ•)+

1
2
(r•)2ψ(κ•)2

1+ r•
αAA +

1
2

r•ψ(κ•)αAA

=

[
r•ψ(κ•)

2

](
−γ

1+ r•
+

αAAψ(κ•)r•

1+ r•
+αAA

)
.

Making the substitution αAA = γ

1+r•+ 1
2 r•ψ(κ•)

,

−γ

1+ r•
+

αAAψ(κ•)r•

1+ r•
+αAA =

−γ(1+ r•+ 1
2 ψ(κ•)r•)+ γψ(κ•)r•+ γ(1+ r•)

(1+ r•)(1+ r•+ 1
2 ψ(κ•)r•)

=
1
2 γψ(κ•)r•

(1+ r•)(1+ r•+ 1
2 ψ(κ•)r•)

> 0.

Therefore, if we can show that α
′
BA(κ

•)> 0, then there exists some κ1 ≤ κ < κ• < κ̄ ≤ κ̄1 so that
for every κ ∈ [κ, κ̄]∩ [0,1], κ 6= κ• adherents of ΘB have strictly higher or strictly lower equilibrium
fitness in the unique EZ than adherents of ΘA, depending on the sign of κ−κ•. Consider again the
quadratic function H(x) in Equation (1) and implicitly characterize the unique root x in [0, γ

1
2 r•ψ(κ•)

]

as a function of κ in a neighborhood around κ•. Denote this root by αM, let D := dαM

dψ(κ) and also

note d`(αM)
dψ(κ) = −r•

2(1+r•)ψ(k•) ·D. We have

(−1− r•) · (2α
M) ·D+(αM`(αM))(−1− 1

2
r•)

+(`(αM)D+α
M −r•

2(1+ r•)
ψ(κ•)D) · (−ψ(κ)− 1

2
r•ψ(κ)− r•ψ(κ•))+(`(αM))2 · (−1

2
r•ψ(κ•))

+(2`(αM)
−r•

2(1+ r•)
ψ(κ•)D) · (−1

2
r•ψ(κ•)ψ(κ))+ γ(D+ `(αM)+ψ(κ)

−r•

2(1+ r•)
ψ(κ•)D) = 0
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Evaluate at κ = κ•, noting that αM(κ•) = `(αM(κ•)) = x∗ := γ

1+r•+ 1
2 ψ(κ•)r•

. The terms without
D are:

(x∗)2(−1− 1
2

r•)+(x∗)2(
1
2

r•ψ(κ•))+ γx∗ = x∗ ·
[
−x∗ ·

(
1+ r•+

1
2

ψ(κ•)r•− 1
2

r•
)
+ γ

]
= x∗ ·

[
−γ +

1
2

x∗r•+ γ

]
=

1
2

r•(x∗)2 > 0.

The coefficient in front of D is:

(−1−r•)(2x∗)+(x∗+x∗
−r•

2(1+ r•)
ψ(κ•))·(−ψ(κ•)− 3

2
r•ψ(κ•))+

1
2

x∗
(r•)2

(1+ r•)
ψ(κ•)3+γ+γψ(κ•)2 · −r•

2(1+ r•)
.

Make the substitution γ = x∗ ·
(
1+ r•+ 1

2ψ(κ•)r•
)
,

x∗ ·
{
−2−2r•+

(
1− r•

2(1+ r•)
ψ(κ•)

)
·ψ(κ•)(−3

2
r•−1)+

(r•)2

2(1+ r•)
ψ(κ•)3

}
+x∗ ·

{(
1+ r•+

1
2

ψ(κ•)r•
)
· (1−ψ(κ•)2 r•

2(1+ r•)
)

}
.

Collect terms inside the parenthesis based on powers of ψ(κ•), we get

x∗ ·
{

ψ(κ•)3 (r•)2

2(1+ r•)
− ψ(κ•)2r•

2(1+ r•)
(−3

2
r•−1)+ψ(κ•)(−3

2
r•−1)−2r•−2

}
+x∗ ·

{
−ψ(κ•)3 (r•)2

4(1+ r•)
− ψ(κ•)2r•

2(1+ r•)
· (1+ r•)+1+ r•+

1
2

ψ(κ•)r•
}
.

Combine to get: x∗ ·
[
ψ(κ•)3 (r•)2

4(1+r•) +
ψ(κ•)2(r•)2

4(1+r•) −ψ(κ•)r•−ψ(κ•)− r•−1
]
. Here ψ(κ•)3 (r•)2

4(1+r•) and
ψ(κ•)2(r•)2

4(1+r•) are positive terms with ψ(κ•)3 (r•)2

4(1+r•) +
ψ(κ•)2(r•)2

4(1+r•) ≤
(r•)2

4(1+r•) +
(r•)2

4(1+r•) ≤
1
2 · r

• · r•
1+r• ≤

1
2 r•.

Now −r•+ 1
2 · r
• < 0, and also −ψ(κ•)r•−ψ(κ•)− 1 < 0. Thus the coefficient in front of D is

strictly negative. This shows D(κ•) > 0. Finally, dαM

dψ(κ) has the same sign as dαM

dκ
since ψ(κ) is

strictly increasing in κ.
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OA 1 Proofs Omitted from the Appendix

OA 1.1 Proof of Claim A.1

Proof. We show that H(x) (i) has a unique root in [0, γ
1
2 r•ψ(κ•)

] when κ = κ•; (ii) does not have a

root at x = 0 or x = γ
1
2 r•ψ(κ•)

, and (iii) the root in the interval is not a double root. By these three

statements, since H(x) is a continuous function of κ, there must exist some κ1 < κ• < κ̄1 so that
it continues to have a unique root in [0, γ

1
2 r•ψ(κ•)

] for all κ ∈ [κ1, κ̄1]∩ [0,1].

Statement (i) has to do with the fact that if κ = κ•, then we need αAB =
γ− 1

2 r•ψ(κ•)αBA
1+r• and

αBA =
γ− 1

2 r•ψ(κ•)αAB
1+r• . These are linear best response functions with a slope of −1

2
r•

1+r•ψ(κ•),
which falls in (−1

2 ,0). So there can only be one solution to H in that region (even when we allow
αAB 6= αBA), which is the symmetric equilibrium found before αAB = αBA = γ

1+r•+ 1
2 r•ψ(κ•)

.

For Statement (ii), we evaluate H(0)=−( γ

1+r• )
2 1

2r•ψ(κ•)2+ γ2ψ(κ•)
1+r• = ψ(κ•)γ2

1+r• (1− (1/2)r•ψ(κ•)
1+r• ) 6=

0 because 1 + r• > (1/2)r•ψ(κ•). Finally, we evaluate H( γ
1
2 r•ψ(κ•)

) = ( γ
1
2 r•ψ(κ•)

)2(−1− r•) +

γ
γ

1
2 r•ψ(κ•)

= γ2

1
2 r•ψ(κ•)

(1− 1+r•
1
2 r•ψ(κ•)

). This is once again not 0 because 1+ r• > (1/2)r•ψ(κ•).

For Statement (iii), we show that H
′
(x∗)< 0 where x∗ = γ

1+r•+ 1
2 r•ψ(κ•)

. We find that

H
′
(x) =2x(−1− r•)+

(
γ− r•ψ(κ•)x

1+ r•

)
(−ψ(κ•)− 1

2
r•ψ(κ•)− r•ψ(κ•))

−2

(
γ− 1

2r•ψ(κ•)x
1+ r•

)(
−1

2r•ψ(κ•)

1+ r•

)(
1
2

r•ψ(κ•)2
)
+ γ−

1
2r•ψ(κ•)

1+ r•
γψ(κ•).

Collecting terms, the coefficient on x is

−2−2r•+
ψ(κ•)2r•

1+ r•

(
3
2

r•+1− 1
4
(
(r•)2ψ(κ•)2

1+ r•
)

)
,

1



while the coefficient on the constant is

γψ(κ•)

1+ r•

(
−3

2
r•−1+

1
2
(r•)2ψ(κ•)2

1+ r•
− 1

2
r•ψ(κ•)

)
+ γ.

Therefore, we may calculate H
′
(x∗) · 1

x∗ (1+ r•)2, which has the same sign as H
′
(x∗), to be:

− (1+ r•)2(2+2r•)+ψ(κ•)2r•((1+ r•)(
3
2

r•+1)− 1
4
(r•)2

ψ(κ•)2)

+(1+ r•+
1
2

r•ψ(κ•))

[
ψ(κ•)((1+ r•)[−3

2
r•−1− 1

2
r•ψ(κ•)]+

1
2
(r•)2

ψ(κ•)2)+(1+ r•)2
]
.

