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Abstract

Can artificial intelligence, in particular, machine learning algorithms, replace the

idea of simple rules, such as first possession and voluntary exchange in free markets,

as a foundation for public policy? This paper argues that the preponderance of the

evidence sides with the interpretation that while artificial intelligence will help public

policy along important aspects, simple rules will remain the fundamental guideline

for the design of institutions and legal environments where markets operate. “Digital

socialism” might be a hipster thing to talk about in Williamsburg or Shoreditch, but

it is as much of a chimera as “analog socialism.”
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The peculiar character of the problem of a rational economic order is determined

precisely by the fact that the knowledge of the circumstances of which we must

make use never exists in concentrated or integrated form but solely as the dis-

persed bits of incomplete and frequently contradictory knowledge which all the

separate individuals possess. The economic problem of society is thus not merely

a problem of how to allocate “given” resources –if “given” is taken to mean given

to a single mind which deliberately solves the problem set by these “data.” It

is rather a problem of how to secure the best use of resources known to any of

the members of society, for ends whose relative importance only these individuals

know. Or, to put it briefly, it is a problem of the utilization of knowledge which

is not given to anyone in its totality.

F.A. Hayek, The Use of Knowledge in Society (1945).

1 Introduction

It is hard to open the internet or browse a bookstore without finding an article or a

book discussing artificial intelligence (AI). Most of them focus on machine learning (ML),

a subfield of AI that is growing in popularity in economics. We are told, with more or less

accuracy, that deep learning algorithms can master the most complicated games of strategy,

that robots threaten millions of jobs, and that dominance in AI will bring world supremacy.1

Gone is the era of large armies and powerful navies. The nations with the best algorithms,

as the Roman said, “will rule mankind, and make the world obey.”

One thread that increasingly appears in these works is the ability of AI to address policy

questions.2 Some proposals are mild enough. For example, thanks to ML, we might be

able to detect early strains in the financial markets and allow regulatory agencies to respond

before damage occurs (Fouliard et al., 2019). In these proposals, AI and ML do not play

a different role than traditional econometric methods used by economists since the 1940s;

they just provide a more flexible statistical approach. As such, I do not have any particular

problem with this application of AI and ML, and I have defended such a use.

Nevertheless, some authors go further and argue that we no longer need simple rules, such

as first possession, voluntary exchange, and pacta sunt servanda so eloquently defended by

1Among the best of a crop of uneven quality, see Silver et al. (2016) for how deep learning algorithms
mastered the ancient, but fiendishly complicated, game of Go, Baldwin (2019) on the impact of AI on the
labor market, and Lee (2018) on international competition for supremacy in AI. Athey and Imbens (2019)
is an outstanding survey of ML in economics.

2There is a collateral discussion, outside the scope of this paper, about the ethics of AI, for example,
concerning its tendency to engage in statistical discrimination, and what policy should do about it (see
Coeckelbergh, 2020).
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Epstein (1995), to create well-behaved markets and allocate resources. Imagine the following

scenario. Thanks to the development of central bank digital currencies, a central bank could,

theoretically, take over financial intermediation without the logistic nightmare of setting up

a national network of local branches (Fernández-Villaverde et al., 2020, describe how such

a system could work). In such an environment, ML algorithms could determine the whole

path of interest rates and risk premia that the central bank would pay to savers and charge

to depositors. If ML were to do a good job at this task, not only would we stabilize the

economy by deft control of interest rates, but financial crises and the socialization of private

losses would disappear. Instead of the vagaries of investors and savers signing individual

contracts, the ML algorithm would tell us the appropriate conditions for our intertemporal

decisions.

Pushing the argument slightly further, AI might even realize the dream of a planned

economy (although not necessarily centralized) that would deliver efficiency and equity for

all. Thanks to AI, perhaps we can finally eliminate markets (see Saros, 2014, and Phillips

and Rozworski, 2019, for this thesis and Medina, 2011, for a fascinating description of an

early attempt in Allende’s Chile called Project Cybersyn). Morozov (2019) has even coined

a term for this new economic system, “digital socialism,” and The Economist dedicated a

long essay to the topic in its 2019 Christmas issue.3 These speculations return us to classic

discussions in economics from the 20th century, such as the role of experts (although, in this

case, the “expert” is software code) or the socialist calculation debate.

