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1 Introduction

Forecast combination for a series y involves transforming a set of forecasts of y, f =

(f1, ..., fK)′, into a “combined”, and hopefully superior, forecast c(f). Most of the huge

literature focuses on linear combinations of univariate point forecasts, in which case we can

write the combined forecast as c(f ;ω) = ω′f , for combining weight vector ω = (ω1, ..., ωK)′.1

We typically proceed under quadratic loss, choosing the weights to minimize the sum of

squared combined forecast errors (SSE),

SSE(c(f ;ω), y) =
T∑
t=1

(yt − ω′ft)2 ,

where the sample of forecasts and realizations covers t = 1, ..., T . That is, we simply run the

least-squares regression y → f1, ..., fK , so that2

ω̂ = arg min
ω

(
SSE(c(f ;ω), y)

)
.

This is the classic Bates and Granger (1969) and Granger and Ramanathan (1984) solution.

Recent point forecast combination literature such as Diebold and Shin (2019), however,

focuses instead on weights that solve a penalized estimation problem,

ω̂ = arg min
ω

(
Objective(c(f ;ω), y) + λ · Penalty(ω)

)
, (1)

where the Lagrange multiplier λ governs the strength of the penalty. Maintaining quadratic

loss we have

ω̂ = arg min
ω

(
SSE(c(f ;ω), y) + λ · Penalty(ω)

)
.

If λ=0 we obviously obtain the Bates-Granger-Ramanathan solution, but the recent liter-

ature focuses on λ>0. This produces regularization, which can be highly valuable in the

finite samples often of practical relevance, particularly for economic survey forecasts where

the sample size T is often very small relative to the number of forecasters K. The precise

form of the penalty determines the precise form of regularization, but in general it involves

selection and/or shrinkage in directions guided by the penalty. For example, the famous

LASSO penalty of Tibshirani (1996), Penalty(ω) =
∑K

k=1 |ωk|, induces both selection to 0

1Broad and insightful surveys include Timmermann (2006), Elliott and Timmermann (2016), and Aastveit
et al. (2020).

2We assume unbiased forecasts, so there is no need for an intercept.



and shrinkage toward 0.

In this paper we extend the idea of regularized forecast combination to the density forecast

case. Density forecasting is important because predictive densities are complete probabilistic

statements, which are always desirable, sometimes invaluable, and increasingly available.

Density forecasts provide much more information, for example, than interval forecasts, which

in turn provide more information than point forecasts.3

We work with “linear opinion pools” (mixtures), as in the key contributions of Hall

and Mitchel (2007), Geweke and Amisano (2011) and Amisano and Geweke (2017), but we

consider a variety of estimation objectives, and most importantly, we introduce regularization

constraints. Our regularized density forecast combinations are regularized mixtures, and

important subtleties arise in constructing appropriate penalties for mixture regularization.

In this paper we confront this situation and propose several solutions.

Our methods are related to earlier and current work in both the econometrics and statis-

tics literatures. A basic insight underlying our work and much of the recent literature is that

Bayesian model averaging (BMA) as traditionally implemented is unattractive for combining

density forecasts from misspecified models, because it fails to acknowledge misspecification

(Diebold, 1991). That is, it assumes implicitly or explicitly that one of the models is “true”,

in which case the posterior predictive density asymptotically puts all probability on that

model, so that BMA actually fails to average. Instead, once we acknowledge that all models

are misspecified, we want a method capable of delivering a defensible and diversified portfolio

(weighted average) of models, even asymptotically.

In one strand of econometrics literature this led Hall and Mitchel (2007), Brodie et al.

(2009), Geweke and Amisano (2011), and Amisano and Geweke (2017) inter alia to move

away from BMA, working instead with linear opinion pools that optimize the log score. In

a different strand of econometrics literature that also moved away from BMA, it led Billio

et al. (2013) to treat density forecast combination as a nonlinear filtering problem, poten-

tially with time-varying mixture weights. Parallel developments in the statistics literature

now acknowledge misspecification, distinguishing between “M-open” vs. “M-complete” sit-

uations, and achieve diversified density forecast mixtures by “stacking” predictive densities

(Yao et al., 2018), or via “dynamic Bayesian predictive synthesis” (McAlinn and West, 2019).

We pick up from there and proceed as follows. In section 2 we discuss objectives for mix-

ture regularization, that is, various choices and issues associated with Objective(c(f ;ω), y).

3The evaluation of interval forecasts, moreover, is fundamentally problematic, as detailed in recent work
by Askanazi et al. (2018) and Brehmer and Gneiting (2020).
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Then in section 3 we treat choices and issues associated with Penalty(ω), starting with

the key unit simplex penalty, which we maintain throughout, and then introducing hybrid

penalties that blend the simplex penalty with others. In section 4 we present Monte Carlo

evidence on the efficacy of our procedures. In section 5 we present empirical results for Eu-

ropean Central Bank (ECB) survey density forecasts of Eurozone inflation and real interest

rates. We conclude in section 6.

2 Objectives

Consider a discrete density (histogram) forecast for a scalar variable y, which takes values

in m = 1, ...,M bins, or categories.4 Denote the forecast by p = (p1, ..., pM)′. We start

with density forecast “scores” for a single forecaster in a single period in sections 2.1-2.3,

we extend the discussion to multiple forecasters and periods in section 2.4, and we provide

additional discussion in section 2.5.

2.1 Log Score

The log score (Good, 1952; Winkler and Murphy, 1968) is

L(p, y) = − log

(
M∑
m=1

pm 1(y ∈ bm)

)
, (2)

where pm is the probability assigned to bin bm, and 1(y ∈ bm) = 1 if y ∈ bm and 0 otherwise.

Ranking density forecasts by L, where smaller is better, reflects a preference for “small

surprises”. In a frequentist interpretation, L is just the (negative of the) log predictive density

evaluated at the realization; that is, it is the (negative of the) predictive log likelihood. In a

Bayesian interpretation, L is, desirably, a strictly proper scoring rule.5

2.2 Brier Score

The Brier score (Brier, 1950) is:

4We focus largely on the discrete case, because it is the one of practical relevance for survey forecasts
that we eventually analyze. Parallel developments of course exist for the continuous case.

5On scoring rules see Gneiting and Raftery (2007) and the references therein.
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B(p, y) =
1

M

M∑
m=1

(pm − 1(y ∈ bm))2 .

The Brier score generalizes the idea of quadratic loss to density forecasts. Indeed B is

effectively the same as the so-called “quadratic score”,

Q(p, y) = −2

(
M∑
m=1

pm 1(y ∈ bm)

)
+

(
M∑
m=1

p2m

)
, (3)

as noted by Czado et al. (2009). Rankings by Q must match rankings by B, because one is

a positive monotonic transformation of the other. Both B and Q are strictly proper scoring

rules under weak conditions.

