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Abstract

Worldwide children’s access to after-school learning activities is highly depen-

dent on family backgrounds. Concern over the implications of such activities for

child development and educational inequality has led to a global rise of public

provision of after-school learning support. However little is known about inter-

actions of public after-school activities and household investments in children’s

learning. This paper contributes to the literature on the effects of public inputs

on household inputs and student achievement in after-school settings. We build a

model that integrates public and private inputs to produce student achievement

through two competing mechanisms – diminishing returns to total inputs and

complementarity between public and private inputs. When diminishing returns

dominate complementarity, the model predicts the substitution away of private

inputs due to increases in public inputs for all households, although the extent of

crowding-out is smaller and therefore the test score gains are larger for children

from disadvantaged family backgrounds facing higher costs of private inputs.

We implement a randomized controlled after-school tutoring experiment in rural

China where many children are left-behind by both parents and cared for by

grandparents. During the program, tutees living with parents reported large and

significant reductions in the amount of tutoring received at home, whereas tutees

living apart from both parents reported much smaller, and often insignificant, re-

ductions. We find that tutees’ math scores improved significantly, and more for

children living without parents, although there is no evidence for improvement

in tutees’ endline reading scores.



1 Introduction

Today, in much of the world, students engage in academically-focused after-school learning

activities, taking the form of either family direct involvement or supplementary educational

services. However, almost everywhere, children’s access to after-school learning opportunities

is highly dependent on family backgrounds (e.g., Weiss et al., 2009; Bray and Lykins, 2012).

For example, in the U.S., Guryan, Hurst and Kearney (2008) show that college-educated

mothers spend on average 16.5 hours per week in child care compared to only 12.1 hours for

high school dropouts1 and Duncan and Murnane (2016) find that top-quintile families spend

seven times more than bottom-quintile families on child-enrichment activities. A strong

positive relationship between family socioeconomic status (SES) and student participation

in private supplementary education has also been documented in other countries, such as

China (Zhang and Xie, 2016), South Korea (Kim and Lee, 2010), Japan (Matsuoka, 2015),

and Poland (Safarzyńska, 2013). The advantage gained by children with higher SES through

their families’ private resource investments, in terms of both time and money, is a source of

educational inequality that reduces social mobility (Park et al., 2016).

Partly owing to concern over the implications of after-school learning opportunities on

child development and educational inequality, public provision of after-school learning sup-

port has risen globally. In the U.S., the 21st Century Community Learning Centers (21st

CCLC) program was authorized under the No Child Left Behind Act (NCLB) as an after-

school program model to provide academic enrichment and services during non-school hours

to help students attending high-poverty, underperforming schools meet federal and state

standards in core academic subjects.2 In addition, school districts were also mandated to

use a portion of their Title I funding to offer supplementary educational services to students

attending schools that have failed their “adequate yearly progress” goals for three consecu-

1In another study, Ramey and Ramey (2010) show that the most important uses of the extra time spent
by college-educated parents are teaching children and organizing and attending extracurricular activities.

2The 21st CCLC program was first authorized by Congress in 1994 as a community-learning-center
model to open-up public schools for broader use to provide academic, enrichment, and recreational activities
after school for all community members (James-Burdumy, Dynarski and Deke, 2007). In 2002, the NCLB
reauthorized the 21st CCLC program and narrowed it to focus only on academic content to complement
in-school learning. In the 2013-2014 school academic year, total federal funding of over $1.1 billion was
allocated to implement the 21st CCLC program serving approximately 1.7 million students (U.S.Department
of Education, 2015).
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tive years. In South Korea, where the average family spends nearly 20% of its income on

private tutoring, the Ministry of Education has offered extra-hour, in-campus cramming ses-

sions within public schools and television-based tutorial lessons via the nation’s Educational

Broadcasting System3 to provide an option, particularly for students from poorer families,

other than private after-school tutoring (Chandler, 2011). In China, which has over 400,000

after-school educational institutions and an estimated after-school market size of RMB 800

billion (USD 115 billion),4 the State Council recently issued an official document to launch

a national campaign to tighten scrutiny of private after-school institutions and enhance the

public role in providing after-school services (State Council of China, 2018).

Yet despite the enormous policy interest, evidence of the effects of public after-school

programs on children’s academic outcomes is limited and far from unified. Whereas Meyer

and Van Klaveren (2013), Miller and Connolly (2013), and Gaastra (2016) find no evidence

of academic benefits from after-school program participation in the Netherlands, Northern

Ireland, and San Diego, respectively, significant positive effects are reported by Banerjee

et al. (2010) in India, Zimmer, Hamilton and Christina (2010) in Pittsburg, and Cook et al.

(2014) in Chicago. Note that these studies estimate the gross or total policy effects of

programs that combine the ceteris paribus effects holding other inputs constant and the

indirect effects through changes in private inputs after household re-optimization (Todd and

Wolpin, 2003). While some differences in the estimates are undoubtedly due to differences in

program features, differences in household behavioral responses in private inputs also may be

important sources of variation of the estimated gross policy effects. Although having received

little attention in the aforementioned studies of public after-school programs, the empirical

relationship between private household inputs and public inputs has been investigated in

other contexts outside the after-school settings, albeit with mixed results even in terms of

the direction of household behavioral responses. For example, whereas Pop-Eleches and

Urquiola (2013) and Yuan and Zhang (2015) find evidence of substitution between parental

3The Ministry of Education of South Korea mandated that 70% of questions on the national college
entrance exam be based on lessons carried on the government-funded Educational Broadcasting System,
thus creating a strong incentive for students to tune into this public program.

4These numbers are from two China Daily articles: http://www.chinadaily.com.cn/a/201811/22/
WS5bf60804a310eff30328a54e.html (accessed 18 April 2019) and http://www.chinadaily.com.cn/busi
ness/2016-12/29/content_27810429.htm (accessed 18 April 2019).
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inputs and school resources in Romania and China, Gelber and Isen (2013) show that parental

involvement with children increases in response to access to the Head Start Program in the

U.S. Moreover, in a study of both parental responses and achievement impacts of increases in

school grants in India and Zambia, Das et al. (2013) find that only unanticipated increases

in school resources – which are not offset by household own educational spending – have

positive effects on test scores, whereas anticipated increases in school resources crowd out

private household educational expenditures and generate no test score gains. Given the

great heterogeneity in household behavioral responses found across programs and contexts

and their relevance for the overall achievement effect that Das et al. (2013) demonstrate, it

seems that household behavioral responses probably play significant roles in determining the

overall effectiveness of public interventions in after-school settings.

In this paper, we first develop a simple model of student achievement production that

features (i) diminishing returns to aggregate total tutoring received after school and (ii) com-

plementarity between school-based, public tutoring inputs and home-based, private tutoring

inputs in generating total tutoring. This model predicts that increases in public tutoring

inputs crowd-out private tutoring inputs when diminishing returns dominate complemen-

tarity but encourage private tutoring inputs otherwise. Moreover, if there exists household

heterogeneity in private tutoring costs,5 the model also predicts that behavioral responses

and treatment effects differ across households. In particular, in the case in which increases

in public tutoring inputs crowd-out private tutoring inputs (i.e., diminishing returns domi-

nate complementarity), the model predicts greater substitution away from private tutoring

inputs and therefore smaller test score gains for children from households relatively more

cost-effective in private tutoring provision.

We then proceed to test the model predictions with regard to increases in public tutoring

inputs using a randomized after-school tutoring experiment in which high-achieving 4th and

5th graders provided high-dosage, one-on-one tutoring to low-achieving 2nd and 3rd graders.

We take advantage of the widespread “left-behind children” phenomenon in rural China where

many children are living apart from both parents who have migrated to work in cities, and

implement the experiment in a rural Chinese county with a high prevalence of left-behind

5That is, households differ in their costs of providing the same effective amount of private tutoring inputs.
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children to assess household behavioral response and treatment effect heterogeneity between

children with and without parents at home. Prior to the experiment children who had been

left-behind by both parents – most of whom were cared for by grandparents – received far

less home tutoring compared to children living with their parent(s).6 During participation in

the tutoring program, tutees living with parent(s) reported large and significant reductions

in home tutoring at both the extensive and intensive margins, whereas tutees living apart

from both parents had much smaller, and often insignificant, reductions in home tutoring.

We find that the tutoring program significantly improved tutees’ endline math scores and the

score gains were significantly larger for children without both parents at home. However, we

find little evidence that the program increased tutees’ endline reading scores. The disparity

in the achievement effects between math and reading is not a complete surprise, as previous

work on the efficacy of other educational interventions across subject areas also tend to

find these interventions more effective for improving math scores than reading scores (e.g.,

Abdulkadiroğlu et al., 2011; Angrist et al., 2010; Black et al., 2008; Dobbie and Fryer, 2013).

This paper has several important contributions to the literature on the effects of public

schooling inputs on private household inputs and student achievement. First, we develop a

model that integrates public and private inputs to produce student achievement through two

competing mechanisms – diminishing returns to aggregate tutoring inputs and complemen-

tarity between public and private inputs in generating the aggregate tutoring inputs. This

model reconciles the divergent evidence of household responses to public schooling inputs

found in different settings and contexts in prior research. Second, we extend the empirical

investigation of this strand of literature to household behavioral responses and treatment

effects of increases in public inputs in after-school learning support, which may cause greater

substitution of private inputs compared to other forms of public inputs but has nonethe-

less been largely overlooked in prior research. Third, we exploit the “left-behind children”

phenomenon in rural China to examine heterogeneity in household behavioral responses and

treatment effects of access to an after-school tutoring intervention. By linking the difference

in the extent of substitution of home-tutoring inputs between children with and without

parents at home to the difference in their score gains, we are able to gauge more directly

6Throughout the paper, “living with parent(s)” means living with either or both parents.
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the implications of household behavioral responses on the total effect of the intervention.

Fourth, because the extent of household responses in home-tutoring inputs is quantitatively

small and statistically insignificant for children living apart from their parents, our estimated

policy effect on test scores for children left-behind by both parents places a sharper upper

bound on the direct production function effect (i.e., the ceteris paribus effect) compared to

other contexts with more room for household substitution of private inputs.

