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Abstract

This paper studies the forms of model misspecification that are likely to persist

when compared with competing models. I consider an agent using a subjective model

to learn about an action-dependent outcome distribution. Aware of potential model

misspecification, she uses a threshold rule to switch between models according to how

well they fit the data. A model is globally robust if it can persist against every finite

set of competing models and is locally robust if it can persist against every finite set of

nearby competing models. The main result provides simple characterizations of globally

robust and locally robust models based on the set of Berk-Nash equilibria they induce.

I then apply the results to examples including risk underestimation, overconfidence,

and incorrect beliefs about market demand.

Keywords: misspecified Bayesian learning, competing models, robust misspecifica-

tion, Berk-Nash equilibrium
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1 Introduction

Economists have long incorporated the idea of subjective models into their modeling of

economic agents. The recent literature on misspecified learning explores the behavioral and

welfare implications of using incorrect models. Depending on the forms of misspecification,

learners may not learn the true state of the world and thus may react suboptimally.1

The assumption that individuals forever hold on to a single misspecified model is question-

able. There is a plethora of evidence suggesting that individuals look for better alternatives

and switch between models. Take economists and data scientists for example. They use

a specific econometric model, estimate the parameters, and make policy recommendations

accordingly. However, they often switch when an alternative model seems to better fit the

data, such as including a set of new explanatory variables in a regression, or accepting the

Natural Rate Hypothesis in place of the Phillips Curve. The philosophy of science also offers

numerous examples of paradigm shifts in scientific advances (Kuhn, 1962). There is evidence

that even non-experts in statistics can have multiple subjective models and switch to an-

other model if necessary. For example, people are influenced by and attracted to different

narratives or political views as they receive more information (Fisher, 1985; Braungart and

Braungart, 1986). They also strive for overcoming their implicit bias through self-reflection

(Wegener and Petty, 1997; Massey and Wu, 2005; Di Stefano, Gino, Pisano, and Staats,

2015).

If decision makers entertain competing models, when should we expect them to keep

their current misspecified model? Which forms of misspecification are more likely to persist?

In other words, when are subjective models robust? This paper proposes a framework of

misspecified Bayesian learning that allows agents to revise their models.

I consider an infinite-period decision problem of a single agent. In each period, the agent

chooses an action and then observes an outcome, the distribution of which is unknown to the

agent and contingent on the action. The agent then obtains a flow payoff jointly determined

by the action and the realized outcome. In contrast to a dogmatic modeler who relies on a

single model, I consider a switcher who switches between models. In particular, she starts

1Examples include: a monopolist trying to estimate the slope of the demand function when the true
slope lies outside of the support of his prior (Nyarko, 1991; Fudenberg, Romanyuk, and Strack, 2017); agents
learning from private signals and other individuals’ actions while neglecting the correlation between the
observed actions (Eyster and Rabin, 2010; Ortoleva and Snowberg, 2015; Bohren, 2016) or overestimating how
similar others’ preferences are to their own (Gagnon-Bartsch, 2017); overconfident agents falsely attributing
low outcomes to an adverse environment (Heidhues, Kőszegi, and Strack, 2018, 2019); a decision maker
imposing false causal interpretations on observed correlations (Spiegler, 2016, 2019, 2020); a gambler who
flips a fair coin mistakenly believing that future tosses must exhibit systematic reversal (Rabin and Vayanos,
2010; He, 2020); individuals narrowly focusing their attention on only a few aspects rather than a complete
state space (Mailath and Samuelson, 2020).
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with an initial model, while simultaneously considering a set of competing models as a po-

tential replacement. The models are parametric: a model, together with a specific parameter

value, corresponds to a particular profile of action-dependent outcome distributions. In each

period, she either keeps the model she used last period or switches to an alternative. The

agent uses the current model to complete two tasks: reasoning and acting. That is, she uses

Bayesian inference to update her belief about its parameters and chooses the action that

maximizes her discounted sum of payoffs given her posterior derived from this model.

The framework clarifies the distinction between learning within a model (updating beliefs

over parameters) and identifying which model to use (model switching or “paradigm shifts”).

In order to have a disciplined way to make decisions, our agent, despite having concerns about

model misspecification, uses an initial subjective model to interpret the world and guide her

actions, until the data reveals to her the superiority of a competing model in describing

the world. When she remains under the same paradigm, she behaves exactly as prescribed

by the theory of subjective probability (Savage, 1972), evaluating the probability of each

(subjective) state of the world using the Bayes rule and behaving in a dynamically consistent

manner. Here, each state corresponds to a parameter value while the potentially incomplete

state space corresponds to a model. The incompleteness of the state space may stem from

the coarseness of human thinking, a constraint on cognitive ability, or simply a lack of

information and knowledge. I capture the conceptual distinction between updating models

and changing models by the different learning rules: while the agent performs Bayesian

learning about the parameters within a model, she switches to a different model only if it

is compelling enough according to a Bayes factor criterion (Kass and Raftery, 1995). The

Bayes factor for a model is the likelihood ratio of outcomes under this model and the model

used in the last period. The agent switches to the competing model that generates the

highest likelihood ratio if this ratio is above an exogenous switching threshold that is larger

than 1 and does not switch if all likelihood ratios are below the threshold.

I develop three different notions of robustness based on the long-term persistence possibil-

ity of models. A model is said to persist against a set of competing models if, when given as

an initial model, the agent eventually adopts it forever with positive probability. A model is

globally robust if for every set of competing models, there exists a prior and a policy for the

model under which this model persists. Global robustness is a good criterion to determine

which forms of misspecification are more likely to persist, because this global notion requires

a positive chance of persistence no matter what competing models are entertained. However,

when the agent has a limited understanding of the world or when the agent is reluctant to

consider significant changes, it makes sense to restrict our attention to competing models

that are close to the initial model, as the agent may only take small steps in her explo-
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ration of new models. In light of this, I propose two notions of local robustness. A model

is unconstrained locally robust if for every set of “neighbor” competing models, there exists

a prior and a policy such that this model persists. Here, models are nearby each other if

they predict sufficiently similar outcome distributions. This notion is unconstrained because

it places no restriction on the similarity of the parametric structures between models. In

contrast, a model is constrained locally robust if it can persist against all nearby competing

models that belong to the same parametric family. For example, consider a monopolist who

is trying to estimate a market demand function that he believes to be linear. An uncon-

strained locally robust model would be able to persist against all nearby demand functions,

potentially complicated and non-linear, as long as they are close to the monopolist’s initial

conjecture. Constrained local robustness, on the other hand, only requires a model to persist

against all nearby linear models, such as a linear demand function with a slightly different

intercept.

Several challenges arise when incorporating a model switching process into a misspecified

learning problem. Since the agent has access to multiple models, we need to keep track

of multiple belief processes. All processes are generated by endogenous data—the agent’s

action in this period induces a posterior that in turn alters her subsequent play. As is

widely recognized in the misspecified learning literature, such belief processes may oscillate

forever. Beyond that, the agent’s best response changes with the current model choice,

further intertwining the learning processes. Consequently, the Bayes factors may fail to

have good convergence properties, making it difficult to assess the long-term performance of

models.

The main results of this paper characterize each notion of robustness. I first provide

a characterization of global robustness (Theorem 1). Notice that a globally robust model

must be able to persist against every correctly specified model. This observation resolves

the aforementioned difficulty. In fact, when the competing model is correctly specified, the

likelihood ratio, as well as all beliefs must converge as an implication of the Martingale

Convergence Theorem (Lemma 1). This allows us to compare the goodness-of-fit of models

only at the limit beliefs. In a self-confirming equilibrium, the agent holds a belief that

exactly matches the objective outcome distribution. A self-confirming equilibrium under

a particular model is p-absorbing if the action of a dogmatic modeler who only uses this

model converges to the support of this self-confirming equilibrium with positive probability.

Lemma 2 shows that if a model persists against some correctly specified model, then there

must exist a p-absorbing self-confirming equilibrium under this model.

Theorem 1 further establishes that the existence of such an equilibrium is not only nec-

essary but also sufficient for global robustness. This equivalence reduces the complicated
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problem of a switcher to the problem of a dogmatic modeler. The intuition behind Theorem

1 is as follows: when the agent starts with a prior that is sufficiently close to an equilibrium

belief, her model almost perfectly fits the observed data and hence she has no reason to

switch, with the p-absorbing condition ensuring that she never deviates from the equilib-

rium with positive probability. Building on existing results from the literature, Corollary 2

shows that a uniformly quasi-strict self-confirming equilibrium is p-absorbing, thus provid-

ing a sufficient condition for global robustness which is straightforward to verify from the

primitives.

I next turn to the characterization of unconstrained local robustness. In principle, the set

of unconstrained locally robust models can be much larger than the set of globally robust

models. However, Theorem 2 reveals that they are actually equivalent. The intuition is

simple: given a non-globally-robust model, there is always scope to improve how well it fits

the data—such improvements can be local and take the form of a convex combination of the

current model and the true data generating process.

Constrained local robustness, on the other hand, is indeed much weaker than robust-

ness and characterized differently. Theorem 3 establishes that a model is constrained locally

robust if there exists a p-absorbing Berk-Nash equilibrium that satisfies two additional prop-

erties. The first property ensures that when the equilibrium is being played, the model can

yield a weakly lower Kullback-Leibler divergence than nearby models from the same para-

metric family. The second is an identification property that guarantees that a nearby model

matching the data equally better—in that they yield the same Kullback-Leibler divergence—

must lead to the same belief over the outcome distributions. These properties are similar to

but weaker than the requirement of a self-confirming equilibrium in the characterization of

global robustness. Provided that the two properties are satisfied, there exists a prior that

sufficiently close to the Berk-Nash equilibrium belief such that, on a positive measure of

paths, the agent never deviates from the equilibrium and thus no switch will be triggered

because the initial model explains the data weakly better than the competing model. The-

orems 4 and 5 provide necessary conditions for constrained local robustness. In particular,

I show that in two special environments, a model is constrained local robustness only if it

gives rise to a Berk-Nash equilibrium that satisfies the first property.

I use these results to study the persistence of misspecification in three applications, all of

which lead to suboptimal behavior. When a worker can attribute his underperformance to

the outside environment, such as the ability of his coworker, his overconfidence is globally

robust and can persist indefinitely. For an investor who systematically underestimates in-

vestment risks, while her model is non-robust due to its wrong prediction about the volatility,

it’s constrained locally robust if she only seeks to match the mean of the return. Finally,
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I consider a monopolist who has a false prior over the market demand function. His mis-

specification is not constrained locally robust since there always exists a demand function

with a slightly different intercept and slope that yields a strictly better fit at all Berk-Nash

equilibria.

The rest of the paper is organized as follows. The next subsection discusses the related

literature. Section 2 sets up the model and introduces the model switching framework.

Section 3 lays out different variations of Berk-Nash equilibria and self-confirming equilibria

that will be useful for the analysis. Section 4 defines and characterizes the three notions

of robustness. Section 5 discusses an extension to a stronger notion of global robustness.

Section 6 concludes.

Related Literature

This paper builds on the literature of learning with subjective models, including Berk (1966),

Easley and Kiefer (1988), Esponda and Pouzo (2016), Bohren and Hauser (2021), Esponda,

Pouzo, and Yamamoto (2019), Fudenberg, Lanzani, and Strack (2021) and Frick, Iijima,

and Ishii (2020), all of which study asymptotic learning outcomes of dogmatic modelers in

relatively general environments. Esponda and Pouzo (2016) first propose the concept of

Berk-Nash equilibrium. Further, Esponda et al. (2019) find general conditions for a single

agent’s action frequency to converge to the Berk-Nash equilibrium using tools from stochas-

tic approximation. Fudenberg et al. (2021) establish that a uniformly strict Berk-Nash

equilibrium is uniformly stable in the sense that starting from any prior that is sufficiently

concentrated on the Kullback-Leibler minimizers, the dogmatic modeler’s action converges

to the equilibrium with arbitrarily high probability. This paper contributes to the literature

by allowing for model switching and proposing various robustness notions for misspecified

models to persist.

This paper is most related to a recent set of papers that explores why certain types of mis-

specification persist. Olea, Ortoleva, Pai, and Prat (2019) characterize the “winner” model

in a contest environment where agents make auction bids based on model-based predictions.

With the amount of data being limited, their focus is the trade-off between overfitting and

underfitting. Cho and Kasa (2015) also study an agent switching between models but assume

a different switching rule. In particular, they assume that the agent always compares her

subjective outcome distribution with the empirical realizations. This contrasts the agent in

my framework who compares her model to a potentially misspecified alternative. Gagnon-

Bartsch, Rabin, and Schwartzstein (2020) study the “attentional stability” of models. They

examine a setting where agents realize their model is misspecified if implausible observations
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emerge but only pay attention to data they deem as relevant given the current model.

Two recent papers approach the problem of which forms of misspecification persist from an

evolutionary perspective. Fudenberg and Lanzani (2020) study the evolution dynamics when

a small share of a large population mutates to enlarge their subjective models at a Berk-Nash

equilibrium. They provide sufficient conditions for a Berk-Nash equilibrium to be robust to

invasion. Different from my framework where switching depends on the relative goodness-

of-fit of models, they assume that subjective models that induce better performing actions

increase their prevalence. He and Libgober (2020) also evaluate competing misspecification

based on their expected objective payoffs but examine strategic games where misspecification

can lead to beneficial wrong beliefs. Relatedly, Frick, Iijima, and Ishii (2021) also study

welfare comparisons of learning biases and find that some biases can outperform Bayesian

updating. They focus on a class of learning biases that lead to correct learning and define

a bias to be better than another when it leads to higher expected objective payoffs in all

decision problems. They characterize this ranking by an efficiency index that quantifies the

speed of learning.

A few other papers entertain the similar idea that people have access to multiple models

and explore its implications. Mullainathan (2002) presents a model of “categorical thinking”

in which people switch between coarse categories and policies discontinuously, resulting in

overreaction to news. Ortoleva (2012) proposes and axiomatically characterizes an amend-

ment to Bayes’ rule that requires the agent to switch to an alternative upon observing

zero-probability events. Karni and Vierø (2013) provide a choice-based decision theory to

model a self-correcting agent who can expand his universe of subjective states. Finally,

Galperti (2019) and Schwartzstein and Sunderam (2019) extend the idea of alterable sub-

jective models to a persuasion setting and study how a principal could persuade an agent to

accept a different worldview.

