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Abstract

We propose a class of dynamic models that capture subjective (and hence unob-
servable) constraints on the amount of information a decision maker can acquire, pay
attention to, or absorb, via an Information Choice Process (icp). An icp specifies the
information that can be acquired about the payoff-relevant state in the current period,
and how this choice affects what can be learned in the future. In spite of their generality,
wherein icps can accommodate any dependence of the information constraint on the
history of information choices and state realizations, we show that the constraints
imposed by them are identified up to a dynamic extension of Blackwell dominance.
All the other parameters of the model are also uniquely identified. Behaviorally, the
model is characterized by a novel recursive application of static properties.

Key Words: Dynamic Preferences, Information Choice Process, Dynamic Blackwell
Dominance, Rational Inattention, Subjective Markov Decision Process

JEL Classification: D80, D81, D90

1. Introduction

In a typical dynamic choice problem, a decision maker (henceforth dm) must choose
an action that, contingent on the state of the world, determines a payoff for the
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current period as well as the collection of actions available in the next period. A
standard example is a consumption-investment problem, wherein dm simultaneously
chooses what to consume and how to invest his residual wealth, thereby determining
the consumption-investment choices available to him in the future, contingent on the
evolution of the stock market and retail prices.

Faced with a dynamic choice problem, dm wants to acquire information about
the state of the world, but often is constrained by the amount of information he can
acquire, pay attention to, or simply absorb. For example, consumers cannot at all times
be aware of relevant prices at all possible retailers and firms have limited resources
they can expend on market analysis. While accounting for such information constraints
can significantly change theoretical predictions (see, for instance, Geanakoplos and
Milgrom (1991), Stigler (1961), Persico (2000), and the literature on rational inattention
pioneered by Sims (1998, 2003)), an inherent difficulty in modeling them, as well as
the actual choice of information, is that they are often private and unobservable.

In this paper we provide — and fully identify — a class of dynamic models
that incorporate intertemporal information constraints. Just as with intertemporal
budget constraints, these constraints have the property that information choice in one
period can affect the set of feasible information choices in the future. However, unlike
budget constraints, they need not be linear and can accommodate many patterns,
such as developing expertise in processing information or feeling fatigued after paying
a lot of attention. Indeed, our information constraints can encode arbitrary history
dependence.1 Our framework unifies behavioral phenomena that arise in the presence
of such constraints, regardless of their nature; that is, it applies whether the constraints
are cognitive, so that individuals have limited ability to take into account available
information, or physical, where they reflect the scarcity of information.

To fix ideas, suppose in each period dm can manage his portfolio by choosing
from a set of possible investments. Depending on the state of the economy, each choice
of investment results in an instantaneous payoff (eg, a dividend) and a new realization
of the monetary value of the portfolio, which determines the continuation investment
problem for the next period. Further suppose that to improve his portfolio choice, dm
can acquire information about the true state in a way that may also affect the feasible
set of information strategies in the next period. For instance, it may be that dm is

(1) This is in contrast, for instance, to extant dynamic models of rational inattention, which typically
assume that attention constraints (or direct information costs) are time-separable. For a sampling
of such models, see Sims (2011).
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subject to fatigue, and so can acquire information only if he did not do so in the last
period. Alternatively, he may gain expertise, so that acquiring a particular piece of
information in one period makes it easier to acquire that same information in subsequent
periods. These information constraints may become increasingly complicated as the
length of dm’s history of past choices grows. The difficulty for the analyst is that
while the actual portfolio choice is in principle observable, dm’s information choice,
and it’s impact on the feasibility of subsequent information strategies, is typically not.
The following two questions are natural:
(a) Can (unobservable) information constraints be identified from dm’s preferences

and what type of data is needed to achieve this identification?
(b) What observable choice behavior can be rationalized by unobservable information

choices?
Our first main result (Theorem 1) shows that the class of dynamic choice

problems we consider is sufficiently rich to identify the entire set of parameters govern-
ing dm’s preferences over those problems; the parameters being (i) state dependent
utilities, (ii) (time varying) beliefs about the state, (iii) the discount factor, and (iv) the
information constraint up to a dynamic extension of Blackwell informativeness.2 This
answers question (a) above. Identifying the subjectively controlled process (which we
call Information Choice Process, or simply icp) from behavior is our main conceptual
contribution. We should mention that since our focus is on the novel dynamic aspect
of the information constraint, we allow any history dependence (see examples in
Section 2), but make the model as tractable as possible otherwise. We will discuss the
behavioral content of the main restrictions we impose in Section 3.3, right after laying
out the formal model.

Apart from establishing that our model does not have free parameters, we
see three main benefits of this result. First, it establishes that one snapshot of
preferences over continuation problems is sufficient to forecast future choice frequencies
between continuation problems for any menu of acts (where each act results in a
state-contingent lottery that yields current consumption and a new menu of acts for
the next period) and after any history of state realizations. Second, in Theorem 2
we use the identification result to show that comparing individuals with respect to
their affinity for dynamic choice amounts to comparing who has, in a well defined

(2) Earlier work has demonstrated how to identify information constraints from observed choice
data in static settings (see de Oliveira et al. (2017) and Ellis (2018)). We discuss the relation
with these papers and others in Section 6.
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sense, more informative information plans available. Third, identifying information
constraints can be important for policy decisions. Mullainathan and Shafir (2013),
for example, suggest that poorer people make suboptimal investment choices because
they face too many demands on their time or cognitive resources to fully inform
themselves. In order to ameliorate the effects of such constraints, a policy maker must
first understand them.

Our second main result (Theorem 3) answers (b), and provides behavioral
foundations for the model. The main challenge is that we cannot condition continuation
preferences directly on the status of the subjectively controlled process that governs
dm’s flow of information. We overcome this by showing that it suffices to condition
on the history of appropriately constrained choices between acts. In effect, a decision-
theoretic version of the dynamic programming principle then lets us impose our
axioms recursively, even after histories that have subjective (and hence unobservable)
components. The construction of the representation is based on an idea that is similar
to self-generation as introduced by Abreu, Pearce, and Stacchetti (1990), but applied
to preferences.

The paper is organized as follows. Section 2 presents examples of icps and
some of the behavioral patterns they can generate. Section 3 introduces the analytical
framework, states our utility representation, and describes our notion of comparative
informativeness for icps. Section 4 establishes our identification result. Section 5
discusses our axiomatic approach, and provides the representation theorem. Section 6
surveys the most related decision-theoretic literature. All proofs are in the appendices.

2. Examples of ICPs and Patterns of Behavior

An icp is an entirely subjective control problem, which specifies how future information
constraints depend on past choices of information. Formally, an icp is parametrized
by a control state θ, a function Γ(θ) that determines the set of feasible partitions of
the space of payoff relevant states S, and an operator τ that governs the transition
of θ in response to the choice of partition and the realization of s ∈ S. A trivial icp,
where Γ(θ) is always a singleton, corresponds to dm facing an exogenous information
process, and so our framework subsumes the standard model of dynamic decision
making without information choice. Another special case is where Γ(θ) is independent
of θ and is non-trivial, so that the set of available signals is constant over time.

The novelty in our theory is that icps can accommodate arbitrary history
dependence. We first describe an icp that is based on models in the literature on
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managerial decision making and constrains the accumulation of human capital, or
expertise, from experience.3

Example 2.1. (Geanakoplos and Milgrom (1991) meets Bolton and Dewatripont
(1994)). Following Geanakoplos and Milgrom (1991), suppose a manager needs to
process information from N different sources and has total time κ to allocate among
them each period. Allocating time κi to source i yields the partition P i

θiκi
, where θi

is a parameter measuring the manager’s efficiency in processing information from
source i, and P i

σ becomes (weakly) finer as σ increases. The manager’s information
in a given period is the coarsest refinement of all the partitions he chooses. With
θ = (θ1, . . . , θN) ∈ RN

+ as the information control state, the information constraint is
then

Γ(θ) =

{
P : P = P 1

θ1κ1
∨ · · · ∨ PN

θNκN
with

∑
i

κi ≤ κ

}

Bolton and Dewatripont (1994) consider a dynamic setting where processing infor-
mation of a particular kind in a given period makes it easier to repeat the same task
in the future. We can adapt the formulation of Geanakoplos and Milgrom (1991) to
this dynamic setting as follows.4 Interpret κ as the time available between any two
periods to allocate among the different information sources. To specify a simple rule
for the evolution of the manager’s efficiency in processing information, fix λ > 0 and
β ∈ (0, 1), and let τ(θ, (κi), s) = θ′ ∈ RN

+ be given by

θ′i := (1− β)θiλκi + βθi for i = 1, . . . , N

The parameter β measures the persistence of expertise over time, so a greater β means
that expertise gained in one period carries over to the next to a greater extent. The
parameter λ measures the marginal impact on expertise of spending more time on
an information source. It is easy to see that θi increases from one period to the next
if, and only if, κi ≥ 1/λ in that period. In the interesting case where κ ≤ N/λ, this

(3) We refer exclusively to expertise that improves an individual’s ability to make the right decision,
rather than the ability to execute that decision. See Currie and MacLeod (2017) for a discussion
of the two types of expertise in the context of medical decision making.

(4) Bolton and Dewatripont (1994) do not explicitly model constraints on information processing.
Instead, they directly assume that agents learn the most relevant information each period, and
that repetition makes the agent better at processing information. Instead, our example allows
the agent to choose directly which source of information he repeatedly (and hence more and
more efficiently) processes.
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amounts to requiring that κi/κ ≥ 1/N , which, in turns, implies that to gain expertise
in processing one source of information, the manager must lose expertise in another.

Our next example builds on the entropy based constraints found in the literature
on rational inattention, for example in Maćkowiak and Wiederholdt (2009), and on an
analogy between optimal choice of information and a standard consumption-investment
problem.

Example 2.2. In each period dm receives an attention income κ ≥ 0. Any stock
of attention not used in the current period can be carried over to the next one at
a decay rate of β. Let K denote the attention stock in the beginning of a period.
Learning the partition P costs c (P ), for some cost function c (measured in units
of attention and not utils).5 Formally, with attention stock K, any partition P ∈
Γ (K) = {P : c (P ) ≤ K + κ} can be chosen, whereupon the stock transitions to
K ′ = τ (K,P ) = β [K + κ− c (P )] to determine the continuation constraint. An icp
of this sort is parametrized by the 4-tuple (K0, κ, c, β) where K0 is the initial stock of
attention. The case with β = 0 corresponds to a typical per period constraint in the
literature on rational inattention.

In order to incorporate expertise in this example, suppose the cost of learning
a partition depends on past choices. In particular, if partition Q was chosen in the
previous period, then the cost of learning P now is c(P | Q) = (1− b)Hµ(P ) + bHµ(P |
Q), where, given a probability µ over S, Hµ(P ) is the entropy of P and Hµ(P | Q)

is the relative entropy of P with respect to Q. Note that Hµ(P | P ) = 0 and hence
c(P, P ) = (1− b)Hµ(P ). That is, while learning P initially costs Hµ (P ), learning P
again in the subsequent period costs only a fraction (1− b) thereof. The parameter b
measures the degree to which dm can gain expertise.

Examples 2.1 and 2.2 capture, in alternative ways, the notion of expertise in
processing information, that is, a complementarity between information processed in
different periods. This can lead to a ‘locked-in’ phenomenon, where dm is reluctant to
switch away from familiar choice problems, even in favor of options that are deemed
superior in the absence of familiarity.6

(5) For example, as is common in the rational inattention literature, c (P ) can be the entropy of P
calculated using some probability distribution over S.

(6) It has been argued that home bias in portfolio choice among investors who manage their own
portfolio (rather than use index funds) is driven by informational advantages — see Coeurdacier
and Rey (2013). Evidence that this bias persists in favor of the old home even after a move to a
new location — see Massa and Simonov (2006) — nicely illustrates this phenomenon.
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icps can also accommodate fatigue in acquiring information, for instance when
acquiring information now diminishes the ability to do so in the future, as in Example
2.2 for β > 0. A similar mechanism that gives rise to fatigue is resource exhaustion,
where dm is endowed with an initial stock of attention which he draws down whenever
he chooses to learn.

We note that every icp has a finite horizon truncation that mimics the original
icp for t periods, after which it admits only the coarsest partition. One of our technical
contributions lies in metrizing the space of icps and showing that every icp can be
approximated by its finite horizon truncations.

3. Representation with Information Choice Processes

3.1. Domain

Let S be a finite set of objective or observable states. For any compact metric space
Y , we denote by ∆(Y ) the space of probability measures over Y , by F(Y ) the set of
acts that map each s ∈ S to an element of Y , and by K(Y ) the space of closed and
non-empty subsets of Y .

Let C be a compact metric space representing consumption. A one-period
consumption problem is x1 ∈ X1 := K

(
F(∆(C))

)
. It consists of a menu of acts, each

of which results in a state-dependent lottery over instantaneous consumption prizes.
Then, the space of two-period consumption problems is X2 := K

(
F(∆(C ×X1))

)
, so

that each two-period problem consists of a menu of acts, each of which results in a
lottery over consumption and a one-period problem for the next period. Proceeding
inductively, we may define t-period problems as Xt := K

(
F(∆(C ×Xt−1))

)
.

Our domain consists of infinite horizon dynamic choice problems (henceforth,
choice problems, or simply menus) and is denoted by X which is itself homeomorphic to
K
(
F(∆(C×X))

)
.7 Note that both current and the continuation menus are in X. For

any x, y ∈ X and t ∈ [0, 1], we let tx+ (1− t)y := {tf + (1− t)g : f ∈ x, g ∈ y} ∈ X.
A consumption stream is a degenerate choice problem that does not involve

choice at any point in time. As we show in Appendix D, the space L of all consumption
streams can be written recursively as L ' F(∆(C × L)). Thus, each ` ∈ L is an act
that yields a state-dependent lottery over instantaneous consumption and continuation
consumption streams (an `′ ∈ L). There is a natural embedding of L in X. We analyze
dm’s preference relation % over X, and denote its restriction to L by % |L.

(7) The homeomorphism is written as X 'K
(
F(∆(C ×X))

)
. See Appendix A.2 for details.
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The spaceX of menus subsumes some domains previously studied in the literature.
For instance, if S is a singleton, X reduces to the domain considered by Gul and
Pesendorfer (2004). Furthermore, if the horizon is also finite, it reduces to the domain
in Kreps and Porteus (1978). The subspace L of consumption streams is also a subspace
of the domain in Krishna and Sadowski (2014).

3.2. icp-Representation

Given a menu x, dm chooses a partition in every period. Let P be the space of all
partitions of S. dm’s choice of partition is constrained by an Information Choice
Process (icp). Formally, an icp is a tuple M= (Θ,Γ, τ, θ0), where Θ is a set of control
states; the mapping Γ : Θ→ 2P \∅ specifies the set of feasible partitions in a given
control state θ; the transition operator τ : P×Θ× S → Θ determines the transition
of the control state θ, given a particular choice of partition and the realization of an
objective state; and θ0 is the initial control state. Let M be the space of icps.

In addition, let (us)s∈S be a collection of real-valued continuous functions on
C such that at least one us is non-constant and let δ ∈ (0, 1) be a discount factor.
Let Π be a fully connected transition operator for a Markov process on S, where
Π(s, s′) =: πs(s

′) is the probability of transitioning from state s to state s′ and
Π(s, s′) > 0 for all s, s′ ∈ S. Let 0 /∈ S be an auxiliary state, and denote by π0 the
unique invariant measure of Π.

.x; ✓; s/

�� chooses
P 2 � .✓/

s

0 2 S

Nature

�� learns
I 3 s

0, I 2 P

�� chooses
f 2 x

f .s

0
/ .c; y/

✓

0 D ⌧.✓; P; s

0
/

.y; ✓

0
; s

0
/

Figure 1: Timeline

Our model suggests the following timing of events and decisions, as illustrated in
Figure 1. dm enters a period facing a menu x, while being equipped with a prior belief
πs over S and an information control state θ. He first chooses a partition P ∈ Γ (θ).
For any realization of a cell I ∈ P , dm updates his beliefs using Bayes’ rule to obtain
πs(· | I) and then chooses an act f ∈ x. At the end of the period, the true state s′ is
revealed and dm receives the lottery f (s′), which determines current consumption c
and continuation menu y for the next period. At the same time, a new control state
θ′ = τ (θ, P, s′) and a new belief πs′ are determined for next period.
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dm’s objective is to maximize expected utility, which consists of state-dependent
consumption utilities and the discounted continuation value, as we now define.

