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Abstract

We introduce a new class of preferences — which we call additive-belief-based (ABB) —

that captures a general and yet tractable approach to belief-based utility, and that encompasses

many popular models in the behavioral literature. We show that the general class of ABB

preferences and two prominent special cases, which allow utility to depend on each period’s

beliefs but not on changes in beliefs across periods, are fully characterized by suitable relaxations

of the standard Independence axiom. We identify the intersection of ABB preferences with

the class of recursive preferences and characterize attitudes towards the timing of resolution

of uncertainty for ABB preferences. Our approach helps to better understand, in terms of

testable predictions, existing models and leads to new models that can accommodate previously

uncaptured behavioral patterns.

JEL codes: D80, D81, D83, D91.

Key words: Anticipatory utility, Compound lotteries, Preferences over beliefs, Recursive

preferences, Resolution of uncertainty.

1 Introduction

1.1 Motivation

It is both intuitive and well documented that beliefs about future consumption or life events directly

affect well-being. For example, an individual may enjoy looking forward to an upcoming vacation

and particularly so if the risks of severe weather conditions are deemed very low; on the other

hand, the same individual may worry about a future medical procedure. Using survey techniques,

Loewenstein (1987) provides early evidence on the effects of these anticipatory motives in economics.
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There is also widespread evidence from other fields discussing how anticipation of pain produces

psychological-stress reactions: a notable example is Lazarus (1966), while Berns et al. (2006)

provide evidence from fMRI studies. Moreover, a desire to avoid anxiety or other negative emotions

has been suggested as the primary motivation for why individuals avoid information even when it

is rational to acquire it (e.g. Oster et al., 2013).

As a result, decision-making models in which individuals derive utility not only from mate-

rial outcomes but also from their current and future beliefs have become increasingly prominent.

Existing models usually take one of two forms. The first, as in Caplin and Leahy (2001), allows

utility to depend on the (absolute) level of beliefs; i.e., on how likely it is that certain states/payoffs

occur. In line with previous literature, we refer to this set of models as anticipatory utility models.

In the second, as in Kőszegi and Rabin (2009), utility depends not on the level of beliefs, but on

changes in beliefs across periods. We refer to this class as changing beliefs models. Both classes

have proved useful in explaining intuitive behavioral phenomena that are hard to reconcile with the

standard “consequentialist” model, such as asset and portfolio puzzles (Pagel, 2018), patterns of

over-consumption in the face of income shocks (Kőszegi and Rabin, 2009), and selective avoidance

of medical information (Caplin and Eliaz, 2003; Kőszegi, 2003).

Existing research tends to make specific functional form assumptions about the way utility

depends on beliefs. However, despite their potential explanatory power, little work has been done

on trying to understand what types of behavior belief-based utility, as a general class, can potentially

accommodate, or must rule out. There are several potential downsides to the current approach. For

example, it may falsely reject the hypothesis that beliefs matter merely because the data does not

support specific functional form assumptions. It may also obscure the main features of belief-based

utility that drive particular behavioral patterns (mistakenly attributing them instead to a specific

model). Moreover, although both anticipatory and changing beliefs models are motivated by many

of the same stylized facts, there is little understanding of what distinctive behavioral predictions

they may make. It is conceivable that some of the existing models generate the same behavior

despite having distinct functional forms.

In this paper we address these issues. We suggest a unified framework for the type of models

described above and provide their testable implications. In particular, we introduce and analyze a

new class of utility functions — which we call additive-belief-based (ABB) utility — that captures a

general approach to belief-based utility and that encompasses both the anticipatory and changing

beliefs classes. We also point out a useful partition of the class of anticipatory utility models into

(i) prior-anticipatory utility models, where utility depends on beliefs at the beginning of the time

period, before information has been received; and (ii) posterior-anticipatory utility models, where

utility depends on beliefs at the end of the time period, after information has been received. A

comprehensive review of models that fall into these categories is in Section 5. Additionally, Table
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1 in that section summarizes the taxonomy of popular models that are nested by ABB preferences.

We show that both the general class and the special subsets we consider are characterized by new,

intuitive relaxations of the familiar Independence axiom of expected utility, applied to our setting.

We also demonstrate how functional forms restrictions translate to non-standard behaviors, such as

intrinsic (i.e., non-instrumental) attitudes towards information, and, conversely, how such behaviors

allow us to distinguish between different cases of ABB utility. For example, prior-anticipatory utility

models, previously unused in the literature, are able to accommodate a richer set of behavioral

phenomena compared to the oft-used posterior-anticipatory utility models.

Our results can thus guide applied theorists, by providing a toolkit to understanding the be-

havioral implications of particular modeling choices, as well as empirical researchers, in testing —

and distinguishing between — potential belief-based mechanisms.

1.2 Preview of Results

As will be described below, individuals in our framework are assumed to gain utility from their

beliefs, but they cannot directly choose them.1 Rather, they hold prior beliefs, receive information,

and form posterior beliefs by applying Bayes’ rule. Therefore, individuals can control their beliefs

only by choosing particular information structures. To link this to observable behavior, we look at

preferences over the combination of information structures and prior beliefs. These can naturally

be elicited in experimental and field settings. Formally, taking advantage of the mapping between

information structures and compound lotteries, we take as our domain of preferences the set of two-

stage compound lotteries, that is, lotteries whose prizes are different lotteries over final outcomes.2

The restriction to two, rather than to arbitrary T , stages is mostly to ease exposition and simplify

notation. In Appendix A.4 we comment on how our analysis can be extended to that richer domain.

Let P be a typical two-stage lottery. In period 0 it induces prior beliefs φ(P ) over final outcomes;

the individual knows that the overall probability to receive xj in period 2 is φ(P )(xj). In period

1, P generates a signal i with probability P (pi). Signal i generates posterior beliefs over outcomes;

the individual now knows that in period 2 he will receive xj with probability pi(xj). In period 2,

all uncertainty resolves and the individual receives xj and has degenerate beliefs on this outcome

1A well known example in which individuals optimally choose their beliefs is Brunnermeier and Parker (2005).
Bénabou and Tirole (2016) and Bénabou (2015) survey models where individuals can distort their beliefs.

2In particular, we assume that individuals cannot take intermediate actions that may affect their final payoffs.
While many of the models we refer to do allow for such actions, we will omit them from our analysis for several
reasons. First, for expository purposes, we focus on the simplest model that still incorporates all variables of interest
into the utility function. Second, as we discuss in Section 4, individuals in our model have intrinsic preferences over
information. It will be cleanest to characterize such preferences within a framework that rules out any instrumental
value of information. Third, allowing for intermediate actions requires us to take a stand about the solution concept
that governs how individuals determine which action to take (e.g., backward induction or personal equilibrium),
rather than solely focus on the parameters that identify their preferences. The choice of solution concept also
requires carefully modeling the timing of actions relative to when beliefs, and belief-based utility, are realized.
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(denoted δxj ). From the ex ante point of view, the total utility of this scenario is:

VABB(P ) =
∑
j

φ(P )(xj)u(xj)︸ ︷︷ ︸
expected utility from material payoffs

+
∑
i

P (pi)ν1(φ(P ), pi)︸ ︷︷ ︸
expected utility from beliefs in period 1

+
∑
i

P (pi)
∑
j

pi(xj)ν2(pi, δxj )︸ ︷︷ ︸
expected utility from beliefs in period 2

The first term represents the expected consumption utility — the expected utility that the in-

dividual receives from material outcomes (in period 2). The second term represents period 1’s

belief-based utility — the expected utility from having interim beliefs pi in period 1, conditional on

having prior beliefs φ(P ). The last term represents period 2’s belief-based utility — the individual’s

expected utility from xj being realized in period 2, conditional on having interim beliefs pi.

As a concrete example, suppose there are two outcomes, H (high) and L (low), so that beliefs

are summarized by the probability of H. Suppose that ex-ante the two outcomes are equally likely.

Then the expected utility over material outcomes is 1
2u(H) + 1

2u(L). In period 1, the individual

receives a binary signal: half the time it is good, and beliefs move to 3
4 with corresponding utility

ν1(1
2 ,

3
4); half the time it is bad, and beliefs fall to 1

4 with corresponding utility ν1(1
2 ,

1
4). Expected

belief-based utility in period 1 is thus 1
2ν1(1

2 ,
3
4)+1

2ν1(1
2 ,

1
4). In period 2, the individual learns whether

he got H or L. After the good signal utility is either ν2(3
4 , 1) or ν2(3

4 , 0); and after the bad signal it

is either ν2(1
4 , 1) or ν2(1

4 , 0). Expected belief-based utility in period 2 is 1
2

(
3
4ν2(3

4 , 1) + 1
4ν2(3

4 , 0)
)

+
1
2

(
1
4ν2(1

4 , 1) + 3
4ν2(1

4 , 0)
)
. ABB utility is the sum of these three components.

ABB utility is general enough to nest many important specifications, yet specific enough to

highlight the direct effect of beliefs on flow utility. For example, in Kőszegi and Rabin (2009) ν1

and ν2 (whose exact forms are given in Section 6.1) are the gain-loss utilities from the belief change

from φ(P ) to pi and from pi to δxj , respectively. In Caplin and Leahy’s (2001) model of anticipatory

anxiety, both ν1 and ν2 depend only on their second argument.

In Section 2, we initially show how the prominent sub-classes of ABB functionals are related to

each other, demonstrating that models that allow for changing beliefs nest those of prior anticipa-

tory beliefs, which in turn nest those of posterior anticipatory beliefs. We then provide necessary

and sufficient conditions for continuous preferences to be represented with an ABB functional.

First, Prior Conditional Two-Stage Independence (PTI) requires standard Independence (in mix-

ing compound lotteries) to hold only if all compound lotteries involved in the mixing induce the
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same prior distribution over final outcomes. That is, if φ(P ) = φ(Q) = φ(R), then P is preferred

to Q if and only if the mixture of P and R is preferred to the (same-proportion) mixture of Q and

R. Second, Cross Sectional Two-Stage Independence (CTI) requires consistency/uniformity across

priors in the scale used to measure preferences.

We next turn to showing how, in addition to CTI, strengthening PTI allows us to characterize

models of prior-anticipatory beliefs. The key behavior that distinguishes utility from changes in

beliefs and utility from the level of beliefs is how broadly Independence (again over compound

lotteries) holds. If individuals only care about the levels of their beliefs, then Independence should

hold whenever the two lotteries involved in the initial comparison, but not necessarily the one they

are both mixed with, induce the same prior distribution over outcomes. That is, Strong Prior

Conditional Two-Stage Independence (SPTI) drops from PTI the requirement that φ(R) agrees

with φ(P ) = φ(Q). We last show that imposing Independence on all mixtures in the first stage (a

property that subsumes all requirements above) characterizes posterior-anticipatory beliefs. Thus,

our results demonstrate how a simple set of easily tested behavioral postulates allows distinguishing

between different types of belief-dependent utility.

ABB preferences are not the only class of preferences that have been developed to explain

informational preferences, even in the absence of the ability to condition actions on that information.

A different vein of the literature, initially developed by Kreps and Porteus (1978) and extended by

Segal (1990), focuses on recursive preferences over compound lotteries (and information). These

models rely on a relaxation of the Independence axiom that is orthogonal to both PTI and CTI. In

Section 3 we show that, in the context of two-stage compound lotteries, the intersection of the two

models is precisely the class of preferences that admit a posterior-anticipatory beliefs representation.

Since individuals gain utility from their beliefs, they may exhibit non-degenerate preferences

over information structures even if they cannot react to new information by altering their behavior,

that is, even if they do not have actions to take in the interim stage. This feature, which is

supported by a large body of experimental evidence (discussed in Section 5), is what distinguishes

these models from the standard model, in which individuals would be indifferent to information

when no actions are available. In Section 4 we investigate what restrictions on the functional forms

are equivalent to well-known types of intrinsic informational preferences, such as preferences for

early resolution of uncertainty (Kreps and Porteus, 1978) or preferences for one-shot resolution of

uncertainty (Dillenberger, 2010). In doing so, we provide characterizations that generalize some

earlier results which were made in the context of specific models. Our results allow us to determine

how different classes of models can, or cannot, accommodate different intrinsic attitudes towards

information. For example, a preference for early resolution of uncertainty is consistent with all

the sub classes we consider. In contrast, we show that a preference for one-shot resolution of

uncertainty cannot be exhibited by individuals who have only anticipatory motives, but rather
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requires a concern for changing beliefs.

In Section 5 we discuss how our three categories of utility functionals relate to specific models

used in the literature. Finally, while this paper focuses on deriving results that are not tied to

specific functional forms, in Section 6 we demonstrate how our results can enrich our understating of

known models and extend the explanatory power of belief-based preferences. For example, we both

extend and point out the limits of the relationship between loss aversion and information preferences

within the model of Kőszegi and Rabin (2009). We also show how prior-anticipatory utility models,

previously unused in the literature, are able to accommodate a richer set of behavioral phenomena,

such as the joint presence of well documented violations of expected utility and preferences for

more or less information, compared to the oft-used posterior-anticipatory utility models.

2 The Model

2.1 Preliminaries

Consider a set of prizes X, which is assumed to be a closed subset of some metric space. A simple

lottery p on X is a probability distribution over X with a finite support. Let ∆(X) (or simply

∆) be the set of all simple lotteries on X. For any p, q ∈ ∆ and α ∈ (0, 1), let αp + (1 − α)q be

the lottery that yields prize x with probability αp(x) + (1 − α)q(x). Denote by δx the degenerate

lottery that yields x with certainty and let X̄ = {δx : x ∈ X}; we will often abuse notation and

refer to δx simply as x. Similarly, denote by ∆(∆(X)) (or simply ∆2) the set of simple lotteries

over ∆, that is, compound lotteries. For P,Q ∈ ∆2 and α ∈ (0, 1), denote by R = αP + (1− α)Q

the lottery that yields simple (one-stage) lottery p with probability αP (p) + (1− α)Q(p). Denote

by Dp the degenerate, in the first stage, compound lottery that yields p with certainty. Define a

reduction operator φ : ∆2 → ∆ that maps compound lotteries to reduced one-stage lotteries by

φ(Q) =
∑

p∈∆Q(p)p.3 We refer to φ(Q) as prior beliefs (or simply a prior). When there is no risk

of confusion, we sometimes refer to φ as the prior itself, without specifying the compound lottery

that induced it. Our primitive is a binary relation % over ∆2.

2.2 Functional Forms

We first formally define additive-belief-based utility.

Definition 1. An additive-belief-based (ABB) representation is a tuple (u, ν1, ν2) that consists of

continuous functions u : X → R, ν1 : ∆×∆→ R, and ν2 : ∆× X̄ → R, such that VABB : ∆2 → R
3Compound lotteries are isomorphic to the set of prior beliefs over outcomes plus a potential information structure.

We can associate an information structure with the set of posterior beliefs it induces — the set of second-stage lotteries.
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defined as

VABB(P ) =
∑
j

φ(P )(xj)u(xj) +
∑
i

P (pi)ν1(φ(P ), pi) +
∑
i

P (pi)
∑
j

pi(xj)ν2(pi, δxj )

represents %.

The general ABB representation allows utility to depend on changes in beliefs in period 1

and period 2. If utility depends on changes in beliefs, then ν1 and ν2 are functions of both their

arguments. Alternatively, individuals may not care about changes, but rather about the levels of

their beliefs in any given period. This can happen in one of two ways. The first case supposes that

utility depends on beliefs at the beginning of any period, that is, ν1 is solely a function of φ(P )

and ν2 is solely a function of pi. We call this functional form prior-anticipatory utility.