Since only students who had scored below the class median in the baseline test were eligi-

ble to be selected as tutees to participate in the after-school tutoring program, the empirical

analysis of the paper is also related to the literature on remedial educational interventions

targeted to children lagging behind academically (e.g., Banerjee et al., 2007, 2010; Duflo,

Dupas and Kremer, 2011). In particular, a strand of this research has employed randomized

controlled trials (RCTs) to evaluate the effectiveness of high-dosage, small-group or one-on-

one tutoring outside the regular school hours. Cabezas, Cuesta and Gallego (2011) implement

a RCT of a three-month small-group tutoring program to low-achieving 4th graders in Chile

using college student volunteers as tutors, and find that the program has significant positive

effects only for a subsample of students coming from low-performing and poor schools. Cook

et al. (2014) randomly assign 106 disadvantaged male high school students in Chicago who

had lagged behind in both academic and non-academic achievements to an intervention with

both high-dosage, individualized small-group math tutoring and behavioral therapy, and

find that the intervention increased participants’ math scores by 0.65 standard deviations

(hereafter σ) and expected graduation rates by 14 percentage points. Weiss et al. (2019)

randomly assign 896 low-income community college students with remedial education needs

in New York to experimental and control groups, and find that providing the students in

the experimental group with tutoring outside of class, career guidance, and financial sup-

port significantly raises their college graduation rates. Li et al. (2014) randomly pair high-

and low-achieving classmates as benchmates in primary schools in urban China that enroll

exclusively children of migrant workers without local hukou registration and offer the pairs

group incentives for the lower-achiever’s score improvement. They find that the interven-

tion increases lower achievers’ test scores by 0.27σ without harming high achievers, although

this overall effect combines influences of group incentives and peer interactions, the latter of
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which may also include peer tutoring outside regular school hours. Our study contributes to

this strand of research in three aspects. First, we highlight both theoretically and empirically

the important roles of household substitution behaviors in determining the effectiveness of

remedial educational programs. Second, we demonstrate that remedial educational inter-

ventions are most effective for children who come from disadvantaged family backgrounds

and have less home-learning support. Third, our results also imply that remedial educa-

tional programs offering learning inputs in settings that are subject to lesser substitution of

household inputs will generate larger effects.

Finally, this paper further adds to an emerging literature demonstrating that children

from disadvantaged backgrounds benefit the most from certain public educational interven-

tions, such as universal child care programs (e.g., Cascio and Schanzenbach, 2013; Bitler,

Hoynes and Domina, 2014; Havnes and Mogstad, 2015) and charter schools or traditional

public schools that inject successful practices of charter schools (e.g., Angrist et al., 2012;

Fryer, 2014). For example, Kottelenberg and Lehrer (2017) and Cornelissen et al. (2018) find

that in both Quebec and Germany children from disadvantaged family backgrounds benefit

the most from the universal child care program, and Angrist, Pathak and Walters (2013)

show that Massachusetts charter schools adhering to the “No Excuse” model7 are most effec-

tive for poor nonwhites and low-baseline achievers. Our findings of larger math score gains

for children living apart from both parents suggest that focusing the limited public resources

for after-school learning support on children with disadvantaged family backgrounds not

only provides a cost-effective means of improving learning of children who have been lagging

behind academically but also acts as an important equalizer for reducing inequality in child

development by family backgrounds.

We organize our study as follows. Section 2 provides background on the educational

system and “left-behind children” phenomenon in China. Section 3 develops a model to guide

our analysis. Section 4 describes our after-school tutoring experiment. Section 5 presents

our results on student achievement. Section 6 discusses our results on home-tutoring inputs.

Section 7 concludes.

7The “No Excuse” pedagogy emphasizes discipline, traditional reading and math skills, selective teacher
hiring, and increased instruction time.
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2 Background

With an estimated market size of RMB 800 billion (or USD 115 billion), China now dom-

inates the world’s shadow educational industry and accounts for eight of the top 15 listed

companies globally.8 According to the first large-scale national survey on household educa-

tional expenditure carried out in 2017 by the China Institute of Education Finance Research

(CIEFR), 37.8% of the country’s elementary and secondary school students participated in

academically-focused after-school programs and spent on average RMB 5,021 (USD 733)

per pupil per year (Wei, 2017). However, similar to elsewhere in the world (e.g., Bray,

2007), shadow education is also predominately an urban phenomenon in China. In a case

study of Chongqing, Zhang (2014) finds that students’ participation rates in private tutor-

ing are 74% for urban schools, 34% for county schools, but only 11% for township/village

schools.9 Accompanying this difference in shadow education use is an even more striking

urban-rural disparity in children’s educational attainments. Using a nationwide dataset of

college entrance examinations and admissions, Li et al. (2015) show that rural youth from

poor counties10 are eight times less likely (2% vs. 16%) than urban youth to attend a four-

year college.11 Differences in access to after-school learning opportunities, combined with

differences in school qualities, have turned the nation’s educational system, once a great

equalizer, into an inequality exaggerator. Partly owing to such concerns, in 2018 the State

Council launched a national campaign tightening the regulation of private after-school in-

stitutions and calling for public elementary and secondary schools to enhance their roles in

offering after-school services. To wrest control from the frenzied private tutoring industry,

local governments have used public budgets to provide varied after-school learning support,

including running optional extra-hour after-school programs, offering public school teachers

overtime pay to provide one-on-one tutoring through online platforms, and providing free

8 https://www.scmp.com/business/companies/article/2159159/mainland-chinas-after-schoo
l-tutoring-industry-ripe-consolidation (last accessed on 19 April 2019).

9Wei (2017) also shows that even among households who had used academically-focused after-school
tutoring programs, urban households on average spent 3.6 times that spent by their rural counterparts.

10Li et al. (2015) define “poor counties” as 592 nationally-designated poor counties identified by the
Chinese government in 2003, one of which includes our experimental site.

11Zhang, Li and Xue (2015) and Zhao et al. (2017) show that rural children score significantly lower than
their urban counterparts in math, vocabulary, and cognitive ability tests using the Chinese Family Panel
Survey (CFPS) and the China Education Panel Survey (CEPS), respectively.

7

https://www.scmp.com/business/companies/article/2159159/mainland-chinas-after-school-tutoring-industry-ripe-consolidation
https://www.scmp.com/business/companies/article/2159159/mainland-chinas-after-school-tutoring-industry-ripe-consolidation


access to services purchased from private service providers.

Another important feature of the educational system in rural China is the unprecedented

scale of children left-behind by both parents. According to the 2010 Population Census,

over 61 million children aged 17 years or below were living without one or both parents,

of which 46.7% were left by both parents (All-China Women’s Federation, 2014). That is,

one in ten children in China – or one in six children in rural China – is living apart from

both parents, a scale unprecedented elsewhere in the world. In a previous study, we find

significant negative impacts of being left-behind by both parents, but not by one parent,

on rural Chinese children’s cognitive development (Zhang et al., 2014).12 Moreover, we also

find that absence of both parents is associated with significantly lower household educational

inputs, mainly in the form of family direct involvement (e.g., homework checking, home tu-

toring), whereas the absence of one parent is not, suggesting that the negative achievement

effects of being left-behind by both parents may work – at least in part – through the lack

of after-school learning support at home. Given the important “dynamic complementarities”

between early life learning outcomes and later life human capital investments (e.g., Cunha

and Heckman, 2007; Heckman, 2007; Aizer and Cunha, 2012), left-behind children’s dis-

advantage in early-life learning caused by parental absence can lead to considerable losses

in their lifetime human capital. Thus, if the disadvantage in after-school learning support

is indeed a main mechanism through which parental absence impedes children’s learning

progress, public provision of after-school learning support may be an effective compensatory

intervention for ameliorating the negative learning effects of absence of both parents.

3 Model

To guide our empirical analysis, we present a simple model that integrates public and pri-

vate tutoring inputs to determine student achievement. Since we randomly assigned students

from the same school-grades into the experimental and control groups, all school-level factors

12Specifically, Zhang et al. (2014) apply dynamic panel methods to longitudinal data on parental migration
and children’s test scores to evaluate te respective effects of being left-behind by one or both parents on
children’s cognitive achievements. Their results indicate that being left-behind by both parents reduces
children’s contemporary achievements by 5.4 percentile points for math and 5.1 percentile points for reading.
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and the predetermined individual- or family-level factors determining student achievement

are balanced between the treatment and control groups in our empirical estimates. Thus,

to simplify, our model abstracts from other aspects of achievement determination such as

school quality, ability endowments, and dynamic complementarities considered in prior re-

search(e.g., Todd andWolpin, 2003; Cunha and Heckman, 2007) and focuses on contemporary

tutoring inputs only. In the model, we assume that student achievement (Y ) depends only

on total tutoring received (T ), which itself is a CES aggregation of tutoring received in school

(S ) and tutoring received at home (H ).

Y = A · T ρ = A · [θSγ + (1− θ)Hγ]
ρ
γ , (1)

where A > 0 represents the efficiency of total tutoring T in promoting achievement; ρ is the

degree of scale of the achievement production function – we focus on diminishing returns to

scale ρ ∈ (0, 1); θ ∈ (0, 1) is the share parameter of school-tutoring inputs S ; and γ ∈ (−∞, 1)

with 1
1−γ corresponding to the elasticity of substitution between S and H.13

Within the CES construction, S and H are always direct complements in producing T,

i.e.,
∂2T

∂S∂H
= (1− γ)θ(1− θ)θ [θSγ + (1− θ)Hγ]

1
γ
−2 Sγ−1Hγ−1 > 0.

However, because of diminishing returns to T in achievement production, S and H are

not necessarily direct complements in producing achievement Y. To see this, take the cross

derivative of Y with respect to S and H in Equation (1):

∂2Y

∂S∂H
= Aρ(ρ− γ)θ(1− θ) [θSγ + (1− θ)Hγ]

ρ
γ
−2 Sγ−1Hγ−1. (2)

Since all terms in Equation (2) are positive except possibly ρ − γ, the sign of ∂2Y
∂S∂H

is de-

termined by the sign of (ρ − γ). Note that smaller ρ indicates greater diminishing returns

to T in producing Y, whereas smaller γ indicates greater complementary between H and

13For ease of illustration and interpretation, we exclude from Equation (1) the special case γ = 1, under
which S and H are perfect substitutes (i.e., no complementarity between them) in producing T . Note that
all of the conclusions of the model hold for this special case as the condition ρ < γ, is satisfied if 0 < ρ < 1
and γ = 1.
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S in their aggregation to T.14 Thus, S and H are direct substitutes in producing achieve-

ment ( ∂2Y
∂S∂H

< 0) when diminishing returns dominate complementary (ρ < γ), and direct

complements in producing achievement if otherwise.

