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Abstract

Overconfidence has been extensively documented in psychology and economics.

This paper studies the long-term interaction between two overconfident agents who

learn about common payoff-relevant fundamentals, such as the quality of a joint project

or their working environment, and choose how much effort to exert. Overconfidence

causes agents to underestimate the fundamental to justify their worse-than-expected

performance. We show that in many settings, agents create informational externali-

ties for each other. When informational externalities are positive, the agents’ learning

processes are mutually-reinforcing: when one agent best responds to his own over-

confidence, the other agent underestimates the fundamental more severely and takes

an more extreme action, generating a positive feedback loop. The opposite pattern,

mutually-limiting learning, arises when informational externalities are negative. Ad-

ditionally, overconfidence can lead to Pareto improvement in welfare as it corrects the

inefficiencies that arise in public good provision problems. This contrasts with the

analogous single-agent environment, in which there is no scope for informational ex-

ternalities and overconfidence can only decrease welfare. Finally, we prove that under

certain conditions, agents’ beliefs and effort choices converge to a steady state that is

a Berk-Nash equilibrium.
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1 Introduction

Overconfidence is a widely documented psychological bias. Experimental work demonstrates

that individuals often remain overconfident even when confronted with evidence of their bias

(Langer and Roth, 1975) by attributing successes to themselves and failures to others or the

outside environment (Miller and Ross, 1975; Ross and Sicoly, 1979; Campbell and Sedikides,

1999).

Both economists and psychologists have explored what happens when a single overconfi-

dent agent interacts with their environment. For example, Camerer and Lovallo (1999) find

that overconfidence of entrepreneurs can lead to excessive business entry and losses. Hei-

dhues, Kőszegi, and Strack (2018) discuss how a single overconfident agent underestimates

how talented his team is at performing joint tasks, leading to a welfare loss. However, when

working on a task within a team, all members of the team learn and adjust their effort simul-

taneously. In this paper, we consider what happens when multiple persistently overconfident

agents learn about their environment from observing payoffs. We show that this can change

the learning dynamics as well as the resulting welfare effects.

To ground this idea, consider two engineers who work together on different components

of an overarching project assigned by their shared supervisor. Both engineers are overcon-

fident in their research skills, yet neither knows the underlying quality of the projects their

supervisor designs. Both engineers learn about the quality of the overall project over time

by working on, and being evaluated for, their individual components. However, both share

knowledge and experience gained from reading articles or testing out different methods, so

the time one puts into his own project component will affect the others’ progress. Our model

predicts that the two engineers will both attribute more of the research output to their own

ability than is actually warranted, thus underestimating the overarching project’s underlying

quality. Each engineer’s misperception of the project’s quality will distort his own choice

of effort. Depending on whether the return to effort decreases or increases in the project’s

quality, an engineer either shirks (because the return to effort on a worse idea is lower) or

exerts more effort (to compensate for the project’s low quality and churn out a product

nevertheless).

Fixing the second engineer’s effort, suppose the first engineer’s optimal effort increases as

his belief about quality becomes lower to compensate for the low quality. We show that the

first engineer will converge to a low belief about the project’s quality, in turn earning lower

utility from his excessive effort. If we allow the second engineer to adjust his effort, the first
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engineer is motivated to work harder, but finds himself considerably more disappointed by the

new output that corresponds to the higher levels of both efforts. The extra disappointment

exacerbates the drop in his inference about the project quality and encourages him to exert

even more effort. This leads to a feedback loop which causes effort to increase and inferences

to decrease more than they would if only one engineer adjusted their effort. We call the

process by which the presence of two engineers simultaneously adjusting their effort makes

beliefs more extreme ”mutually-reinforcing” learning because the second engineer’s effort is

reinforcing the distortions that overconfidence creates for the first engineer and vice versa.

However, unlike the single-engineer case, it is now possible that the extra efforts lead to

higher payoffs for both due to the common-good nature of joint research efforts.

We formalize this intuition in an infinite-horizon environment, where two agents, i and

j, choose how much effort to exert in each period. Each agent’s payoff in a given period

is determined by their own effort, the effort of the other agent, the agent’s own ability, as

well as some unknown fundamental. Each agent chooses an effort to myopically maximize

his payoff given the effort of the other agent and his beliefs. We assume that an agent has

a degenerate belief about the value of their own ability and study the case where that point

belief is incorrect. The unknown fundamental corresponds to the quality of the research

idea in the example above. The agents have non-degenerate priors about the value of the

fundamental and each other’s ability and update these beliefs over time.

As illustrated in the example, our two-agent model generates two key insights that are

not present in single-agent case. First, we find that agent j’s effort not only generates a pay-

off externality for agent i, it also provides an informational externality by affecting agent i’s

inference problem over the fundamental through two channels. The first channel is a direct

one, in which a change in agent j’s effort changes the signal structure for agent i whenever

the marginal product of agent i’s ability or the fundamental is changed by agent j’s effort.

The second channel takes effect whenever payoffs exhibit complementarity or substitutabil-

ity between the two agents’ efforts. Complementarity or substitutability of efforts implies

that a change in agent j’s effort causes a change in agent i’s effort, further altering agent

i’s payoff distributions. With proper assumptions on the payoff function which ensure infor-

mational externalities are positive, the agents’ learning processes are mutually-reinforcing in

the following sense: as more agents are permitted to adjust their effort according to myopic

optimality or as any agent becomes more overconfident, the inferences of all agents become

more extreme—underestimation gets more severe. By contrast, if informational externalities

are negative, the learning processes are mutually-limiting and the impact of overconfidence
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is alleviated.

The second insight which the two-agent model highlights is how the presence of a second

agent impacts the long-run welfare of the first agent. In a single-agent model, the agent

faces an individual decision-making problem and thus misspecification only results in dis-

torted inferences and effort, generating worse payoffs. By contrast, we show that the effect

of misspecification is not always negative when multiple agents interact. The idea is very

simple: since individual optimization almost always fails to be socially efficient due to ex-

ternalities, Pareto improvement can be obtained by perturbing agents’ effort within a small

neighborhood to reduce such externalities—overconfidence can serve as a tool for perturba-

tion. To achieve a Pareto improvement, intuitively, the misspecification should induce the

agents to move in the same direction as the externalities. For example, if agents’ efforts

exert positive externalities on each other’s payoff, both agents end up with higher payoffs

if their efforts are distorted slightly upwards. We also show that when agents can be over

or underconfident, there always exists a range of self-perception levels under which agents

enjoy higher payoffs in the long run than they would if correctly specified.

The above insights are demonstrated by analyzing the long-run beliefs and effort choices.

We show that under certain conditions, agents converge to a Berk-Nash equilibrium, meaning

agents choose the optimal amount of effort with respect to a belief that best fits their

observations. Our proof augments the contraction argument in Heidhues, Kőszegi, and

Strack (2018) to accommodate the additional agent. The informational externalities must

be either both positive or both negative so that one agent’s optimization does not impede

the other agent’s belief updating and lead to oscillation.

Finally, we discuss how our insights extend to settings with underconfident agents. Due

to an asymmetry in how the agents draw inferences, an opposite pattern emerges—positive

information externalities lead to mutually-limiting learning while negative information ex-

ternalities lead to mutually-reinforcing learning.

Related Literature

This paper builds on the single-agent learning setting in Heidhues, Kőszegi, and Strack

(2018). They find that overconfidence leads to distorted beliefs and reduction in welfare,

which are exacerbated as the agent re-optimizes his effort—a self-defeating learning pattern

arises. Augmenting their setting, we explore how multiple overconfident agents influence

each others’ learning process. The presence of multiple agents gives rise to informational
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externalities and payoff gains relative to the single-agent environment. In recent work,

Murooka and Yamamoto (2021) consider how multiple misspecified agents learn from a

signal of common output when they each have fixed beliefs about a total team capability.1

There is a growing literature that explores the implications of model misspecification on

learning.2 Esponda and Pouzo (2016) propose the solution concept, Berk-Nash equilibrium,

for such games with misspecification. In recent years, there have been substantial progress

in showing the convergence of beliefs to the Berk-Nash equilibrium in general environments.

Esponda, Pouzo, and Yamamoto (2019) study a single-agent problem with finite actions,

focusing on the dynamics of the frequency of actions and characterizing asymptotic out-

comes as the solutions of a differential inclusion; Fudenberg, Lanzani, and Strack (2020)

study a similar setting with finite actions, but obtain characterization based on a stronger

assumption of uniform optimality of an action to any long-term beliefs; Frick, Iijima, and

Ishii (2019) instead assume a finite-state but otherwise general setting and propose stronger

conditions than Kullback-Leibler divergence dominance; Bohren and Hauser (2019) charac-

terize conditions under which correct learning, incorrect learning, or cyclical learning arise

in a binary-state learning environment. However, none of their techniques are directly ap-

plicable to our multi-agent model that assumes continuous actions and states (i.e. the value

of the fundamental). The contraction argument used in this paper and Heidhues, Kőszegi,

and Strack (2018) rely on structural properties of the payoff functions.

In line with our findings, the literature on overconfidence suggests that overconfidence

can be helpful or detrimental depending on the context. For example, Camerer and Lovallo

(1999) use experiments to simulate entrepreneurs deciding whether or not to start a new

business. They find that overconfidence leads to excessive entry followed by large rates

of new business failure, consistent with the high rates of new business failure that Dunne,

Roberts, and Samuelson (1988) find using US plant-level data. On the other hand, Gervais

and Goldstein (2007) show that overconfidence can improve the welfare of all team members

in a compensation contract problem. They focus on a one-period problem and do not allow

agents to learn about other fundamentals.

Finally, this paper relies on the assumption that agents tend to be persistently overcon-

1We became aware of Murooka and Yamamoto (2021) as we were completing this revision.
2The consequences of misspecified models have been investigated in various settings other than overconfi-

dence. For example, overestimating the informativeness of actions of other agents (Eyster and Rabin, 2010;
Bohren, 2016; Gagnon-Bartsch and Rabin, 2017), taste projection (Gagnon-Bartsch, 2017), confirmation
bias (Rabin and Schrag, 1999), gambler’s fallacy (He, 2018), misspecified beliefs about the type distribution
(Frick, Iijima, and Ishii, 2019), misspecified prior beliefs (Nyarko, 1991; Fudenberg, Romanyuk, and Strack,
2017) have all been shown to lead to inefficient actions in the long run.
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fident about their abilities, which is well supported by the psychology literature on overcon-

fidence.3 One illustration of this is Anderson, Brion, Moore, and Kennedy (2012), who find

that when an individual is overconfident, others perceive them as more competent which in

turn leads to higher social status for the individual. This can reinforce feelings of overconfi-

dence, despite contrary evidence. Much of the literature discusses the “better-than-average

effect”, as most individuals in the population believe themselves to be better than the popu-

lation average at some skill. For example, Langer and Roth (1975) find that when individuals

correctly guess the outcome of a coin flip, they attribute it to skill while attributing incor-

rect guesses to bad luck. Many individuals thus believed they were particularly skilled at

predicting the coin flip despite mounting evidence that they were only correct 50% of the

time. Svenson (1981) finds that when a group of truck drivers were asked to compare their

driving to the group of drivers surveyed, the vast majority believed they were more skilled

and safer at driving than the average driver surveyed. Further, Benôıt, Dubra, and Moore

(2015) find that people overplaced themselves in their performance on quizzes and show it

cannot be explained by a model of rational expected utility maximization.