In this paper, I will argue that while AI and ML are handy tools, there are reasons to

be cautious about their broad applicability to questions of policy. More concretely, I will

build a case based on three increasingly more serious barriers that ML faces in real-life policy

applications.

The first barrier is that ML requires enormous data sets that are unlikely to exist in

most cases of interest. To put it concisely, we probably have enough data to design an early

warning system for future financial crises that improves upon existing methods. However,

we are not (and will never be) remotely close to having the amount of data required to

automatize financial intermediation.

The second barrier is that, except in a few cases, ML suffers from the Lucas critique

(Lucas, 1976). Any type of estimation with non-experimental data is subject to an external

validity constraint: economic agents make decisions based on expectations about policy

regimes. Any variation in policy renders previous observations useless unless we have a

structural model (i.e., an economic model that is explicit about preferences, technology, and

information sets) the researcher can use to re-compute the optimal responses to the new

3“Beware the Borg: Essay.” The Economist, vol. 433, no. 9174, 21 Dec. 2019, p. 58 (US).
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policy. One can go one step further and realize that such a structural model should also

incorporate the probability of policymakers changing the environment. By construction,

AI and ML have very little to say about those structural models as they are reduced-form

statistical representations.4

The third barrier, which I find the most unconquerable, comes from how societies create

and use knowledge. ML cannot circumvent the problems of central planning, either on a

large scale or at a much lower range. I started the paper with a quote from Hayek (1945) as

a reminder that his insights are as relevant today as in 1945, well before anyone knew about

AI or ML. The core of the allocation problem in a society is not how to solve an optimization

problem, which AI or ML can do better in large dimensions than traditional mathematical

methods. The fundamental barrier to planning is that information is dispersed and agents

do not have incentives (and often not even the capabilities) to disclose such information to

a central planner. The trouble with the Soviet Union was not that its computers were not

powerful enough (although they were not) or that its planning algorithms were poor (they

were terrible), it was that central planning is, as medieval scholastics loved to say, inefficient

in essentia sua.5

Thus, I will conclude by defending that the lessons we know about what constitutes good

and bad economic policies are likely to remain unchanged. “Digital socialism” might be a

hipster thing to talk about in Williamsburg or Shoreditch, but it is as much of a chimera

as “analog socialism.” Instead, I will argue that the simple rules we have developed over

centuries, including the foundations of our legal systems and market economies, came out of

an evolutionary process that closely resembles another subfield of AI, reinforcement learning,

except in a more suitable, decentralized fashion.

Before I move on, however, I must warn the reader that this is a discussion where I

have “skin-in-the-game.” I have written papers showing how ML can be applied in macroe-

conomics and econometrics and I teach ML to graduate students. I find research on ML

fascinating, and I plan to continue working on AI and ML. But precisely because of this

background, I appreciate it is crucial to frame the promises of AI realistically and avoid the

disappointment that could come from overpromising. Neither AI nor public policy will be

well served by hyperbolic vows.

The rest of the paper is organized as follows. Section 2 provides basic technical back-

4There are two partial exceptions to this argument. First, ML is useful for policy evaluation when we
have access to experimental (or quasi-experimental) data. While those situations are relevant, the range of
policy questions they can address is limited. Second, ML can help in the estimation of structural models,
but that is far from what the defenders of “digital socialism” have in mind.

5See Kitov and Krotov (2017) for a description of the computers used by Gosplan in the Soviet Union,
Heal (1973) for a survey of the state-of-the-art central planning algorithms, and Kornai (1992) for the
depressing realities of socialist planning.
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ground on AI. Section 3 explains the data requirements of AI. Section 4 reviews the famed

Lucas critique and how it applies to AI. Section 5 discusses central planning and ML. Sec-

tion 6 concludes with some remarks about the evolutionary origin of simple rules and how

it compares with ML.