2.3 Ranked Score

The ranked score (Epstein, 1969) is,

R(p, y) =
M∑
m=1

(Pm − 1(y ≤ bm+))2 ,

where Pm =
∑m

h=1 p(bh) is the cdf of the density forecast p, defined on bins bm = [bm−, bm+],

m = 1, ...,M . R effectively proceeds by comparing realizations to the cdf forecast rather

than the density forecast. R is strictly proper under weak conditions.

2.4 Multiple Forecasters and Time Periods

Let us now modify the notation to identify the specific forecaster, k. Thus far there has been

no need, as we have considered just one forecaster, but shortly we will want to consider a set

of forecasters, k = 1, ..., K. This is just a notational change, inserting “k” subscripts in the

relevant places. In addition let us write the scores for a set of periods, t = 1, ..., T , rather

than for just one period. This just involves summing over time.

We have:

Lk(pk,y) =
T∑
t=1

(
− log

(
M∑
m=1

pmkt 1(yt ∈ bm)

))
, k = 1, ..., K
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Bk(pk,y) =
T∑
t=1

(
1

M

M∑
m=1

(
pmkt − 1(yt ∈ bm)

)2)
, k = 1, ..., K

Rk(pk,y) =
T∑
t=1

(
M∑
m=1

(
Pmkt − 1(yt ≤ bm+)

)2)
, k = 1, ..., K,

where pk = (pk1, ..., pkT ) is the sequence of density forecasts over time for forecaster k, and

y = (y1, ..., yT ) is the sequence of realizations over time.

2.5 Discussion

Thus far we have implicitly emphasized the differences among the L, B, and R scores, but

there are also many similarities.

B, for example, might appear linked to Gaussian environments, because it is a mean-

squared error analog, unlike L which is based directly on the likelihood and therefore valid

under great generality. But it is not; indeed its “Q version” (3),

Q = −2L+

(
M∑
m=1

p2m

)
,

reveals its close link to L. Moreover, B remains a strictly proper scoring rule regardless of

distributional environment.

Now consider R. First, it is interesting to note that R is a generalization of absolute-

error loss to density forecasts, just as B is a generalization of squared-error loss to density

forecasts. In particular, Gneiting and Raftery (2007) show that R is driven by Ep|Y − y|:

R(p, y) = Ep|Y − y| −
1

2
Ep|Y − Y ′|,

where Y and Y ′ are independent copies of a random variable with distribution p.

Second, R’s generalization of absolute-error loss (MAE) to density forecasts also makes

it a generalization of the Diebold and Shin (2017) stochastic error distance (SED), because

MAE and SED rankings must agree, and interestingly, SED is based on cdf divergences,

just as is R.

Finally, although R might appear linked to a particular (Laplace) distributional environ-

ment, because it is an absolute-error analog, it is not. R is a strictly proper scoring rule

regardless of distributional environment.
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3 Penalties

Our goal is to produce mixtures of density forecasts,

c(ω) =
K∑
k=1

ωkpk,

with regularized mixture weights ω = (ω1, ..., ωK)′. We score mixtures in the same way as

we scored individual density forecasts. The only difference is that we now score the mixture,

c(ω), rather than an individual forecast, pk.

Thus far we have focused on appropriate objectives for regularized mixture weight esti-

mation, objective(c(ω), y), and we emphasized use of strictly proper density forecast scoring

rules. Now we consider appropriate constraints for regularized mixture weight estimation,

penalty(ω). As we shall see, imposition of the unit simplex constraint (i.e., imposing that

mixture weights be non-negative and sum to one: ωi≥0 ∀i and
∑K

i=1 ωi = 1) provides es-

sential regularization. In addition, however, simultaneous imposition of other regularization

constraints may also be helpful.

3.1 Simplex

The unit simplex constraint has two parts: non-negativity and sum-to-one. For point fore-

casts we can relax both parts and potentially achieve better combined point-forecasting

performance, as recognized by Granger and Ramanathan (1984) and done routinely ever

since. As first recognized in the pioneering work of Brodie et al. (2009), it turns out that

density forecasts are different: When combining density forecasts it is crucial to impose (both

parts of) the simplex constraint.

First consider non-negativity. For point forecasts, allowing negative combining weights

can improve performance, in a fashion analogous to allowing short positions in a financial

asset portfolio. For density forecasts, in contrast, negative weights are unambiguously prob-

lematic, producing pathologies even if sum-to-one holds, because negative mixture weights

can drive parts of the mixture density negative.

Now consider sum-to-one. Immediately, sum-to-one is required for the mixture com-

bination to be a valid probability density.6 Moreover, and separately, the solution to the

mixture weight estimation problem can be pathological without imposition of sum-to-one.

6See also Yao et al. (2018), who briefly discuss issues related to the imposition of convex mixture weights.
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To see this, consider a simple example with two continuous density forecasts and a log score

objective. We have

ω̂ = arg min
ω1,ω2

(
−

T∑
t=1

log(ω1f1,t(yt) + ω2f2,t(yt))

)
,

where fk,t(yt) is forecaster i’s density forecast evaluated at the realization, yt. Without the

sum-to-one constraint, the optimal solution is not well defined: either ω1→∞ or ω2→∞
leads to the smallest possible objective function value, because f1,t and f2,t are non-negative

for any yt.

For all of the above reasons, we henceforth impose both the non-negativity and sum-

to-one parts of the simplex constraint. Interestingly, moreover, their imposition is not only

necessary to eliminate pathologies, but also desirable to provide regularization. In particular,

the simplex constraint clearly imposes a particular L1 “parameter budget”; it is effectively

a special case of LASSO.

Assembling everything, the basic regularized estimator with log score objective (Geweke

and Amisano, 2011; Amisano and Geweke, 2017) is7

arg min
ω

(
−

T∑
t=1

log

(
K∑
k=1

ωkfk,t(yt)

) )
(4)

s.t. ωk ∈ (0, 1),
K∑
k=1

ωk = 1.

The methodological question remains, however, of how to provide additional, and more flex-

ible, regularization, as does the substantive situation-specific empirical question of whether

and where additional regularization is helpful. In the remainder of this paper we work toward

answering both questions.

3.2 Simplex+Ridge

L1 simplex regularization is a special case of L1 LASSO regularization, corresponding to a

specific choice of LASSO regularization parameter. Hence we cannot introduce additional

L1 regularization.