Definition 3.1. A preference % on X has an icp representation
(
(us)s∈S, δ,Π,M

)
if

it is represented by a function V (·, θ0, 0) : X → R, where V : X ×Θ× (S ∪ {0})→ R

satisfies

V (x, θ, s) =

max
P∈Γ(θ)

∑
I∈P

[
max
f∈x

∑
s′∈I

Ef(s′)
[
us′(c) + δV (y, τ(P, θ, s′), s′)

]
πs(s

′ | I)

]
πs(I)

[Val]

In the representation above, for each s′ ∈ S, f(s′) ∈ ∆(C ×X) is a probability
measure over C ×X, so that Ef(s′) is the expectation with respect to it.8

A dynamic information plan prescribes a choice of P ∈ Γ(θ) for each tuple
(x, θ, s). Thus, an icp describes the set of feasible information plans available to dm.
The next proposition ensures the existence of the value function and an optimal
dynamic information plan.

Proposition 3.2. Each tuple
(
(us)s∈S, δ,Π,M

)
induces a unique function V : X ×

Θ× S ∪ {0} → R that is continuous on X and satisfies [Val]. Moreover, an optimal
dynamic information plan exists.

The proofs of all the results from this section are in Appendix B.

3.3. Restrictions

We now discuss four restrictions that the icp representation in Definition 3.1 imposes,
and comment on the behavioral patterns to which these restrictions correspond.

First, the payoff relevant state is observed at the end of each period (and hence
s appears as a state variable in the function [Val]). This feature is implied by two
standard assumptions that we make: (i) dm fully understands the continuation problem
he receives; and (ii) preferences are continuous. To see this, note that if dm did not

(8) One of the central properties of dynamic choice is dynamic consistency, which requires dm’s ex
post preferences to agree with his ex ante preferences over plans involving the contingency in
question. Because our primitive is ex ante choice between menus, we cannot investigate dynamic
consistency directly in terms of behavior. However, our representation [Val] describes behavior
as the solution to a dynamic programming problem with state variables (x, θ, s), so that implied
behavior is dynamically consistent contingent on those state variables. The novel aspect is that
the state θ is controlled by dm and is not observed by the analyst.
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freely learn the state, then he would be willing to pay a premium for the information
content of fully revealing acts (that is, acts that pay different continuation problems
in different states), and these acts are dense in the set of all acts.9 Assumption (i)
is in contrast to some models of bounded attention that, rather than focusing on
intertemporal constraints, study the implication of choosing without full awareness of
the choice set; see, for instance, Gabaix (2014) for analysis of static problems where
budget sets are misperceived, and Lian (2019) for a dynamic model where dm has an
imperfect perception of his total wealth.

Second, observed preferences over menus are according to the stationary (ie,
ergodic) distribution, π0, of the Markov process that governs the evolution of states.
This property is implied if preferences are stationary on the subdomain of consumption
streams, since then the same beliefs are used for the evaluation of future consumption
acts (those acts that have no continuation values beyond their instantaneous payoffs
in a certain period), independently of the date of consumption. The interpretation
is that dm does not learn the state in the period prior to the observed choice, and
aggregates state-dependent preferences accordingly, using π0 as his prior beliefs. One
could instead assume that dm does learn the realization of the state in the period prior
to his initial choice. Formally, this would not cause any complication; it would simply
mean replacing our primitive, %, with a state-dependent family of initial preferences.
Of course, induced preferences in future periods are already state dependent, so that
aggregated ex ante preferences can be thought of as an expositionally convenient
summary of state dependent preferences.

Third, learning in our model is via partitions of the space of payoff relevant
states, that is, signals are deterministic contingent on the true state. In general, signals
could be noisy, and since the state space is given, it is not without loss of generality
to restrict the class of permissible information structures. Deterministic signals are
not essential for our results, but for technical reasons we rely on dm choosing from
finite sets of finite valued information structures; while this finiteness can be imposed
in a variety of ways, partitional learning is a parsimonious way to achieve it.

(9) One way dm may be able to learn s for free at the end of a period is to place a side bet
on a fully revealing act with arbitrarily small stakes. Once the state is learned, there is no
additional explorative motive for consumption choice; the choice of act has no information value,
just as information choice has no direct consumption value; the two interact only through the
instrumental value of information. Steiner, Stewart, and Matějka (2017) solve a dynamic rational
inattention problem that also allows for the free incorporation of information at the end of each
period. In their model the information cost or constraint is history-independent and invariant.
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Finally, icps can generate opportunity costs of information acquisition by tight-
ening future information constraints. Our model allows us to focus entirely on the
behavioral implications of this new type of dynamic cost. While information constraints
are a common modelling choice, an alternative way to model limitations on information
acquisition is via direct information costs, measured in consumption ‘utils’.10 In the
presence of information costs, whether or not an information plan is ever optimal (so
that its cost could potentially be identified), would depend on the instrumental value
it can generate over time. With a compact consumption space (and hence bounded
utilities) as in our model, this would in turn depend on all preference parameters,
namely state-dependent consumption utilities, beliefs, and the discount factor (as, for
instance, in Ergin and Sarver (2010)). While a remedy for this problem in static models
may be found with unbounded consumption and utilities (see de Oliveira et al. (2017)),
in a dynamic setting such as ours the existence of a recursive value function cannot
be guaranteed with unbounded utility; additional unappealing assumptions on the
domain and/or preferences are required. Our focus on information constraints allows
us to steer clear of these complications. In particular, the dominance order on M,
which we introduce in the next subsection and characterize behaviorally in Theorem
2, is independent of the other preference parameters.

3.4. Comparative Informativeness of icps

As noted in Section 3.2, an icp can be viewed as circumscribing the set of available
dynamic information plans. We now show that the space of icps has a natural order.

Partitions can be compared in terms of fineness, which coincides with Blackwell’s
comparison of informativeness. To extend this idea to icps, first consider only how two
icps M and M′ differ in the first period. Notice that as far as dynamic information
plans are concerned, all that matter are the partitions each icp permits. This suggests
the following one-period order: M one-period Blackwell dominates M′ if for every
P ′ ∈ Γ′(θ′0), there exists P ∈ Γ(θ0) such that P is finer than P ′.

In turn, this suggests a natural extension to two-periods. M two-period Blackwell
dominates M′ if for every P ′ ∈ Γ′(θ′0), there exists P ∈ Γ(θ0) such that (i) P is finer
than P ′, and (ii) for all s ∈ S and for every Q′ ∈ Γ′(τ ′(P ′, θ′0, s)), there exists
Q ∈ Γ(τ(P, θ0, s)) such that Q is finer than Q′. Thus, for any information plan in M′,

(10) See, for example, Ergin and Sarver (2010), Woodford (2012), Caplin and Dean (2015), de Oliveira
et al. (2017), and Hébert and Woodford (2016).
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there is another plan in M that is more informative in every period and state.
To extend our construction to more periods, we note that requirement (ii) above

amounts to the continuation icp (Θ, τ(P, θ0, s),Γ, τ) one-period Blackwell dominating
(Θ′, τ ′(P, θ′0, s),Γ

′, τ ′). In a similar fashion, we inductively define an order extending
Blackwell dominance to t periods, whereby one icp t-period Blackwell dominates
another if for each information plan from the latter, there is another plan from the
former that is more informative in the first period and, for any s, leads to a more
informative (t− 1)-period plan starting in the second period.

To illustrate, consider two icps, M and M′, for which the left and right panels of
Figure 2 display the respective first two periods. Both icps allow dm to commit at the
outset to learn either partition P or Q for two successive periods, where P and Q are
not ordered in terms of fineness. In the left panel (depicting M) dm can alternatively
postpone the choice of partition until the second period — at the cost of not learning
anything (ie, learning {S}) in the first period. It follows that M two-period Blackwell
dominates M′, but not vice versa. To see this, note that every two period information
plan available on the right is also feasible on the left, while only the constraint on the
left allows the following plan: Pick {S} in the first period, wait for the second-period
consumption problem to realize, and then choose one of the partitions P or Q.

{S} s

Q
s

P

s

P

Q

Q

P

P

s

Q s

Q

P

Figure 2: Two-period icps, M and M′

As another example, consider the icps introduced in Example 2.2 where attention
stock is drawn down, decays, and is renewed with attention income. Such an icp
is parametrized by the 4-tuple (K0, κ, c, β). Consider now two icps Mi, for i = a, b,
parametrized by (K0, κ, c

i, β) that only differ in their costs of acquiring information.
It is easy to see that Ma one period Blackwell dominates Mb if, and only if, ca ≤ cb

(ie, ca(P ) ≤ cb(P ) for all P ∈ P). Similarly, Ma t-period Blackwell dominates Mb if,
and only if, ca ≤ cb.

Ordering icps over the infinite horizon is more delicate, because arbitrary icps
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may not have a final period of non-trivial information choice, and hence may not
permit backwards induction. Instead, we exploit the recursive structure of icps, so
that our ordering of informativeness for arbitrary icps is also recursive.

Proposition 3.3. There exists a unique largest order that satisfies the following:
For all M, M† ∈ M, M dominates M† if for all P † ∈ Γ†

(
θ†0
)
there is P ∈ Γ (θ0)

such that (i) P is (weakly) finer than P †, and (ii) (Θ,Γ, τ, τ (P, θ0, s)) dominates(
Θ†,Γ†, τ †, τ †(P †, θ†0, s)

)
for all s ∈ S.

We refer to this largest order as the dynamic Blackwell order. It is reflexive
and transitive. We say that M strictly dynamically Blackwell dominates M′ if M
dynamically Blackwell dominates M′, but not vice versa: and that they are dynamically
Blackwell equivalent if each dominates the other.

We note that there are other ways to define dynamic extensions of the static
Blackwell order; see, for instance, Greenshtein (1996) and de Oliveira (2018), which we
further discuss in Section 4.1 when explaining our identification result. Our approach
differs from these in that instead of comparing signal processes, we compare controlled
signal processes that allow the decision maker to choose his signal (in our case, partition)
as a function of the (potentially private) past. That our approach is particularly well
suited to our problem is demonstrated by our main identification result, Theorem 1,
in the next section.

4. Unique Identification

Theorem 1. Let
(
(us), δ,Π,M

)
be an icp representation of %. Then, the functions

(us)s∈S are unique up to the addition of constants and a common scaling, δ and Π are
unique, and M is unique up to dynamic Blackwell equivalence.11

The proof of all the results in this section is in Appendix C. On the subdomain L,
V satisfies Independence as it is independent of M, and is thus completely characterized
by the parameters ((us), δ,Π). Krishna and Sadowski (2014, Corollary 5) show that
such a representation on L is unique up to the addition of constants and a common
scaling of (us). Our challenge then is to identify the icp M. In Section 4.1 we discuss the
main ideas behind the identification strategy for finitely many periods; the extension

(11) In other words, for any additional representation of % with parameters
(
(u†s), δ

†,Π†,M†), it is
the case that δ† = δ, Π† = Π, u†s = aus + bs, for some a > 0 and bs ∈ R for each s ∈ S, and M

and M† dynamically Blackwell dominate each other.
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to infinite horizon is similar, but involves technical issues that we discuss in detail in
Appendix C.

Notice that our model is a Markov decision process for dm with state (x, θ, s),
where x and s (and their transitions) can be verified by the analyst, while θ cannot.
Thus, the Markov decision process is subjective with partially unknown transitions
and partially unobservable actions and states. Theorem 1 achieves full identification
of this subjective Markov decision process. To the best of our knowledge, this is the
first result of this sort in the literature.

An immediate benefit of identifying all the parameters is that it allows a mean-
ingful comparison of decision makers. The next result demonstrates that dynamic
Blackwell dominance plays the same role in our environment as does Blackwell domi-
nance in a static setting.

Consider two decision makers with preferences % and %†, respectively. We say
that % has a greater affinity for dynamic choice than %† if for all x ∈ X and ` ∈ L,
x %† ` implies x % `.12 The comparison in the definition implies that % and %†
have the same ranking over consumption streams in L.13 While consumption streams
require no choice of information, a typical choice problem x may allow dm to wait
for information to arrive over multiple periods before making a choice. This option
should be more valuable the more information plans dm’s icp renders feasible. The
uniqueness established in Theorem 1 allows us to formalize this intuition.

Theorem 2. Let ((us), δ,Π,M) and
(
(u†s), δ

†,Π†,M†) be icp representations of %
and %† respectively. The preference % has a greater affinity for dynamic choice than
%† if, and only if, Π = Π†, δ = δ†, (us)s∈S and (u†s)s∈S are identical up to the addition
of constants and a common scaling, and M dynamically Blackwell dominates M†.

Theorem 2 connects a purely behavioral comparison of preferences to dynamic
Blackwell dominance of icps, which is independent of preferences, and hence of
utilities and beliefs. This indicates a duality between our domain of choice and the
information constraints that can be generated by icps, a theme we will return to
in Section 4.1. A useful corollary of Theorem 2 is the following characterization of
the dynamic Blackwell order: M dynamically Blackwell dominates M† if, and only if,

(12) This definition is the analogue of notions of ‘greater preference for flexibility’ in the dynamic
settings of Higashi, Hyogo, and Takeoka (2009) and Krishna and Sadowski (2014).

(13) That is, ` % `′ if, and only if, ` %† `′ for all `, `′ ∈ L. This is Lemma 34 in Appendix F of
Krishna and Sadowski (2014), and uses the fact that both % and %† satisfy Independence on L.
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every discounted expected utility maximizer prefers to have the icp M instead of M†

regardless of the menu in question.14

4.1. Identifying the icp

We now illustrate the main idea behind the identification of the icp and also discuss
an alternative notion of Blackwell dominance in dynamic settings. To simplify matters,
suppose for the rest of this section that (i) consumption is in the set C = [0, 1], (ii)
utilities are state independent (so us = u for all s ∈ S), and (iii) u is strictly increasing,
with u(0) = 0 = 1− u(1). Rather than providing a general, more abstract intuition,
we will base our discussion first on a static example, and then on an icp that allows
non-trivial information acquisition only in the first two periods; the same ideas extend
to any finite horizon truncation, and a limit argument extends them to arbitrary icps.

We start with identification in the static setting. For each J ⊂ S, define the
simple act f1,J by

f1,J(s) :=

(1,1) if s ∈ J

(0,0) if s /∈ J

where c means receiving c ∈ C in perpetuity independently of the state. To test if
dm is able to learn some partition that is weakly finer than P , consider the menu
x1(P ) := {f1,J : J ∈ P}. Contingent on event J ∈ P , the act f1,J delivers permanent
consumption 1 with certainty. Therefore, upon learning an event in Q that is weakly
finer than P , the optimal consumption strategy will guarantee the same consumption,
so that V (x1(P );Q) = 1 = V (x1(P );P ). Conversely, if Q is not finer than P , then
with positive probability dm will learn a set of states I which is not a subset of
any J ∈ P . In that case, any choice of act from x1(P ) will generate 0 with positive
probability, and hence V (x1(P );Q) < 1 = V (x1(P );P ).

In order to extend this intuition to two periods, recall the two icps, M and M′,
respectively, in the left and right panels of Figure 2 (Section 3.4). Suppose the analyst
believes dm’s information constraint is either M or M′. How can she verify it is M,
and not M′? To answer this, consider the act f2,{S}(s) :=

(
1,Unif{x1(P ), x1(Q)}

)
where Unif{y, z} is the uniform lottery over y and z, and the menu x2({S}) = {f2,{S}}.
Note that x2({S}) requires no choice in the first period, but instead offers the bet

(14) This result thus generalizes the seminal characterization of the standard Blackwell order for
partitions, according to which P is finer than Q if, and only if, every decision maker prefers P
to Q regardless of the (static) choice problem.
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Unif{x1(P ), x1(Q)} that provides choice from either x1(P ) or x1(Q) in the second
period. To guarantee consumption of 1, dm must therefore have the option to choose
in the second period whether to learn (at least) P or Q, which is not feasible under
M′. Therefore, V (x2({S});M) = 1 > V (x2({S});M′).

In order to fully identify M, we also need to distinguish it from icps other than
M′. For instance, in order to test whether dm can learn the partition P twice in a
row, let f2,J be the act that pays f2,J(s) = (1, x1(P )) if s ∈ J and (0,0) otherwise,
and define the two-period choice problem x2(P ) := {f2,J : J ∈ P}. An analogous
construction for learning Q twice in a row yields x2(Q). It is easy to see that for
any y ∈ {x2(P ), x2(Q), x2({S})}, V (y,M) = 1. Moreover, for any icp M′′, we have
that M′′ dynamically Blackwell dominates M if, and only if, V (y,M′′) = 1 for all
y ∈ {x2(P ), x2(Q), x2({S})}. In essence, each such y amounts to a betting game,
where in each period dm is told a random and history dependent partition and is
asked to bet on the correct event in it to receive payoff 1 and stay in the game, rather
than exiting the game and receiving 0 indefinitely. Such a betting game generates
the same value as a constant stream of 1 if, and only if, dm can learn the relevant
partition in each period. We say that the collection of menus {x2(P ), x2(Q), x2({S})}
is strongly aligned with the icp M.