2 Some basic background

AI is a vast field, from expert systems to machine learning and from robotics control to

natural language processing. Although modern AI started in a famed summer workshop at

Dartmouth College in 1956, it has been the blossoming of ML techniques during the last two

decades that has brought AI to the forefront of the public discourse.6

ML includes a wide variety of numerical and statistical algorithms in which a computer

is programmed to learn about some properties of data or an unknown function in a relatively

automatic fashion.7

An example will help us understand the intuition. Imagine that we specify a function

that maps dozens of observables from credit card transactions (e.g., the geolocation of the

store where the credit card is used, the time of day and week when the transaction occurred,

the item purchased and its price, the use of the credit card in the previous 24 hours, etc.) into

a prediction of whether the use of the credit card was fraudulent. The function is sufficiently

flexible (for example, a deep neural network) such that the researcher does not need to make

many choices about which observables to add (is the geolocation of the store important?) or

the details of the functional form (does the item price enter in a linear or log fashion?). If

the researcher has access to millions of previous credit card transactions and the knowledge

of whether the transactions were fraudulent, the functional form can be “trained” to fit the

data and detect, often with fantastic success, whether a new transaction is fraudulent. At

a fundamental level, there is nothing very “intelligent” here: it is an exercise in massive

data fitting. What is intelligent is that the process is highly automatic and, therefore, easily

scalable to environments where the researcher might have limited knowledge. In that sense,

ML is very far away from the “artificial general intelligence” of Hollywood’s dystopias that

was pursued, fruitlessly, during the 1960s.

6A standard university textbook on AI is Russell and Norvig (2010), which briefly covers the history of
AI, including the Dartmouth workshop [p. 17], the “AI winters” of the 1970s and 1980s [pp. 22-24], and the
recent advances in the field [pp. 24-28]. I use Goodfellow et al. (2016) to teach ML to graduate students in
economics. Those in a hurry can learn much from Alpaydin (2016) and Boden (2018).

7While “machine learning” is an expression that can capture everyone’s imagination, it is not partic-
ularly precise. Other languages, such as French (“apprentissage automatique”) or Spanish (“aprendizaje
automático”), use the much less catchy but certainly more accurate expression “automatic learning.” Many
English-speaking researchers used to talk about “statistical learning,” but that term has lost popularity.
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Although some of the key ideas in ML go back to the 1940s (see Mcculloch and Pitts,

1943), it was not until around 2000 that research on ML and its applications in the industry

boomed. There are three reasons for such a long lag.

The first reason is that, while some key algorithms such as artificial neural networks

were known for decades, the computational capability to implement them outside simple

“proof-of-concept” cases was not widely available at cheap prices until two dozen iterations

of Moore’s law.8 Simultaneously, massive parallelization became widely available in the early

2000s. Now, nearly every laptop sold in the U.S. comes with multiple central processing units

(CPUs) and a graphics processing unit (GPU). Moreover, online services such as Amazon

Web Services mean that any researcher can have access over the internet, for a few dollars

an hour, to computers that were previously open only to researchers at large universities

and national labs.9 Fortunately, most ML algorithms are particularly suitable for massive

parallelization.

The second reason is that, thanks to the internet and cheap computing, researchers and

industry practitioners have been able to gather incredibly rich data sets. In economics,

a typical empirical paper had hundreds of observations in the 1970s (Hall, 1978, uses 120

observations), thousand of observations in the late 1990s (Acemoglu et al., 2001, use 1663

observations), and today it is common to see papers with tens of millions of observations

(Chetty et al., 2014, use 47.8 million).10 That is why AI and ML are often associated with

expressions such as “big data” or “data analytics.” As I will discuss in Section 3, ML

algorithms are data-hungry, and there is little you can do with them if the only data at hand

are a few hundred observations.

The third and final reason is that computer scientists and applied mathematicians solved

some of the roadblocks in the efficient implementation of ML algorithms. Ideas such as

backpropagation (Rumelhart et al., 1986) and the Latent Dirichlet allocation (Blei et al.,

2003) cracked open doors that had been closed for a long time.

The combination of these reasons has meant that ML has become ubiquitous in our lives,

that more and more students are focusing on acquiring these skills, and that public policy

institutions and researchers are starting to extract conclusions about how ML will affect

policy. But how well will ML work when applied to public policy?

8Moore’s law, proposed by Gordon Moore, the co-founder of Intel, in 1965 states that the number of
transistors per integrated circuit will double every 18 months (Moore, 1965). A way to think about Moore’s
law is that the ability of humans to perform numerical computations advanced as much between September
2018 and March 2020, when these lines are being written, as between the dawn of our species around 300,000
years ago and September 2018. See Flamm (2019) for the astonishing empirical success of Moore’s prediction.

9Fernández-Villaverde and Valencia (2018) describe how massive parallelization has changed modern
computational economics.