We have

−(1+ r•)2(2+2r•)+(1+ r•+
1
2

r•ψ(κ•))(1+ r•)2 ≤ (1+ r•)2(−1− 1
2

r•)< 0,

since 0≤ ψ(κ•)≤ 1. Also, for the same reason,

(1+ r•)[−1
2

r•ψ(κ•)]+
1
2
(r•)2

ψ(κ•)2 ≤−1
2
(r•)2

ψ(κ•)+
1
2
(r•)2

ψ(κ•)2 ≤ 0.

Finally, ψ(κ•)2r•(1+ r•)(3
2r•+ 1)+ (1+ r•+ 1

2r•ψ(κ•))ψ(κ•)(1+ r•)(−3
2r•− 1) is no larger

than

ψ(κ•)2r•(
3
2
(r•)2 +

5
2

r•+1)+ [r•ψ(κ•)r•(−(3/2)r•)]

+ [r•ψ(κ•)r•(−1)+1 ·ψ(κ•)r•(−(3/2)r•)]+ [r•ψ(κ•) ·1 · (−1)]

where the negative terms in the first, second, and third square brackets are respectively larger
in absolute value than the first, second and third parts in the expansion of the first summand.
Therefore, we conclude H

′
(x∗)< 0.

OA 1.2 Proof of Example 1

Proof. Define b∗(ai,a−i) := b•+ m
ai+a−i

. It is clear that DKL(F•(ai,a−i) ‖ F̂(ai,a−i;b∗(ai,a−i),m)))=

0, while this KL divergence is strictly positive for any other choice of b.

In every EZ with λ = 0 and p = (1,0), we must have aAA = aAB = 1. If aBA = 2, then the
adherents of ΘB infer b∗(1,2) = b•+ m

3 . With this inference, the biased agents expect 1 · (2(b•+

2



m
3 )−m) = 2b•− m

3 from playing 1 against rival investment 1, and expect 2 · (3(b•+ m
3 )−m)−c =

6b•− c from playing 2 against rival investment 1. Since 4b•+ m
3 − c > 0 from Condition 2, there

is an EZ with aBA = 2 and µB puts probability 1 on b•+ m
3 . It is impossible to have aBA = 1 in

EZ. This is because b∗(1,1) > b∗(1,2), and under the inference b∗(1,2) we already have that the
best response to 1 is 2, so the same also holds under any higher belief about complementarity.
Also, we have aBB = 2, since 2 must best respond to both 1 and 2. So in every such EZ, ΘA’s
conditional fitness against group A is 2b• and ΘB’s conditional fitness against group A is 6b•− c,
with 2b• > 6b•− c by Condition 1. Also, ΘA’s conditional fitness against group B is 3b•, while
ΘB’s conditional fitness against group B is 8b•− c. Again, 3b• > 8b•− c by Condition 1.

Next, we show ΘB has strictly higher fitness than ΘA in every EZ with λ = 0, pB = 1. There is
no EZ with aBB = 1. This is because b∗(1,1) = b•+ m

2 . As discussed before, under this inference
the best response to 1 is 2, not 1. Now suppose aBB = 2. Then µB puts probability 1 on b∗(2,2) =
b•+ m

4 . With this inference, the biased agents expect 1 · (3(b•+ m
4 )−m) = 3b•− m

4 from playing 1
against rival investment 2, and expect 2 ·(4(b•+ m

4 )−m)−c = 8b•−c from playing 2 against rival
investment 2. We have 5b•+ m

4 − c > 0 from Condition 2, so 2 best responds to 2. We must have
aAA = aAB = 1. We conclude the unique EZ behavior is (aAA,aAB,aBA,aBB) = (1,1,1,2), since the
biased agents expect 1 · (2(b•+ m

4 )−m) = 2b•− m
2 from playing 1 against rival investment 1, and

expect 2 · (3(b•+ m
4 )−m)− c = 6b•− m

2 − c from playing 2 against rival investment 1. We have
4b•−c < 0 from Condition 1, so 1 best responds to 1. In the unique EZ with λ = 0 and p = (0,1),
the fitness of ΘA is 2b• and the fitness of ΘB is 8b•− c, where 8b•− c > 2b• by Condition 1.

OA 1.3 Proof of Example 2

Proof. Let KL4,1 := 0.4 · ln 0.4
0.1 + 0.6 · ln 0.6

0.9 ≈ 0.3112, KL4,8 := 0.4 · ln 0.4
0.8 + 0.6 · ln 0.6

0.2 ≈ 0.3819,
and KL2,4 := 0.2 · ln 0.2

0.4 + 0.8 · ln 0.8
0.6 ≈ 0.0915. Let λh be the unique solution to (1−λ )KL2,4−

λ (KL4,8−KL4,1) = 0, so λh ≈ 0.564.
We show for any λ ∈ [0,λh), there exists a unique EZ Z= (ΘA,ΘB,µA,µB, p = (1,0),λ ,(a)),

and that this EZ has µB putting probability 1 on FH , aAA = a1, aAB = a1, aBA = a2, aBB = a2. First,
we may verify that under FH , a2 best responds to both a1 and a2. Also, the KL divergence of FH is
λ ·KL4,8 while that of FL is λ ·KL4,1 +(1−λ ) ·KL2,4. Since λ < λh, we see that FH has strictly
lower KL divergence. Finally, to check that there are no other EZs, note we must have aAA = a1,

aAB = a1, aBA = a2 in every EZ. In an EZ where aBB puts probability q ∈ [0,1] on a2, the KL

3



divergence of FH is λ p ·KL4,8and the KL divergence of FL is λ p ·KL4,1+(1−λ ) ·KL2,4. We have

λq·KL4,1+(1−λ )·KL2,4−λq ·KL4,8 = λq·(KL4,1−KL4.8)+(1−λ )KL2,4≥ (1−λ )KL2,4−λ (KL4,8−KL4,1).

Since λ < λh, this is strictly positive. Therefore we must have µB put probability 1 on FH , which
in turn implies q = 1.

For each λ ∈ [0,λh), the beliefs and behavior in the unique EZ discussed above also constitute
an EZ for a small enough pB > 0. So, the unique EZ with pB = 0 is approachable.

When ΘA is dominant, the equilibrium fitness of ΘA is always 0.25 for every λ . The equilibrium
fitness of ΘB, as a function of λ , is 0.4λ + 0.2(1− λ ). Let λl solve 0.25 = 0.4λ + 0.2(1− λ ),

that is λl = 0.25. This shows ΘA is evolutionarily fragile against ΘB for λ ∈ (λl,λh), and it is
evolutionarily stable against ΘB for λ = 0.

Now suppose λ = 1. If there is an EZ with pA = 1 where aBB plays a2 with positive probability,
then µB must put probability 1 on FL, since KL4,1 <KL4,8. This is a contradiction, since a2 does not
best respond to itself under FL. So the unique EZ involves aAA = a1, aAB = a1, aBA = a2, aBB = a3.

It is easy to check this EZ is approachable. In the EZ, the fitness of ΘA is 0.25, and the fitness of
ΘB is 0.2. This shows ΘA is evolutionarily stable against ΘB for λ = 1.

OA 1.4 Proof of Lemma 1

Proof. For i 6= j, rewrite si =

(
ω + κ√

κ2+(1−κ)2
z
)
+ 1−κ√

κ2+(1−κ)2
ηi and s j =

(
ω + κ√

κ2+(1−κ)2
z
)
+

1−κ√
κ2+(1−κ)2

η j. Note that ω + κ√
κ2+(1−κ)2

z has a normal distribution with mean 0 and variance

σ2
ω + κ2

κ2+(1−κ)2 σ2
ε . The posterior distribution of

(
ω + κ√

κ2+(1−κ)2
z
)

given si is therefore normal

with a mean of
1/( (1−κ)2

κ2+(1−κ)2
σ2

ε )

1/(σ2
ω+

κ2

κ2+(1−κ)2
σ2

ε )+1/( (1−κ)2

κ2+(1−κ)2
σ2

ε )
si and a variance of 1

1/(σ2
ω+

κ2

κ2+(1−κ)2
σ2

ε )+1/( (1−κ)2

κ2+(1−κ)2
σ2

ε )
.

Since η j is mean-zero and independent of i’s signal, the posterior distribution of s j | si under
the correlation parameter κ is normal with a mean of

1/( (1−κ)2

κ2+(1−κ)2 σ2
ε )

1/(σ2
ω + κ2

κ2+(1−κ)2 σ2
ε )+1/( (1−κ)2

κ2+(1−κ)2 σ2
ε )

si

and a variance of 1

1/(σ2
ω+

κ2

κ2+(1−κ)2
σ2

ε )+1/( (1−κ)2

κ2+(1−κ)2
σ2

ε )
+ (1−κ)2

κ2+(1−κ)2 σ2
ε . We thus define
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ψ(κ) :=
1/( (1−κ)2

κ2+(1−κ)2
σ2

ε )

1/(σ2
ω+

κ2

κ2+(1−κ)2
σ2

ε )+1/( (1−κ)2

κ2+(1−κ)2
σ2

ε )
for κ ∈ [0,1), and ψ(1) := 1. To see that ψ(κ) is strictly

increasing in k, we have

1/ψ(κ) = 1+
(1−κ)2

κ2+(1−κ)2 σ2
ε

σ2
ω + κ2

κ2+(1−κ)2 σ2
ε

= 1+
(1−κ)2σ2

ε

(κ2 +(1−κ)2)σ2
ω +κ2σ2

ε

and then we can verify that the second term is decreasing in κ.