The remainder of this paper proceeds as follows. Section 2 describes the model and Sec-

tion 3 defines the steady state of our learning dynamics—a Berk-Nash Equilibrium adapted

to our non-stationary environment. Section 4 contains the main result of the paper, in

which we explores the patterns of mutually-reinforcing and mutually-limiting learning in the

equilibrium, and analyze the welfare implications. Section 5 shows that in the presence of

unambiguously positive or negative informational externalities, the two-agent learning pro-

cess will converge to the Berk-Nash equilibrium. Section 6 provides extensions including

allowing for underconfidence. Section 7 concludes.

2 Multi-Agent Learning Environment

Environment There are two agents, indexed by i ∈ I ≡ {1, 2}. In each period t ∈
{1, 2, ...}, each agent i simultaneously chooses an effort level eit from a compact set [e, e] ⊂ R.

Agent i then obtains a payoff qit that is determined by his own effort ei, the effort of the

other agent ej, his own ability ai, a common unknown fundamental φ, and random noise.

We write agent i’s payoffs as qit = Qi(ei, ej, ai, φ) + εit, where εit is a zero-mean i.i.d. random

variable drawn from some continuous distribution with a positive and log-concave density

3There are also studies finding that agents are overconfident in the precision of their beliefs (Moore and
Healy, 2008; Moore, Tenney, and Haran, 2015). We focus on overconfidence in abilities.

5



f .4 The payoff function Qi is twice continuously differentiable, with its derivatives having

polynomial growth in φ.5 All past payoffs and efforts are publicly observable.

Each agent’s ability ai and the fundamental φ are independently drawn before the game

starts from c.d.f. M0 with potentially unbounded support (a, a) ⊆ R and c.d.f. Π0 with po-

tentially unbounded support
(
φ, φ

)
⊆ R, respectively, and remain fixed throughout. Denote

their realizations as A1, A2, and Φ. We assume M0 and Π0 each have finite moments and a

bounded strictly positive continuous densities µ0 and π0.

Misspecification Agents are overconfident in their own ability. In particular, agent i

believes that his true ability is actually ãi ∈ (a, a) and Ai ≤ ãi. The self-perceptions of

the agents , i.e. ã1 and ã2, are common knowledge. However, agents realize that their

counterpart may be subject to bias and are uncertain about the other agent’s true ability.

Hence, agent i uses a misspecified model to learn about the common fundamental φ as well

as the true ability of the other agent, aj. We use πit and µit to denote agent i’s belief about

the fundamental and the other agent’s ability at time t. In addition, let the agents start

with the correct priors about φi and aj, i.e. πi0 = π0 and µit = µ0, which ensures that any

mislearning is a result of overconfidence rather than misspecified priors.

We make the following assumptions about the payoff functions.

Assumption 1. For all i and j 6= i: (i) Qi
a := ∂Qi/∂ai and Qi

φ := ∂Qi/∂φi are strictly

bounded and positive; (ii) the signs of Qi
eia

:= ∂2Qi/∂ai∂ei, and Qi
eiφ

:= ∂2Qi/∂φi∂ei are

different, Qi
eiφ 6= 0, and the signs do not vary with i; 6 (iii) ∀ei, ej, there always exists a

solution φi ∈
(
φ
i
, φ

i
)

to Qi (ei, ej, ãi, φi) = Qi (ei, ej, Ai,Φ).

The first assumption says that the ability and the fundamental positively influence one’s

payoff. The second assumption guarantees both agents are optimizing in a predictable di-

rection. For example, consider the engineer who, as a consequence of overconfidence in his

ability, underestimates the quality of a project idea. Suppose Qi
eiφ > 0 and Qi

eia ≤ 0. Then

evidently this agent should decrease his effort in response. If instead both cross derivatives

4We assume log-concavity, i.e. the second-order derivative of f(ε) is strictly negative and bounded from
below. This technical assumption is to ensure the subjective beliefs of any agent are well-defined and have
finite moments after any history.

5Function Qi
(
ei, ej , ai, φ

)
is of polynomial growth in φ if for any ei, ej , ai, there are κ, k, b > 0 such

that |Qi
(
ei, ej , ai, φ

)
| ≤ κ|φ|k + b. This ensures the expected payoff and its derivatives exist after arbitrary

history.
6That is, sgn(Qieia) = sgn(Qjeja) 6= sgn(Qieiφ) = sgn(Qjejφ). Also we assume Qieiφ 6= 0 to rule out the

uninteresting case where agents always exert the same amount of efforts.
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are positive, then more structure is needed to determine how the agent best responds.7 Fi-

nally, the third assumption guarantees that the agent can always identify a point belief that

perfectly explains the distribution of the payoffs he will observe given any fixed action profile.

Actions The agents are myopic and maximize their payoff in the current period. Since the

history of payoffs and efforts is public, agents’ posteriors
{
π1
t−1, π

2
t−1

}
are common knowledge.

We assume that they use the iterated deletion of dominated strategies to determine their

play. The following regularity assumption ensures that in each period, the induced game is

dominance solvable (See Lemma 4).

Assumption 2. For all i and j 6= i: (i) the return of effort is diminishing, Qi
eiei < 0; (ii)

Qi
ei (e, ej, ãi, φi) > 0 > Qi

ei (e, ej, ãi, φi) ,∀ej, φi; (iii) the diminishing return dominates any

complementarity or substitutability between efforts, |Qi
eiei | > |Qi

eiej |, with Qi
eiej ≥ 0 for all

values or ≤ 0 for all values.

In each period, for agent i to maximize his stage payoff, he must form some beliefs

over what action player j is going to play. With dominance solvability it is clear how the

conjecture about agent j’s action is formed; player i employs iterated deletion of dominated

strategies until he arrives at the uniquely rationalizable action profile and uses that to inform

his play. All this requires is Assumption 2 and common knowledge of rationality. Further,

this is equivalent to assuming that agents play a Nash equilibrium each period, which boils

down to the following restriction: agents choose efforts {e1
t , e

2
t}, in which eit is myopically

optimal against ejt given belief πit−1.8 However, if we were to simply impose that the agents

play the stage game Nash Equilibrium in each period, it would be unclear how each player

formed the correct conjecture about what action the other player was going to take.

Timing At time t, agent i chooses effort eit according to his beliefs πit−1. Then after

observing his payoff qit, and the other agent’s payoff, qjt , the agent updates his posteriors πit

and µit and then enters the next period.

7Indeed, as shown in the Appendix (see the proof of Proposition 4), whether the agent exerts more effort

critically depends on the sign of Qieia − Qieiφ
Qia
Qiφ

, which can be signed if Assumption 1 holds. Heidhues,

Kőszegi, and Strack (2018) also made this assumption.
8Contrasting with the assumption from Esponda and Pouzo (2016) that players assume they are in a

stationary environment, we model players to be a little more sophisticated so that they understand that the
underlying distribution of payoffs depends on their counterpart’s actions and thus varies over time. The set
of Berk-Nash equilibria we identify in Section 3, nevertheless, is the same as those identified in their model
if players start with conjectures on each other’s actions that are correct in equilibrium since Berk-Nash
equilibrium is a steady state concept. By assuming common knowledge of non-stationarity, we have a more
natural interpretation and a clearer picture of how agents form beliefs—it is hard to isolate how inferences
are affected by overconfidence over time when the agents are also misspecified about the game structure.
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2.1 Examples

We present a few parametric applications that satisfy the assumptions in the paper. We will

revisit the first two to illustrate our results in later sections.

Example 1. Consider two engineers who work on different parts of a joint project. Each

team member’s payoff depends on a common fundamental representing the the quality of

their supervisor’s overall project idea. They are both overconfident in their research abil-

ity and are periodically evaluated on their progress. For a concrete functional form, let

Qi (ei, ej, ai, φ) = (ei + kej)φ + ai + λeiej − c (ei)
2
, where k, λ > 0, c > λ/2. Notice that

agent i’s effort and the fundamental are complements—a higher belief in the fundamental

motivates a greater input of effort.9 The efforts of the agents are complements too as they

share knowledge and experience gained from reading articles or testing out different methods.

Example 2. Two VC firms simultaneously choose how much to invest in a growing industry,

where the marginal return is decreasing in the total amount of investment. Each is overcon-

fident in their ability to identify the best startups within the industry, but both are unsure

of the prospects of the industry as a whole, captured by φ. In each period, firm i’s payoff is

given by Qi(ei, ej, ai, φ) = eiφ− λeiej + ai − c(ei)2, where λ > 0, c > λ/2.

Example 3. The legislature passes a law which must be implemented by two federal agencies

who each work together to create a series of rules that enforce different aspects of the law.10

The two agencies learn about the underlying quality of the law, φ, while dedicating effort

ei towards writing each rule. Each agency is overconfident in their ability, ai, to write good

rules. In each period, the agency’s utility is given by Qi(ei, ej, ai, φ) = ai + φ− L(φ− ei) +

λeiej − c (ei)
2
, where λ > 0, c > λ/2, and L is a positive loss function with |L′| < 1. The

agencies would like to match the time and resources they put towards writing rules to the

underlying quality of the law, which is captured by the loss function L. The agency will

pass better rules if they have higher capacity to write quality rules (higher ai) as well as if

the underlying legislation is of high quality (higher φ), and will put more effort into writing

rules (higher ei) if the other agency also works harder (higher ej).

9This differs from the motivating example in the introduction where we assume the fundamental and
effort are substitutes. Assume complementarity here allows us to use a simpler functional form.

10For instance consider two US agencies: the SEC and CFTC. Both agencies are tasked with regulating
financial products. In the case of regulating financial swaps, the SEC writes rules pertaining to specifically
securities based swaps while the CFTC writes the rules for all other types. The agencies have similar policy
goals and often share information information in order to create better and more consistent rules (see Bils
(2020)).
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3 Steady State

We now define Berk-Nash equilibrium for our learning game following the definition de-

veloped in Esponda and Pouzo (2016). As will be shown in Section 5, the action process

described earlier almost surely converges to a steady state that constitutes such an equilib-

rium. An equilibrium consists of strategies that are optimal given equilibrium beliefs which

minimize the Kullback-Leibler (henceforth KL) divergence.11

Definition 1. A strategy profile e ∈ ×I [e, e] is a pure-strategy Berk-Nash equilibrium if

there exists a probability distribution πi ∈ ∆
(
φ, φ

)
and µi ∈ ∆ (a, a) for each i such that

(i) ei is optimal given πi and ej, i.e.

ei ∈ arg max
ẽi

Eπi
[
Qi
(
ẽi, ej, ãi, φi

)]
. (1)

(ii) For all φi in the support of πi and all aj in the support of µi,

(
φi, aj

)
∈ arg min

φ̂i,âj
Ki
(
e, φ̂i, âj

)
(2)

where Ki
(
e, φ̂i, âj

)
represents the KL divergence, given by

E

log
f (εi, εj)

f
(
Qi (e, Ai,Φ)−Qi

(
e, ãi, φ̂i

)
+ εi, Qj (e, Aj,Φ)−Qj

(
e, âj, φ̂i

)
+ εj

)
 .

By strict concavity of the payoff function, mixed strategy equilibria are ruled out. It is

straightforward to see that if the learning process ever converges, the steady state must be a

pure Berk-Nash equilibrium: intuitively, if efforts converge, they must be best responses to

the current belief and the opponent’s action; on the other hand, given that efforts converge,

an agent must converge to beliefs that best fit the data among all possible beliefs in the long

term, which are captured by the KL minimizers.