Definition 2. A prior-anticipatory representation is an ABB representation with the restrictions

that ν1(φ(P ), pi) = ν̂1(φ(P )) and ν2(pi, δxj ) = ν̂2(pi).

In the second case, utility is derived from beliefs at the end of any period (that period’s posterior

beliefs, after receiving information), that is, ν1 is solely a function of pi and ν2 is solely a function

of δxj . We call this posterior-anticipatory utility.

Definition 3. A posterior-anticipatory representation is an ABB representation with the restric-

tions that ν1(φ(P ), pi) = ν̄1(pi) and ν2(pi, δxj ) = ν̄2(δxj ).

Clearly, both anticipatory representations above are subsets of VABB. More surprisingly, prior-

anticipatory representation nests posterior-anticipatory representation.

Lemma 1. If % has a posterior-anticipatory representation, then it has a prior-anticipatory rep-

resentation.

Proof of Lemma 1: By Definition 2 and setting ν̃ =
∑

j φ(P )(xj)u(xj) + ν̂1(φ(P )), a prior-

anticipatory representation is given by ν̃1(φ(P ))+
∑

i P (pi)ν̂2(pi). Similarly, by Definition 3 and set-

ting ũ(xj) = u(xj)+ ν̄2(δxj ), a posterior-anticipatory representation is given by
∑

i φ(P )(xj)ũ(xj)+∑
i P (pi)ν̄1(pi). Clearly the latter is a subset of the former. �

2.3 Characterization

We now characterize the functionals we have described using the relation %. As will become appar-

ent, our approach to restrict preferences is to impose Independence-type conditions on particular

subsets of ∆2. The first two axioms are standard.

Weak Order (WO) The relation % is complete and transitive.

Continuity (C) The relation % is continuous.
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Our key axiom is Prior Conditional Two-Stage Independence (PTI). PTI requires the Inde-

pendence axiom to hold within the set of compound lotteries which share the same prior beliefs.

Observe that the set P(p) := {Q ∈ ∆2|φ(Q) = p} is convex for any p ∈ ∆. Thus, PTI states that

Independence holds along “slices” of the compound lottery space, where all elements of the slice

have the same reduced form probabilities.

Prior Conditional Two-Stage Independence (PTI): For any P, P ′, Q ∈ ∆2 and α ∈ [0, 1],

if φ(P ) = φ(P ′) = φ(Q), then P % P ′ if and only if αP + (1− α)Q % αP ′ + (1− α)Q.

Recall that we identify preferences over compound lotteries with preferences over the combina-

tion of information structures and prior beliefs. PTI then requires that within a set of information

structures that correspond to the same prior beliefs, the individual is an expected utility maxi-

mizer over their posterior beliefs; “non-standard” behavior may arise only when comparing across

underlying prior beliefs.4

In addition to PTI, we need to link the evaluations made across different prior beliefs. This is

the content of the following axiom, Cross Sectional Two-Stage Independence (CTI), which states

that these comparisons are performed using the same “measurement rod”.5 In particular, CTI

ensures that relative preferences of one set of posterior beliefs corresponding to prior φ, compared

to a second set of posterior beliefs corresponding to prior φ′, are not altered by mixing, so long as

the mixing preserves the prior associated with each posterior belief.

Cross Sectional Two-Stage Independence (CTI): For any P,Q,R, S ∈ ∆2 and α ∈ [0, 1], if

φ(P ) = φ(Q) 6= φ(R) = φ(S), P % R, and Q % S, then αP + (1− α)Q % αR+ (1− α)S.

Our first main result shows that PTI and CTI, along with the standard two axioms above,

characterize preferences that admit an ABB representation.

Proposition 1. The relation % satisfies WO, C, PTI, and CTI, if and only if it has an ABB

representation.

All proofs are in Appendix A.1. To prove Proposition 1, we define a prior-conditional representa-

tion VPC(P ) =
∑

i P (pi)ν(φ(P ), pi), which is an expected utility functional (over the second-stage

lotteries pis) for a fixed prior φ(P ). We then show that the relation % has a prior-conditional

4In the language of information preferences, PTI implies that preferences over statistical experiments — each of
which chooses a signal with a probability that depends on the realized state of nature — are preserved by mixing
(fixing a prior). Thus, if a sick individual prefers medical test A to B, he must prefer a λ chance of test A and 1− λ
chance of test C to a randomization with the same proportion between B and C. Notice that the ranking between
a pair of statistical experiments at one prior does not restrict the ranking of those experiments for any other prior
— knowing that test A is preferred to B when sick conveys no information about the ranking of A and B (or any
mixture involving them) when healthy.

5We could also state PTI and CTI as a single axiom, by not requiring φ(Q) 6= φ(S) in the statement of CTI. Note
that under this modification, taking Q = S implies PTI. We have decided to state PTI and CTI as two separate
requirements since they are conceptually different and play different roles in deriving the result representation. Indeed,
we will see below that fixing CTI, both anticipatory representations are obtained by strengthening PTI.
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representation if and only if it has an ABB representation. By PTI, an immediate application of

the Mixture Space Theorem yields that fixing φ we have a prior-conditional representation. But

while fixing φ the rankings within P(φ) will not be affected by any monotone transformation of

the prior-conditional utility, the rankings across different slices might. Axiom CTI rules this out:

it guarantees that all such transformations are φ-independent, and can be taken without loss of

generality to be the identity. We will revisit the observation that the general ABB representation

can be compactly written as a simple expected utility functional in Section 2.4, when discussing its

uniqueness properties.

PTI is not very restrictive, as it requires mixing not to reverse rankings only when all lotteries

involved in the mixing have the same reduced form probabilities. A natural way to strengthen

it is to suppose that only the compound lotteries involved in the original preference comparison

need to have the same reduced form probabilities — the common compound lottery that they are

mixed with need not. This means that the pair of lotteries which are compared after the mixing

will have the same reduced form probabilities as each other, but need not have the same reduced

form probabilities as the original pair. The next axiom formalizes this intuition.

Strong Prior Conditional Two-Stage Independence (SPTI): For any P, P ′, Q ∈ ∆2 and

α ∈ [0, 1], if φ(P ) = φ(P ′), then P % P ′ if and only if αP + (1− α)Q % αP ′ + (1− α)Q.

SPTI rules out complementarity between prior beliefs and the corresponding information sys-

tems. That is, irrespectively of a fixed underlying prior, the individual consistently chooses among

information systems based on the expected utility criterion over posterior beliefs; the relative value

of posterior beliefs under prior φ does not change if we move to prior φ′. Thus, violations of ex-

pected utility may occur only when the individual compares two compound lotteries that do not

refine the same prior beliefs. This means that SPTI still allows the trade-off between informational

concerns (attitude towards the way uncertainty is resolved) and payoff concerns (prior beliefs) to

vary across the entire domain. For example, suppose there are two outcomes H > L, and let

p = p(H). Then it may be that if p is low, the individual will prefer to slightly reduce the overall

chance of receiving H in exchange for having all uncertainty resolves immediately; yet will care less

about the resolution process where p is high and will not accept such compromise.

SPTI clearly implies PTI, but it is logically independent of CTI. Replacing PTI with SPTI

yields our second characterization result:

Proposition 2. The relation % satisfies WO, C, CTI, and SPTI, if and only if it has a prior-

anticipatory representation.

Similar to the previous proposition, the main step in proving Proposition 2 is showing that %

has a prior-anticipatory representation if and only if it has a (prior-separable) representation of the

form Vps = νps1(φ(P )) +
∑

i P (pi)νps2(pi).
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In order to characterize posterior-anticipatory representations, we further strengthen when In-

dependence applies. The next axiom implies both CTI and SPTI, as it requires Independence to

hold when mixing any two compound lotteries in the first stage.

Two-Stage Independence (TI): For any P, P ′, Q ∈ ∆2 and α ∈ [0, 1], P % P ′ if and only if

αP + (1− α)Q % αP ′ + (1− α)Q.

TI implies that prior beliefs do not matter when considering preferences over information struc-

tures.6 Our next result shows that it is equivalent to a posterior anticipatory representation.

Proposition 3. The relation % satisfies WO, C, and TI, if and only if it has a posterior-anticipatory

representation.

2.4 Special Cases

The functional forms we have previously derived above are quite general. In many cases, we may

want to impose further restrictions on the set of functionals we consider.

One typical assumption within the literature is that, in either stage, the individual receives the

same utility (often normalized to 0) from beliefs that do not change. We describe these preferences

as belief stationarity invariant (BSI).

Definition 4. An ABB representation is belief stationarity invariant (BSI) if ν1(p, p) = ν2(δx, δx) =

0 for all x ∈ X and p ∈ ∆.

A second type of assumption is that the utility derived from beliefs does not depend on which

period those beliefs are realized. We call such preferences belief time invariant (BTI).7

Definition 5. An ABB representation is belief time invariant (BTI) if ν1 = ν2 over their relevant

shared domain.

To relate BSI and BTI to behavior, we use the next axiom, which is due to Segal (1990).

Time Neutrality (TN): For any p ∈ ∆, if P = Dp and Q =
∑

i p(xi)δxi, then P ∼ Q.

Time Neutrality supposes that the individual is indifferent between a compound lottery that

fully resolves in the first period and one that resolves only in the second period (so that the

6Seo (2009) also features mixing of compound lotteries. However, he has three stages, where the first stage is
objective, second is subjective, and the third is objective. He provides an axiom called First-Stage Independence,
which is analogous to TI. We use slightly different nomenclature to highlight the fact that the axioms operate on
different domains.

7BTI rules out situations where individuals may get a stronger or weaker “kick” from beliefs if they occur sooner
(for example, via discounting). We can weaken BTI to allow for such considerations, and say that ABB representation
is pseudo-belief time invariant (PBTI) if for some scalar κ > 0, ν1 = κν2 over their relevant shared domain. However,
in the end of the proof of Proposition 4 we show that PBTI does not restrict preferences alone and, furthermore, that
BSI and PBTI in conjunction have no observable implications as well, as long as κ can be chosen arbitrarily.
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information structure reveals no information in period 1), provided that they induce the same

distribution over final outcomes, that is, they are both in P(p).

Although BSI and BTI do not restrict preferences alone, in conjunction they do.

Proposition 4. Suppose % has an ABB representation. The following statements are true:

1. The relation % has a representation which is belief stationarity invariant.

2. The relation % has a representation which is belief time invariant.

3. The relation % has a representation which is both belief stationarity invariant and belief time

invariant, if and only if it satisfies Time Neutrality.

2.5 Uniqueness

The fact that we can obtain either a BSI or a BTI representation without loss of generality raises

the question to what extent are ABB preferences uniquely identified.

The uniqueness property can be broken up into two parts. For both parts (as well as the

discussion on uniqueness in the Appendix), we will make the assumption that, conditional on any

prior, preferences are non-trivial. In other words, for all φ̄ ∈ ∆, there exists P, P
′ ∈ ∆2 such that

φ(P ) = φ(P
′
) = φ̄ and P � P ′ .8

First, an immediate application of the mixture space theorem implies that if V and V ′ are

both ABB representations of the same preference relation, then they differ by a positive affine

transformation.

Proposition 5. Suppose % has an ABB representation V . The ABB representation V ′ also rep-

resents % if and only if there exist scalars α > 0 and β such that V ′ = αV + β.

Second, there are individual terms that can be subtracted from one component and absorbed in

another, leaving the numerical value intact. In Appendix A.2 we show that the uniqueness results

of the sub-components u, ν1, and ν2 are more subtle because any outcome that generates material

utility must also appear in the support of the beliefs entering ν1 and ν2. Thus, one should expect

that, without any further restrictions, there is some freedom to assign utility that is generated by

any x appearing in the support of the lottery to either material utility or belief-based utility.

If, instead, we focus on the standard normalization applied in the literature (i.e., the one imposed

by BSI), then u is unique up to an affine transformation, while ν1 and ν2 are unique up to common

8To see why without such assumption standard uniqueness results fail, note that if preferences conditional on a
prior are trivial then they can be represented by arbitrary non-expected utility functionals. However, if conditional
on any prior preferences are non-trivial, then continuity implies that for any prior φ̄, and for any other prior φ

′
close

enough to φ̄, there must be P, P
′

such that φ(P ) = φ̄, φ(P
′
) = φ

′
, and P ∼ P

′
. Then, applying the techniques in

Claim 2 of the proof of Proposition 1, normalizations applied to one prior must be consistent with normalizations
applied to any other prior, allowing us to to utilize standard techniques to establish uniqueness.
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scaling. Since any ABB preferences have a BSI representation, this uniqueness result is entirely

general.9 Thus, we achieve a complete separation between preferences over final outcomes, which

embed risk attitudes and are captured by u, and preferences over beliefs, which embed preferences

for information and are captured by ν1 and ν2.

Proposition 6. Suppose % has an ABB representation (u, ν1, ν2) that satisfies BSI. The ABB

representation (u′, ν ′1, ν
′
2) also represents % and satisfies BSI if and only if there exist scalars α > 0

and βu such that u′(x) = αu+ βu; ν ′1(ρ, p) = αν1(ρ, p); and ν ′2(p, δx) = αν2(p, δx).

3 ABB Utility and Recursive Preferences

ABB preferences are not the only preferences used to model decisions over compound risk; an

alternative specification is of preferences that are recursive. Recursive preferences have played

an extensive role in a variety of models attempting to capture, among other things, choices over

compound lotteries and information (see Kreps and Porteus, 1978; Segal, 1990; Grant, Kajii, and

Polak, 1998; Dillenberger, 2010; Dillenberger and Segal, 2017; and Sarver, 2018).

In the definition below, CEW (p) denotes the certainty equivalent of p ∈ ∆ corresponding to the

real function W on ∆, that is, W (p) = W (δCEW (p)).
10

Definition 6. Suppose % over ∆2 can be represented by the functional V . Then it has a recursive

representation (V1, V2), where Vi : ∆ → R, if and only if for all P =
∑

i P (pi)Dpi, we have

V (P ) = V1(
∑

i P (pi)δCEV2
(pi)).

Segal (1990) provides a behavioral equivalence for these functional forms using a substitution

axiom he called Compound Independence, which we refer to as Recursivity.

Recursivity (R): For any p, q ∈ ∆, Q ∈ ∆2, and α ∈ [0, 1], Dp % Dq if and only if

αDp + (1− α)Q % αDq + (1− α)Q.

Similarly to our previous main assumptions, Recursivity applies Independence to a particular

“slice” of compound lotteries: the original pair of lotteries being compared must be degenerate in

the first stage. This slice is orthogonal to that considered by CTI and PTI (or SPTI). Segal (1990)

shows that the relation % satisfies WO, C, and R, if and only if it admits a recursive representation.

One immediate question is to what extent these two classes of utility, ABB and recursive, are

related. Our next result shows that their intersection is exactly those preferences which admit a

posterior-anticipatory representation.

9We only consider transformations that generate different actual values for all sub-functions involved in the
transformation, and do not consider transformations that add and subtract elements to a specific sub-functoinal
that leave its own actual value unchanged. For example,

∑
x p(x)γν(p, δx) =

∑
x p(x)(γν(p, δx) + εp(x)) whenever∑

x p(x)εp(x) = 0.
10For the certainty equivalent to be well-defined, we need to impose some order on the set X. It will be the case

whenever we take the set of prizes to be an interval X ⊂ R and both functions Vi in Definition 6 are monotone with
respect to first-order stochastic dominance.
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Figure 1: Relationships between models

Proposition 7. The following statements are equivalent:

• The relation % satisfies WO, C, PTI, CTI, and R.