This paper is also related to the statistics literature in model selection. Statisticians

have been interested in the best practices of selecting among models and have developed a

number of criteria that differ in their cost of computation and penalty for overfitting, such as

Bayes factor, Akaike information criterion (AIC), Bayesian information criterion (BIC), and

likelihood-ratio test (LR test). The machine learning community favors cross-validation due

to its flexibility and ease of use. All of these criteria are shown to be asymptotically correct

under different assumptions (Chernoff, 1954; Akaike, 1974; Stone, 1977; Schwarz et al., 1978;

Kass and Raftery, 1995; Konishi and Kitagawa, 2008). This paper focuses on the Bayes

factor rule and contributes to the literature by assuming an endogenous data-generating

process. I will come back to the comparison of different model selection rules in Section 2.5.
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2 Framework

2.1 Objective Environment

A single agent with discount factor δ < 1 makes decisions in an infinitely repeated problem.

In each period t = 0, 1, 2, ..., the agent chooses an action at from a finite action set A and

then observes an outcome yt from Y , with Y being either Rn or a compact subset of Rn for

some positive integer n. Conditional on at, outcome yt is drawn according to probability

measure Q∗ (·|at) ∈ ∆Y . This true data generating process (henceforth true DGP) remains

fixed throughout. At the end of period t, she obtains a flow payoff ut := u (at, yt) ∈ R.

Denote the observable history in the beginning of period t by ht := (aτ , yτ )
t−1
τ=0 and the set

of all such histories by Ht = (A× Y)t.

Assumption 1. (i) For all a ∈ A, Q∗ (·|a) is absolutely continuous w.r.t. a common

measure ν, and the Radon-Nikodym derivative q∗ (·|a) is positive; (ii) For all a ∈ A, u (a, ·) ∈
L1 (Y ,R, Q∗ (·|a)).2

The above assumptions are standard in the literature. In the special case where Y is

discrete, q∗ (·|a) is simply the probability mass function; when Y is a continuum, q∗ (·|a) is

the probability density function. Assumption 1(ii) ensures that the agent’s expected period-t

payoff, ut :=
∫
Y u (at, y) q∗ (y|at) ν (dy), is well-defined.

2.2 Subjective Models

The agent does not know the true DGP; instead, she turns to subjective models to learn

about it. A subjective model, indexed by θ, consists of two components: (1) a subjective

parameter set Ωθ and (2) a profile of conditional signal distributions, Qθ : A × Ωθ → ∆Y .

One can capture any parameter uncertainty by appropriately specifying a non-singleton Ωθ.

I restrict attention to subjective models that satisfy the following assumption.

Assumption 2. For all a ∈ A: (i) Ωθ is a finite subset of a Euclidean space; (ii) for all

ω ∈ Ωθ, Qθ (·|a, ω) is absolutely continuous w.r.t. the measure ν, and the Radon-Nikodym

derivative qθ (·|a, ω) is positive; (iii) for all ω ∈ Ωθ, u (a, ·) ∈ L1
(
Y ,R, Qθ (·|a, ω)

)
; (iv) for

all ω ∈ Ωθ, there exists ga ∈ L2 (Y ,R, ν) such that
∣∣∣ln q∗(·|a)

qθ(·|a,ω)

∣∣∣ ≤ ga (·) a.s.-Q∗ (·|a).

Assumption 2(i) requires that the parameter space is finite. Assumptions 2(ii) and 2(iii)

are analogous to Assumption 1. They ensure that the subjective models do not rule out

events that occur with positive probability under the true DGP. Assumption 2(iv) guarantees

2Lp (Y,R, ν) denotes the space of all functions g : Y → R s.t.
∫
|g (y)|p ν (dy) <∞.
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that the distance between the predictions of the model and the true DGP can be properly

quantified so that we can establish a law of large numbers.

Let Θ be the set of all models θ that satisfy Assumption 2. Since each element of

Θ is a finite vector of conditional distributions, we have Θ ⊂ ∪∞z=1 (∆Y)|A|z, where z

represents the size of the parameter set. A model θ is said to be correctly specified if

q∗ (·|a) ≡ qθ (·|a, ω) , ∀a ∈ A for some ω ∈ Ωθ, i.e. the profile of conditional distributions

under θ includes the true DGP, and misspecified otherwise.

2.3 The Switcher’s Problem

The agent has access to a finite set of subjective models, Θ† ⊂ Θ. It is often assumed in

the misspecified learning literature that the decision maker is a dogmatic modeler who has a

single subjective model, denoted by Θ† = {θ}. Starting with a full-support prior π̃θ0 ∈ ∆Ωθ,

the dogmatic modeler updates her belief based on the history, i.e. π̃θt = Bθ
(
at−1, yt−1, π̃

θ
t−1

)
,

where Bθ : A × Y × ∆Ωθ → ∆Ωθ is the Bayesian operator. The dogmatic modeler then

chooses an action to maximize the expected sum of discounted payoffs.

The key departure I take here is to focus on a switcher who entertains at least two

subjective models. She assigns to each θ ∈ Θ† a full-support prior πθ0 ∈ ∆Ωθ. The agent

starts by adopting the initial model θ0 ∈ Θ†, while evaluating a finite set of competing models

Θc := Θ†\ {θ0}. Denote as mt ∈ Θ† the model choice in period t, where m0 = θ0. I now

describe the events happening in period t in chronological order.

Model switching. The agent employs a Bayes factor rule to determine mt. Fix a constant

α > 1 that I call the switching threshold.3 At the beginning of each period t ≥ 1, the agent

calculates a vector of Bayes factors λt =
(
λθt
)
θ∈Θ†

, where

λθt = lθt /l
mt−1

t , (1)

and

lθt =
∑
ω∈Ωθ

πθ0 (ω)
t−1∏
τ=0

qθ (yτ |aτ , ω) . (2)

That is, λθt is the ratio of the likelihood of model θ to the likelihood of the last period’s

model choice mt−1. Let θ∗ := arg maxθ∈Θ† λ
θ
t . If λθ

∗
t > α, then a switch to θ∗ is triggered, i.e.

mt = θ∗; if λθ
∗
t ≤ α, then the agent does not switch, mt = mt−1. The switching threshold

does not change with the direction of switching.4

3Our analysis in Section 4 goes through if I alternatively assume that the agent repeatedly draws α from
a distribution G with supp (G) ⊂ (1,∞).

4This symmetry in the switching threshold is made to simplify notation. All results remain unchanged if
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Essentially, the agent is conducting a thought experiment: had I adopted an alternative

model, would it better explain the observations? As α becomes larger, switching requires

stronger evidence. Thus, α can be seen as a measure of the agent’s “stubbornness”, status

quo bias, or a reduced-form indicator of the cost of shifting the paradigm. I discuss the role

of a fixed α in Section 2.5.

Learning. After pinning down the model choice, the agent updates her belief under mt

using the full history. For each θ ∈ Θ†, I recursively define a belief process,

πθt = Bθ(at−1, yt−1, π
θ
t−1). (3)

However, note that the switcher need not keep track of her posteriors for all models in all

periods. Rather, she computes a posterior only for the model that is currently adopted, πmtt ,

because this is all she needs to make decisions.

Actions. The agent maximizes the sum of discounted expected payoff under her current

model mt. Conditional on adopting θ and holding a belief πθ ∈ ∆Ωθ, she solves the following

dynamic programming problem,

U θ
(
πθ
)

= max
a∈A

∑
ω∈Ωθ

π (ω)

∫
y∈Y

[
u (a, y) + δU θ

(
πθ′
)]
qθ (y|a, ω) v (dy) , (4)

where πθ′ = Bθ
(
a, y, πθ

)
. Denote the solution to the above problem as Aθ : ∆Ωθ ⇒ A.

The agent plays according to a pure optimal policy aθ : ∆Ωθ → A such that aθ
(
πθ
)
∈

Aθ
(
πθ
)
,∀πθ ∈ ∆Ωθ. For convenience, let Aθm : ∆Ωθ ⇒ A denote the set of myopically

optimal actions, which is the solution to (4) when δ = 0. Notice that while experimentation

within a model is allowed, the agent does not actively experiment which model is better. I

discuss this assumption in Section 2.5.

The underlying probability space (Y,F ,P) is constructed as follows. The sample space

is Y := (Y∞)A, each element of which is an infinite sequence of outcome realizations

(ya,0, ya,1, ...)a∈A, where ya,τ denotes the outcome when the agent takes a ∈ A in period

τ . Denote by P the probability measure induced by independent draws from q∗ and de-

note by F the product sigma algebra. Let h := (aτ , yτ )
∞
τ=0 denote an infinite history and

H := (A× Y)∞ be the set of infinite histories. Together with the switching threshold α,

the set of models Θ†, the initial model θ0, the priors and policies
(
πθ0, a

θ
0

)
θ∈Θ†

, P induces a

probability measure PS on the infinite histories of a switcher. Meanwhile, P and
(
πθ0, a

θ
0

)
induce a probability measure PB on the histories of the dogmatic modeler who believes in θ.

the agent uses different thresholds for different switches.
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2.4 Persistence of Models

Fixing an initial model and a set of competing models, the sequence of adopted models

(mt) is a stochastic process that can oscillate forever or converge to one model, and this

limit behavior can be path-dependent. We are interested in the situation where the agent

eventually settles down with the initial model. For convenience, given any set of models

Θ′ ⊂ Θ, I write the vector of priors
(
πθ0
)
θ∈Θ′

as πΘ′
0 and the vector of policies

(
aθ
)
θ∈Θ′

as

aΘ′ .

Definition 1. Model θ persists against Θc = Θ†\ {θ} (or persists in Θ†) at πΘ†
0 and aΘ†

if, given a switcher who is endowed with Θ†, πΘ†
0 , aΘ† , and uses θ as the initial model, the

model choice mt converges to θ with positive probability.

To ease exposition, I will say that θ persists against θc if θ persists against Θc = {θc}.5

Persistence will play a crucial role in our definition of model robustness. If θ does not

persist against Θc, at least one different model must be adopted by the switcher infinitely

many times. Consequently, the long-term beliefs and behavior of the switcher can be quite

different from the predictions of an analyst who only knows the initial model θ and the

true DGP. In later sections, I will focus on the following question: what properties should

a model possess so that it persists against a feasible set of competing models? The answer

to that question depends on not only the set of competing models but also the primitives

of the agent, including the prior and policy adopted for each model. Hence, by varying

the restrictions imposed on the set of competing models and the primitives, we can obtain

different notions of robustness.

2.5 Discussion of Modeling Choices

Before proceeding to the analysis, I briefly comment on several important assumptions of

this framework.

Sticky switching. As has been discussed in the introduction, models and parameters

are conceptually different, despite their similar roles in determining the outcome distribu-

tion. For example, for the theory of classical mechanics, while the gravitational constant is

clearly a parameter to be estimated, quantum mechanics is another model that builds on

fundamentally different assumptions and has different parameters to estimate; for a deeply

overconfident agent, the ability of his coworker is a parameter, while correcting his self-

perception is equivalent to shifting to a new model. Model switching features stickiness,

5If Θ† is not a singleton, then persistence against Θ† in general does not imply persistence against each
model in Θ†. See Appendix C for an example.
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potentially due to the physical or mental cost of discovering and shifting paradigms. Thus,

a switch only occurs when evidence reveals that the alternative is sufficiently better, which

is captured by the assumption that α > 1.

No experimentation across models. The agent is myopic when it comes to model

switching—she chooses her best response presuming that no switch will happen in the fu-

ture. Thus, she does not actively experiment which model is better, but passively switches

according to the Bayes factor rule. Again, this highlights the stickiness of switching models

as opposed to the smoothness of Bayesian updating. This assumption is most reasonable

when the environment is complex and switching happens rarely (high switching threshold).

For instance, consider a scientist who has a model in Newtonian mechanics but is aware of the

existence of general relativity. Running experiments to calibrate his model is hard enough,

so he may not be spending additional resources to actively experiment and distinguish the

two models. However, he will indeed switch to a different model if his experiments turn

out to suggest that general relativity is important. Of course, this can be true for ordinary

people as well—think of a flat-earth believer who does not actively test if his belief is wrong,

but may change his mind after hearing from an old friend.

Comparison with other switching rules. The Bayes factor rule enjoys a few advan-

tages over other common criteria for model selection. First, it has a strong “Bayesian” flavor

since the agent does nothing more than keeping track of the relative likelihood ratio of mod-

els. Hence, the agent maintains, to some extent, conceptual consistency in belief updating

and model switching. Second, Bayes factor is flexible in that it could be easily formulated for

any model and any outcome structure without specifying details such as the dimensionality

of parameter space, while this information is vital for AIC and BIC. Lastly, Bayes factor

automatically includes a penalty for including too much structure into the model and thus

helps prevent overfitting. This is manifested in the comparison with the LR test, which

evaluates the relative likelihood ratio at the maximum likelihood estimate of the parameter.

This gives an advantage to models that fit better in the short term but are more complicated.

3 Berk-Nash Equilibria

Our main question concerns when a model θ persists against a set of competing models

Θc. By definition, if θ persists against Θc, then there exists a first period T such that,

with positive probability, the switcher adopts θ and never switches to other models in Θc

thereafter. From there, her behavior will be identical to a dogmatic modeler who shares the

same policy and same posterior for θ at the onset of period T . Hence, whether the switcher
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can hold on to θ is closely related to how a dogmatic modeler behaves.

Characterizing the asymptotic behavior of a dogmatic modeler is an important question

of the misspecified learning literature. A key finding of the literature is that whenever the

modeler’s behavior stabilizes, the limit behavior must constitute a Berk-Nash equilibrium

(Esponda and Pouzo, 2016; Esponda et al., 2019). I now briefly introduce necessary notation

to define the Berk-Nash equilibrium and related concepts, including the self-confirming equi-

librium (Fudenberg and Levine, 1993) and some refinements. Familiar readers may proceed

directly to Section 4.

Denote the Kullback-Leibler divergence (henceforth, KL divergence) of a density q from

another density q′ as DKL (q ‖ q′), where

DKL (q ‖ q′) :=

∫
Y
q ln (q/q′) ν (dy) . (5)

The KL divergence of q from q′ is an asymmetric non-negative distance measure between q

and q′, which is minimized to zero if and only if q and q′ coincide almost everywhere. With

a slight abuse of notation, given any strategy σ, let

Ωθ (σ) := arg min
ω′∈Ωθ

∑
A

σ (a)DKL

(
q∗ (·|a) ‖ qθ (·|a, ω′)

)
. (6)

That is, Ωθ (σ) ⊆ Ωθ identifies the KL minimizers at σ under θ, i.e. the parameters in Ωθ

which yield the closest match to the true DGP when the agent plays σ.