7Other objectives may of course be used, as discussed earlier in section 2. Note that for a histogram
forecast we have fk,t(yt) =

∑M
m=1 pmkt1(yt ∈ bm).
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Additional regularization of some other type may nevertheless be useful for a variety of

reasons. One reason is that the sparsity promoted by the simplex constraint may not be

desirable (Giannone et al., 2017), so we may want to shrink all K mixture weights away

from 0, thereby “undoing” the selection implicit in the LASSO-style L1 penalty, allowing for

non-zero mixture weights on all forecasts. We focus in particular on introducing shrinkage

toward an equally-weighted mixture (i.e., shrinkage of all K weights toward 1/K).

Consider, for example, introducing L2 regularization. Immediately, incorporating an L2

penalty in addition to the simplex constraint, we have:8

ω̂ = arg min
ω

−
T∑
t=1

log

(
K∑
k=1

ωkfk,t(yt)

)
︸ ︷︷ ︸

log score

+ λ

(
K∑
k=1

(
ωk −

1

K

)2
)

︸ ︷︷ ︸
L2 penalty

 (5)

s.t. ωk ∈ [0, 1],
K∑
k=1

ωk = 1.

This parallels the egalitarian ridge estimator of Diebold and Shin (2019), with an additional

simplex constraint imposed. Note that, due to the simplex constraint, the solution may

discard some forecasters (setting some weights approximately if not exactly to zero), but that

situation becomes progressively less likely as λ grows, pulling the weights toward equality.

We can re-write (5) as

ω̂ = arg min
ω

−
T∑
t=1

log

(
K∑
k=1

ωkfk,t(yt)

)
︸ ︷︷ ︸

log score

+ λ1

(
K∑
k=1

|ωk| − 1

)
︸ ︷︷ ︸

L1 simplex/LASSO penalty

+ λ2

(
K∑
k=1

(
ωk −

1

K

)2
)

︸ ︷︷ ︸
L2 ridge penalty

 ,

(6)

s.t. ωk ∈ [0, 1],

which emphasizes that simplex+ridge regularization involves a combination of L1 and L2

penalties.9 Note, however, that we are not free to choose λ1, because the sum-to-one con-

straint must bind; equations (5) and (6) instead coincide for “large enough” λ1.

Equation (6) in turn reveals that simplex+ridge regularization is closely related to the

8For transparency we make most of our arguments using a log score objective.
9Equation (6) also reveals that simplex+ridge is closely related to an additive-penalty version of partial

egalitarian LASSO (Diebold and Shin, 2019), but with the egalitarian penalty done in L2 (ridge) form rather
than L1 (LASSO) form.
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elastic net of Zou and Hastie (2005). The elastic net penalty is

Penalty(ω) = α

K∑
k=1

|ωk|︸ ︷︷ ︸
L1 LASSO penalty

+ (1−α)
K∑
k=1

ω2
k︸ ︷︷ ︸

L2 ridge penalty

,

where α∈[0, 1] is a parameter, so that elastic net also involves combinations of L1 and L2

(that is, LASSO/simplex and ridge) penalties. Elastic net is well known to work well for

regularization problems with many correlated predictors, exactly the situation of relevance

for the large sets of economic forecasts on which we focus.

3.3 Simplex+Divergence

Here we move from simplex+ridge to simplex plus a general penalty based on the divergence

between two discrete probability measures. As we will see, the divergence penalty includes

simplex+ridge as a special case, but it also introduces a rich variety of new possibilities.

Write the estimator as

ω̂ = arg min
ω

−
T∑
t=1

log

(
K∑
k=1

ωkfk,t(yt)

)
︸ ︷︷ ︸

log score

+λD (ω, ω∗)︸ ︷︷ ︸
penalty

 (7)

s.t. ωk ∈ [0, 1],
K∑
k=1

ωk = 1,

where D(ω, ω∗) is a measure of divergence between w and w∗. The key insight is that once

the simplex restriction is imposed, ω can be interpreted as a discrete probability measure on

{1, 2, ..., K}. If we let ω∗ be the uniform probability mass function with weight 1/K on each

outcome, then the penalized optimization (7) shrinks the solution toward equal weights.

Maintaining uniform ω∗ throughout, but using different divergence measures D(ω, ω∗),

we obtain new regularized estimators. For example:

1. The L2 norm,

D(ω, ω∗) =
K∑
k=1

(
ωk −

1

K

)2

,

produces the simplex plus egalitarian ridge penalty given in (5) and (6).
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2. The L1 norm (total variation),

D(ω, ω∗) =
K∑
k=1

∣∣∣∣ωk − 1

K

∣∣∣∣ ,
produces a simplex plus egalitarian LASSO penalty (Diebold and Shin, 2019).

3. Kullback-Leibler divergence (entropy) from ω to ω∗,

D(ω, ω∗) = − logK −
K∑
k=1

logωk,

produces a “simplex+entropy” penalty, −
∑K

k=1 logωk. In Appendix A we formally

show that the simplex+entropy regularized estimator,

ω̂ = arg min
ω

−
T∑
t=1

log

(
K∑
k=1

ωkfk,t(yt)

)
︸ ︷︷ ︸

log score

+λ

(
−

K∑
k=1

log(ωk)

)
︸ ︷︷ ︸

entropy penalty

 (8)

s.t. ωk ∈ (0, 1),
K∑
k=1

ωk = 1,

arises as the posterior mode in a Bayesian analysis with a log score (pseudo-)likelihood

and a Dirichlet prior, which puts positive probability only on the unit simplex and also

shrinks weights toward equality for a certain hyperparameter configuration.

4. Rényi divergence of order α from ω to ω∗,

Dα(ω∗||ω) =
1

α− 1
log

(
K∑
k=1

1/Kα

ωα−1k

)
,

encompasses various statistical divergences including Kullback-Leibler divergence (α =

1) and Hellinger distance (α = 2), and can be used to produce still more interesting

regularized estimators.10

All of the above divergence functions shrink the density mixture weights toward equality,

10Rényi divergence, moreover, is equivalent to Cressie-Read discrepancy up to an affine transformation.
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thereby promoting inclusion of more forecasters in the regularized mixture. Importantly,

the optimization that defines the regularized estimator (7) is convex so long as D(ω, ω∗) is

a convex function of ω, because the log score and simplex constraints are convex functions

of ω. This makes numerical computation of the estimator straightforward.

3.4 Partially Egalitarian LASSO and Subset Averaging

One might want a density forecast version of partially egalitarian penalization, as developed

for the point forecast case by Diebold and Shin (2019). The additive version of partially

egalitarian ridge or LASSO is possible, in the sense that the solution is computable in

principle. To see this, consider the simplex-constrained partially egalitarian ridge problem:

ω̂ = min
w

(
−

T∑
t=1

log

(
K∑
k=1

wkfk,t(yt)

)
+ λ

K∑
k=1

(
wk −

1

δ(w)

)2
)

(9)

s.t. wk ∈ [0, 1],
K∑
k=1

wk = 1,

where δ(ω) is the number of non-zero elements in ω. Computation of the solution proceeds

as follows:

1. We define κ as the number of forecasters to be included.

2. For a particular value of κ (among κ = 1, 2, 3, ..., K), there are CK
κ possible combina-

tions of forecasters.