• The relation % has a posterior-anticipatory representation.

• The relation % has a recursive representation where V1 is expected utility.

Figure 1 depicts the relationships discussed here and the results of the last section. In general,

ABB models can be directly tested (and falsified) in the natural domain of information preferences

given a fixed prior — this is precisely the subdomain where axiom PTI bites. In contrast, recursive

preferences, as a general class, have no observable restrictions when the prior is fixed; testing the

assumption of Recursivity (Axiom R) requires observing preferences as the prior changes. Propo-

sition 7 then implies that this latter property applies as well to the subclass of preferences that

have posterior-anticipatory representation. The proposition further implies that any posterior-

anticipatory representation captures individuals who have “emotions over emotions”. This is be-

cause recursive models transform any two-stage compound lottery into a simple lottery over the

second-stage certainty equivalents. Those certainty equivalents capture all second-period utility

from beliefs changing in the second stage (e.g., disappointment/elation). Since first-period pref-

erences take the certainty equivalents as the possible outcomes, those anticipated second period

emotions are part and parcel of the “material” payoffs of the first-stage preferences. In all ABB

models which do not have posterior-anticipatory representation, future changes in beliefs are in-

dependent of the effects of previous changes in beliefs. In other words, first period’s beliefs-based

utility, as captured by ν1, is all about changes in material outcomes and does not depend on second

period’s belief-based utility, ν2.
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In addition to axiom R, Segal (1990) also introduces several other restrictions on preferences

over compound lotteries (such as the Reduction of Compound Lotteries axiom and the requirement

that Independence holds among both the set of full early resolving lotteries and fully late resolving

lotteries). To complete our analysis, in Appendix A.3 we establish their relationship with CTI,

PTI, SPTI, and TI, and further interpret these connections via the functional forms.

4 ABB Utility and the Timing of Resolution of Uncertainty

Individuals with ABB utility will have intrinsic preferences over information, that is, they may prefer

one information structure to another even without the ability to condition actions on either of them.

Many papers looking at specific examples of ABB preferences derive results regarding preferences

over information, while focusing on two concepts: preferences for early versus late resolution of

uncertainty and preferences for one-shot versus gradual resolution of uncertainty. In an analogous

vein, characterizations of these informational attitudes for recursive preferences have been a major

focus of the decision-theoretic literature. However, there do not exist equivalent characterizations

for ABB preferences. Our results will allow to compare how different classes of models (recursive

and ABB) can accommodate (or not) different non-instrumental attitudes towards information.

In many works, such as Kreps and Porteus (1978) and Grant, Kajii, and Polak (1998), indi-

viduals are allowed not only to prefer uncertainty to be fully resolved earlier (in period 1 rather

than in period 2), but also to always prefer Blackwell-more-informative signals in period 1, that is,

earlier resolution of uncertainty. Drawing on Grant, Kajii, and Polak (1998), we define a preference

for early resolution of uncertainty as follows.

Definition 7. The relation % displays a preference for early resolution of uncertainty if

βαDq + (1− β)αDp + (1− α)Q % αDr + (1− α)Q

for any Q ∈ ∆2, p, q, r ∈ ∆, and α, β ∈ (0, 1), such that r = βp+ (1− β)q.

That is, preference for early resolution of uncertainty implies affinity towards splitting any

branch that leads to some posterior beliefs r into several branches, whenever the split consists

of a mean-preserving spread of r. As Grant, Kajii, and Polak (1998) show, this notion indeed

characterizes intrinsic information loving (preference for more informative signals). Preference for

late resolution of uncertainty is analogously defined, by requiring the reverse ranking for such

lotteries.

We now characterize preferences that exhibit preferences for either early or late resolved lot-

teries. Similarly to known results about recursive preferences, attitude towards the resolution of

uncertainty is characterized in our model by the curvature of the appropriate components. In the
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next result we refer to preferences which have a prior-anticipatory representation, but do not have

a posterior-anticipatory representation, as having a prior∗- anticipatory representation.11

Proposition 8. The following statements are true:

1. Suppose % has an ABB representation. Then % exhibits a preference for early (resp., late)

resolution of uncertainty if and only if ν1(ρ, ·) +
∑

x ν2(·, x) is convex (resp., concave).

2. Suppose % has a prior∗-anticipatory representation. Then % exhibits a preference for early

(resp., late) resolution of uncertainty if and only if ν̂2 is convex (resp., concave).

3. Suppose % has a posterior-anticipatory representation. Then % exhibits a preference for early

(resp., late) resolution of uncertainty if and only if ν̄1 is convex (resp., concave).

A distinct notion of preferences for resolution of uncertainty is introduced by Dillenberger

(2010). He supposes that individuals satisfy Time Neutrality (axiom TN described earlier) and

that they prefer either compound lotteries in which all uncertainty is resolved in period 1 or in

period 2 to any other compound lotteries which induce the same prior beliefs.12 He defines this as

a preference for one-shot resolution of uncertainty.

Definition 8. The relation % exhibits a preference for one-shot resolution of uncertainty (PORU)

if P ∼ Q % R, for all P,Q,R ∈ ∆2 such that φ(P ) = φ(Q) = φ(R), P = Dp, and Q =
∑

i p(xi)δxi.

Our next result characterizes ABB preferences that exhibit PORU; it further shows that the

class of anticipatory preferences is inconsistent with this property.

Proposition 9. The following statements are true:

1. Suppose % has an ABB representation. Then % exhibits PORU if and only if

∑
i

P (pi)
∑
x

pi(x)ν1(φ(P ), δx) ≥
∑
i

P (pi)
∑
x

pi(x)ν1(φ(P ), pi) +
∑
i

P (pi)
∑
x

pi(x)ν1(pi, δx)

2. If % has a prior-anticipatory representation, then it can never exhibit strict PORU.13

For item (1), suppose % has an ABB representation. Observe first that PORU implies TN.

Therefore, by Proposition 4, if % exhibits PORU then it must have an ABB representation that

satisfies both BSI and BTI, and in particular ν1 = ν2. And since the expected utility from material

11Recall from Definition 2 that for a prior∗- anticipatory representation ν2(pi, δxj ) = ν̂2(pi) and from Definition 3
that for posterior-anticipatory preferences ν1(φ(P ), pi) = ν̄1(pi).

12This is tightly linked to the notion of a preference for clumped information, introduced by Kőszegi and Rabin
(2009), which we explore in Section 6.1.

13That is, there are no triples as in Definition 8 for which P ∼ Q � R.
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payoffs is the same in all lotteries compared, the result follows.14 The intuition behind item

(2) derives from Corollary 1 of Appendix A.3, where we show that if % has a prior-anticipatory

representation, then TN implies that ν2 is an expected utility functional, and thus does not generate

any intrinsic preferences towards information. The rest of the utility functional depends only on φ,

the reduced form probability of the lottery, independently of the pattern of resolution of uncertainty.

The result suggests PORU as a sufficient condition to rule out anticipatory preferences.15 In

contrast, Proposition 8 implies that displaying preference for early resolution of uncertainty cannot

help ruling out a specific form of belief-based utility.

All our results thus far are general and are not tied to specific functional form assumptions. In

Section 6 we demonstrate how they can be applied to enrich our understanding of known models,

focusing on the content of Propositions 8 and 9.

5 The Scope of ABB Preferences

In this section we discuss how our three categories of utility functionals relate to particular models

used in the literature. Table 1 provides a list of papers which use functional forms nested by ABB.

Many of these models also allow individuals to take intermediate actions, so their domain and

representation may appear different than that presented in this paper.16

Some models in the literature fit into the framework of changing beliefs models — they have

an ABB representation, but do not have any anticipatory representation. These include models

that were meant to captures utility derived from changing beliefs, such as Kőszegi and Rabin

(2009) and Pagel (2018). In other models, utility may not be derived from changes in beliefs per

se. Rather, utility is derived from levels of beliefs, but the function that determines the levels

depends on the prior beliefs. These include the models of Mullainathan and Shleifer (2005), where

individuals seek signals that confirm their priors, and Caplin and Eliaz (2003), which has the form

14Note that the inequality in item (1) has the form of (the opposite of) the triangle inequality, which should hold
‘on average’. Indeed, one example of a function that satisfies it is ν1(ρ, p) = −d(ρ, p), where d is some standard
distance measure on the unit simplex. In this case, the utility loss from beliefs moving equals the total expected
distance traveled by beliefs. Indeed, for such function the inequality holds term by term (this is the negative of the
triangle inequality) and thus also in expectation. One interpretation for such functional form would be that the agent
is simply averse to any changes in beliefs, presumably due to some hidden costs of adjustments (think of an agent
who pre-committed to some belief-contingent action, or someone who placed bets on his intermediate beliefs) that
are ’large enough’, overwhelming any effect of good news.

15In the context of recursive non-expected utility preferences with TN, Dillenberger (2010) shows equivalence
between PORU and a property of static preferences called Negative Certainty Independence (NCI). (The class of
preferences that satisfy NCI was then characterized by Cerreia Vioglio et al., 2015.) This equivalence ceases to hold
for the general ABB models. The reason is that in that setting dynamic preferences are not fully determined by
(recursive application of) static preferences. In particular, the first term on the right-hand side of the inequality in
item 1 of Proposition 9 can always be manipulated so that PORU is violated even though the restriction of preferences
to fully early resolved lotteries does satisfy NCI.

16As in the previous section, we denote models that have prior-anticipatory but not posterior-anticipatory repre-
sentation as having prior∗-anticipatory utility.
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Changing Beliefs Prior∗-Anticipatory Utility Posterior-Anticipatory Utility

Caplin and Eliaz (2003) See text Kreps and Porteus (1979)
Mullainathan and Shleifer (2005) Epstein and Zin (1989)

Kőszegi and Rabin (2009) Caplin and Leahy (2001)
Kőszegi (2010) Kőszegi (2003)
Pagel (2018) Caplin and Leahy (2004)

Kőszegi (2006)
Eliaz and Spiegler (2006)
Eliaz and Schotter (2010)

Schweitzer and Szech (2018)

Table 1: Some models nested by ABB

of prior-dependent preferences over the time of resolution of uncertainty. Within our domain, we

also capture the model of Kőszegi (2010), who models expectations (i.e., beliefs) that interact with

material payoffs (although his domain also allows for actions and material payoffs in period 1).

Other models in the literature adhere to the anticipatory-utility model. In particular, our

posterior-anticipatory functional form nests all the models in Caplin and Leahy’s (2001) framework,

including Kőszegi (2003), Caplin and Leahy (2004), Kőszegi (2006), Eliaz and Spiegler (2006), Eliaz

and Schotter (2010), and Schweitzer and Szech (20186).

We know of no existing models that explicitly capture pure prior-anticipatory motivations,

that is, models that admit a prior-anticipatory — but not posterior-anticipatory — representation.

To better understand the gap between the two anticipatory representations, in Proposition 15 of

Appendix A.3 we provide an alternative characterization of posterior-anticipatory representation,

which amounts to adding to the axioms underlying the prior-anticipatory representation an addi-

tional Independence requirement on the subset of early resolving lotteries (compound lotteries in

which all uncertainty is resolved in the first stage). Descriptively, prior-anticipatory motives are

important as they can accommodate a behavior that violates expected utility over early resolving

lotteries — in accordance with frequently observed experimental results, such as the Allais paradox

— and cannot be accommodated by posterior-anticipatory preferences. To see that this sub-class

is nonempty, let f and g be two arbitrary non-expected utility functionals. In Claim 3 of Appendix

A.1 we establish that the function V (P ) = f(φ(P )) +
∑

i P (pi)g(pi) is a prior∗-anticipatory utility.

Caplin and Leahy (2001) is one of the first papers to explicitly study belief-based utility. They

provide an axiomatization of their functional form, but take as their domain the set of “psychological

lotteries”, which includes lotteries not just over material outcomes, but also over psychological

states (i.e., beliefs). Thus, their domain includes objects (psychological states) which are not

observable, and are not directly chooseable. Our approach, which confines attention to preferences
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over compound lotteries, ensures that all our restrictions are stated solely in terms of preferences

over observable objects. In fact, given this domain, Caplin and Leahy’s preferences are exactly

equivalent to posterior-anticipatory preferences.

Observation 1. The relation % can be represented by a Caplin and Leahy (2001) utility function

if and only if it has a posterior-anticipatory representation.17

While, as Caplin and Leahy allude to, posterior-anticipatory preferences nest those recursive

preferences which are expected utility over early resolving lotteries, unmentioned by them—but

following immediately from Proposition 7 and Observation 1— is that they are also nested by the

more general class of recursive preferences. This immediately implies that we can carry over known

tools and intuitions from recursive models to analyze posterior-anticipatory models.

Ely, Frankel, and Kamenica (2015) also model individuals who care about changes in their

beliefs. Their model of surprise has the same structure as our ABB representation, but is formally

not within the class of models we study because it is discontinuous. Their model of suspense is

similar in spirit, but formally different from ABB models not only due to its lack of continuity, but

also because of a non-linear transformation that is applied to the expected utility from changes in

beliefs.

Gul, Natenzon, and Pesendorfer (2016) study a model that shares some key features of ours.

Although their domain and objects of choice are different, both papers consider utility functions

where individuals gain utility from beliefs and from material payoffs in a way that is additively

separable. However, while we suppose individuals calculate the expectation of a belief-based utility

using objective probabilities, they allow for non-additive measures.

The ABB representation is reminiscent of the functional forms used in the rational inattention

literature (e.g. Sims, 2003). For example, if we assume ν2 = 0, then we can interpret ν1 as the

cost of beliefs shifting from the prior to the posterior. There are two caveats to this analogy. First,

while in our current framework individuals do not take intermediate actions, in rational inattention

models individuals only pay the cost of learning in order to match actions to states. The second

difference is more subtle. The rational inattention literature typically supposes that individuals

choose information in a way that is unobserved by the analyst — in an extreme case, information is

obtained solely by self-reflection. Our domain, on the other hand, specifically supposes we observe

individuals choosing between known, objectively given information structures. Therefore, one can

interpret the cost of information in our setting as the amount that must be paid conditional on

choosing a particular information structure. This is distinct from a rational inattention story,

where even in the face of objective information, an individual could avoid paying costs by simply

17In particular, Caplin and Leahy (2001) representation is Equation (1) in their paper. The mapping is that our
u + ν2 is equivalent to their u2, and our ν1 is equivalent to their u1(φ) (they use φ as a functional, rather than to
denote reduce form probabilities).
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not processing that information.

While a vast literature, spanning both economics and psychology, demonstrated non-instrumental

preferences for information, it has primarily focused on testing attitudes towards the resolution of

uncertainty.18 There has been little work directly testing how we should model such preferences; for

example, whether recursivity is a reasonable assumption. Our results can guide future experimental

tests to understand the underlying structure of preferences for information and belief-based utility.

6 Applications

We now discuss how our results can be applied to some models encompassed by the ABB class. We

focus on showing the implications for informational preferences (as in Section 4), which is one of

the most commonly discussed applications of belief-based preferences. Since posterior-anticipatory

preferences are subset of recursive preferences for which these implications are known, we confine

our attention to the two other categories of interest.