10I picked these three papers because they are considered landmark empirical works of their cohorts.
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3 ML and data

The “dirty little secret” of ML is that, to work properly, it requires incredibly large data

sets. For example, how a deep neural network takes observables and outputs a prediction is

indexed by dozens of parameters that must be determined from the data (i.e., as I mentioned

before, the network needs to be “trained”). Although each case is slightly different, the rule-

of-thumb in the industry is that one needs around 107 labeled observations to train a complex

neural network properly, with around 104 observations in each relevant group.11

When do we have these large data sets? In two situations. First, when you are a firm such

as Amazon or Netflix, with access to millions of observations from your customers. Every

time you purchase a product from Amazon, you provide the company with one more obser-

vation of what you like, how the purchase correlates with other products you bought, how

sensitive you are to price changes, etc. With around 105 million Amazon Prime customers in

the U.S., a group of customers with which Amazon can expect to have repeated interactions

during a calendar year, Amazon has access to all the data it can handle.12 Similarly, every

time you pick a movie or a show to watch on Netflix, you provide the streaming service

additional information about which shows people like you enjoy.

Second, you can create your “own” data. This path might seem counter-intuitive (or

plainly dishonest), but it is actually easy and consistent in many environments. An example

of this approach is the training of AlphaZero, a computer program that learned to play Go,

chess, and shogi through self-play (Silver et al., 2018). A researcher can randomly generate

many initial sets of values for the parameters in the neural network that maps positions of

the pieces on the board with their value and the next movement. Each set of values defines

a different game strategy (i.e., should you place a bishop in this corner or move the left

knight?). Then, we pit these different strategies against each other by making them play

multiple rounds of the game, select the best strategies in terms of victory percentages, and

update the value of the network parameters to reflect those in the wining strategies (plus

some changes to keep exploring new strategies). See Athey et al. (2019b) and Fernández-

Villaverde et al. (2019) for how similar ideas can be applied in economics.

Unfortunately, in many problems of interest in public policy, we do not have access to such

a wealth of data and, most likely, we never will. Take monetary policy, a well-structured

problem with much fewer instruments and targets than other policy problems. Could a

neural network ever replace the Federal Market Open Committee (FOMC)? I am skeptical.

11See Goodfellow et al. (2016, Ch. 15), for a discussion of data requirements. My experience is that one
needs fewer observations, perhaps around 105, if one is careful with the parameterization of the problem or
is willing to impose some additional structure.

12See https://www.statista.com/statistics/546894/number-of-amazon-prime-paying-members/
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When the members of the FOMC set the federal funds rate, they have access to time

series of most variables of interest that are short in length. For instance, in the case of the

U.S., we only have reliable quarterly data for output, consumption, and investment after

World War II.13 If we count them, from 1947:Q1 (the first “good” observation in terms of

accuracy) until 2019:Q4 (the last observation as I write these lines), we have 292 data points.

But, during that time, the U.S. economy has undergone radical structural changes. To

name a few, we have moved from manufacturing into services and improved supply-chain

management (Davis and Kahn, 2008). Financial innovations have transformed the rela-

tionship between financial and real variables (Guerrón, 2009). Monetary policy has been

conducted more aptly after 1982 (Lubik and Schorfheide, 2004). Those structural changes

mean that, often, econometricians do not use observations before the early 1980s when they

estimate the effects of monetary policy on output. Fernández-Villaverde et al. (2015) show

how these estimates change sharply depending on whether we include early observations.

Structural change matters for AI and ML because, as time passes, we gain observations

at the end of the sample, but lose informational value from the observations at the start of

the sample. The net effect of more observations is positive, but reduced. No, by 2050, we

will not have radically more information about the aggregate behavior of the U.S. economy

than we do today.