We next consider the household’s optimization problem. Given the exogenously deter-

mined level of school-tutoring inputs S, households optimally choose own tutoring inputs H

to maximize the child’s achievement net of the cost of home-tutoring efforts. Note that in

Equation (1), T , S , and H are all measured in efficiency units in producing achievement.15

Regarding home-tutoring inputs H, for ease of illustration, we assume a constant cost per

effective unit of home-tutoring inputs ω such that a household incurs a total cost ωH for

choosing (effective) home-tutoring inputs H. However, we allow ω to be heterogenous across

households due to their differences in tutoring effectiveness and opportunity costs. Although

parents may have higher efficiencies in both tutoring and market/home production than

grandparents, we assume here the dominance of the former over the latter such that par-

ents have relative advantages in tutoring and therefore a lower ω for each (effective) unit of

home-tutoring inputs than grandparents.

The household’s objective function is thus A[θSγ + (1 − θ)Hγ]
ρ
γ − ωH, additively sepa-

rable between child achievement and cost of home-tutoring efforts. Given the exogenously

determined values of ω and S, the unconstrained optimal level of home-tutoring inputs H∗

is determined by

Aρ(1− θ)
[
θSγ + (1− θ)H∗γ

] ρ
γ
−1
H∗

γ−1

= ω. (3)

As shown in Appendix A, applying the implicit function theorem to Equation (3) yields the

following:

dH∗

dω
= − 1

Aρ(1− θ) [θSγ + (1− θ)H∗γ ]
ρ
γ
−2H∗γ−2 [(1− ρ)(1− θ)H∗γ + (1− γ)θSγ]

, (4)

and
dH∗

dS
=

(ρ− γ)θSγ−1

(1− ρ)(1− θ)H∗γ−1 + (1− γ)θSγH∗−1 . (5)

14In the extreme case in which γ = −∞, S and H are perfect complements in producing T such that
T = min{θS, (1− θ)H}.

15Taking home-tutoring inputs H as an example, various forms of such inputs differing in nature, amount,
and efficacy are converted and normalized into efficiency units in producing achievement.
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Under the parameter space considered here (i.e., 0 < θ < 1, 0 < ρ < 1 and γ < 1), all terms

in the denominator of Equation (4) are positive and therefore dH∗

dω
must be negative. Thus,

given our assumption that parents have relative advantages in home tutoring (i.e., a lower

ω) than grandparents, Equation (4) yields the following hypothesis.

Hypothesis 1 At the same level of school-tutoring inputs, children cared for by parents

receive a higher level of home-tutoring inputs than those cared for by grandparents.

Equation (5) relates household’s optimal level of home-tutoring inputs H∗ to tutoring

received in school S. Since all terms in this equation are positive except possibly ρ− γ, dH∗
dS

has the same sign as ρ− γ. In particular, when S and H are direct substitutes in producing

achievement (i.e., ρ < γ), dH∗

dS
< 0 in Equation (5), which yields the following hypothesis

regarding household responses in own tutoring inputs to increases in tutoring received in

school.

Hypothesis 2 Household’s optimal home-tutoring inputs decrease with school-tutoring

inputs.

Thus, under the condition ρ < γ, although the direct effects of increased school-tutoring

inputs on student achievement (∂Y
∂S

) are positive, the indirect effects through household’s

endogenous adjustment in home-tutoring inputs ( ∂Y
∂H
· dH∗

dS
) are negative. Nonetheless, as

we show formally in Appendix B, the positive direct effects dominate the negative indirect

effects such that the overall effects of increased school-tutoring inputs on student achievement

remains positive (dY
dS

= ∂Y
∂S

+ ∂Y
∂H
· dH∗
dS

) despite household’s substitution of home-tutoring

inputs.

Hypothesis 3 The positive direct effects of increased school-tutoring inputs dominates

the negative indirect effects through household’s optimal substitution in home-tutoring inputs,

resulting in an overall increase in student achievement.

Finally, we consider how the adjustments in the optimal level of home-tutoring inputs

(dH∗
dS

) and the total achievement effect of increased school-tutoring inputs (dY
dS

) differ across
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households with different unit costs of home-tutoring inputs ω, Under the condition ρ < γ,

we derive formally in Appendix C that the two cross-derivatives d2H∗

dSdω
and d2Y

dSdω
are both

positive. With dH∗

dS
< 0 (Hypothesis 2 ), d2H∗

dSdω
> 0 indicates that when school-tutoring inputs

increase, households with higher ω reduce their home-tutoring inputs less than households

with lower ω. Analogously, with dY
dS

> 0(Hypothesis 3 ), d2Y
dSdω

> 0 indicates that the gross

achievement effect of increased school tutoring is greater for children from households facing

higher ω. Given our assumption that parents have relative advantages in home tutoring (i.e.,

a lower ω) than grandparents, these results yield the following hypothesis.

Hypothesis 4 When school-tutoring inputs increase,

(a) Grandparents reduce their own tutoring inputs less than parents.

(b) Children cared for by grandparents experience greater achievement gains than children

cared for by parents.

Figure 1 summarizes the predictions of our theoretical analysis regarding households’ opti-

mal choices of home-tutoring inputs when diminishing returns in the achievement production

dominate the complementary between school- and home-tutoring inputs in the aggregation

of total tutoring inputs (i.e., ρ < γ). It compares two types of households with the children

cared for by parents and grandparents, and assumes a lower unit cost of effective home-

tutoring inputs for parents than grandparents, ωp < ωg, with the subscript p and g denoting

parents and grandparents, respectively. First, with an initial level of school-tutoring inputs

S, parents choose a higher optimal level of home-tutoring inputs than grandparents,H∗p > H∗g

(Hypothesis 1 ). Second, when the level of school-tutoring inputs increases from S to S’, both

parents and grandparents reduce their level of home-tutoring inputs, H∗′p < H∗p andH∗′g < H∗g

(Hypothesis 2 ). Third, the extent of the reduction in home-tutoring inputs is greater for par-

ents than grandparents, H∗p −H∗
′
p > H∗g −H∗

′
g (Hypothesis 4a). Although not demonstrated

in Figure 1, Hypothesis 3 and Hypothesis 4b further predict the total achievement effect of

increased school-tutoring inputs after taking into account household behavioral responses:

while all children benefit from increased school-tutoring inputs regardless of who their pri-

mary caregivers are (Hypothesis 3 ), the extent of the achievement gains are larger for those

cared for by grandparents than parents (Hypothesis 4b).
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4 After-School Tutoring Experiment

4.1 Program Description and Random Assignment

To examine the hypotheses that the model predicts for the effects of increased school tu-

toring, we conducted a randomized after-school tutoring intervention in Longhui County in

Hunan Province of China, which was designated as a national poverty county and has a high

prevalence of left-behind children. In 2010, the county’s per capita GDP was only a quarter

of the national average,16 90% of its 1.2 million residents were rural, and more than one-third

of its primary- and middle-school age children were left-behind by both parents.17

We implemented the intervention as a peer-tutoring program in which high-achieving

4th and 5th graders were paired, respectively, with low-achieving 2nd and 3rd graders of the

same primary school to offer one-on-one tutoring after school hours. We defined students

as “high-achieving” (or “low-achieving”) if their combined scores in math and reading in the

baseline test were above (or below) medians of their classes. Figure 2 illustrates the detailed

process for the selection of tutees and tutors for the peer-tutoring program.18 With help

from the county’s educational bureau, we recruited 32 primary schools to participate in the

peer-tutoring program. For grades 2 and 3, 24 schools had multiple classes in each grade and

eight schools had only a single class. Thus, we had a total of 64 target junior school-grades,

of which 48 had multiple classes and 16 had only a single class. For each target junior school-

grade with multiple classes, we randomly assigned half of the classes (a total of 60 classes) to

experimental classes – from which the tutees were selected – and the remaining half (a total

of 59 classes) to control classes.19. However, for the 16 target junior school-grades with only

a single class, all of these classes were designated to be experimental classes as all schools

16In 2010, the county’s per capita GDP was RMB 6,992, compared to the national average of RMB 29,748.
17See Zhang et al. (2014) for a more detailed discussion of the background of this county.
18There were two types of primary schools in this county: satellite primary schools with only junior

grades (usually grades 1-3 or grades 1-4) and complete primary schools with all grades (i.e., grades 1-6). To
implement this cross-age, peer-tutoring program as a randomized experiment, we had to exclude all satellite
primary schools and some complete primary schools with relatively small enrollments. After applying these
restrictions, we were left with a small number of schools to randomly select at the school level. The 32
participating primary schools account for about one-third of the total primary school enrollment of the
county.

19The number of classes in each target junior school-grade with multiple classes ranged from two to
four. When a school-grade had three classes, a coin was first flipped to decide whether to select one or two
experimental classes from this school-grade.
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were assured to have the opportunity to participate in the peer-tutoring program when they

were recruited to join the study. Therefore, we ended up with a total of 76 experimental

classes, of which 60 classes were randomly selected and had at least one control class from

the same school-grade.

For each of the 76 experimental class, we randomly selected 10 low-achieving students

(i.e., those with baseline scores below the class median) to participate in the peer-tutoring

program as tutees, whereas the remaining unselected low-achieving students from the same

classes were assigned as within-class controls. In addition, for the subset of 60 experimen-

tal classes randomly selected from the school-grades with multiple classes, all low-achieving

students in the unselected control classes acted as (within-school-grade) between-class con-

trols. In the empirical analysis of the treatment effects of the tutoring program on tutees,

we employ three alternative empirical strategies: (i) a comparison between 760 randomly

selected tutees and their unselected within-class controls in all the 76 experimental classes;

(ii) a comparison between 600 tutees and their within-class controls from a subsample of

60 experimental classes randomly selected from 48 target junior school-grades with multiple

classes; and (iii) a comparison between the 600 tutees in (ii) and their between-class controls

in the unselected control classes from the same school-grades.