6.1 Changing Beliefs Preferences

Kőszegi and Rabin (2009) is our leading example of changing beliefs preferences. Their specification

is as follows: given lottery p, let cp(ψ) be the payoff at percentile ψ of the distribution induced by

p. Then ν1 = κ1

∫
µ(u(cpi(ψ)) − u(cφ(P )(ψ)))dψ, ν2 = κ2

∫
µ(u(cδx(ψ)) − u(cpi(ψ)))dψ, where µ

is a gain-loss utility function such that (i) µ is continuous, strictly increasing, twice differentiable

for x 6= 0, and satisfying µ(0) = 0; (ii) µ(y) + µ(−y) < µ(x) + µ(−x) whenever y > x ≥ 0; (iii)

µ′′(x) ≤ 0 for x > 0 and µ′′(x) ≥ 0 for x < 0; and (iv) limx→0 µ′(|x|)
limx→0 µ′(−|x|) = λ > 1.

We will focus on understanding under what restrictions Kőszegi and Rabin’s model satisfies

PORU. This is of interest both theoretically and experimentally (e.g., Zimmerman, 2014; Falk and

Zimmerman, 2016; Nielsen, 2017; Masatlioglu, Orhun and Raymond, 2017). Accordingly, assume

that κ1 = κ2. Kőszegi and Rabin confined their attention to only two final outcomes and show

that if the gain-loss function is piecewise linear (item (iii) with µ′′(x) = 0 for all x 6= 0), then their

preferences satisfy a preference for clumped information; a phenomenon that is tightly linked to

PORU. They further conjectured, but did not prove, that their result generalizes to any number of

outcomes.

Our next result first establishes that Kőszegi and Rabin’s conjecture is correct; piecewise linear

gain-loss utility implies PORU. If we consider only compound lotteries that have two final outcomes

({P |φ(P ) is binary}), this is also true so long as there is no too much diminishing sensitivity in

18See, for example, Chew and Ho (1994); Ahlbrecht and Weber (1997); Arai (199)7; Lovallo and Kahneman (2000);
Eliaz and Schotter (2010); Von Gaudecker et al. (2011); Brown and Kim (2014); Kocher, Krawczyk, and Van Winden
(2014); Ganguly and Tassoff (2017); Falk and Zimmerman (2016); Nielsen (2017); Masatlioglu, Raymond, and Orhun
(2017).
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the loss domain, that is, if µ′(x) is large enough for all x < 0. We then demonstrate that this

prediction is not global. In particular, if losses are not experienced much more strongly than gains,

then PORU doesn’t hold. In other words, loss aversion is not sufficient for PORU. To simplify

exposition, in stating the following result we define the gain function as the restriction of µ to the

domain of the weakly positive numbers (and the loss function analogously).

Proposition 10. Suppose % is represented by Kőszegi and Rabin utility function as specified above,

with κ1 = κ2. The following statements are true:

1. If µ′′(x) = 0 for all x 6= 0, then % exhibits PORU.

2. Consider {P |φ(P ) is binary}. For any gain function, if µ′(x) is large enough for all x < 0,

then % exhibits PORU.

3. For any loss function, if gains are sufficiently similar to losses (i.e. µ(x) + µ(−x) goes to 0

for all x) then % violates PORU.19

Kőszegi and Rabin’s functional form (along with closely related variants) is the most prominent

changing-beliefs model in the literature. However, little work has been done trying to understand

to what extent the intuitions developed for that model extend. An immediate implication of

their asymmetry between gains and losses is that gain-loss utility must be concave in a small

neighborhood of the reference point. Our next result connects this property to our general result

about PORU (Proposition 9). It shows that “local reference dependence”, in that losses must be

experienced more strongly than gains relative to the prior belief, is implied by PORU. The form of

loss aversion imposed by Kőszegi and Rabin is simply one way of generating such local reference

dependence. The assumption that ν1 is smooth in the first argument is often innocuous, e.g., if

with only two outcomes, so long as ν1 is monotone in the first argument then smoothness is satisfied

almost everywhere.

Observation 2. Suppose % has an ABB representation that exhibits PORU. If ν1(φ, p) is smooth

in the first argument, then it must be concave in the second argument at φ.

6.2 Prior-Anticipatory Preferences

As previously noted, we are unaware of models that fit into the class of prior∗-anticipatory models.

We have already mentioned the ability of these preferences to capture non-standard risk attitudes,

in contrast to posterior-anticipatory models (which must satisfy expected utility over early resolving

lotteries). As we demonstrate below, this feature is not inconsistent with also displaying nontrivial

19Duraj and He (2019) show that if there are more than two final outcomes, then PORU is not satisfied whenever
the gain function exhibits diminishing sensitivity.
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informational preferences, a requirement that poses difficulties to many recursive preferences (Def-

inition 6). For example, Grant, Kajii, and Polak (2000) show that assuming preference for early

resolution of uncertainty implies that the recursive forms of two prominent classes of non-expected

utility models — Rank-Dependent Utility (Quiggin, 1982) and Betweenness (Chew, 1983; Dekel,

1986) — each almost collapses back to recursive expected utility.

Our next result complements the discussion above by showing that a well known behavioral

phenomenon — first-order risk aversion, which captures risk aversion over small stakes — is incon-

sistent with global preference for early or late resolution of uncertainty within standard recursive

models, but is consistent with these properties in the prior-anticipatory framework.20

Proposition 11. The following statements are true:

1. Suppose % admits a recursive representation where both V1 and V2 are monotone. Suppose

its restriction to early resolving lotteries, represented by V1, (to late resolving lotteries, repre-

sented by V2, respectively) exhibits first-order risk aversion. Then % cannot exhibit preference

for early resolution of information (late resolution of information, respectively).

2. There exist a prior∗-anticipatory preference relation that exhibits first-order risk aversion over

both early and late resolving lotteries, as well as a global preference for either early resolution

of uncertainty or late resolution of uncertainty.

To conclude, Part 2 of Proposition 11 suggests that prior-anticipatory preferences may increase

the explanatory power of belief-based models by simultaneously generating commonly observed

behavior in both the domains of risk and information. We have seen that posterior-anticipatory

models cannot accommodate violations of expected utility and that the commonly used changing-

beliefs specification of Kőszegi and Rabin (2009) as in Section 6.1, fails to capture preferences for

earlier or later resolution of uncertainty. Part 1 of Proposition 11 shows that Recursive models can

match either violations of expected utility that are related to first-order risk aversion — with a

prominent example being loss aversion — or can allow for preferences for earlier or later resolution

of uncertainty, but not both at the same time. On the other hand, as shown in Proposition 9,

neither class of anticipatory preferences can exhibit strict PORU, while changing beliefs models

can. This suggests a trade-off between the changing beliefs and anticipatory approaches; knowing

which avenue is empirically most relevant is a topic left for future research.

20This result implies the converse of Proposition 1 (ii) of Grant et al. (2000). This is because their result is for
Rank-Dependent Utility. In that model, so long as the probability weighting function for late resolving lotteries is
differentiable, V2 is smooth away from degenerate lotteries. And since the weighting function is strictly increasing, it
must be differentiable almost everywhere. However, our result is distinct from Proposition 1 (i) of Grant et al (2000);
that result applies to Betweenness preferences, which do not necessarily exhibit first-order risk aversion.
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A Appendix

A.1 Proofs

Proof of Proposition 1. Let VPC(P ) :=
∑

i P (pi)νPC(φ(P ), pi). We refer to VPC as a prior-

conditional representation.

Claim 1. The relation % has a prior-conditional representation if and only if it has an ABB

representation.

Proof of Claim 1. Consider the first two terms in the ABB representation. Observe that the term∑
i P (pi)

∑
j pi(xj)u(xj)+

∑
i P (pi)ν1(φ(P ), pi) can be rewritten as

∑
i P (pi)ν̂1(φ(P ), pi). Similarly,

any
∑

i P (pi)ν̂1(φ(P ), pi) can be rewritten as
∑

i P (pi)
∑

j pi(xj)u(xj) +
∑

i P (pi)ν1(φ(P ), pi).

Consider now the third term in the ABB representation. Note that any
∑

i P (pi)
∑

j pi(xj)ν2(pi, δxj )

can be rewritten as
∑

i P (pi)ν̂2(pi), since pi embeds all the xjs in it’s support. Moreover, given

any
∑

i P (pi)ν̂2(pi), we can rewrite it as
∑

i P (pi)
∑

j pi(xj)ν2(pi, δxj ).

Thus preferences have an ABB representation if and only if they can be represented by

∑
i

P (pi)ν̂1(φ(P ), pi) +
∑
i

P (pi)ν̂2(pi)

Simplifying further, observe that any
∑

i P (pi)ν̂1(φ(P ), pi) +
∑

i P (pi)ν̂2(pi) can be rewritten

as
∑

i P (pi)ν̃(φ(P ), pi); and any
∑

i P (pi)ν̃(φ(P ), pi) can be rewritten as
∑

i P (pi)ν̂1(φ(P ), pi) +∑
i P (pi)ν̂2(pi). We have just proved that % has a representation of the form VABB if and only if

it has a representation of the form
∑

i P (pi)ν̃(φ(P ), pi). �

We now use our new representation for Claim 2.

Claim 2. The relation % has a prior-conditional representation if and only if it satisfies WO, C,

PTI, and CTI.

Proof of Claim 2. Observe that the prior-conditional representation holds if and only if for

any fixed φ preferences are expected utility, which is known to be equivalent to WO, C, and

PTI. Each of these conditional expected utility functionals are ordinally unique up to a monotone

transformation fφ, which a priori may depend on the reduced form probabilities. We now show that

this is impossible, so that f is independent of φ and thus can be taken without loss of generality

to be affine.

We partition the set of compound lotteries into two types of orthogonal equivalence classes. The

first is the set I of equivalence classes induced by %; denote an arbitrary class by I (with P,Q ∈ I
if and only if P ∼ Q), and for any P ∈ ∆ let I(P ) = {Q : P ∼ Q}. The second set includes
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the equivalence classes induced by φ, with a generic element P(φ) = {P ∈ ∆ : φ(P ) = φ}.21

Note that if there are disjoint I, I ′ ∈ I that have nonempty intersection with P(φ), then all

equivalence classes of % that contain an element of P(φ) must form a convex set. To see this,

let I(φ) = {I(P ) : P ∈ P(φ)} and consider any two elements I, I ′ ∈ I(φ) with corresponding

P ∈ I ∩P(φ) and P ′ ∈ I ′ ∩P(φ). Since by PTI standard Independence holds on P(φ), preferences

must be continuous over mixtures of P and P ′ and so for any α ∈ [0, 1], αP + (1 − α)P ′ must be

ranked in terms of % between P and P ′ (and conversely, for any Q ranked in terms of % between

P and P ′, we can find an α ∈ [0, 1] such that αP + (1− αP ′) ∼ Q.)

We next show that for any I ∈ I, fφ is independent of φ on I. We do it by dividing the

set I into two classes and show that f is independent of φ within each class. The classes have

non-intersecting interiors, but may overlap at their boundary points.

1. This class includes all I ∈ I such that I =
⋃
φ∈Φ P(φ) for some set of priors Φ. This means

that if a given P(φ) has an element in one such I, then all elements of P(φ) must be in I. We

can then normalize the utility of all elements of {P(φ) : φ ∈ Φ} to some constant k. Then f

is independent of any φ ∈ Φ on I (since all fφs take in k as an argument and must output

the same number).

2. This class includes all I ∈ I such that there exists a φ where both I ∩ P(φ) 6= ∅ and

(I \ I) 3 J ∩P(φ) 6= ∅ hold. Thus, if a given P(φ) has an element in one such I, then another

element of P(φ) must be in a different I ′ (which by construction is also part of this class).

Denote the set of these Is as I. Denote the closure of any set Z as cl(Z).

Pick a φ such that I(φ) ⊆ cl(I) and either (i) there exists a worst %-equivalence class that

a member of P(φ) is in, denoted Imin(φ), and this is is the lowest element of cl(I): P ∈
Imin(φ) =⇒ Q % P,∀Q ∈ I ∈ I; or (ii) there exists a sequence of Pn ∈ P(φ) such that, for

each n, Pn ∈ In ∈ I and the sequence In converges to the lowest element of cl(I). In either

case we denote by I(φ) an element of the greatest lower bound of the set of indifference classes

each containing some P ∈ P(φ). Thus, we pick out a φ such that I(φ) is not singleton, and

there exists I ∈ cl(I(φ)) that is included in the worst indifference class of I.

Set I1 = cl(I(φ)). Inductively, set In = I(φ) for a φ such that Imin(φ) is the lowest element

of cl(I \
⋃
i=1...n−1 I

i). We refer to each In as a sub-class. For any n, we denote by φn the

φ that generates In. Note that this construction spans the entire I; that each Ii is a convex

set and is closed (by construction); that given any two Ik and Ij , their intersection can only

consist of a single equivalence class I; and that there must be a countable number of these

sub-classes.

21If P(φ) ⊆ I for some I, then, for this φ, the decision maker is simply indifferent to the resolution of uncertainty.
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Start with I1. There are two cases to consider. The first case is where I(φ1) = I1. In

this case, the maximal and minimal %-equivalence classes of I1 contain members of P(φ1).

For any Ii, let Ii be a lottery in the %-maximal I ∈ Ii and Ii a lottery in the %-minimal

I ∈ Ii. Note that by the uniqueness result of the vNM functional on each slice, we can

normalize
∑

j I
1(pj)ν̃(φ1, pj) = 1 and

∑
j I

1(pj)ν̃(φ1, pj) = 0. Using the fact that within a

slice Independence is satisfied, for any P ∈ P(φ1) we can assign a number λ(P ) ∈ [0, 1] such

that
∑

j P (pj)ν̃(φ1, pj) = λ(P ).

In the second case, I(φ1) ⊂ I1. In this case, the maximal and minimal %-equivalence classes

of I1 are reached in the limit by a sequence {Ik} each contains a member of P(φ1). Suppose

it is the minimal %-equivalence class (the other case is analogous). Then, as described above,

we denote by I1 an element of the greatest lower bound of {Ik} and repeat the normalization

process described in the previous case, but where λ(P ) is identified as the limit of our mixing

operation using Ii and a sequence of elements in Ik ∩ P(φ1).

We have now completed our normalization for I1. We extend the normalization process

inductively for any Ii, where i > 1, considering three different cases. The proof below

supposes that I(φi) = Ii. When I(φi) ⊂ Ii the mixture operation involving Ii and Ii can be

interpreted as mixing with a sequence of lotteries and taking the limit.

Remark 1. In what follows, we abuse notation and denote by Ii∩P(φ) a subset of P(φ), where

each of its elements belongs to some I ∈ Ii. We also write P ∈ Ii rather than “P ∈ I ∈ Ii”.

(a) The first case is where Ii−1 ∩ Ii = ∅. In this case, there is a “gap” in the indifference

classes between Ii−1 and Ii. Suppose that
∑

j I
i−1(pj)ν̃(φi−1, pj) = κ. We fix a δ > 0

and set
∑

j I
i(pj)ν̃(φi, pj) = κ+δ and

∑
j I

i(pj)ν̃(φi, pj) = κ+1+δ. For any P ∈ P(φi)

assign a number λ(P ) ∈ [κ+ δ, κ+ δ + 1] such that
∑

j P (pj)ν̃(φi, pj) = λ(P ).

Now consider any φ′ 6= φi such that Ii ∩ P(φ′) 6= ∅. Let Ri(φ′) be a % −minimal

element in Ii∩P(φ′). Similarly, let Ri(φ′) be a % −maximal element in Ii∩P(φ′). Find

P ∈ Ii ∩ P(φi) such that P ∼ Ri(φ′) and set
∑

j R
i(φ′)(pj)ν̃(φ′, pj) = λ(P ). Similarly,

find P ′ ∈ Ii ∩ P(φi) such that P ′ ∼ Ri(φ′) and set
∑

j R
i(φ′)(pj)ν̃(φ′, pj) = λ(P ′).