As κ → 1, the term 1/( (1−κ)2

κ2+(1−κ)2 σ2
ε ) tends to ∞, so

1/( (1−κ)2

κ2+(1−κ)2
σ2

ε )

1/(σ2
ω+

κ2

κ2+(1−κ)2
σ2

ε )+1/( (1−κ)2

κ2+(1−κ)2
σ2

ε )
ap-

proaches
1/( (1−κ)2

κ2+(1−κ)2
σ2

ε )

1/( (1−κ)2

κ2+(1−κ)2
σ2

ε )
= 1. We also verify that ψ(0) = 1/σ2

ε

(1/σ2
ω )+(1/σ2

ε )
> 0.

Finally, for any κ ∈ [0,1], κ√
κ2+(1−κ)2

z+ 1−κ√
κ2+(1−κ)2

ηi has variance σ2
ε and mean 0, so Eκ [ω |

si] =
1/σ2

ε

1/σ2
ε +1/σ2

ω

si. We then define γ as the strictly positive constant 1/σ2
ε

1/σ2
ε +1/σ2

ω

.

OA 1.5 Proof of Lemma 2

Proof. Player i’s conditional expected utility given signal si is

αisi ·Eκ [Er∼margr(µ)
[ω− 1

2
rαisi−

1
2

rα−is−i +ζ ] | si]−
1
2
(αisi)

2

by linearity, expectation over r is equivalent to evaluating the inner expectation with r = r̂, which
gives

αisi ·Eκ [ω−
1
2

r̂αisi−
1
2

r̂α−is−i +ζ |si]−
1
2
(αisi)

2

=αisi · (γsi−
1
2

r̂αisi−
1
2

r̂ψ(κ)siα−i)−
1
2
(αisi)

2

=s2
i · (αiγ−

1
2

r̂α
2
i −

1
2

r̂ψ(κ)αiα−i−
1
2

α
2
i ).

The term in parenthesis does not depend on si, and the second moment of si is the same for all val-
ues of κ. Therefore this expectation is E[s2

i ] ·
(
αiγ− 1

2 r̂α2
i − 1

2 r̂ψ(κ)αiα−i− 1
2α2

i
)
. The expression

5



for αBR
i (α−i;κ,r) follows from simple algebra, noting that E[s2

i ] > 0 while the second derivative
with respect to αi for the term in the parenthesis is −1

2 r̂− 1
2 < 0.

To see that the said linear strategy is optimal among all strategies, suppose i instead chooses
any qi after si. By above arguments, the objective to maximize is

qi · (γsi−
1
2

r̂qi−
1
2

r̂ψ(κ)siα−i)−
1
2

q2
i .

This objective is a strictly concave function in qi, as −1
2 r̂− 1

2 < 0. First-order condition finds the
maximizer q∗i = αBR

i (α−i;κ, r̂). Therefore, the linear strategy also maximizes interim expected
utility after every signal si, and so it cannot be improved on by any other strategy.

OA 1.6 Proof of Lemma 3

Proof. Note that αi+α−iψ(κ•)
αi+α−iψ(κ) ≥ 0 and αi+α−iψ(κ•)

αi+α−iψ(κ) = 1+ α−i(ψ(κ•)−ψ(κ))
αi+α−iψ(κ) ≤ 1+ 1

ψ(0) (recalling ψ(0)>
0). Hence let L3 = r• · (1+ 1

ψ(0)). When M̄r ≥ L3, we always have rINF
i (αi,α−i, ;κ•,κ,r•) ≤ M̄r

for all αi,α−i ≥ 0 and κ•,κ ∈ [0,1].
Conditional on the signal si, the distribution of market price under the model Fr̂,κ,σ̂ζ

is normal
with a mean of

E[ω | si]−
1
2

r̂αisi−
1
2

r̂α−i ·Eκ [s−i | si] = γsi−
1
2

r̂αisi−
1
2

r̂α−iψ(κ)si,

while the distribution of market price under the model Fr•,κ•,σ•
ζ

is normal with a mean of

E[ω | si]−
1
2

r•αisi−
1
2

r•α−i ·Eκ•[s−i | si] = γsi−
1
2

r•αisi−
1
2

r•α−iψ(κ•)si.

Matching coefficients on si, we find that if r̂ = r•αi+α−iψ(κ•)
αi+α−iψ(κ) , then these means match after every

si. On the other hand, for any other value of r̂, these means will not match for any si and thus
DKL(Fr•,κ•,σ•

ζ
(αi,α−i) ‖ Fr̂,κ,σ̂ζ

(αi,α−i))> 0 for any r̂ 6= r•αi+α−iψ(κ•)
αi+α−iψ(κ) .

Let L1 = maxκ∈[0,1]

{
Varκ [ω | si]+Varκ

[
1
2r• · (1+ 1

ψ(0))Bα · s−i | si

]}
. This maximum exists

and is finite, since the expression is a continuous function of κ on the compact domain [0,1]. Also,
let L2 = maxκ∈[0,1]

{
Varκ [ω | si]+Varκ

[1
2r•Bα · s−i | si

]}
,where the maximum exists for the same

reason. Conditional on the signal si, the variance of market price under the model F
r•

αi+α−iψ(κ•)
αi+α−iψ(κ)

,κ,σ̂ζ
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is
Varκ

[
ω− 1

2
r•

αi +α−iψ(κ•)

αi +α−iψ(κ)
α−is−i | si

]
+ σ̂

2
ζ
.

Since ω and s−i are positively correlated given si, and using the fact r•αi+α−iψ(κ•)
αi+α−iψ(κ) ≤ r• · (1+ 1

ψ(0))

and α−i ≤ Bα , this variance is no larger than

Varκ [ω | si]+Varκ

[
1
2

r• · (1+ 1
ψ(0)

)Bα · s−i | si

]
+ σ̂

2
ζ
= L1 + σ̂

2
ζ
.

On the other hand, the variance of market price under the model Fr•,κ•,σ•
ζ

is

Varκ•

[
ω− 1

2
r•α−is−i | si

]
+(σ•

ζ
)2≤Varκ•[ω | si]+Varκ•

[
1
2

r•Bα · s−i | si

]
+(σ•

ζ
)2≤ L2+(σ•

ζ
)2.

At the same time, since (σ•
ζ
)2 ≥ L1, this conditional variance is at least L1. Among values of

σ̂2
ζ
∈ [0,M̄2

σζ
], there exists exactly one such that the conditional variance under F

r•
αi+α−iψ(κ•)
αi+α−iψ(κ)

,κ,σ̂ζ

is the same as that under Fr•,κ•,σ•
ζ
, since we have let M̄2

σζ
≥ (σ•

ζ
)2 +L2. Thus there is one choice

of σ̂ζ ∈ [0,M̄σζ
] with such that DKL(Fr•,κ•,σ•

ζ
(αi,α−i) ‖ F

r•
αi+α−iψ(κ•)
αi+α−iψ(κ)

,κ,σ̂ζ

(αi,α−i)) = 0. For any

other choice of σ̃ζ , we conclude that DKL(Fr•,κ•,σ•
ζ
(αi,α−i) ‖ F

r•
αi+α−iψ(κ•)
αi+α−iψ(κ)

,κ,σ̃ζ

(αi,α−i))> 0.

OA 1.7 Proof of Lemma 4

Proof. Assumption OA1 holds as A, ΘA,ΘB are compact due to the finite bounds M̄α ,M̄r,M̄σζ
.