To characterize the equilibrium, let e∗ (ã,φ) ≡ (e∗i (ã,φ) , e∗j (ã,φ)) be the solution to

Eq. (1) where each agent i assigns probability 1 to φi. We can alternatively define it as the

11Kullback-Leibler divergence, also known as relative entropy, is a common measure of distance between
two distributions. By Gibb’s inequality, the Kullback-Leibler divergence is weakly positive and equal to zero
if and only if the two distributions being compared coincide almost everywhere.
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solution to the first-order condition:

Qi
ei

(
e∗ (ã,φ) , ãi, φi

)
= 0,∀i. (3)

Essentially, this is the Nash equilibrium of a one-shot game when we fix the beliefs in

the fundamental to a Dirac measure at φ. It is straightforward to show the existence and

uniqueness of e∗ (ã,φ) for all φ under Assumption 2.

Lemma 1. Under Assumption 2, a unique action profile e∗ (ã,φ) exists, ∀ã,φ.

Next, we define the gap function gi for each player i,

gi
(
e, φi

)
≡ Qi

(
e, Ai,Φ

)
−Qi

(
e, ãi, φi

)
, (4)

and let g (e,φ) ≡ (gi (e, φi) , gj (e, φj)) = 0 denote the no-gap condition for oneself. This

captures the discrepancy between the actual average payoff and agent i’s expected average

payoff when agents choose e and the agent i holds the belief that is concentrated at φi.

Intuitively, fix the efforts e, the solution to the no-gap condition gives the fundamental

value that agent i finds most likely because it perfectly matches the distribution of payoffs.

Analogously, the best guess that agent i has about agent j’s true ability is captured by a

similar condition,

γi
(
e, φi, aj

)
≡ Qj

(
e, Aj,Φ

)
−Qj

(
e, aj, φi

)
= 0. (5)

Analogously, let γ (e,φ,a) ≡ (γi (e, φi, aj) , γj (e, φj, ai)) = 0 denote the no-gap condition

for the opponent. Notice that agent i relies on his own guess about the common fundamental

to update about the other agent’s ability, thereby preserving and transmitting errors in

inferences. The two sets of no-gap conditions exactly characterize the point where the

weighted Kullback-Leibler divergence is minimized to 0 for both agents. We thus obtain the

following lemma.

Lemma 2. Fix any ã ∈ ×I (a, a). Under Assumptions 1 and 2, there exists at least one

Berk-Nash equilibrium. Moreover, each equilibrium e∞ is associated with a supporting belief

that is a Dirac measure at (φ∞, â∞), which satisfies the following:

(i) Optimality: e∞ = e∗ (ã,φ∞).

(ii) Consistency: g (e∞,φ∞) = γ (e∞,φ∞, â∞) = 0.
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To streamline exposition, we sometimes denote the equilibrium beliefs and efforts as

functions of the self-perception levels, such as φ∞ (ã), â∞ (ã) and e∞ (ã).

In order to establish global convergence, we follow Heidhues, Kőszegi, and Strack (2018)

to assume there is a unique Berk-Nash equilibrium. Note that the uniqueness of e∗ (ã,φ)

is insufficient since there could be multiple equilibrium beliefs, supporting different optimal

action profiles.

Assumption 3. There exists a unique Berk-Nash equilibrium.

We now provide a sufficient condition for Assumption 3. Lemma 3 establishes that

uniqueness is guaranteed if agents are not too misspecified. We discuss in Section 6 how our

insights extend to scenarios where this uniqueness assumption fails.

Lemma 3. Suppose Assumptions 1 and 2 hold. There exist ∆1,∆2 > 0, such that whenever

|ãi − Ai| < ∆i,∀i = 1, 2, there is a unique Berk-Nash equilibrium.

4 Main Results

In this section, we explore the properties of the steady state, in particular how the discrep-

ancy between φ∞ and the true value of the fundamental Φ varies in settings with or without

strategic interaction between agents. We first define the concept of informational externali-

ties, then demonstrate how they can cause different learning patterns. Finally, we examine

the welfare implications.

4.1 Informational Externality

The well-known notion of payoff externality describes the direct influence of agent j’ actions

on agent i’s utility, such as in a common good problem. We find that agent j’s action may

also have an impact on agent i’s beliefs, formalized below as informational externalities.

Definition 2. We say agent j creates an informational externality for agent i when agent

j’s action changes agent i’s inference about φi, or equivalently, at least one of Qi
eja, Q

i
ejφ, or

Qi
eiej is nonzero.

The informational externality works both directly and indirectly. To understand the

direct channel, first notice that a different ej changes the underlying distribution of qi,

consequently distorting agent i’s belief updating process. This may push agent i’s belief
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upwards or downwards, which critically depends on the signs of Qi
eja and Qi

ejφ. Meanwhile,

the indirect effect operates through agent i’s optimization process. When Qi
eiej 6= 0, a

different ej changes the marginal product of ei and thus the optimal choice of the latter.

This feeds back to the direct channel by further changing the underlying distribution of qi.12

Informational externalities, just like payoff externalities, can be categorized as positive or

negative based on the signs of the aforementioned cross derivatives.

Definition 3. The informational externality of agent j over i is positive if Qi
eiej ≥ 0,

sgn(Qi
eiφ) = sgn(Qi

ejφ), and sgn(Qi
eia) = sgn(Qi

eja); it is negative if Qi
eiej ≤ 0, sgn(Qi

eiφ) 6=
sgn(Qi

ejφ), and sgn(Qi
eia) 6= sgn(Qi

eja); otherwise, it is neither positive or negative.

It is easier to understand this technical definition in terms of complementarity or substi-

tutability between efforts and through the no-gap condition. When agent j creates positive

informational externality, the agents’ efforts are complements. Furthermore, the parameter

value φi that solves gi (e, φi) = 0 is either both increasing or both decreasing in ei and ej. In

sum, these observations imply that the efforts affect agent i’s belief in the same way and are

mutually reinforcing. Analogously, negative informational externality of agent j amounts to

substitutable efforts with opposite influences on agent i’s belief.

We use two examples to illustrate how the positive or negative informational externalities

lead to distortions of one’s belief in opposite ways.

Example 1 (cont.). Consider the example with the engineers where agents are learning

about the quality of the overall project their PI has assigned them to. Simple calcula-

tions establish that Qi
eiej , Q

i
eiφ, Q

i
ejφ > 0 and Qi

eia, Q
i
eja = 0. Therefore, the engineers

have positive informational externalities over one another. The gap function, gi (e, φ) =

(ei + kej) (Φ− φ) + Ai − ãi, is an increasing function in ej and ei whenever an engineer is

both overconfident and underestimates the fundamental. First notice that, ceteris paribus, a

lower ej implies a lower belief over φ in order to compensate for a decreased gi, or a negative

gap. More intuitively, since the marginal return to the unknown quality of the project, φ

is increasing in the teammate’s effort (Qi
ejφ > 0), the marginal return on φ decreases in

response to a lower ej. Hence, engineer i believes the quality of the overarching project has

to be be much worse to justify his own underperformance. Moreover, since Qi
eiej > 0, a lower

ej motivates engineer i to play a even lower action, amplifying the downward effect on his

belief in the project quality, φ.
12Notably, the notion of informational externality is distinct from informative actions in social learning

environments. The agents do not infer the fundamental from each other’s effort choice but face a signal
structure that varies with the efforts.
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Example 2 (cont.). Now consider the venture capital example where firms are unsure of

the prospects of the whole industry. It is straightforward to verify that the informational

externalities are negative. Overconfident managers tend to attribute underperformance to

the industry and underestimate the marginal return to investment, thereby underinvesting in

the industry (Qi
eia = 0, Qi

eiφ > 0). Notice that, upon observing a lower ej, since investments

are substitutes (Qi
eiej < 0), firm i is motivated to seek a larger investment, which feeds back

to the no gap condition and generate a higher belief in φ: intuitively, as the gap function

is given by gi(e, φ) = ei(Φ − φ) + Ai − ãi, firm i need not underestimate the growth of the

industry as much as before to justify the constant gap introduced by overconfidence.

4.2 Mutually-Reinforcing Learning

Motivated by these observations, we consider the following question: how do the agents

mutually influence their beliefs in the unknown fundamental through interactive learning

and optimization? Heidhues, Kőszegi, and Strack (2018) show that a single agent’s learning

is self-defeating in the sense that, allowing an overconfident agent to adjust his own actions

results in more extreme belief in the fundamental, thereby encouraging more extreme actions

and even lower payoff. We first show that this pattern is reinforced when there are positive

informational externalities.

Consider a special learning environment in which we fix agent j’s action at ejS but allow

agent i to optimize his action in each period. Denote the steady-state inferences as φS =(
φiS, φ

j
S

)
and actions as eS =

(
eiS, e

j
S

)
. We now compare the steady state with our two-agent

environment in which we allow both agents to adjust actions, which leads to the steady state

(e∞,φ∞) as defined earlier. The following proposition shows that, as more agents actively

participate in action optimization, the steady-state underestimation becomes more severe.

We thus say that their learning processes are mutually-reinforcing.

Proposition 1. Suppose Assumptions 1 to 3 hold and agent j has a positive informational

externality over agent i, then both agents’ underestimation of their fundamentals is rein-

forced when agent j is free to optimize than when agent j’s action is fixed at the level ejS,

where ejS is picked from [e, e] such that

(i) if Qi
eiφ > 0, then ejS > ej∞ (ã);

(ii) if Qi
eiφ < 0, then ejS < ej∞ (ã).
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In other words, fixing ej at a level ejS satisfying conditions (i) and (ii) implies φ∞ (ã) <

φS < Φ.

One may wonder what role is played by the requirement that ejS > ej∞ (ã) or ejS <

ej∞ (ã)—they ensure agent j’s action is less distorted at the fixed level. In fact, we could

replace the condition by ejS = ej∞ (A) or ejS = ej∞ (ãi, Aj),13 and then interpret the constraint

as a suggestion from an outside analyst who tries to mitigate the distortion due to overcon-

fidence: fix your action at a level which best responds to a correct self-perception, then both

of you will understand the environment better and have better performance.

The message conveyed by Proposition 1 is twofold. First, a self-defeating pattern emerges

since φj∞ (ã) < φjS < Φj. That is, agent j underestimates the fundamental more when he

is allowed to optimize. More importantly, a mutually-reinforcing pattern can be observed

by noting that φi∞ (ã) < φiS < Φ, which means agent i’s inference also turns out to be

more extreme when agent j can freely change actions. The key driving force is the positive

informational externality. To illustrate the mechanism, we describe the learning dynamics

heuristically using Example 1.

Example 1 (cont.). When engineer i holds a degenerate belief at φi and his coworker’s

effort is fixed at ejS, engineer i optimally chooses e∗i =
(
φi + λejS

)
/2c, which increases in

both φi and ej. We can plot this function in the ei − φi domain as in Figure 1. In addition,

the no-gap equation yields φi = Φ − (ãi − Ai) /
(
ei + λejS

)
, which is the blue curve we plot

in Figure 1.

If engineer j is forced to take a relatively high effort ejS and engineer i starts to optimize

against the high ejS as shown in the figure, engineer i scales down the effort because he

underestimates the overall project quality, φ. This decrease in effort results in lower payoff

in the following period, resulting in an even lower belief from engineer i. Eventually, engineer

i is going to hold a belief φiS, which is lower than the belief he started with. This process

is shown in the left panel of Figure 1. Suppose now engineer j is also given the chance to

optimize; the dynamics change dramatically. Since both engineers have the tendency to scale

down their effort and the payoff function admits complementarity between efforts, engineer

i exerts lower effort than he did when his coworker was constrained to play a fixed action. In

the right panel of Figure 1, this is captured by an downward shift of the optimal action curve.