(b) The second case is where Ii−1 ∩ Ii 6= ∅ (recall that by construction these two sets can

only overlap at a single indifference class) and there is no φ̃ such that both P(φ̃) ∩ Ii−1

and P(φ̃) ∩ Ii consist of more than a singleton. In this case, there is no “gap” in the

indifference classes between Ii−1 and Ii but there is no prior φ such that I(φ) has non-

trivial intersection with both Ii−1 and Ii. Suppose that
∑

j I
i−1(pj)ν̃(φi−1, pj) = κ. We

set
∑

j I
i(pj)ν̃(φi, pj) = κ and

∑
j I

i(pj)ν̃(φi, pj) = κ + 1. For any P ∈ P(φi) assign a

number λ(P ) ∈ [κ, κ+ 1] such that
∑

j P (pj)ν̃(φi, pj) = λ(P ).
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As in the previous case, now consider any φ′ 6= φi such that Ii∩P(φ′) 6= ∅. Let Ri(φ′) be a

% −minimal element in Ii∩P(φ′). Similarly, let Ri(φ′) be a % −maximal element in Ii∩
P(φ′). Find P ∈ Ii∩P(φi) such that P ∼ Ri(φ′) and set

∑
j R

i(φ′)(pj)ν̃(φ′, pj) = λ(P ).

Similarly, find P ′ ∈ Ii ∩ P(φi) such that P ′ ∼ Ri(φ′) and set
∑

j R
i(φ′)(pj)ν̃(φ′, pj) =

λ(P ′).

(c) The third case is where Ii−1∩ Ii 6= ∅ (recall that by construction these two sets can only

overlap at a single indifference class) and there exists a φ̃ such that both P(φ̃) ∩ Ii−1

and P(φ̃) ∩ Ii consist of more than a singleton. In this case, there is no “gap” in the

indifference classes between Ii−1 and Ii and there is a prior, denoted φ̃ below, such that

I(φ̃) has non-trivial intersection with both Ii−1 and Ii.

Suppose that
∑

j I
i−1(pj)ν̃(φi−1, pj) = κ. This implies that there are P, P ′ ∈ P(φ̃) such

that
∑

j P (pj)ν̃(φ̃, pj) = κ and
∑

j P
′(pj)ν̃(φ̃, pj) = κ′ for some κ′ < κ. Observe that

given its cardinal uniqueness, this fully pins down ν̃(φ̃, ·). Moreover, observe that there

exists a P ′′ such that
∑

j P
′′(pj)ν̃(φ̃, pj) = κ′′ > κ.

By construction there exists someQ ∈ P(φi) such thatQ ∼ P ′′. We set
∑

j I
i(pj)ν̃(φi, pj) =

κ. Moreover, we can find a λ(Q) such that λ(Q)Ii + (1 − λ(Q))Ii ∼ Q. Let ι solves

λ(Q)κ+ (1− λ(Q))ι = κ′′ and set
∑

j I
i(pj)ν̃(φi, pj) = ι.

As in the previous cases, now consider any φ′ 6= φ such that Ii∩P(φ′) 6= ∅. Let Ri(φ′) be

a% −minimal element in Ii∩P(φ′). Similarly, let Ri(φ′) be a% −maximal element in Ii∩
P(φ′). Find P ∈ Ii∩P(φi) such that P ∼ Ri(φ′) and set

∑
j R

i(φ′)(pj)ν̃(φ′, pj) = λ(P ).

Similarly, find P ′ ∈ Ii ∩ P(φi) such that P ′ ∼ Ri(φ′) and set
∑

j R
i(φ′)(pj)ν̃(φ′, pj) =

λ(P ′).

Note that, by construction, we have fφ(λ(P )) = fφ′ (λ(P )) and fφ(λ(P ′)) = fφ′ (λ(P ′)). By

CTI, for any α ∈ [0, 1], αP + (1− α)P ′ ∼ αRi(φ′) + (1− α)Ri(φ′) and thus fφ(αλ(P ) + (1−
α)λ(P ′)) = fφ′(αλ(P ) + (1− α)λ(P ′)). This implies that within Ii we can take, without loss

of generality, fφ′ = fφ. By repeating this same process over all φ′s that have an element in

Ii we can show that for all relevant priors φ′ we can set fφ′ = fφ on Ii. In other words, on

each Ii we can take f to be independent of the prior.22

We now turn to piecing together the entire utility function. First, recall that we have a countable

set I1, I2, ... (ordered in terms of increasing preferences). Take the set G1 = I\I. These are the

“leftover” equivalence classes that compose the first class we considered. Note that we can also

group these together into convex sets. We do so inductively. Pick an I such that I is the worst

22Observe that if we mix two lotteries in Ii that induce different priors, then their mixed lottery, which induce
some prior φ′′ either lives in Ii and the same calibration exercise can be performed for φ′′, or outside of Ii, in which
case it should be relegated to the step where we deal with the relevant Ij 6= Ii.
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equivalence class in cl(G). Then find Î ∈ cl(G) with the property that for any P ∈ Î there is no

I ′ ∈ I with Q ≺ P for some Q ∈ I ′. Then denote G1 as the set of equivalence classes from I to Î

(inclusive); G1 = {I ′′|P % Q % R for all P ∈ Î, Q ∈ I ′′, and R ∈ I}. Now set G2 = G1\G1, and

find G2 using the same process, and continue in this fashion to get a collection {Gl}.
We have already shown that f is independent of φ on any Gl or Ii. On any one of these ranges

denote the relevant f as fj where j ∈ {Gl, Ii}. Suppose there is an indifference class I such that

I is in two elements of {Gl, Ii}, call them H and H ′. Suppose without loss of generality that for

some P ∈ I with
∑

j P (pj)ν̃(φ, pj) = a, we have fH(a) ≥ fH′(a). Then, since both fH and fH′ are

strictly increasing, we can simply set f∗H(·) = fH′(·) − [fH′(a) − fH(a)], generating continuity at

a. Denote the adjusted collection of transformation functions by {hH}. We can now simply take a

single function f defined by f = hH on H and performing a monotone transformation to recover

our utility function V (P ) = f−1(f(
∑

j P (pj)ṽ(φ(P ), pj))). �

This proves the equivalence in the proposition. �

Proof of Proposition 2. First we define a prior-separable representation as Vps = νps1(φ(P )) +∑
i P (pi)νps2(pi)

Claim 3. The relation % has a prior-separable representation if and only if it has a prior-anticipatory

representation.

Proof of Claim 3. Recall from the proof of Lemma 1 that % has a prior-anticipatory represen-

tation if and only if it has a representation ν̂1(φ(P )) +
∑

i P (pi)ν2(pi). Note that this is simply the

sum of a utility function defined over the reduced lottery and a recursive utility that is expected

utility in the first stage. �

We now use our new representation for Claim 4.

Claim 4. The relation % has a prior-separable representation if and only if it satisfies WO, C,

CTI, and SPTI.

Proof of Claim 4. It is easy to check that the axioms are necessary for the representation. For

sufficiency, observe that SPTI implies PTI, which, in turns, implies that there exists a representation

of the form
∑

i P (pi)ν̃(φ(P ), pi). Moreover, by SPTI, if
∑

i P (pi)ν̃(φ(P ), pi) =
∑

iQ(pi)ν̃(φ(P ), pi),

then
∑

i(αP + (1 − α)R)(pi)ν̃(φ((αP + (1 − α)R)), pi) =
∑

i(αQ + (1 − α)R)(pi)ν̃(φ((αP + (1 −
α)R)), pi) for any R, which is true if and only if ν̃ is additively separable in it’s first argument:∑

i P (pi)ν̃(φ(P ), pi) = ν̂1(φ(P ))+
∑

i P (pi)ν2(pi). To see this, observe that with n sub-lotteries, the

utility function Vps can be thought of as a function of n+1 arguments — the n sub-lotteries and the

prior beliefs. Since the representation is additively separable,conditional on the prior, preferences
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must satisfy separability (i.e, preferential independence in Debreu, 1960) across the sub-lotteries

(and all subsets of the sub-lotteries). Further observe that SCTI implies that all subsets of the

sub-lotteries and the prior also satisfy separability (preferential independence). Thus, by Debreu

(1960) (see also Wakker, 1993) the representation must be additively separable in all components.

�

This proves the equivalence in the proposition. �

Proof of Proposition 3. First we define a prior-separable expected utility representation as

Vpseu =
∑

x φ(P )(x)νpseu1(x) +
∑

i P (pi)νpseu2(pi).

Claim 5. The relation % has a prior-separable expected utility representation if and only if it has

a posterior-anticipatory representation.

Proof of Claim 5. From Lemma 1, % has a posterior-anticipatory representation if and only if

it has a representation
∑

i P (pi)
∑

j pi(xj)û(xj) +
∑

i P (pi)ν1(pi). This is simply the sum of a an

expected utility functional defined over the reduced lottery and a recursive utility that is expected

utility in the first stage. �

We now use the new representation for Claim 6.

Claim 6. The relation % has a prior-separable expected utility representation if and only if it

satisfies WO, C and TI.

Observe that by the mixture space theorem, % satisfies WO, C, and TI if and only if it

can be represented by the functional
∑

i P (pi)ν̀(pi). Moreover, if preferences can be represented

by
∑

i P (pi)ν̀(pi) then clearly they have a prior-separable expected utility representation (where

νpseu1(x) = 0). Similarly, any prior anticipatory representation can be written as
∑

i P (pi)ν̀(pi)

where ν̀(pi) = νpseu2(pi) +
∑

x pi(x)νpseu1(x).

This proves the equivalence in the proposition. �

Proof of Proposition 4. We prove each of the statements in order.

1. We first show that if % has an ABB representation then it has a BSI representation in a series

of two claims.

Claim 7. There exists an equivalent representation (u, ν̂1, ν̂2) which satisfies the condition

ν̂1(ρ, ρ) = 0 for all ρ.
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Proof of Claim 7. Denote as N(p) the number of elements in the support of p and

sum up below only amongst those elements with positive probability. Define: ν̂1(ρ, p) =

ν1(ρ, p)−ν1(p, p) and ν̂2(p, δx) = ν2(p, δx)+ ν1(p,p)
N(p)p(x) . By construction, ν̂1(ρ, ρ) = 0. Moreover,

preferences did not change as the new representation gives utility:

∑
x

ρ(x)u(x) +
∑
p

P (p)ν̂1(ρ, p) +
∑
p

∑
x

P (p)p(x)ν̂2(p, δx)

=
∑
x

ρ(x)u(x) +
∑
p

P (p)[ν1(ρ, p)− ν1(p, p)] +
∑
p

∑
x

P (p)p(x)[ν2(p, δx) +
ν1(p, p)

N(p)p(x)
]

=
∑
x

ρ(x)u(x) +
∑
p

P (p)ν1(ρ, p)−
∑
p

P (p)ν1(p, p) +
∑
p

∑
x

P (p)p(x)ν2(p, δx)

+
∑
p

P (p)ν1(p, p)
∑
x

1

N(p)

=
∑
x

ρ(x)u(x) +
∑
p

P (p)ν1(ρ, p)−
∑
p

P (p)ν1(p, p) +
∑
p

P (p)ν1(p, p) +
∑
p

∑
x

P (p)p(x)ν2(p, δx)

which is the original utility function. �

Claim 8. There exists an equivalent representation (ũ, ν̂1, ν̃2), which satisfies the condition

ν̃2(δx, δx) = 0 for all x ∈ X.

Proof of Claim 8. Define ν̃2(p, δx) = ν̂2(p, δx) − ν̂2(δx, δx) and ũ(x) = u(x) + ν̂2(δx, δx).

Note that ν̃2(δx, δx) = 0 for all x. Observe that this does not change preferences since utility

under this representation is:

∑
x

ũ(x)ρ(x) +
∑
p

P (p)ν̂1(ρ, p) +
∑
p

∑
x

P (p)p(x)ν̃2(p, δx)

=
∑
x

ρ(x)[u(x) + ν̂2(δx, δx)] +
∑
p

P (p)ν̂1(ρ, p) +
∑
p

P (p)p(x)[ν̂2(p, δx)− ν̂2(δx, δx)]

=
∑
x

ρ(x)u(x) +
∑
p

P (p)ν̂1(ρ, p) +
∑
p

∑
x

P (p)p(x)ν̂2(p, δx)

+
∑
x

ρ(x)ν̂2(δx, δx)−
∑
p

∑
x

P (p)p(x)ν̂2(δx, δx)

which is simply the original utility function.�

Thus, we have a utility representation (ũ, ν̂1, ν̃2) which satisfies BSI. �

2. We next show that % always has a representation which is BTI. Take the representation

(ũ, ν̂1, ν̃2) defined in the previous part. Define

ν̃ ′2(p, δx) = ν̃2(p, δx) + [ν̂1(p, δx)− ν̃2(p, δx)]
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and

ν̂ ′1(ρ, p) = ν̂1(ρ, p)−
∑
x

p(x)[ν̂1(p, δx)− ν̃2(p, δx)]

Observe (ũ, ν̂ ′1, ν̃
′
2) represents the same preferences. Utility under the second representation

is:

∑
x

ũ(x)ρ(x) +
∑
p

P (p)ν̂ ′1(ρ, p) +
∑
p

∑
x

P (p)p(x)ν̃ ′2(p, δx)

=
∑
x

ũ(x)ρ(x) +
∑
p

P (p)[ν̂1(ρ, p)−
∑
x

p(x)[ν̂1(p, δx)− ν̃2(p, δx)]]

+
∑
p

∑
x

P (p)p(x)[ν̃2(p, δx) + [ν̂1(p, δx)− ν̃2(p, δx)]]

=
∑
x

ũ(x)ρ(x) +
∑
p

P (p)ν̂1(ρ, p)−
∑
p

∑
x

P (p)p(x)[ν̂1(p, δx)− ν̃2(p, δx)]

+
∑
p

∑
x

P (p)p(x)ν̃2(p, δx) +
∑
p

∑
x

P (p)p(x)[ν̂1(p, δx)− ν̃2(p, δx)]

=
∑
x

ũ(x)ρ(x) +
∑
p

P (p)ν̂1(ρ, p) +
∑
p

∑
x

P (p)p(x)ν̃2(p, δx)

which are the original preferences.

Moreover, observe that by construction

ν̂ ′1(p, δx) = ν̂1(p, δx)− [ν̂1(δx, δx)− ν̃2(δx, δx)] = ν̂1(p, δx)− [0− 0]

Also

ν̃ ′2(p, δx) = ν̃2(p, δx) + [ν̂1(p, δx)− ν̃2(p, δx)] = ν̂1(p, δx)

Thus we satisfy BTI. However, we no longer satisfy BSI. This is because

ν̂ ′1(ρ, ρ) = ν̂1(ρ, ρ)−
∑
x

ρ(x)[ν̂1(ρ, δx)− ν̃2(ρ, δx)]

no longer necessarily equals 0. �

3. We now show that % has a representation which is both BSI and BTI if and only if it satisfies

TN.
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For the only if part, observe that for P = Dp

VABB(P ) = Ep(u) + ν1(p, p) +
∑
j

p(xj)ν2(p, δxj )

= Ep(u) +
∑
j

p(xj)ν2(p, δxj )

where the second equality is by BSI.