Going to microdata (e.g., consumption data of individual households) can enrich the

observations, but we will still encounter severe limitations on the length and stability of

micro surveys. Think, as an illustrative case, about demographic change. How informative

are the consumption patterns of married couples in the 1990s, in their early 40s with several

kids at home, about the consumption patterns of single individuals in the 2020s, also in their

early 40s and without kids? Comparing single individuals of the 1990s with single individuals

of the 2020s will not work either because who is single in the 2020s is very different from who

was single in the 1990s. The selection bias into marriage has changed dramatically. Modern

microeconometrics starts from the realization of how difficult it is to control for such selection

bias and to explore clever ways to address it. Besides, there are severe limitations on what

microdata can teach us, in the absence of a structural model, about the general equilibrium

effects we must know for conducting monetary policy. See Deaton and Cartwright (2018),

for an insightful discussion of these topics.14

13There have been valuable attempts at rebuilding series of output for the U.S. before World War II, the
most famous of which is probably Kendrick (1961). However, these reconstructions incorporate enough noise
that, beyond their usefulness for historical study, they are probably not robust enough to be fed into the
training of a neural network or the estimation of an econometric model used for policy decisions.

14I am not criticizing the use of ML with microdata to provide the FOMC with better information. I
aspire to do that with my research. I deny the possibility that you can substitute an ML algorithm for the
FOMC.
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4 ML and the Lucas critique

There are, however, concerns about the usefulness of ML for policy analysis that go

beyond the limitations of data. Probably the most salient concern is the Lucas critique

(Lucas, 1976).

Imagine that we obtain data on airline ticket prices and the occupancy rate of particular

flights. Any ML model will soon pick up that the ticket prices and the occupancy rates move

together: we see high prices in the oversold American Airlines flights leaving Philadelphia

for Boston on Monday mornings at 7:00 am (a flight I often took a few years ago when I was

invited to teach at Harvard) and low prices in the relatively empty 3:00 pm Tuesday flights

from Boston to Philadelphia (my return leg the next day).

How can American Airlines use this information to decide the profit-maximizing ticket

prices (or a regulator determine the socially optimal prices)? The conclusion that high-

price plane tickets cause high occupancy is senseless. Instead, we can safely conclude that

American Airlines is pricing the 7:00 am flight higher because it understands the demand for

that flight is strong (all those weekly commuters!). However, in reaching such a conclusion,

we have relied on basic economic theory and shown an essential limitation of ML: it is tough

to use it to assert causality (although we are making progress; see Athey et al., 2019a).

For most policy questions of interest, we care about causality, not correlation. Only by

understanding causality can we design better policies.

While in the airline example the direction of causality was evident, it is not in many

others. Do children in charter schools do better because charter schools implement superior

teaching practices or because their parents are more motivated than parents of children who

stay in traditional public schools? Does having more police lower crime, or do higher crime

areas attract more police officers? Does the rule of law drive economic growth, or does

economic growth create a demand for the rule of law? Unfortunately, social sciences live in

a world of high potential causal density (Manzi, 2012). For nearly all situations, we have a

multitude of plausible causal channels between policies and outcomes.

Lucas, however, went even further than just rehearsing the old causality vs. correlation

line. Let us return to the airline example. Now, consider the slightly different problem

that American Airlines faces when deciding the spread between economy and business class

tickets. If the price of the business ticket is too high, I will not buy it. Instead, I will bet

that my frequent-flier status with the airline will allow me to upgrade. However, if the price

of the business ticket is not too high, I would instead buy a business ticket to Boston (I

am paying it out of pocket, so university regulations do not bind me). My Monday lecture

starts at 10:00 am, and I want to avoid the risk of suffering the discomfort of a small seat.
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American Airlines prefers that I buy a business ticket rather than upgrading me, but it needs

to gauge my price elasticity of demand.

Can ML help here? Yes. We can find, if there is enough variation in the data, who buys

business class and who buys economy and, through information on their income, education

levels, home address, etc., back up such a price elasticity of demand.

However, and this the key to Lucas’ argument, the answer that comes from ML will

only be valid under a constant set of circumstances of the choice problem. For example,

if American Airlines tightens its rules for upgrades (as it did a few years ago), my price

elasticity of demand will increase. Why? The tightening of the upgrade rules hurt travelers

with many segments per year of cheap tickets (i.e., the Philadelphia-Boston commuters).

This change, implicitly, favored business travelers with few segments per year but of high

price (my case: all those expensive business class tickets to Europe) and who now face less

upgrade competition. Once I understand that upgrades are more likely, I will risk playing

the upgrade lottery when the price of the business ticket goes above a lower threshold than

before. This might achieve American Airlines’ goal (reward their most highly profitable

transcontinental customers with easier domestic upgrades), but the point here is that no

amount of ML is going to tell you by how much my price elasticity of demand will increase

under the new upgrade policy. For that, you need an economic model, which will tell you

about policy-invariant parameters such as risk aversion.