For each experimental class, the school assigned a senior grade class for us to recruit

tutors from. We targeted only high-achievers (i.e., those with baseline scores above the class

median) in these senior classes to be tutors. In order to attract as many high-achievers as

possible to participate in the program, the principals of all participating schools announced

at the beginning of the school year that all participating tutors would be given certificates

of merit after completion of the service. Thanks to this arrangement and the cooperation of

the head teachers of the senior classes, for every senior class the number of high-achieving

students who applied to act as tutors under the consent of their parents/guardians exceeded

the quota needed. Therefore, for each senior class we randomly selected 10 tutors from the

pool of oversubscribed eligible applicants.

This tutoring experiment lasted for 8 months, from November 2013 to June 2014, with

a one-month winter break between mid-January and mid-February 2014. During the ex-

perimental period, the randomly-paired tutors and tutees met in designated tutorial rooms
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(usually the tutees’ classrooms) for a 45-minute tutorial Mondays through Thursdays.20

Each tutorial room hosted 10 tutor-tutee pairs. A teacher was recruited from a grade other

than the tutees’ and tutors’ grades to supervise each tutorial room. The teachers’ roles were

rather passive: they only helped to keep discipline and answered questions per request, and

were not supposed to be involved in any classroom teaching directly. During the tutorial

sessions, the tutors helped their assigned tutees to finish homework and answered any study

questions raised by the tutees.

While this experiment started with 760 assigned tutor-tutee pairs, only 90% of these pairs

lasted until the end. While most of the terminations were caused by tutees or tutors switching

schools, in some cases either tutees or tutors decided to withdraw from the experiment though

still enrolled in the same school. Whenever a tutee switched school or simply withdrew from

the experiment, we suspended the pair. However, if a tutor switched school or withdrew

from the experiment, we replaced him/her with another tutor applicant not selected initially.

Nonetheless, throughout all empirical analysis, we only used the initially assigned tutee or

tutor status.

4.2 Data

We conducted two survey rounds: a baseline survey in October 2013 and an endline sur-

vey in June 2014. The baseline survey consisted of a student questionnaire asking each

student’s age, gender, time allocations after school (including home-tutoring time), and a

household questionnaire asking information on family composition, parents’ ages, schooling

attainments, and migration status. When at least one parent stayed at home, the household

questionnaire was filled out by a parent; otherwise, it was filled out by the primary care-

giver, who was asked to verify the information by phone with the student’s parents. In the

latter case, information on the primary caregiver was also collected. The endline survey was

conducted in June 2014, about two weeks before the end of the 2013-2014 school year.

A baseline test on math and reading was conducted in September 2013, a month before

20The effective tutoring time is less than 45 minutes per tutorial session as sometimes the tutors and
tutees worked on their own homework separately and the tutees sought help from the tutors only when they
encountered questions.
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the baseline survey. Students’ cumulative scores in math and reading in this baseline test

were used to determine their eligibility for participating in the after-school tutoring program

in the role of tutees for 2nd and 3rd graders or tutors for 4th and 5th graders. At the end of

June 2014, an endline test on math and reading was administered to evaluate the achievement

effects of the program. Both rounds of the tests were centrally administered and graded by

teachers from different schools assigned by the educational bureau. For the endline test, we

also recruited teachers from different schools as enumerators to proctor the examinations in

every classroom.

Table 1 checks the balance of the baseline individual characteristics between tutees and

controls. Parental absence is indeed a pervasive phenomenon in this sample of low achievers:

Column 1 shows that of the 760 tutees, 44% had both parents absent from home and 30% had

one parent absent from home, leaving only 26% living with both parents. From self-reported

student surveys, only 30% of the tutees received tutoring at home before the experiment.

Conditional on receiving tutoring at home, the average home-tutoring time was 233 minutes

per week, which was even more intense than the dosage of our experiment of 180 minutes

per week. However, since the majority of the tutees received no tutoring help at all from

home, the unconditional average weekly home-tutoring time was only 71 minutes. In all

analyses of this paper, individual test scores are converted to z -scores with respect to the

distribution of scores in the control classes on the same test. In the baseline test, these

tutees on average scored 0.70σ and 0.69σ below the mean of the control classes in math

and reading, respectively. Column 2 compares tutees and their within-class controls in the

full sample of 76 experimental classes and finds no evidence of any significant differences

in parental absence status, home-tutoring time, and baseline scores. Columns 3-5 perform

the balance checks comparing the subsample of 600 tutees from 60 experimental classes

randomly selected from school grades with multiple classes to both their within-class and

between-class controls. Except for a marginally significant difference (3.7 percentage points

at 10% significance level) in the proportion being left behind by both parents between tutees

in this subsample and their between-class controls,21 other pre-experiment covariates are all

21In our empirical estimates, we always include specifications controlling for pre-experiment individual
covariates including whether a student was left behind by both parents in the baseline.
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balanced between tutees and the two control groups.

Table 2 compares the test-taking status in the endline test between the tutees and con-

trols. Among the full sample of 760 tutees, 703 (or 92.5%) took the endline test, which

is 2.4-percentage points lower (Column 1) than their within-class controls from the same

experimental classes. While small in magnitude, this difference is statistically significant at

the 5% level. Thus, we cannot completely rule out the possibility that participating in the

after-school tutoring program may have resulted in some students not taking the endline

test. In particular, if the head teacher of the experimental class or the supervisor of the

tutorial session had discouraged/restricted some tutees who had made the poorest progress

in the program from taking the endline test, our estimated achievement effects of the pro-

gram would be biased upward. The inclusion of baseline individual controls in Column 2

has little effect on the estimated difference in the observability of endline test scores, which

remains significant at the 5% level. However, the coefficient on the dummy indicator for

living without both parents in the baseline (-0.024) is negative and significant at the 10%

level, suggesting that these left-behind children were less likely to have taken the endline

test than their counterparts living with parent(s), which is not surprising since some of these

left-behind children may have switched schools during our intervention either because of

migrating with their parents or the changing of their guardians (e.g., from paternal grand-

parents to maternal grandparents). While differential selection by initial parental absence

status per se is not a problem, concern may arise over the validity of comparing the treat-

ment effects between subgroups of tutees defined by initial parental absence status if being

selected as a tutee in our after-school tutoring program had affected the chances of taking

the endline test for children left behind by both parents differently than children living with

parent(s). Thus, in Column 3 we further include an interaction term between the treatment

status and a dummy indicator for living without both parents in the baseline. The coefficient

on the interaction term is quantitatively very small (-0.011) and statistically insignificant,

suggesting no evidence to substantiate such a concern. When a subsample of 600 tutees

from schools with multiple classes in each junior grade is compared to their within-class

and between-class controls in Columns 4-6 and 7-9, the differences in the test taking status

becomes smaller (though still negative) and statistically insignificant. In the next section
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examining the achievement effects of the after-school tutoring experiment, we first conduct

the main analysis without considering the potential sample selection problem. Then, for the

estimates using the full sample of 76 experimental classes, for which the difference in sample

selection between tutees and controls is indeed significant, we perform a partial identification

analysis to construct bounds on the estimated treatment effects (Section 5.4.2).

5 Results on Student Achievement

5.1 Average Achievement Effects for Tutees

Our main empirical strategy to assess the average achievement effect of the after-school

tutoring program on the tutees uses the following class fixed-effect regression applied to

both tutees and their within-class controls in the experimental classes:

∆yij = yij1 − yij0 = λDij +Xijβ + ϕj + εij, (6)

where ∆yij denotes the change in the test scores of student i from class j between the

baseline and endline tests, Dij is a dummy indicator equal to 1 if student i was assigned

to be a tutee and 0 if otherwise, Xij is a vector of control variables including baseline test

scores, child gender, and parental absence status in the baseline, ϕj is a class fixed effect that

captures the unobserved determinates of learning shared in common at the regular classroom

among all students from class j, and εij is an error term, consisting of both an individual-

level component and a class-level component. This specification assumes that there are no

spillover effects of the tutoring on the controls. But spillover effects, probably positive, are a

possibility since any improved performance by the tutees due to the program might benefit

their classmates. If there were positive spillover effects, the estimate of the treatment effect

would be a lower bound, with no obvious reason for differential biases by parental status

(considered in Section 5.2).

Alternatively, we can also assess the effect of the after-school tutoring program on the

tutees with a school-grade fixed-effect regression comparing tutees with their between-class

controls (i.e., other low-achieving students from control classes in the same school grades)
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as follows:

∆yijg = λDijg +Xijgβ + φg + νijg, (7)

where ∆yijg denotes the change in the test scores of student i from class j of school-grade

g between the baseline and endline tests, φg is a school-grade fixed effect that captures

the unobserved determinants of learning shared in common in the school-grade among all

students from school-grade g, and the error term νijg consists of both an individual-level

component and a class-level component. Note that because both εij and νijg have class-level

components, we always cluster the standard errors at the class level in estimates where the

dependent variable involves test scores.

Panel A of Table 3 reports estimates of the average treatment effect on tutees’ math

scores. Columns 1-3 estimate the class fixed-effect regressions employing the full sample

of tutees and their within-class control students from 76 experimental classes. Column 1

includes no control variables, Column 2 controls for baseline scores only, and Column 3

further controls for baseline individual characteristics including gender and parental absence

status. The point estimates of the coefficient λ change relatively little with the inclusion of

additional control variables. Taking the specification in Column 3 with the full set of control

variables as an example, the estimated coefficient indicates that the tutees in the full sample

of 76 experimental classes have an average score gain of 0.136σ in math (significant at 1%

level) compared to the control students from the same classes. Columns 4-6 replicate the

same class fixed-effect estimates in Columns 1-3 but use only a subset of 60 experimental

classes randomly selected from the school grades with multiple classes. The estimates for

this subsample are somewhat smaller compared to the full sample, but still significant at

the 5% level. Column 7-9 estimate the school-grade fixed-effect regressions in Equation (7)

employing the tutees from the subset of the 60 randomly selected experimental classes and the

control students from the unselected control classes within the same school grades. These

school-grade fixed-effect estimates (0.087-0.110σ) are quantitatively very similar to those

class fixed-effect estimates (0.090-0.102σ) obtained in Columns 4-6 for the same subsample

of tutees, but are less precisely estimated.22 Nonetheless, when baseline scores are controlled

22The reduction in the statistical precision of the school-grade fixed-effect estimates compared to the class
fixed-effect estimates is largely caused by the clustering of the standard errors at the class level. This is
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for in Columns 11-12, these school-grade fixed-effect estimates remain significant at the 10%

level.