For Q =
∑

i p(xj)δxj we have

VABB(Q) = Ep(u) +
∑
j

p(xj)ν1(p, δxj ) +
∑
j

p(xj)ν2(δxj , δxj )

= Ep(u) +
∑
j

p(xj)ν1(p, δxj )

where the second equality is again by BSI.

By BTI,
∑

j p(xj)ν2(p, δxj ) =
∑

j p(xj)ν1(p, δxj ), which implies VABB(P ) = VABB(Q), that

is, TN is satisfied.

To prove the other direction, we can simply assume preferences satisfy BSI. Observe that

time neutrality implies that

∑
x

ũ(x)ρ(x)+ν̂1(ρ, ρ)+
∑
x

ρ(x)ν̃2(ρ, δx) =
∑
x

ũ(x)ρ(x)+
∑
x

ρ(x)ν̂1(ρ, δx)+
∑
x

ρ(x)ν̃2(δx, δx)

or, taking the fact that BSI holds,

∑
x

ρ(x)ν̃2(ρ, δx) =
∑
x

ρ(x)ν̂1(ρ, δx)

Observe that ν̂1(ρ, δx) only appears as a term as part of the sum
∑

x ρ(x)ν̂1(ρ, δx). Thus, we

cannot separately identify the individual parts of
∑

x ρ(x)ν̂1(ρ, δx). Since
∑

x ρ(x)ν̃2(ρ, δx) =∑
x ρ(x)ν̂1(ρ, δx), we can suppose without loss of generality that ρ(x)ν̃2(ρ, δx) = ρ(x)ν̂1(ρ, δx)

term by term. �

This completes the proof of Proposition 4. �

Lastly, as we mention in Footnote 7, we show that if % has an ABB representation, then it

has a representation which is both BSI and PBTI.23 First, normalize the representation using

claims 7 and 8 so that it satisfies BSI. We then normalize the representation so that BTI holds

as in the second part of the proof of this proposition. As we have mentioned there, ν̂ ′1(ρ, ρ) no

23Since % always has a representation which is BTI, it also has a PBTI representation where κ = 1.
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longer necessarily equals 0. But, since we started with a BSI representation, we already had that

ν̂ ′1(δx, δx) = ν̃ ′2(δx, δx) = 0 so those values do not change.

In order to simplify notation, call the functionals after these two steps u, ν1, and ν2 respectively.

Thus, ν1 = ν2 over their shared domain, and ν2(δx, δx) = 0 = ν1(δx, δx).

Now we will define a representation that satisfies both BSI and PBTI. We do this in a way

that mirrors Claim 7. Denote as N(p) the number of elements with positive probability in p and

sum up below only amongst those elements. Define: ν̂1(ρ, p) = ν1(ρ, p)−ν1(p, p). Importantly, this

redefinition implies ν̂1(ρ, δx) = ν1(ρ, δx)− ν1(δx, δx) = ν1(ρ, δx).

We then turn to solve for ν̂2. Denote z(p) = ν1(p, p). For our representation to satisfy PBTI

we need that ν̂2(p, δx) = κν̂1(p, δx) = κν1(p, δx) = κν2(p, δx) for some κ. If p has N(p) outcomes in

its support, then these are N(p) equations and N(p) + 1 unknowns. We also need it to be the case

that
∑
p(x)ν̂2(p, δx) = z(p). Substituting in we get κ

∑
p(x)ν2(p, δx) = z(p) or κ = z(p)∑

p(x)ν2(p,δx) .

Observe that this uniquely pins down κ and so uniquely pins down ν̂2 for each p. Thus, PBTI is

satisfied. Moreover, observe that by construction ν̂2(δx, δx) = 0 still and ν̂1(ρ, ρ) = 0, and so BSI

is satisfied as well. �

Proof of Proposition 5. From Claim 1 we know that we can confine attention to a prior-

conditional representation of %. Observe that fixing φ(P ),
∑

i P (pi)νPC(φ(P ), pi) is an expected

utility functional, and so possesses the same uniqueness results; i.e., it is unique up to affine trans-

formations of scalars αP > 0 and βP . But, since
∑

i P (pi)νPC(φ(P ), pi) ≥
∑

iQ(qi)νPC(φ(Q), qi) if

and only if βP + αP
∑

i P (pi)νPC(φ(P ), pi) ≥ βQ + αQ
∑

iQ(qi)νPC(φ(Q), qi), it must be the case

that βP = βQ and αP = αQ. �

Proof of Proposition 6. To see the result for a BSI representation, first take the uniqueness

result for general ABB preferences (Proposition 12 in Appendix A.2). Suppose that (u, ν1, ν2) is

a BSI representation. We first show that any non-constant transformation γ1, with γ1(x) 6= 0 for

some x, cannot generate a BSI representation. Suppose that there is some xi such that γ1(xi) 6= 0.

Consider the two-stage lottery Dδxi
. Then ν ′1(δxi , δxi) = 0 − γ1(xi) 6= 0 so this cannot be a BSI

representation. Next we show that any non-constant transformation γu, with γu(x) 6= 0 for some

x, cannot generate a BSI representation. Suppose that there is some xi such that γu(xi) 6= 0.

Consider the two-stage lottery Dδxi
. Then ν ′2(δxi , δxi) = 0 − γu(xi) 6= 0 so this cannot be a BSI

representation. For similar resasons β1 = β2 = 0. Lastly, we show that any transformation where∑
x p(x)γν(p, δx) 6= 0 for some p cannot generate a BSI representation. If there were pi such that

this were true, then v′1(p, p) = 0+
∑

x p(x)γν(p, δx) 6= 0 violating the BSI representation. Moreover,

if
∑

x p(x)γν(p, δx) = 0 then v′1 = v1 and so we exclude it from consideration. �

Proof of Proposition 7. We first show that % has a posterior-separable expected utility

representation (i.e., it satisfies WO, C, and TI) if and only if it satisfies WO, C, PTI, CTI, and R.
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Necessity is immediate. To show sufficiency, note that % has a representation of the form

VPC =
∑

i P (pi)νPC(φ(P ), pi) if it satisfies WO, C, PTI and CTI. If R is satisfied, then it must be

the case that νPC is independent of the first argument. Thus we have a representation of the form∑
i P (pi)ν̂PC(pi), which is equivalent to the following representation:

∑
i P (pi)

∑
j pi(xj)û(xj) +∑

i P (pi)ν1(pi).

Recall that % has a posterior-anticipatory representation if and only if it has a representation∑
i P (pi)ν̀(pi). By Segal (1990), this is a recursive representation where V1 is expected utility. This

representation clearly satisfies WO, C, and TI. �

Proof of Proposition 8. For item (1), observe that we can ignore the first term of the ABB

representation, as it is the same under any two compound lotteries with the same reduced form

probabilities. Suppose then that ν1(ρ, ·) +
∑

x ν2(·, x) is convex. Then, by Grant, Kajii and Polak

(1998) the individual must exhibit a preference for early resolution of uncertainty. Conversely, if

the term above is not convex, then it must be concave in a local neighborhood of some pi. We

can replicate the argument in Grant, Kajii and Polak (1998). Take some compound lottery that

delivers as one sub-lottery pi, and take a linear bifurcation of pi so that the new sub-lotteries are

arbitrarily close to pi. Then by Grant, Kajii and Polak (1998) the individual must be worse off

(since locally the utility function is concave).

For item (2), take any P and Q as specified in the statement of the proposition. Observe that

φ(P ) = φ(Q). Direct calculations then show that P % Q if and only if βν̂2(p1) + (1 − β)ν̂2(p2) ≥
ν̂2(βp1 + (1 − β)p2). And since the triple p1, p2, and β were arbitrary, the inequality holds if and

only if ν̂2 is convex. Similarly, the inequality is reversed if and only if ν̂2 is concave.

For item (3), simply replace in the entire paragraph above ν̂2 with ν̄1. �

Proof of Proposition 9. For item (i), note that by Definition 7, PORU implies TN. By Propo-

sition 4, the representation satisfies both BSI and BTI. We now use these functional form restric-

tions when calculating the values of the lotteries in question. We have V (Dp) = V (
∑

i p(xi)δxi) =∑
j φ(P )(xj)u(xj) +

∑
x φ(P )(x)ν1(φ(P ), δx), which is the left hand side of the inequality in (i) in

addition to the expected utility from material payoffs. PORU implies that these two compound

lotteries are better than any other P with the same reduced probabilities φ(P ). Indeed, the value

of any such P is V (p) =
∑

j φ(P )(xj)u(xj) +
∑

i P (pi)ν1(φ(P ), pi) +
∑

pi
P (pi)

∑
x pi(x)ν1(pi, δx),

which is the right hand side of the inequality in addition to the same expected utility from material

payoffs.

For item (ii), first recall that if % has a prior-anticipatory representation, then it can also be

represented by the functional ν̂1(φ(P )) +
∑

i P (pi)ν2(pi). Corollary 1 below shows that in this case

TN implies that ν2 is an expected utility functional, and thus the second term does not generate

any anomalous preferences towards information. Clearly the first term ν̂1(φ(P )) depends only on
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the prior beliefs, independently of the pattern of resolution of uncertainty. The individual is thus

indifferent among all lotteries that induce the same prior beliefs, and in particular cannot display

strict PORU. �

Proof of Proposition 10. We prove each item in turn. Our technique for proving the first two

parts is to show that “path by path” (described more below) the inequality that Proposition 9

points out is sufficient (as well as necessary) for PORU. Therefore, it must also hold after averaging

across all paths.

1. We show that Kőszegi and Rabin (2009) preferences with linear gain-loss utility satisfy PORU.

The gain loss utility experienced at percentile ψ by moving from belief p to q is µ(u(cq(ψ)−
u(cp(ψ))). Consider the two-stage lotteries P and Q, where P is one-shot (fully resolves in

the first stage), Q gradually resolves, and both induce same prior beliefs over final outcomes.

Because expected consumption utility is the same in both P and Q, we only need to consider

gain-loss utility. Conditional on xi being realized, the gain-loss utility at percentile ψ in

P is given by: µ(u(xi) − u(cφ(P )(ψ))). Suppose u(xi) − u(cφ(P )(ψ))) > 0 (the other case

is analogous).24 Observe that every time xi is realized for Q, it happens via some single

stage lottery pk. Then moving from φ(P ) to pk and from there to δxi in Q gives gain-loss

utility A := µ(u(xi)) − u(cpk(ψ))) + µ(u(cpk(ψ)) − u(cφ(P )(ψ))). There are four possibilities

to consider.

• u(cpk(ψ)) = u(xi). Then A = µ(u(xi)− u(cφ(P )(ψ))), so the utility is the same as in P .

• u(cpk(ψ)) > u(xi). Then A = µ(u(xi))− u(cpk(ψ))) + µ(u(cpk(ψ))− u(xi)) + µ(u(xi)−
u(cφ(P )(ψ))) < µ(u(xi) − u(cφ(P )(ψ))). Thus, at ψ, the utility of Q is less than that of

P .

• u(cφ(P )(ψ)) ≤ u(cpk(ψ)) < u(xi). Then A = µ(u(xi)− u(cφ(P )(ψ))), so the utility is the

same as in P .

• u(cφ(P )(ψ)) > u(cpk(ψ)). Then A = µ(u(cpk(ψ)) − u(cφ(P )(ψ))) + µ(u(cφ(P )(ψ)) −
u(cpk(ψ))) + µ(u(xi) − u(cφ(P )(ψ))) < µ(u(xi) − u(cφ(P )(ψ))). Thus, at ψ, the utility

of Q is less than that of P .

Combining the results above, we found that, at percentile ψ, the utility of Q is less than that

of P . Observe that the total probability attached to receiving xi, φ(P )(xi) is the same across

the two compound lotteries. Therefore, aggregating across different beliefs paths from the

prior to pk and then to δxi in Q results in the same probability as of moving directly from

24If instead u(xi) = u(cφ(P )(ψ)) then only the first, second, and fourth bullet points below can be relevant, but
otherwise the same results hold.

33



the prior to δxi in P . We conclude that the gain-loss utility from Q is lower than that of Q.

Since ψ was arbitrary, the result follows. �

2. To prove this part, we keep looking at the environment of part (1) but confine attention to

the case of only two final prizes. We then go through each of the four cases again.

• u(cpk(ψ)) = u(xi). Then A = µ(u(xi)− u(cφ(P )(ψ))), so the utility is the same as in P .

• u(cpk(ψ)) > u(xi). Note that if µ′ is large enough in the loss domain, then µ(u(xi)) −
u(cpk(ψ))) is arbitrarily negative and so does A. Hence the utility of Q is less than that

of P .

• u(cφ(P )(ψ)) ≤ u(cpk(ψ)) < u(xi). Then, if we let µ(u(xi) − u(cφ(P )(ψ))) = G, by

concavity of the gain function A ≤ 2G.

• u(cφ(P )(ψ)) > u(cpk(ψ)). If µ′ is large enough in the loss domain, then µ(u(cpk(ψ)) −
u(cφ(P )(ψ))) is arbitrarily negative and so does A. Hence the utility of Q is less than

that of P .

Observe that the only time that a gain occurs from gradual resolution is in the third case.

However, anytime the prior belief φ moves to a non-degenerate pk such that at some percentile

the third case is effective, with strictly positive probability either the second case or the fourth

case must also occur (for a different xi). In other words, whenever a gain occurs, a loss must

occur as well. By taking µ′ to be large enough in the loss domain, we can always make the

losses arbitrarily large to overwhelm any of the gains.

We now turn to considering the case where u(xi)− u(cφ(P )(ψ))) < 0 (unlike in the piecewise

linear case, here it less obvious that the proof which worked for gains will also work for losses).

There are again four cases to consider.

• u(cpk(ψ)) = u(xi). Then the utility is the same as in P .

• u(cpk(ψ)) < u(xi). Since losses are larger than gain ( µ′ is sufficiently large in the loss

domain), A < µ(u(xi)− u(cφ(P )(ψ))).

• u(cφ(P )(ψ)) ≥ u(cpk(ψ)) > u(xi). Then A = µ(u(xi) − u(cpk(ψ))) + µ(u(cpk(ψ)) −
u(cφ(P )(ψ))), which by the convexity of µ in the loss domain must be more negative

than µ(u(xi)− u(cφ(P )(ψ))).

• u(cφ(P )(ψ)) < u(cpk(ψ)). Since losses are larger than gain, A < µ(u(xi)− u(cφ(P )(ψ))).

Observe that there are no gains from gradual resolution for any of these four cases.

Thus the gain-loss utility, and hence the total utility, of Q is lower than that of P . �
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3. Given a loss function, we first consider a gain function that is exactly symmetric (−µ(−x) =

µ(x)). Suppose prior beliefs are uniform over some three prizes with corresponding utility

values z0, z1, z2 ∈ ∆ such that z2− z1 = z1− z0 > 0. Slightly abuse notation, we will identify

below an outcome with its utility value (or assume, without loss of generality, that u is linear).

Take p1 = δz0 , p2 = 1
2δz1 + 1

2δz2 , and let Q = 1
3Dp1 + 2

3Dp2 .