3. For the jth such combination (j = 1, 2, ..., CK
κ ), we solve

L∗(κ, j) = min
wj

(
−

T∑
t=1

log

(
K∑
k=1

wjkfk,t(yt)

)
+ λ

K∑
k=1

(
wjk −

1

δ(w)

)2
)

s.t.wjk ∈ [0, 1],
K∑
k=1

wjk = 1,

where wjk is zero if the kth forecaster is not selected in jth combination. In this case,

some of weights are forced to zero, so the penalty term is reduced to

λ
K∑
k=1

(
wjk −

1

δ(w)

)2

= λ
∑
k∈N

(
wjk −

1

κ

)2

,

11



where N = {k : wjk 6= 0}. This is just partial egalitarian ridge for a particular set of

forecasters.

4. The solution to the original partial egalitarian ridge problem is then arg minκ,j L
∗(κ, j).

Unfortunately, however, the computational cost is huge, because we need to solve the penal-

ized optimization nK =
∑K

κ=1C
K
κ times. For example, when K=20, nK=1, 048, 575. Hence

partially egalitarian procedures for density mixture construction are infeasible in general.

There is, however, one very important exception. As λ→∞ in equation (9), the partially

egalitarian estimator converges to a direct subset averaging procedure in the spirit of Elliott

(2011), which is simple to compute and automatically imposes the simplex constraint. The

subset averaging idea is trivial: At each time, rolling forward, we simply find the historically

best-performing average, and use it. A first variation is “best N -Average”. At each time we

determine the historically best-performing N -forecast average and use it. A second varia-

tion is “best ≤Nmax-Average”. At each time we determine the historically best-performing

≤Nmax-forecast average and use it.

Subset averaging computation time can be substantial in principle, depending on K and

N (or Nmax). With K forecasters, finding the best N -average requires computing KCN

simple averages and then sorting them to determine the minimum, each period. The per-

period computational burden of best ≤Nmax-forecast averaging is still larger, because we

now consider all subsets rather than only subsets of size N . Fortunately, the relevant K and

Nmax are quite small in typical economic forecast combinations. In our subsequent empirical

work, for example, Nmax≤4 appears adequate, and we have K=19. Best ≤4max-Average

combination therefore requires evaluating and sorting just 19C4 +19 C3 +19 C2 +19 C1 = 5035

averages per period.

3.5 Discussion

It bears emphasizing that our regularized mixtures of density forecasts are not just straight-

forward adaptations of existing methods of combining point forecasts. They differ in impor-

tant and interesting ways.

1. The objective function changes. Things like “forecast errors” and the “sum of squared

errors” are ill-defined in the density case. Appropriate density forecast scoring rules

must be used. We have emphasized several, including the log score, the Brier score,

and the ranked score.
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2. The penalty function changes.

(a) When forming mixtures of density forecasts, the unit simplex constraint must be

imposed, and it has the side benefit of proving some regularization.

(b) Mixtures of density forecasts admit new regularization penalties that are inti-

mately connected to the maintained simplex constraint, by viewing the mixture

weights as a discrete probability distribution. We introduced several such penal-

ties, emphasizing Kullback-Leibler distance (entropy).

3. Finally (and we have not yet noted this), it is generally unnecessary to center reg-

ularization penalties around equal weights once the simplex constraint is imposed.

Shrinkage toward equal weights will be induced either way.

Consider, for example, the ridge+simplex penalty in equation (5), and consider cen-

tering around equal weights, as written, vs centering around 0. There is no difference,

because

K∑
k=1

(
ωk −

1

K

)2

=
K∑
k=1

ω2
k −

2

K

K∑
k=1

ωk +
1

K
=

K∑
k=1

ω2
k +

1− 2K

K
, (10)

where the last equality is due to the sum-to-one restriction embedded in the simplex

constraint.11 The intuition is simply that shrinkage toward 0 is impossible when main-

taining the sum-to-one restriction, and equal weights are as close to 0 as one can get.

4 Monte Carlo

We now explore the potential of our regularized mixture estimators via a small Monte Carlo

analysis. The data-generating process (DGP), which we assume to be known by the fore-

casters, is:

yt = xt + σyet, et ∼ iidN(0, 1)

xt = φxxt−1 + σxvt, vt ∼ iidN(0, 1),
(11)

where e and v are orthogonal at all leads and lags. y is the variable to be forecast, and xt can

be interpreted as the long-run component of yt. Individual forecasters receive heterogeneous

11In fact this equivalence holds as long as all weights are centered on the same value (it does not have to
be 1/K) and the weights are constrained to sum to to a bounded real value (it does not have to be 1).
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Table 1: Average Log Scores, DGP 1

Regularization group L # λ∗

Simplex -1.31 5.27 NA

Simplex + Ridge -1.15 20.00 2511.25

Simplex + Entropy -1.15 20.00 5.22

Subset Averages L # λ∗

Best N -Average:

N=1 -2.64 1.00 NA

N=2 -1.59 2.00 NA

N=3 -1.37 3.00 NA

N=4 -1.29 4.00 NA

N=5 -1.23 5.00 NA

N=6 -1.22 6.00 NA

N=7 -1.21 7.00 NA

N=8 -1.20 8.00 NA

N=9 -1.18 9.00 NA

N=10 -1.18 10.00 NA

N=15 -1.16 15.00 NA

N=20 -1.15 20.00 NA

Best ≤2-Average -1.61 2.00 NA

Best ≤3-Average -1.42 2.84 NA

Best ≤5-Average -1.34 3.63 NA

Best ≤10-Average -1.33 3.71 NA

Best ≤15-Average -1.33 3.71 NA

Best ≤20-Average -1.33 3.71 NA

Comparisons L # λ∗

Best -0.24 1 NA

95th Percentile -0.53 1 NA

Median -1.40 1 NA

5th Percentile -4.16 1 NA

Worst -12.19 1 NA

Simple K-Average -1.15 20 NA

Notes: L is the average log score, # is the average number of forecasters selected, λ∗ is the ex post optimal
penalty parameter, and K is the total number of forecasters. We perform 10,000 Monte Carlo replications.