Also, from Lemma 2, the expected utility from playing αi against α−i in a model with param-
eters (r̂,κ,σζ ) is E[s2

i ] ·
(
αiγ− 1

2 r̂α2
i − 1

2 r̂ψ(κ)αiα−i− 1
2α2

i
)
. This is a continuous function in

(αi,α−i, r̂) and strictly concave in αi. Therefore Assumptions OA2 and OA5 are satisfied.
To see the finiteness and continuity of the K functions, first recall that the KL divergence

from a true distribution N (µ1,σ
2
1 ) to a different distribution N (µ2,σ

2
2 ) is given by ln(σ2/σ1)+

σ2
1+(µ1−µ2)

2

2σ2
2

− 1
2 . Under own play αi, opponent play α−i, correlation parameter κ, elasticity r̂ and

price idiosyncratic variance σ2
ζ

, the expected distribution of price after signal si is

−1
2

r̂αisi +(ω− 1
2

r̂α−is−i | si,κ)+ ζ̂

where the first term is not random, the middle term is the conditional distribution of ω− 1
2 r̂α−is−i
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given si, based on the joint distribution of (ω,si,s−i) with correlation parameter κ. The final term
is an independent random variable with mean 0, variance σ2

ζ
. The analogous true distribution of

price is

−1
2

r•αisi +(ω− 1
2

r•α−is−i | si,κ
•)+ζ

•

where ζ • is an independent random variable with mean 0, variance (σ•
ζ
)2. For a fixed κ, we may

find 0 < σ2 < σ̄2 < ∞ so that the variances of both distributions lie in [σ2, σ̄2] for all si ∈ R,
αi,α−i ∈ [0,M̄α ], r̂ ∈ [0,M̄r]. First note that as a consequence of the multivariate normality, the
variances of these two expressions do not change with the realization of si. The lower bound
comes from the fact that Varκ(ω− 1

2 r̂α−is−i | si) is nonzero for all α−i, r̂ in the compact domains
and it is a continuous function of these two arguments, so it must have some positive lower bound
σ2 > 0. For a similar reason, the variance of the middle term has a upper bound for choices of the
parameters α−i, r̂ in the compact domains, and the inference about σ2

ζ
is also bounded.

The difference in the means of the two distributions is no larger than si · [1
2(M̄r+r•) ·1+ 1

2(M̄r+

r•) ·1 · (ψ(κ)+ψ(κ•))]. Thus consider the function

h(si) := ln(σ̄/σ)+
1
2
(σ̄2/σ

2)+
[1

2(M̄r + r•) ·1+ 1
2(M̄r + r•) ·1 · (ψ(κ)+ψ(κ•))]2

2σ2 s2
i −

1
2
.

That is h(si) has the form h(si) =C1 +C2s2
i for constants C1,C2. It is absolutely integrable against

the distribution of si, and it dominates the KL divergence between the true and expected price dis-
tributions at every si and for any choices of αi,α−i ∈ [0,M̄α ], r̂ ∈ [0,M̄r],σ

2
ζ
∈ [0,M̄ζ ]. This shows

KA,KB are finite, so Assumption OA3 holds. Further, since the KL divergence is a continuous
function of the means and variances of the price distributions, and since these mean and variance
parameters are continuous functions of αi,α−i, r̂,σ2

ζ
, the existence of the absolutely integrable

dominating function h also proves KA,KB (as integrals of KL divergences across different si) are
continuous, so Assumption OA4 holds.

OA 1.8 Proof of Proposition 6

Proof. We will show that in every EZ: (i) for each g ∈ {A,B}, µg puts probability 1 on 1+ψ(κ•)
1+ψ(κg)

r•;
(ii) for each g ∈ {A,B}, αgg =

γ

1+ r•
2 (1+ψ(κ•))+ r•

2 (
1+ψ(κ•)
1+ψ(κg)

)
; (iii) the equilibrium fitness of group A is

weakly higher than that of group B if and only if κA ≤ κB.
Choose L1,L2,L3 as in Lemma 3, given r• and M̄α . In any EZ with behavior (αAA,αAB,αBA,αBB),

8



since the adherents of each theory matches with their own group with probability 1 under per-
fectly assortatively matching, we conclude that each of µg for g ∈ {A,B} must put full weight on
rINF

i (αgg,αgg;κ•,κg,r•) =
αgg+αggψ(κ•)
αgg+αggψ(κg)

r• = 1+ψ(κ•)
1+ψ(κg)

r•, proving (i).

Given this belief, we must have αgg =
γ− 1

2
1+ψ(κ•)
1+ψ(κg)

r•ψ(κg)αgg

1+ 1+ψ(κ•)
1+ψ(κg)

r•
by Lemma 2. Rearranging yields

αgg =
γ

1+ r•
2 (1+ψ(κ•))+ r•

2 (
1+ψ(κ•)
1+ψ(κ)

)
, proving (ii).

From Lemma 2, the objective expected utility of each player when both play the strategy pro-
file αsymm is E[s2

i ] ·
(
αsymmγ− 1

2r•α2
symm− 1

2r•ψ(κ•)α2
symm− 1

2α2
symm

)
. This is a strictly concave

quadratic function in αsymm that is 0 at αsymm = 0. Therefore, it is strictly decreasing in αsymm for
αsymm larger than the team solution αT EAM that maximizes this expression, given by the first-order
condition

γ− r•αT EAM− r•ψ(κ•)αT EAM−αT EAM = 0⇒ αT EAM =
γ

1+ r•+ r•ψ(κ•)
.

For any value of κ ∈ [0,1], using the fact that ψ(0)> 0 and ψ is strictly increasing,

γ

1+ r•
2 (1+ψ(κ•))+ r•

2 (
1+ψ(κ•)
1+ψ(κ) )

>
γ

1+ r•
2 (1+ψ(κ•))+ r•

2 (1+ψ(κ•))
= αT EAM.

Also, γ

1+ r•
2 (1+ψ(κ•))+ r•

2 (
1+ψ(κ•)
1+ψ(κ)

)
is a strictly increasing function in κ , since ψ is strictly increasing.

We therefore conclude that each player’s utility when they play γ

1+ r•
2 (1+ψ(κ•))+ r•

2 (
1+ψ(κ•)
1+ψ(κ)

)
against

each other is strictly decreasing in κ, proving (iii).

OA 1.9 Proof of Proposition 7

Proof. Find L1,L2,L3 as given by Lemma 3. Suppose ΘA = Θ(κ•), ΘB = {Fr•,κ,σ•
ζ
} for any κ ∈

[0,1], (pA, pB) = (1,0), and λ ∈ [0,1], then arguments similar to those in the proof of Lemma 3
imply there exists exactly one EZ, and it involves the adherents of ΘA holding correct beliefs and
playing γ

1+r•+ 1
2 r•ψ(κ•)

against each other.

We now analyze αBA(κ) in such EZ. In the proof of Proposition 5, we defined Ūi(αi) as i’s
objective expected utility of choosing αi when −i plays the rational best response. We showed
that Ū

′
i (

γ

1+r•+ 1
2 r•ψ(κ•)

) > 0. In an EZ where i believes in the model Fr•,κ,σ•
ζ

and −i believes

in the model Fr•,κ•,σ•
ζ
, using the expression for αBR

i from Lemma 2, the play of i solves x =

9



γ− 1
2 r•ψ(κ)

(
γ− 1

2 r•ψ(κ•)x
1+r•

)
1+r• , which implies αBA(κ) =

γ(1+r•− 1
2 ψ(κ)r•)

1+2r•+(r•)2− 1
4 ψ(κ)ψ(κ•)(r•)2 . Taking the derivative

and evaluating at κ = κ•, we find an expression with the same sign as 1
4ψ

′
(κ•)r•(1+r•)γ(−2(1+

r•) + ψ(κ•)r•), which is strictly negative because ψ
′
(κ•) > 0, r• > 0, γ > 0, and ψ(κ•) ≤

1. This shows there exists ε > 0 so that for every κh ∈ (κ•,κ•+ ε], we have Ūi(αBA(κh)) <

Ūi(
γ

1+r•+ 1
2 r•ψ(κ•)

), that is the adherents of {Fr•,κh,σ
•
ζ
} have strictly lower fitness than the adher-

ents of Θ(κ•) with λ = 0 in the unique EZ. Finally, existence and upper-hemicontinuity of EZ in
population proportion in such societies can be established using arguments similar to the proof of
Propositions OA1 and OA2. This establishes the first claim to be proved.

Next, we turn to αBB(κ). Using the expressing for αBR
i in Lemma 2, we find that αBB(κ) =

γ

1+r•+ 1
2 r•ψ(κ)

. Since ψ
′
> 0, we have αBB(κ) is strictly larger than αAA = γ

1+r•+ 1
2 r•ψ(κ•)

when
κ < κ•. From the proof of Proposition 6, we know that objective payoffs in the stage game is
strictly decreasing in linear strategies larger than the team solution αT EAM = γ

1+r•+r•ψ(κ•) . Since
αBB(κ) > αAA > αT EAM, we conclude the adherents of {Fr•,κl ,σ

•
ζ
} have strictly lower fitness than

the adherents of Θ(κ•) with λ = 1 in the unique EZ, for any κl < κ•. Again , existence and
upper-hemicontinuity of EZ in population proportion in such societies can be established using
arguments similar to the proof of Propositions OA1 and OA2. This establishes the second claim to
be proved.