Definition 2. Strategy σ ∈ ∆A is a Berk-Nash equilibrium (BN-E) under θ if there exists

a belief π ∈ ∆Ωθ (σ) with σ ∈ ∆Aθm (π). A BN-E σ is

(i) quasi-strict if there exists a belief π ∈ ∆Ωθ (σ) with supp (σ) = Aθm (π).

(ii) uniformly quasi-strict if supp (σ) = Aθm (π) for every belief π ∈ ∆Ωθ (σ).

(iii) a self-confirming equilibrium (SCE) if there exists a belief π ∈ ∆Ωθ (σ) with σ ∈
∆Aθm (π) and q∗ (·|a) ≡ qθ (·|a, ω) ,∀ω ∈ supp (π) ,∀a ∈ supp (σ).

A Berk-Nash equilibrium requires myopic optimality against a belief π that takes support

on the KL minimizers; both σ and π could be non-degenerate. Quasi-strictness further

requires that σ takes support on all myopically optimal actions at π. A strict BN-E is

a pure quasi-strict BN-E. Uniformly quasi-strictness is stronger than quasi-strictness for it

additionally requires that the set of myopically optimal actions remains unchanged as long as

the belief takes support on the KL minimizers at σ. Further, a BN-E is uniformly strict if it
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is pure and uniformly quasi-strict.6 Finally, a self-confirming equilibrium requires that each

parameter in the support of π induces the same outcome distribution as the true DGP does

at each action a that is played with positive probability. A quasi-strict SCE and a uniformly

quasi-strict SCE can be defined analogously. While every subjective model admits at least

one Berk-Nash equilibria (Esponda and Pouzo, 2016), the existence of a self-confirming

equilibrium is not guaranteed.

4 Robustness

4.1 Global Robustness

Our notions of robustness are defined based on the long-term persistence of a model. I

first define global robustness, which requires a model to persist against all possible sets of

competing models.

Definition 3 (Global robustness). A model θ is globally robust if for every finite Θc ⊂ Θ,

there exists a full-support πθ0 and an optimal aθ, under which θ persists against Θc at all

full-support πΘc

0 and optimal aΘc .

The interpretation of global robustness is as follows. Global robustness guarantees that

θ can persist no matter what alternative models it is compared against, as long as the agent

starts with a proper choice of prior and policy for θ. Note that this choice can vary with the

set of competing models. Conversely, if θ is not robust, then one can find a set of competing

models associated with some prior and some policy so that at least one competing model is

almost surely (a.s.) adopted infinitely often, regardless of the prior and policy assigned to θ.

Given a particular Θc, figuring out which model persists against Θc can be quite challeng-

ing. However, globally robust models are not as hard to characterize, thanks to the require-

ment that they can persist against every possible Θc ⊂ Θ. In particular, let Θc = {θc} and

assume for now that θc is correctly specified. Since θc is correctly specified, the likelihood

ratio of θ to θc, or lθt /l
θc

t , is a martingale that a.s. converges.7 Hence, on paths where θ

is eventually forever adopted, the inverse likelihood ratio lθ
c

t /l
θ
t—which eventually equals

λθ
c

t —a.s. converges to some value below α. Furthermore, decomposing the posteriors πθt and

πθ
c

t by a few different likelihood ratios, I show that πθt and πθ
c

t also a.s. converge on those

paths. We thus obtain the following lemma.

6Fudenberg et al. (2021) first define a uniformly strict BN-E.
7See Lemma 3 in Appendix A.
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Lemma 1. Suppose a model θ ∈ Θ persists against a correctly specified model θc ∈ Θ at

some full-support πθ0, π
θc

0 and optimal aθ, aθ
c
. Then on paths where mt converges to θ, almost

surely, lθ
c

t /l
θ
t converges to a random variable ι ≤ α, πθt converges to a random variable

πθ∞ ∈ ∆Ωθ, and πθ
c

t converges to a random variable πθ
c

∞ ∈ ∆Ωθc.

All proofs of the main results are in Appendix B. An implication of Lemma 1 is that

θ must be able to perfectly predict the distribution of outcomes in the long term. This

observation follows from the fact that with a correctly specified model, a learner a.s. assigns

probability close to 1 to the true outcome distribution in the limit (Easley and Kiefer, 1988).

Suppose θc persistently outperforms θ in explaining the observed outcomes, then by the Law

of Large Numbers, the likelihood ratio lθ
c

t /l
θ
t a.s. grows to infinity. Hence, πθt must also assign

probability close to 1 to the true outcome distribution in the limit on a positive measure of

paths.

Since data is endogenously generated, this further implies that the agent ends up playing

a self-confirming equilibrium with positive probability. More precisely, since lθ
c

t /l
θ
t would

perpetually fluctuate if the agent plays non-equilibrium actions infinitely often, the agent

should end up playing only the equilibrium actions with positive probability. Our next

definition formalizes this property. On paths where θ is adopted forever, a switcher eventually

behaves no differently than a dogmatic modeler. This condition can therefore be cast as a

property of the dogmatic modeler.8

Definition 4. A BN-E σ ∈ ∆A under θ is said to be absorbing with positive probability , or

p-absorbing if under some full-support πθ0 and optimal aθ, there exists T ≥ 0 such that, with

positive probability, a dogmatic modeler with Θ† = {θ} only plays actions in supp (σ) after

period T .

That a BN-E with support A ⊂ A is p-absorbing does not imply that the dogmatic

modeler’s action process converges to a single action in A or her action frequency converges

to a certain mixed strategy with positive probability.9 Rather, it allows for non-convergent

behavior within A but rules out the scenario where the modeler a.s. plays actions outside A

infinitely often. I conclude our analysis for the case of a correctly specified competing model

with the following lemma.

Lemma 2. Suppose a model θ ∈ Θ persists against a correctly specified model θc ∈ Θ at

some full-support πθ0, π
θc

0 and optimal aθ, aθ
c
. Then there exists a p-absorbing SCE under θ.

8I assume the dogmatic modeler and the switcher have the same discount factor throughout.
9For example, this is weaker than the stability notion proposed by Fudenberg et al. (2021). They define

that a pure BN-E a∗ under θ is stable if for every κ ∈ (0, 1), there exists a belief π ∈ ∆Ωθ and some ε > 0 such
that for any prior πθ0 ∈ Bε (π), the dogmatic modeler’s action sequence at converges to a∗ with probability
larger than κ.
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It now becomes clear that persisting against a correctly specified model conveys abundant

information about θ. Perhaps surprisingly, this alone is powerful enough to guarantee that

the model also persists against every other finite set of competing models. Theorem 1 shows

that the existence of a p-absorbing SCE is not only necessary but also sufficient for global

robustness.

Theorem 1. A model θ ∈ Θ is globally robust if and only if there exists a p-absorbing SCE

under θ.

The seemingly demanding notion of global robustness amounts to the requirement that

θ persists against one arbitrary correctly specified model. For instance, provided that θ

can beat a competing model that assigns a tiny probability to the true DGP, it also has the

potential to beat one that assigns probability 1 to the true DGP. Conversely, models that fail

to be globally robust will not persist in the long term as long as the agent evaluates some

correctly specified model. More importantly, Theorem 1 reveals the equivalence between

global robustness and the existence of a p-absorbing self-confirming equilibrium under θ, a

property that can be further characterized using tools from the existing literature since it

only concerns the problem of a dogmatic modeler. It thus provides a foundation for the

persistence of certain types of misspecification.

I now briefly outline why the existence of a p-absorbing SCE implies global robustness.

Suppose σ is a p-absorbing SCE under θ, then under some prior πθ0 and policy aθ, with

positive probability, a dogmatic modeler’s action converges to the support of σ and, without

loss of generality, each action in the support of σ is played infinitely often. When such

convergence occurs, the dogmatic modeler’s belief a.s. converges and the limit belief assigns

probability 1 to the KL minimizers Ωθ (σ). Since σ is self-confirming, all KL minimizers

predict an outcome distribution that is identical to the true DGP at all actions in the

support of σ. Since no models can consistently outperform the true DGP in matching the

data, if we evaluate the fitness of competing models on these histories, the likelihood ratio

of θ to each competing model θc, lθt /l
θc

t , is asymptotically bounded below by the probability

that πθ0 assigns to the KL minimizers Ωθ (σ). Taken together, these observations imply that

we can find a new prior π̂θ0 that is sufficiently concentrated on Ωθ (σ), such that on a positive

measure of histories Ĥ, this new prior induces the dogmatic modeler to only play actions

in supp (σ) and every Bayes factor computed from Ĥ never exceeds α. It follows that a

switcher and a dogmatic modeler must behave identically on Ĥ, since no switch would ever

happen.10 Therefore, if the switcher starts with the same prior π̂θ0 and the same policy aθ,

it is a positive-probability event that she will only play actions from supp (σ) and adopt θ

10This is akin to the coupling argument commonly used in probability theory.
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forever.

An important feature of Theorem 1 is that the characterization of global robustness does

not depend on the switching threshold α. However, the proof of Theorem 1 shows that α

is indeed relevant to the choice of the prior. As α decreases, model switching becomes less

sticky. Thus, the agent’s prior needs to be more entrenched and concentrated around KL

minimizers such that she finds her initial model good enough compared to any competing

model.

An immediate corollary of Lemma 2 and Theorem 1 is that any correctly specified model

is globally robust since a model must persist against itself.11

Corollary 1. Every correctly specified model is globally robust.

Corollary 2 takes a different route and provides a sufficient condition for an SCE to be

p-absorbing, which can be easily verified from the primitives. In contrast to Corollary 1, this

corollary shows that misspecified models can be globally robust.

Corollary 2. A model θ ∈ Θ is globally robust if there exists a uniformly quasi-strict SCE

under θ.

The proof of Corollary 2 is similar to Theorem 2 in Fudenberg et al. (2021) and Theorem

1 in Frick et al. (2020). Suppose we have a uniformly quasi-strict SCE σ with a supporting

belief π ∈ ∆Ωθ. First, since σ maximizes the flow payoff against every ω ∈ supp (π),

there is no experimentation incentive to distinguish parameters in supp (π); thus, it must

be that the set of dynamically optimal actions at π coincides with the myopically optimal

actions. Then by the upper-hemicontinuity of Aθ, we can find a small open ball around

π, denoted by Bε (π) ⊂ ∆Ωθ, such that at any belief π′ ∈ Bε (π), the optimal action(s)

Aθ (π′) are contained in the support of σ. Finally, since the equilibrium is self-confirming,

we invoke Ville’s maximal inequality for supermartingales (Ville, 1939) to show that as long

as a dogmatic modeler’s prior is close enough to π, with positive probability, her posterior

never leaves the neighborhood Bε (π) and thus she ends up always playing actions in supp (σ).

Example 1 demonstrates how overconfidence in one’s ability (Heidhues et al., 2019) can

give rise to a globally robust misspecified model.

Example 1 (Overconfidence). Consider a discrete version of Example 2 in Heidhues et al.

(2019). A worker chooses a level of costly effort each period from A = {0, 1, 2} and observes

a payoff of u (at, yt) = yt. The true DGP determines the output, yt = (at + b∗)ω∗− .5a2
t +ηt,

where b∗ = 1 is his true ability level, ω∗ = 2 is an environment fundamental that determines

11Notice that the likelihood ratio between one model and itself is always 1.
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the return to effort, and ηt is a zero-mean random noise distributed according to f . The

efficient effort level is a∗ = 2. The worker is initially overconfident in that he believes his

ability is given by b̃ = 3 > b∗. He is unsure of the return to effort and needs to learn

about it over time. This is reflected from his initial subjective model θ, in which he treats

the return to effort as a parameter to be estimated: according to θ, the output is given by

yt =
(
at + b̃

)
ω − .5a2

t + ηt, where ω is an element of a finite parameter set Ωθ = {1, 2} and

ηt is distributed according to f .

It can be readily verified that there exists a unique Berk-Nash equilibrium under θ, in

which the worker chooses ã = 1 and believes in ω̃ = 1; due to overconfidence, he attributes

his underperformance to a bad environment and exerts lower effort in response. This BN-E

is also a uniformly quasi-strict SCE. Thus, θ must be globally robust. The interpretation

of this result is as follows. Suppose the worker has had a performance review and starts

to evaluate a competing model θc that is correctly specified about the ability. That is, θc

predicts that yt = (at + b∗)ω − .5a2
t + ηt, where Ωθc = Ωθ = {1, 2}. Nevertheless, it turns

out that this competing model does not appear a lot more compelling when the worker

keeps exerting low effort and has a prior πθ0 that is sufficiently concentrated on ω̃ = 1. As

a consequence, the worker, who prefers the status quo, can be perpetually trapped in the

inefficient state of being overconfident and choosing low effort.

4.2 Unconstrained Local Robustness

It may be implausible for the agent to evaluate a correctly specified model or a competing

model that considerably differs from the initial model, especially when the environment

is complex or when the agent is only willing to consider small changes. Although global

robustness has a clean characterization, global robustness may not be the best criterion

under those circumstances to evaluate if some form of misspecification is likely to persist. A

natural question is then whether a model persists against neighbor models. When the answer

is no, then such a model cannot be adopted forever even when the agent evaluates slightly

different models. By contrast, if the answer is yes, then this model can persist whenever the

switcher only takes small steps. Following this line of thought, I develop a weaker robustness

property, local robustness.

First, I formalize what qualifies as a neighbor model. In Sections 4.2 and 4.3, I probe

into two different approaches to defining neighbor models, non-parametric and parametric,

and show that they give rise to two distinct notions of local robustness. Since every model

consists of nothing more than a profile of action-contingent outcome distributions, a direct

measure of proximity of models is the distance between the sets of distributions. In this
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subsection, I develop a notion of local robustness based on this measure, which is non-

parametric, and therefore, unconstrained. In contrast, in the next subsection, I introduce a

parametric approach that places constraints on the structure of neighbor models.