An analogous construction of a strongly aligned set of menus is possible for any
icp. Consider, then, two icps that do not dynamically Blackwell dominate each other,
and the two corresponding sets of betting games. At least one of the two sets contains
a game in which it will be possible to stay forever with certainty under the icp the
set is strongly aligned with (generating the same value as consuming 1 forever) but
not under the other icp (generating a lesser value). In other words, the icp in our
model is identified up to dynamic Blackwell dominance.

4.2. Remarks

4.2.1. An Alternative Dynamic Extension of Blackwell Dominance

We now compare our notion of dynamic Blackwell dominance over icps with an
alternative definition, which was introduced in Greenshtein (1996) and further used by
de Oliveira (2018). To ease exposition, we again confine our attention in the definition
below to only two periods.

Definition 4.1. Let M be an icp. A (random) two-period sequence of partitions
(P0, (P1,s)) is feasible in M if P0 ∈ Γ(θ0) and P1,s ∈ Γ(τ(θ0, P0, s)). Let M′ be another
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icp. Then, M two-period sequentially Blackwell dominates M′ if for any sequence of
partitions (Q0, (Q1,s)) feasible in M′, there is another sequence (P0, (P1,s)) feasible in
M such that (i) P0 is finer than Q0, and (ii) P1,s is finer than Q1,s for all s ∈ S.

To understand the discrepancy between the comparative notion in Definition 4.1
and our notion of dynamic Blackwell dominance, let M and M′ again be two icps
that correspond to the left and right panels in Figure 2, respectively. Observe that
both M and M′ two-period sequentially Blackwell dominate each other: M contains
more sequences of partitions than M′, but any of the additional sequences in M starts
with {S} in the first period and is dominated by some sequence feasible in M′.

Notice that in the menu x2({S}) from Section 4.1, dm learns whether he faces
x1 (P ) or x1 (Q) only in the second period. Our notion allows for plans that condition
on this information, thereby allowing dm to postpone the choice of information in M

for the second period until this uncertainty has resolved, a plan that is unavailable
under M′. The sequential Blackwell order does not allow information plans to condition
on the resolution of uncertainty regarding the menu of choices available, and therefore
treats M and M′ as being equivalent.

4.2.2. Non-Identification of General Markov Decision Processes

There are negative results in the econometric literature about the identifiability of
subjective Markov decision processes. For instance, Rust (1994) and Magnac and
Thesmar (2002) show that in a general Markov decision processes, where (i) utilities
depend on the Markov state and (ii) choice affects the stochastic evolution of that
state, observing (stochastic) choice is insufficient to identify the evolution of shocks or
other parameters of the model. Recall that the Markov state in our model is (x, θ, s).
Our identification problem is even more ambitious than the one mentioned above,
because we have truly unobservable control variables: θ cannot be observed by the
analyst, and the set of available information choices given θ as well as the transition
of θ as a function of the information choice are both unknown. Crucially for us, the
set of available observable actions in Markov state (x, θ, s) depends only on x, and
the analyst can effectively observe choice from all possible continuation problems for
the same combination of s and θ. This contrasts with the aforementioned econometric
literature where the analyst does not have access to a rich set of tradeoffs at a given
state. For instance, even though in Magnac and Thesmar (2002) the evolution of the
Markov state is observable by the analyst, the distribution of (iid) taste shocks cannot
be identified because dm always has the same set of actions to choose from. Similarly,
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in Rust (1994), the set of feasible actions is completely determined by the Markov
state, and therefore precludes observations from a rich set of continuation problems in
a given Markov state.

It is important to note that the question here is not one of observing ex ante
menu choice versus observing ex post choice frequency from a menu. For example, in
a stochastic choice framework, Gul and Pesendorfer (2006) show that with random
choice data from a rich set of menus, distributions over taste shocks can be identified.
It is the ability to observe choices from a rich set of alternatives at any state that is
essential for identification.

4.2.3. Inference from Limited Data

Our identification strategy suggests that inference about the icp can be made from
a small number of observations. In particular, inference benefits from three of its
features. First, identification of the icp is (almost) independent of the other preference
parameters, as it only uses the best and worst outcomes in each state (1 and 0

in the example discussed in Section 4.1). Second, while identification of the icp
relies on randomization over continuation problems, the exact probabilities used in
this randomization are not important; for example, we could replace the uniform
distribution in the proof of Theorem 1 with any distribution with full support. Finally,
to verify whether dm can follow a particular information plan, the analyst only needs
to observe one appropriate binary choice — between the best consumption stream
and a choice problem that is strongly aligned with the plan in question. For instance,
the question whether dm is able to follow the information plan that chooses {S} in
the first period and from {P,Q} in the second period, as in the icp M in Figure 2, is
answered immediately by offering dm a choice between the betting game x2({S}) and
the consumption stream 1. Indifference is observed if, and only if, dm can follow the
information plan in question (or one that is more informative than it).15

5. Behavioral Characterization

In this section we provide an axiomatic foundation for our model. Before describing
our axioms in section 5.1, we first explain our approach.

(15) The last observation, in particular, can be useful in many applications. For instance, a policy
maker may not need to know exactly what information constraint individuals face, but may
only wish to know whether they are able to process the specific information needed to behave
optimally vis a vis a new policy or not.
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Consider static preferences over dynamic choice problems that are stationary,
that is, contingent on the decision relevant state, induced preferences over continuation
problems are the same as the original preferences. In that case, a dynamic value
function is commonly derived from a representation of the static preferences via a
recursive operator that ensures that the induced value function over continuation
problems has the same form as the original static representation, and so forth.

As is evident from [Val], preferences over menus in our model are stationary
conditional on the state (x, θ, s). To replicate the dynamic extension of a static value
function in terms of preferences, we would thus like to (i) take as given a tight
axiomatic description of static behavior, (ii) define a recursive operator that ensures
that induced preferences over continuation problems also satisfy those static axioms,
and (iii) combine the restrictions derived this way with additional dynamic axioms as
needed. In order to falsify the model, it would then suffice to find a violation of the
static axioms for some history of state realizations. Our main conceptual challenge
in following this approach is that the decision relevant state is now (x, θ, s), and its
second component is not observable by the analyst. We will show how to use the
history of observable choices to control for θ.

Since the work of extending static axioms to the dynamic environment will be
done by the recursively applied operator, it is possible to replace a more primitive
set of static axioms by a static representation that has already been shown to be
equivalent to them. The static representation that will be our starting point (Axiom 0
below) is derived in Dillenberger, Krishna, and Sadowski (2020).

5.1. Axioms

We are interested in the structure of a binary relation (a preference) % ⊂ X × X.
Our first axiom assumes a representation that has all of the properties of the icp-
representation, except that it is static, that is, the evaluation of continuation problems
does not take into account the recursive structure of our domain. This representation
is axiomatized in Dillenberger, Krishna, and Sadowski (2020) based on appropriate
relaxations of separability, strategic rationality and independence.

Axiom 0. The relation % is represented on X by V0 ∈ RX , which has the form

V0(x) = max
P∈Q

∑
I∈P

[
max
f∈x

∑
s∈I

Ef(s)
[
us(c) + vs(y, P )

]
π(s | I)

]
π(I)[5.1]
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where Q ⊂ P is a set of partitions of S, us ∈ C(C) and vs(·, P ) ∈ C(X)16 for each
s ∈ S and P ∈ Q, with the property that for all P, P ′ ∈ Q and s ∈ S, we have
vs(·, P )|L = vs(·, P ′)|L.

Recall from Section 3.1 the homeomorphism X 'K
(
F(∆(C ×X))

)
. Axiom 0

is static because it ignores that X shows up on both sides of this homeomorphism. To
emphasize this, let us for a moment write X = K

(
F(∆(C ×W ))

)
and require only

that W is a compact metric space. The representation in [5.1] can then be interpreted
as follows: dm chooses a partition to learn about the payoff relevant state, taking into
account that the outcome has two components. The value of the first component, us(c),
is independent of the chosen partition P , while the value of the second component,
vs(w,P ), depends directly on P . This is plausible since we interpret each w as a menu
that may benefit from future information, and the set of information choices available
in the future may depend on past information choices.

Note that in display [5.1] we can discard partitions that are never optimal for
any x ∈ X. Thus, we may restrict attention to minimal representations.17

Before recursively applying Axiom 0, we pose one additional axiom that captures
the special role played by consumption streams, which are dynamic but leave no choice
to be made in the future and therefore require no information (that is, all information
alternatives perform equally well). The axiom requires % to satisfy additional standard
assumptions when consumption streams are involved.

In what follows, for any c ∈ C and ` ∈ L, let (c, `) be the constant act that
yields consumption c and continuation stream ` with probability one in every state
s ∈ S. Let `∗, `∗ ∈ L be such that `∗ % ` % `∗ for all ` ∈ L.

Fix c ∈ C and let

`s(s
′) =

`∗ s′ 6= s

(c, `) s′ = s

Define the induced relation %s on L by ` %s
ˆ̀ if `s % ˆ̀

s. It will follow from Axiom 1
below that %s is independent of the particular choice of c.

Axiom 1 (Consumption Stream Properties).
(a) L-Nontriviality: `∗ � `∗.
(b) L-Independence: For all x, y ∈ X, t ∈ (0, 1], and ` ∈ L, x � y implies tx+(1−t)` �

ty + (1− t)`.

(16) We denote by C(Z) the space of continuous functions on a space Z.
(17) The collection Q is minimal if any subset of it gives a lower utility for some menu x.
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(c) L-History Independence: For all `, ˆ̀∈ L, c ∈ C, and s, s′, s′′ ∈ S, (c, `s) %s′ (c, ˆ̀
s)

implies (c, `s) %s′′ (c, ˆ̀
s).

(d) L-Stationarity: For all `, ˆ̀∈ L and c ∈ C, ` % ˆ̀ if, and only if, (c, `) % (c, ˆ̀).
(e) L-Indifference to Timing: 1

2
(c, `) + 1

2
(c, `′) ∼ (c, 1

2
`+ 1

2
`′).

Axiom 1(b) resembles the C-Independence axiom in Gilboa and Schmeidler
(1989), and is similarly motivated: Because consumption streams require no information
choice, mixing two menus with the same consumption stream should not alter the
ranking between these menus. For a discussion of properties (c) through (e) see Krishna
and Sadowski (2014).

As noted in Section 3.1, the domain L is recursive. Therefore, using Axiom 0, we
can write `∗(s) = (c+

s , `
+
s ) and `∗(s) = (c−s , `

−
s ), where c+

s , c
−
s ∈ C are (respectively) the

us-maximal and -minimal elements, and `+
s , `

−
s ∈ L are (respectively) the vs-maximal

and -minimal elements in L for each s ∈ S.

5.2. A Recursively Formulated Representation Theorem

As noted above, the history of state variables that are relevant for dm consists of
the observed history of the state s, and the history generated by dm’s unobserved
choices of information. The challenge in imposing axioms on continuation preferences
is that continuation preferences can (and typically will) depend on those unobserved
information choices which naturally vary with the menu in question. This conceptual
difficulty arises already in two-period problems, which we now focus on to simplify
the discussion. The solution for longer horizons will then be immediate.

The key is to note that, due to the finiteness of S, if P is dm’s unique optimal
information choice at a menu x in state s, then P will also be optimal under small
perturbations of x. In that case, the menu- and state-dependent preferences over
continuation problems can be inferred from preferences over perturbations of the
continuation problems available in x.

Formally, we provide a definition, in terms of %, for a finite x to have a unique
optimal partition. (In the static utility representation [5.1] above, this corresponds to
one partition generating a strictly higher value than any other available partition.) For
such x that has a unique optimal partition, if (i) dm prefers to simultaneously perturb
all acts f ∈ x by mixing the continuation problems they specify in s with y rather
than mixing them with y′, and (ii) x and the perturbed menus have the same optimal
partitions (we refer to such menus as concordant and also define concordance based
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on % below), then we write y %(x,s) y
′. Because x has a unique optimal partition,

sufficiently small perturbations do not upset concordance with x, and so %(x,s) is well
defined on X (ie, is complete and transitive), and therefore amenable to the imposition
of our axioms.

For each f, g ∈ F(∆(C ×X)), s ∈ S, and ε ∈ [0, 1], define

(
f ⊕ε,s g

)
(s′) :=

(1− ε)f(s′) + εg(s′) s′ = s

f(s′) s′ 6= s

That is, f ⊕ε,s g perturbs the lottery f(s) in state s in the direction of g(s), while
leaving it untouched in all other states. Fix a c ∈ C. For x, y ∈ X, define x⊕ε,s y :=

{f ⊕ε,s (c, y) : f ∈ x} which represents the menu where each act in x is perturbed in
state s in the same way.

Our goal is to find a behavioral notion that allows us to say that dm has partition
P available. Generalizing our construction in Section 4.1, we now let x1(P ) denote the
menu that requires DM to bet on the cells of the partition P , where betting correctly
now pays (c+

s , `
∗) (instead of (1,1)), and a wrong bet pays (c−s , `∗) (instead of (0,0)).

Then, a partition at least as fine as P is available in the first period, if, and only if,
x1(P ) ∼ `∗. For a choice problem x we then have 1

2
x + 1

2
x1 (P ) ∼ 1

2
x + 1

2
`∗ if, and

only if, some partition that is at least as fine as P is optimal for x. Thus, the same
collection of partitions is optimal for two menus x and y, if for all P ∈ P we have
1
2
x+ 1

2
x1 (P ) ∼ 1

2
x+ 1

2
`∗ if, and only if, 1

2
y + 1

2
x1 (P ) ∼ 1

2
y + 1

2
`∗.

Definition 5.1. Choice problems x and y are concordant, if 1
2
x+ 1

2
x1 (P ) ∼ 1

2
x+ 1

2
`∗

if, and only if, 1
2
y + 1

2
x1 (P ) ∼ 1

2
y + 1

2
`∗ for all P ∈ P.

Definition 5.2. If x = 1
2
x′ + 1

2
x1(P ) % 1

2
x′ + 1

2
x1(Q) for all Q, with strict preference

if P is not finer than Q, then we say that P is the uniquely optimal information choice
for x. If such a P exists, we say that x has a unique information choice.18

To understand this definition, notice that x = 1
2
x′ + 1

2
x1(P ) % 1

2
x′ + 1

2
x1(Q) for

all Q implies that there is an information choice that is optimal for x′ and is (weakly)
finer than P .19 Because 1

2
x′+ 1

2
x1(P ) � 1

2
x′+ 1

2
x1(Q) if Q is not finer than P , learning

(18) Since all information choices in this paper are partitions, we also refer to optimal information
choices as optimal partitions.

(19) If there is no feasible partition at least as fine as P , then the representation implies 1
2x

′ +
1
2x1({S}) � 1

2x
′ + 1

2x1(P ); ie, there is some partition finer than {S}, the coarsest partition, but
none finer than P .
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exactly P must be optimal for x′, and any other optimal information choice for x′

must consist of a partition that is coarser than P . But in that case, P must be the
unique optimal partition for x = 1

2
x′ + 1

2
x1(P ).

For a fixed P , denote the representation in [5.1] by V0

(
x;P

)
, and define X ′P as

follows:

X ′P :=
{
x : V0(x) = V0

(
x;P

)
for some P ∈ Q and

V0(x) > V0

(
x;Q

)
for all Q ∈ Q such that P 6= Q

}
Thus, X ′P is the set of all menus for which P is the unique optimal information choice
according to V0. If x ∈ X ′P then it follows from Axiom 0 that X ′P is the set of menus
that are concordant with x and that also have a unique optimal partition.

Definition 5.3. Let x have a unique optimal partition, y, y′ ∈ X, s ∈ S, and
ε ∈ (0, 1) such that x⊕ε,s y, x⊕ε,s y′, and x are pairwise concordant. Then, y %(x,s) y

′

if [x⊕ε,s y] % [x⊕ε,s y′].

Lemma E.6 in Appendix E.1 shows that for any x ∈ X ′P and y, y′ ∈ X, there
exists an ε ∈ (0, 1) such that x⊕ε,s y, x⊕ε,s y′ ∈ X ′P , and that the choice of c ∈ C in
the definition of x⊕ε,s y is irrelevant, so that %(x,s) is indeed well defined.