Table 2: Average Log Scores, DGP 2

Regularization group L # λ∗

Simplex -1.29 4.74 NA

Simplex + Ridge -1.19 8.65 15.00

Simplex + Entropy -1.27 20.00 0.05

Subset Averages L # λ∗

Best N -Average:

N=1 -2.65 1.00 NA

N=2 -1.57 2.00 NA

N=3 -1.34 3.00 NA

N=4 -1.26 4.00 NA

N=5 -1.21 5.00 NA

N=6 -1.19 6.00 NA

N=7 -1.19 7.00 NA

N=8 -1.18 8.00 NA

N=9 -1.18 9.00 NA

N=10 -1.18 10.00 NA

N=15 -1.46 15.00 NA

N=20 -1.64 20.00 NA

Best ≤2-Average -1.57 2.00 NA

Best ≤3-Average -1.39 2.83 NA

Best ≤5-Average -1.33 3.46 NA

Best ≤10-Average -1.33 3.51 NA

Best ≤15-Average -1.33 3.51 NA

Best ≤20-Average -1.33 3.51 NA

Comparisons L # λ∗

Best -0.28 1 NA

95th Percentile -0.98 1 NA

Median -3.79 1 NA

5th Percentile -32.69 1 NA

Worst -182.42 1 NA

Simple K-Average -1.64 20 NA

Notes: L is the average log score, # is the average number of forecasters selected, λ∗ is the ex post optimal
penalty parameter, and K is the total number of forecasters. We perform 10,000 Monte Carlo replications.



Figure 1: Monte Carlo Estimates of Expected Mixture Performance vs Penalty Strength

Notes: We perform 10,000 Monte Carlo replications.



independent noisy signals about xt. For forecaster k we have

zkt = xt + σzkηkt, ηkt ∼ iidN(0, 1), (12)

where ηk and ηk′ are orthogonal at all leads and lags for all forecasters k and k′. Assume

that forecasters have a strong belief that the 1-step-ahead predictive density is Gaussian

with variance σ2
y , but that they don’t know its mean, and that forecaster k therefore uses

zkt, resulting in the predictive density

pkt(yt+1) = N(φzkt, σ
2
y). (13)

Note that in this environment, forecasters’ predictive densities differ only by their locations

(means).

We consider two parameterizations:

1. DGP 1: σzk=1 for all k

2. DGP 2: σzk=1 for k = 1, 2, ..., K
2

and σzk=5 for k = K
2

+1, ..., K,

where each DGP has common parameters φx=0.9, σx=1, σy=0.5. The two DGPs differ

only by the quality of the signals that forecasters receive. Under DGP 1 the simple average

should be preferred, because all signals are of the same quality, while under DGP 2 the linear

opinion rule should be preferred (at least asymptotically, so that estimation error vanishes),

giving more weight to forecasters k = 1, 2, ..., K
2

, who receive better signals.

To cohere with our subsequent empirical work, we explore K=T=20. We generate data,

estimate mixture weights, generate 1-step-ahead mixture densities, and evaluate them using

the log score objective. We repeat this 10,000 times and compute the average LPS for several

methods:

1. Simple Average

2. Simplex (equation (4))

3. Simplex+Ridge (equation (5))

4. Simplex+Entropy (equation (8))

5. Subset Averaging (equation (9) with λ→∞).
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For each of simplex+ridge and simplex+entropy, we explore 20 penalization strengths. For

simplex+ridge, we choose 10 equispaced points in [1e-15,10] and 10 equispaced points in

[15,10000]. For simplex+entropy we choose 10 equispaced points in [1e-15,0.2] and 10 equi-

spaced points in [0.3,20].

Numerical results appear in Tables 1 and 2, in which we present the the optimized average

log score for each method under DGPs 1 and 2, respectively. Graphical results appear in Fig-

ure 1, in which we show how the optimized score varies with regularization penalty strength

under DGPs 1 and 2, respectively. Under DGP 1, simple averaging performs well, and un-

regularized simplex performs poorly, as expected. As the strength of shrinkage gets heavier,

the performance of both simplex+entropy and simplex+ridge improves monotonically until

they perform as well as the simple average (full shrinkage). In addition, the performance of

simplex+entropy improves more quickly than that of simplex+ridge as shrinkage strength

increases and dominates throughout. Finally, subset averaging performs admirably under

DGP 1, and as expected the optimal “subset” includes all forecasters.

Under DGP 2, simplex is expected to perform well, and simple averaging is expected

to perform poorly. Simplex does indeed outperform simple averaging. Moreover, both sim-

plex+ridge and simplex+entropy behave as expected. For little shrinkage (toward the left),

their performance is similar to that of simplex, and for heavy shrinkage (toward the right),

their performance is similar to that of the simple average. In between, for moderate amounts

of shrinkage, they outperform simplex. In that region, regularized simplex improves on un-

regularized simplex, because the large unregularized simplex estimation error makes it likely

that some relevant forecasters are dropped from the pool, and regularization brings them

back. Importantly, subset averaging continues to perform admirably under DGP 2, but now

the optimal average involves only 10 or so forecasters, as expected.

It is important to note that the performance documented in Tables 1 and 2, and in Figure

1, is almost surely not achievable in practice, because it requires ex post omniscience (use

of the ex post optimal penalty parameter for the regularized estimators, and use of the ex

post optimal N for the N -averages.) Nevertheless the results are informative, because they

document what can be achieved in principle, even if not in practice. Practical performance

is an empirical matter, to which we now turn, in a detailed application to density forecasts

of Eurozone inflation and real interest rates.
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Figure 2: Individual and Average Density Forecasts, Eurozone Inflation, 2004Q4 (left) and
2018Q4 (right)

Notes: We show the individual survey forecasts in gray (as frequency polygons), and the average forecast in
orange (as a histogram).

5 Eurozone Inflation and Real Interest Rate Forecasts

Here we use our methods to construct regularized mixtures of density forecasts for Eurozone

inflation and real interest rates. Expected inflation is a key driver of the bond market

via its direct impact on nominal interest rates. Expected inflation may also negatively

impact real growth, and hence the stock market, insofar as it “puts sand in the Walrasian

gears”, as classically emphasized by Bresciani-Turroni (1937). High inflation, moreover, also

tends to be volatile inflation (Friedman, 1977), which adds additional sand.12 Expected

inflation is also a key part of the ex ante real interest rate, which in turn is a key guide to

intertemporal allocation and a key link between macroeconomic fundamentals and financial

markets. From a variety of angles, then, inflation forecasts are central to financial markets,

the macroeconomy, and the interface.

5.1 Data

Following the pathbreaking work of Conflitti et al. (2015), we study inflation density forecasts

from the European Central Bank Survey of Professional Forecasters (ECB-SPF), which has

been undertaken since 1999. Participants are surveyed quarterly, in January, April, July,

12See also Chen et al. (1986).
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and October.13 Our forecast sample contains 83 quarterly surveys, starting in 1999Q1 and

ending in 2019Q3.