Consider two action-contingent outcome distributions Q and Q′, both of which are ele-

ments of (∆Y)A. I define their distance as the maximum Prokhorov distance across actions,

d (Q,Q′) := max
a∈A

dP (Q,Q′) , (7)

where

dP (Q,Q′) = inf {ε > 0|Qa (Y ) ≤ Qa (Bε (Y )) + ε for all Y ⊂ Y} (8)

denotes the Prokhorov metric. For any set of action-contingent outcome distributions, Q ⊆
(∆Y)A, define Qε :=

{
Q′ ∈ (∆Y)A : ∃Q ∈ Q, s.t. d (Q,Q′) ≤ ε

}
, which is the ε-ball around

Q.

Now we are ready to define neighbor models. Let Qθ,ω :=
{
Qθ (·|a, ω)

}
a∈A denote the

action-contingent outcome distribution induced by ω ∈ Ωθ under model θ, and let Qθ :={
Qθ,ω

}
ω∈Ωθ

denote all distributions in the support of θ. Define the ε-neighborhood of θ as

Nε (θ) :=
{
θ′ ∈ Θ : dH

(
Qθ,Qθ′

)
≤ ε
}
, (9)

where

dH

(
Qθ,Qθ′

)
:= max

{
max
ω∈Ωθ

min
ω′∈Ωθ′

d
(
Qθ,ω, Qθ′,ω′

)
, max
ω′∈Ωθ′

min
ω∈Ωθ

d
(
Qθ,ω, Qθ′,ω′

)}
(10)

denotes the Hausdorff metric. Notice in particular there is no restriction relating the para-

metric family of θ with θ′. I now define unconstrained local robustness.

Definition 5. A model θ ∈ Θ is unconstrained locally robust if there exists some ε > 0, such

that for every finite Θc ⊂ Nε (θ), there exists a full-support πθ0 and an optimal aθ, under

which θ persists against Θc at all full-support πΘc

0 and optimal aΘc .

The definition of local robustness seems much weaker than global robustness. It only

requires the model to be able to persist against neighbor models. When θ is misspecified,

a sufficiently nearby model is necessarily also misspecified. This prevents us from invoking

Lemmas 1 and 2 and inferring that a p-absorbing SCE must exist. However, Theorem 2

shows that these two notions of robustness point to the same set of subjective models.

Theorem 2. Unconstrained local robustness is equivalent to global robustness.

18



The idea of Theorem 2 is quite simple. Given any unconstrained locally robust model θ,

we could construct a neighbor competing model θc with the same parameter set and the same

prior but potentially different outcome distributions, such that each parameter corresponds

to a distribution that is a convex combination of the true DGP and the corresponding

distribution under θ. Then the likelihood ratio of θc to θ would also be a linear combination

of 1 and the likelihood ratio of the true DGP to θ. Hence, θ persists against θc only if θ also

persists against the true DGP, which makes it globally robust.

Theorem 2 also provides a new perspective for understanding global robustness. If model

θ fails to be globally robust, the switcher need not go far to find an attractive alternative—

taking small but undirected steps is as powerful as taking big steps.

4.3 Constrained Local Robustness

The notion of local robustness introduced in the previous section has not restricted the nature

of models that are being compared by the switcher. But in many cases when individuals are

evaluating competing models, they are perturbing their initial model while maintaining the

same parametric structure. I now take a parametric approach by restricting attention to a

profile of conditional outcome densities {p (·|a, ω)}a∈A,ω∈Ωp that are uniformly continuous in

ω ∈ Ωp ⊆ Rd for all a ∈ A, where Ωp is the parameter set associated with p.

Definition 6. The p-family of models is the set Θp ⊂ Θ such that

Θp := {θ ∈ Θ : qθ (·|a, ω) ≡ p (·|a, ω) for all ω ∈ Ωθ ⊆ Ωp and all a ∈ A}. (11)

Two models θ and θ′ that belong to the same family Θp share the same mapping from

parameters to outcome distributions but differ in their parameter sets. We can then con-

veniently measure their distance by the Hausdorff distance between Ωθ and Ωθ′ . Formally,

define an ε-neighborhood of θ in Θp as

Np
ε (θ) :=

{
θ′ ∈ Θp : dH

(
Ωθ,Ωθ′

)
≤ ε
}
, (12)

where dH
(
Ωθ,Ωθ′

)
= max

{
maxω∈Ωθ minω′∈Ωθ′ ‖ω − ω′‖ ,maxω′∈Ωθ′ minω∈Ωθ ‖ω − ω′‖

}
. Now

we can define constrained local robustness.

Definition 7. A model θ ∈ Θp is p-constrained locally robust if there exists some ε > 0, such

that for every finite Θc ⊂ Np
ε (θ), there exists a full-support πθ0 and an optimal aθ, under

which θ persists against Θc at all full-support πΘc

0 and optimal aΘc .
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The notion of p-constrained local robustness requires a model to be able to persist against

all nearby models within the p-family. Below I present two examples that fit into the para-

metric setting.

Example 2 (Underestimation of financial risks). The agent is an investor who chooses her

investment level at ∈ A = {1, 2}. In each period, she obtains a flow utility of u (at, yt) =

1 − e−yt , where yt ∈ Y = R is the investment return. Notice that the agent is risk-averse

as her utility is concave in yt. When the investor chooses at, the true return is given by

yt = 2at − 1
2
a2
t + ξt, where ξt is a zero-mean normally distributed variable with variance at,

i.e. ξt ∼ N (0, at). Playing a higher action not only changes the mean of the return, but

also increases its variance. The agent initially posits that y = ω1at − 1
2
a2
t + ξt, where ω1 is

an element of Ωθ = {1, 2} and ξt ∼ N (0, v) for some constant v > 0. That is, the investor

neglects how the investment level affects her risk exposure.

There are different ways to embed θ into a parametric family. First, let p (·|a, ω1) be

the same normal density as the one predicted by ω1 under θ, and let Ωp = R+. Then by

evaluating a neighbor model in Θp, the investor effectively considers a different expected

return function. Second, whereas it seems that the parameter space is one-dimensional, we

can augment it by adding a second dimension that parameterizes the variance of ξ. This

augmentation leads to a two-dimensional parameter space, Ωθ′ = {1, 2}×{v}. Let p′ (·|a, ω)

be the normal density function associated with mean ω1a − 1
2
a2 and variance ω2, and let

the corresponding parameter space be Ωp′ = R2
+. The augmented model θ′ belongs to the

p′-family. Consider a competing model θc ∈ Θp′ with Ωθc = {1, 2}× {v + ε}, whose distance

from θ′ is exactly ε. Let Θc = {θc}. By evaluating Θc, the investor is assessing whether

the variance takes a different value; however, she still fails to realize its dependence on her

investment level.

Example 3 (Monopolist with a misspecified prior (Nyarko, 1991)). The agent is a monop-

olist who chooses a price at ∈ {2, 10} each period and observes the market demand yt ∈ R
each period. The true DGP is described by yt = 40 − 5at + ηt, where ηt is a zero-mean

random noise i.i.d. distributed according to density f . The monopolist obtains a flow payoff

of u (at, yt) = atyt. His initial subjective model θ belongs to the p-family, where p predicts

that yt = ω1−ω2at+ηt, where (ω1, ω2) ∈ Ωp = R2. The parameter space Ωθ is a finite subset

of [12, 32] × [1, 3]. Notice that θ is misspecified as the monopolist systematically underesti-

mates both the intercept and the slope of the demand function. Let Θc = {θc}, where the

competing model θc belongs to the same family Θp but has an expanded parameter space. In

particular, let Ωθc = Ωθ ∪
{
ω′ ∈ Ωp : ω = ω + (ε, ε) for some ω ∈ Ωθ

}
for some small ε > 0.

That is, the monopolist now evaluates a possibility that the parameter may take slightly

higher values. It is straightforward to verify that Θc ⊂ Np
ε (θ).
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4.3.1 Sufficient Conditions

In this section, I provide sufficient conditions for p-constrained local robustness. Several com-

plicating issues arise as a result of the constraints. First of all, similar to the unconstrained

local robustness case, models neighboring a misspecified model must also be misspecified,

preventing us from using Lemma 2. Moreover, because of the additional constraints over

the parametric structure, it is infeasible to perturb the predictions of model θ unanimously

towards the direction of the true DGP. Hence, the set of local robust models can be much

larger than the set of globally robust models.

There seems to be an easy fix—similar to Theorem 1, we only need to verify if there exists

a p-absorbing Berk-Nash equilibrium σ under θ such that when the agent plays according

to σ, no neighbor model is expected to fit the data strictly better than θ. This would be

satisfied if all KL minimizers Ωθ (σ) also locally minimize the KL divergence in the expanded

domain Ωp. Given a family of densities p, define a function Kp : ∆A× Ωp → R, where

Kp (σ, ω) :=
∑
A

σ (a)DKL (q∗ (·|a) ‖ p (·|a, ω)) . (13)

That is, Kp (σ, ω) represents the σ-weighted KL divergence between the outcome distribution

predicted by ω and the true DGP. I now define the desired property.

Definition 8. Model θ is locally KL-minimizing at σ w.r.t. Ωp if there exists some η > 0

such that for all ω ∈ Ωθ (σ) and ω′ ∈ Bη

(
Ωθ (σ)

)
∩ Ωp, we have Kp (σ, ω) ≤ Kp (σ, ω′).

However, it turns out that we also need a local identification property, as defined below.

Definition 9. Model θ is locally identified at σ w.r.t. Ωp if there exists some η > 0 such

that for all ω ∈ Ωθ (σ) and ω′ ∈ Bη

(
Ωθ (σ)

)
∩Ωp, either Kp (σ, ω) 6= Kp (σ, ω′) or p (·|a, ω′) ≡

p (·|a, ω) for all a ∈ supp (σ).

Suppose θ is not locally identified at σ w.r.t. Ωp, then one can find a parameter in an

arbitrarily small neighborhood of Ωθ, such that it yields the same KL divergence as Ωθ (σ)

yet predicts a different distribution at σ. If so, the likelihood ratio of a nearby model that

contains such a parameter resembles a random walk and exceeds the switching threshold

infinitely often.12 Local identification also implies that each parameter in Ωθ (σ) corresponds

to the same outcome distribution at σ.13 Notice that local identification is automatically

satisfied when σ is a self-confirming equilibrium.

12Example 7 in Appendix C illustrates why local identification is important.
13I take the same view as Esponda and Pouzo (2016) that what really matters for the agent is the

distribution of distributions, not individual parameters. Esponda and Pouzo (2016, p. 1108) define a similar
concept called weak identification at σ, which requires that two distributions that are judged to be equally
a best fit at σ are identical.
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I now state a sufficient condition for local robustness. It requires the existence of a p-

absorbing Berk-Nash equilibrium, similar to Theorem 1, but also requires local KL-minimization

and local identification at the equilibrium. The assumption of the equilibrium being pure is

not essential but to ease exposition.14

Theorem 3. A model θ ∈ Θp is p-constrained locally robust if there exists a pure p-absorbing

BN-E σ under θ such that θ is locally KL-minimizing and locally identified at σ w.r.t. Ωp.

In the proof of Theorem 3, I construct a neighborhood of θ in which any competing

model θc yields either the same distribution as Ωθ (σ) does or strictly higher KL divergence

at σ. The rest of the proof is similar to the proof of Theorem 1. Analogous to Corollary 2,

the following corollary provides a sufficient condition for Theorem 3. As an implication of

Theorem 2 in Fudenberg et al. (2021), given any uniformly strict BN-E, there exists a prior

belief such that, with positive probability, a dogmatic modeler’s action process converges to

this equilibrium. This establishes the p-absorbing condition.

Corollary 3. A model θ ∈ Θp is p-constrained locally robust if there exists a uniformly strict

BN-E σ under θ such that θ is locally KL-minimizing and locally identified at σ w.r.t. Ωp.

Let’s revisit Example 2 to illustrate how to apply the results.

Example 2, cont. Had the investor known the true DGP, she would optimally choose

the low investment level. However, as the investor neglects the role of more investments in

increasing the volatility of her payoff, she always plays the high action since it maximizes

the expected return. The only BN-E under both θ and the augmented θ′ is the pure action

a = 2, supported by the belief that assigns probability 1 to ω1 = 2. By Corollary 3, θ is

p-constrained locally robust, as the equilibrium is uniformly strict and the parameter value

ω1 = 2 perfectly matches the mean of the return, which is the only thing the agent is seeking

to match.

4.3.2 Necessary Conditions

Restricting the set of competing models and priors also poses a challenge to finding necessary

conditions for local robustness. When the competing model is correctly specified and the

initial model is eventually adopted, the agent’s action process must converge to the support

of a Berk-Nash equilibrium. This greatly simplifies the characterization of persistence be-

cause we could simply compare θ with the competing model at the BN-E. This convenient

14A more general version of Theorem 3 would require the existence of a p-absorbing mixed BN-E σ such
that at every σ̃ ∈ ∆ supp (σ), θ is locally KL-minimizing and locally identified w.r.t. Ωp at σ̃. This condition
automatically holds when σ is pure or self-confirming.
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convergence property is lost when we shift our focus to a competing model that is potentially

misspecified. However, as I show in Theorem 4, suppose the action frequency of a dogmatic-

modeler with Θ† = {θ} indeed a.s. converges to some BN-E under every full-support prior

and policy, then it is necessary for a p-constrained locally robust model to admit at least

one BN-E σ at which θ is locally KL-minimizing w.r.t. Ωp.15

Theorem 4. Suppose that the action frequency of a dogmatic modeler a.s. converges to a

BN-E under all full-support priors and policies. Then a model θ ∈ Θp is p-constrained locally

robust only if there exists a BN-E σ under θ such that θ is locally KL-minimizing at σ w.r.t.

Ωp.

Esponda et al. (2019) establish global almost-sure convergence of a dogmatic modeler’s

action frequency to a “globally attracting” BN-E if it exists and the dogmatic modeler is

myopic (δ = 0). The global attractiveness is defined based on a differential equation that

describes the evolution of the action frequency. Such convergence can also be observed in

a few examples in the literature, all of which impose specific assumptions over the types

of misspecification and the outcome distributions (Nyarko (1991); Heidhues et al. (2018);

He (2020); Ba and Gindin (2021)). In those environments, Theorem 4 provides a simple

criterion to determine if some subjective model is constrained locally robust.