Next, because Qi
ekφ

> 0,∀k, the decrease in effort leads to a more negative gap between the

true and expected payoffs and hence a larger decline in engineer i’s evaluation of φ, i.e. the

13It can be shown that when Qieiφ > (<)0, we have ej∞
(
ãi, Aj

)
, ej∞ (A) > (<)ej∞ (ã).
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Figure 1: Mutually-reinforcing learning. The left panel shows how allowing agent i to change
her action induces a lower inference for agent i, with ej fixed at ejS, and the right panel shows
how agent i gets an even lower inference when agent j is also allowed to revise actions. The
black straight line depicts the optimal action given a belief φi, while the blue curve describes
the belief φi derived from the no-gap condition gi = 0 with ei and ej given. In the right panel,
the two curves shift in the directions of the red arrows, capturing the effect of a changing ej.

belief formation curve shifts to the left. The same process repeats until both engineers reach

the steady state with actions ei∞ and beliefs φi∞, which are potentially much more extreme

than eiS and φiS.

We now examine mutually-reinforcing learning through another lens. Now that the pres-

ence of an actively-optimizing second agent reinforces one agent’s mislearning, it should

be intuitive that mislearning becomes more severe when the second agent is more biased.

Proposition 2 confirms this intuition. As one or both agents become more confident, i.e.

have higher self-perceptions, it follows from positive informational externalities that they

each have a worse evaluation of the unknown. Similar to Proposition 1, it also embeds

the one-agent self-defeating result, as increasing one’s confidence level worsens one’s own

underestimation.

Proposition 2. Suppose Assumptions 1 to 3 hold and both agents create positive informa-

tional externalities. When any of the agents is more overconfident, both agents’ underesti-

mation of the fundamental is more severe. That is, let ã, ã′ ∈ ×I (a, a) and ã > ã′ > A,

then φ∞ (ã) < φ∞ (ã′) < Φ.

The pattern of mutually-reinforcing learning generates novel policy implications. First of
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all, in many interesting economic problems where there are often multiple agents interacting

with each other, even a slight bias of overconfidence can be magnified to induce nontrivial

discrepancy between agents’ beliefs and the truth, thereby driving agents’ actions far away

from optimal. Second, effective intervention can take the form of increasing information

sharing to eliminate overconfidence and underestimation, or simply restricting the action

choices of certain agents. Last but not least, even intervention that only targets a subset of

agents can have effects on every agent involved.

4.3 Mutually-Limiting Learning

When the informational externalities are negative, as one may extrapolate from the previous

result, the learning processes become mutually-limiting. In particular, allowing another

agent to freely optimize will make the original agent’s belief distortion less severe. Similarly,

increase a second agent’s overconfidence will cause the first agent’s inferences to be closer to

the true value of the unknown.

Proposition 3. Suppose agent j has a negative informational externality over agent i.

(i) Agent i’s underestimation of the fundamental is less severe when agent j is free to

optimize than when agent j’s action is fixed at ejS (chosen by the same rule as before),

i.e. φiS < φi∞ (ã) < Φ.

(ii) As agent j becomes more overconfident, agent i’s underestimation of the fundamental

is smaller. That is, for any ã, ã′ > A such that ãj > ã′j and ãi = ã′i, it is true that

φi∞ (ã′) < φi∞ (ã) < Φ.

Example 2 (cont.). Firm j immediately scales down its investment when it is free to op-

timize or if the manager becomes more overconfident. Then as illustrated earlier, firm i is

incentivized to incrementally invest more, which pushes up the former firm’s belief in the

fundamental, correcting the underestimation stemming from overconfidence. If we were to

plot the dynamics as we did in Figure 1, as firm j chooses its investment, the belief formation

curve stays still but the optimal action curve shifts upwards, moving the intersection point

to the right.

4.4 Welfare Analysis

In this subsection, we analyze the welfare implications of overconfidence by studying how

the payoffs in the steady state. (e∞ (ã) ,φ∞ (ã)) vary with ã, and in particular, whether
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the payoffs increase or decrease compared to when agents have correct perceptions. We first

discuss different sources of welfare impact and briefly analyze the single-agent case where

overconfidence almost always leads to utility loss. Then we analyze the two-agent case and

obtain two main insights. First, overconfidence is not always bad, and even sometimes good

for everyone, but only in a multi-agent environment; second, we could easily tell the direction

of the change in welfare when the bias is small by checking a few simple conditions.

The actual average payoff can be rewritten as follows,

Qi
(
e∞ (ã) , Ai,Φ

)
= Qi

(
e∗i (ã,φ∞ (ã)) , e∗j (ã,φ∞ (ã)) , Ai,Φ

)
,∀i.

Since optimal actions are determined simultaneously, e∗i (ã,φ∞ (ã)) depend on ãj and

φj∞ (ã) indirectly through e∗j (ã,φ∞ (ã)). It is then clear that any impact on agent i’s payoff

comes from four different sources: (i) the distortion of ei due to overconfidence, i.e. the devi-

ation of ãi from Ai; (ii) the distortion of ei due to false inference, i.e. the deviation of φi from

Φ; (iii) the distortion of ei due to the distortion of ej (complementarity/substitutability); (iv)

the direct effect of ej on Qi (payoff externality).

An easy observation is that the sum of effect (i) and effect (ii) is almost always negative:

misconceptions always impair the agent’s ability to choose the correct actions. Besides, when

there is only a single actively-optimizing agent or when Qi does not depend on ej, effects

(iii) and (iv) are eliminated. As a result, in a single-agent setting, the agent always enjoys

lower (or equal) utility.14 We summarize these observations below.

Claim 1. If the payoff function for any agent i has the following form

Qi
(
ei, ej, ai, φi

)
= Qi

(
ei, ai, φi

)
,

misspecification in ai leads to lower or equal average payoff for agent i in the steady state.

When there are multiple agents, the payoff function becomes more complicated and effects

(iii) and (iv) start to kick in. The extent to which effects (iii) and (iv) harm or benefit the

agents depends on specific parametric assumptions made about Qi and how much ã deviates

from A.

In Proposition 4, we characterize the welfare impact of small amount of overconfidence.

14One circumstance in which payoffs are unchanged is when the two fundamentals can be summarized by
a new variable θ ≡ h

(
ai, φi

)
. In this case, the agent is correctly specified as long as Θ = h

(
Ai,Φ

)
is inside

the support of his prior. Effect (i) and effect (ii) then exactly offset each other. This exception is also noted
by Heidhues, Kőszegi, and Strack (2018).
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The focus on a small misspecification facilitates the characterization in two ways. For one

thing, since ei has been optimized, the payoff change will be dictated by the change of ej

and the derivative of Qi with respect to ej, rendering the effect of a distorted ei secondary

compared to agent j’s payoff externality. That is, effects (i) to (iii) are secondary compared to

effect (iv). Hence, the task of determining how welfare changes with overconfidence reduces

to determining how steady state efforts change. For another thing, the change in ej will be

determined by ãj as the influence of ei is of smaller size.

Proposition 4. Suppose Assumptions 1 to 3 hold. There exists δ > 0 such that, if (i) the

agents’ overconfidence levels are given by ã ∈ B+
δ (A) and (ii) Qj

ejφ
has the opposite (same)

sign as Qi
ej (e∞ (A) , Ai,Φ), then agent i’s payoff in the steady state increases (decreases)

compared to when agents are correctly specified about their ability.15

Proposition 4 provides a simple condition under which an overconfident agent can be

better off. For example, when Qj
ejφ

< 0 and Qi
ej (e∞ (A) , Ai,Φ) > 0, both agents step up

their efforts due to overconfidence and underestimation of the fundamental, which benefit all

agents because it corrects the inefficiency of insufficient efforts in common-good problems.

In other words, agent j should have paid more effort than he is willing to because of his

positive payoff externality—his overconfidence, albeit a perception bias, accidentally leads

to a better outcome. It is worth noting that, if the agents enjoy higher payoffs under

the above circumstances, positive informational externalities further increase the welfare.

In other words, positive informational externalities and mutually-reinforcing learning should

not be simply interpreted as negative results when it comes to welfare; instead, they magnify

the payoff externalities, and lead to outcomes which are either “even better” or “even worse”.

By contrast, negative informational externalities reduce the payoff externalities.

We now compare our welfare predictions to the computed steady states in a neighborhood

around the agents’ true abilities for the two teamwork examples.

Example 1 (cont.). It is simple to verify that Qi
eiφ > 0, Qi

ej > 0, for all i and j 6= i. By

Proposition 4, when the engineers exhibit slight overconfidence and thus underestimation of

the unknown, the engineers’ payoffs decrease compared to when they are correctly specified,

which corresponds to the upper right-hand quadrant of Figure 2’s first panel. Here, mutually-

reinforcing learning exacerbates the engineers’ underestimation of their project quality and

distorts their actions, further dropping their welfare.

15B+
δ (x) = {y : y > x, ‖y − x‖ < δ} is defined to be the upper right area inside an x-centered circle with

radius δ.
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Figure 2: Welfare changes for Examples 1 and 2. Both panels represent the change in welfare
to both agents when both agents have true ability A1 = A2 = 10 and ã as indicated by the
graphs. The purple areas represent specifications of confidence where the welfare of both
agents decreases compared to the case with correctly specified beliefs (ãi = Ai for both
agents). In green areas player 1 is better off and player 2 is worse off. In blue areas player
1 is worse off and player 2 is better off, and in yellow areas both players are better off. The
payoff functions used are symmetric for the players and the specific functional forms are
Qi(ei, ej, ai, φi) = (ei + 2ej)φi + ai + eiej − 3(ei)2 for the first panel, and Qi(ei, ej, ai, aj) =
eiφ− 3eiej + ai − 10(ei)2 for the second panel.

Example 2 (cont.). Again, it is simple to verify that Qi
eiφ > 0, Qi

ej < 0. By Proposition 4,

both firms’ average payoffs in the steady state increase as they are marginally more overcon-

fident. These changes are reflected from the second panel of Figure 2. The mutual-limiting

learning pattern, while alleviating the agents’ perception bias, also weakening the incentives

for making larger investments thus decreasing their payoffs locally.

In sum, these examples highlight the fact that the welfare impact of overconfidence on

a pair of agents highly depends on the directions of payoff externalities and informational

externalities, and should be carefully analyzed case by case.

5 Convergence

In this section, we prove that under positive or negative informational externalities, the multi-

agent learning processes converge to the steady state, or the unique Berk-Nash equilibrium.

We make use of a simple and intuitive lemma from Heidhues, Kőszegi, and Strack (2018)

stating that the support of any agent i’s long-term belief cannot contain an element φi if its
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implied distribution of payoffs exhibits systematic mismatch with true distribution in the

sense that Qi (et, ã
i, φi) should not be consistently lower or higher than Qi (et, A

i,Φ). We

then use a contraction argument similar to theirs: the structural properties of the payoff

functions enable us to eliminate a subset of actions given all possible beliefs, which in turn

further rules out a subset of beliefs.

However, the added player brings non-trivial complications to the proof. To prevent one

agent’s converging learning process from being disrupted by the other agent’s optimization,

we have to impose additional structure to control for the agents’ mutual influence.

Assumption 4. Agents are both overconfident, and the informational externalities are either

both positive or both negative.

Now we are ready to state the theorem for convergence of beliefs and actions for the

two-agent environment.

Theorem 1. Suppose Assumptions 1 to 4 hold, then the agents’ actions almost surely con-

verge to the Berk-Nash equilibrium actions e∞ and their beliefs almost surely converge in

distribution to the Dirac measure at φ∞ and â∞.