Consider an early resolved compound lottery P = 1
3Dδz0

+ 1
3Dδz1

+ 1
3Dδz2

. That is, beliefs

according to P in Period 1 are either degenerate on z0, z1, or z2. Gain-loss utility if z0 is

realized is then∫ 1

0
µ(0−c(φ))dp =

∫ 1
3

0
µ(0)dp+

∫ 2
3

1
3

µ(z0−z1)dp+

∫ 1

2
3

µ(z0−z2)dp =
1

3
µ(z0−z1)+

1

3
µ(z0−z2);

if z1 is realized, gain-loss utility is

∫ 1

0
µ(1−c(φ))dp =

∫ 1
3

0
µ(z1−z0)dp+

∫ 2
3

1
3

µ(0)dp+

∫ 1

2
3

µ(z1−z2)dp =
1

3
µ(z1−z0)+

1

3
µ(z1−z2);

and if z2 is realized, gain-loss utility is

∫ 1

0
µ(2−c(φ))dp =

∫ 1
3

0
µ(z2−z0)dp+

∫ 2
3

1
3

µ(z2−z1)dp+

∫ 1

2
3

µ(0)dp =
1

3
µ(z2−z0)+

1

3
µ(z2−z1).

Aggregating, and taking into account the probability of each realization and that the z values

are equally spaced, we get the gain-loss utility for P is

1

9
µ(z0 − z1) +

1

9
µ(z0 − z2) +

1

9
µ(z1 − z0) +

1

9
µ(z1 − z2) +

1

9
µ(z2 − z0) +

1

9
µ(z2 − z1)

=
2

9
µ(z0 − z1) +

2

9
µ(z1 − z0) +

1

9
µ(z0 − z2) +

1

9
µ(z2 − z0).

The gain-loss utility for Q in period 1 is

1

3
[

∫ 1
3

0
µ(0)dψ +

∫ 2
3

1
3

µ(z0 − z1)dψ +

∫ 1

2
3

µ(z0 − z2)dψ]

+
2

3
[

∫ 1
3

0
µ(z1 − z0)dψ +

∫ 1
2

1
3

µ(0)dψ +

∫ 2
3

1
2

µ(z2 − z1)dψ +

∫ 1

2
3

µ(0)dψ]

=
1

3
[
1

3
µ(z0 − z1) +

1

3
µ(z0 − z2)] +

2

3
[
1

3
µ(z1 − z0) +

1

6
µ(z2 − z1)]
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In period 2 the gain loss utility from p1 is 0. The gain loss utility from p2 is

1

2
[

∫ 1
2

0
µ(z2−z1)dψ+

∫ 1

1
2

µ(0)dψ]+
1

2
[

∫ 1
2

0
µ(0)dψ+

∫ 1

1
2

µ(z1−z2)dψ] =
1

4
µ(z2−z1)+

1

4
µ(z1−z2)

Total gain-loss utility from Q is then

1

9
µ(z0 − z1) +

1

9
µ(z0 − z2) +

2

9
µ(z1 − z0) +

1

9
µ(z2 − z1) +

1

6
µ(z2 − z1) +

1

6
µ(z1 − z2)

=
5

18
µ(z0 − z1) +

1

9
µ(z0 − z2) +

1

2
µ(z1 − z0)

Subtracting the total utility of P from the total utility of Q we are left with

1

18
µ(z0 − z1) +

5

18
µ(z1 − z0)− 1

9
µ(z2 − z0)

By symmetry this is arbitrarily close to ,

2

9
µ(z1 − z0)− 1

9
µ(z2 − z0) =

1

9
µ(z1 − z0) +

1

9
µ(z2 − z1)− 1

9
µ(z2 − z0) ≥ 0

Where the last inequality follows by the concavity of µ in the gains domain and that the z

values are equally spaced. �

This completes the proof of the proposition. �

Proof of Observation 2.

We first prove the claim for the case of two possible final outcomes, so that beliefs can be

summarized by a number. Let Q be a lottery that fully resolves in the second stage. We

denote the prior belief by φ. Let W (φ, p) = ν1(φ, p) +
∑

x p(x)ν2(p, δx) denote the value of

getting sublottery p, given prior φ, and then from p resolving in period 2. Since we assume

that % exhibits PORU, TN must hold and thus ν1 = ν2, which we simply denote by ν. Using

item (3) of Proposition 4, the ABB representation is also belief stationarity invariant, and we

have W (φ, 1) = ν(φ, 1) and W (φ, 0) = ν(φ, 0).

Observe that the value of Q is equal to φW (φ, 1)+(1−φ)W (φ, 0) = φν(φ, 1)+(1−φ)ν(φ, 0) =

W (φ, φ). A necessary condition for % to exhibit PORU is that for P with support p, p
′

such

that P (p)W (φ, p) + P (p)W (φ, p) ≤ W (φ, φ). This immediately implies that for any p in a

small neighbourhood around φ, W (φ, p) must lie below the line segment connecting W (φ, 1)

and W (φ, 0), which we denote by L.

In particular, the slope of W (φ, •) must be both weakly larger than the slope of L at φ from

below, and weakly lower than the slope of L at φ from above.
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In the derivations below we take the derivative of functions with respect to the second element,

which we call p; and then evaluate the derivative at r. We are interesting in the case where

r converges to φ. We have already established that limr→φ+
∂W (φ,p)

∂p |r ≤ W (φ,1)−W (φ,0)
1 . The

LHS of this is equal to limr→φ+
∂ν(φ,p)
∂p + ∂pν(p,1)

∂p + ∂(1−p)ν(p,0)
∂p |r. Using the chain rule, the

condition becomes

lim
r→φ+

∂ν(φ, p)

∂p
+ ν(p, 1) + p

∂ν(p, 1)

∂p
− ν(p, 0) + (1− p)∂ν(p, 0)

∂p
|r ≤ ν(φ, 1)− ν(φ, 0),

or

lim
r→φ+

∂ν(φ, p)

∂p
+ φ

∂ν(p, 1)

∂p
+ (1− φ)

∂ν(p, 0)

∂p
|r ≤ 0

Similarly, we need

lim
r→φ−

∂ν(φ, p)

∂p
+ φ

∂ν(p, 1)

∂p
+ (1− φ)

∂ν(p, 0)

∂p
|r ≥ 0

Suppose ν is smooth in it’s first argument; then

lim
r→φ−

∂ν(φ, p)

∂p
|r ≥ lim

r→φ+

∂ν(φ, p)

∂p
|r

This implies concavity of ν at the reference point.

If there are more than two outcomes, we replicate the previous steps, but now for each

directional derivative with respect to the second argument of ν(φ, p), and then evaluating

at φ. Thus, each directional derivative must be decreasing, (i.e., the function is concave in

that direction). The result follows since a function is concave if and only if all its directional

derivatives are falling. �

Proof of Proposition 11. We prove each item in turn.

(a) We prove the main statement; the respective one is proved analogously. Fix some nat-

ural number n ≥ 2 and corresponding n outcomes. Fix the probabilities of any n − 2

of the outcomes chosen, and confine attention to lotteries over the remaining two, x1

and x2 (fixing the mass needed to assign for them). Because preferences are strictly

monotone, they must be differentiable almost everywhere along the one-dimensional line

representing all lotteries over x1 and x2. Pick some p along this line such that V2 is

smooth at p.

Consider a two-stage lottery Dp. Now, take a linear bifurcation of p, which generates a

compound lottery Qε, so that Qε yields with probability 1
2 q

1
ε and with probability 1

2 q
2
ε .
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We suppose (as part of our construction) that (i) as ε→ 0, q1
ε and q2

ε both converge to

p; and (ii) q1
ε is always preferred to q2

ε (that is, Dq1
ε
� Dq2

ε
).

Since there are only two outcomes and preferences are monotone, there is a bijection

between any one-stage lottery q and its expected value, e(q), and between q and its

certainty equivalent (calculated using either Vi), CEVi(q). Thus, there exists a bijection

between e(q) and CEVi(q), which we denote by fVi = CEVi(e
−1). Since the mapping from

lotteries to expected values is smooth (and so it’s inverse is smooth) and, by assumption,

the mapping from lotteries to certainty equivalents (and so it’s inverse) is smooth, we

have that f is smooth.

Therefore, we can represent preferences over Qε with V (Qε) = V1(1
2CEV2(e−1(e(q1

ε ))) +
1
2CEV2(e−1(e(q2

ε )))) = V1(1
2fV2(e(q1

ε ) + 1
2fV2(e(q2

ε )). Observe that this is exactly the

situation considered in Section 5 of Segal and Spivak (1990). They show that if V1

displays first-order risk aversion, then for small enough ε, the individual must strictly

prefer Dp to Qε and, in particular, cannot exhibit preference for early resolution of

uncertainty. �

(b) By item (ii) of Proposition 8, we need to have convex ν̂2. Consider RDU preferences.

By Proposition 4 of Segal and Spivak (1990), RDU exhibits first-order risk aversion

whenever the probability weighting function is strictly convex. By Wakker (1994) the

RDU functional is convex if and only if the probability weighting function is convex. So

taking any ν̂2 with this property, as mentioned in the main text, will do. �

This completes the proof of Proposition 11. �

A.2 Uniqueness of ABB representations

In this section we present more detailed uniqueness results.

Proposition 12. Suppose % has an ABB representation (u, ν1, ν2). The ABB representation

(u′, ν ′1, ν
′
2) also represents % if and only if there exists scalars α > 0, βu, β1, β2, and continuous

functions γu : X → R, γ1 : X → R, and γν : ∆×X → R such that

• u′(x) = αu(x) + βu + γu(x) + γ1(x)

• ν ′1(ρ, p) = αν1(ρ, p) + β1 +
∑

x p(x)γν(p, δx)−
∑

x ρ(x)γ1(x)

• ν ′2(p, δx) = αν2(p, δx) + β2 − γν(p, δx)− γu(x)

Proof of Proposition 12. We first show that if

• u′(x) = αu(x) + βu + γu(x) + γ1(x)
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• ν ′1(ρ, p) = αν1(ρ, p) + β1 +
∑

x p(x)γν(p, δx)−
∑

x ρ(x)γ1(x)

• ν ′2(p, δx) = αν2(p, δx) + β2 − γν(p, δx)− γu(x)

then (u′, ν ′1, ν
′
2) represents the same preferences as (u, ν1, ν2).

Consider the utility function generated by the former representation.

∑
x

u′(x)ρ(x) +
∑
p

P (p)ν ′1(ρ, p) +
∑
p

∑
x

P (p)p(x)ν ′2(p, δx)

=
∑
x

ρ(x)[αu(x) + βu + γu(x) + γ1(x)]

+
∑
p

P (p)[αν1(ρ, p) + β1 +
∑
x

p(x)γν(p, δx)−
∑
x

ρ(x)γ1(x)]

+
∑
p

∑
x

P (p)p(x)[αν2(p, δx) + β2 − γν(p, δx)− γu(x)]

= α
∑
x

ρ(x)u(x) + βu +
∑
x

ρ(x)γu(x) +
∑
x

ρ(x)γ1(x)

+ α
∑
p

P (p)ν1(ρ, p) + β1 +
∑
p

∑
x

P (p)p(x)γν(p, δx)−
∑
p

P (p)
∑
x

ρ(x)γ1(x)

+ α
∑
p

∑
x

P (p)p(x)ν2(p, δx) + β2 −
∑
p

∑
x

P (p)p(x)γν(p, δx)−
∑
p

∑
x

P (p)p(x)γu(x)

Denoting β = βu + β1 + β2 and recalling that
∑

p

∑
x P (p)p(x) =

∑
x ρ(x) we get

α[
∑
x

ρ(x)u(x) +
∑
p

P (p)ν1(ρ, p) +
∑
p

∑
x

P (p)p(x)ν2(p, δx)] + β

+
∑
x

ρ(x)γu(x) +
∑
p

∑
x

P (p)p(x)γν(p, δx) +
∑
x

ρ(x)γ1(x)

−
∑
p

∑
x

P (p)p(x)γν(p, δx)−
∑
x

ρ(x)γu(x)−
∑
x

ρ(x)γ1(x)

= α[
∑
x

ρ(x)u(x) +
∑
p

P (p)ν1(ρ, p) +
∑
p

∑
x

P (p)p(x)ν2(p, δx)] + β

which clearly are the same preferences as (u, ν1, ν2).

To prove the other direction, suppose (u, ν1, ν2) and (u′, ν ′1, ν
′
2) represent the same preferences.

Define û(x) = u(x)−u(x); ν̂2(p, δx) = ν2(p, δx)−ν2(p, δx); and ν̂1(ρ, p) = ν1(ρ, p)+
∑

x ρ(x)u(x)+∑
x p(x)ν2(p, δx). These represent the same preferences as (u, ν1, ν2) but we can write V (P ) =∑
p P (p)ν̂1(φ(P ), p).

Now define û′(x) = u′(x) − u′(x); ν̂ ′2(p, δx) = ν ′2(p, δx) − ν ′2(p, δx); and ν̂ ′1(ρ, p) = ν ′1(ρ, p) +∑
x ρ(x)u′(x) +

∑
x p(x)ν ′2(p, δx). These represent the same preferences as (u′, ν ′1, ν

′
2) but we can

write V ′(P ) =
∑

p P (p)ν̂ ′1(φ(P ), p).

Since V (P ) =
∑

p P (p)ν̂1(φ(P ), p) and V ′(P ) =
∑

p P (p)ν̂ ′1(φ(P ), p) we know that ν̂ ′1(φ(P ), p)

39



must be an affine transformation of ν̂1(φ(P ), p) ; so that ν̂ ′1(φ(P ), p) = αν̂1(φ(P ), p) + β. Thus

V ′(P ) =
∑

p P (p)αν̂1(φ(P ), p) + β. Clearly,
∑

p αP (p)ν̂1(φ(P ), p) + β has an ABB representation

(αu+ βu, αν1 + β1, αν2 + β2), where βu + β1 + β2 = β.

By construction αû = û′ = 0 and αν̂2 = ν̂ ′2 = 0. Thus we can say u′(x) = u′(x)−αu(x)+αu(x);

ν ′2(p, δx) = ν ′2(p, δx) − αν2(p, δx) + αν2(p, δx); and ν ′1(φ(P ), p) = αν1(φ(P ), p) −
∑

x ρ(x)[u′(x) −
αu(x)] −

∑
x p(x)[ν ′2(p, δx) − αν2(p, δx)] + β. Moreover, it is easy to verify that we can arbitrarily

divide β among the terms.

Define γu(x) = 0; γ1(x) = u′(x) − αu(x); and γν(p, δx) = −[ν ′2(p, δx) − αν2(p, δx)]. Then

u′(x) = αu(x) + γu(x) + γ1(x)βu; ν ′2(p, δx) = αν2(p, δx)− γν(p, δx)− γu(x) + β1 and ν ′1(φ(P ), p) =

αν1(φ(P ), p) +
∑

x p(x)γν(p, δx)−
∑

x ρ(x)γ1(x). Thus we have constructed the transformation. �

For completeness, we now show that if we suppose utility depends only on the levels of beliefs,

stronger uniqueness results also obtain. In this case, both belief-based functionals are unique up to

expected utility preferences. Thus, the only part of the utility function not uniquely identified (up

to standard transformations) are an individual’s expected utility attitudes towards final outcomes.