The proof idea of Theorem 4 is as follows. Suppose none of the Berk-Nash equilibria

under θ satisfy the local KL-minimization property w.r.t. Ωp. Then for each equilibrium σ,

there exists a parameter ω′ ∈ Ωp\Ωθ that is close to some ω ∈ Ωθ and an open neighborhood

of σ, Bε (σ) ⊂ ∆A, such that at any strategy σ′ ∈ Bε (σ), the parameter ω′ yields a strictly

lower KL divergence than the lowest possible KL divergence under θ. Since the set of Berk-

Nash equilibria is compact (Lemma 7), the Heine-Borel theorem implies that there exists

a finite set of parameters Ω′ ⊂ Ωp\Ωθ such that for each equilibrium σ, there exists an

ω′ ∈ Ω′ that satisfies this property. Consider the competing model θc ∈ Θp with a larger

parameter space Ωθc = Ωθ ∪ Ω′. Suppose the model choice of the agent converges to θ with

positive probability. On the set of paths where she eventually adopts θ forever, she behaves

identically to a dogmatic modeler after the final switch to θ, and thus, by assumption, her

action frequency converges to a Berk-Nash equilibrium. Under such convergence, θc strictly

outperforms the fit of θ in the long term. Therefore, by the Law of Large Numbers, λθ
c

t

eventually exceeds α and the switcher adopts θc. This is a contradiction. Theorem 4 follows.

It is challenging to identify necessary conditions without global convergence of a dogmatic

modeler’s behavior. Nevertheless, I show in Theorem 5 that the local KL-minimization

condition described in Theorem 4 is still necessary when A is binary and the agent is myopic.

15Formally, given a finite action space A and an action sequence (a1, a2, ...), we can construct the action
frequency sequence (σt)t where σt ∈ ∆A and σt (a) = 1

t

∑t
τ=1 1{at=a}.
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Figure 1: Example of a binary-action setting: Each point in the interval represents a mixed
action’s weight assigned to a2; the parameter(s) placed above a segment of the interval are
the minimizer(s) of Kp (σ, ω) in Ωθ for all σ in this segment.

Theorem 5. Suppose |A| = 2 and δ = 0. Then a model θ ∈ Θp is p-constrained locally

robust only if there is a BN-E σ under θ such that θ is locally KL-minimizing at σ w.r.t. Ωp.

The critical step in proving Theorem 5 is to show that a dogmatic modeler’s action

frequency almost surely enters an arbitrarily small neighborhood of the set of Berk-Nash

equilibria infinitely often. From here, we can use an analogous argument to the proof of

Theorem 4. I use Figure 1 to illustrate this first step.

When the action space is binary, we can write any mixed action as β ·a1+(1− β)·a2, where

β ∈ [0, 1]. Therefore, the strategy space can be represented as the unit interval denoting the

set of possible weights on a2. To add more structure, suppose that the parameter space Ωθ

has four elements, each of which is a KL minimizer in Ωθ at some mixed strategies. Since

the KL divergence is continuous in the probability of each action, it is straightforward to

show that the set of mixed strategies at which a parameter is a KL minimizer is compact

and connected. For example, in Figure 1, ω1 uniquely minimizes the KL divergence when

evaluated at a mixed action when β ∈ [0, β1], while both ω1 and ω2 are minimizers when

β ∈ [β1, β2]. Restrict attention to the set of paths where the sequence of the action frequency

{σt}t is such that both ω1 and ω2 are KL minimizers infinitely often but not ω3. Since the

action space is binary, if σt enters two non-connected regions on the unit interval infinitely

often, it must also cross the region in between infinitely often.16 This implies that σt must

enter [β1, β2] infinitely often. To generate this pattern, it must be that a2 ∈ Aθm (δω1) and

a1 ∈ Aθm (δω2), because otherwise only one action will be played in the limit.17 Thus, there

exists a mixed belief over ω1 and ω2 that makes the myopic agent indifferent between the

actions. Since both ω1 and ω2 are KL minimizers when β ∈ [β1, β2], any mixed action with

β ∈ [β1, β2] is a BN-E, supported by the aforementioned mixed belief. Therefore, the agent’s

action frequency is almost surely arbitrarily close to the set of Berk-Nash equilibria infinitely

often. The argument for other cases is analogous.

16This does not hold when |A| ≥ 3 because there can be multiple paths connecting any two mixed actions.
In fact, Example 2 in Esponda et al. (2019) describes a setting with |A| = 3, in which the dogmatic modeler’s
action frequency almost surely oscillates around the unique Berk-Nash equilibrium but remains bounded away
from it.

17δω1 and δω2 denote the degenerate beliefs at ω1 and ω2, respectively.
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I conclude this section by returning to Examples 2 and 3.

Example 2, cont. The augmented model θ′ is not p′-constrained locally robust. In the

unique BN-E, the investor chooses the the high investment level with probability 1, gener-

ating a true variance of y higher than the agent’s conjecture. In particular, we have

Kp (2, ω) =

(
−1

2
+

2 (ω1 − 2)2 + 1

ω2

)√
ω2

2
. (14)

Hence, the KL minimizer at the BN-E, (2, 1), does not locally minimize the KL divergence in

the expanded domain Ωp. In fact, θ does not persist under any prior against the competing

model θc ∈ Θp I previously constructed with Ωθc = {1, 2} × {1 + ε} when ε < 1. Theorem 5

then implies that θ′ is not p′-constrained locally robust. Interestingly, this example reveals

that while a model can be constrained locally robust along one dimension, it may not be so

along another dimension.

Example 3, cont. There is a unique self-confirming equilibrium when the supporting belief

can take support on any parameters in Ωp. The equilibrium action profile assigns probability

1 to the pure action a = 2, and it can be supported by any degenerate belief over the set

of KL minimizers, Ωp (δa) ≡ {ω ∈ Ω : ω2 ≥ 3, ω1 = 2ω2 + 30}. This equilibrium is weak if

and only if the supporting belief assigns probably 1 to ω̃ = (36, 3) ∈ Ωp (δa). By Theorems

1 and 5, θ is globally robust if Ωθ ∩ (Ωp (δa) \ {ω̃}) 6= ∅. On the other hand, θ is not

p-constrained locally robust if Ωθ ∩ Ωp (δa) = ∅, because in this particular environment,

θ is locally KL-minimizing at a BN-E σ only if σ is self-confirming. 18 Therefore, the

model with the restricted parameter space Ωθ ⊆ [12, 32]× [1, 3] is not p-constrained locally

robust. Nyarko (1991) and subsequent papers establish that the misspecification described

in Example 3 leads to a perpetual cycle between a low price and a high price. However,

our analysis reveals that such misspecification is not persistent even when the agent only

examines closely-related neighbor models.

5 Extension: Strong Robustness

The various notions of robustness I defined in Section 4 only require that for each particular

set of competing models, there exist a prior πθ0 and a policy aθ such that θ persists. In

18Now suppose we have the borderline case in which Ωθ ∩Ωp (δa) = {ω̃}, then whether θ is locally robust
depends on other parameters in Ωθ. For example, if Ωθ = {ω̃}, then a = 2 is always a best response, thereby
satisfying the p-absorbing condition required to apply Theorem 3. However, if Ωθ = {ω̃, (40, 2)}, then only
the high action can be a best response, implying that the action sequence converges to a = 10; by Theorem
4, θ is not p-constrained locally robust.
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q∗ (y1|a) a1 a2

.5 .5

qθ (y1|a, ω) a1 a2

ω1 .5 .7
ω2 .5 .5

qθ
c
(y1|a, ω) a1 a2

ω3 .5 .5

Table 1: The probability of y1 given by the true DGP (left), the initial model θ (middle),
and the competing model θc (right).

this extension, I consider a stronger notion of global robustness that ensures the possibility

of long-term adoption regardless of the agent’s initial conditions. I then provide a partial

characterization that clarifies its content and implications.

Definition 10. A model θ ∈ Θ is strongly robust if θ persists in every finite Θ† = {θ}∪Θc ⊂
Θ under all full-support πΘ†

0 and optimal aΘ† .

I start with Example 4, which demonstrates why even a correctly specified θ is not nec-

essarily strongly robust, contrasting Corollary 1.

Example 4 (A globally robust subjective model that fails to be strongly robust). Consider

a binary-action-outcome setup where A = {a1, a2} and Y = {y1, y2}. The agent obtains

a payoff of 1 if the realized outcome is y1 and 0 otherwise. The true DGP generates y1

and y2 with equal probabilities regardless of the action. The agent entertains a correctly-

specified model θ with a binary parameter space Ωθ = {ω1, ω2}, with its associated outcome

distributions summarized in Table 1. It immediately follows from Corollary 1 that θ is

globally robust.

I now construct a competing model against which θ does not persist under some πθ0. Let

θc solely consists of the true DGP, with Ωθc = {ω3} and qθ
c
(·|a, ω3) = q∗ (·|a) ,∀a ∈ A.

Besides, let the prior under θ be given by πθ0 (ω1) = .9 and take the switching threshold to

be α = 5. The fact that a1 is weakly dominated under θ implies that the agent only plays

a2 under regime θ. Consider paths where the agent eventually stops switching and adopts θ.

Since ω2 perfectly matches the outcome distribution but ω1 does not, the likelihood ratio of

ω1 to ω2 almost surely converges to 0. Thus, the likelihood ratio λθ
c

t almost surely converges

to 10 > α and eventually triggers a switch.19 It follows that mt a.s. does not converge to θ.

Therefore, θ is not strongly robust.

19Formally,

λθ
c

t =

∏t−1
τ=0 q

θc
(
yτ |aτ , ω3

)∏t−1
τ=0 q

θ (yτ |aτ , ω1)πθ0 (ω1) +
∏t−1
τ=0 q

θ (yτ |aτ , ω2)πθ0 (ω2)

=
1(

0.7
0.5

)Nt−1
(
0.3
0.5

)t−1−Nt−1
πθ0 (ω1) + πθ0 (ω2)

where Nt−1 is the number of y1 in the first t− 1 periods. By the Law of Large Numbers, λθ
c

t → 1
πθ0(ω

2)
= 10.
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q∗ (y1|a) a1 a2

.5 .7

qθ (y1|a, ω) a1 a2

ω1 .5 .3
ω2 .5 .4

qθ
c
(y1|a, ω) a1 a2

ω3 .5 .7

Table 2: The probability of y1 given by the true DGP (left), the subjective model θ (middle),
and the competing model θc (right).

The key force that prevents θ from being strongly robust is that the Bayes factor rule

tends to favor models with a simpler structure. In Example 4, parameter ω1 is “redundant”

in the sense that every supporting belief of every SCE under θ must assign zero probability

to this parameter. Therefore, any prior probability assigned to the redundant parameter is

a waste and asymptotically bounds the likelihood ratio from above.

It is tempting to conjecture that strong robustness is too strong to tolerate any misspec-

ification. However, this is not true either: a strongly robust model can be both misspecified

and inefficient. This claim is substantiated by Example 5 below.

Example 5 (A misspecified yet strongly robust model). Let’s use the same binary setup

as Example 4 but make a few changes to the conditional probabilities. As shown in Table

2, a1 is the strictly dominant action under θ. Thus, regardless of the initial conditions, the

agent always plays a1 under θ. Let the true DGP be the competing model. Since a1 is

a self-confirming equilibrium supported by any mixed belief over ω1 and ω2, the likelihood

ratio is a constant throughout, i.e. λθ
c

t = 1,∀t. It is obvious that θ also persists against other

types of competing models. Therefore, θ is strongly robust and still induces an inefficient

action.

Theorem 6 generalizes the intuition we can glean from Examples 4 and 5.

Theorem 6. The following statements are true:

(i) If a model θ ∈ Θ is strongly robust, then for every ω ∈ Ωθ, there must exist an SCE

with supporting belief π such that ω ∈ supp (π).

(ii) Given any model θ ∈ Θ, if qθ (·|a, ω) ≡ q (·|a) for all a ∈ ∪π∈∆ΩθA
θ
m (π) and all ω ∈ Ωθ,

then θ is strongly robust.

Theorem 6(i) provides a necessary condition for strong robustness: no parameter ω under

θ is “redundant” in the sense that no SCE supporting belief assigns positive probability to

ω. On the other hand, Theorem 6(ii) provides a sufficient condition: if every undominated

action is an SCE that can be supported by every belief in ∆Ωθ, then θ is strongly robust.

27



6 Concluding Remarks

In this paper, I develop and characterize three different robustness criteria of subjective

models. Defined based on the chance of long-term persistence against competing models,

they provide a direct assessment as to which forms of misspecification are likely to persist.

Instead of assuming that the agent starts outright from a Berk-Nash equilibrium and

compares how models fit the data there, this framework incorporates model switching into

full-fledged learning dynamics. The characterization highlights the importance of this con-

sideration. For example, global robustness not only needs the existence of a self-confirming

equilibrium but also needs it to be p-absorbing. This connects the notion of model robustness

with the stability of equilibria under a single model.

The three robustness criteria can be ranked in terms of how hard to satisfy their require-

ments. This provides a language to compare different models in their degree of robustness.

While a model may fail to be globally robust or unconstrained robust, it may be constrained

locally robust with respect to a particular parametric family. Varying the size of the family

also varies the degree of robustness.

Within our general framework of model switching, there are many other interesting ques-

tions to pursue. For example, while global robustness requires a positive chance of a model

being adopted forever, we may look at when a model is adopted infinitely often such that the

underlying misspecification never vanishes. It may also be interesting to restrict attention to

a certain class of models and fully characterize the dynamic patterns of model choices, e.g.

how the agent perpetually oscillates between models, and derive more precise predictions

about the agent’s long-term behavior.
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A Auxiliary Results

Lemma 3. Fix any θ, θc ∈ Θ. If θc is correctly specified, then as t→∞, lθt /l
θc

t a.s. converges

to ι, where ι is a non-negative random variable with Eι <∞.