Panel B of Table 3 reports estimates of the average treatment effect on tutees’ reading

scores. Regardless of the empirical specifications and the samples used, the estimates of

λ for reading scores are always insignificant and small in magnitude. The disparity in the

estimated achievement effects between math and reading, though somewhat striking, does

not come as a complete surprise. One may well expect that the value of outside tutoring

may differ across subjects. For example, in mathematics, there are many problem-solving

“tricks”, which can be best learnt through individual tutoring. For language, on the other

hand, a student can comprehend new words only if he/she spends effort to memorize them.

Thus, if individual tutoring increases test scores largely through improving learning and

test-taking skills, which are more important for math than reading, the achievement effect

of individual tutoring would also be more salient for math than reading. Indeed, previous

work on the efficacy of other educational interventions across subject areas generally find

that achievement gains tend to be larger for math than reading (e.g., Abdulkadiroğlu et al.,

2011; Angrist et al., 2010, 2012; Dobbie and Fryer, 2013; Fryer, 2014). For example, in

a similar setting of a randomized controlled evaluation of 27 centers of the enhanced 21st

CCLC program in the U.S. with the first 45 minutes of each daily session used for structured

academic instruction similar to our after-school tutoring program, Black et al. (2008) also

find significant positive effects on math scores, but no effects on reading scores.

For our tutoring intervention, moreover, the 4th and 5th graders are likely to be much

less effective tutors for reading than math. In that case, both A and θ in the achievement

production function Equation (1) could be subject-specific and much smaller for reading

than for math. Moreover, anecdotal evidence collected from the teachers supervising the

tutorial rooms also indicates that in general the pairs spent more time working on math than

reading during the tutorial sessions.23 Because we never obtain any statistically significant

because when tutees and their controls from the same experimental class are used to estimate Equation (6),
the variation in the treatment status is at the individual level, so clustering at the class level has relatively
little effect on the standard error of the estimated coefficient. However, when tutees from the experimental
classes and other low-achieving students from the control classes are used to estimate Equation (7), the
treatment status only varies at the class level. As a result, clustering at the class level significantly increases
the standard error of the estimated coefficient.

23Differential tutoring time spent on math and reading may be due to the nature of the homework for
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or quantitatively large estimates for reading scores (results available upon requests), for the

more detailed analysis in the remaining of the paper we focus only on the effects of the

program on tutees’ math scores.

5.2 Differential Achievement Effects for Tutees by Parental Absence

Status

The positive and significant estimates of the coefficient λ in Panel A of Table 3 are consistent

with Hypothesis 3 that the after-school tutoring program resulted in net achievement gains

as far as math scores are concerned. Hypothesis 4b further predicts achievement effects to

be greater for students from households facing higher unit costs of home tutoring. In this

subsection, we use children’s initial parental absence status to proxy for households’ own

costs of home tutoring and investigate the heterogeneity in the math achievement effects for

tutees with varying parental absence status in the baseline to test Hypothesis 4b.

To allow the treatment effects to vary by tutees’ parental absence status, we first interact

the treatment dummy (Dij) with three mutually exclusive dummy indicators representing

a student’s initial parental absence status in the baseline: namely, NoParentij for whether

a student was living without both parents, OneParentij for whether a student was living

with a single parent, and TwoParentsij for whether a student was living with both par-

ents. Column 1 of Table 4 reports estimates of an expanded version of the class fixed-effect

model in Equation (6) by replacing the treatment dummy (Dij) with the three interaction

terms. The point estimates show that the average treatment effect is 0.091σ for tutees living

with both parents, 0.076σ for tutees living with a single parent, and 0.203σ for tutees living

without both parents. Although the first two estimates are not significant at conventional

levels, the last coefficient is significant at the 1% level. The inclusion of baseline individual

controls in Column 2 has little effect on the estimates of these coefficients. Since the esti-

mated coefficients for tutees living with one and both parents are very close to each other in

both specifications, we pool these two categories together and use a single dummy indicator

Parentij to denote whether a student was living with at least one parent in the baseline.

these two subjects. Usually, math homework requires a lot of written work and calculation whilst language
homework may be more on reading and reciting that do not need to be done in front of a tutor.

21



Columns 3-4 report the results of the class fixed-effect estimations using the full sample of

tutees employing only two interaction terms Dij × NoParentij and Dij × Parentij. The

estimates in Column 3 suggest that the intervention improved the math scores by 0.083σ for

tutees living with one or both parents and by 0.203σ for those living without both parents.

While the latter estimate remains significant at the 1% level, the former also becomes sig-

nificant at the 10% level because of the increased precision in the estimation after pooling

students living with one and both parents into a combined category. Moreover, consistent

with Hypothesis 4b, the difference in these point estimates (0.120σ, with a p-value of 0.02)

indicates that the after-school tutoring program yielded a larger test score gain for tutees

cared for by grandparents than those cared directly by parent(s).24

Columns 5-6 and 7-8 of Table 4 report, respectively, the class and school-grade fixed-

effect estimates for the subsample of tutees from 60 randomly selected experimental classes.

Though always positive, the coefficients are less precisely estimated for this subsample. For

tutees living with parent(s), the reduction in the precision of these estimates make us unable

to reject the null hypothesis that the program does not generate significant achievement

gains for them, although we also cannot reject that the achievement gains are the same in

magnitude as the statistically significant estimates obtained for the full sample in Columns

3-4 (0.083-0.094σ). Nonetheless, for tutees living without both parents, the point estimates

(0.122-0.149σ) remain statistically significant in all estimates, although somewhat smaller

in magnitude than those obtained for the full sample. Taken together, the results in Table

4 point to larger math achievement gains for tutees living without both parents, suggesting

an important role of family background (as measured by parental absence status here) in

affecting the efficacy of the after-school tutoring intervention implemented. In Section 6, we

further explore the mechanisms that result in differential math score gains for tutees with

varying parental absence status by comparing changes in their home-tutoring inputs after

the treatment.

24If we compare the coefficients in Column 4, the difference is quantitatively somewhat smaller (0.096σ)
and only marginally significant at the 15% level. However, the magnitudes of these point estimates (0.190σ
vs. 0.094σ) still indicate that the achievement effect for tutees living without both parents is twice as large
as that for those living with parent(s).
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5.3 Robustness Analysis

5.3.1 Accounting for Other Dimensions of Potential Heterogeneity in Treat-

ment Effects

In an earlier study, we document significant adverse effects of the absence of both parents

on children’s contemporary cognitive development (Zhang et al., 2014). To the extent that

a child’s parental absence status observed in the baseline is correlated with his/her parents’

past migration histories, children observed to be left behind by both parents in the baseline

would on average have a large disadvantage in the cumulative parenting inputs received

during their growing-up years compared to those living with parent(s) in the baseline. Since

we selected only students who had scored below their class medians in the baseline test to be

eligible for the after-school tutoring program, it is possible that conditional on having scored

below the class median in the baseline test those left behind by both parents on average had

higher innate ability than those living with parent(s). That is, some children left behind by

both parents were low-achievers because of their disadvantages in family educational inputs

rather than in innate cognitive abilities. Thus, a potential reason for the tutoring program to

yield larger math score gains for children left behind by both parents is the complementarity

between the tutoring inputs received from our intervention and children’s innate cognitive

ability. If that is indeed the mechanism for differential treatment effects by parental absence

status, one would also expect the after-school tutoring program to yield larger test score gains

for the relatively higher-achieving tutees in the baseline test conditional on their parental

absence status in the baseline.

Column 1 of Table 5 tests this hypothesis by adding an interaction term between the treat-

ment dummy (Dij) and student’s baseline test score (Yij0) to the class fixed-effect specifica-

tion in Equation (6). The coefficient on this interaction is negative and insignificant, showing

no support for larger achievement gains for tutees with higher baseline scores, which proxies

for higher innate cognitive ability. The coefficient on the treatment dummy itself (0.122σ) is

statistically significant and quantitatively similar to the estimate (0.136σ) obtained without

including the interaction term in Column 3, Panel A of Table 3. In Column 2 of Table 5, we

retain the interaction term between the treatment status and baseline score (Dij×Y ij0), but
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replace the treatment dummy (Dij) by its interactions with the two dummy indicators for

living with one or both parents (Parentij) and without both parents (NoParentij). The co-

efficient on the interaction term Dij×Yij0 remains small, negative, and insignificant, whereas

those on the interaction terms Dij ×NoParentij (0.177σ) and Dij × Parentij (0.084σ) are

similar in size to the corresponding estimates (0.190σ and 0.094σ, respectively) obtained in

Column 4 of Table 4 without the inclusion of the interaction term Dij × Yij0. However, a

rather small reduction in the point estimate (from 0.094σ to 0.084σ) makes the coefficient

on Dij × Parentij no longer significant at conventional levels, although the coefficient on

Dij ×NoParentij (0.177σ) remains significant at the 1% level.

In Columns 3-4 of Table 5, we investigate the heterogeneity in the treatment effects on

math scores by gender. We find no evidence that the treatment effects differ between boys

and girls: the coefficient estimates on the interaction terms between the treatment dummy

and the female dummy are always small and insignificant. The inclusion of these interaction

terms also has little effect on the estimated overall average treatment effect (0.123σ) in

Column 3 and the respective average treatment effect for tutees living with at least one

parent (0.084σ) and without both parents (0.178σ) in Column 4. In Columns 5-6 of Table

5, we further include the separate interactions of the treatment dummy with baseline scores

and gender. None of the coefficients on these interaction terms is significant or large in

magnitude. Although the precision of the estimates is somewhat reduced, the qualitative

conclusions remain robust to the inclusion of these additional interaction terms to account

for differences in the treatment effects by baseline scores and gender. In Column 5, the

estimated coefficient on the treatment dummy itself (0.110σ) remains significant at the 10%

level and is similar in magnitude to those obtained earlier without controlling for these

interaction terms. In Column 6, the estimated achievement effect for tutees living with no

parent (0.167σ) remains significant at the 5% level and is twice as large as that for those

living with parent(s) (0.075σ).