Proposition 13. Suppose % has an anticipatory representation (u, ν1, ν2). The ABB representation

(u′, ν ′1, ν
′
2) also represents % if and only if there are scalars α > 0, βu, β1, β2 and continuous functions

γu : X → R and γν : X → R such that

• u′(x) = αu(x) + βu + γu(x) + γν(x)

• ν ′1(ρ) = αν1(ρ) + β1 −
∑

x ρ(x)γν(x)

• ν ′2(p) = αν2(p) + β2 −
∑
p(x)γu(x)25

Proof of Proposition 13. The proof is analogous to the one of Proposition 12. We show

necessity for prior anticipatory preferences as an example. Consider the utility function generated

by the latter representation:

∑
x

u′(x)ρ(x) +
∑
p

P (p)ν ′1(ρ) +
∑
p

∑
x

P (p)p(x)ν ′2(p)

=
∑
x

ρ(x)[αu(x) + βu + γu(x) + γν(x)] +
∑
p

P (p)[αν1(ρ) + β1 −
∑
x

ρ(x)γν(δx)]

+
∑
p

∑
x

P (p)p(x)[αν2(p) + β2 − γu(x)]

= α
∑
x

ρ(x)u(x) + βu +
∑
x

ρ(x)γu(x) +
∑
x

ρ(x)γν(x) + αν1(ρ) + β1 −
∑
x

ρ(x)γν(δx)

+
∑
p

P (p)αν2(p) + β2 −
∑
p

∑
x

P (p)p(x)γu(x)

25Observe that in a posterior-anticipatory representation p is a degenerate lottery.
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Denoting β = βu + β1 + β2 and recalling that
∑

p

∑
x P (p)p(x) =

∑
x ρ(x) we get

α[
∑
x

ρ(x)u(x) + ν1(ρ) +
∑
p

P (p)αν2(p)] + β

which clearly are the same preferences as (u, ν1, ν2). �

A.3 Other Properties

In addition to axiom R, Segal (1990) also introduced several other restrictions on preferences over

compound lotteries. We first quickly review them. The strongest assumption is called Reduction of

Compound Lotteries (ROCL), which supposes that individuals only care about the reduced form

probabilities of any given compound lottery.

Reduction of Compound Lotteries (ROCL): For all P,Q ∈ ∆2, if φ(P ) = φ(Q) then P ∼ Q.

To introduce the next assumption, we first define two special subsets of ∆2.

• Γ = {Dp|p ∈ ∆}, the set of degenerate lotteries in ∆2. Γ is the set of late resolving lotteries.

• Λ = {Q ∈ ∆2|Q(p) > 0 ⇒ p = δx for some x ∈ X}, the set of compound lotteries whose

outcomes are degenerate in ∆. Λ is the set of early resolving lotteries.

We define the restriction of % to the subsets Γ and Λ as %Γ and %Λ, respectively.26 Assumption

(I) imposes Independence on these two induced relations.

Independence (I): The relations %Γ and %Λ satisfy Independence.

Of course, one could also suppose Independence on either subset of preferences, for example,

only %Λ (the definition for preferences over late resolving lotteries is analogously defined).

Independence over Early Resolving Lotteries (IΛ): The relation %Λ satisfies Independence.

The last assumption is Time Neutrality (TN), discussed previously.

Segal (1990), among other things, relates his proposed axioms to one another. In particular, he

shows that if % satisfies WO and C, then (i) ROCL implies TN; (ii) ROCL and R imply I, and

ROCL and I imply R; and (iii) R, I, and TN, imply ROCL. We can extend Segal’s reasoning to

include CTI, PTI, SPTI, and TI.27

Proposition 14. Suppose % satisfies WO and C. The following statements are true.28

26Both Γ and Λ are isomorphic to ∆, and therefore %Γ and %Λ can be interpreted as the the individual’s preferences
over simple lotteries in the appropriate period.

27We do not discuss the implications of SPTI and PTI individually, nor CTI individually, although our results can
be extended. We do so because of the focus of our analysis is on CTI togerther with at least one of SPTI and PTI
holding.

28Some items have already been established earlier; we add them here for completeness.
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1. (i) ROCL implies SPTI (ii) TI implies SPTI, R, and CTI; (iii) SPTI implies PTI.

2. (i) R, CTI, and PTI jointly imply TI (and so SPTI); (ii) CTI, SPTI and TN jointly imply

ROCL

3. TN, R, CTI, and PTI jointly imply I (and so ROCL).

Proof of Proposition 14. We show each part in turn

1. Observe that ROCL implies that all lotteries with the same reduced form probabilities are

indifferent, which immediately implies SPTI. It is clear that TI implies SPTI, R and CTI

since they are just TI applied to particular subsets of mixtures. We discussed previously that

SPTI implies PTI. �

2. Axioms R, PTI and CTI have been already shown to imply a posterior-anticipatory represen-

tation, which implies TI (and so SPTI). CTI and SPTI implies that we have a representation

of the form ν̂1(φ(P )) +
∑

i P (pi)ν2(pi). Over early resolving lotteries this takes the structure

ν̂1(φ(P )) +
∑

i P (δxi)ν2(δxi), which is simply a non-expected utility functional over the re-

duced form probabilities. TN implies this must be true also for any lottery with structure

ν̂1(φ(P )) + ν2(φ(P )), and so ν2(φ(P )) =
∑

i P (δxi)ν2(δxi), and so ν2 satisfies reduction, and

so ROCL is satisfied. �

3. From item (2), R, CTI, and PTI imply SPTI, and we know that CTI, SPTI, and TN imply

ROCL. �

This concludes the proof of Proposition 14. �

All relationships in Proposition 14 are interpreted via the lens of restrictions on preferences. In

the context of our paper, it is perhaps more instructive to interpret them via the functional forms.

Corollary 1. Suppose % has a prior-anticipatory representation. Then (i) TN or ROCL implies

that ν2 is an expected utility functional; and (ii) R or IΛ implies that % has a posterior-anticipatory

representation.

If % has a posterior-anticipatory representation and satisfies TN, then it is expected utility.

Proof of Corollary 1: A prior-anticipatory representation implies that SPTI is satisfied. From

the previous proof we know that SPTI and TN jointly imply ROCL, and that ROCL alone implies

TN. Given the representation ν̂1(φ(P ))+
∑

i P (pi)ν2(pi), TN implies that ν2(p) =
∑

i p(δxi)ν2(δxi),

and so ν2 is expected utility. As shown previously, if R is satisfied then a posterior-anticipatory

representation is implied. Moreover, Proposition 15 below shows that if IΛ is satisfied, then a

posterior-anticipatory representation is implied.
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The representation of posterior-anticipatory preferences has the form
∑

i P (pi)
∑

j pi(xj)û(xj)+∑
i P (pi)ν1(pi). Observe that over Λ these preferences have the structure

∑
i P (pi)

∑
j pi(xj)û(xj)+∑

i P (δxi)ν1(δxi), which is expected utility. Thus, if TN is satisfied, preferences over Γ must also

satisfy Independence. Given R, I and TN imply standard expected utility. �

These results allude to an alternative characterization of posterior-anticipatory preferences.

Proposition 15. The following are equivalent:

• The relation % satisfies WO, C, CTI, SPTI, and IΛ

• The relation % has a posterior-anticipatory representation

Proof of Proposition 15: We use the fact that the relation % has a prior-separable expected

utility representation if and only if it has a posterior-anticipatory representation. Given this, the

result follows from the following claim. �

Claim 9. The relation % has a prior-separable expected utility representation if and only if it

satisfies WO, C, CTI, SPTI, and IΛ.

Proof of Claim 9. It is easy to check that any Vpseu representation satisfies CTI, SPTI and IΛ.

For the other direction, notice that we have (given CTI and SPTI) a representation of the form

ν̂1(φ(P )) +
∑

i P (pi)ν2(pi). Moreover, IΛ implies that Independence is satisfied over lotteries in Λ.

Observe that within Λ the representation has the form ν̂1(φ(P )) +
∑

i P (δxi)ν2(δxi). The second

terms is simply an expected utility functional on Λ. Thus, the first term must be expected utility

over the reduced form probabilities in order for Independence to be satisfied. �

A.4 Extension to T -stage lotteries

In this section we demonstrate how our characterization can be extended to a domain with ar-

bitrary number of stages, T . For brevity, we will only discuss the extension of our most general

ABB representation, stating the modified functional form and the underlying assumptions. Similar

approaches extend our other two representation results.

Consider T -stage compound lotteries, and denote by Ct the set of lotteries that are degenerate

for the first (T−t) stages. Note that t > s implies Ct ( Cs, and that our domain coincides with CT .

There is a natural isomorphism between elements of Ct and t-stage lotteries. To avoid confusion,

we denote a typical element of Ct by P t, and, for any such P t, we denote the corresponding t-

stage sublottery (that is, if it is in the support of some (t + 1)-stage lottery) by P̃ t.29 For any

29Note that we associate each t-stage lottery with lotteries that start with degenerates nodes, rather than with
those that have (at least) the same amount of degenerate nodes across time, but in different order.
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two lotteries P,Q ∈ Ct and α ∈ [0, 1] we denote by [α, t, P,Q] their α-mix at time t, that is,

[α, t, P,Q](P t−1) = αP (P t−1) + (1 − α)Q(P t−1). Observe that [α, t, P,Q] ∈ Ct. For any t, we

denote by φ(P t) the reduced form probabilities over final outcomes induced by P t.

The first two axioms extend our main axioms to the new domain.

A1. t−PTI: For any α ∈ [0, 1], any t ≤ T , and any P, P
′
, Q ∈ Ct such that φ(P ) = φ(P

′
) = φ(Q);

P % P
′

if and only if [α, t, P,Q] % [α, t, P
′
, Q].

A2. t− CTI: For any α ∈ [0, 1] and any t ≤ T , if φ(P t) = φ(P
′ t), φ(Qt) = φ(Q

′ t), P t % Qt, and

P
′ t % Q

′ t; then [α, t, P t, P
′ t] % [α, t,Qt, Q

′ t].

Before stating the conceptually new axiom, we introduce some notation. For any P t−1, Qt−1 ∈
Ct−1 and any P t ∈ Ct, denote by P t

P̃ t−1→Q̃t−1 ∈ Ct the lottery in which we replace the sublottery

P̃ t−1 in the support of P t with Q̃t−1.

A3. Prior-Dependent Substitution: If P t−1, Qt−1 ∈ Ct−1, φ(P t−1) = φ(Qt−1), and P t−1 ∼ Qt−1,

then P t ∼ P t
P̃ t−1→Q̃t−1 .

To define a T -period ABB representation we need just a bit further notation, identifying a

sublottery with a specific node at the probability tree. Suppose in each time t there are Jt nodes

according to P T . Let P̃ tjt be the sublottery that starts at node jt in time t. Let ρ(P̃ tjt) be the

probability of reaching P̃ tjt according to P T (that is, multiplying probabilities along the unique

path leading to it, starting at the root of the tree).

Definition 9. A T -period ABB representation is given by:

V (P T ) =
∑
x

u(x)φ(P T )(x) +

T−1∑
t=0

Jt∑
jt=1

Jt+1∑
it+1=1

ρ(P̃ tjt)P̃
t
jt(P̃

t+1
it+1

)νt+1(φ(P̃ tjt), φ(P̃ t+1
it+1

))

Proposition 16. The relation % satisfies A1-A3 if and only if it admits a T -period ABB repre-

sentation.

To prove this result, we will first show how to pin down ν1, treating the sublotteries of length

T − 1 in the support of P T as the final prizes. We then proceed forward, repeating the same

arguments along the probability tree and sequentially trace all other νt, for t ≤ T .

Proof of Proposition 16:

1. We start in Period 1 in order to first pin down ν1.

In Period 0, we apply 0−PTI and 0−CTI and using the same arguments as in the T = 2 case

(treating the sublotteries in the support of P T as the final prizes) to obtain the representation
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V (P T ) =
∑
P̃T−1

P T (P̃ T−1)V1(φ(P T ), P̃ T−1)

which, with some algebraic manipulations, can always be rewritten as

∑
x

u(x)φ(P T )(x) +
∑
P̃T−1

P T (P̃ T−1)ν1(φ(P T ), P̃ T−1) +
∑
P̃T−1

P T (P̃ T−1)V2(P̃ T−1) (1)

We next argue that, without loss of generality, we can always normalize ν1(φ(P T−1), P̃ T−1) =

0. To see this, define ν̂1(φ(P T ), P̃ T−1) = v1(φ(P T ), P̃ T−1)−v1(φ(P T−1), P̃ T−1); and V̂2(P̃ T−1) =

V2(P̃ T−1) + v1(φ(P T−1), P̃ T−1). Observe that (1) is equivalent to

∑
x

u(x)φ(P T )(x) +
∑
P̃T−1

P T (P̃ T−1)ν̂1(φ(P T ), P̃ T−1) +
∑
P̃T−1

P T (P̃ T−1)V̂2(P̃ T−1)

but now we have ν̂1(φ(P T−1), P̃ T−1) = 0. Therefore, we will now simply suppose that the

representation in (1) with ν1(φ(P T−1), P̃ T−1) = 0. This normalization, in turns, implies that

P T−1 % QT−1 if and only if

∑
x

u(x)φ(P T−1)(x) + V2(P̃ T−1) ≥
∑
x

u(x)φ(QT−1)(x) + V2(Q̃T−1)

Moreover, if φ(P T−1) = φ(QT−1), then P T−1 % QT−1 if and only if V2(P̃ T−1) ≥ V2(Q̃T−1).

Now we apply the Prior-Dependent Substitution axiom. Take any P T−1, QT−1 ∈ CT−1

such that φ(P T−1) = φ(QT−1) and P T−1 ∼ QT−1. The axiom requires that V (P T ) =

V (P T
P̃T−1→Q̃T−1). Using what we established thus far, and applying the representation in (1),

this implies that

V (P T )− V (P T
P̃T−1→Q̃T−1) = ν1(φ(P T ), P̃ T−1)− ν1(φ(P T ), Q̃T−1) = 0

which, in turns, implies that ν1(φ(P T ), ·) can only depend on the reduced form probabilities

of its second argument.

2. Having pinned down ν1, we move to Step 2. Here we focus on lotteries in CT−1, tracing the

form of V2. Because we have pinned down ν1, by A3 it is without loss to use this subdomain

to pin down V2. We do this in a two-step manner.

Recall that from the previous step, we obtain a representation
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∑
x

u(x)φ(P T )(x) +
∑
P̃T−1

P T (P̃ T−1)ν1(φ(P T ), φ(P̃ T−1)) +
∑
P̃T−1

P T (P̃ T−1)V2(P̃ T−1)

Define

V̄2(P T−1) =
∑
x

u(x)φ(P T−1)(x) + V2(P̃ T−1)

and note that

V̄2(P T−1) = V1(P T−1)

Applying A1-A3 for t = T − 1, we (analogously to Step 1) obtain the representation

V̄2(P T−1) =
∑
x

u(x)φ(P T−1)(x)+
∑
P̃T−2

P̃ T−1(P̃ T−2)ν2(φ(P̃ T−1), φ(P̃ T−2))+
∑
P̃T−2

P̃ T−1(P̃ T−2)V3(P̃ T−2)

Thus

∑
x

u(x)φ(P T−1)(x) +
∑
P̃T−2

P̃ T−1(P̃ T−2)ν2(φ(P̃ T−1), φ(P̃ T−2)) +
∑
P̃T−2

P̃ T−1(P̃ T−2)V3(P̃ T−2)

=
∑
x

u(x)φ(P T−1)(x) + V2(P̃ T−1)

which implies that

V2(P̃ T−1) =
∑
P̃T−2

P̃ T−1(P̃ T−2)ν2(φ(P̃ T−1), φ(P̃ T−2)) +
∑
P̃T−2

P̃ T−1(P̃ T−2)V3(P̃ T−2)

yielding a representation of V2 as a function of ν2 and the continuation value V3.

3. We then continue iterating forward, using the exact same steps as in the previous stage,

sequentially pinning down Vt as a function of νt and continuation value Vt+1 for t =, 3, .., T−1.

At time T − 1 there is no continuation value, but in this stage we simply set νT = VT ; note

that VT automatically depends only on the prior beliefs (and its second argument is always

degenerate). �
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