Recall that our objective is to impose restrictions on the functions vs(·, P ) in [5.1],
but that these functions are not directly observable. Nevertheless, Lemma E.6 further
establishes that for every vs(·, P ) in a minimal representation, there exists some x
(indeed, all x ∈ X ′P ) such that vs(·, P ) represents %(x,s), and so behavioral restrictions
on %(x,s) correspond to structural restrictions on vs(·, P ). With %(x,s) defined above,
we can now recursively apply Axiom 0.

Let Ψ1 be the space of all binary relations on X that satisfy Axiom 0. That is,

Ψ1 :=
{

% on X : % satisfies Axiom 0
}

Define the operator B : 2Ψ1 → 2Ψ1 by:

B(Ψ) :=

{
% ∈ Ψ1 :

%(x,s) ∈ Ψ for all s ∈ S and finite x ∈ X
with a unique optimal partition

}
[5.2]

This allows us to define the set Ψ2 := B(Ψ1), which consists of all preferences that
satisfy our static axiom with the additional property that continuation preferences (ie,
%(x,s) for all finite x with a unique optimal partition) also satisfy the static Axiom 0,
by virtue of being in Ψ1. We can extend this construction to arbitrary finite horizons

23



by inductively defining Ψn+1 := B(Ψn) for all n ≥ 1. The construction of Ψn for n ≥ 2

parallels the recursive construction of our domain of menus described in Section 3.1.
For the infinite horizon, we proceed to the limit, and define the set Ψ∗ as the

largest fixed point of the operator B in [5.2], which is easily seen to be monotone. It
can be shown that Ψ∗ = limn→∞Ψn =

⋂
n≥1 Ψn. We say that a preference relation on

X satisfies Axiom 0 recursively if it is in Ψ∗, or equivalently, lies in Ψn for all n ≥ 1.
Our representation theorem below characterizes the set of preferences in Ψ∗ via

a well defined recursive value function, and establishes that it is non-empty.

Theorem 3. Let % be a binary relation on X. Then, the following are equivalent:
(a) The relation % satisfies Axiom 0 recursively and satisfies Axiom 1.
(b) There exists an icp representation of %.

As just argued, the recursive application of Axiom 0 requires not only preferences,
but also induced preferences over the next period’s continuation problems to be in Ψ∗,
thereby requiring preferences over continuation problems two periods ahead to be in
Ψ∗, and so forth.20 To falsify this requirement, one needs to find some finite history of
states and sequence of menus after which continuation preferences are defined (each
menu must be finite and have a unique optimal partition) and violate Axiom 0.

We conclude by sketching the proof of Theorem 3. Our starting point is Axiom
0, which provides us with the following representation:

V (x) = max
P∈Q

∑
I∈P

[
max
f∈x

∑
s∈I

Ef(s)
[
us(c) + vs(y, P )

]
π(s | I)

]
π(I)

We say that V is implemented by ((us) ,Q, (vs(·, P )) , π). This representation already
has all the features we need to establish, except that it is static; it does not exploit
the recursive structure of X.

Adapting the terminology of Abreu, Pearce, and Stacchetti (1990), we define the
set Φ∗ of self-generating value functions, where each v ∈ Φ∗ is implemented by some
tuple ((u′s) ,Q

′, (v′s(·, P )) , π′) in a way that each v′s(·, P ) is itself in Φ∗ (see Appendix
E.1). In Lemma E.5 in Appendix E, we show that for every P that is part of an
undominated information plan, there is a menu x for which P is the unique optimal
partition. We then rely on Axiom 1 and the recursive application of Axiom 0 to show
that the representation V of % can be made self-generating.

(20) Due to L-Stationarity (Axiom 1(d)) preferences over continuation problems also satisfy Axiom 1;
see Lemma E.8.
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The remainder of our construction in Appendix E.3 has two main components.
First, we construct an icp M= (Θ,Γ, τ, θ0) from the self-generating representation.
According to V , we let Γ (θ0) = Q. Next, if vs(·, P ) in the representation is implemented
by ((u′s) ,Q

′, (v′s(·, P )) , π′), we let Γ (τ(P, θ0, s)) = Q′, and so on.
Second, we apply Axioms 0 and 1 to establish a Recursive Anscombe-Aumann

representation V ∗L (·, π0) of % |L, where V ∗L (·, π0) :=
∑

s π0(s)V ∗L (·, s), and

V ∗L (`, s) :=
∑
r

Π(s, r) E`(r)
[
ur(c) + δV ∗L (`′, r)

]
for some tuple

(
(us), δ,Π

)
.21 We then note that the self-generating representation V

above and the recursive representation V ∗L must agree on L. This lets us conclude that
all the utilities in V can be taken to be (us) and all the subjective beliefs can be taken
to be the Markovian beliefs Π. We can then pair the parameters ((us) , δ,Π) with M to
find the icp representation, ((us) , δ,Π,M), which is recursive on all of X. Intuitively,
the lack of recursivity in the self-generating representation, which conditions only on
the objective state s, is absorbed by the evolution of the subjective state θ in our
representation, so that the representation becomes recursive when conditioning on
both s and θ.

5.3. Special Cases

The special case of the icp representation in which dm faces the same information
constraint each period (independent of past information choices) is of interest due to
its simplicity and its frequent use in dynamic models of rational inattention, where
there is a periodic time invariant upper bound on information gain. Given an icp
representation of %, one can verify that the behavioral content of this restriction is
the following axiom:

Axiom 2. x % x′ for all x′ ∈ X if, and only if, x %(y,s) x
′ for all x′, y ∈ X and all

s ∈ S.

Note that x % x′ for all x′ ∈ X implies that x is one of the %-maximal menus.
In particular, x must be as good as the best consumption stream `∗. Therefore, dm
must be able to process enough information to choose from x in a way that also

(21) This is the Recursive Anscombe-Aumann representation in Krishna and Sadowski (2014). See
Appendix D for a discussion of why the parameters (δ,Π) are unique, and the collection (us) is
unique up to a common positive affine transformation.
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guarantees c+
s in every period and any state. It is then clear from our identification

strategy that two icps that give rise to the same collection of %-maximal menus must
be dynamically Blackwell equivalent. The axiom ensures stability of this collection,
and hence of icps up to dynamic Blackwell equivalence, along three dimensions:
stationarity, because between % and %(y,s) a period has passed; menu independence,
through the comparison of %(y,s) and %(y′,s); and history independence, through the
comparison of %(y,s) and %(y,s′).

One can also confirm that, as in the static setting of Dillenberger et al. (2014),
imposing full Independence on % corresponds to the special case where information is
determined by a trivial choice process: it arrives exogenously over time.

6. Related Literature

We now comment on the most related menu choice literature.
Kreps (1979) studies choice between menus of prizes. He rationalizes monotonic

preferences — those that exhibit preference for flexibility — via uncertain utility
functions that are yet to be realized. Dekel, Lipman, and Rustichini (2001) show
that by considering menus of lotteries over prizes, those utilities can be taken to be
expected utility functions. Dillenberger et al. (2014) subsequently show that preference
for flexibility over menus of acts corresponds to uncertainty about future beliefs about
the objective state of the world. Ergin and Sarver (2010) and de Oliveira et al. (2017)
replace Independence with Aversion to Randomization to model subjective uncertainty
that is not fixed, but a choice variable. The former studies costly contemplation about
future tastes, while the latter studies rational inattention to information about the
state.

None of the models discussed so far are dynamic or let dm react to information
arriving over multiple periods. Krishna and Sadowski (2014) provide a dynamic
extension of Dekel, Lipman, and Rustichini (2001), where the flow of information is
taken as given by dm. In particular, Krishna and Sadowski (2014) assume Independence,
which means that there are no subjective or unobservable controls. Their subjective
state space in each period is the space of vN-M utility functions. Their recursive
domain consists of acts that yield a menu of lotteries over consumption and a new act
for the next period. When all menus are degenerate, their domain reduces to the set of
consumption streams L, as it does here. The key difference between the two domains
lies in the timing of events: Instead of acts over menus of lotteries, we consider menus
of acts over lotteries, which are appropriate for a dynamic extension of Dillenberger
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et al. (2014). Our model also extends de Oliveira et al. (2017), in the sense that the
choice of information in a period now affects the feasible choices of information in the
future.22 Table 1 summarizes the position of our model with respect to the papers
discussed thus far.

Information Uncertainty about Uncertainty about
vN-M taste state of world

Static, fixed Dekel, Lipman, and Rustichini (2001) Dillenberger et al. (2014)
Static, choice Ergin and Sarver (2010) de Oliveira et al. (2017)
Dynamic, fixed Krishna and Sadowski (2014) This paper

Dynamic, choice process F This paper

Table 1: Summary of Literature

In our model, dm controls the flow of information over time. Thus, his preferences
are interdependent across time and we can no longer appeal to the stationarity
assumptions of Krishna and Sadowski (2014). To deal with this complication, we first
assume that preferences over consumption streams, %|L, satisfy the standard axioms,
including Stationarity, because future information plays no role when there is no
consumption choice to be made in the future. We then use the ranking of consumption
streams to ‘calibrate’ preferences over all dynamic choice problems.

Our recursive application of axioms can be compared to standard stationarity
assumptions, as in Gul and Pesendorfer (2004) or in Krishna and Sadowski (2014).
There, instantaneous and continuation preferences are required to be identical, rather
than merely be of the same class. It is easy to see that if stationary preferences
satisfy Axiom 0, then they also satisfy it recursively. A related axiomatization of
dynamic preferences is in Maccheroni, Marinacci, and Rustichini (2006), who provide
foundations for dynamic variational preferences. Their continuation preferences, like
ours, satisfy the same type of axioms at any instant as the original preferences. The
main difference is that their continuation preferences need only condition on the
observable state. In contrast, in our model of endogenous information choice, past
menus affect past information choices which, in turn, can affect the current information

(22) Both Dillenberger et al. (2014) and de Oliveira et al. (2017) permit more general information
structures than partitions, and the latter also allows for explicit costs of acquiring information.
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constraint. Also, their horizon is finite, so that they must (and more easily can) directly
impose their axioms for every history of the observable state.

Additional works address unobservable information acquisition in different formal
contexts. Piermont, Takeoka, and Teper (2016) study a decision maker who learns
about his uncertain, but time invariant, consumption taste (only) through consumption,
and so has some control over the flow of information. For static choice situations, the
literature based on ex post choice partly parallels the menu-choice approach. Lu (2016)
shows how information that, like in Dillenberger et al. (2014), is subjective yet not
subject to choice, can be fully identified from random choice. Ellis (2018) identifies a
partitional information constraint from ex post choice data. Caplin and Dean (2015) use
random choice data to characterize a representation of costly information acquisition
with more general information structures. They then proceed to consider stochastic
choice data under the assumption that attention entails entropy costs, as do Matějka
and McKay (2015). To our knowledge, there is no counterpart to our recursive analysis
of information choice in the random-choice literature.

Appendices

A. Preliminaries

Appendix A.1 describes the relevant metric on the space of probability measures.
Appendix A.2 describes our (recursive) domain of infinite horizon dynamic choice prob-
lems. Appendix A.3 describes canonical icps and shows that every icp is isomorphic
to a canonical icp.

A.1. Metrics on Probability Measures

Let (Y, dY ) be a metric space and let ∆(Y ) denote the space of probability measures
defined on the Borel σ-algebra of Y . For a function ϕ ∈ RY , the Lipschitz seminorm
is defined by ‖ϕ‖L := supy 6=y′ |ϕ(y)− ϕ(y′)| /dY (y, y′), and the supremum norm is
‖ϕ‖∞ := supy |ϕ(y)|. This allows us to define the bounded Lipschitz norm ‖ϕ‖BL :=

‖ϕ‖L + ‖ϕ‖∞. Then, BL(Y ) := {ϕ ∈ RY : ‖ϕ‖BL < ∞} is the space of real-valued,
bounded, and Lipschitz functions on Y .

For α, β ∈ ∆(Y ), define dD(α, β) := 1
2

sup
{∣∣∫ ϕ dα−

∫
ϕ dβ

∣∣ : ‖ϕ‖BL ≤ 1
}
,

which is the Dudley metric on ∆(Y ). Theorem 11.3.3 in Dudley (2002) says that for
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separable Y , dD induces the topology of weak convergence on ∆(Y ). The role of the
factor 1

2
is only to ensure that for all α, β ∈ ∆(Y ), dD(α, β) ≤ 1.

A.2. Recursive Domain

LetX1 := K
(
F(∆(C))

)
. For acts f 1, g1 ∈ F(∆(C)), define the metric d(1) on F(∆(C))

by d(1)(f 1, g1) := maxs dD(f 1(s), g1(s)) ≤ 1. For any f 1 ∈ F(∆(C)) and x1 ∈ X1, the
distance of f 1 from x1 is d(1)(f 1, x1) := ming1∈x1 d

(1)(f 1, g1) (where the minimum is
achieved because x1 is compact).

Define the Hausdorff metric d(1)
H on X1 as

d
(1)
H (x1, y1) := max

{
max
f1∈x1

d(1)(f 1, y1),max
g1∈y1

d(1)(g1, x1)

}
≤ 1

Intuitively, X1 consists of all one-period Anscombe-Aumann (AA) choice problems.
Now define recursively, for n > 1, Xn := K

(
F(∆(C × Xn−1))

)
. The met-

ric on C × Xn−1 is the product metric, that is, dC×Xn−1

(
(c, xn−1), (c

′, x′n−1)
)

=

max[dC(c, c′), d(n−1)(xn−1, x
′
n−1)]. This induces the Dudley metric on ∆(C ×Xn−1).

We then define the distance between any two acts fn, gn ∈ F(∆(C ×Xn−1)) as
d(n)(fn, gn) := maxs dD(fn(s), gn(s)), and the Hausdorff metric d(n)

H on Xn as

d
(n)
H (xn, yn) := max

{
max
fn∈xn

d(n)(fn, yn), max
gn∈yn

d(n)(gn, xn)

}
Here, Xn consists of all n-period AA choice problems. The agent faces a menu of acts
which pay off in lotteries over consumption and (n− 1)-period AA choice problems
that begin the next period.

Finally, endow×∞n=1
Xn with the product topology. The Tychonoff metric induces

this topology and is given as follows: for x = (x1, x2, . . . ), y = (y1, y2, . . . ) ∈×∞n=1
Xn,

d(x, y) :=
∑
n

d
(n)
H (xn, yn)

2n

which is also bounded above by 1. Moreover, because it holds for d(n)
H for each n,

d
(

1
2
x+ 1

2
y, y
)

= 1
2
d(x, y).

The space of choice problems (menus) we consider X is all members of×∞n=1
Xn

that are consistent. Intuitively, x = (x1, x2, . . . ) is consistent if deleting the last period
in the n-period problem xn results in the (n− 1)-period problem xn−1.23 It follows

(23) See Gul and Pesendorfer (2004) for a more formal definition in a related setting.
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from standard arguments that X is (linearly) homeomorphic to K
(
F(∆(C ×X))

)
,

denoted X 'K
(
F(∆(C ×X))

)
. In what follows, we shall abuse notation and use d

as a metric both on X and on K
(
F(∆(C ×X))

)
. (It will be clear from the context

precisely which space we are interested in.)
There is a natural notion of inclusion in the space of menus: For x, y ∈ X, y ⊂ x

if yn ⊂ xn for all n ≥ 1.

A.3. Canonical Information Choice Processes

In terms of behavior, all that is relevant for the description of the icp M is the set
of partitions that are available at each moment in time. We therefore identify icps
that permit the same choice of partition after every history as indistinguishable (see
below), which allows us to metrize the set of all icps M (as in Section 3.2) and prove
that finite horizon icps approximate arbitrary icps. Because all payoffs are bounded,
the construction described above then establishes Theorem 1 via a simple continuity
argument. We now describe the (pseudo-) metrization of M.

Two icps M and M′ are indistinguishable if they afford the same choices of
partition in the first period and, for any choice in the first period, the same state-
contingent choices in the second period, and so on. Intuitively, indistinguishable icps
differ only up to a relabeling of the control states, and up to the addition of control
states that can never be reached.

Let M = (Θ,Γ, τ, θ0) and M′ = (Θ′,Γ′, τ ′, θ′0) be two icps in M. A choice of
P ∈ Γ(θ0) and a realization of state s results in a new icp (Θ,Γ, τ, τ(θ0, P, s)). To
simplify notation, we denote this new icp by M(τ(θ0, P, s)). Further abusing notation,
M(θ) denotes the icp (Θ,Γ, τ, θ) with initial state θ. Define D : M×M→ R as:

D (M(θ0),M′(θ′0)) :=

max

{
dH (Γ(θ0),Γ′(θ′0)) , 1

2
max

P∈Γ(θ0),s∈S
D (M(τ(θ0, P, s)),M

′(τ ′(θ′0, P, s)))

}[A.1]

We endow Θ with the discrete metric, which means that the Hausdorff distance
dH (A,B) ≤ 1 for all A,B ⊂ Θ. The function D captures the discrepancy between
M and M′. In what follows, let B(M×M) denote the space of real-valued bounded
functions defined on M×M with the supremum norm.