Some ML practitioners will reply that American Airlines can always get around the Lu-

cas critique by experimenting with different upgrade policies. Yes and no. Yes, companies

experiment all the time (Manzi, 2012). Nevertheless, there are limits to such experimenta-

tion. While Amazon can experiment, at meager cost, with the recommendations it displays

on its homepage when you open it, American Airlines can only change the upgrade rules

sporadically unless it wants to alienate its customers.

Most importantly, plenty of policies are hard to test by experimentation. The first barrier

is ethical: as a society, we cannot play with humans to make a scientific point. Recall the 1983

comedy Trading Places and the Duke brothers’ experiment with Dan Aykroyd and Eddie

Murphy on the importance of nature vs. nurture. We celebrate the Duke brothers’ ultimate

ruin precisely because of our moral intuition that such experimentation is unacceptable. This

ethical barrier is particularly salient in issues related to health and education.

The second barrier to experimentation is the limitation of what one can learn from such

exercises. One can implement a randomized control trial (RCT) to evaluate the effect of

charter schools, but one cannot change the federal funds rate to see what happens with the

U.S. economy afterward. Even evaluating charter schools is difficult. We can ascertain, with

reasonable confidence, that sending a few thousand children with well-motivated parents to
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charter schools in the Boston metropolitan area has clear positive effects (Abdulkadiroğlu

et al., 2011). However, it is hard to use an RCT to gauge general equilibrium effects.15 How

will the program work with children of parents who did not apply to the lottery? What would

happen with the location choices of parents in Boston once we generalize charter schools?

And with the market for teachers? And with the composition of jobs offered by firms once

the labor force is better educated?16

Interestingly, firms do not typically face these general equilibrium effects. If I learn,

through experimentation, that placing the soda stand closer to the check-out counter in-

creases the sale of sodas in my coffee shop, I have a minuscule effect on the national sales

of sodas, their prices, and the diet of Americans. If the government mandates moving the

soda stands away from the check-out counters across all shops in the country to lower the

consumption of sugary drinks, we will change prices and dietary choices. Thus, the scope

for experimentation that firms (or even local governments) enjoy, and the subsequent ability

to employ ML is larger than the scope of national governments.

5 ML and central planning

Over the last few years, a few observers have made the bold prediction that, thanks

to AI, central planning is about to return (Saros, 2014, Phillips and Rozworski, 2019, and

Morozov, 2019). Some of these observers are rather prominent. For example, Jack Ma,

founder of Alibaba, stated in November 2016:

Over the past 100 years, we have come to believe that the market economy is

the best system, but in my opinion, there will be a significant change in the next

three decades, and the planned economy will become increasingly big. Why?

Because with access to all kinds of data, we may be able to find the invisible

hand of the market.

The planned economy I am talking about is not the same as the one used by

the Soviet Union or at the beginning of the founding of the People’s Republic of

China...

With the help of artificial intelligence or multiple intelligence, our perception of

the world will be elevated to a new level. As such, big data will make the market

15Nevertheless, see Muralidharan et al. (2017) for an example of how to estimate general equilibrium
effects using a large-scale experiment.

16The statements in the main text require a few caveats. For instance, one can use the results of an RCT
or an ML exercise to estimate a general equilibrium model by imposing the condition that such a model
replicates the RCT when we simulate it in partial equilibrium and use the full model for counterfactual
policy analysis. But even in that case, we still need a structural model, and ML cannot substitute for it.
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smarter and make it possible to plan and predict market forces so as to allow us

to finally achieve a planned economy.17

These proposals forget the final lesson of the socialist calculation debate, which came

from Hayek (1945). The objections to central planning are not that solving the associated

optimization problem is extremely complex, which it is and increasingly so in an economy

with a maddening explosion of products, or that we need to gather the data and process it

sufficiently fast. If that were the case, ML could perhaps solve the problem, if not now, then

in a few more iterations of Moore’s law. The objections to central planning are that the

information one needs to undertake it is dispersed and, in the absence of a market system,

agents will never have the incentives to reveal it or even to create new information through

entrepreneurial and innovative activity. As Steve Jobs put it: “A lot of times, people don’t

know what they want until you show it to them.”18

A real-life application of central planning illustrates the point. Every year, the depart-

ment of economics at the University of Pennsylvania must set up a teaching matrix for the

next academic year.19 Each member of the faculty submits his or her preferences in terms

of courses to be taught, day of the week, time of day, etc. Given the teaching needs and

submitted requests, the computational burden of finding the optimal allocation is manage-

able. We have around 32 faculty members and, once you consider that the average theorist

will never request to teach econometrics and vice versa, the permutations to consider are

limited. A couple of hours in front of Excel delivers the answer: it seems that the central

teaching planner at Penn economics can do her job.