OA 1.10 Proof of Proposition 8

Proof. Consider the society where ΘA = ΘB = Θ(κ•), (pA, pB) = (1,0). For any EZ with behav-
ior (σAA,σAB,σBA,σBB) and beliefs (µA,µB), there exists another EZ (σ

′
AA,σ

′
AB,σ

′
BA,σ

′
BB) where

σ
′

g,g′
= σAA for all g,g

′ ∈ {A,B} and all agents hold the belief µA. The uniqueness of EZ from
Assumption 1 implies αAB(κ

•) = αBA(κ
•) = αBB(κ

•) = α•.

Now consider the society where ΘB = Θ(κ), (pA, pB) = (1,0). By the same arguments as the
existence arguments in Proposition OA1, there exists an EZ where αAA(κ) = αAA(κ

•). By the
uniqueness of EZ from Assumption 1, we must in fact have αAA(κ) = αAA(κ

•) for all κ , so the
fitness of theory Θ(κ•) in the unique EZ is

E• [E• [u•1(α•s1,α
•s2,ω) | s1]] .
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Under λ matching with mutant theory Θ(κ), the mutant’s fitness in the unique EZ is

E• [E• [(1−λ )u•1(αBA(κ)s1,αAB(κ)s2,ω)+(λ )u•1(αBB(κ)s1,αBB(κ)s2,ω) | s1]] .

Differentiate and evaluate at κ = κ•. At κ = κ•, adherents of ΘA and ΘB have the same fitness
since they play the same strategies. So, a non-zero sign on the derivative would give the desired
evolutionary fragility against either theories with slightly higher or slightly lower κ. This derivative
is:

E•
[
E•
[

∂u•1
∂q1

(α•s1,α
•s2,ω) · [(1−λ )α

′
BA(κ

•)+λα
′
BB(κ

•)] · s1

+
∂u•1
∂q2

(α•s1,α
•s2,ω) · [(1−λ )α

′
AB(κ

•)+λα
′
BB(κ

•)] · s2

∣∣∣∣∣s1

]]
.

Using the interim optimality part of Assumption 1, E•
[

∂u•1
∂q1

(α•s1,α
•s2,ω) | s1

]
= 0 for every s1 ∈

S, using the necessity of the first-order condition. The derivative thus simplifies as claimed.

OA 1.11 Proof of Proposition 9

Proof. When ΘA = ΘB = Θ•, for any matching assortativity λ and with (pA, pB) = (1,0), we
show adherents of both theories have 0 fitness in every approachable EZ. Suppose instead that the
match between groups g and g

′
reach a terminal node other than z1 with positive probability. Let

nL be the last non-terminal node reached with positive probability, so we must have L ≥ 2, and
also that nodes n1, ...,nL−1 are also reached with positive probability. So Drop must be played
with probability 1 at nL. Since nL is reached with positive probability and the EZ is approachable,
correctly specified agents hold correct beliefs about opponent’s play at nL, which means at nL−1 it
cannot be optimal to play Across with positive probability since this results in a loss of ` compared
to playing Drop, a contradiction.

Now let ΘA = Θ•, ΘB = ΘAn. Suppose λ ∈ [0,1] and let pB ∈ (0,1). We claim there is an EZ
where dk

AA = 1 for every k, dk
AB = 0 for every even k with k < K, dk

AB = 1 for every other k, dk
BA = 0

for every odd k and dk
BA = 1 for every even k, and dk

BB = 0 for every k with k < K, dK
BB = 1. It is

easy to see that the behavior (dAA) is optimal under correct belief about opponent’s play. In the ΘA

vs. ΘB matches, the conjecture about A’s play d̂k
AB = 2/K for k even, d̂k

AB = 1 for k odd minimizes
KL divergence among all strategies in AAn, given B’s play. To see this, note that when B has the
role of P2, opponent Drops immediately. When B has the role of P1, the outcome is always zK. So

11



a conjecture with d̂k
AB = x for every even k has the conditional KL divergence of:

∑
k≤K−1 odd

0 · ln
(

0
0

)
︸ ︷︷ ︸

(1,zk) for k≤K−1 odd

+ ∑
k≤K−1 even

0 · ln
(

0
(1/2) · (1− x)(k/2)−1 · x

)
︸ ︷︷ ︸

(1,zk) for k≤K−1 even

+
1
2

ln
(

1/2
(1/2) · (1− x)(K/2)−1 · x

)
︸ ︷︷ ︸

(1,zK)

+0 · ln
(

0
(1− x)(K/2)

)
︸ ︷︷ ︸

(1,zend)

when matched with an opponent from ΘA. Using 0·ln(0)= 0, the expression simplifies to 1
2 ln
(

1
(1−x)(K/2)−1·x

)
,

which is minimized among x∈ [0,1] by x= 2/K. Against this conjecture, the difference in expected
payoff at node nK−1 from Across versus Drop is (1−2/K)(g)+(2/K)(−`). This is strictly posi-
tive when g > 2

K−2`. This means the continuation value at nK−1 is at least g larger than the payoff
of Dropping at nK−3, so again Across has strictly higher expected payoff than Drop. Inductively,
(dk

BA) is optimal given the belief (d̂k
AB). Also, (dk

AB) is optimal as it results in the highest possible
payoff. We can similarly show that the conjecture d̂k

BB with d̂k
BB = 2/K for k even, d̂k

BB = 0 for k odd
minimizes KL divergence conditional on ΘB opponent, and (dk

BB) is optimal given this conjecture.
As pB → 0, we find an approachable EZ where adherents of A have fitness 0, whereas the

adherents of B have fitness at least 1
2(((K/2)−1)g− `)> 0 since g > 2

K−2`. This shows ΘA is not
evolutionarily stable against ΘB.

But consider the same (dAA,dAB,dBA) and suppose dk
BB = 1 for every k. Taking pB→ 1, with

λ < 1, we find an approachable EZ where adherents of B have fitness 0, adherents of A have fitness
(1−λ ) · 1

2 · ((K/2)g+ `)> 0. This shows ΘB is not evolutionarily stable against ΘA.

OA 1.12 Proof of Proposition 10

Proof. In the centipede game, suppose g > 2
K−2`. the misspecified agent thinks a group B agent

in the role of P2 and a group A agent in either role has a probability 2/K of stopping at every
node. Under this belief, choosing to continue instead of drop means there is a (K− 2)/K chance
of gaining g, but a 2/K chance of losing `. Since we assume g > 2

K−2`, it is strictly better to
continue. When p fraction of the agents are correctly specified, the fitness of Θ• is p ·0+(1− p) ·
(1

2
g(K−2)

2 + 1
2(

gK
2 +`)), while the fitness of ΘAn is p · [1

2(
g(K−2)

2 −`)+ 1
2

g(K−2)
2 ]+(1− p)[1

2(
g(K−2)

2 −
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`)+ 1
2(

gK
2 + `)]. The difference in fitness is

−p[
1
2
(
g(K−2)

2
− `)+

1
2

g(K−2)
2

]+ (1− p)
1
2
`.

Simplifying, this is 1
2`− p · g(K−2)

2 , a strictly decreasing function in p. When p = `
g(K−2) , which is

a number strictly between 0 and 1/2 from the assumption g > 2
K−2` in the centipede game, the two

theories have the same fitness.

OA 1.13 Proof of Proposition 11

Proof. In the Θ
An vs. Θ

An match, the adherents of Θ
An hold the belief that d̂k

BB = 2/K for every
even k. In the role of P1, at node k for k ≤ K−3, stopping gives them k but continuing gives them
a (K− 2)/K chance to get at least k+ 2, and we have k ≤ K−2

K (k+ 2) ⇐⇒ 2k ≤ 2K− 4 ⇐⇒
k ≤ K− 2. At node K− 1, the agent gets K− 1 from dropping but expects (K + 2) · K−2

K from
continuing, and (K +2) · K−2

K − (K−1) = K2−4−K2+K
K = K−4

K > 0 since K ≥ 6.
In the Θ

• vs. Θ
An match, the adherents of ΘAn hold the belief that d̂k

AB = 2/K for every k. By
the same arguments as before, the behavior of the adherents of ΘAn are optimal given these beliefs.
Also, the adherents of Θ• have no profitable deviations since they are best responding both as P1
and P2.

When p fraction of the agents are correctly specified, in the dollar game the fitness of Θ
• is

p ·0.5+(1− p) · (1
2(K−1)+ 1

2K), while the fitness of Θ
An is p ·0+(1− p) · (1

2 ·0+
1
2K). For any

p, the fitness of Θ
• is strictly higher than that of Θ

An.

OA 2 Existence and Continuity of EZ

We provide a few technical results about the existence of EZ and the upper-hemicontinuity of the
set of EZ with respect to population share. The existence and continuity results also establish
the existence of approachable EZs with population shares p = (1,0). Note that the same learn-
ing channel that generates new stability phenomena in Section 3 also leads to some difficulty in
establishing existence and continuity results, as agents draw different inferences with different
interaction structures.