Lemma A.1. There is a unique function D ∈ B(M×M) that satisfies equation [A.1].
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Proof. Consider the operator T : B(M×M)→ B(M×M) defined as

TD′ (M(θ0),M′(θ′0)) :=

max

{
dH (Γ(θ0),Γ′(θ′0)) , 1

2
max

P∈Γ(θ0),s∈S
D′ (M(τ(θ0, P, s)),M

′(τ ′(θ′0, P, s)))

}
for all D′ ∈ B(M×M). Observe that T is monotone in the sense that D1 ≤ D2 implies
TD1 ≤ TD2. It also satisfies discounting, ie, T (D + a) ≤ TD + 1

2
a for all a ≥ 0. This

implies that T has a unique fixed point in B(M×M), which satisfies [A.1].

We can now define an isomorphism between icps. In terms of the discrepancy
function D, two icps M and M′ are indistinguishable if D (M(θ0),M′(θ′0)) = 0.
The definition of D immediately implies the following recursive characterization of
indistinguishability whose proof is omitted.

Lemma A.2. Let M,M′ ∈M. Then, M is indistinguishable from M′ if, and only if,
(i) Γ(θ0) = Γ′(θ′0), and (ii) for all P ∈ Γ(θ0) ∩ Γ′(θ′0) and s ∈ S, the icp M(τ(θ0, ), s))

is indistinguishable from the icp M′(τ ′(θ′0, P, s)).

We now construct a set of canonical icps.
Recall that P is the space of all partitions of S, where a typical partition is P .

Then, (P, d) is a metric space, where d is the discrete metric.
For metric spaces X and Y , we denote by K[(X ×Y ) the space of all non-empty

closed subsets of X × Y with the property that a subset contains distinct (x, y) and
(x′, y′) only if x 6= x′.

Let Ω1 := K(P), and define recursively for n > 1, Ωn := K[

(
P× ΩS

n−1

)
. Set

Ω′ :=×∞n=1
Ωn. A typical member of Ωn is ωn, while ωn = (ωn,s)s∈S denotes a typical

member of ΩS
n.

Let ψ1 : P× ΩS
1 → P be given by ψ1(P,ω1) = P , and define Ψ1 : Ω2 → Ω1

as Ψ1(ω2) := {ψ1(P,ω1) : (P,ω1) ∈ ω2}. Now define recursively, for n > 1, ψn :

P× ΩS
n → P× ΩS

n−1 as ψn(P,ωn) :=
(
P, (Ψn−1(ωn,s))s

)
, and the function (because

Ωn is a space of sets) Ψn : Ωn+1 → Ωn by Ψn(ωn+1) := {ψn(P,ωn) : (P,ωn) ∈ ωn+1}.
An ω ∈ Ω′ is consistent if ωn−1 = Ψn−1(ωn) for all n > 1. The set of canonical

icps Ω is the set of all consistent elements of Ω′,

Ω :=
{
ω ∈ Ω′ : ω is consistent

}
Notice that Ω1 is a compact metric space when endowed with the Hausdorff

metric. Then, inductively, P×ΩS
n−1 with the product metric is a compact metric space,
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so that endowing Ωn with the Hausdorff metric in turn makes it a compact metric
space. Thus, Ω endowed with the product metric is a compact metric space. (Moreover,
Ω is isomorphic to the Cantor set, ie, it is separable and completely disconnected.)

It follows that for ω, ω′ ∈ Ω, where ω := (ωn)∞n=1 and ω′ := (ω′n)∞n=1, ω 6= ω′ if,
and only if, there is a smallest N ≥ 1 such that for all n < N , ωn = ω′n but ωN 6= ω′N .

Theorem 4. The set Ω is homeomorphic to K[

(
P× ΩS

)
.

We write Ω 'K[

(
P×ΩS

)
. The theorem is not proved, but this can be done by

adapting the arguments in Mariotti, Meier, and Piccione (2005).
The homeomorphism Ω 'K[

(
P× ΩS

)
suggests a recursive way to think of Ω:

Each ω ∈ Ω describes the set of feasible partitions available for choice in the first period,
and how a choice of partition P and the realized state s determine a new ω′s ∈ Ω in the
next period. That is, ω can be identified with a finite collection of pairs (P,ω′), where
ω′ = (ω′s)s∈S. To see that every ω ∈ Ω is indeed an icp, set Γ∗(ω) = {P : (P,ω′) ∈ ω}
and τ ∗(ω, P, s) = ω′s to obtain the icp Mω = (Ω,Γ∗, τ ∗, ω) which is indistinguishable
from ω. Also note that for ω, ω′ ∈ Ω, ω 6= ω′ implies D(ω, ω′) > 0.

Proposition A.3. The space M of icps is isomorphic to Ω in the following sense.
(a) Every M∈M is indistinguishable from a unique ωM ∈ Ω.
(b) Every ω ∈ Ω induces an Mω ∈M that is indistinguishable from ω.

Proof. To show (a), let M= (Θ,Γ, τ, θ0) be an icp. Recall the definition of the space
Ωn and define the maps Φn : Θ→ Ωn as follows. Let
• Φ1(θ) := Γ(θ),
• Φ2(θ) :=

{(
P, (Φ1(τ(P, θ, s)))s∈S

)
: P ∈ Γ(θ)

}
,

• ...
• Φn+1(θ) :=

{(
P, (Φn(τ(P, θ, s)))s∈S

)
: P ∈ Γ(θ)

}
,

It is easy to see that for each θ ∈ Θ, Φn(θ) ∈ Ωn, ie, Φn is well defined.
Now, given θ0, set Φn(θ0) =: ωn ∈ Ωn. It can be verified that the sequence

(ω1, ω2, . . . , ωn, . . . ) ∈×n∈N Ωn is consistent in the sense described above. Therefore,
there exists ω ∈ Ω such that ω = (ω1, ω2, . . . , ωn, . . . ), ie, the icp M corresponds to
a canonical icp ω. Observe that if ω′ ∈ Ω is indistinguishable form M, then it must
also be indistinguishable from ωM (because D is a metric), which proves that ωM = ω.

To show (b), let ω ∈ Ω. A partition P is supported by ω if there exists ω′ ∈ ΩS

such that (P,ω′) ∈ ω. Now set Θ = Ω, θ0 = ω, Γ∗(θ) = {P : P is supported by θ},
and τ ∗(P, ω, s) = ω′s where ω′ ∈ Ωs is the unique collection of canonical icps such
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that (P,ω′) ∈ ω. This results in the icp Mω = (Θ,Γ∗, τ ∗, θ0 = ω) that is uniquely
determined by ω.

B. Value Function and Dynamic Blackwell Order: Proofs from Section 3

Appendix B.1 proves the existence of the value function V that satisfies [Val]. Appendix
B.2 formally defines the dynamic Blackwell order and describes some of its properties.

B.1. Value Function

We now prove Proposition 3.2 for the case of canonical icps. The extension to the case
of general icps is immediate. In what follows, let C(X × Ω× (S ∪ {0})) be the space
of continuous functions over X × Ω× (S ∪ {0}) endowed with the supremum norm.

Proof of Proposition 3.2. Define the operator T : C(X × Ω × (S ∪ {0})) → C(X ×
Ω× (S ∪ {0})) as follows:

TW (x, ω, s′) = max
(P,ω′)∈ω

∑
I∈P

[
max
f∈x

∑
s∈S

Ef(s)
[
us(c) + δW (y, ω′s, s)

]
πs′(s | I)

]
πs′(I)

Because ω is a finite union of (P,ω′), the outer maximum of TW is achieved. The
compactness of x implies that a maximizer f ∈ x exists. It follows from the Theorem
of the Maximum (using standard arguments) that T is well defined, ie, TW ∈
C(X × Ω× (S ∪ {0})). It is also easy to see that T is monotone (ie, W ≤ W ′ implies
TW ≤ TW ′) and satisfies discounting (ie, T (W +a) ≤ TW +δa), so T is a contraction
mapping with modulus δ ∈ (0, 1). Using Proposition A.3, it follows that for each tuple(
(us)s∈S,Π, δ, ω), there exists a unique V ∈ C(X × Ω× (S ∪ {0})) that satisfies the
functional equation [Val].

The compactness of C and the discounting of payoffs ensure that the plan that
achieves the maxima in TW is actually optimal, that is, the optimal plan is Markovian
in (x, ω, s′) — see Orkin (1974) or Proposition A6.8 of Kreps (2012).

B.2. Dynamic Blackwell Order

In this section, we construct the dynamic Blackwell order for canonical icps. Appendix
A.3 exhibits an isomorphism between canonical icps and icps. The isomorphism now
induces the dynamic Blackwell order on icps.
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Let ω̂ ∈ Ω denote the canonical icp that delivers the coarsest partition in each
period in every state. Define Ω̂0 := K[

(
P× {ω̂}

)
, and inductively define Ω̂n+1 :=

K[

(
P× Ω̂n

)
for all n ≥ 0. Notice that for all n ≥ 0, Ω̂n ⊂ Ω̂n+1. We now define an

order &0 on Ω̂0 as follows: ω0 &0 ω
′
0 if for all (P ′, ω̂) ∈ ω′0, there exists (P, ω̂) ∈ ω0 such

that P is finer than P ′. This allows us to define inductively, for all n ≥ 1, &n on Ω̂n:
For all ωn, ω′n ∈ Ω̂n, ωn &n ω

′
n if for all (P ′,ω′n−1) ∈ ω′n, there exists (P,ωn−1) ∈ ωn

such that (i) P is finer than P ′, and (ii) ωn−1,s &n−1 ωn−1,s for all s ∈ S.
It is easy to see that &n is reflexive and transitive for all n. There is a natural

sense in which &n+1 extends &n, as we show next.

Lemma B.1. For all n ≥ 0, &n+1 extends &n, ie, &n+1 |Ω̂n
= &n.

Proof. As observed above, Ω̂n ⊂ Ω̂n+1 for all n. First consider the case of n = 0 and
recall that by construction ω̂ ∈ Ω̂0. Let ω0 &0 ω

′
0. Then, for (P ′, ω̂) ∈ ω′0, there exists

(P, ω̂) ∈ ω0 such that P is finer than P ′. Moreover, because &0 is reflexive, ω̂ &0 ω̂.
But this implies ω0 &1 ω

′
0. Conversely, let ω0 &1 ω

′
0. Then, for all (P ′, ω̂) ∈ ω′0, there

exists (P, ω̂) ∈ ω0 such that (i) P is finer than P ′, and (ii) ω̂ &0 ω̂ for all s ∈ S. But
this implies ω0 &0 ω

′
0, which proves that &n+1 |Ω̂n

= &n when n = 0.
As our inductive hypothesis, we suppose that &n |Ω̂n−1

=&n−1. Let ωn &n ω
′
n.

Then, for all (P ′, ω̃′n−1) ∈ ω′n, there exists (P, ω̃n−1) ∈ ωn such that (i) P is finer than
P ′, and (ii) ω̃n−1,s &n−1 ω̃

′
n−1,s for all s ∈ S. But by the induction hypothesis, this is

equivalent to ω̃n−1,s &n ω̃
′
n−1,s for all s ∈ S, which implies that ωn &n+1 ω

′
n.

Conversely, let ωn &n+1 ω
′
n. Then, for all (P ′, ω̃′n−1) ∈ ω′n, there exists (P, ω̃n−1) ∈

ωn such that (i) P is finer than P ′, and (ii) ω̃n−1,s &n ω̃
′
n−1,s for all s ∈ S. However, the

induction hypothesis implies ω̃n−1,s &n−1 ω̃
′
n−1,s for all s ∈ S, proving that ωn &n ω

′
n

and therefore &n+1 |Ω̂n
= &n.

Let Ω̂ :=
⋃
n≥0 Ω̂n. Let & be a partial order defined on Ω̂ as follows: ω & ω′ if

there is n ≥ 1 such that ω, ω′ ∈ Ω̂n and ω &n ω
′.

By definition of Ω̂ there is some n such that ω, ω′ ∈ Ω̂n, and by Lemma B.1 the
precise choice of this n is irrelevant. Hence & is well defined. We now show that &
also has a recursive definition.

Proposition B.2. For any ω, ω′ ∈ Ω̂, the following are equivalent.
(a) ω & ω′.
(b) for all (P ′, ω̃′) ∈ ω′, there exists (P, ω̃) ∈ ω such that (i) P is finer than P ′, and

(ii) ω̃s & ω̃′s for all s ∈ S.
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Therefore, & is the unique partial order on Ω̂ defined as ω & ω′ if (b) holds.

Proof. (a) implies (b). Suppose ω & ω′. Then, by definition, there exists n such
that ω, ω′ ∈ Ω̂n and ω &n ω

′. This implies that for all (P ′, ω̃′n−1) ∈ ω′n, there exists
(P, ω̃n−1) ∈ ωn such that (i) P is finer than P ′, and (ii) ω̃n−1,s &n−1 ω̃

′
n−1,s for all

s ∈ S. But the latter property implies ω̃s & ω̃′s for all s ∈ S, which establishes (b).
The proof that (b) implies (a) is similar and is therefore omitted.

The uniqueness of & on Ω̂ follows from the uniqueness of &n for all n ≥ 0.

We can now prove the existence of a recursive order on Ω. In particular, for all
ω, ω′ ∈ Ω, we say that ω dynamically Blackwell dominates ω′ if for all (P ′, ω̃′) ∈ ω′,
there exists (P, ω̃) ∈ ω such that (i) P is finer than P ′, and (ii) ω̃s dynamically
Blackwell dominates ω̃′s for all s ∈ S. The following proposition characterizes the
dynamic Blackwell order.

Proposition B.3. The order& on Ω̂ has a unique continuous extension to Ω. Moreover,
on Ω, & is the unique non-trivial and continuous dynamic Blackwell order.

Proof. Notice that Ω = cl(Ω̂), where cl(Ω̂) is the closure of Ω̂, and hence we simply
extend & to Ω by taking its closure, namely cl(&). Abusing notation, this extension is
also denoted by &. It is easy to see that & so defined is continuous and non-trivial.
That & is a unique dynamic Blackwell order follows from the facts that Ω̂ is dense in
Ω, the continuity of &, and Proposition B.2.

Let projn : Ω → Ω̂n be the map associating with each ω the ‘truncated and
concatenated’ version ωn, which offers the same choices of partition as ω for n stages,
but then offers ω̂ (the coarsest partition) forever. Given ω ∈ Ω, the sequence (ωn)

is Cauchy, and converges to ω. The next corollary gives us an easy way to establish
dominance.

Corollary B.4. For ω, ω′ ∈ Ω, ω & ω′ if, and only if, for all n ∈ N, ωn & ω′n.

Proof. The ‘only if’ part is obvious. The ‘if’ part follows from the continuity of &.

Notice that if m ≥ n, then ωn = projn ω = projn ωm. This observation implies
the following corollary.

Corollary B.5. For all ω, ω′ ∈ Ω and m ≥ 1, ωm & ω′m implies ωn & ω′n for all
1 ≤ n ≤ m.
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Proof. Notice that ωm, ω′m ∈ Ω. Therefore, by Corollary B.4, for all n ≥ 1, projn ωm &
projn ω′m. For n ≥ m, projn ωm = ωm, but for n ≤ m, projn ωm = ωn, which implies
that for all n ≤ m, ωn & ω′n.

Corollary B.6. Let ω1, ω2 ∈ Ω be such that projn(ω1) 6& projn(ω2) for some n ≥ 1,
but for all m < n, projm(ω1) & projm(ω2). Then, there exist finite sequences (Pk)

n−1
1

and (sk)
n−1
1 which induce canonical icps ωi(n−k) := τ ∗(ωi(n−k+1), Pk, sk) ∈ Ω̂n−k where

Pk ∈ Γ∗(ωin−k+1), such that Γ∗(ω1
1) does not setwise Blackwell dominate Γ∗(ω2

1).24

Proof. If not, we would have ω1
n & ω2

n, a contradiction.

Let D be a dynamic order on M that satisfies the following recursive criterion:
For icps M= (Θ,Γ, τ, θ0) and M′ = (Θ′,Γ′, τ ′, θ′0),

MD M′ if for every P ′ ∈ Γ′(θ′0), there exists P ∈ Γ(θ0) such that (i) P
is finer than P ′, and (ii) (Θ,Γ, τ, τ(θ0, P, s)) D (Θ′,Γ′, τ ′, τ ′(θ′0, P

′, s)) for
all s ∈ S.