5.3.2 Partial Identification Analysis

So far our analysis of the achievement effects of the program has ignored the potential

sample selection in taking the endline test. However, the results in Table 2 seem to indicate
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that the control students might be somewhat more likely to have taken the endline test

than the tutees. Although the differences in their test-taking rates are small in magnitude

(no more than 2.5 percentage points), it is statistically significant at the 5% level among

the full sample of 760 tutees and 1,184 control students from the 76 experimental classes

(Columns 1 2, Table 2). To check the robustness of our results to this potential differential

sample selection problem, we implement a trimming procedure proposed by Lee (2009),

which under the assumption of a monotone effect of the treatment on sample selection would

yield conservative bounds on the treatment effects on tutees’ math scores in the presence of

differential sample selection. 25 Since the difference in sample selection between tutees and

controls is only significant for the full sample of tutees and their within-class controls, we

apply this trimming procedure to this sample only.

Among the full sample of 760 assigned tutees and 1,184 assigned controls from the 76

experimental classes, we observe the endline test scores for 703 tutees and 1,112 controls.

However, had the test-taking rates been the same between the tutees and controls from the

same class, we would expect 30 fewer control students (1, 184 × 0.025) taking the endline

test. Thus, the lower- and upper-bounds on the treatment effects can be constructed by

trimming the bottom and top tails of the distribution of the outcome variable (i.e., changes

in math scores between the baseline and endline tests) by this number. Our strategy to

identify the set of control students pertaining to the bottom and top tails to be trimmed

is as follows. First, from a total of 76 experimental classes, we randomly select 30 classes

and label them as trim-target classes. Second, for each trim-target class, we rank all control

students in descending order of changes in math scores between the baseline and endline

tests (∆yij). Third, we trim the bottom-ranked (or top-ranked) control student from each

of the 30 trim-target classes and obtain the lower-tail-trimmed (or upper-tail-trimmed) data

for constructing the lower-bound (or upper-bound) estimates.

Columns 1-3 in Panel A of Table 6 report the lower-bound estimates using the lower-

trimmed data corresponding to the same estimates in Columns 1-3 in Panel A of Table 3 using

the untrimmed data. Although by construction these lower-bound estimates (0.101-0.110σ)

25See, e.g., Lucas and Mbiti (2012), Zhang (2016) and Mills and Wolf (2017) for applications of Lee (2009)
trimming method in estimating bounds on treatment effects on student achievement in educational settings.
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are smaller in magnitude, they remain statistically significant at the 1% level, showing that

our finding of a positive and significant overall average treatment effect on tutees’ math

scores is unaffected by the small degree of differential sample selection between tutees and

controls taking the endline test. Columns 4-6 use the lower-trimmed data to estimate dif-

ferential treatment effects by whether a student was living with any parent or not in the

baseline. Not surprisingly, for both types of tutees, the estimated treatment effects using

these lower-trimmed data are smaller than those obtained from the untrimmed data in Ta-

ble 4. Because of the reduction in size, the estimates for tutees living with parent(s) are no

longer statistically significant. However, the estimates for tutees living without both parents

remain significant at the 1% level and more than twice as large as those for tutees living with

parent(s) in all specifications. Panel B of Table 6 reports the corresponding upper-bound

estimates employing the upper-trimmed data. All estimates are larger in size compared to

the corresponding estimates using the untrimmed data. When differential treatment effects

by parental absence status are examined in Columns 4-6, the estimates are significant for

both types of tutees, but the estimates for tutees living without both parents remain at least

twice as large as for those living with parent(s).

5.4 Achievement Effects for the Tutors

As Figure 2 illustrates, the tutors were randomly selected from a pool of 1,405 eligible

applicants from 76 senior classes who had scored above their class medians in the baseline

test and also obtained their guardians’ consent to act as tutors in the after-school tutoring

program. Therefore, for each senior class that the tutors were recruited from, the eligible

applicants who were not selected to be tutors in our program can be used as controls. In

Table 7, we estimate the treatment effects of our program on both the math (Columns 1-3)

and reading scores (Columns 4-6) for the tutors using their unselected eligible classmates as

the control group. For both subjects, the estimated average treatment effects are statistically

and quantitatively indistinguishable from 0 (Columns 1 and 4), and are unaffected by the

inclusion of individual control variables (Columns 2 and 5). However, the coefficients on

the female dummy are significant for both subjects but are opposite in sign (negative for

math and positive for reading), suggesting the divergence in the patterns of the achievement
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dynamics between girls and boys in the two subjects during senior primary school years.

In Columns 3 and 6, we further include the interactions of the tutor dummy with inclusion

of additional interaction terms between the tutor dummy with gender and baseline scores,

none of the coefficients on the interaction terms is significant, showing no evidence for any

heterogeneous treatment effects for the tutors by gender or initial achievement. Any negative

effects on tutors’ test scores from the greater demands on their time due to tutoring, thus,

seem to be offset by positive gains from reviewing and explaining material to tutees.

6 Results on Private Household Inputs

Recall that the model in Section 3 predicts that parents invest more in home-tutoring in-

puts than grandparents (Hypothesis 1 ) but also reduce their home-tutoring inputs more

when the amount of tutoring received in school increases (Hypothesis 4a). We test these hy-

potheses empirically in this section. We first examine the difference in the baseline levels of

home-tutoring inputs by children’s varying parental absence status before the intervention

(Section 6.1). To understand the mechanisms behind the substantially larger math score

gains for tutees living without both parents than those living with parent(s), we further

compare changes in home-tutoring inputs by students’ treatment status in the experiment

and parental absence status (Section 6.2).

6.1 Baseline Home-Tutoring Inputs

In this subsection, we examine whether and to what extent the amount of tutoring that

students received at home before our intervention differs by their parental absence status.

Specifically, we estimate the following relationship between parental absence status and

baseline home-tutoring inputs:

Hij0 = α0NoParentij + α1OneParentij + α2TwoParentsij + µj + ηij, (8)

where Hij0 is a self-reported measure of home-tutoring inputs for student i from class j in

the baseline, taking the form of either a dummy indicator for having received any tutoring
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at home or the total home-tutoring time in the week prior to the baseline survey, the three

dummy indicators NoParentij, OneParentij, and TwoParentsij are the same as defined in

Section 5.2, and µj is a class fixed effect. In estimating Equation (8), we normalize the class

fixed effects to sum to 0 across all students in the sample: that is,
∑J

j=1

∑nj
i=1 µj = 0, where

nj denotes the number of students from class j and J is the total number of classes. With

this normalization, the coefficients α0, α1, and α2 on the three mutually exclusive dummy

indicators NoParentij, OneParentij, and TwoParentsij can be directly interpreted as the

regression-adjusted, group-specific means in Hij0.

Column 1 of Table 8 reports estimates of Equation (8) when Hij0 is measured by the

dummy indicator for having received any tutoring at home in the week prior to the baseline

survey. For children living with one and both parents, respectively, the proportions who had

received tutoring at home in the baseline are almost exactly the same (35.6% and 35.7%),

both of which are substantially higher than that of children living without both parents

(27.1%). Column 3 of Table 8 reports estimates of Equation (8) when Hij0 is measured by

the total weekly home-tutoring time. The baseline home-tutoring time is also very similar

between children living with a single parent (89.6 minutes/week) and both parents (92.2 min-

utes/week), but is much smaller for those living without both parents (61.1 minutes/week).26

Since the absence of a single parent has little effect on the home-tutoring inputs that

children received in the baseline, we pool children living with one and both parents together

and estimate the following model:

Hij0 = α0NoParentij + α1Parentij + µj + ηij, (9)

where Parentij is a dummy equal to 1 if student i was living with one or both parents as

defined before. Under the assumption that parents have comparative advantage in home

tutoring over grandparents, Hypothesis 1 in Section 3 is that parents choose higher levels of

home-tutoring inputs than grandparents, i.e., α1 > α0. We test this hypothesis empirically

using our estimates of the coefficients for Equation (9). The testing results show that children

26It is worth noting that the differences in the observed home-tutoring time between children living with
at least one and without both parents may underscore the differences in the effective tutoring inputs that
they received at home if one further takes into account the differences in the efficacy of home tutoring offered
by parents and grandparents.
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living with parent(s) were 8.5 percentage points (or 31.3%) more likely to report tutoring at

home (Column 2, Table 8) and on average reported 29.7 minutes’ (or 48.6%) more home-

tutoring time than those left-behind by both parents (Column 4, Table 8). Both the extensive

and intensive margin differences are significant at the 1% level.

6.2 Changes in Home-Tutoring Inputs

For both the baseline and endline surveys, the self-reported home-tutoring inputs (Hijt)

are the sum of the actual home-tutoring inputs (H∗ijt) and a reporting error (eijt), i.e.,

Hijt = H∗ijt + eijt for t ∈ {0, 1}. For Hij0 in the baseline, no student was aware of the

after-school tutoring program to be implemented and thus should have had no strategic

incentive to manipulate their reported home-tutoring time. Any reporting error (if it exists)

should be balanced between the tutees and controls because of the random assignment, i.e.,

E [eij0|Dij = 1] = E [eij0|Dij = 0]. However, for Hij1 in the endline, the implementation of

the after-school tutoring program may have altered the incentives and reporting behaviors

of both the tutees and controls, but to different degrees.27 As a result, there may be some

systematic difference in the reporting error between the two groups, i.e., E[eij1|Dij = 1] 6=

E[eij1|Dij = 0]. To the extent that the reporting behaviors of the tutees and controls were

affected differently in the endline, the class fixed-effect specification used to estimate the

program effects on test scores in Equation (6) cannot be applied directly to estimate the

program effects on home-tutoring inputs.