As an entrée into the data, in Figure 2 we show all forecasts expressed as frequency

polygons, and the simple average forecast expressed as a histogram, for two illustrative

surveys (2004Q4, 2018Q4). Substantial differences are apparent at the two survey dates.

The simple average forecast in 2004Q4, for example, puts 2.3% probability on the event that

the inflation rate is less than 1%, whereas in 2018Q4 it puts 10.5% probability on the same

event. Continuing, in the top panel of Figure 3 we show the complete time series of simple

average forecasts. Again, large movements are evident over time, in both location and scale.

The precise Euro-area inflation forecast target is the percentage change in the Harmonised

[sic] Index of Consumer Prices (HICP), for the year following the forecast.14 For example,

when the survey was conducted in October 2017 (2017Q4), HICP inflation data were available

up to September 2017, so the 2017Q4 survey asks for a forecast for the year from October

2017 through September 2018. Our realization sample, matched to our forecast sample,

contains 83 quarterly observations, starting in December 1999 and ending in June 2020.

We will soon obtain mixture densities using the log score objective and several regular-

izations, including simplex, simplex+ridge, simplex+entropy, and subset averaging. Before

proceeding to empirical results, however, we address several issues.

5.1.1 Survey Entry and Exit

First, forecasters can enter and exit the survey pool. There are 103 unique forecasters

between 1999Q1 and 2019Q4, and no forecaster appears in the pool continuously. Following

Genre et al. (2013), we proceed by first excluding forecasters who miss more than four

consecutive surveys, which leaves 18 forecasters. Then we interpolate the remaining gaps

based on historical performance.15

13See https://www.ecb.europa.eu/stats/ecb_surveys/survey_of_professional_forecasters/

html/index.en.html.
14Eurostat, Harmonized Index of Consumer Prices: All Items for Euro area (19 countries)

[CP0000EZ19M086NEST], Retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.

stlouisfed.org/series/CP0000EZ19M086NEST.
15More precisely, we fill in the gaps in the first survey (t=1, 1999Q1) with the average of non-missing

forecasts from all other available forecasters. Then we calculate the ranked score for each forecaster and
divide them into five mutually exclusive groups based on the score, and move to the second survey. At
each of the following rounds (t = 2, 3, ..., T ), we set the missing observations of a particular forecaster to
the average of non-missing forecasts from her group, and then using the full set of forecasts we re-calculate
ranked scores and update the group structure for use in the next round.
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5.1.2 Time-Varying Bin Definitions

Second, outcome bin definitions vary over time. Although bin definitions have been stable

for mid-range “standard” inflation values, extreme tail bins have become finer over time,

as realizations fell in the tails. For example, for high inflation, there was originally a >3.5

bin, but it was eventually split into 3.5-4 and >4 bins.16 We proceed by merging extreme

tail bins sufficiently to produce 11 bin definitions, fixed for the entire sample: (−∞,−0.5],

(−0.5, 0], (0, 0.5], ..., (3.5, 4], (4,∞].

5.1.3 Zero-Probability Realizations

Finally, complications can arise with the log-score objective. Consider, for example, the

survey forecast:

y ∈



(−∞, 1.5] w.p. = 0

(1.5, 2.0] w.p. = .3

(2.0, 2.5] w.p. = .5

(2.5, 3.0] w.p. = .2

(3.0,∞] w.p. = 0.

(14)

The zero probabilities assigned to the leftmost and rightmost bins obviously create a problem

(infinite loss) for the log-score objective, due to its use of logs, if a realization occurs that

was assigned zero probability.

Zero-probability realizations rarely, but occasionally, appear in our data. Sometimes they

occur in edge bins (e.g., (4,∞]), because forecasters sometimes fail to put positive probability

on those bins. In addition to the edge-bin phenomenon, some forecasters’ histograms are

simply too sharp, and they sometimes put zero probability on an interior bin that eventually

contains the realization.

One can address the log score “zero problem” by requiring the survey bin into which the

realization falls to have been assigned at least some small probability, say 1%. We achieve

this by assigning 1% probability to the bin containing the realization if it had originally been

assigned 0, where the 1% is taken in equal shares from the bins originally assigned non-zero

probability.17

16During our sample period the number of bins started at 9, peaked at 14 during the Great recession, and
eventually dropped to 12.

17One could of course switch to another objective, but the log score objective is simple and deservedly
popular, which is why we have used it throughout this paper as a leading case for both our theory and Monte
Carlo. We will continue to use it for our empirical work, where it is also deservedly popular, despite the zero

21



Table 3: Log Scores for Eurozone Inflation

Regularized Mixtures L #

Simplex -1.88 3.52

Simplex+Ridge -1.86 4.99

Simplex+Entropy -1.87 19

Best 4-Average: -1.87 4

Best ≤4-Average -1.90 2.24

ECB/SPF Comparisons L #

Best -2.02 1

90% -2.04 1

70% -2.13 1

Median -2.17 1

Worst -2.56 1

Simple Average -1.98 18

Notes: We show log scores for 1-year-ahead Eurozone inflation density forecasts, made quarterly, using a
20-quarter rolling estimation window. The burn-in sample is 1999Q1-2000Q4, and the forecast evaluation
sample is 2001Q1-2019Q3 (75 quarters). There are 18 ECB-SPF density forecasters in the pool, plus a 19th
forecaster whose predictive density is constant and uniform, for a total of 19 forecasters. L is the log score,
and # is the average number of forecasters selected. Results for Simplex+Ridge and Simplex+Entropy are
based on ex post optimal penalty parameters. See text for details.

5.2 Empirical Results

There are 18 ECB-SPF density forecasters in the pool. We also include a fictitious 19th

forecaster whose predictive density is constant and uniform, in rough parallel to including

a constant in point forecast combining regressions, for a total of 19 forecasters. Doing so

appears desirable a priori in the spirit of Granger and Ramanathan (1984).18

Results appear in Table 3. Strikingly, each regularized mixture outperforms each ECB/SPF

individual forecaster (even the ex post best forecaster). To get a feel for the size of the im-

provement, note that the log score of the Best ≤4-Average, for example, is approximately

15% better than that of the median individual forecaster, and 7% better than that of the

ex post best individual forecaster. Each regularized mixture also outperforms the simple

average, which in turn outperforms the ECB/SPF forecasts.

Table 3 also reveals that the average number of forecasters selected after regularization is

problem.
18Moreover, it constrains the mixture density to put positive probability on each histogram bin as long

as the uniform forecaster gets a non-zero mixture weight, in which case the earlier-discussed log score “zero
problem” vanishes.
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Figure 3: Density Forecast Mixtures Over Time, Eurozone Inflation

Notes: We show density forecast mixtures expressed as frequency polygons. The forecasts are quarterly,
from 1999Q1 to 2019Q3.

always small, regardless of the regularization method.19 Simultaneously, both the log scores

in Table 3 and the graphs in the bottom two panels of Figure 3 reveal that the Simplex and

Best Average regularized mixtures are almost identical, suggesting that the Simplex solution

is effectively dropping all but a few forecasts and simply averaging the survivors, producing

something very close to a Best 4-Average.