Proof. Let ιt = lθt /l
θc

t , then ι0 = 1, ιt ≥ 0,∀t. I now construct the probability space in

which ιt is a martingale. Given prior πθ
c

0 , denote by PθcS the joint probability measure

over Ωθc and the set of histories H. In particular, for any Ω̂ ⊂ Ωθc and any Ĥ ⊂ H, we

have PθcS (Ωp ×H) =
∑

ω∈Ω̂ π
θc

0 (ω)Pθ
c,ω
S (H), where Pθ

c,ω
S is the probability measure over H

induced by the switcher if the true DGP is as described by θc and ω. Then,

EPθcS (ιt|ht)

= EPθcS

[ ∑
ω∈Ωθ q

θ (yt−1|at−1, ω) πθt−1 (ω)∑
ω′∈Ωθc q

θc (yt−1|at−1, ω′) πθ
c

t−1 (ω′)
ιt−1|ht

]
= ιt−1

∑
ω̃∈Ωθc

πθ
c

t−1 (ω̃)

[∫
Y

∑
ω∈Ωθ q

θ (yt−1|at−1, ω) πθt−1 (ω)∑
ω′∈Ωθc q

θc (yt−1|at−1, ω′) πθ
c

t−1 (ω′)
qθ

c

(yt−1|at−1, ω̃) ν (dyt−1)

]

= ιt−1

∫
Y

[ ∑
ω∈Ωθ q

θ (yt−1|at−1, ω) πθt−1 (ω)∑
ω′∈Ωθc q

θc (yt−1|at−1, ω′) πθ
c

t−1 (ω′)

( ∑
ω̃∈Ωθc

qθ
c

(yt−1|at−1, ω̃) πθ
c

t−1 (ω̃)

)]
ν (dyt−1)

= ιt−1

∫
Y

[∑
ω∈Ωθ

qθ (yt−1|at−1, ω)πθt−1 (ω)

]
ν (dyt−1)

= ιt−1

∑
ω∈Ωθ

[∫
Y
qθ (yt−1|at−1, ω) ν (dyt−1)

]
πθt−1 (ω) dω = ιt−1.

Hence, ιt is a martingale w.r.t. PθcS . Since ιt ≥ 0,∀t, the Martingale Convergence Theorem

implies that ιt converges to ι almost surely w.r.t. PθcS , and EPθcS ι ≤ EPθcS ι0 = 1. Since θc is

correctly specified, there exists a parameter ω∗ ∈ Ωθc such that q∗ (·|a) ≡ qθ
c
(·|a, ω∗) , ∀a ∈

A. It then follows from πθ
c

0 (ω∗) > 0 that ιt also converges to ι almost surely w.r.t. Pθ
c,ω∗

S ≡
PS. Moreover, Eι <∞ because otherwise it contradicts EPθcS ι ≤ 1.

Lemma 4. Fix any θ, θ′ ∈ Θ, ω ∈ Ωθ, ω′ ∈ Ωθ′ and any sequence of actions (a1, a2, ...).

For each infinite history h ∈ (A× Y)∞ that is generated according to (a1, a2, ...) by the true

DGP, let

ξt (h) = ln
qθ (yt|at, ω)

qθ′ (yt|at, ω′)
− E

(
ln

qθ (yt|at, ω)

qθ′ (yt|at, ω′)
|ht
)
.

Then for any fixed t0 ≥ 1,

lim
t→∞

(t− t0 + 1)−1
t∑

τ=t0

ξτ (h) = 0, a.s..
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Proof. ξt (h) is a martingale difference process since E (ξt (h) |ht) = 0. Hence, for any t0,

ξtt0 (h) :=
∑t

τ=t0
(t− τ + 1)−1 ξτ (h) is also a martingale difference process. To use the Mar-

tingale Convergence Theorem, I now show that supt E
((
ξtt0
)2
)
<∞. Notice that

E
((
ξtt0
)2
)

=E

( t∑
τ=t0

(t− τ + 1)−1 ξτ (h)

)2


≤
t∑

τ=t0

(t− τ + 1)−2 E
[
(ξτ (h))2]

≤
t∑

τ=t0

(t− τ + 1)−2 E

[(
ln

qθ (yt|at, ω)

qθ′ (yt|at, ω′)

)2
]

≤
t∑

τ=t0

(t− τ + 1)−2 E

[(
ln

q∗ (yt|at)
qθ (yt|at, ω)

)2

+

(
ln

q∗ (yt|at)
qθ′ (yt|at, ω′)

)2
]

≤2
t∑

τ=t0

(t− τ + 1)−2 max
a

E
[
(ga (y))2] <∞,

where the first inequality follows from the fact that, for any τ ′ > τ ≥ t0, E (ξτ (h) ξτ ′ (h)) =

E (E (ξτ ′ (h) |hτ ′) ξτ (h)) = 0 and the last inequality follows from Assumption 2. Now we

can invoke the Martingale Convergence Theorem which implies that ξtt0 converges to a

random variable ξ∞t0 almost surely with E
((
ξ∞t0
)2
)
< ∞. By Kronecker Lemma, since

ξ∞t0 = limt→∞
∑t

τ=t0
(t− τ + 1)−1 ξτ (h) is finite a.s., we have

lim
t→∞

(t− t0 + 1)−1
t∑

τ=t0

ξτ (h) = 0, a.s..

The action frequency σt : At → ∆A measures how frequent each action has been played

up to period t. In particular, given an action sequence (a0, a1, ...),

σt (a) =

∑t−1
τ=0 1 (at = a)

t
.

Lemma 5. Suppose the action frequency of a dogmatic modeler with Θ† = {θ} converges to

σ, then the dogmatic modeler’s belief π̃θt a.s. converges to π̃θ, with π̃θ
(
Ωθ (σ)

)
a.s. converges

to 1. Similarly, if the action frequency of a switcher with Θ† 3 θ converges to σ, then her

belief πθt also a.s. converges to some πθ with πθ
(
Ωθ (σ)

)
.
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Proof. I now show that the claim is true for a switcher; the proof for a dogmatic modeler is

completely identical. Since Ωθ is finite, for any given σ, there exists ε > 0 such that∑
A

σ (a)
[
DKL

(
q∗ (·|a) ‖ qθ (·|a, ω)

)
−DKL

(
q∗ (·|a) ‖ qθ (·|a, ω′)

)]
< −ε, (15)

for all ω ∈ Ωθ (σ) and ω′ ∈ Ωθ/Ωθ (σ). Consider the agent’s belief over any ω ∈ Ωθ (σ) and

ω′ ∈ Ωθ/Ωθ (σ) at time t,

πθt (ω′)

πθt (ω)
=

∏t−1
τ=0 q

θ (yτ |aτ , ω′)πθ0 (ω′)∏t−1
τ=0 q

θ (yτ |aτ , ω)πθ0 (ω)

= exp

(
t−1∑
τ=0

ln
qθ (yτ |aτ , ω′)
qθ (yτ |aτ , ω)

+ ln
πθ0 (ω′)

πθ0 (ω)

)
.

We are done if this ratio converges to 0. Notice that

1

t

t−1∑
τ=0

E
(

ln
qθ (yτ |aτ , ω′)
qθ (yτ |aτ , ω)

|ht
)

=−
∑
A

σt (a)
[
DKL

(
q∗ (·|a) ‖ qθ (·|a, ω′)

)
−DKL

(
q∗ (·|a) ‖ qθ (·|a, ω)

)]
,

which converges to the left-hand side of Eq. (15) as σt converges to σ. Hence, there exists

T1 such that

1

t

t−1∑
τ=0

E
(

ln
qθ (yτ |aτ , ω′)
qθ (yτ |aτ , ω)

|ht
)
< − ε

2
,∀t > T1.

By Lemma 4, there exists T2 such that when t > T2,

1

t

t−1∑
τ=0

ln
qθ (yτ |aτ , ω′)
qθ (yτ |aτ , ω)

<
1

t

t−1∑
τ=0

E
(

ln
qθ (yτ |aτ , ω′)
qθ (yτ |aτ , ω)

|ht
)

+
ε

3

It follows that when t > max {T1, T2},

t−1∑
τ=0

ln
qθ (yτ |aτ , ω′)
qθ (yτ |aτ , ω)

< t ·
(
− ε

6

)
.

Hence,
πθt (ω′)

πθt (ω)
converges to 0.

Lemma 6. Fix any θ ∈ Θ, the optimal action correspondence Aθ : ∆Ωθ ⇒ A is upper

hemicontinuous in both the belief π and the discount factor δ.

Proof. This is a standard result directly following from Blackwell (1965) and Maitra (1968).
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Lemma 7. Fix any θ ∈ Θ, the set of all Berk-Nash equilibria under θ is compact.

Proof. Denote the set of all Berk-Nash equilibria under model θ as BN θ ⊂ ∆A. Since ∆A is

bounded, we only need to show that BN θ is closed. Suppose σ is the limit of some sequence

(σn)n of Berk-Nash equilibria, but σ is not a Berk-Nash equilibrium, i.e. σ 6∈ BN θ. Then for

every belief π ∈ ∆Ωθ (σ), we have that σ 6∈ ∆Aθm (π). Since Ωθ (·) is upper hemicontinuous,

it must be that Ωθ (σn) ⊂ Ωθ (σ) for large enough n. Hence, we have σ 6∈ ∆Aθm (π) for every

belief π ∈ ∆Ωθ (σn) when n is large enough. However, we know that supp (σ) ⊂ supp (σn)

for large enough n, which implies that σn 6∈ ∆Aθm (π) for large n. This is a contradiction.

B Main Results

B.1 Proof of Theorem 1

I first prove Lemmas 1 and 2.

Proof of Lemma 1. That lθ
c

t /l
θ
t a.s. converges to ι ≤ α on paths where mt converges to θ

immediately follows from Lemma 3. I now show that πθt and πθ
c

t also a.s. converge. Given

any ω ∈ Ωθ, we can decompose πθt (ω) as follows,

πθt (ω)

πθ0 (ω)
=

∏t−1
τ=0 q

θ (yτ |aτ , ω)∑
ω′∈Ωθ

∏t−1
τ=0 q

θ (yτ |aτ , ω′) πθ0 (ω′)

=
lθ
c

t

lθt
·

∏t−1
τ=0 q

θ (yτ |aτ , ω)∑
ω′′∈Ωθc

∏t−1
τ=0 q

θc (yτ |aτ , ω′′) πθ
c

0 (ω′′)

:=
lθ
c

t

lθt
· l
θ,ω
t

lθ
c

t

,

where the second term lθ,ωt /lθ
c

t is the likelihood ratio of the competing model θc and a model

that consists of a single parameter ω. By Lemma 3, lθ,ωt /lθ
c

t a.s. converges. Consider the

paths on which mt converges to θ. On these paths, both lθ
c

t /l
θ
t and lθ,ωt /lθ

c

t converges a.s.,

which implies that πθt (ω) a.s. converges as well. Since this is true for all ω ∈ Ωθ, πθt a.s.

converges to some limit πθ∞ on those paths. Analogously, for any ω′ ∈ Ωθc , we can decompose

πθ
c

t (ω′) as follows,

πθ
c

t (ω′)

πθ
c

0 (ω′)
=

∏t−1
τ=0 q

θc (yτ |aτ , ω′)∑
ω′′∈Ωθc

∏t−1
τ=0 q

θc (yτ |aτ , ω′′) πθ
c

0 (ω′′)
,

which, again by Lemma 3, converges almost surely.
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Proof of Lemma 2. Consider any ω̂ such that with positive probability, mt converges to θ and

ω̂ ∈ supp
(
πθ∞
)
. Let A− (ω̂) ≡

{
a ∈ A : qθ (·|a, ω̂) 6= q∗ (·|a)

}
. I now show that every action

in A− (ω̂) is played at most finite times a.s. on the paths where mt converges to θ. Suppose

instead that actions in A− (ω̂) are played infinitely often. Then there must exist some γ > 0

such that E ln q∗(y|at)
qθ(y|at,ω̂)

> γ for infinitely many t. Since θc is correctly specified, there exists

a parameter ω∗ ∈ Ωθc such that q∗ (·|a) ≡ qθ
c
(·|a, ω∗) ,∀a ∈ A. Hence, E ln qθ

c
(y|at,ω∗)

qθ(y|at,ω̂)
> γ

for infinitely many t. Notice that

lθ
c

t

lθt
=

∑
ω′∈Ωθ

c

∏t−1
τ=0 q

θc (yτ |aτ , ω′) πθ
c

0 (ω′)∑
ω∈Ωθ

∏t−1
τ=0 q

θ (yτ |aτ , ω)πθ0 (ω)

> πθt (ω̂)
πθ

c

0 (ω∗)

πθ0 (ω̂)

∏t−1
τ=0 q

θc (yτ |at, ω∗)∏t−1
τ=0 q

θ (yτ |aτ , ω̂)

> πθt (ω̂)
πθ

c

0 (ω∗)

πθ0 (ω̂)

[
t−1∑
τ=0

1{aτ∈A−(ω̂)} ln
qθ

c
(yτ |at, ω∗)

qθ (yτ |aτ , ω̂)

]
,

which almost surely increase to infinity by Lemma 4 as t→∞, contradicting the assumption

that mt converges to θ. Therefore, on the paths where mt → θ, almost surely, there exists

T such that at ∈ A\ ∪ω′∈supp
(
πθ∞

) A− (ω̂) ,∀t > T .

Since qθ (·|a, ω′) ≡ q∗ (·|a) for all ω′ ∈ supp
(
πθ∞
)

and all a ∈ A\ ∪ω′∈supp
(
πθ∞

) A− (ω′),

the actions that are played in the limit have no experimentation value and are myopically

optimal. Therefore, fix a particular value of πθ∞ that is a limit belief for a positive measure

of histories where mt → θ, there exists a set of actions A ⊂ Aθm
(
πθ∞
)

such that with positive

probability, the agent only plays actions from this set in the limit. Since mt eventually

converges to θ, it must be true that with positive probability, a dogmatic modeler also

only plays actions from A in the limit. Therefore, any strategy σ with supp (σ) = A is a

p-absorbing self-confirming equilibrium under θ.

Suppose there exists a p-absorbing SCE σ under θ. Consider the learning process of

a dogmatic modeler with Θ† = {θ}. There exists a full-support prior πθ0 ∈ ∆Ωθ and an

optimal policy aθ such that with positive probability, she eventually only chooses actions from

supp (σ) and each element of supp (σ) is played infinitely often (if there exists a ∈ supp (σ)

s.t. a is only played finite times, then we can find an SCE σ′ with a smaller support

such that each element of supp (σ′) is played i.o.). Denote those paths by H̃. Then by a

similar argument as in the proof of Lemma 2, πθt a.s. converges to a limit πθ∞ on H̃, with

supp
(
πθ∞
)
⊆ Gθ

σ:= {ω ∈ Ωθ : q∗ (·|a) = qθ (·|a, ω) , ∀a ∈ supp (σ)}.
Now take any finite Θc ⊂ Θ and any prior πΘc

0 . For every θ′ ∈ Θc, denote the set

of parameters in Ωθ′ that yield a zero KL divergence when σ is played as Gθ′
σ . That is,
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Gθ′
σ :=

{
ω ∈ Ωθ′ : q∗ (·|a) = qθ

′
(·|a, ω) ,∀a ∈ supp (σ)

}
. Note that this set may be empty.