[z]

To see that such a dynamic order exists, for any icp M, denote by ωM the
canonical icp that is indistinguishable from it (by part (a) of Proposition A.3, there
is a unique such ωM.) Then the order D∗ on M defined by MD∗ M′ if, and only if,
ωM & ωM′ satisfies condition [z].

We are now ready to prove Proposition 3.3 that demonstrates that there is a
largest order that satisfies [z]. The proof will establish that this order is D∗. We will
then term D∗ the dynamic Blackwell order on M, which is precisely the one we refer
to in the main text.

Proof of Proposition 3.3. We will show that for any D that satisfies condition [z], if
M 6D∗ M′ then M 6D M′. Suppose that ωM 6& ωM′ . Corollaries B.4 and B.5 imply that
there is a smallest n such that ωM,n 6& ωM′,n but that for all m < n, ωM,m & ωM′,m

(where ωM,n = projn ωM as defined in Appendix B.2). By Corollary B.6, there exists
a finite sequence of partitions (Pk) and states (sk) such that Γ∗

(
τ ∗(n)(θ0, (Pk), (sk))

)
does not setwise Blackwell dominate Γ∗

(
τ ∗(n)(θ′0, (Pk), (sk))

)
, where τ ∗(n)(θ0, (Pk), (sk))

represents the n-stage transition following the sequence of choices (Pk) and states
(sk). Recall that M is indistinguishable from ωM, and so is M′ from ωM′ . Therefore,
Γ
(
τ (n)(θ0, (Pk), (sk))

)
does not setwise Blackwell dominate Γ′

(
τ
′(n)(θ′0, (Pk), (sk))

)
,

which implies that M 6D M′.

(24) A set of partitions P setwise Blackwell dominates another set of partitions Q if for any Q ∈ Q

there is a P ∈ P which is finer than Q.
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C. Identification and Behavioral Comparison: Proofs from Section 4

Based on the previous results and notation, we now establish Theorems 1 and 2.
In accordance with the discussion in Section 4.1, x is strongly aligned with ω if

(i) V (x, ω, 0) ≥ V (x, ω′, 0) for all ω′ ∈ Ω, and (ii) ω′ does not dynamically Blackwell
dominate ω implies V (x, ω, 0) > V (x, ω′, 0). We say that P is supported by ω if there
exists ω′ ∈ ΩS such that (P,ω′) ∈ ω.

Recall that `∗ and `∗ are the best and worst consumption streams, respectively,
while c+

s and c−s denote the best and worst instantaneous consumption in state s. It
follows immediately from the representation that `∗ (respectively, `∗) consists of the
prize (ie, the degenerate lottery) c+

s (respectively, c−s ) in state s in any period.

Lemma C.1. Let (P,ω′) ∈ ω. There exists a menu x(P,ω′) recursively defined as
x(P,ω′) = {fJ : J ∈ P} with

fJ(s) :=


(
c+
s ,Unif

(
{x(Q, ω̃) : (Q, ω̃) ∈ ω′s}

))
if s ∈ J

`∗(s) if s /∈ J
[F]

where Unif(·) is the uniform lottery over a finite set.

Proof. For a partition P with generic cell J , define the act

f1,J(s) :=

`∗(s) if s ∈ J

`∗(s) if s /∈ J

and for each P that is supported by ω, define x1(P ) := {f1,J : J ∈ P}.
Now, proceed inductively, and for n ≥ 2, suppose we have the menu xn−1(P,ω′)

for each (P,ω′) ∈ ω, and define, for each cell J ∈ P , the act

fn,J(s) :=

(c+
s ,Unifn−1 ({xn−1(Q, ω̃) : (Q, ω̃) ∈ ω′s})) if s ∈ J

`∗(s) if s /∈ J

Then, given (P,ω′) ∈ ω, we have the menu xn(P,ω′) := {fn,J : J ∈ P}.
It is easy to see that for a fixed (P,ω′) ∈ ω, the sequence of menus

(
xn(P,ω′)

)
is a Cauchy sequence. Because X is complete, this sequence must converge to some
x(P,ω′) ∈ X. Moreover, this means that the sequence of sets ({xn(Q, ω̃) : (Q, ω̃) ∈ ω′s})
also converges to ({x(Q, ω̃) : (Q, ω̃) ∈ ω′s}). This allows us to denote the uniform lot-
tery over this finite set of points in X by Unif(ω′s).
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Thus, x(P,ω′) consists of the acts {fJ : J ∈ P} where for each J ∈ P

fJ(s) :=


(
c+
s ,Unif

(
{x(Q, ω̃) : (Q, ω̃) ∈ ω′s}

))
if s ∈ J

`∗(s) if s /∈ J

as claimed.

It is straightforward to verify that

V (`∗, ω, 0) = V
(
x(P,ω′), ω, 0

)
≥ V

(
x(P,ω′), ω̃, 0

)
for all ω̃ ∈ Ω. Indeed, V

(
x(P,ω′), ω, 0

)
= V

(
x(P,ω′), (P,ω′), 0

)
.

Lemma C.2. Let P,Q ∈ P and suppose Q is not finer than P . Then, for any
ω,ω′ ∈ ΩS, V

(
x(P,ω), (P,ω), 0

)
> V

(
x(P,ω), (Q,ω′), 0

)
.

Proof. Fix (P,ω) ∈ Ω and consider the menu x(P,ω) defined in [F]. As noted
above, for all ω′, we have V

(
x(P,ω), (P,ω), 0

)
= V

(
x(P,ω′), (P,ω′), 0

)
. Moreover,

it must be that for all (Q,ω′) (even for Q = P ), we have V
(
x(P,ω), (P,ω), 0

)
≥

V
(
x(P,ω′), (Q,ω′), 0

)
and in the case where Q is not finer than P and Q 6= P ,

V
(
x(P,ω′), (P,ω′), 0

)
> V

(
x(P,ω′), (Q,ω′), 0

)
by construction of the menu x(P,ω′).

(This is a version of Blackwell’s theorem on comparison of experiments; see Theorem
1 on p59 of Laffont (1989).)

Lemma C.3. Suppose ω2 does not dynamically Blackwell dominate ω1. Then, for
some (P, ω̃) ∈ ω1, the menu x(P, ω̃) defined in [F] is such that V

(
x(P, ω̃), ω1, 0

)
=

V
(
x(P, ω̃), (P, ω̃), 0

)
> V

(
x(P, ω̃), ω2, 0

)
.

Proof. Suppose ω2 does not dynamically Blackwell dominate ω1. Then, there exists a
smallest n ≥ 1 such that for all m < n, projm(ω2) dynamically Blackwell dominates
projm(ω1), while projn(ω2) does not dynamically Blackwell dominate projn(ω1).

From Corollary B.6 it follows that there exist finite sequences (Pk) and (P ′k)

of partitions, and (sk) of states, such that Γ∗
(
τ ∗(n)(ω2, (P ′k), (sk))

)
does not setwise

Blackwell dominate the set Γ∗
(
τ ∗(n)(ω1, (Pk), (sk))

)
, where (i) τ ∗(n)(θ0, (Pk), (sk)) rep-

resents the n-stage transition following the sequence of choices (Pk) and states (sk),
(ii) ωin−k = τ ∗(ωin−k+1, Pk, sk) where Pk ∈ Γ∗(ωin−k+1), and (iii) Γ∗(ω1

1) does not setwise
Blackwell dominate Γ∗(ω2

1).
Let (P1, ω̃) ∈ ω1 be the unique first period choice under ω1 that makes the

sequence (Pk) feasible. Then x(P1, ω̃) defined in [F] is aligned with (P1, ω̃). That is,
after n stages of choice and a certain path of states we can appeal to Lemma C.2,
which completes the proof.
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Proof of Theorem 1. For the case of finitely many prizes (ie, when C is a finite set),
Corollary 5 of Krishna and Sadowski (2014) establishes that the collection

(
(us),Π, δ

)
is unique in the sense of the Theorem. While we cannot directly appeal to their result,
judicious and repeated applications of their corollary allows us to reach the same
conclusion for a compact set of prizes (see the proof of Proposition D.1 below). Now,
define Fω := {x(P, ω̃) : (P, ω̃) ∈ ω}. It follows immediately from Lemma C.3 that Fω
is uniformly strongly aligned with ω.

This allows us to characterize the dynamic Blackwell order in terms of the
instrumental value of information.

Corollary C.4. Let ω, ω′ ∈ Ω. Then, the following are equivalent.
(a) ω dynamically Blackwell dominates ω′.
(b) For any

(
(us),Π, δ

)
that induces ω 7→ V (·, ω, ·), V (x, ω, ·) ≥ V (x, ω′, ·) for all

x ∈ X.

Proof. That (a) implies (b) is easy to see. That (b) implies (a) is merely the contra-
positive to Lemma C.3.

We are now in a position to prove Theorem 2.

Proof of Theorem 2. We first show the ‘only if’ part. On L, we have ` %† `′ implies
` % `′. This implies, by Lemma 34 of Krishna and Sadowski (2014), that %† |L =% |L.
Together with the uniqueness of the Recursive Anscombe-Aumann (raa) represen-
tation (see Appendix D below), this implies that

(
(us), δ,Π

)
=
(
(u†s), δ

†,Π†
)
after a

suitable (and behaviorally irrelevant) normalization of the state-dependent utilities.
Thus, part (b) of Corollary C.4 holds, which establishes the claim.

The ‘if’ part follows immediately from Corollary C.4.

D. Representation on Consumption Streams

Before we proceed, it is useful to record a consequence of assuming Axioms 0 and 1.
Let us ∈ C(C) for all s ∈ S, δ ∈ (0, 1), Π represent the transition operator for

a fully connected Markov process on S, and π0 be the unique invariant distribution
of Π. A preference on L has a Recursive Anscombe-Aumann (raa) representation
((us)s∈S,Π, δ) if W0(·) :=

∑
sW (·, s)π0(s) represents it, where W (·, s) is defined

recursively as

W (`; s) =
∑
s′∈S

Π(s, s′)
[
us′(`1(s′)) + δW (`2(s′); s′)

]
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and where us is non-trivial for some s ∈ S. Then, W0 can also be written as

W0(`) =
∑
s∈S

π0(s)
[
us(`1(s)) + δW (`2(s); s)

]
because π0 is the unique invariant distribution of Π and satisfies π0(s) =

∑
s π0(s′)Π(s′, s).

For some fixed c†s ∈ C, we say that the preference on L has a standard raa represen-
tation ((us)s∈S,Π, δ), if us(c†s) = 0 for all s ∈ S.

Proposition D.1. The preference % |L on L has a standard raa representation
if, and only if, it satisfies Axioms 0 and 1. Moreover, Π and δ are unique and the
collection (us)s∈S is unique up to a common positive scaling.

Proposition D.1 is formally established in the end of this section.

To see that L ' F(∆(C × L)), note that we can define L(1) := F(∆(C)) and
then recursively define L(n) := F(∆(C ×L(n−1))) as the space of consumption streams
of length n. Just as with the definition of the space of choice problems X in Appendix
A.2, we say that L is the space of all consistent sequences in×∞n=1

L(n).
The support of a consumption stream ` ∈ L is a set B ⊂ C such that at

any period and in any state, the realized consumption is in B. A consumption
stream has finite support if its support in C is finite. For any finite set B ⊂ C, we
can define LB as the space of all consumption streams with prizes in B. Formally,
LB ' F(∆(C × LB)). Let L0 be the space of all consumption streams with finite
support. That is, L0 :=

⋃
{LB : B ⊂ C, B finite}.

Analogously to L0, we can define L(n)
0 as the space of consumption streams of

length n with finite support. For any `(n) ∈ L(n)
0 , `(n) � `† ∈ L0, where `(n) � `† is the

concatenation of `† to `(n). In other words, each L(n) is naturally embedded in L0.

Proposition D.2. The space L0 is dense in L.

Proof. Because probability measures on C with finite support are dense in ∆(C), it
follows that for all n ≥ 1, L(n)

0 is dense in L(n). (The metrics defined on L(n) make this
clear — see Appendix A.2 for a formal definition.) By the definition of the product
metric, for any ` ∈ L and ε > 0, there exist an n and an `(n) ∈ L(n) such that
d(`, `(n) � `†) < ε, which completes the proof.

Axiom 1 stipulates that % |L is non-trivial. We now show that %s (defined in
Section 5.1) is also non-trivial for each s ∈ S. First some notation. For each I ⊂ S,
f ∈ F(∆(C ×X)), and ε ∈ [0, 1], define

(f ⊕ε,I (c, y))(s) := f(s) + ε1s∈I
(
(c, y)− f(s)

)
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That is, for any state s ∈ I, the act f ⊕ε,I (c, y) perturbs the continuation lottery with
y. Recall that L ⊂ F(∆(C ×X)).

Lemma D.3. Let `0, `1 ∈ L. Then, `0(s) ∼s `1(s) for all s ∈ S implies `0 ∼ |L`1.

Proof. By definition of %s, `0(s) ∼s `1(s) if, and only if, `∗ ⊕(1,s) `
0 ∼ |L`∗ ⊕(1,s) `

1.
Repeatedly applying L-Independence, we find

1

n
`0 +

n− 1

n
`∗ =

1

n

∑
s∈S

`∗ ⊕(1,s) `
0 ∼ |L

1

n

∑
s∈S

`∗ ⊕(1,s) `
1 =

1

n
`1 +

n− 1

n
`∗

By L-Independence, `0 ∼ |L`1. (This follows immediately once we note that, by the
Mixture Space Theorem, % |L has an affine representation.)

Lemma D.4. There exists s ∈ S such that `∗(s) �s `∗(s). For all s ∈ S, there exists
s′ ∈ S such that (c, `∗ ⊕(1,s) `

∗) �s′ (c, `∗).

Proof. Axiom a says that `∗ � |L`∗. Therefore, by (the contrapositive to) Lemma D.3,
there must exists an s such that `∗(s) �s `∗(s). In particular, `∗ ⊕(1,s) `

∗ � |L`∗.
To see the second part, suppose by way of contradiction that for all s′ ∈ S,

(c, `∗ ⊕(1,s) `
∗) ∼s′ (c, `∗). Set `0 and `1 such that `0(s′) = (c, `∗ ⊕(1,s) `

∗), while
`1(s′) = (c, `∗). It follows from Lemma D.3 that (c, `∗ ⊕(1,s) `

∗) ∼ |L(c, `∗).
Now, L-Stationarity (Axiom 1(d)) and the fact that `∗⊕(1,s) `

∗ � |L`∗ imply that
we have (c, `∗ ⊕(1,s) `

∗) � |L(c, `∗), which yields the desired contradiction.

Proposition D.5. For all s ∈ S, %s is non-trivial.

Proof. Lemma D.4 and (the contrapositive to) L-History Independence (Axiom 1(c))
imply (c, `∗ ⊕(1,s) `

∗) �s′′ (c, `∗) for all s′′ ∈ S, as claimed.

Lemma D.6. For any finite set B ⊂ C, the induced preference % |LB
satisfies the

Axioms stated in Corollary 5 of Krishna and Sadowski (2014, henceforth KS).

Proof. It follows from Proposition D.5 that each %s is non-trivial. That is, % |L is
state-wise nontrivial. In addition, % |L is continuous, satisfies Independence, and is
separable in `1 and `2, thereby satisfying Axioms 2, 3, and 5 in KS. Axioms 6, 7, and
9 in KS correspond to properties (c), (d), and (b) of our Axiom 1.

We now proceed to the proof of Proposition D.1.
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Proof of Proposition D.1. Let %C
s denote the induced preference over ∆(C) in state

s. It is clear that %C
s is well defined, continuous on ∆(C), satisfies Independence, and

that c+(s) %C
s α %C

s c
−(s) for all α ∈ ∆(C). Let F0 be the finite set of consumption

defined as
F0 :=

{
c−(s), c†(s), c+(s) : s ∈ S

}
Let B ⊂ C be finite. By Lemma D.6, % |LB

satisfies the Axioms in Corollary 5 of KS.
This implies there exists a tuple

(
(uBs )s∈S, δ

B,ΠB
)
that is an raa representation of

% |LB
. If F0 ⊂ B, then we may assume, without loss of generality, that uBs (c†(s)) = 0 for

all s ∈ S. Then, Corollary 5 in KS says that the collection of utilities (uBs ) is uniquely
identified up to a joint scaling, and that ΠB and δB are also uniquely determined.