Let two theories, ΘA,ΘB be fixed. Also fix population shares p and matching assortativity λ .

Let UA : A2×ΘA→ R be such that UA(ai,a−i;F) = Ui(ai,a−i;δF) and let UB : A2×ΘB→ R be
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such that UB(ai,a−i;F) =Ui(ai,a−i;δF).

Assumption OA1. A,ΘA,ΘB are compact metrizable spaces.

Assumption OA2. UA,UB are continuous.

Assumption OA3. For every F ∈ΘA∪ΘB and ai,a−i ∈A, K(F ;ai,a−i) is well-defined and finite.

Under Assumption OA3, we have the well-defined functions KA : ΘA×A2 → R+ and KB :
ΘB×A2→ R+, where Kg(F ;ai,a−i) := KL(F•(ai,a−i) ‖ F(ai,a−i)).

Assumption OA4. KA and KB are continuous.

Assumption OA5. A is convex and, for all a−i ∈ A and µ ∈ ∆(ΘA)∪∆(ΘB), ai 7→Ui(ai,a−i; µ)

is quasiconcave.

We show existence of EZ using the Kakutani-Fan-Glicksberg fixed point theorem, applied to
the correspondence which maps strategy profiles and beliefs over models into best replies and
beliefs over KL-divergence minimizing models. We start with a lemma.

Lemma OA1. For g ∈ {A,B}, a = (aAA,aAB,aBA,aBB) ∈ A4, and 0≤ mg ≤ 1, let

Θ
∗
g(a,mg) := argmin

F̂∈Θg

{
mg ·K(F̂ ;ag,g,ag,g)+(1−mg) ·K(F̂ ;ag,−g,a−g,g)

}
.

Then, Θ∗g is upper hemicontinuous in its arguments.

This lemma says the set of KL-minimizing models is upper hemicontinuous in strategy profile
and matching assortativity. This leads to the existence result.

Proposition OA1. Under Assumptions OA1, OA2, OA3, OA4, and OA5, an EZ exists.

Next, upper hemicontinuity in mg in Lemma OA1 allows us to deduce the upper hemicontinuity
of the EZ correspondence in population shares, and conclude that the notion of approachability
from Definition 3 is a non-empty refinement of the set of EZ with p = (1,0).

Proposition OA2. Fix two theories ΘA,ΘB. Also fix matching assortativity λ ∈ [0,1]. The set of

EZ is an upper hemicontinuous correspondence in pB under Assumptions OA1, OA2, OA3, and

OA4.

Corollary OA1. Under Assumptions OA1, OA2, OA3, OA4, and OA5, the set of approachable EZ

with p = (1,0) is non-empty for every λ .
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OA 2.1 Proofs of Results in Appendix OA 2

OA 2.1.1 Proof of Lemma OA1

Proof. Write the minimization objective as

W (a,F,mg) := mgKg(F ;ag,g,ag,g)+(1−mg)Kg(F ;ag,−g,a−g,g),

a continuous function of (a,F,mg) by Assumption OA4. Suppose we have a sequence (a(n),m(n)
g )→

(a∗,m∗g) ∈ A4× [0,1] and let F(n) ∈Θ∗g(a
(n),m(n)

g ) for each n, with F(n)→ F∗ ∈Θg. For any other
F̂ ∈ Θg, note that W (a∗,m∗g, F̂) = limn→∞W (a(n),m(n)

g , F̂) by continuity. But also by continuity,
W (a∗,m∗g,F

∗) = limn→∞W (a(n),m(n)
g ,F(n)) and W (a(n),m(n)

g ,F(n))≤W (a(n),m(n)
g , F̂) for every n.

It therefore follows W (a∗,m∗g,F
∗)≤W (a∗,m∗g, F̂).

OA 2.1.2 Proof of Proposition OA1

Proof. Consider the correspondence Γ : A4×∆(ΘA)×∆(ΘB)⇒ A4×∆(ΘA)×∆(ΘB),

Γ(aAA,aAB,aBA,aBB,µA,µB) :=

(BR(aAA,µA),BR(aBA,µA),BR(aAB,µB),BR(aBB,µB),∆(Θ
∗
A(a)),∆(Θ

∗
B(a))),

where BR(a−i,µg) := argmax
âi∈A

Ug(âi,a−i; µg) and, for each g ∈ {A,B}, the correspondence Θ∗g is

defined with mg = λ +(1−λ )pg, m−g = 1−mg. It is clear that fixed points of Γ are EZ.
We apply the Kakutani-Fan-Glicksberg theorem (see, e.g, Corollary 17.55 in Aliprantis and

Border (2006)). By Assumptions OA1 and OA5, A is acompact and convex metric space, and each
Θg is a compact metric space, so it follows the domain of Γ is a nonempty, compact and convex
metric space. We need only verify that Γ has closed graph, non-empty values, and convex values.

To see that Γ has closed graph, the previous lemma shows the upper hemicontinuity of Θ∗A(a)

and Θ∗B(a) in a, and Theorem 17.13 of Aliprantis and Border (2006) then implies ∆(Θ∗A(a)) and
∆(Θ∗B(a)) are also upper hemicontinuous in a. It is a standard argument that since Assumption
OA2 supposes UA,UB are continuous, it implies the best-response correspondences BR(aAA,µA),

BR(aBA,µA), BR(aAB,µB), BR(aBB,µB) have closed graphs.
To see that Γ is non-empty, recall that each âi 7→ Ug(âi,a−i; µg) is a continuous function on

a compact domain, so it must attain a maximum on A. Similarly, the minimization problem that
defines each Θ∗g(a) is a continuous function of F over a compact domain of possible F’s, so it
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attains a minimum. Thus each ∆(Θ∗g(a)) is the set of distributions over a non-empty set.
To see that Γ is convex valued, clearly ∆(Θ∗A(a)) and ∆(Θ∗B(a)) are convex valued by def-

inition. Also, âi 7→UA(âi,aAA; µA) is quasiconcave by Assumption OA5. That means if a
′
i,a
′′
i ∈

BR(aAA,µA), then for any convex combination ãi of a
′
i,a
′′
i , we have UA(ãi,aAA; µA)≥min(UA(a

′
i,aAA; µA),

UA(a
′′
i ,aAA; µA)) = maxâi∈AUA(âi,aAA; µA). Therefore, BR(aAA,µA) is convex. For similar rea-

sons, BR(aBA,µA), BR(aAB,µB), BR(aBB,µB) are convex.

OA 2.1.3 Proof of Proposition OA2

Proof. Since A4×∆(ΘA)×∆(ΘB) is compact by Assumption OA1, we need only show that for
every sequence (p(k)B )k≥1 and (a(k),µ(k))k≥1 =(a(k)AA,a

(k)
AB,a

(k)
BA,a

(k)
BB,µ

(k)
A ,µ

(k)
B )k≥1 such that for every

k, (a(k),µ(k)) is an EZ with p=(1− p(k)B , p(k)B ), p(k)B → p∗B, and (a(k),µ(k))→ (a∗,µ∗), then (a∗,µ∗)

is an EZ with p = (1− p∗B, p∗B).
We first show for all g,g

′ ∈ {A,B}, a∗
g,g′

is optimal against a∗
g′ ,g

under the belief µ∗g . Assortativ-
ity does not matter here, since optimality applies within all type match-ups. By Assumption OA2,
Ug(ai,a−i;F) is continuous, so by property of convergence in distribution, Ug(a

(k)
g,g′

,a(k)
g′ ,g

; µ
(k)
g )→

Ug(a∗g,g′ ,a
∗
g′ ,g

; µ∗g ). For any other âi ∈ A, Ug(âi,a
(k)
g′ ,g

; µ
(k)
g )→ Ug(âi,a∗g′ ,g; µ∗g ) and for every k,

Ug(a
(k)
g,g′

,a(k)
g′ ,g

; µ
(k)
g )≥Ug(âi,a

(k)
g′ ,g

; µ
(k)
g ). Therefore a∗

g,g′
best responds to a∗

g′ ,g
under belief µ∗g .

Next, we show models in the support of µ∗g minimize weighted KL divergence for group g.

First consider the correspondence H : A4× [0,1]⇒ Θg where H(a, pg) := Θ∗g(a,λ +(1−λ )(pg)).
Then H is upper hemicontinuous by Lemma OA1. Since H(a, pg) represents the minimizers of
a continuous function on a compact domain, it is non-empty and closed. By Theorem 17.13
of Aliprantis and Border (2006), the correspondence H̃ : A4 × [0,1] ⇒ ∆(Θg) defined so that
H̃(a, pg) := ∆(H(a, pg)) is also upper hemicontinuous. For every k, µ

(k)
g ∈ H̃(a(k), p(k)g ), and

µ
(k)
g → µ∗g , a(k) → a∗, p(k)g → p∗g. Therefore, µ∗g ∈ H̃(a∗, p∗g), that is to say µ∗g is supported on

the minimizers of weighted KL divergence.