The good performance of both Simplex and Best Average is particularly noteworthy

insofar as they do not require tuning.20 That is, quite remarkably, the Simplex and Best

Average regularizations perform as well as those requiring choice of tuning parameters (Sim-

plex+Ridge and Simplex+Entropy), despite the fact that we evaluate the latter in Table 3

19Simplex+Entropy selects all 19 forecasters, but Simplex+Entropy must select all 19 forecasters, because
log(ωk)→∞ as ωk→0. All regularizations capable of selecting only a few forecasters do in fact select only a
few.

20Strictly speaking, Best Average procedures require some slight tuning – a choice of N – although we are
comfortable with simply always adopting N= 4.

23



Figure 4: Differences Between Regularized Mixtures and the Simple Average Mixture, Eu-
rozone Inflation

Notes: We show heat maps of differences between a regularized mixture (Simplex or Best ≤4-Average) and
the simple average mixture. Red shadings indicate bin probability increases in the Simplex or Best ≤4-
Average regularized mixture, and blue shadings indicate bin probability decreases. We also superimpose the
realized Eurozone inflation rate.

using ex post optimal tuning parameters, which is not feasible in real time.

Figure 3 merits additional examination. If its middle and bottom panels reveal that

the Simplex and Best Average regularized mixtures are nearly identical, a comparison of

those panels with the top panel also reveals that (1) Simplex / Best Average regularization

is nevertheless very different from a simple average, and (2) the effects of Simplex / Best

Average regularization differ strikingly before and after the onset of the Great Recession.

Before the onset of the Great Recession, Simplex / Best Average regularization moves prob-

ability mass upward toward higher inflation relative to simple averaging, particularly from

the 1.0%-1.5% range to the 1.5%-2.5% range, mostly adjusting density forecast location and

symmetry. After that, however, Simplex / Best Average regularization spreads probability

mass from the center into both tails of the distribution, from the 1.0%-2.5% range outward

to below 0.5% and above 3.0%, mostly adjusting density forecast dispersion and kurtosis.

The regularization effects, and their structural shift at the onset of the Great Recession, are
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Figure 5: PIT Histograms, Eurozone Inflation

Notes: We show PIT histograms for Simple Average and Best ≤4-Average mixtures. The first subsample
ends in 2007Q4, and the second subsample begins in 2008Q1. We show pointwise binomial confidence bands
in red under PIT ∼ iidU(0, 1).

revealed even more clearly in the heatmaps shown in Figure 4.

It is informative to examine and compare probability integral transforms (PIT s) for vari-

ous mixtures. Diebold et al. (1998) consider the continuous case, in which the PIT is defined

as PITt =
∫ yt
−∞ pt(u)du, and show that correct conditional calibration of density forecasts

implies that PIT ∼ iid U(0, 1). Czado et al. (2009) extend the evaluation framework to

the discrete case and show that the result still holds for an appropriate discrete PIT defini-

tion. To assess uniformity, and any patterns in deviations from uniformity, in Figure 5 we

show histograms of the Czado et al. (2009) discrete PIT for the Simple Average and Best

≤4-Average mixtures.21

The PIT histograms reveal problems with the Simple Average mixture, which match

our discussion of the two regimes in Figures 3 and 4, and which are ameliorated by the

Best ≤4-Average regularization. In particular, the Simple Average PIT histograms show

noticeable deviations from uniformity in both subsamples, and the shapes of the deviations

are very different.

21There is no need to show the Simplex PIT because the Simplex and Best ≤4-Average mixtures are
almost identical, as discussed earlier.
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Figure 6: Density Forecast Mixtures Over Time, Eurozone Real Interest Rate

Notes: We show density forecast mixtures expressed as frequency polygons. The forecasts are quarterly,
from 1999Q1 to 2019Q3.

In the first subsample, the Simple Average PIT histogram is highly skewed as shown in

the upper-left panel of Figure 5, with far too little probability mass near 0 and far too much

near 1, again indicating too many large inflation realizations relative to the Simple Average

density forecasts. Regularization, however, shifts the densities upward as discussed earlier,

producing an improved (if still imperfect) ≤4-Average PIT as seen in the bottom left panel

of Figure 5.

In the second subsample, the Simple Average PIT histogram is more U-shaped as shown

in the upper-right panel of Figure 5. In this regime the regularization spreads out the

densities as discussed earlier, better accommodating the tail realizations and producing an

improved Best ≤4-Average PIT as seen in the bottom right panel of Figure 5.

Finally, in parallel to our earlier examination of ECB/SPF inflation forecasts, we examine

real interest rate density forecasts. The real interest rate density is a simple sign change and

location shift of the inflation density:

f(rt,t+1) = it,t+1 − f(πt,t+1), (15)

where r denotes the real interest rate, i denotes the nominal interest rate, and π denotes

inflation. Real interest rate densities are of course driven by the inflation densities via

equation (15), but it is nevertheless interesting to make the translation into the real cost of

borrowing.

In Figure 6 we show the Simple Average and Best ≤4-Average real interest rate density

forecasts, and in Figure 7 we show the differences between them, together with the realiza-

26



Figure 7: Difference Between the Best ≤4-Average Mixture and the Simple Average Mixture,
Eurozone Real Interest Rate

Notes: We show a heat map of the difference between the Best ≤4-Average mixture and the Simple Average
mixture. Red shadings indicate probability increases in the Best ≤4-Average mixture, and blue shadings
indicate probability decreases. We also superimpose the realized Eurozone real interest rate.

tions.22 One is immediately struck by the high probability assigned to negative real rates

through much of the sample. P (rt,t+1)<0 is, for example, routinely greater than 1/2 since

the end of the Great Recession, and the realized real rates often are negative.

Nevertheless our earlier inflation patterns and lessons remain firmly intact, because real

interest rate density forecasts are driven by inflation density forecasts. There are two clear

real interest rate “regularization regimes,” demarcated by the onset of the Great Recession.

In the first, real interest rate densities are pushed downward, because, as discussed earlier,

regularization pushes inflation densities upward. In the second, real interest rate densities

are made more dispersed, because regularization makes inflation densities more dispersed.