Now, consider any other finite set D such that F0 ⊂ B ⊂ D. By Lemma
D.6, % |LD

also has an raa representation
(
(uDs )s∈S, δ

D,ΠD
)
. As before, if we set

uDs (c†(s)) = 0 for all s ∈ S, then the collection of utilities (uDs ) is identified up to
a common scaling. Now, because B ⊂ D, we have LB ⊂ LD. Therefore, the raa
representation

(
(uDs )s∈S, δ

D,ΠD
)
of% |LD

when restricted to LB is also a representation
of % |LB

, with the feature that uDs (c†(s)) = 0 for all s ∈ S. Once again, the uniqueness
of the raa representation implies that a single joint scaling of the collection (uDs )

results in uDs |B = uBs for all s ∈ S, ΠB = ΠD, and δB = δD.
Recall that c+(s) %C

s α %C
s c
−(s) for all α ∈ ∆(C). Because uBs and uDs represent,

respectively, %C
s |∆(B) and %C

s |∆(D), it must be that λ∗(s) := uBs (c+(s)) = uDs (c+(s))

and λ∗(s) := uBs (c−(s)) = uDs (c+(s)). Since B and D are arbitrary, the same must be
true for all finite B that contains F0.

It is easy to extend this argument to any two finite sets that contain F0, and
thus to all finite sets that contain F0. In particular, for raa representations on all
such finite sets, the Markov transition operator Π has been identified uniquely, as has
the discount factor δ ∈ (0, 1).

Let us ∈ C(C) be a vN-M utility representation of %C
s such that us(c†(s)) = 0.

Both us|∆(B) and uBs are vN-M representations of %C |∆(B) and by the Mixture Space
Theorem, differ at most by a positive affine transformation. Because they agree on
c†(s), they differ at most by a positive scaling. Therefore, if we scale us so that
us(c

+(s)) = λ∗(s), we have us(c−(s)) = λ∗(s) for all s ∈ S.
Consider the tuple ((us),Π, δ), and the functional W0 : L → R defined as

W0(`) :=
∑

s π0(s)W (`, s), where

W (`, s) :=
∑
s′

Π(s, s′)
[
us′(`1(s′)) + δW (`2(s′), s′)

]
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Note that the function W0 is uniquely determined by the tuple
(
(us)s∈S, δ,Π

)
. As

established above, W0 represents % |LB
for every finite B, that is, W0 represents % |L0 .

Proposition D.2 says that L0 is dense in L, and because W0 is (uniformly) continuous,
it also represents % on L. The uniqueness of the raa representation of % |L (given
our normalizations) follows immediately, which concludes the proof.

E. Existence

By Axiom 0 we have the representation in display [5.1]. We also take as given the
existence of the Recursive Anscombe-Aumann Representation for % |L, described in
Appendix D.

In the rest of this Appendix, we exhibit the existence of an icp representation.
We first define self-generating representations and the concomitant dynamic plans
in Appendix E.1. In Appendix E.1.1 we show that continuation preferences %(x,s)

are well defined when x is finite and has a unique optimal partition. In Appendix
E.1.2, we show how menus are valued relative to consumption streams based on the
recursive application of our axioms. Finally, we establish the existence of self-generating
representations (by proving Proposition E.3) in Appendix E.1.3.

Given a self-generating representation, Appendix E.2 shows that it is possible
to extract the underlying canonical icp. In Appendix E.3, we note that % has a
unique representation on L. We use this fact, and the canonical icp extracted from
the self-generating representation, to prove Theorem 3.

E.1. Self-Generating Representations and Dynamic Plans

Recall that C(X) is the space of all real-valued continuous functions on X. Let `† ∈ L
be the consumption stream that delivers c†s in state s at every date.

Suppose
(
(us),Q, (vs(·, P )), π

)
is a tuple where

• us ∈ C(C) for all s ∈ S,
• Q ⊂ P,
• vs(·, P ) ∈ C(X) for all s ∈ S and P ∈ Q,
• π ∈ ∆(S),
• us(c†s) = vs(`

†, P ) = 0 for all s ∈ S and P ∈ Q,
• vs(·, P ) is independent of P on L, and
• vs(·, P ) is non-trivial on L, and hence on X, for all s ∈ S and P ∈ Q,
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and v ∈ RX is such that

v(x) = max
P∈Q

∑
I∈P

π(I) max
f∈x

∑
s∈S

π(s | I)
[
us(f1(s)) + vs(f2(s), P )

]
In that case, we say that the tuple

(
(us),Q, (vs(·, P )), π

)
is a separable and parti-

tional implementation of v, or in short, an implementation of v. (By definition, the
implementation takes value 0 on `†(s) for all s ∈ S and is linear on L.)

More generally, for any subset Φ ⊂ C(X), define the operator A : 2C(X) → 2C(X)

as follows:

AΦ :=
{
v ∈ C(X) : ∃

(
(us),Q, (vs(·, P )), π

)
that implements v

and vs(·, P ) ∈ Φ for all s ∈ S and P ∈ Q
}

Proposition E.1. The operator A is well defined and has a largest fixed point
Φ∗ 6= {0}. Moreover, Φ∗ is a cone.

Proof. For all nonempty Φ ⊂ C(X), AΦ is nonempty. (Simply take any Q, any
0 6= vs(·, P ) ∈ Φ for each P ∈ Q, and any us for each s ∈ S, so that AΦ 6= ∅.) The
operator A is monotone in the sense that Φ ⊂ Φ′ implies AΦ ⊂ AΦ′. Thus, it is a
monotone mapping from the lattice 2C(X) to itself, where 2C(X) is partially ordered
by inclusion. The lattice 2C(X) is complete because any collection of subsets of 2C(X)

has an obvious least upper bound: the union of this collection of subsets. Similarly,
a greatest lower bound is the intersection of this collection of subsets (which may
be empty). Therefore, by Tarski’s fixed point theorem, A has a largest fixed point
Φ∗ ∈ 2C(X).

To see that Φ∗ 6= {0}, ie, Φ∗ does not contain only the trivial function 0, fix
Q =

{
{{s} : s ∈ S}

}
so that it contains only the finest partition of S. For the value

function V in [Val], take any us ∈ C(C) \ {0} with us(c†s) = 0 for all s ∈ S, a discount
factor δ ∈ (0, 1), and π as the uniform distribution over S. Then V is implemented by(
(us),Q, δV ), π

)
, while δV is implemented by

(
(δus),Q, δ

2V ), π
)
, and so on. Therefore,

the set ΦV := {δnV : n ≥ 0} is a fixed point of A. Because ΦV ⊂ Φ∗, it must be that
Φ∗ is nonempty.

Finally, to see that Φ∗ is a cone, let v ∈ Φ∗ and suppose
(
(us),Q, (vs(·, P )), π

)
implements v. Then, for all λ ≥ 0,

(
(λus),Q, (λvs(·, P )), π

)
implements λv, ie, λΦ∗ is

also a fixed point of A. Because Φ∗ is the largest fixed point, it must be a cone.

Notice that each v ∈ Φ∗ is implemented by a tuple
(
(us),Q, (vs(·, P )), π

)
with

the property that each vs(·, P ) ∈ Φ∗. Adapting the terminology of Abreu, Pearce, and
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Stacchetti (1990), the set Φ∗ consists of self-generating preference functionals that
have a separable and partitional implementation. (Notice that unlike Abreu, Pearce,
and Stacchetti (1990), our self-generating set lives in an infinite dimensional space.)
In what follows, if % is represented by V ∈ Φ∗, we shall say that V is a self-generating
representation of %.

Lemma E.2. Let x ∈ X ′P . Then, there exists ε > 0 such that B(x; ε) ⊂ X ′P . In
particular, for any y ∈ X and s ∈ S, there exists ε′ ∈ (0, 1] such that for all ε ∈ (0, ε′),
x⊕ε,s y ∈ X ′P .

Proof. The function V0 in [5.1] is continuous, which in turn implies that each X ′P is
open. The result now follows immediately.

In Appendix E.1.1, we show that %(x,s) is a well-defined binary relation on X,
and that %(x,s)=%(P,s), where P is an optimal information choice given x. Conversely,
for every P and s there is a finite x ∈ X, such that %(x,s)=%(P,s) on X. With %(x,s)

now defined, we can recursively apply Axiom 0 as described in Section 5.2.

Proposition E.3. Let % be a binary relation on X. The following are equivalent.
(a) % recursively satisfies Axioms 0 and satisfies Axiom 1.
(b) % has a self-generating representation, ie, there exists a function V ∈ Φ∗ that

represents % and has a standard raa representation on L.

As steps to prove this result, in Appendix E.1.1 we show that %(P,s) recursively
satisfies Axioms 0 and satisfies Axiom 1. In Appendix E.1.2, we derive some useful
properties of consumption streams based on the recursive application of Axiom 0.
Finally, we prove Proposition E.3 in Appendix E.1.3.

E.1.1. Continuation Preferences

Lemma E.4. Let x = {f1, . . . , fm}, and x′ = {f ′1, f ′2, . . . , f ′m}. Suppose d(fi, f
′
i) < ε.

Then, d(x, x′) < ε.

Proof. Recall that d(fi, x
′) := minf ′j∈x′ d(fi, f

′
j) < ε. Therefore, maxfi∈x d(fi, x

′) < ε.
A similar calculation yields maxf ′j∈x′ d(f ′j, x

′) < ε, which implies that d(x, x′) < ε from
the definition of the Hausdorff metric.

Notice that Q in [5.1] is finite and can be taken to be minimal (in the sense that
if Q′ is another set that represents V0 as in [5.1], then Q ⊂ Q′) without affecting the
representation. Recall that X∗ := {(1− t)x+ t`∗ : x ∈ X is finite, t ∈ (0, 1)}.
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Lemma E.5. Let % have a representation as in [5.1]. For all P ∈ Q, there exists a
finite x ∈ X ′P ∩X∗. In particular, x = 1

2
x′ + 1

2
x1(P ) for some x′ ∈ X.

Proof. The finiteness and minimality of Q in [5.1] implies that for any P ∈ Q, there
exists an open set O ⊂ X ′P . Because the spaceX∗ is dense inX, there exists x′ ∈ O∩X∗.
It follows from [5.1] that x := 1

2
x′ + 1

2
x1(P ) ∈ X ′P ∩X∗, as claimed.

Lemma E.6. Let % have a representation as in [5.1]. Fix P ∈ Q. For any finite
x ∈ X ′P and s ∈ S, %(x,s) is independent of the choice of ε ∈ (0, 1) for which Definition
5.3 applies and is independent of the choice of c in the definition of x⊕ε,s y. Further,
%(x,s) is represented by vs (·, P ). Finally, if x′ ∈ XP is finite, then %(x,s)=%(x′,s).

Proof. Let x ∈ X ′P be finite, so that V0(x) = V0(x, P ). Fix s ∈ S. By Lemma E.2,
there exists ε > 0 such that B(x; ε) ∈ X ′P . By Lemmas E.2 and E.4, [x ⊕ε,s y],
[x ⊕ε,s y′] ∈ B (x; ε) for all y, y′ ∈ X, establishing the completeness of %(x,s). Then,
[x⊕ε,s y] % [x⊕ε,s y′] if, and only if, V0

(
x⊕(ε,s) y

)
≥ V0 (x⊕ε,s y′).

Suppose f ⊕ε,s y is optimally chosen from x⊕ε,s y in state s. Then,

(1− ε)[us(f1(s)) + vs(f2(s), P )] + ε [us(c) + vs(y, P )]

≥ (1− ε) [us(f1(s)) + vs(f2(s), P )] + ε [us(c) + vs(y
′, P )]

which implies vs (y, P ) ≥ vs (y′, P ). Conversely, vs(y, P ) ≥ vs(y
′, P ) implies that if

f ⊕ε,s (c, y′) is optimally chosen from x⊕ε,s y′ in state s, then the inequality displayed
above holds, which implies

[
x ⊕ε,s y

]
%
[
x ⊕ε,s y′

]
. But this is independent of our

choice of ε > 0 as long as the menus remain in X ′P . Notice also that the argument
above is independent of the choice of c ∈ C.

Finally, observe that the choice of x ∈ X ′P in the argument above is irrelevant,
in that vs(·, P ) represents all %(x,s) with x ∈ X ′P . This completes the proof.

Axiom 0 implies that we can define the function vs ∈ C(L) such that vs(·) =

vs(·, P )|L for all P ∈ Q in [5.1].

Lemma E.7. For all x ∈ X, ` %(x,s) `
′ if, and only if, vs(`) > vs(`

′
).

Proof. Evaluate x⊕ε,s ` according to representation [5.1] in Axiom 0. By construction,
for ε > 0 small enough, neither the optimal partition P nor the subsequent optimal
choice of act f depend on `. Therefore, ` %(x,s) `

′ if, and only if, V0(x⊕ε,s `)−V0(x⊕ε,s
`
′
) = επ(s)(vs(`)− vs(`

′
)) ≥ 0.
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Lemma E.8. The binary relation %(P,s) on X which is represented by vs (·, P ) recur-
sively satisfies Axiom 0 and satisfies Axiom 1.

Proof. By Lemma E.6, %(P,s)=%(x,s) for some x ∈ X ′P . Since %(x,s)∈ Ψ∗, it recursively
satisfies Axiom 0. Further, by Lemma E.7, ` %(x,s) `

′ if, and only if ` %(`∗,s) `
′ for

some `∗ ∈ L. By L-stationarity (Axiom 1d), ` %(`∗,s) `
′ if, and only if ` % `

′ . Since %
satisfies Axiom 1, %(x,s) must then do so as well.

E.1.2. Comparing Menus and Consumption Streams

We now relate preferences on L to those on X.
Let X̃1 := K

(
F(∆(C ×{`∗}))

)
be the space of one-period problems that always

give `∗ at the beginning the second period. Inductively define X̃n+1 := K
(
F(∆(C ×

X̃n))
)
for all n ≥ 1, and note that for all such n, X̃n ⊂ X. Finally, let X̃ :=

⋃
n X̃n.

Lemma E.9. The set X̃ ⊂ X is dense in X.

Proof. Recall that X is the space of all consistent sequences in×∞n=1
Xn, where

X1 := K
(
F(∆(C))

)
and Xn+1 := K

(
F(∆(C×Xn))

)
. As noted in the construction in

Appendix A.2, every x ∈ X is a sequence of the form x = (x1, x2, . . . , xn, . . . ) where
xn ∈ Xn, and the metric on X is the product metric.

For any x = (x1, x2, . . . ) ∈ X and n ≥ 1 set x̃n ∈ X̃n to be xn concatenated
with `∗. It follows from the product metric on X — see Appendix A.2 — that for any
ε > 0, there exists n ≥ 1 such that d(x, x̃n) < ε, as claimed.

Lemma E.10. Let % satisfy Axioms 0 and 1. Then, for any s ∈ S and P ∈ Q,
`∗ %(P,s) ` %(P,s) `∗ for all ` ∈ L.

Proof. The preference % has a separable and partitional representation as in [5.1].
Therefore, %s on L is represented by us(·) + vs(·, Q) for all Q. Moreover, % |L has
an raa representation. As observed in Section D, %s on L is separable and has the
property that for all c ∈ C, ` ∈ L and s ∈ S, (c, `∗) %s (c, `) %s (c, `∗). This implies
that for all ` ∈ L, vs(`∗, Q) ≥ vs(`,Q) ≥ vs(`∗, Q) for all partitions Q ∈ Q in [5.1]. But
since vs(·, P ) represents %(P,s), `∗ %(P,s) ` %(P,s) `∗ for all ` ∈ L, s ∈ S.

Proposition E.11. Let % recursively satisfy Axiom 0 and satisfy Axiom 1. Then,
for all x ∈ X, `∗ % x % `∗. In particular, for any P ∈ Q and s ∈ S, we have
`∗ %(P,s) x %(P,s) `∗.
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Proof. We shall only prove that `∗ % x and that `∗ %(P,s) x for all x ∈ X, P ∈ Q, and
s ∈ S. The other bounds are proved analogously.

By the continuity of % and by Lemma E.9, it suffices to show that for all x̃ ∈ X̃,
`∗ % x̃.

Suppose x̃ ∈ X̃n. We first consider the case n = 1. It follows immediately from
the representation [5.1] in Axiom 0 that V (x̃1) ≤ V (`∗) for all x̃1 ∈ X̃1. Since % ∈ Ψ∗,
by Lemma E.8 %(P,s) also satisfies Axioms 0 and 1 for any P ∈ Q, which implies that
there exists `∗(P,s) such that vs(`∗(P,s)) ≥ vs(x̃1, P ) for all x̃1 ∈ X̃1. By Lemma E.10, we
may take `∗(P,s) = `∗, so that vs(`∗, P ) ≥ vs(x̃1, P ) for all x̃1 ∈ X̃1.