Instead, we partition the tutees and controls into two subsamples and for each subsample

estimate a separate class fixed-effect regression of the changes in self-reported home-tutoring

inputs as follows:

∆Hij = Hij1 −Hij0 = πκ0NoParentij + πκ1Parentij + θκj + ξκij, κ ∈ {T,C}. (10)

The superscript κ ∈ {T,C} denotes whether the equation is estimated using the tutees

27Although the schools had explained that access to the after-school tutoring program was determined
by a lottery, some unselected families (i.e., those in the control group) still complained for not having the
opportunity to participate in the after-school tutoring program. Some families may think that the program
targeted students with relatively fewer home-tutoring inputs and thus may have incentives to underreport
their home tutoring time in the endline.
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subsample (T ) or the controls subsample (C). Note that the class fixed-effect δκj is now

normalized to sum to 0 across all students in each subsample. Column 1 of Table 9 reports

estimates of Equation (10) for the subsample of tutees. For tutees living with parent(s), the

estimates of the coefficient on Parentij dummy (πT1 ) indicate that they were 16.4 percentage

points less likely to report having received tutoring at home in the endline (Panel A) and on

average reported 30.3 minutes’ less home-tutoring time per week compared to the baseline

(Panel B). However, for tutees living apart from both parents, the estimates of the coefficient

on NoParentij dummy (πT0 ) indicate much smaller and statistically insignificant reductions

in the self-reported home-tutoring time at both the extensive and intensive margins. Because

of the existence of an ambiguous effect of participating in the after-school tutoring program

on reporting error eij1 for the tutees, we cannot interpret these estimates as reflecting changes

in the actual home-tutoring inputs (∆H∗ij). However, as long as the effect of program partici-

pation on the reporting behavior is the same for tutees with different initial parental absence

status, i.e., E
[
eij1
∣∣Parentij = 1, Dij = 1, δTj

]
= E

[
eij1
∣∣NoParentij = 1, Dij = 1, δTj

]
, then

the difference in the two coefficients πT1 − πT0 still reflects the differential response in the

actual home-tutoring inputs (∆H∗ijt) between tutees living with and without parent(s), i.e.,

πT1 −πT0 = E
[
∆H∗ij

∣∣Parentij = 1, Dij = 1, δTj
]
−E

[
∆H∗ij

∣∣NoParentij = 1, Dij = 1, δTj
]
. Re-

call that Hypothesis 4a in Section 3 predicts that parents reduce their home-tutoring inputs

more than grandparents, i.e., πT1 − πT0 < 0. We test this hypothesis formally at the bottom

of each panel in Column 1 of Table 9. For both measures of home-tutoring inputs, the differ-

ence π̂T1 − π̂T0 is always negative and statistically significant, suggesting that there is indeed

a differential extent of substitution in the actual home-tutoring inputs between tutees living

with and without parent(s).

Column 2 of Table 9 reports estimates of Equation (10) for the subsample of control

students who did not participate in the after-school tutoring program themselves but ob-

served the participation of some of their classmates. For these students, the effect of the

program on changes in their self-reported home-tutoring inputs is likely to be dominated

by the effect on their reporting behavior in the endline (eij1) rather than actual home-

tutoring inputs (H∗ij1). Moreover, if the program nonparticipation effect on reporting behav-

ior is the same by initial parental absence status, i.e., E
[
eij1
∣∣Parentij = 1, Dij = 0, δCj

]
=
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E
[
eij1
∣∣NoParentij = 1, Dij = 0, δCj

]
, then the overall effect on changes in the self-reported

home-tutoring inputs (∆Hij) should also not differ significantly between control students

living with parent(s) and those living without both parents. Indeed, both groups of control

students reported large and significant reductions in home-tutoring time, and the difference

in the extent of the reduction is rather small quantitatively: -17.0 vs. -14.4 percentage points

at the extensive margin and -40.4 vs. -33.6 minutes at the intensive margin. Moreover, we

cannot reject the possibility that changes in the self-reporting home-tutoring inputs are the

same between the two groups of control students (i.e., πC1 = πC0 ), suggesting no evidence

that the existence of the program yields differential effects on reporting behavior for control

students with different initial parental absence status. If the conclusion of no differential

program effects on reporting behavior also carries over to the tutees, then the estimate of

πT1 − πT0 in Column 1 of Table 9 indeed identifies the differential response in the actual

home-tutoring inputs for tutees with different parental absence status in the baseline.

Note that because we estimate Equation (10) separately for the tutees and controls, the

class fixed effects δκj generally differ between the two estimates (i.e., δTj 6= δCj ). To check the

sensitivity of the results to the way that the class fixed effects are accounted for, we also

estimate an alternative specification pooling together the treated and control students as

follows:

∆Hij = πT0 (Dij ×NoParentij) + πT1 (Dij × Parentij)

+ πC0

(
(1−Dij)×NoParentij

)
+ πC1

(
(1−Dij)× Parentij

)
+ δj + ξij,

(11)

where the class fixed effect δj is normalized to sum to 0 across all students including both

tutees and controls. Columns 3-4 of Table 9 report estimates of this pooled regression. For

the control students, the results are qualitatively the same as those found in the separate

estimation in Column 2: regardless of the measure of ∆Hij used, both π̂C1 and π̂C0 are

negative and significant and their difference π̂C1 − π̂C0 is always small in magnitude and

statistically insignificant (Panels A and B, Column 4). For the tutees, the results also

remain similar to those found in the separate estimates in Column 1, although for some

coefficients the statistical significance is changed due to quantitative differences in the point

estimates. When ∆Hij is measured by the change in the dummy indicator for self-reported
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home tutoring (Panel A, Column 3), the estimate of the reduction for tutees living without

parents (π̂T0 = −0.060) becomes statistically significant itself, although its difference with the

reduction for tutees living with parent(s) remains statistically significant (π̂T1 −π̂T0 = −0.092).

When ∆Hij is measured by the change in self-reported weekly home-tutoring time (Panel

B, Column 3), the estimate for the difference πT1 − πT0 is somewhat reduced in magnitude to

-20.0 minutes (with a p-value of 0.137), and is no longer significant at conventional levels.

Nonetheless, the results of the varying exercises reported in Table 9, taken together, are by

and large consistent with Hypothesis 4a that parents reduce their home-tutoring inputs more

than grandparents in response to the increase in school tutoring. The smaller extent of the

reduction in home-tutoring inputs for tutees left-behind by both parents is also likely to be

the main reason for them to experience larger math score gains from participating in the

after-school tutoring program than those living with parent(s).

7 Conclusion

Worldwide students’ access to learning enrichment activities after school is highly dependent

on family backgrounds, raising concerns over the implications of the advantages gained by

children from higher SES backgrounds through their families’ time and money on educational

inequality and social mobility. In rural China these concerns are intensified by the presence

of tens of millions of children left behind by both parents who migrated in search of work in

cities. These left-behind children are disadvantaged in after-school learning support received

at home and also academically lagging behind compared to their counterparts living with

parent(s), casting a suspicion that the negative achievement effects of being left-behind by

both parents may work, at least in part, through the lack of home learning support after

school (Zhang et al., 2014). Given the scale of parental absence in rural China, with one in

six children living without both parents, there is a substantial need for investigating possible

compensatory programs for ameliorating the negative learning effects of parental absence.

Nonetheless, despite the large and increasing policy interest in China and elsewhere for

enhancing public roles in after-school learning support to reduce education inequality, prior

evidence of the effects of public after-school programs on children’s academic outcomes is
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limited and far from unified.

This paper develops a simple model of student achievement that integrates public and

private after-school tutoring inputs to determine student achievement and presents empirical

evidence consistent with the model using a randomized after-school tutoring experiment

in a poor area of rural China in which high-achieving 4th and 5th graders provided high-

dosage, one-on-one tutoring to low-achieving 2nd and 3rd graders. Prior to the experiment

children who had been left-behind by both parents received far less home tutoring compared

to children living with their parent(s). During the tutoring program, tutees living with

parent(s) reported large significant reductions in home tutoring at both the extensive and

intensive margins, whereas tutees without parents had much smaller, and often insignificant,

reductions in home tutoring. We also find that the tutoring program significantly improved

tutees’ endline math scores, with the score gains being significantly larger for children without

parents at home.

Thus our results demonstrate that peer tutoring is a feasible and effective remedial inter-

vention for rural Chinese children lagging behind academically, particularly those left-behind

by both parents. The opposing signs of the differences in the extent of substitution of home-

tutoring inputs and test score gains between children living with and without parents also

yield indirect evidence that home inputs after school indeed matter for children’s cognitive

development, substantiating the concerns over the implications of differences in access to

after-school learning opportunities by family backgrounds on child development and educa-

tional inequality. Moreover, an important policy implication of our results that targeting

public provision of after-school learning support to children from disadvantaged family back-

grounds, such as children living with no parents in rural China, is both an equitable and

efficacious strategy as these children also tend to lag behind in academic achievement and

benefit the most from such public interventions. Last but not least, although we only imple-

mented a particular form of after-school learning support (i.e., peer tutoring), the insights

that public provision of after-school learning support can particularly benefit children from

disadvantaged family backgrounds and thus reduce educational inequality may be general-

ized for other forms of public support in after-school learning such as granting free access

and user support to e-learning resources that more easily can be scaled up.
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Table 1: Summary Statistics of Pre-experiment Variables and Sample Balance Checks

Variables
Full sample Subsample of schools with multiple classes

Tutees’
mean

Tutees vs.
within-class
controls diff.

Tutee’s
mean

Tutees vs.
within-class
controls diff.

Tutees vs.
between-

class control
diff.