Figure 1 offers some key insights to understand the convergence mechanism. As shown

in the left panel, by our assumption, the belief formation curve intersects with the opti-

mal action curve only once, and the former must be steeper than the latter at the point

of intersection. Hence, in a single-agent environment, an iterated elimination of dominated

actions and unfeasible beliefs eliminates all but the crossing point—the Berk-Nash equilib-

rium profile. However, in a two-agent environment, their mutual influence must be taken

into account—the iterated elimination has to be run simultaneously for both agents. When

information externalities are neither positive or negative, agent i’s inference, computed from

the no-gap condition, and his optimal action may be non-monotone functions of ej, creating

the possibility of cycles in which agents have jointly oscillating actions and beliefs, and never

converge.

Example 1 (cont.). Figure 3 demonstrates the convergence of beliefs and actions in a

simulation. We see that engineer i’s effort and inference converge both in the case where

his coworker is constrained to a fixed action (which corresponds to the orange paths in

the figure) and in the case where engineer j is allowed to adjust his inferences and efforts

alongside engineer i (which corresponds to the blue paths in the figure). Note that although

the payoff is consistently perturbed by the random noise, it stays centered around the steady

20



state. Additionally, the perturbations do not cause much change in inference and effort levels

as t grows larger. Also notice that it takes longer for effort inference and payoff to approach

their steady state levels in the case where both engineers are allowed to re-optimize their

actions than in the case where engineer j is forced to play a fixed action.

Figure 3: This figure shows the process by which effort, inferences, and average payoffs
converge to steady state levels in Example 1. In particular, Qi(ei, ej, ai, φi) = (ei + 5ej)φ +
ai+eiej−1.3(ei)2, φ = 4, A1 = A2 = 20, and ã1 = ã2 = 30. We assume both the distributions
of random noises and priors are normal, which enables us to keep track of the mean of each
period’s posterior distribution. The orange paths indicate what happens to agent 1’s actions,
inferences (mean of posterior), and payoffs when we force agent 2 to play the action which
is optimal when both players hold correct beliefs about φ. The blue paths represent agent
1’s actions, inferences, and payoffs when both players are allowed to change their actions in
response to their changing efforts.

In addition to convergence, Figure 3 highlights our mutually reinforcing learning result.

We see how when we allow engineer j to also adjust his efforts, engineer i’s efforts and

inferences become even lower than they were when his coworker’s actions were fixed. Since

both engineers exert less effort, engineer i’s welfare also suffers as a result of allowing engineer

j to adjust his effort.

6 Extensions

6.1 Underconfidence

We begin this section by discussing the implications of underconfidence. The assumption

that ã > A is critically important to the direction of the mutual learning effect. In fact,

when the agents are underconfident, the learning processes are mutually-limiting when there

are positive informational externalities. The belief formation curve is now downward sloping
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since as agents exert more effort, the marginal return of the fundamental increases, leading

the agents to overestimate the unknown to a lesser extent. Assume for now that Qj
ejφ

>

0, then an underconfident agent chooses lower effort in the steady state than when he is

correctly specified, i.e. ej∞ (ã) < ej∞ (ãi, Aj). Fixing agent j’s effort at some ejS > ej∞ (ã)

induces a steady state belief higher than when he can freely optimize since in the latter case,

agent j exerts lower effort, thus worsening agent i’s evaluation of φi. Consequently, positive

informational externalities in the underconfidence case help correct the overestimation of

φi. Analogously, negative informational externalities in the underconfidence case generate

more extreme overestimation in the steady state, generating a mutually-reinforcing pattern.

These phenomena are illustrated by Figure 4 below.

Figure 4: Mutual learning with underconfidence. The left panel shows the heuristic learning
dynamics of an underconfident agent when informational externalities are positive. Steady
state inferences are lower than when agent j’s effort choice is fixed. The right panel shows
a reverse pattern when informational externalities are negative.

There seems to be no guarantee that the learning processes will converge: as agents ob-

tain a lower belief in φ, they react by exerting lower effort (in the case of Qj
ejφ

> 0 and

Qj
eja
≤ 0), pushing up beliefs again. Nevertheless, the following theorem shows that under-

confident agents also converge to the Berk-Nash equilibrium when Assumption 4 is replaced

by Assumption 5 and—more importantly—the agents are only mildly underconfident. The

latter condition ensures that the belief formation curve is steeper than the optimal action

curve over the relevant region, enabling the use of the contraction argument.16 Note that

16The assumption of not being too underconfident is essential for the use of the contraction argument,
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Heidhues, Kőszegi, and Strack (2018), working on a similar but single-agent setting, does

not offer a convergence result for the underconfidence case.

Assumption 5. Agents are both underconfident, and the informational externalities are

either both positive or both negative.

Theorem 2. Suppose Assumptions 1 to 3 and 5 hold. When Ai− ãi is small enough for all

i, the agents’ actions almost surely converge to the Berk-Nash equilibrium actions e∞ and

their beliefs almost surely converge in distribution to the Dirac measure at φ∞ and â∞.

Finally, going back to Figure 2, we find that overconfidence and underconfidence impact

the agents’ steady state payoffs in opposite directions. As a side result, we show that there

always exists a certain type of bias in ã that is socially beneficial when there are multiple

agents in our environment. The key to this result is the Pareto inefficiency of Nash equilibria

due to externalities and the flexibility of the self-perception bias which makes it possible to

counteract or strengthen the inefficiencies. Therefore, the insight of the possibility of Pareto

improvement as a result of biases goes beyond this particular learning framework and the

specific form of bias.

Proposition 5. Suppose Qi
ej (e∞ (A) , Ai,Φ) 6= 0. Then there exists ã with which both

agents have payoffs strictly higher in the steady state than they would have when both are

correctly specified.17

6.2 Multiple Equilibria

The existence of multiple equilibria does not affect our key message, i.e. mutually-reinforcing

and mutually-limiting learning, but posea difficulties for the proof of convergence of the learn-

ing process. Figure 5 shows the single-agent heuristic learning dynamics, where there are

two equilibria (eiS, φ
i
S) and

(
êiS, φ̂

i
S

)
. The contraction argument fails due to no further elim-

ination when, for example, the lower and upper bounds of actions are given by êiS and eiS.

Hence, this paper does not provide a proof of convergence for such settings. Clearly, the for-

mer equilibrium (eiS, φ
i
S) is more attractive since the heuristics make it clear that the agent’s

but it may not be a necessary condition for convergence. However, there are no existing results from the
literature that can be directly applied here. For example, the technique developed by Esponda, Pouzo,
and Yamamoto (2019), which tackles the problem of convergence by focusing on the asymptotic frequency of
actions and using tools from the theory of stochastic approximation, can be adapted to establish convergence
only in a discrete-action version of our setting.

17The proof also establishes that the existence of ã with which one agent obtains higher payoff while the
other obtains lower payoff and the existence of ã such that both agents obtains lower payoff.
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Figure 5: Multiple Berk-Nash equilibria

belief will drift towards φiS as he optimizes and updates. In fact, one can use the stochastic

approximation tools from Esponda, Pouzo, and Yamamoto (2019) to show convergence in

a finite-action environment—but unfortunately, their techniques do not directly apply to

continuous-action settings like ours. Nevertheless, we still feel free to focus on equilibria like

(eiS, φ
i
S) over which our analysis of mutual learning patterns remains valid.

6.3 Multiple Agents

Although our paper focuses on the two-player case, the results could be easily generalized

to an arbitrary number of agents. The pattern of mutually-reinforcing learning exists and

becomes exacerbated with more overconfident agents exerting positive informational exter-

nalities among each other. The parametric assumptions, however, tend to be increasingly

more complicated since more cross derivatives are involved. Moreover, the possibility of

Pareto improvement when players are slightly biased always exists. As long as the optimal

choice of actions non-trivially depends on self-perceptions and inferences on the unknowns

and each agent is exposed to some level of externalities, we could identify small biases with

which everyone enjoys strictly high utility.
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7 Conclusion

We develop a two-agent learning model with overconfidence. We define a new notion of in-

formational externalities to describe how one agent’s action could influence the other agent’s

inference. When positive informational externalities are present, we find a mutually reinforc-

ing learning pattern that implies strategic interaction exacerbates the underestimation of the

common fundamental and make agents choose more extreme actions; in contrast, learning

is mutually limiting under negative informational externalities. Both patterns are absent in

Heidhues, Kőszegi, and Strack (2018) where only one agent is actively learning and opti-

mizing. Our welfare implications also starkly contrast with welfare results from single-agent

models in that there can be Pareto improvement in welfare as a result of overconfidence, and

mutually-reinforcing learning potentially improve welfare even further.

One possible future direction is to consider strategic manipulation of informational ex-

ternalities. For example, in a setting where agents are non-myopic and take into account the

influence of their actions over the other agent’s beliefs, agent may be incentivized to play

actions that are non-optimal in the stage game, leading to different distortions in long-term

beliefs.
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A Preliminary Lemmas

For convenience, define Gi (φ) ≡ gi (e∗ (ã,φ) , φi) and denote G (φ) = (Gi (Φ) , Gj (Φ)).

Essentially, this is the gap function when every agent actively optimizes according to a

degenerate belief at φi. The Berk-Nash equilibrium belief satisfies Gi (φ∞) = 0, ∀i. Besides,

let κa ≥ max {Q1
a, Q

2
a} denote the upper bound on Qi

a and κφ ≤ min
{
Q1
φ, Q

2
φ

}
denote the

lower bound on Qi
φ throughout.

Proof of Lemma 1. Suppose ei ∈ arg maxeQ
i (e, ej, ãi, φi) , then strict concavity implies that

ei is unique for a fixed ej. Since Qi is twice continuously differentiable, Brouwer’s fixed-point

theorem implies e∗ (ã,φ) exists. Suppose there are two different fixed points (ei, ej) and

(êi, êj), and without loss of generality ei > êi, then

Qi
ei

(
ei, ej, ãi, φi

)
= 0,∀i,

Qi
ei

(
êi, êj, ãi, φi

)
= 0,∀i.

Combined with Assumption 2, it is implied that |ej− êj| > |ei− êi|, ∀i, j 6= i. Since it cannot

hold for every i, we obtain a contradiction.

Proof of Lemma 2. By Gibb’s inequality, the KL divergence is weakly positive and equates

0 if and only if the two distributions coincide almost everywhere. Therefore,

E
[
log

f (εi, εj)

f (Qi (e, Ai,Φ)−Qi (e, ãi, φi) + εi, Qj (e, Aj,Φ)−Qj (e, âj, φi) + εj)

]
≥ 0,

where equality is obtained if and only if Qi (e, Ai,Φ) = Qi (e, ãi, φi) and Qj (e, Aj,Φ) =

Qj (e, âj, φi)+εj. Hence, the agent i’s equilibrium belief is a Dirac measure at such φi and âj.

Since the equilibrium must be optimal given the belief, it follows that (e∗ (ã,φ∞) ,φ∞, â∞)

is a pure-strategy Berk-Nash equilibrium if and only if the no-gap conditions hold.

Existence: Since Qi
ei (e∗ (ã,φ) , ãi, φi) = 0,∀i and Qi is twice continuously differentiable,

e∗i (ã,φ) and e∗j (ã,φ) continuous in φ and ã. Moreover, for all e,

Qi

(
e, ãi,Φ− κa

κφ

(
ãi − Ai

))
≤Qi

(
e, Ai,Φ

)
+ κa

(
ãi − Ai

)
− κφ

κa
κφ

(
ãi − Ai

)
=Qi

(
e, Ai,Φ

)
.
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It follows thatGi
(

Φ− κa
κφ

(ãi − Ai) , φj
)
≤ 0,∀φj. SinceGi (Φ, φj) > 0,∀φj, by the Brouwer’s

fixed-point theorem, there exists at least one root of G over the domain of R2. By Assump-

tion 1, the root is inside the support of the prior belief.