OA 3 Learning Foundation of EZ and EZ-SU

We provide a unified foundation for EZ and EZ-SU as the steady state of a learning system. This
foundation considers a world where agents have a prior over extended models in an extended
theory and observe ex-post signals of some accuracy about the matched opponent’s strategy at the
end of every game. We show that the steady states in this world correspond to EZ-SUs when the
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ex-post signals are uninformative. Then, we show that sufficiently accurate ex-post signals about
play cause the steady states to be EZs, if the extended theories allow agents to make any inferences
about opponents’ strategies.

OA 3.1 Regularity Assumptions

We make some regularity assumptions on the objective environments and on the theories ΘA,ΘB.
These are similar to the regularity assumptions from Section OA 2.

Suppose A is finite. Suppose the marginals of ΘA,ΘB on the dimension of fundamental uncer-
tainty, ΘA,ΘB, are compact metrizable spaces. Endow ΘA and ΘB with the product metric. Suppose
that every (aA,aB,F)∈ΘA∪ΘB is so that for every (ai,a−i)∈A2, whenever f •(ai,a−i)(y)> 0, we
also get f (ai,aA)(y)> 0 and f (ai,aB)(y)> 0, where f is the density or probability mass function
for F .

For each g,g
′ ∈{A,B}, define Kg,g′ :A

2×Θg→R by Kg,g′ (ai,a−i;(aA,aB,F))=KL(F•(ai,a−i) ‖
F(ai,ag′ )). Suppose each Kg,g′ is well defined and a continuous function of the extended model
(aA,aB,F).

For g∈ {A,B}, F ∈Θg, let Ug(ai,a−i;F) be the expected payoffs of the strategy profile (ai,a−i)

for i when consequences are drawn according to F. Assume UA,UB are continuous.
Suppose for every extended theory Θg and every (aA,aB,F) ∈ Θg and ε > 0, there exists an

open neighborhood V ⊆Θg of (aA,aB,F), so that for every (âA, âB, F̂)∈V , 1−ε ≤ f (ai,aA)(y)/ f̂ (ai, âA)(y)≤
1+ε and 1−ε ≤ f (ai,aB)(y)/ f̂ (ai, âB)(y)≤ 1+ε for all ai ∈A,y∈Y. Also suppose there is some
M > 0 so that ln( f (ai,aA)(y)) and ln( f (ai,aB)(y)) are bounded in [−M,M] for all (aA,aB,F)∈Θg,
ai,a−i ∈ A,y ∈ Y.

OA 3.2 Learning Environment

Time is discrete and infinite, t = 0,1,2, ... A unit mass of agents, i ∈ [0,1], enter the society at
time 0. A pA ∈ (0,1) measure of them are assigned to theory A and the rest are assigned to theory
B. Each agent born into theory g starts with the same full support prior over the extended theory,
µ
(0)
g ∈ ∆(Θg), and believes there is some (aA,aB,F) ∈ Θg so that every group g opponent always

plays ag and the consequences are always generated by F .
In each period t, agents are matched up partially assortatively to play the stage game. Assorta-

tivity is λ ∈ (0,1). Each person in group g has λ +(1−λ )pg chance of matching with someone
from group g, and matches with someone from group −g with the complementary chance. Each
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agent i observes their opponent’s group membership and chooses a strategy a(t)i ∈ A. At the end
of the match, the agent observes own consequence y(t)i and an ex-post signal x(t)i ∈ A, where x(t)i

equals the matched opponent’s strategy a−i with probability τ ∈ [0,1), and it is uniformly random
on A with the complementary probability. To give a foundation for a EZ-SU, we consider τ = 0,
so the signal xi is uninformative. To give a foundation for EZ, we consider τ close to 1.

Thus, the space of histories from one period is {A,B}×A×Y×A, where the first instance of
the strategy is own strategy and the second instance is the ex-post signal. Let H denote the space
of all finite-length histories.

Given the assumption on the two theories, there is a well-defined Bayesian belief operator for
each theory g, µg : H→ ∆(Θg), mapping every finite-length history into a belief over extended
models in Θg, starting with the prior µ

(0)
g .

We also take as exogenously given policy functions for choosing strategies after each history.
That is, ag,g′ : H→ A for every g,g

′ ∈ {A,B} gives the strategy that a group g agent uses against a
group g

′
opponent after every history. Assume these policy functions are asymptotically myopic.

Assumption OA6. For every ε > 0, there exists K so that for any history h containing at least

K matches against opponents of each group, ag,g′ (h) is an ε-best response to the Bayesian belief

µg(h).

From the perspective of each agent i in group g, i’s play against groups A and B, as well as i’s
belief over Θg, is a stochastic process (ã(t)iA , ã

(t)
iB , µ̃

(t)
i )t≥0 valued in A×A×∆(Θg). The randomness

is over the groups of opponents matched with in different periods, the strategies they play, and
the random consequence and ex-post signals drawn at the end of the match. At the same time,
since there is a continuum of agents, the distribution over histories within each population in each
period is deterministic. As such, there is a deterministic sequence (α(t)

AA,α
(t)
AB,α

(t)
BA,α

(t)
BA,ν

(t)
A ,ν

(t)
B ) ∈

∆(A)4×∆(∆(ΘA))×∆(∆(ΘB)) that describes the distributions of play and beliefs that prevail in
the two sub-populations in every period t.

OA 3.3 Steady State Limits are EZ-SUs and EZs

We state and prove the learning foundation of EZ-SU and EZ. For (α(t))t a sequence valued in
∆(A) and a∗ ∈ A, α(t)→ a∗ means Eâ∼α(t) ‖ â−a∗ ‖→ 0 as t→ ∞. For (ν(t))t a sequence valued
in ∆(∆(Θg)) and µ∗ ∈ ∆(Θg), ν(t)→ µ∗ means E

µ̂∼ν(t) ‖ µ̂−µ∗ ‖→ 0 as t→ ∞.
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Proposition OA3. Suppose the regularity assumptions in Section OA 3.1 hold, and suppose As-

sumption OA6 holds.

Suppose τ = 0. Suppose there exists (a∗AA,a
∗
AB,a

∗
BA,a

∗
BB,µ

∗
A,µ

∗
B) ∈ A4× ∆(ΘA)× ∆(ΘB) so

that (α(t)
AA,α

(t)
AB,α

(t)
BA,α

(t)
BA,ν

(t)
A ,ν

(t)
B )→ (a∗AA,a

∗
AB,a

∗
BA,a

∗
BB,µ

∗
A,µ

∗
B) and for each agent i in group g,

almost surely (ã(t)iA , ã
(t)
iB , µ̃

(t)
i )→ (a∗gA,a

∗
gB,µ

∗
g ). Then, (a∗AA,a

∗
AB,a

∗
BA,a

∗
BB,µ

∗
A,µ

∗
B) is an EZ-SU.

Suppose for each g, the extended theory Θg =A2×Θg for some theory Θg – that is, each group

can make any inference about opponents’ strategies. There exists some τ < 1 so that for every τ ∈
(τ,1) and (a∗AA,a

∗
AB,a

∗
BA,a

∗
BB,µ

∗
A,µ

∗
B) satisfying the above conditions, we have that µ∗A puts prob-

ability 1 on (a∗AA,a
∗
AB), µ∗B puts probability 1 on (a∗BA,a

∗
BB), and (a∗AA,a

∗
AB,a

∗
BA,a

∗
BB,µ

∗
A|ΘA ,µ

∗
B|ΘB)

is an EZ, where µ∗g |Θg is the marginal of the belief µ∗g on the theory Θg.

Proof. We first consider the case of τ = 0, so the uninformative ex-post signals may be ignored.
For µ a belief and g ∈ {A,B}, let uµ(ai;g) represent subjective expected payoff from play-

ing ai against group g. Suppose a∗AA /∈ argmaxâ∈Auµ∗A(â;A) (the other cases are analogous). By
the continuity assumptions on UA (which is also bounded because ΘA is bounded), there are
some ε1,ε2 > 0 so that whenever µi ∈ ∆(ΘA) with ‖ µi− µ∗A ‖< ε1, we also have uµi(a∗AA;A) <

maxâ∈A uµi(â;A)− ε2. By the definition of asymptotically empirical best responses, find K so that
aA,A(h) must be a myopic ε2-best response when there are at least K periods of matches against A
and B. Agent i has a strictly positive chance to match with groups A and B in every period. So,
at all except a null set of points in the probability space, i’s history eventually records at least K

periods of play by groups A and B. Also, by assumption, almost surely µ̃
(t)
i → µ∗A. This shows that

by asymptotically myopic best responses, almost surely ã(k)iA 6→ a∗AA, a contradiction.
Now suppose some θ ∗A = (a∗A,a

∗
B, f ∗) in the support of µ∗A does not minimize the weighted KL

divergence in the definition of EZ-SU (the case of a model θ ∗B in the support of µ∗B not minimizing
is similar). Then we have

θ
∗
A /∈ argmin

θ̂∈ΘA

[
(λ +(1−λ )pA) ·DKL(F•(a∗AA,a

∗
AA) ‖ F̂(a∗AA, âA))

+(1−λ )(1− pA) ·DKL(F•(a∗AB,a
∗
BA) ‖ F̂(a∗AB, âB))

]

where θ̂ = (âA, âB, F̂).