Define ηT,t (θ′, ω′) :=
∏t

τ=T
qθ
′
(yτ |aτ ,ω′)
q∗(yτ |aτ )

. Let Hσ := {h ∈ H : at ∈ supp (σ) ,∀t ≥ 0} denote

the set of histories where all actions are taken from the support of σ. Notice that Ĥ ⊆ Hσ.

For all ω′ ∈ Ωθ′\Gθ′
σ , there exists some γ > 0 such that either qθ

′
(y|a, ω′) ≡ q∗ (y|a) or

E
(
qθ
′
(y|a,ω′)
q∗(y|a)

)
< −γ for all a ∈ supp (σ). By Lemma 4, we have that ηT,t (θ′, ω′) a.s. converges

to 0 on Hσ and thus on H̃.

Therefore, on H̃, the dogmatic modeler eventually only chooses actions from supp (σ),

with πθt
a.s.→ πθ∞ and ηT,t (θ′, ω′)

a.s.→ 0 for every θ′ ∈ Θc and ω′ ∈ Gθ′
σ . This implies the existence

of an integer T > 0 such that, with positive probability, we have (1) at ∈ supp (σ) ,∀t ≥ T ,

(2) πθt converges to a limit πθ∞ with supp
(
πθ∞
)
⊂ Gθ

σ, and (3) ηT,t (θ′, ω′) ≤ 1 for all t ≥ T

and all θ′ ∈ Θc and ω′ ∈ Gθ′
σ . Let ε > 0 be small enough such that 1

1−ε < α. We can find a

new full-support prior π̂θ0 ∈ Bε

(
∆Gθ

σ

)
under which, on a positive measure of histories Ĥ, a

dogmatic modeler sees that (1’) at ∈ supp (σ) ,∀t ≥ 0, (2’) the posterior π̂θt a.s. converges to

π̂θ∞ and never leaves Bε

(
∆Gθ

σ

)
, ∀t ≥ 0, and (3’) η0,t (θ′, ω′) ≤ 1,∀t ≥ 0 for all θ′ ∈ Θc and

ω′ ∈ Gθ′
σ .

Consider any θ′ ∈ Θc with πθ
′

0 ∈ Ωθ′ and the likelihood ratio lθ
′
t /l

θ
t computed from any

history in Ĥ under prior π̂θ0,

lθ
′
t

lθt
=

∑
ω′∈Ωθ′ π

θ′
0 (ω′)

∏t−1
τ=0 q

θ′ (yτ |aτ , ω′)∑
ω∈Ωθ π̂

θ
0 (ω)

∏t−1
τ=0 q

θ (yτ |aτ , ω)

<

∑
ω′∈Gθ′σ

πθ
′

0 (ω′)
∏t−1

τ=0 q
∗ (yτ |aτ ) +

∑
ω′′∈Ωθ′\Gθ′σ

πθ
′

0 (ω′′)
∏t−1

τ=0 q
θ′ (yτ |aτ , ω′′)∑

ω∈Gθσ
π̂θ0 (ω)

∏t−1
τ=0 q

∗ (yτ |aτ )

=
πθ
′

0

(
Gθ′
σ

)
π̂θ0 (Gθ

σ)
+

∑
ω′′∈Ωθ′\Gθ′σ

πθ
′

0 (ω′′)

π̂θ0 (Gθ
σ)
η0,t (θ′, ω′′)

≤ 1

π̂θ0 (Gθ
σ)

+
πθ
′

0

(
Ωθ′\Gθ′

σ

)
π̂θ0 (Gθ

σ)

≤ 1

1− ε
< α

where the first inequality follows from the definition of Gθ
σ and Gθ′

σ and that π̂θ0 is full-support,

the second inequality follows from (3’), and the third inequality from (2’). If for all θ′ ∈ Θc,

the likelihood ratio lθ
′
t /l

θ
t never exceeds the threshold α, then the Bayes factor λθt calculated

from such a history never exceeds α as well. Thus, on any history h ∈ Ĥ, the switcher never

makes any switch to any model θ′ ∈ Θc, i.e. mt = θ, ∀t ≥ 0. Therefore, if we endow the

switcher with the same prior π̂θ0, then Ĥ also has a positive measure under PS.
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B.2 Proof of Corollary 2

It suffices to show that every uniformly quasi-strict SCE σ is p-absorbing. By definition,

there exists a belief π ∈ ∆Ωθ with supp (π) ⊂ Gθ
σ (the set Gθ

σ is defined in the proof

of Theorem 1). Since σ is uniformly quasi-strict, supp (σ) contains all myopically optimal

actions against each degenerate belief δω concentrated on ω ∈ supp (π). In addition, supp (σ)

must be optimal against δω for an agent who maximizes discounted utility, because the

dynamic programming problem described by (4) reduces to a static maximization problem

when the belief is degenerate. This implies that supp (σ) is also optimal against π. Further,

since Aθ is upper hemicontinuous (by Lemma 6), there exists γ > 0 small enough such that

supp (σ) = Aθ (π̃) for all π̃ ∈ Bγ (π).

Suppose at ∈ supp (σ) , ∀t ≥ 0, then for every ω ∈ Ωθ\Gθ
σ,

E
[
πθt (ω)

πθt (Gθ
σ)
|ht
]

= E

[
πθ0 (ω)

∏t−1
τ=0 q

θ (yτ |aτ , ω)∑
ω′∈Gθσ

πθ0 (ω′)
∏t−1

τ=0 q
θ (yτ |aτ , ω′)

|ht

]

= E

[
πθ0 (ω)

πθ0 (Gθ
σ)

∏t−1
τ=0 q

θ (yτ |aτ , ω)∏t−1
τ=0 q

∗ (yτ |aτ )
|ht

]

=
πθ0 (ω)

∏t−2
τ=0 q

θ (yτ |aτ , ω)

πθ0 (Gθ
σ)
∏t−2

τ=0 q
∗ (yτ |aτ )

=
πθt−1 (ω)

πθt−1 (Gθ
σ)

Therefore,
πθt (ω)

πθt (Gθσ)
is a non-negative supermartingale for every ω ∈ Ωθ\Gθ

σ. It follows that

πθt (Ωθ\Gθσ)
πθt (Gθσ)

is also non-negative supermartingale. By the maximal inequality, for all ε > 0,

PB

(
πθt
(
Ωθ\Gθ

σ

)
πθt (Gθ

σ)
≥
πθ0
(
Ωθ\Gθ

σ

)
πθ0 (Gθ

σ)
+ ε for some t

)
< 1.

Since πθt
(
Gθ
σ

)
= 1− πθt

(
Ωθ\Gθ

σ

)
, the above inequality implies that for all ε > 0,

PB
(
πθt
(
Ωθ\Gθ

σ

)
≥ πθ0

(
Ωθ\Gθ

σ

)
+ ε for some t

)
< 1.

Pick some γ′ ∈ (0, γ) and πθ0 ∈ Bγ′ (π), then πθ0
(
Gθ
σ

)
> 1 − γ′. Notice that the belief

ratio
πθt (ω)

πθt (ω′)
remain unchanged throughout all periods provided that ω, ω′ ∈ Gθ

σ. Hence, if

πθt 6∈ Bγ (π) for some t ≥ 0, then there exists t such that πθt
(
Ωθ\Gθ

σ

)
≥ πθ0

(
Ωθ\Gθ

σ

)
+ γ− γ′.
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Therefore,

PB
(
πθt 6∈ Bγ (π) for some t ≥ 0

)
≤PB

(
πθt
(
Ωθ\Gθ

σ

)
≥ πθ0

(
Ωθ\Gθ

σ

)
+ γ − γ′ for some t

)
< 1.

This implies that PB
(
πθt ∈ Bγ (π) ,∀t ≥ 0

)
> 0. Notice that πθt ∈ Bγ (π) ,∀t ≥ 0 in turn

implies that a dogmatic modeler will only play actions from supp (σ). Therefore, σ is p-

absorbing.

B.3 Proof of Theorem 2

I now show that if θ is unconstrained locally robust, then it must persist against a cor-

rectly specified model under some priors and policies. From there, we can use Lemma 2

and Theorem 1 to show the equivalence between unconstrained local robustness and global

robustness.

Denote the parameter set of θ as Ωθ =
{
ω1, ..., ωN

}
. Consider a competing model θc

constructed as below:

• Ωθc = Ωθ

• qθ
c
(·|a, ωn) = (1− ε) qθ (·|a, ωn) + εq∗ (·|a) ,∀a ∈ A, ∀ωn ∈ Ωθ

By construction, θc ∈ Nε (θ). Hence, there exists ε > 0 such that θ persists against θc under

some full-support priors πθ0, πθ
c

0 and some policies aθ, aθ
c
. Further, this implies that there

exists ε > 0 and some initial condition such that the probability that lθ
c

t /l
θ
t ≤ α for all t ≥ 0

is strictly positive. Observe that

lθ
c

t

lθt
=

∑
ω∈Ωθc π

θc

0 (ω)
∏t−1

τ=0 q
θc (yτ |aτ , ω)∑

ω∈Ωθ π
θ
0 (ω)

∏t−1
τ=0 q

θ (yτ |aτ , ω)

= 1− ε+ ε

∏t−1
τ=0 q

∗ (yτ |aτ )∑
ω∈Ωθ π

θ
0 (ω)

∏t−1
τ=0 q

θ (yτ |aτ , ω)
.

Notice that the last term, denoted by l∗t /l
θ
t , is the likelihood ratio of the true DGP and θ. If

there exists T > 0 such that with positive probability, lθ
c

t /l
θ
t ≤ α for all t ≥ T , than it must

be that l∗t /l
θ
t ≤ 1

ε
(α + 1− ε) for all t ≥ T . Hence, θ persists against the true DGP under

switching threshold α′ = 1
ε

(α + 1− ε) > 1. Since Lemma 2 and Theorem 1 hold regardless

of the switching threshold, this implies that θ is globally robust.
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B.4 Proof of Theorem 3

Suppose σ is a pure p-absorbing BN-E with θ being locally KL-minimizing and locally

identified at σ w.r.t. Ωp, and σ assigns probability 1 to a∗ ∈ A. Then there exists a full-

support prior πθ0 and a policy aθ such that with this prior, a dogmatic modeler eventually

only plays a∗ with positive probability. It follows from Lemma (5) that πθt
(
Ωθ (σ)

) a.s.→ 1.

Therefore, for any γ ∈ (0, 1/α), there is a new full-support π̃θ0 and a positive measure of

paths, denoted by H̃ ⊂ H, where at ∈ supp (σ) and π̃θt
(
Ωθ (σ)

)
> γ, ∀t = 0, 1, ....

For convenience, I write Kp (σ, ω) as Kp (a∗, ω). Pick η > 0 such that θ satisfies the

conditions of being locally KL-minimizing and locally identified at σ. That is, for all ω ∈
Ωθ (σ), ω′ ∈ Bη (ω) ∪ Ωp, and a ∈ supp (σ), we have that either

Kp (a∗, ω) < Kp (a∗, ω′) ,

or

p (·|a∗, ω) ≡ p (·|a∗, ω′) .

Let ε ∈
(
0,min

{
η, 1

2
minω,ω′∈Ωθ ‖ω − ω′‖

})
be such that for all ε ≤ ε, ω ∈ Ωθ\Ωθ (σ) and

ω′ ∈ Bε (ω) ∩ Ωp, we have

Kp (a∗, ω′) > Kp (a∗, ω′′) , ∀ω′′ ∈ Ωθ (σ) .

The existence of such ε is guaranteed by the finiteness of Ωθ and the continuity of Kp (a, ω)

in ω. This condition requires that if some ω is not a KL minimizer under θ at a, then slightly

perturbing ω still yields a strictly higher KL divergence than a KL minimizer does. Let ε = ε

and fix a set of competing models Θc ⊂ Θp
ε (θ). To ease notation, denote the likelihood of

ω ∈ Ωp as

lp,ωt =
t−1∏
τ=0

p (yτ |aτ , ω) .

By the definition of ε, for every ω ∈ Ωθ and ω′ ∈
(
∪θ′∈ΘcΩ

θ′
)
∩ Bε (ω), there are only three

possible scenarios:

1. ω ∈ Ωθ (σ) and Kp (a∗, ω) < Kp (a∗, ω′);

2. ω ∈ Ωθ (σ) and p (·|a∗, ω) ≡ p (·|a∗, ω′);

3. ω 6∈ Ωθ (σ) and Kp (a∗, ω′′) < Kp (a∗, ω′) for all ω′′ ∈ Ωθ (σ).

Notice immediately that in Scenario 2, we have lp,ω
′

t /lp,ωt ≡ 1,∀t on H̃. In Scenario 1, by

Lemma 4, lp,ω
′

t /lp,ωt
a.s.→ 0 on H̃. Similarly in Scenario 3, lp,ω

′

t /lp,ω
′′

t
a.s.→ 0 on H̃. Therefore,
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there exists a new full-support π̂θ0 and a positive measure of paths Ĥ ⊂ H̃ where for all

t, not only do we have at = a∗, π̂θt
(
Ωθ (σ)

)
> γ, but it also holds that lp,ω

′

t /lp,ωt ≤ 1 and

lp,ω
′

t /lp,ω
′′

t ≤ 1 for all t and all above combinations of ω ∈ Ωθ and ω′ ∈
(
∪θ′∈ΘcΩ

θ′
)
∩ Bε (ω).

Now consider any θ′ ∈ Θc with πθ
′

0 ∈ Ωθ′ ∪Dp
ε

(
π̂θ0
)

and the likelihood ratio lθ
′
t /l

θ
t computed

from any history in Ĥ under prior π̂θ0,

lθ
′
t

lθt
=

∑
ω∈Ωθ′ π

θ′
0 (ω′) lp,ω

′

t∑
ω∈Ωθ π̂

θ
0 (ω) lp,ωt

<
1

π̂θ0 (ω)
< α.

Since this is true for each θ′ ∈ Θc, we now know that no switcher will be triggered on Ĥ,

thereby completing our proof of p-constrained local robustness.

B.5 Proof of Theorem 4

Suppose that there exist no Berk-Nash equilibrium σ under θ with θ being locally KL-

minimizing at σ w.r.t. Ωp. Besides, let us suppose for the sake of contradiction that θ is

p-constrained locally robust within a neighborhood of ε.