The real challenge is that, when I submit my teaching requests, I do not have an incentive

to i) reveal the truth about my preferences or ii) think hard about developing a new course.20

I might not mind too much teaching a large undergraduate session on a brand-new hot topic

and, if I am a good instructor, the students will be better off if I do so. However, I will

not be compensated for the extra effort, even if it is not high. Thus, I have an incentive

to request a small section for advanced undergrads on an old-fashioned topic. This request

17See http://www.globaltimes.cn/content/1051715.shtml.
18Quoted in Business Week, 25 May 1998.
19I pick the example of a small organization, my department, to illustrate that the problem of planning

goes well beyond the formidable task of running a national economy. Instead, it is pervasive to all forms
of collective organization, especially those that, because of transaction costs, cannot rely on a price system
(Coase, 1937).

20In my example, due to space limitations, I do not discuss two important issues. First, tacit knowledge
and the difficulties in transmitting it, a point already presented by Hayek (1945), and emphasized by Polanyi
(1966, p. 4) when he explained how “we can know more than we can tell.” Second, the public choice problems
driving the central teaching planner. While those are often considerable, I want to make the sharp point that
even a benevolent central teaching planner that does not face aggregation of individual preferences problems
faces daunting challenges.
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is not optimal: if Penn could pay me an extra stipend, I would teach the large, innovative

section, the students would be happier, and I would be wealthier.21

An obvious solution would be not to submit a teaching request, but a schedule of teach-

ing supply curves, i.e., I will teach “the economics of big data” at 9.00 am on Mondays

and Wednesdays at a price x or “advanced monetary theory” at 1.00 pm on Tuesdays and

Wednesdays at a price 0.4x. This scheme resembles some of the “market socialism” propos-

als put forward by Abba Lerner and Oskar Lange or, more recently, Roemer (1994). The

central teaching planner will use the supply curves to clear the teaching market and assign

a faculty member to each course “imitating the market.” This new scheme would increase

the computational challenge of setting up the teaching matrix by one order of magnitude,

but I can still write a short Julia program that will deliver an answer in minutes.

However, a system of teaching supply curves would open the door to all sorts of strategic

behavior: I will consider, when I submit my supply curve, what I know about my colleagues’

tastes regarding teaching large, innovative courses. If I believe they genuinely dislike doing

so, I will communicate a higher supply curve to teach such courses in order to clear the

market at a higher price and increase my revenue. The outcome of the teaching matrix will

not be efficient because I am not telling the truth, but playing strategically.

In fact, knowing that the department will assign duties using teaching supply curves,

I can manipulate from the day I am hired how I behave in front of my colleagues. In

such a way, I can introduce noise in their signal about my teaching preferences and exploit

their incorrect inferences about my type when I submit my teaching supply curves in the

future. My colleagues would know that and act accordingly, changing their supply curve to

reflect that they understand that I tried to manipulate them. But I would also know that

my colleagues know that and I will respond appropriately, and so on and so forth for one

iteration after another. Those who do not believe the faculty would behave in such a way

have not had experience managing academic departments.22

There is an additional problem. Once I am assigned a course, how does Penn ensure

that I teach it at the “optimal” quality level? “Optimal” cannot mean the highest possible

quality. If I were to prepare every lecture as much as a job market talk, the current students

would love it, but I would not have time to undertake research, and my future students

would get worse lectures, since my knowledge of the field would depreciate.

21Sometimes deans offer small teaching grants to reward innovation in teaching, but those are rarely worth
the time to fill in the application form. Consequently, we do not see much advance in teaching technologies.