Proof of Lemma 3. By the implicit function theorem, ∂e∗i (ã,φ) /∂φk is a continuous func-

tion of φ and ã, ∀i, k. Thus,

∂Gi (φ)

∂φk
=Qi

ei

(
e∗ (ã,φ) , Ai,Φ

) ∂e∗i (ã,φ)

∂φk
+Qi

ej

(
e∗ (ã,φ) , Ai,Φ

) ∂e∗j (ã,φ)

∂φk

−Qi
ej

(
e∗ (ã,φ) , ãi, φi

) ∂e∗j (ã,φ)

∂φk
− 1i (k) ·Qi

φ

(
e∗ (ã,φ) , ãi, φi

)
is a continuous function of φ and ã, ∀i, where 1i (k) = 1 if i = k and 0 otherwise. When the

derivatives are evaluated at ãi = Ai and φi = Φ,

∂Gi (φ)

∂φi
|(ãi,φi)=(Ai,Φ) = −Qi

φ

(
e∗ (φ) , Ai,Φ

)
< 0,

∂Gi (φ)

∂φj
|(ãi,φi)=(Ai,Φ) = 0.

Continuity then implies that there exist ∆i > 0, i = 1, 2, such that for any ai ∈ (Ai, Ai + ∆i)

and for any ψi ∈
[
Φ− κa

κφ
|ãi − Ai| ,Φ

]
⊂
(
φ, φ

)
, the following are true:

∂Gi (φ)

∂φi
< 0,

∣∣∣∣∂Gi (φ)

∂φj

∣∣∣∣ < ∣∣∣∣∂Gi (φ)

∂φi

∣∣∣∣ ,∀i. (6)

Suppose there are at least two different roots, φ̃ and φ̂, and assume without loss of generality

φ̃i < φ̂i. By the second inequality in Eq. (6), if G
(
φ̃
)

= G
(
φ̂
)

= 0, then it must be that

|φ̃j − φ̂j| > |φ̃i − φ̂i|,∀i, j 6= i. The statement contradicts itself.

Lemma 4. Given ãi and πit−1 (φi), ∀i, the stage game at time t is dominance solvable. That

is, there exists a unique rationalizable action profile
(
eit, e

j
t

)
.

Proof. Without loss of generality, assume Qi
eiej > 0,∀i, j 6= i. Let

[
ej0, e

j
0

]
=
[
ei0, e

i
0

]
= [e, e],

and recursively define for any k ∈ {1, 2} and τ ≥ 1,

bkτ = arg max
ek

Eπkt−1

[
Qk
(
ek, ekτ−1, ã

k, φk
)]
≡ arg max

ek
hk
(
ek, ekτ−1, ã

k
)
,

b
k

τ = arg max
ek

Eπkt−1

[
Qk
(
ek, ekτ−1, ã

k, φk
)]
≡ arg max

ek
hk
(
ek, ekτ−1, ã

k
)
,
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and
[
ekτ , e

k
τ

]
≡
[
ekτ−1, e

k
τ−1

]
∩
[
bkτ , b

k

τ

]
. By Assumption 2,

[
ek1, e

k
1

]
(
[
ek0, e

k
0

]
, ∀k, which further

implies that
[
ek2, e

k
2

]
(
[
ek1, e

k
1

]
,∀k. The Nested Intervals Theorem implies that each agent’s

set of rationalizable actions converges to the an interval with boundary points which are fixed

points of mutual optimization. By Lemma 1, there is only one such fixed point. Therefore,

agents converge to
(
eit, e

j
t

)
such that

eit = arg max
ei

Eπit−1

[
Qi
(
ei, eit, ã

i, φi
)]
,∀i.

The proof is analogous if Qi
eiej < 0 for some i and trivial if Qi

eiej = 0.

B Proofs for Section 4

Lemma 5. Given ã, the Berk-Nash equilibrium (e∞, δφ∞) satisfies the following:

Qi
ei

(
e∞, A

i,Φ
)

+Qi
φ

(
e∞, ã

i, φi∞
) Qi

eiei (e∞, ã
i, φi∞)

Qi
eiφ

(e∞, ãi, φi∞)
< 0,∀i.

Proof. Consider agent i’s steady state maximization and inference problem for a fixed ej.

For any φi, define êi (φi) to be such that Qi
ei

(
êi (φi) , ej, ãi, φ̂i

)
. We denote the set of possible

actions and beliefs as lie (ej) and liφ (ej) respectively, i.e. (ei, φi) ∈ lie (ej)× liφ (ej) if it satisfies

the following equations:

Qi
(
ei, ej, Ai,Φ

)
−Qi

(
ei, ej, ãi, φi

)
= 0,

Qi
ei

(
ei, ej, ãi, φi

)
= 0.

Obviously both lie (ej) and liφ (ej) are nonempty and compact for any ej. Let l∗iφ (ej) represent

the largest element in liφ (ej), and l∗ie (ej) represent the effort corresponding to l∗iφ (ej). Notice

that Qi (ei, ej, Ai,Φ) − Qi (ei, ej, ãi,Φ) < 0,∀ei, ej. Therefore, for any φ̂i > l∗iφ (ej), it must

be that

Qi
(
êi
(
φ̂i
)
, ej, Ai,Φ

)
−Qi

(
êi
(
φ̂i
)
, ej, ãi, φ̂i

)
< 0,

otherwise one can always find a larger element in liφ (ej) than l∗iφ (ej), contradicting the

definition of l∗iφ (ej). This implies that when φi = l∗iφ (ej),

∂ [Qi (êi (φi) , ej, Ai,Φ)−Qi (êi (φi) , ej, ãi, φi)]

∂φi
< 0,
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⇒ Qi
ei

(
êi
(
φi
)
, ej, Ai,Φ

) ∂êi
∂φi
−Qi

φ

(
êi
(
φi
)
, ej, ãi, φi

)
< 0.

FromQi
ei (êi (φi) , ej, ãi, φi) = 0, we know thatQi

eiei (êi (φi) , ej, ãi, φi) ∂êi

∂φi
= −Qi

eiφ (êi (φi) , ej, ãi, φi).

Plug back to the previous inequality, we obtain that

Qi
ei

(
êi
(
φi
)
, ej, Ai,Φ

)
+Qi

φ

(
êi
(
φi
)
, ej, ãi, φi

) Qi
eiei (êi (φi) , ej, ãi, φi)

Qi
eiφ

(êi (φi) , ej, ãi, φi)
< 0.

Finally, notice that since (l∗ie (ej) , l∗je (ei)) are continuous over a compact convex set,

Brouwer’s fixed point theorem implies that there exists a fixed point which is a Berk-Nash

equilibrium. Since e∞ is a fixed point of the correspondence (lie (ej) , lje (ei)) and that it is

unique by assumption, e∞ must also be the fixed point of (l∗ie (ej) , l∗je (ei)). Thus the above

inequality is satisfied in the equilibrium.

Proof of Proposition 1. Without loss of generality, assume Qi
eiφ > 0. We can accommodate

Qi
eiφ < 0 by replacing ei, ej with −ei,−ej and substituting the constraint with ejS < ej∞ (ã).

We start by showing eiS > ei∞ and φiS > φi∞. Consider the following two equations,

Qi
(
e, Ai,Φ

)
−Qi

(
e, ãi, φi

)
= 0, (7)

Qi
ei

(
e, ãi, φi

)
= 0, (8)

where ej is fixed but ei and φi are unknown. Differentiate,

[
Qi
ei

(
e, Ai,Φ

)
−Qi

ei

(
e, ãi, φi

)] ∂ei
∂ej

+
[
Qi
ej

(
e, Ai,Φ

)
−Qi

ej

(
e, ãi, φi

)]
= Qi

φ

(
e, ãi, φi

) ∂φi
∂ej

,

Qi
eiei

(
e, ãi, φi

) ∂ei
∂ej

+Qi
eiφ

(
e, ãi, φi

) ∂φi
∂ej

+Qi
eiej

(
e, ãi, φi

)
= 0.

Simplify and then we obtain

∂ei

∂ej
=
−Qi

φ (e, ãi, φi)Qi
eiej (e, ãi, φi)−

[
Qi
ej (e, Ai,Φ)−Qi

ej (e, ãi, φi)
]
Qi
eiφ (e, ãi, φi)

Qi
eiφ

(e, ãi, φi)

(
Qi
ei

(e, Ai,Φ) +Qi
φ (e, ãi, φi)

Qi
eiei

(e,ãi,φi)

Qi
eiφ

(e,ãi,φi)

) > 0,

∂φi

∂ej
=
Qi
eiei (e, ãi, φi)

[
Qi
ej (e, Ai,Φ)−Qi

ej (e, ãi, φi)
]
−Qi

ei (e, Ai,Φ)Qi
eiej (e, ãi, φi)

Qi
eiφ

(e, ãi, φi)

(
Qi
ei

(e, Ai,Φ) +Qi
φ (e, ãi, φi)

Qi
eiei

(e,ãi,φi)

Qi
eiφ

(e,ãi,φi)

) > 0.
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The positive signs of the derivatives follow from Lemma 5. Notice that both (eiS, φ
i
S) and

(ei∞, φ
i
∞) are determined by two equations, i.e. Eqs. (7) and (8), but they correspond to

different agent j’s efforts. Since ejS > ej∞, it is implied that eiS > ei∞ and φiS > φi∞.

Next we prove φjS > φj∞. Observe that φjS is given by

Qj
(
eS, A

j,Φj
)
−Qj

(
eS, ã

j, φjS
)

= 0.

Since Qi
ekφ
≥ 0,∀k, the function Qi (e, Ai,Φ)−Qi (e, ãi, φi) is increasing in ei and ej. Hence,

0 = Qj
(
eS, A

j,Φj
)
−Qj

(
eS, ã

j, φjS
)

= Qj
(
e∞, A

j,Φj
)
−Qj

(
e∞, ã

j, φj∞
)

< Qj
(
eS, A

j,Φj
)
−Qj

(
eS, ã

j, φj∞
)
.

The inequality implies φjS > φj∞. Since the agents are overconfident, their equilibrium beliefs

are always below than the true levels Φ. Therefore, φ∞ (ã) < φS < Φ.

Lemma 6. Suppose agents both create positive informational externalities. Suppose ã, ã′ ∈
×I (a, a) and ã′ < ã.

(i) If Qi
eiφ > 0, then e∞ (ã′) > e∞ (ã);

(ii) If Qi
eiφ < 0, then e∞ (ã′) < e∞ (ã).

Proof. Consider part (i) first. Differentiate the following equations that determine the steady

state with respect to ai and aj.

Qi
(
e∞ (a) , Ai,Φ

)
−Qi

(
e∞ (a) , ai, φi∞ (a)

)
= 0,

Qi
ei

(
e∞ (a) , ai, φi∞ (a)

)
= 0.

After tedious calculations we obtain the following,

∂ei∞ (a)

∂ak
=

I(i, k)ωik

ωiiωjj + ωijωji

(
Qk
eka −Q

k
ekφ

Qk
a

Qk
φ

)
,

where I(i, k) = −1 if i = k and I(i, k) = 1 if i 6= k, and ωik = Q−k
e−ke−i

+Q−k
e−kφ

(Q−k,A
e−i

−Q−k
e−i)

Q−iφ
=

Q−k
e−kφ
Q−iφ

(
Q−k,A
e−i −Q

−k
e−i +Q−iφ

Q−k
e−ke−i

Q−k
e−kφ

)
. All derivatives are evaluated at e∞ (a) ,a,φ∞ (a), ex-
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cept Q−k,A
e−k

which is evaluated at e∞ (a) ,A,φ. From Lemma 5, ωii, ωjj < 0 and ωij, ωji > 0.