Take any Berk-Nash equilibrium σ ∈ ∆A under θ, then by assumption, there must exist

some parameter ω′ ∈ Ωp such that minω∈Ωθ ‖ω − ω′‖ ≤ ε and

min
ω∈Ωθ

Kp (σ, ω) > Kp (σ, ω′) . (16)

By continuity, there exists some open neighborhood of σ, denoted as Oσ, in which ω′ yields

a strictly lower KL divergence than Ωθ, i.e. ∀σ′ ∈ Oσ, we have

min
ω∈Ωθ

Kp (σ′, ω) > Kp (σ′, ω′) .

We know from Lemma 7 that the set of Berk-Nash equilibria under θ is compact. Therefore,

by the Heine-Borel theorem, there must exist finite number of parameters, collected by a set

Rε, such that for any Berk-Nash equilibrium σ, we can find some parameter from the set Rε

such that the above inequality (16) holds.

Consider a competing model θc with an expanded parameter space Ωθc = Ωθ ∪ Rε, and

some prior πθ
c

0 that allocates a total probability of ε evenly to Rε. Formally, let

πθ
c

0 (ω) = (1− ε) πθ0 (ω) ,∀ω ∈ Ωθ,

πθ
c

0 (ω) =
ε

|Rε|
,∀ω ∈ Rε.
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Consider all possible histories in which the switcher eventually adopts θ. Then the switcher’s

action frequency a.s. converges to a Berk-Nash equilibrium by assumption. Consider the

paths where this limit equilibrium is σ. Then it must be that lim supt l
θc

t /l
θ
t ≤ α on those

paths. By construction, there exists some T > 0 and η > 0 such that ∀t > T , there exists

ω′′ ∈ Rε such that Kp (σt, ω
′′)−Kp (σt, ω) < −η,∀ω ∈ Ωθ. It then follows that

λθ
c

t =

∑
ω′∈Ωθc π

θc

0 (ω′)
∏t−1

τ=0 q
θc (yτ |aτ , ω′)∑

ω∈Ωθ π
θ
0 (ω)

∏t−1
τ=0 q

θ (yτ |aτ , ω)

>

ε
|Rε|
∏t−1

τ=0 q
θc (yτ |aτ , ω′′)∑

ω∈Ωθ π
θ
0 (ω)

∏t−1
τ=0 q

θ (yτ |aτ , ω)

=
ε

|Rε|
1∑

ω∈Ωθ π
θ
0 (ω) exp (t (Kp (σt, ω′′)−Kp (σt, ω)))

>
ε

|Rε|
exp (tη)

Therefore, for any α > 0, almost surely, lθ
c

t /l
θ
t exceeds α for infinitely many t, contradicting

our assumption that lim supt l
θc

t /l
θ
t ≤ α on those paths. Therefore, θ does not persist against

θc. Since the choice of ε is arbitrary, this implies that θ is not p-constrained locally robust.

B.6 Proof of Theorem 5

We only need to show that given any ε > 0, almost surely, a dogmatic modeler’s action

frequency σt enters the ε-neighborhood of some Berk-Nash equilibrium infinitely often from

every full-support prior and policy. Then using a similar argument as in the proof of The-

orem 4, it can be shown that θ is not p-constrained locally robust if there is no Berk-Nash

equilibrium σ such that θ is locally KL-minimizing at σ.

For convenience, let A = {a1, a2}. First, consider the paths where σt converges to some

limit σ. denoted by H1. Then Lemma 5 tells us that πθt
(
Ωθ (σ)

)
converges to 1. Therefore,

any action a 6∈ ∪π∈∆Ωθ(σ)A
θ
m (π) cannot be in the support of σ. Hence, for each action

a in the support of σ, there exists some belief πa ∈ ∆Ωθ (σ) such that a ∈ Aθm (πa). If

supp (σ) is a singleton, then this immediately implies that σ is a Berk-Nash equilibrium.

If instead supp (σ) = {a1, a2}, then by the hemi-continuity of Aθm, there must exist some

πσ ∈ ∆Ωθ (σ) such that {a1, a2} = Aθm (πa), which again implies that σ is a Berk-Nash

equilibrium. Therefore, her action frequency σt enters the ε-neighborhood of some Berk-

Nash equilibrium infinitely often for any ε > 0 almost surely on H1.

Now consider paths where her action frequency oscillates forever, denoted by H2. Let

Ωθ
∞ be the set of all parameters in Ωθ that are KL minimizers infinitely often, i.e. Ωθ

∞ ={
ω ∈ Ωθ : ω ∈ Ωθ (σt) for infinitely many t on H2

}
. Take any ω ∈ Ωθ

∞. Suppose thatAθm (δω) =
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{a1, a2}, then each action frequency σω that satisfies ω ∈ Ωθ (σω) is a Berk-Nash equilibrium.

By construction, this means σt constitutes a Berk-Nash equilibrium infinitely often.

Suppose instead that ∀ω ∈ Ωθ
∞, we have that Aθm (δω) is singleton. Since σt oscillates,

Ωθ
∞ cannot be a singleton. It must be that Aθm (δω) = {a1} for some ω ∈ Ωθ

∞ and or

Aθm (δω′) = {a2} for some other ω′ ∈ Ωθ
∞. Given any ω and ω′ ∈ Ωθ

∞, say they are related if

there exists some mixed action σ such that ω, ω′ ∈ Ωθ (σ). I now show that there must exist

such a pair of related parameters such that Aθm (δω) = {a1} and Aθm (δω′) = {a2}.
First of all, every parameter in Ωθ

∞ must be related to some other parameter in Ωθ
∞.

Suppose not for the sake of a contradiction. Then there exists some “isolated” parameter

ω∗ ∈ Ωθ
∞ in the following sense: let Cω =

{
β ∈ [0, 1] : ω ∈ Ωθ (βa1 + (1− β)a2)

}
, then there

exists some positive constant γ such that Bγ (Cω∗) ∩
(
∪ω∈Ωθ∞\{ω∗}Cω

)
= ∅. However, since

ω∗ is a KL minimizer infinitely often, it happens infinitely often that σt ∈ Cω∗ . It implies

that some KL minimizer at σ ∈ Bγ (Cω∗) \Cω∗ should also be a KL minimizer at σt infinitely

often yet not included by Ωθ
∞, contradicting the definition of Ωθ

∞. By the same logic, there

cannot be two cliques in Ωθ
∞ such that every parameter in the first clique is unrelated to

every parameter in the second clique.

Hence, if every pair of related parameters in Ωθ
∞ induce the same optimal action, then

Aθm (δω) = {a1} or {a2} for all ω ∈ Ωθ
∞, which we know is not true. Therefore, there exists

a related pair ω, ω′ ∈ Ωθ
∞ such that Aθm (δω) = {a1} and Aθm (δω′) = {a2}. Therefore, each

mixed action in Cω ∩ Cω′ is a Berk-Nash equilibrium. Notice that each Cω is compact and

convex. Since σt enters both Cω and Cω′ infinitely many times, it must be that σt enters the

ε-neighborhood of Cω ∩ Cω′ infinitely often for any ε > 0. The proof is now complete.

B.7 Proof of Theorem 6

B.7.1 Part (i)

For convenience, denote the parameter space of θ as Ωθ =
{
ω1, ..., ωN

}
. Suppose that there

dose not exist an SCE with a supporting belief π such that ω1 ∈ supp (π).

I now construct a competing model θc and later show that θ is not strongly robust against

θc. Let Ωθc =
{
ω∗, ω2, ..., ωN

}
and qθ

c
(·|·, ωn) = qθ (·|·, ωn) for all n = 2, ..., N . Also, assume

that ω∗ corresponds to the objective outcome distribution, i.e. qθ
c
(·|·, ω∗) = q∗ (·|·). Finally,

pick any ε > 0 and assume that πθ0 (ω1) = 1 − πθ
c

0 (ω∗) = 1 − ε and πθ0 (ωn) /πθ0 (ωm) =

πθ
c

0 (ωn) /πθ
c

0 (ωm) ,∀m,n = 2, 3, ..., N .

Suppose θ persists against θc at some full-support beliefs and priors. Since θc is correctly

specified, there must exist a p-absorbing SCE σ under θ. On the paths where mt converges

to θ, the agent eventually only plays actions contained in supp (σ). It follows that πθt (ω1)
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converges to 0 on those paths. Therefore, for any positive γ < 1, there almost surely exists

a stopping time T > 0 such that πθt (ω1) < γ for any t > T . Further,

lθ
c

t

lθt
=

(1− ε)
∏t−1

τ=0 q
∗ (yτ |aτ ) +

∑N
n=2

∏t−1
τ=0 π

θc

0 (ωn) qθ
c
(yτ |aτ , ωn)

(1− ε)
∏t−1

τ=0 q
θ (yτ |aτ , ω1) +

∑N
n=2

∏t−1
τ=0 π

θ
0 (ωn) qθ (yτ |aτ , ωn)

>
(1− ε) /ε

πθt (ω1) /
(
1− πθt (ω1)

)
+ 1

>
(1− ε) /ε

γ/ (1− γ) + 1
.

Let ε be small enough so that (1−ε)/ε
γ/(1−γ)+1

> α. This implies that a switch is eventually

triggered, contradicting the assumption that mt converges to θ with positive probability.

Therefore, θ is not strongly robust, as desired.

B.7.2 Part (ii)

I first show that given any discount factor δ ≤ 1, the agent only chooses actions from the

set Aθm
(
∆Ωθ

)
. Given the current belief πθt , action a′ ∈ A maximizes the period-t flow payoff

under θ if

a′ ∈ arg max
a

∑
ω∈Ωθ

πθt (ω)

∫
Y
u (a, y) qθ (y|a, ω) v (dy)

= arg max
a

∫
Y
u (a, y) q∗ (y|a) v (dy) ,

where the equality follows from the assumption that qθ (·|a, ω) ≡ q∗ (·|a) ,∀ω for all a ∈
Aθm
(
∆Ωθ

)
. Notice that the set of myopically optimal actions does not vary with πθt . There-

fore, there is no experimentation value for any action outside Aθm
(
∆Ωθ

)
.

Suppose that qθ (·|a, ω) ≡ q∗ (·|a) for all a ∈ Aθ
(
∆Ωθ

)
and all ω ∈ Ωθ. Since aτ ∈

Aθ
(
∆Ωθ

)
for all τ , the likelihood ratio of θc to θ

lθ
c

t

lθt
=

∑
ω∈Ωθc π

θc

0 (ω)
∏t−1

τ=0 q
θc (yτ |aτ , ω)∏t−1

τ=0 q
∗ (yτ |aτ )

is a positive supermartingale, with lθ
c

0 /l
θ
0 = 1. By the maximal inequality, for any γ > 0,

P∗
(
lθ
c

t /l
θ
t ≥ 1 + γ for some t ≥ 0

)
< 1.

Therefore, for any fixed α > 1, the probability that lθ
c

t /l
θ
t never exceeds α is strictly positive,

thereby implying that θ is strongly robust.
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C Online Appendix

I provide an example below to substantiate the observation in Footnote 5.

Example 6. Let x1 and x2 be two i.i.d. normally distributed variables, both with mean 0

and variance 1. Suppose x3 and x4 are also i.i.d. normally distributed but with mean 1 and

variance 1. Suppose the agent can play one of two actions in each period, A = {1, 2} and

uses subjective models to learn about the mean of each element in y. Her flow payoff is given

by a · (x4 − x3). Hence, she would like to play a = 2 if x4 > x3 and play a = 1 if x3 > x4.

However, x1 and x3 are only observable when a = 1, while x2 and x4 are only observable

when a = 2. She entertains an initial model θ and two competing models, {θ1, θ2}, each

of which is equipped with a binary parameter space. The predictions of each model are

summarized by the following table.

θ ω1 ω2

(x1, x2, x3, x4) (1, 1, 1, 0) (1, 1, 0, 1)

θ1 ω1′ ω2′

(x1, x2, x3, x4) (1, 0, 1, 0) (1, 0, 0, 1)

θ2 ω1′′ ω2′′

(x1, x2, x3, x4) (0, 1, 1, 0) (0, 1, 0, 1)

Notice that there are two uniformly strict and thus p-absorbing Berk-Nash equilibria

under θ: (1) a = 1 is played w.p. 1, supported by the belief that assigns probability 1 to

ω1; (2) a = 2 is played w.p. 1 , supported by the belief that assigns probability 1 to ω2.

First observe that θ persists against θ1 at a prior πθ0 that assigns sufficiently high belief to

ω1. This follows from the fact that the likelihood ratio between θ and θ1 is always 1 when

a = 1 is played, and that the equilibrium is p-absorbing. Analogously, θ persists against

θ2 at a prior πθ0 that assigns sufficiently high belief to ω2. However, notice that θ does not

persist against {θ1, θ2} at any priors and policies, because regardless of the actions taken by

the agent, at least one of θ1 and θ2 would fit the data strictly better than θ, prompting the

agent to adopt θ1 and θ2 infinitely often.

Example 7 below shows that a model can fail to be constrained locally robust even if it

induces a p-absorbing BN-E satisfying the local KL-minimization property but not the local

identification property.

Example 7. Let Y = R2 and A = {a}. Denote the two-dimensional outcome y as (y1, y2)

and assume that y1 and y2 are independently and normally distributed with zero mean, i.e.
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y ∼ N
(
(0, 0)′ , I

)
. Consider a family of normal densities p (y|a, ω) where ω = (ω1, ω2) ∈

Ωθ ⊂ R2 corresponds to a joint standard normal distribution with mean ω and covariance

I. Specifically, let Ω = {(ω1, ω2) ∈ R2 : ω2
1 + ω2

2 = 1} and Ωθ = {(1, 0)}. Notably, Kp (a, ω)

is a constant over Ωp. Hence, θ is locally KL-minimizing but not locally identified at any σ

w.r.t. Ωp. Fix any ε > 0, we can find a competing model with Ωθc = {(cosφ, sinφ)}, where

φ is close enough to 0 so that the distance between Ωθc and Ωθ is strictly smaller than ε.

However, the agent will adopt θc infinitely often as the log-likelihood ratio is an unbounded

random walk. Intuitively, since θ and θc predict equally well in the long term, it must happen

infinitely many times that some streak of outcomes increases the likelihood ratio to above α

and trigger a switch to θc if the agent adopted θ.
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