6 Concluding Remarks and Directions for Future Re-

search

We have proposed methods for constructing regularized mixtures of density forecasts, ex-

ploring a variety of objectives and penalties, which we used in a substantive exploration

22There is no need to show regularized estimation results for real interest rates, because the log score is
invariant to the switch from inflation to real interest rate density forecasts defined by equation (15). There
is also no need to include Simplex panels in Figures 6 and 7, because the Simplex and Best ≤4-Average
inflation density regularizations, and hence real interest rate density regularizations, are nearly identical.
And finally, there is also no need to show real interest rate PIT histograms, because they are exact mirror
images of the inflation PIT histograms in Figure 5, as revealed by equation (15).
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of Eurozone inflation and real interest rate survey density forecasts. All individual survey

forecasters (even the ex post best forecaster) are outperformed by our regularized mixtures.

The log scores of the Simplex and Best-Average mixtures, for example, are approximately

7% better than that of the ex post best individual forecaster, and 15% better than that of the

ex post median forecaster. Before the Great Recession, regularization shifts inflation den-

sity locations upward toward higher inflation, and hence real interest rate density locations

downward, correcting for bias. From the Great Recession onward, the regularization tends

to move probability mass from the centers to the tails of both inflation and real interest rate

density forecasts, correcting for overconfidence.

A variety of avenues for future research are possible. For example, one could use the

probability integral transform as a regularized mixture estimation objective, minimizing a

goodness-of-fit statistic (e.g., Kolmogorov-Smirnov) for testing the joint hypothesis of an

iid U(0, 1) probability integral transform.

Second, one could broaden our approach to allow for nonlinear mixtures as in recent work

by Takanashi and McCalinn (2020), flexibly time-varying mixture weights as in Jore et al.

(2010), and mixture weights that vary over regions of density support, as in Kapetanios et al.

(2015).

Finally, although we did not emphasize regularization methods that require hyperparam-

eter selection in our empirical work (Simplex+Ridge or Simplex+Entropy), they nevertheless

represent interesting directions for future exploration. An obvious issue is feasible real-time

hyperparameter selection.
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Appendices

A Derivation of the Simplex+Entropy Regularized Es-

timator

The Simplex+Entropy estimator solves the optimization problem:

ω̂ = arg min
ω

−
T∑
t=1

log

(
K∑
k=1

ωkfk,t(yt)

)
︸ ︷︷ ︸

log score

+ (α− 1)

(
−

K∑
k=1

log(ωk)

)
︸ ︷︷ ︸

entropy penalty

 (A.1)

s.t. ωk ∈ (0, 1),
K∑
k=1

ωk = 1.

As we will show, this it arises as the posterior mode in a Bayesian analysis with (1) log like-

lihood given by the log score, and (2) Dirichlet prior, which puts positive probability only on

the unit simplex but also shrinks toward equal weights for a certain hyperparameter configu-

ration. In particular, the K-dimensional Dirichlet prior is governed by K hyperparameters,

and when they equal, the prior mean is 1/K. Hence the simplex+entropy regularization (8)

with equal prior hyperparameters does the same thing as simplex+ridge (5): Impose simplex

and shrink toward equal weights.

A.1 Prior

The Dirichlet prior on ω = (ω1, ω2, ..., ωK) with hyperparameter α = (α1, α2, ..., αK) is

fD(ω;α) =
1

B(α)

K∏
k=1

ωαk−1
k ,

where B(·) is the beta function, αk > 0 ∀k ∈ 1, ..., K, and the support of ω is ωk∈(0, 1) with∑K
k=1 ωk = 1.

As is well known, the Dirichlet mean and variance are:

E(ωi) =
αi∑K
k=1 αk
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and

var(ωi) =

αi∑K
k=1 αk

(
1− αi∑K

k=1 αk

)
1 +

∑K
k=1 αk

.

Hence when α1 = α2 = ... = αK = α, we have

E[ωk] = 1/K

and

V ar(ωk) =
K − 1

αK3 + K2
,

for all k = 1, ..., K. That is, the prior is centered on equal weights 1/K, and var(ωk)→0 as

α→∞, so that α governs prior precision, with larger α producing heavier shrinkage toward

1/K.

A.2 Posterior

The posterior distribution is

fD(ω|y;α) =
T∏
t=1

(
K∑
k=1

ωkfk,t(yt)

)
︸ ︷︷ ︸

pseudo-likelihood

× 1

B(α)

K∏
k=1

ωα−1k︸ ︷︷ ︸
prior

,

so the log posterior is

log fD(ω;α) =
T∑
t=1

log

(
K∑
k=1

ωkfk,t(yt)

)
+ (α− 1)

K∑
k=1

log(ωk)− logB(α).

Because B(α) does not depend on ω, we can drop the last term, so the posterior mode is

ω̂ = arg min
ω

−
T∑
t=1

log

(
K∑
k=1

ωkfk,t(yt)

)
︸ ︷︷ ︸

Log score

+ (α− 1)

(
−

K∑
k=1

log(ωk)

)
︸ ︷︷ ︸

penalty

 (A.2)

s.t. ωk ∈ (0, 1),
K∑
k=1

ωk = 1.
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A.3 Understanding the Penalty Term

One way to understand the penalty term is to recall the solution to the empirical likelihood

maximization problem of Owen (2001),

arg min
ω

(
−

K∑
k=1

log(ωk)

)

s.t. ωk ∈ (0, 1),
K∑
k=1

ωk = 1,

which is equal weights, ωk=1/K, ∀k. Hence we see that the penalty part of (A.2) is minimized

at ωk=1/K, which yields a clear interpretation of the penalty term. Larger α means a tighter

prior on ω, with heavier shrinkage toward equal weights. Several interesting limiting cases

emerge. First, for α→∞, the penalty term dominates, and the optimal solution is equal

weights. Second, for α→1, the penalty term vanishes, and the optimal solution matches

that of the optimal linear pool, with simplex constraint imposed. Third, there is a upper

bound for var(ωk): as α→0, var(ωk)→(K − 1)/K2.

A.4 Remarks

1. The entropy regularization optimization problem is convex, because both the the log-

score and the penalty are convex. A closed form may not exist for the regularized ω,

but convexity makes numerical computation straightforward.

2. Entropy regularization has a clear parallel to ridge regularization. As is well known,

ridge regularization emerges as the posterior mode in a Bayesian analysis with Gaussian

prior, and as we have shown, entropy regularization emerges as posterior mode in a

Bayesian analysis with Dirichlet prior. Both regularizations, moreover, are governed

by a single parameter linked to prior precision.

3. If the effects of the ridge and entropy penalties are very similar in certain respects

(imposition of simplex and shrinkage toward 1/K), their full Bayesian interpretations

are nevertheless different. In particular, the ridge (Gaussian) and entropy (Dirichlet)

priors differ, even if their means are the same (1/K), and so the posteriors differ. For

α < 1 the Dirichlet prior distribution may not even have a single mode.
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