It follows that that ∂ei∞(a)
∂ai

< 0 and ∂ei∞(a)
∂aj

< 0 for all i. Therefore, ã′ < ã ⇒ e∞ (ã′) >

e∞ (ã). Part (ii) can be proven analogously.

Proof of Proposition 2. Since the function Qi (e, Ai,Φ)−Qi (e, ãi, φi) is increasing in ei and

ej, Lemma 6 implies that

0 =Qi
(
e∞ (ã) , Ai,Φ

)
−Qi

(
e∞ (ã) , ãi, φi∞ (ã)

)
<Qi

(
e∞ (ã′) , Ai,Φ

)
−Qi

(
e∞ (ã′) , ãi, φi∞ (ã)

)
≤Qi

(
e∞ (ã′) , Ai,Φ

)
−Qi

(
e∞ (ã′) , ã′i, φi∞ (ã)

)
.

Since Qi (e∞ (ã′) , Ai,Φ)−Qi (e∞ (ã′) , ã′i, φi∞ (ã′)) = 0, it is implied that φi∞ (ã′) > φi∞ (ã),

∀i.

Proof of Proposition 3. Assume for now that Qi
eiφ > 0. (i) As in the proof of Proposition 1,

we could obtain

∂ei

∂ej
=
−Qi

φ (e, ãi, φi)Qi
eiej (e, ãi, φi)−

[
Qi
ej (e, Ai,Φ)−Qi

ej (e, ãi, φi)
]
Qi
eiφ (e, ãi, φi)

Qi
eiφ

(e, ãi, φi)

(
Qi
ei

(e, Ai,Φ) +Qi
φ (e, ãi, φi)

Qi
eiei

(e,ãi,φi)

Qi
eiφ

(e,ãi,φi)

) ,

∂φi

∂ej
=
Qi
eiei (e, ãi, φi)

[
Qi
ej (e, Ai,Φ)−Qi

ej (e, ãi, φi)
]
−Qi

ei (e, Ai,Φ)Qi
eiej (e, ãi, φi)

Qi
eiφ

(e, ãi, φi)

(
Qi
ei

(e, Ai,Φ) +Qi
φ (e, ãi, φi)

Qi
eiei

(e,ãi,φi)

Qi
eiφ

(e,ãi,φi)

) .

Since the informational externality of agent j is negative, both Qi
eiej and Qi

ej (e, Ai,Φ) −
Qi
ej (e, ãi, φi) are non-positive and at least one of them has to be strictly negative. It follows

that ∂ei

∂ej
, ∂φ

i

∂ej
< 0. Therefore, ejS > ej∞ (ã) implies φiS < φi∞ (ã) < Φ.

(ii) The function Qi (e, Ai,Φ) − Qi (e, ãi, φi) is increasing in ei but decreasing in ej.

Moreover, since ei∞ (a) is increasing in aj and ej∞ (a) is decreasing in aj, we infer that

ei∞ (ã) > ei∞ (ã′) and ej∞ (ã) < ej∞ (ã′). It follows that

0 =Qi
(
e∞ (ã) , Ai,Φ

)
−Qi

(
e∞ (ã) , ãi, φi∞ (ã)

)
>Qi

(
e∞ (ã′) , Ai,Φ

)
−Qi

(
e∞ (ã′) , ãi, φi∞ (ã)

)
=Qi

(
e∞ (ã′) , Ai,Φ

)
−Qi

(
e∞ (ã′) , ã′i, φi∞ (ã)

)
.

So φi∞ (ã′) < φi∞ (ã).
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The proof is analogous when Qi
eiφ < 0 .

Lemma 7. There exists δ > 0 such that, if agents have misconceptions ã ∈ Bδ (A) and

(ej∞ (ã)− ej∞ (A)) has the same (opposite) sign as Qi
ej (e∞ (A) , Ai,Φ), then agent i’s average

payoff in the steady state increases (decreases).

Proof of Lemma 7. First assume Qi
ej (e∞ (A) , Ai,Φ) > 0. It follows from Taylor’s expansion

that

Qi
(
e∞ (A) + (ε, η) , Ai,Φ

)
= Qi

(
e∞ (A) , Ai,Φ

)
+Qi

ej

(
e∞ (A) , Ai,Φ

)
η + o (ε) + o (η)

for ε ∈ R and η ∈ R+. Therefore, there exist positive numbers ε and η, such that for any

êi ∈ Bε (ei∞ (A)) and êj ∈ (ej∞ (A) , ej∞ (A) + η),

Qi
((
êi, êj

)
, Ai,Φ

)
> Qi

(
e∞ (A) , Ai,Φ

)
.

It follows from continuity of e∞ that there exists δ > 0 such that ã ∈ Bδ (A) implies

ei∞ (ã) ∈ Bε (ei∞ (A)) and ej∞ (ã) ∈ Bη

(
ei∞ (A)

)
. We need ej∞ (ã)−e∗j (A) > 0 so that agent

i’s payoff is higher under ã. For the case where Qi
ej (e∞ (A) , Ai,Φ) < 0, we can analogously

show that agent i’s payoff is higher under ã when ã ∈ Bδ (A) and ej∞ (ã)− e∗j (A) < 0.

Proof of Proposition 4. Let δ1 be such that Lemma 7 applies. Notice that

∂ei∞ (A)

∂ai
=
−Q−i

e−ie−i

(
Qi
eia −Qi

eiφ
Qia
Qiφ

)
Q−i
e−ie−iQ

i
eiei

+Q−i
eie−iQ

i
eie−i

∂ej∞ (A)

∂ai
=

Qj
ejei

(
Qi
eia −Qi

eiφ
Qia
Qiφ

)
Q−i
e−ie−iQ

i
eiei

+Q−i
eie−iQ

i
eie−i

By Assumption 2, ∂ej∞(A)
∂ai

< ∂ei∞(A)
∂ai

. Let δ2 be such that ∂ej∞(ã)
∂ai

< ∂ei∞(ã)
∂ai

for all ã ∈ Bδ2 (A)

and let δ = min {δ1, δ2}. Suppose Qj
ejφ

< 0, then it follows that when ã ∈ B+
δ (A), agent j

increases his effort, i.e. ej∞ (A) < ej∞ (ã), and thus by Lemma 7, agent i’s payoff increases if

and only if Qi
ej (e∞ (A) , Ai,Φ) > 0. The proof for the other case is analogous.

Proof of Proposition 5. Without loss of generality, assume we want to make both agents

better off (the proof for other cases follow analogously). By Lemma 7, we know that ã has

to be such that ã ∈ Bδ (A) and ei∞ (ã) > ei∞ (A) ,∀i for some δ. This is possible if there
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exist ∆ãi such that |∆ãi| < δ,∀i, and[
∂e1∞(A)
∂a1

∂e1∞(A)
∂a2

∂e2∞(A)
∂a1

∂e2∞(A)
∂a2

][
∆ã1

∆ã2

]
>

[
0

0

]
.

That is, we only need the coefficient matrix to be invertible. Its determinant is given by
∂e1∞(A)
∂a1

· ∂e
2
∞(A)
∂a2

− ∂e1∞(A)
∂a2

· ∂e
2
∞(A)
∂a1

. By Lemma 6,

∂ei∞ (A)

∂ak
=
I(i, k)Q−k

e−ke−i

(
Qk
eka
−Qk

ekφ
Qka
Qkφ

)
Q−i
e−ie−iQ

i
eiei

+Q−i
eie−iQ

i
eie−i

,∀i, k,

where I(i, k) = −1 if i = k and I(i, k) = 1 if i 6= k. All derivatives are evaluated at

ei∞ (A) ,A, and Φ. Non-zero determinant is equivalent to

∏
k=1,2

(
Qk
eka
−Qk

ekφ
Qka
Qkφ

)
(
Q−i
e−ie−iQ

i
eiei

+Q−i
eie−iQ

i
eie−i

)2

[
Q1
e1e1Q

2
e2e2 −Q1

e1e2Q
2
e1e2

]
6= 0.

By Assumption 1, Qk
eka
−Qk

ekφ
Qka
Qkφ
6= 0, so the above condition holds.

C Proofs for Section 5

Following Heidhues, Kőszegi, and Strack (2018), let us define mi
t (φi) to keep track of the

actual gap in average payoffs when the fundamental is φi,

mi
t

(
φi
)

= Qi
(
et, A

i,Φ
)
−Qi

(
et, ã

i, φi
)
,∀i.

Let P̃it denote agent i’s subjective probability measure conditional on the history up to time

t. Moreover, define the lowest upper bound and the highest lower bound for any agent i’

long-run beliefs as follows,

φi∞ ≡ sup
{
φi : lim

t→∞
Πi
t

(
φi
)

= 0 almost surely
}
,

φ
i

∞ ≡ inf
{
φi : lim

t→∞
Πi
t

(
φi
)

= 1 almost surely
}
.

Write the vectors of bounds as φ∞ =
(
φ1

∞, φ
2

∞

)
,φ∞ =

(
φ

1

∞, φ
2

∞

)
. We show that φ∞ and

φ∞ are bounded in Lemma 9.
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Next, we proceed by stating an important lemma established in Heidhues, Kőszegi, and

Strack (2018) that could be easily reformulated in a two-agent environment. Lemma 8 shows

that if some fundamental level φi is in the support of the long-run beliefs, the average payoff

implied by φi should not be consistently higher or lower than the one implied by Φ.

Lemma 8 (Heidhues, Kőszegi, and Strack (2018), Lemma 13). (a) For all i, if lim inft→∞m
i
t (φi) ≥

m > 0 for all φi ∈ (l, h) ⊂
(
φ, φ

)
, then

lim
t→∞

P̃it
[
φi ∈ [l, h)

]
= 0.

(b) For all i, if lim supt→∞m
i
t (φi) ≤ m < 0 for all φi ∈ (l, h) ⊂

(
φ, φ

)
, then

lim
t→∞

P̃it
[
φi ∈ (l, h]

]
= 0.

Lemma 9. For all i, we have that Φ− κa
κφ

(ãi − Ai) ≤ φi∞ and φ
i

∞ ≤ Φ.

Proof. Suppose Φ− κa
κφ

(ãi − Ai) > φi∞, then

lim inf
t→∞

mi
t

(
φi∞

)
= lim inf

t→∞

[
Qi
(
et, A

i,Φ
)
−Qi

(
et, ã

i, φi∞

)]
≥ lim inf

t→∞

[
Qi
(
et, A

i,Φ
)
−Qi

(
et, ã

i,Φ− κa
κφ

(
ãi − Ai

))]
>− κa

(
ãi − Ai

)
+ κφ

κa
κφ

(
ãi − Ai

)
= 0.

It then follows from Lemma 8 that a small neighborhood of φi∞ will be assigned zero proba-

bility by the agent almost surely in the long run, which is a contradiction to the definition

of φi∞. Hence, Φ− κa
κφ

(ãi − Ai) ≤ φi∞. Analogously we can prove φ
i

∞ ≤ Φ.

We can obtain similar bounds for efforts. Define

ei∞ ≡ sup
{
ei : ei ≤ lim inf

t→∞
eit almost surely

}
,

ei∞ ≡ inf

{
ei : ei ≥ lim sup

t→∞
eit almost surely

}
.

Define E∞ ≡ [e1
∞, e

1
∞]×[e2

∞, e
2
∞], which is the set of efforts that may be taken by agents in the

long run. In addition, define ED
∞ ≡

{
e : ∃φ ∈

[
φ1

∞, φ
1

∞

]
×
[
φ2

∞, φ
2

∞

]
,∀i, s.t. e∗ (ã,φ) = e

}
,
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which is the set of action profiles that constitutes a Nash equilibrium when both agents hold

degenerate beliefs in fundamentals that are in the support of long run subjective distribution.