22It is conceivable that there is an incentive-compatible teaching request mechanism that delivers an
optimal allocation (this environment is akin to a multi-good reverse auction). However, once we consider the
signaling and repeated behavior I described in the main text, the mechanism probably involves an inordinate
degree of complexity and is unlikely to be scalable to more complex problems than allocating who will teach
econometrics next fall semester.
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Even forgetting about that intertemporal aspect, how do we trade off one extra minute

of research (which increases Penn’s academic reputation) with one extra minute of teaching

preparation?23 And how do we address heterogeneity in the comparative ability between

research and teaching among faculty members when the amount of effort exerted in each

activity is not observable?

Finally, we face the friction that I can carry my research with me to my next job (i.e., the

publications in my C.V.) much more easily than my teaching evaluations (i.e., I can always

“lose” the terrible teaching evaluation I got 15 years ago and nobody will be the wiser; most

recruiting committees only ask for recent evaluations). Also, once I get over some threshold

of minimum quality in the teaching evaluations, nobody will pay much attention to an extra

half point. Thus, I have an incentive to teach a course below the socially optimal quality.

ML cannot address any of the concerns of the previous paragraphs, no matter how fancy

the learning algorithm we apply or how much data we get from apps that the faculty and

students use, because getting around information and incentive constraints is not what ML

can do. Thus, ML will never fix the problem of how to determine the teaching matrix at

Penn economics and to induce the “optimal” quality of the course. The problem was never

about computing an optimal solution to teaching assignments given some data. The problem

is, and will always be, determining the preferences, abilities, and effort of the faculty in a

world where everyone has an incentive to misrepresent those preferences, abilities, and effort.

The only reliable method we have found to aggregate those preferences, abilities, and

efforts is the market because it aligns, through the price system, incentives with informa-

tion revelation. The method is not perfect, and the outcomes that arise from it are often

unsatisfactory. Also, in some cases, such as setting up a teaching matrix at my department,

there are not enough agents to set up a meaningful market and students and faculty end

up unhappy. Nevertheless, as with democracy, all the other alternatives, including “digital

socialism,” are worse.24

23I once had this conversation with my deans. The answer I got was: “You need to prepare your lectures
enough,” which is, obviously, a meaningless platitude. I am also forgetting about the sad reality that what
students think they like in a lecture when they are 18 is very different from what they would realize is essential
when they are 45. Therefore, their perception of “quality” might be quite different from the socially optimal
quality.

24Note, however, that there is the concern that ML may worsen market outcomes. Similar ML algorithms
run by different companies might end up engaging in tacit collusion through the implicit correlation created
in the experiments that each firm performs. See Hansen et al. (2020).
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6 Concluding remarks

AI and ML are incredibly useful tools. The future of economics will be quite different

because of them, and, in many policy situations, the application of AI and ML will be highly

beneficial.

However, by and large, we should still rely on markets to allocate resources. Moreover,

markets work when they operate under simple rules, such as first possession, voluntary

exchange, and pacta sunt servanda. This result is not a surprise. We did not come up with

these simple rules thanks to an enlightened legislator (or nowadays, a blue-ribbon committee

of academics “with a plan”).

The simple rules were the product of an evolutionary process. Roman law, the Common

law, and Lex mercatoria were bodies of norms that appeared, over centuries thanks to the

decisions of thousands and thousands of agents (Berman, 1983). Roman law, for example,

became predominant in Western Europe outside England in the late Middle Ages not because

kings and dukes liked it (in fact, they did not), but because armies of lawyers and business

people saw that it solved their problems. Good law is nothing more than applied optimal

mechanism design. The forces of evolution, by trial and error, led us to the optimal solution

to such a mechanism design problem, not always tidily, but inexorably.

This process is surprisingly similar to another area of AI, reinforcement learning (RL;

Sutton and Barto, 2018), but in a decentralized fashion. RL comprises algorithms that use

training information to evaluate the actions taken by the code according to some reward

function, instead of deciding whether the action was correct. RL is mighty because the

programmer might not even need to be fully explicit about the underlying mathematical

model behind the decision problem.

I read the history of Western law and the simple rules that emerged from it as decen-

tralized RL. Jurists and agents, through a combination of reasoning and experience, saw

what worked and what did not. Those rules that led to Pareto improvements survived and

thrived. Those that did not, dwindled.

There is a sharp lesson from AI: our trust in simple rules and the markets they create

has deeper roots than our high positivist era of the administrative state recognizes.
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