(1) (2) (3) (4) (5)

Living w/ one parent only 0.3013 0.0120 0.3150 0.0367 0.0128
(0.4591) (0.0215) (0.4649) (0.0243) (0.0223)

Living w/ no parent 0.4368 -0.0232 0.4183 -0.0349 -0.0382
(0.4963) (0.0227) (0.4937) (0.0255) (0.0234)

Fraction receiving tutoring 0.3026 -0.0035 0.2800 -0.0052 -0.0369*
at home (0.4597) (0.0190) (0.4494) (0.0222) (0.0214)
Average weekly home-tutoring 233.42 -9.97 258.23 -14.36 23.29
time in minutes (excluding 0) (151.38) (13.86) (151.57) (17.32) (15.07)
Average weekly home-tutoring 70.64 -3.76 72.30 -4.35 -1.56
time in minutes (including 0) (135.75) (6.48) (140.96) (7.81) (6.71)
Baseline math score -0.7008 -0.0259 -0.6604 -0.0250 -0.0583

(0.9459) (0.0366) (0.9584) (0.0416) (0.0377)
Baseline reading score -0.6910 -0.0120 -0.7152 -0.0375 -0.0536

(0.9459) (0.0373) (0.9527) (0.0416) (0.0391)
Number of classes 76 76 60 60 119
Number of students 760 1944 600 1527 2140

Notes:
[1] The full sample consists of all low-achieving grades 2 and 3 students who scored below the class medians
in the baseline test in all the 76 experimental classes. Among these students, 10 from each class were
randomly assigned as tutees and the remaining were assigned as within-class controls.
[2] The subsample consists of all low-achieving grades 2 and 3 students from a total of 119 classes in 24
primary schools with multiple classes in each grade, from which 60 classes were randomly selected as
experimental classes. Among these students, 10 from each class were randomly assigned as tutees, the
remaining unselected students from the same experimental classes were assigned as within-class controls,
whereas all low-achieving students in the unselected control classes in the same school-grades were assigned
as between-class controls.
[3] For each pre-experiment variable denoted by the row heading, columns 1 and 3 report the tutees’ mean,
columns 2 and 4 the tutees vs. within-class controls difference in means after adjusting for class fixed
effects, and column 5 reports the tutee vs. between-class control difference in means after adjusting for
school-grade fixed effects. Reported in parentheses are standard deviations for means (columns 1 and 3)
and standard errors for differences (columns 2, 4, and 5).
* p<0.1
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Table 5: Robust Analysis

(1) (2) (3) (4) (5) (6)

Baseline scores -0.448*** -0.450*** -0.457*** -0.457*** -0.449*** -0.450***
(0.0497) (0.0496) (0.0440) (0.0439) (0.0496) (0.0495)

Tutee 0.122** 0.123** 0.110*
(0.0483) (0.0485) (0.0587)

Tutee*baseline scores -0.0207 -0.0171 -0.0200 -0.0166
(0.0469) (0.0464) (0.0466) (0.0461)

Tutee*female 0.0343 0.0285 0.0327 0.0274
(0.0749) (0.0753) (0.0742) (0.0746)

Tutee*Living with 0.177*** 0.178*** 0.167**
no parent (0.0556) (0.0577) (0.0668)
Tutee*Living with 0.0841 0.0843 0.0749
one or both parents (0.0595) (0.0588) (0.0668)
Baseline individual controls Y Y Y Y Y Y
Class fixed effects Y Y Y Y N N
Number of classes 76 76 76 76 76 76
Number of observations 1815 1815 1815 1815 1815 1815

Notes: The dependent variable is the change in math scores between the baseline and endline tests. The
sample consists of tutees and their within-class controls in all the 76 experimental classes. Each column
corresponds to a separate regression. All regressions control for a female dummy, a dummy indicator for
living with only one parent in the baseline, a dummy indicator for living with no parent in the baseline,
and class fixed effects. Robust standard errors clustered at the class level are reported in parentheses.
*** p<0.01, ** p<0.05, * p<0.1
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Table 6: Bounds on the Average and Differential Treamtne Effects

Average Treatment Effects Differential Treatment Effects

(1) (2) (3) (4) (5) (6)

Panel A. Lower-bound estimations
Tutee 0.110*** 0.101** 0.104***

(0.0399) (0.0387) (0.0387)
Tutee*Living w/ no parent 0.178*** 0.170*** 0.150***

(0.0518) (0.0465) (0.0486)
Tutee*Living w/ one or both 0.0611 0.0512 0.0684
parents (0.0491) (0.0451) (0.0521)
Baseline scores -0.444*** -0.443*** -0.444*** -0.443***

(0.0435) (0.0442) (0.0434) (0.0442)
Baseline individual controls Y Y
Class fixed effects Y Y Y Y Y Y
Number of classes 76 76 76 76 76 76
Number of observations 1785 1785 1785 1785 1785 1785
Panel B. Upper-bound estimations
Tutee 0.191*** 0.167*** 0.169***

(0.0429) (0.0410) (0.0409)
Tutee*both parents absent 0.263*** 0.239*** 0.236***

(0.0520) (0.0472) (0.0513)
Tutee*at least one parent 0.139** 0.114** 0.118**
present (0.0536) (0.0483) (0.0537)
Baseline scores -0.432*** -0.431*** -0.432*** -0.431***

(0.0438) (0.0447) (0.0437) (0.0446)
Baseline individual controls Y Y
Class fixed effects Y Y Y Y Y Y
Number of classes 76 76 76 76 76 76
Number of observations 1785 1785 1785 1785 1785 1785

Notes: The dependent variable is the change in math scores between the baseline and endline tests. In
Panel A, the sample consists of all tutees from the 76 experiment classes and a trimmed subset of their
within-class controls excluding the bottom-ranked student in test score changes of the 30 randomly selected
classes (one from each class). In Panel B, the sample consists of all tutees from the 76 experiment classes
and a trimmed subset of their within-class controls excluding the top-ranked student in test score changes
of the 30 randomly selected classes (one from each class). Each column in each panel corresponds to a
separate regression. All regressions control for class fixed effects. The regressions in columns 3 and 5
further control for baseline individual characteristics including gender and dummy indicators for living
with only one parent and living with no parent in the baseline. Robust standard errors clustered at the
class level are reported in parentheses.
*** p<0.01, ** p<0.05
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Table 7: Treatment Effects on Tutors

Math Reading

(1) (2) (3) (4) (5) (6)

Tutor 0.0169 0.0175 0.0291 0.00334 0.00214 0.0326
(0.0312) (0.0289) (0.0515) (0.0284) (0.0257) (0.0515)

Baseline scores -0.468*** -0.463*** -0.421*** -0.381***
(0.0880) (0.100) (0.0333) (0.0460)

Female -0.109*** -0.103* 0.0770** 0.0558
(0.0396) (0.0545) (0.0309) (0.0458)

Tutor*baseline scores -0.00977 -0.0741
(0.0530) (0.0474)

Tutor*female -0.0106 0.0408
(0.0612) (0.0536)

Class fixed effects Y Y Y Y Y Y
Number of classes 76 76 76 76 76 76
Number of observations 1372 1372 1372 1372 1372 1372

Notes: The dependent variable is the change in test scores between the baseline and endline tests. The
sample consists of all eligible tutor applicants from 76 senior classes. Each column corresponds to a
separate regression. All regressions control for class fixed effects. Robust standard errors clustered at the
class level are reported in parentheses.
*** p<0.01, ** p<0.05, * p<0.1

Table 8: Self-reported Home Tutoring in the Baseline and Parental Absence Status

Dummy indicator for Home tutoring time
home tutoring (mins/wk)

(1) (2) (3) (4)

(i) Living w/ both parents 0.357*** - 92.2*** -
(0.019) (6.4)

(ii) Living w/ one parent only 0.356*** - 89.6*** -
(0.018) (5.9)

(iii) Living w/ one or both parents - 0.356*** - 90.8***
(0.013) (4.3)

(iv) Living w/ no parent 0.271*** 0.271*** 61.1*** 61.1***
(0.015) (0.015) (4.9) (4.9)

Difference by the absence of - 0.085*** - 29.7***
both parents (i.e., (iii) - (iv)) (0.020) (6.8)
Class fixed effects Y Y Y Y
Number of classes 76 76 76 76
Number of students 1815 1815 1815 1815

Notes: The dependent variable is a dummy indicator for having reported any tutoring at home in the
baseline survey for columns 1-2 and the reported total home tutoring time (in minutes) in the week prior to
the baseline survey. The sample consists of tutees and their within-class controls in all the 76 experimental
classes. Each column corresponds to a separate regression. All regressions control for class fixed effects.
Robust standard errors are reported in parentheses.
*** p<0.01
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Table 9: Changes in Self-reported Home-tutoring Inputs

Tutees Controls Combined sample

(1) (2) Tutees Controls
(3) (4)

Panel A. Change in the dummy indicator for self-reported home tutoring
(A1) Living w/ one or both parents -0.164*** -0.170*** -0.153*** -0.168***

(0.024) (0.195) (0.024) (0.019)
(A2) Living w/ no parent -0.033 -0.144*** -0.060** -0.139***

(0.028) (0.022) (0.028) (0.021)
Difference by the absence of both
parents

-0.132*** -0.025 -0.092** -0.029

(i.e., (A1) - (A2)) (0.039) (0.030) (0.037) (0.029)
Class fixed effects Y Y Y
Number of classes 76 76 76
Number of students 703 1112 1815
Panel B. Change in self-reported home-tutoring time (mins/wk)
(B1) Living w/ one or both parents -30.3*** -40.4*** -30.6*** -38.8***

(8.1) (7.3) (8.6) (7.0)
(B2) Living w/ no parent -2.5 -33.6*** -10.50 -30.7***

(9.6) (8.2) (10.1) (7.8)
Difference by the absence of both
parents

-27.8** -6.8 -20.0 -8.00

(i.e., (B1) - (B2)) (13.3) (11.3) (13.5) (10.6)
Class fixed effects Y Y Y
Number of classes 76 76 76
Number of students 703 1112 1815

Notes: The dependent variable is the change in the dummy indicator for having reported any tutoring at
home between the baseline and endline surveys in Panel A, and the change in the reported total home
tutoring time (minutes per week) between the baseline and endline surveys. Column 1 uses only the tutees
subsample and column 2 uses only the controls subsample from 76 experimental classes. Columns 3 and 4
report the results of a single regression using the combined sample of tutees and controls from 76
experimental classes. The coefficients reported in column 3 and 4 are the coefficients on the interaction
term between the baseline parental absence status indicated by the row heading and the treatment status
indicated by the column heading. All regressions control for class fixed effects. Robust standard errors are
reported in parentheses.
*** p<0.01, ** p<0.05
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