The next lemma shows that the former set is a subset of the latter.

Lemma 10. E∞ ⊆ ED
∞.

Proof. By definition, et satisfies

Ẽπit−1

(
Qi
ei

(
et, ã

i, φi
))

= 0,∀i.

Continuity of Qi
ei implies that there exists φ̂t ∈ ×I

(
φ, φ

)
such that ∀i,

Qi
ei

(
et, ã

i, φ̂it

)
= 0.

We know that the support of Πi
t is contained in

[
φi∞, φ

i

∞

]
when t is large enough almost surely.

By continuity, φ̂it lies inside the support of Πi
t. Therefore, φi∞ ≤ φit ≤ φ

i

∞,∀i almost surely

when t is large, implying that et ∈ ED
∞ almost surely when t is large. Hence, E∞ ⊆ ED

∞.

Lemma 11. ∂e∗i(ã,φ)
∂φi

has the same sign as Qi
eiφ, while ∂e∗j(ã,φ)

∂φi
has the same sign as Qi

eiφQ
j
eiej

.

Proof. Given ã, φ, e∗i (ã, φ) satisfy

Qi
ei

(
e∗ (ã,φ) , ãi, φi

)
= 0,∀i.

Take partial derivatives, we obtain that

∂e∗i (ã,φ)

∂φi
=

−Qi
eiφQ

j
ejej

Qi
eiei
Qj
ejej
−Qi

eie−iQ
j
eiej

,
∂e∗j (ã,φ)

∂φi
=

Qi
eiφQ

j
eiej

Qi
eiei
Qj
ejej
−Qi

eie−iQ
j
eiej

.

Therefore, ∂e∗i(ã,φ)
∂φi

has the same sign as Qi
eiφ and ∂e∗j(ã,φ)

∂φi
has the same sign as Qi

eiφQ
j
eiej

.

Proof of Theorem 1. It is sufficient to show that actions and beliefs about the common fun-

damental converge, with which agents’ beliefs about each other’s ability must also converge to

the solution characterized by the no gap condition. First, consider the asymptotic behavior

of mt

(
φi∞

)
. By Lemma 8 and the continuity of Qi, it must be true that lim inf

t→∞
mi
t

(
φi∞

)
≤ 0

almost surely, otherwise it contradicts the assumption of φi∞ being the infimum of the agent’s

long-run beliefs almost surely. Similarly, it must be that lim sup
t→∞

mi
t

(
φ
i

∞

)
≤ 0.
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Case (i): Both agents are overconfident and create positive externalities. Without loss

of generality, it is sufficient to show convergence under the assumption that Qi
eiφ > 0 and

Qi
eia ≤ 0.

Recall that gi (e, φi) = Qi (e, Ai,Φ)−Qi (e, ãi, φi). Differentiate g with respect to ej, we

obtain
∂gi (e, φi)

∂ej
= Qi

ej

(
e, Ai,Φ

)
−Qi

ej

(
e, ãi, φi

)
. (9)

Since Qi
ekφ

> 0, Qi
eka
≤ 0,∀i, k, we know that

∂gi(e,φi)
∂ek

> 0, ∀i, k. By Lemma 11, since E∞ ⊆
ED
∞, it must be that almost surely, when t is large enough, e∗

(
ã,φ∞

)
≤ et ≤ e∗

(
ã,φ∞

)
.

Hence,

0 ≥ lim inf
t→∞

gi
(
et, φ

i

∞

)
= lim inf

t→∞
mi
t

(
φi∞

)
≥ Gi

(
φ∞

)
,∀i,

0 ≤ lim sup gi
(
et, φ

i

∞

)
= lim sup

t→∞
mi
t

(
φ
i

∞

)
≤ Gi

(
φ∞
)
,∀i. (10)

Notice that Gi (φ) = gi (e (ã,φ) , φi) is increasing in φj, since e∗ (ã,φ) is increasing in φj

and
∂gi(e,φi)

∂ek
≥ 0, ∀i, k. Therefore, Gi

(
φi∞, φ

j
)
≤ 0 for any φj ≤ φj∞ and Gi

(
φ
i

∞, φ
j
)
≥ 0 for

any φj ≥ φ
j

∞. Moreover, notice that ∀i, φj, Gi (Φ, φj) < 0 and Gi
(

Φ− κa
κφ

(ãi − Ai) , φj
)
> 0.

For notational convenience, let ψi = Φ− κa
κφ

(ãi − Ai) and ψ
i

= Φ for all i. The above results

can be summarized by:

G
(
φ∞

)
≤ 0,G

(
ψ
)
> 0,G

(
φ∞
)
≤ 0,G

(
ψ
)
< 0,

Gi
(
ψi, φj∞

)
> 0, Gj

(
ψi, φj∞

)
≤ 0,

Gi
(
φi∞, ψ

j
)
≤ 0, Gj

(
φi∞, ψ

j
)
> 0, (11)

Gi
(
ψ
i
, φ

j

∞

)
< 0, Gj

(
ψ
i
, φ

j

∞

)
≥ 0,

Gi
(
φ
i

∞, ψ
j
)
≥ 0, Gj

(
φ
i

∞, ψ
j
)
< 0.

By Brouwer’s fixed point theorem, ∃φ̂, φ̃ such that φ̂ ∈
[
φ∞,Φ

]
, φ̃ ∈

[
Φ− κa

κφ
(ã−A) ,φ∞

]
,∀i,

and G
(
φ̂
)

= G
(
φ̃
)

= 0. Because the root of G (φ) = 0 is unique by assumption, it must

be that φ̂ = φ̃ = φ∞ = φ∞ = φ∞ and E∞ = ED
∞ = {e∞}.

Case (ii): Both agents are overconfident create negative informational externalities.

Without loss of generality, assume that Qi
eiφ > 0 and Qi

eia ≤ 0. Analogous to Case (i),

36



we will derive a contradiction if φ∞ 6= φ∞. Since informational externalities are negative,

the signs of Eq. (9) are different:
∂gi(e,φi)

∂ei
> 0 and

∂gi(e,φi)
∂ej

< 0. Again, by Lemma 11, when

t is large enough, e∗i
(
ã,
(
φi∞, φ

j

∞

))
≤ eit ≤ e∗i

(
ã,
(
φ
i

∞, φ
j

∞

))
,∀i. Hence,

0 ≥ lim inf
t→∞

gi
(
et, φ

i

∞

)
= lim inf

t→∞
mi
t

(
φi∞

)
≥ Gi

(
φi∞, φ

j

∞

)
,∀i,

0 ≤ lim sup gi
(
et, φ

i

∞

)
= lim sup

t→∞
mi
t

(
φ
i

∞

)
≤ Gi

(
φ
i

∞, φ
j

∞

)
,∀i.

In addition, Gi (φ) = gi (e (ã,φ) , φi) is decreasing in φj. Therefore, we have some different

inequalities than those in Eq. (11):

Gi
(
φi∞, φ

j

∞

)
≤ 0, Gj

(
φi∞, φ

j

∞

)
≥ 0,

Gi
(
ψi, ψ

j
)
≥ 0, Gj

(
ψi, ψ

j
)
≤ 0,

Gi
(
ψi, φ

j

∞

)
≥ 0, Gj

(
ψi, φ

j

∞

)
≥ 0,

Gi
(
φi∞, ψ

j
)
≤ 0, Gj

(
φi∞, ψ

j
)
≤ 0,

Gi
(
φ
i

∞, φ
j

∞

)
≥ 0, Gj

(
φ
i

∞, φ
j

∞

)
≤ 0,

Gi
(
ψ
i
, ψj
)
≤ 0, Gj

(
ψ
i
, ψj
)
≥ 0,

Gi
(
ψ
i
, φj∞

)
≤ 0, Gj

(
ψ
i
, φj∞

)
≤ 0,

Gi
(
φ
i

∞, ψ
j
)
≥ 0, Gj

(
φ
i

∞, ψ
j
)
≥ 0.

Therefore, again, there exist two different roots to G (φ) = 0 if φ∞ 6= φ∞, contradicting

Assumption 3.

D Proofs for Section 6

Proof of Theorem 2. Similar to Theorem 1, we only need to show actions and beliefs about

the common fundamental converge. We prove the result when there are positive externalities,

Qi
eiφ > 0 and Qi

eia ≤ 0; the proof for other cases is analogous.

Similarly define ψ
i

= Φ − κa
κφ

(ãi − Ai) and ψi = Φ for all i. Since the agents are un-

derconfident,
∂gi(e,φi)

∂ek
< 0,∀i, k. In addition, we again have e∗

(
ã,φ∞

)
≤ et ≤ e∗

(
ã,φ∞

)
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when t is large enough. Therefore,

0 ≥ lim inf
t→∞

mi
t

(
φi∞

)
≥ Qi

(
e∗
(
ã,φ∞

)
, Ai,Φ

)
−Qi

(
e∗
(
ã,φ∞

)
, ãi, φi∞

)
,∀i,

0 ≤ lim sup
t→∞

mi
t

(
φ
i

∞

)
≤ Qi

(
e∗
(
ã,φ∞

)
, Ai,Φ

)
−Qi

(
e∗
(
ã,φ∞

)
, ãi, φ

i

∞

)
,∀i.

Therefore, gi
(
e∗
(
ã,φ∞

)
, φi∞

)
≤ 0 ≤ gi

(
e∗
(
ã,φ∞

)
, φ

i

∞

)
,∀i. Rewrite gi (e∗ (ã,ψ) , φi)

as hi (ψ,φ) for all i. Differentiate, ∀k ∈ {i, j} = {1, 2},

∂hi (ψ,φ)

∂ψk
=
(
Qi,A
ei
−Qi

ei

) ∂e∗i (ã,ψ)

∂ψk
+
(
Qi,A
ej
−Qi

ej

) ∂e∗j (ã,ψ)

∂ψk

∂hi (ψ,φ)

∂φi
= −Qi

φ,
∂hi (ψ,φ)

∂φj
= 0,

where Qi,A
ek

which denotes the derivative of Qi w.r.t. ek and is evaluated at e∗ (ã,ψ) ,A,φ.

Hence, when (ã,ψ,φ) = (A,Φ,Φ),

∂hi (ψ,φ)

∂ψi
= 0,

∂hi (ψ,φ)

∂ψj
= 0,

∂hi (ψ,φ)

∂φi
= −Qi

φ,
∂hi (ψ,φ)

∂φj
= 0.

There thus exists δ such that when ã ∈ Bδ (A): (i) the beliefs are also restricted to a small

neighborhood, i.e. ψ∞,ψ∞are close to Φ; (ii) for all i and j 6= i, ∂hi(ψ,φ)
∂φi

< −1
2
κφ < 0, and∣∣∣∂hi(ψ,φ)

∂ψi

∣∣∣ , ∣∣∣∂hi(ψ,φ)
∂ψj

∣∣∣ , ∣∣∣∂hi(ψ,φ)
∂φj

∣∣∣ < 1
4
κφ.

Therefore,

0 ≥ gi
(
e∗
(
ã,φ∞

)
, φi∞

)
− gi

(
e∗
(
ã,φ∞

)
, φ

i

∞

)
≥ 1

4
κφ

(
φ
i

∞ − φi∞ − φ
j

∞ + φj∞

)
,

0 ≥ gj
(
e∗
(
ã,φ∞

)
, φj∞

)
− gi

(
e∗
(
ã,φ∞

)
, φ

j

∞

)
≥ 1

4
κφ

(
φ
j

∞ − φj∞ − φ
i

∞ + φi∞

)
,

which hold at the same time if and only if φ∞ = φ∞ = φ∞.
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