This is equivalent to:

θ
∗
A /∈ argmax

θ̂∈ΘA

[
(λ +(1−λ )pA) ·Ey∼F•(a∗AA,a

∗
AA)

ln( f̂ (a∗AA, âA)(y))

+(1−λ )(1− pA) ·Ey∼F•(a∗AB,a
∗
BA)

ln( f̂ (a∗AB, âB)(y))

]
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Let this objective, as a function of θ̂ , be denoted WL(θ̂). There exists θ
opt
A = (aopt

A ,aopt
B , f opt)∈

ΘA and δ ,ε > 0 so that (1− δ )WL(θ opt
A )− 2δM− 3ε > (1− δ )WL(θ ∗A). By assumption on the

primitives, find open neighborhoods V opt and V ∗ of θ
opt
A ,θ ∗A respectively, so that for all ai ∈ A,

g ∈ {A,B}, y ∈Y, 1−ε ≤ f opt(ai,a
opt
g )(y)/ f̂ (ai, âg)(y)≤ 1+ε , for all θ̂ = (âA, âB, f̂ )∈V opt , and

also 1−ε ≤ f ∗(ai,a∗g)(y)/ f̂ (ai, âg)(y)≤ 1+ε for all θ̂ = (âA, âB, f̂ )∈V ∗. Also, by convergence of
play in the populations, find T1 so that in all periods t ≥T1, α

(t)
AA(a

∗
AA)≥ 1−δ and α

(t)
BA(a

∗
BA)≥ 1−δ .

For T2 ≥ T1, consider a probability space defined by Ω := ({A,B}×A2× (Y)A2
)∞ that de-

scribes the randomness in an agent’s learning process starting with period T2 + 1. For a point
ω ∈ Ω and each period T2 + s, s ≥ 1, ωs = (g,a−i,A,a−i,B,(yai,a−i)(ai,a−i)∈A2) specifies the group
g of the matched opponent, the play a−i,A,a−i,B of hypothetical opponents from groups A and
B, and the hypothetical consequence yai,a−i that would be generated for every pair of strategies
(ai,a−i) played. As notation, let opp(ω,s), a−i,A(ω,s), a−i,B(ω,s), and yai,a−i(ω,s) denote the
corresponding components of ωs. Define PT2 over this space in the natural way. That is, it is in-
dependent across periods, and within each period, the density (or probability mass function if Y is
finite) of ωs = (g,a−i,A,a−i,B,(yai,a−i)(ai,a−i)∈A2) is

mg ·α(T2+s)
AA (a−i,A)α

(T2+s)
BA (a−i,B) · ∏

(ai,a−i)∈A2

f •(ai,a−i)(yai,a−i),

where mg is the probability of i from group A being matched up against an opponent of group g,

that is mA = (λ +(1−λ )pA), mB = (1−λ )(1− pA).

For θ = (aθ
A,a

θ
B,F

θ ) ∈ΘA with f θ the density of Fθ , ω ∈Ω, consider the stochastic process

`s(θ ,ω) :=
1
s

T2+s

∑
t=T2+1

ln( f θ (a∗AA,a
θ

opp(ω,t))(ya∗AA,a−i,opp(ω,t)(ω,t)(ω, t)).

By choice of the neighborhood V ∗,

limsup
s

sup
θA∈V ∗

`s(θA,ω)≤ ε +
1
s

T2+s

∑
t=T2+1

ln( f ∗(a∗AA,a
∗
opp(ω,t))(ya∗AA,a−i,opp(ω,t)(ω,t)(ω, t))

≤ ε +
1
s

T2+s

∑
t=T2+1

1{a−i,opp(ω,t)(ω,t)=a∗opp(ω,t),A}
· ln( f ∗(a∗AA,a

∗
opp(ω,t))(ya∗AA,a

∗
opp(ω,t),A

(ω, t))

(1−1{a−i,opp(ω,t)(ω,t)=a∗opp(ω,t),A}
) ·M.

Since T2 ≥ T1, in every period t, PT2(a−i,opp(ω,t)(ω, t) = a∗opp(ω,t),A) ≥ 1− δ . Let (ξk)k≥1 a re-
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lated stochastic process: it is i.i.d. such that each ξk has δ chance to be equal to M, (1−
δ )mA chance to be distributed according to ln( f ∗(a∗AA,a

∗
A)(y)) where y ∼ f •(a∗AA,a

∗
AA), and (1−

δ )mB chance to be distributed according to ln( f ∗(a∗AB,a
∗
B)(y)) where y∼ f •(a∗AB,a

∗
BA). By law of

large numbers, 1
s ∑

s
k=1 ξk converges almost surely to δM +(1− δ )WL(θ ∗A). By this comparison,

limsups supθA∈V ∗ `s(θA,ω)≤ ε +δM+(1−δ )WL(θ ∗A) PT2-almost surely. By a similar argument,
liminfs infθA∈V opt `s(θA,ω)≥−ε−δM+(1−δ )WL(θ opt

A ) PT2-almost surely.
Along any ω where we have both limsups supθA∈V ∗ `s(θA,ω)≤ ε +δM+(1−δ )WL(θ ∗A) and

liminfs infθA∈V opt `s(θA,ω)≥−ε−δM+(1−δ )WL(θ opt
A ), if ω also leads to i always playing a∗AA

against group A and a∗AB against group B in all periods starting with T2 + 1, then the posterior
belief assigns to V ∗ must tend to 0, hence µ̃

(t)
i 6→ µ∗A. Starting from any length T2 history h, there

exists a subset Ω̂h ⊆Ω that leads to i not playing the EZ-SU strategy in at least one period starting
with T2 + 1. So conditional on h, the probability of µ̃

(t)
i → µ∗A is no larger than 1− PT2(Ω̂h).

The unconditional probability is therefore no larger than Eh[1−PT2(Ω̂h)], where Eh is taken with
respect to the distribution of period T2 histories for i. But this term is also the probability of i

playing non-EZ-SU action at least once starting with period T2. Since there are finitely many
actions and (ã(t)iA , ã

(t)
iB ) → (a∗AA,a

∗
AB) almost surely, Eh[1− PT2(Ω̂h)] tends to 0 as T2 → ∞. We

have a contradiction as this shows µ̃
(t)
i 6→ µ∗A with probability 1.

Now consider the foundation for EZs. Suppose Let K̄ <∞ be an upper bound on Kg,g′ (ai,a−i;(aA,aB,F))

across all g,g
′ ∈{A,B}, ai,a−i ∈A, (aA,aB,F)∈Θg. Here K̄ is finite because A is finite and Kg,g′ is

continuous in the extended model, which is from a compact domain. Let FX
τ (a−i)∈∆(A) represent

the distribution of ex-post signals given precision τ, when opponent plays a−i ∈ A. It is clear that
there exists some τ < 1 so that for any a−i 6= a

′
−i, τ ∈ (τ,1), we get min(mA,mB) ·DKL(FX

τ (a−i) ‖
FX

τ (a
′
−i))> K̄. Therefore, given any (a∗AA,a

∗
AB,a

∗
BA) ∈ A3, the solution to

min
θ̂∈ΘA

[
(λ +(1−λ )pA) · [DKL(F•(a∗AA,a

∗
AA) ‖ F̂(a∗AA, âA))+DKL(FX

τ (a∗AA) ‖ FX
τ (âA))]

+(1−λ )(1− pA) · [DKL(F•(a∗AB,a
∗
BA) ‖ F̂(a∗AB, âB))+DKL(FX

τ (a∗BA) ‖ FX
τ (âB)]

]

must satisfy âA = a∗AA, âB = a∗BA, because (a∗AA,a
∗
BA,F) for any F ∈ ΘA has a KL divergence

no larger than K̄. On the other hand, any (âA, âB, F̂) with either âA 6= a∗AA or âB 6= a∗BA has KL
divergence strictly larger than K̄ by the choice of τ . The rest of the argument is similar to the case
of EZ-SU.
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