Now consider the induction hypothesis: If % recursively satisfies Axiom 0 and
satisfies Axiom 1, then for all x̃n ∈ X̃n, `∗ % x̃n. Suppose the induction hypothesis is
true for some n ≥ 1. We shall now show that it is also true for n+ 1.

By Lemma E.8, %(P,s) recursively satisfies Axiom 0 and satisfies Axiom 1 on X,
so that vs(`∗, P ) ≥ vs(x̃n, P ) for all x̃n ∈ X̃n (where we have appealed to Lemma E.10
to establish that `∗ is the vs(·, P )-best consumption stream). In particular, this implies
that for any lottery α2 ∈ ∆(X̃n), vs(`∗, P ) ≥ vs(α2, P ), which along with Axiom 0
proves the second part of the proposition because n is arbitrary.

Now consider any x̃n+1 ∈ X̃n+1. We have, for any choice of P ,

V (x̃n+1, P ) = max
f∈x̃n+1

∑
J∈P

π0(s | J)
[
us(f1(s)) + vs(f2, P )

]
≤
∑
J∈P

π0(s | J)
[
us(c

+
s ) + vs(`

∗, P )
]

= V (`∗, P ) = V (`∗)

where we have used the facts that f1(s) ∈ ∆(C) and f2(s) ∈ ∆(X̃n), and that us(c+
s )

and vs(`∗;P ) respectively dominate all such lotteries, as established above. Thus, for
all x̃n+1 ∈ X̃n+1, `∗ % x̃n+1, which completes the proof.

E.1.3. Proof of Proposition E.3

Proof. To see that (b) implies (a), suppose % has the representation [5.1], thereby
meeting Axiom 0. We now establish is that % recursively satisfies the axiom.

Given a representation as in [5.1] that is also self-generating, let x ∈ X be finite
and P ∈ Q be the unique optimal partition for x. By Lemma E.6, %(x,s) is represented
by vs(·, P ) on X. Because the representation is self-generating, %(x,s) must satisfy
Axiom 0 on X. Because V ∈ Φ∗, the same argument applies to preferences induced by
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%(x,s), and so on, ad infinitum, which establishes that % recursively satisfies Axiom 0 .
Moreover, % has an raa representation on L, which means it satisfies Axiom 1 on L.

To see that (a) implies (b), note that Lemma E.8 has two implications. First,
%(P,s) has a separable and partitional representation v′s(·, P ) as in [5.1]. Because
vs(·, P ) also represents %(P,s), vs(·, P ) and v′s(·, P ) are identical up to a monotone
transformation. But, by L-Indifference to Timing (Axiom 1(e)), it must be that vs(·, P )

and v′s(·, P ) are unique up to a positive affine transformation on L. Let us re-normalize
v′s(·, P ) so that vs(·, P ) = v′s(·, P ) on L.

Second, because %(P,s) recursively satisfies Axiom 0 and satisfies Axiom 1, it
satisfies the hypotheses of Proposition E.11. By Lemma E.11, we have `∗ %(P,s) y %(P,s)

`∗ for all y ∈ X. Because vs(·, P ) and v′s(·, P ) both represent %(P,s), they agree on L
and, thus, as any element in X has an indifferent alternative in L, must agree on X.
It follows that vs(·, P ) also has a representation as in [5.1], that is, it can be written as

vs(x, P ) = max
P ′∈Q′(P )

∑
J∈P ′

π0(J) max
f∈x

∑
s

π0(s | J)
[
u′s(f1(s)) + v′s(f2(s);P ′)

]
Because %(x,s) recursively satisfies Axiom 0 and satisfies Axiom 1, it follows from
the reasoning above that each v′s(·, P ′) in the above representation of vs(·, P ) also
has a representation as in [5.1], and so on, ad infinitum, which demonstrates that
V ∈ Φ∗.

E.2. Extracting the Canonical icp

Given a V ∈ Φ∗ that is a self-generating representation of %, we would like to extract
the underlying (subjective) informational constraints. We show next that this is
possible.

Proposition E.12. There is a unique map ϕ∗ : Φ∗ → Ω that for some implementation(
(us),Q, (vs(·, P )), π

)
of v satisfies

ϕ∗(v) :=
{(
P, ϕ∗(vs(·, P ))

)
: P ∈ Q

}
and is independent of the implementation chosen.

Proof. Let v(1) ∈ Φ1, and suppose
(
(us),Q, (vs(·, P )), π

)
implements v(1). In this

implementation, Q is unique. (The argument follows from our identification argument
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in Appendix C. On the other hand, (us), (vs(·, P )), and π will typically not be unique.)
Then, define ϕ1 : Φ1 → Ω1 as

ϕ1(v(1)) := Q, where
(
(us),Q, (vs(·, P )), π

)
implements v(1)

Proceeding iteratively, we define ϕn : Φn → Ωn as

ϕn(v(n)) :=
{(
P, ϕn−1(v(n−1)

s (·, P )
)

: ∃
(
(us),Q, (v

(n−1)
s (·, P )), π

)
that

implements v(n) and P ∈ Q
}

Notice that the same argument that established the uniqueness of ϕ1 also applies here
to provide the uniqueness of ϕn.

Suppose v ∈ Φ∗. This implies that v has a partitional and separable implemen-
tation

(
(us),Q, (vs(·, P )), π

)
, where each vs(·, P ) also has a partitional and separa-

ble implementation, and so on, ad infinitum. Then, we may define, for all n ≥ 1,
ω(n) := ϕn(v). Consider the infinite sequence

ω0 :=
(
ω(1), ω(2), . . . , ω(n), . . .

)
∈ Ω

and define the map ϕ∗ : Φ∗ → Ω as ϕ∗(v) =
(
ϕ1(v), ϕ2(v), . . .

)
, which extracts

the underlying canonical icp from any function v ∈ Φ∗, independently of the other
components of the implementation, as claimed.

To recapitulate, we can now extract a canonical icp from a self-generating
representation. In other words, the identification of the canonical icp ω0 doesn’t
depend on the recursivity of the value function. This stands in contrast to the
identification of the other preference parameters, which relies on recursivity.

A dynamic plan consists of two parts: the first entails picking a partition for
the present period (and the corresponding continuation constraint), and the second
entails picking an act from x, whilst requiring that the choice of act, as a function
of the state, be measurable with respect to the chosen partition. The first part is a
dynamic information plan while the second is a dynamic consumption plan.

An n-period history is an (ordered) tuple

hn =
(
(x(0), ω(0)), . . . , (P (n−1), f (n−1), s(n−1), x(n−1), ω(n−1))

)
Let Hn denote the collection of all n-period histories.

Formally, a dynamic information plan is a sequence σi = (σ
(1)
i , σ

(2)
i , . . . ) of

mappings where σ(n)
i : Hn → P× ΩS. Similarly, a dynamic consumption plan is
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a sequence σc = (σ
(1)
c , σ

(2)
c , . . . ) of mappings where σ(n)

c : Hn → F(∆(C × X)). A
dynamic plan σ is a pair σ = (σi, σc).

A dynamic plan σ = (σi, σc) with initial states x(0) := x and ω(0) := ω0 is feasible
if (i) σ(n)

i (hn) ∈ ω(n−1), (ii) σ(n)
c (hn) ∈ x(n−1), and (iii) given the information plan

σ
(n)
i (hn) = (P,ω′) ∈ ω(n−1), σ(n−1)

c (hn) is P -measurable, ie, for all I ∈ P and for all
s, s′ ∈ I, σ(n)

c (hn)(s) = σ
(n)
c (h)(s′).

Each dynamic plan along with initial states (x, ω0, π0) induces a probability
measure over

(
X × Ω × S

)∞ or, put differently, an X × Ω × S valued process. Let
(x(n), ω(n), s(n)) be the X × Ω× S-valued stochastic process of menus, canonical icps,
and objective states induced by a dynamic plan, where x(n) ∈ X is the menu beginning
at period n+ 1, ω(n) ∈ Ω is the canonical icp beginning at period n+ 1, and s(n) ∈ S
is the state in period n. A dynamic plan is stationary if σ(n)(hn) only depends on
(x(n−1), ω(n−1), s(n−1)).25

For a fixed V ∈ Φ∗, let v(n)(·, ω(n), s(n), σ) denote the value function that corre-
sponds to the n-th period implementation of V when following the dynamic information
plan σ, where ω(n) = ϕn(V ) as in Proposition E.12 and s(n) is the state in period n.

While we have shown that each v ∈ Φ∗ can be written as the sum of some
instantaneous utility and some continuation utility function that also lies in Φ∗, we
still need to verify that the value that V obtains for any menu is indeed the infinite
sum of consumption utilities. We verify this next.

Proposition E.13. Let V ∈ Φ∗, and suppose v(n)(·, ω(n), s(n), σ) is defined as above.
Then, for any feasible dynamic plan σ = (σc, σi), we have

lim
n→∞

∥∥Eσ,π v(n)(·, ω(n), s(n), σ)
∥∥
∞ = 0[E.1]

Proof. Consider V ∈ Φ∗ with Lipschitz rank λ. Recall that for any x ∈ X, `† �n x ∈ X
denotes the menu that delivers `† in every period until period n−1 and then, in period
n, in every state, delivers x. Recall further that X is an infinite product space, and by
the definition of the product metric (see Appendix A.2), it follows that for any ε > 0,
there exists an N > 0 such that for all x, y ∈ X and n ≥ N , d(`† �n x, `† �n y) < ε/λ.
Lipschitz continuity of V then implies

∣∣V (`† �n x)− V (`† �n y)
∣∣ < ε.

For a given n, V (`† �n x) = 0 + Eσ,π[v(n)(x, ω(n), s(n), σ)], which implies∣∣Eσ,π v(n)(x, ω(n), s(n))− Eσ,π v(n)(y, ω(n), s(n), σ)
∣∣ < ε

(25) The choice of plan clearly does not affect the evolution of the objective states (s(n)).
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for all n ≥ N . Recall that∥∥Eσ,π v(n)(·, ω(n), s(n), σ)
∥∥
∞ = sup

x

∣∣Eσ,π v(n)(x, ω(n), s(n), σ)
∣∣

Moreover, we have

sup
x

∣∣Eσ,π v(n)(x, ω(n), s(n), σ)
∣∣

= sup
x

∣∣Eσ,π [v(n)(x, ω(n), s(n), σ)− v(n)(`†, ω(n), s(n), σ)
]∣∣ < ε

which completes the proof.

Adapting the terminology of Dubins and Savage (1976), we say that a function
V ∈ Φ∗ is equalizing if [E.1] holds. (To be precise, if [E.1] holds, then every dynamic
plan is equalizing in the sense of Dubins and Savage (1976).)

Given an initial (x, ω) ∈ X×Ω, each σ induces a probability measure over×n
Hn,

the space of all histories. It also induces a unique consumption stream `σ(x,ω) that
delivers consumption σc(hn)(s′) after history hn in state s′ in period n. We show next
that for any self-generating preference functional V ∈ Φ∗, the utility from following
the plan σ given the menu x is the same as the utility from the consumption stream
`σ(x,ω). (Recall that there are no consumption choices to be made for the consumption
stream `σ(x,ω,s).) Moreover, there is an optimal plan such that following this plan
induces a consumption stream that produces the same utility as the menu x.

Let Σ denote the collection of all dynamic plans and let Lx,ω := {`σ(x,ω) : σ ∈ Σ}
be the collection of all consumption streams so induced by the menu x and the
canonical icp ω. In what follows, V (x, σ) is the expected utility from following the
dynamic plan σ given the menu x.

Lemma E.14. Let V ∈ Φ∗ be such that ϕ∗(V ) = ω. Then, for all x ∈ X, V (x, σ) =

V (`σ(x,ω)) and V (x) = maxσ∈Σ V (x, σ) = max`∈Lx,ω V (`).

Proof. For V ∈ Φ∗ and for any plan σ′, an agent with the utility function V is
indifferent between following σ′ and the consumption stream `σ′(x,ω). This is essentially
an adaptation of Theorem 9.2 in Stokey, Lucas, and Prescott (1989) where their
Equation [7] — which is also known as a no-Ponzi game condition, see Blanchard and
Fischer (1989, p 49) — is replaced by the fact that V is equalizing (condition [E.1] in
Proposition E.13).26

(26) Note that Stokey, Lucas, and Prescott (1989) directly work with the optimal plan, but the
essential idea is the same — continuation utilities arbitrarily far in the future must contribute
arbitrarily little.
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To see that there is an optimal plan, notice that x is a compact set of acts, and
because there are only finitely many partitions of S, it is possible to find a conserving
action at each date after every history. This then gives us a conserving plan. We can
now adapt Theorem 9.2 in Stokey, Lucas, and Prescott (1989) where, as above, their
Equation [7] is replaced by [E.1], to show that σ is indeed an optimal plan. Loosely put,
we have just shown that because the plan is conserving and because V is equalizing,
the plan must be optimal. This corresponds to the characterization of optimal plans
in Theorem 2 of Karatzas and Sudderth (2010).

E.3. Recursive Representation

We now establish a recursive representation for %, thereby proving Theorem 3.
Recall that % |L has a standard raa representation

(
(us), δ,Π

)
. That is, there

exist functions V ∗L (·, s) : L → R such that V ∗L (`, π0) :=
∑

s π0(s)V
∗
L (`, s) represents

% |L, and
V ∗L (`, s) :=

∑
s′

Π(s, s′)
[
us′(`1(s′)) + δV ∗L (`2(s′), s′)

]
where us is nontrivial for some s ∈ S and us

(
c†s
)

= 0 for all s ∈ S. This implies
V ∗L (`†, s) = 0 for all s, so that V ∗L (`†, π0) = 0. The function V ∗L (recall that V ∗L also
denotes the linear extension of V ∗L to ∆(L)) is uniquely determined by the tuple(
(us)s∈S, δ,Π

)
.

By Proposition E.3 % has a self-generating representation V ∈ Φ∗ that satisfies
V (`†) = 0. Now, both V |L and V ∗L (·, π0) represent% |L on L. Because% |L is continuous
and satisfies Independence on L, it follows that V |L and V ∗L (·, π0) are identical up to
a positive affine transformation. Given that V (`†) = V ∗L (`†, π0) = 0, V |L and V ∗L (·, π0)

only differ by a scaling. Therefore, rescale the collection (us)s∈S by a common factor
so as to ensure V |L = V ∗L (·, π0) on L.

Fix ω0 and observe that by Proposition 3.2, the tuple
(
(us)s∈S,Π, δ, ω0

)
induces a

unique value function that satisfies [Val]. Notice also that this value function agrees with
V ∗L (·, π0) on L. We denote this value function, defined on X × Ω× S, by V ∗(·, ω0, π0).

The next result proves Theorem 3.

Proposition E.15. Let V be a self-generating representation of % such that ϕ∗(V ) =

ω0, and suppose V (·) = V ∗(·, ω0, π0) on L. Then, V (·) = V ∗(·, ω0, π0) on X.27

(27) It follows immediately from Proposition E.15 that in considering dynamic plans, we may restrict
attention to stationary plans. This is because we have a recursive formulation with discounting
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Proof. In this proof, we refer to objects defined in Appendix E.2. For any x, let σ(x, ω0)

denote the optimal plan for the utility V and let σ∗(x, ω0) denote the optimal plan
for V ∗. By Lemma E.14, there exist `σ(x,ω0), `σ∗(x,ω0) ∈ Lx,ω0 such that

V (x) = V (`σ(x,ω0)) ≥ V (`σ∗(x,ω0)) = V ∗(`σ∗(x,ω0)) = V ∗(x, ω0, π0)

Reversing the roles of V and V ∗, we obtain once again from Lemma E.14 that

V ∗(x, ω0, π0) = V ∗(`σ∗(x,ω0)) ≥ V ∗(`σ(x,ω0)) = V (`σ(x,ω0)) = V (x)

In both displays, the second equality obtains because V and V ∗ agree on L. Combining
the two inequalities yields the desired result.

Suppose V represents % and V ∈ Φ∗. Then there exists an implementation
of V given by

(
(us),Q, (v

(1)
s (·, P )), π

)
. For ease of exposition, we shall say that the

collection (v
(1)
s (·, P )) implements V . Then, for all n ≥ 1, there exists (v

(n)
s ) ∈ Φ∗ that

implements v(n−1)
s and so on. Notice that each v(n)

s depends on all the past choices of
partitions. However, our recursive representation V ∗ is only indexed by the current
state of the canonical icp, and so is entirely forward looking.
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