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Abstract: The downward trend in Arctic sea ice is a key factor determining the pace and 
intensity of future global climate change; moreover, declines in sea ice can have a wide range 
of additional environmental and economic consequences. Based on several decades of satellite 
data, we provide statistical forecasts of Arctic sea ice extent during the rest of this century. 
The best fitting statistical model indicates that sea ice is diminishing at an increasing rate. 
By contrast, average projections from the CMIP5 global climate models foresee a gradual 
slowing of sea ice loss even in high carbon emissions scenarios. Our long-range statistical 
projections also deliver probability assessments of the timing of an ice-free Arctic. This 
analysis indicates almost a 60 percent chance of an effectively ice-free Arctic Ocean in the 
2030s – much earlier than the average projection from global climate models.
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1 Introduction

The Arctic is warming about twice as fast as the global average (Osborne et al., 2018).

This phenomenon of Arctic amplification in surface air temperature is closely connected

to a dramatic multi-decade reduction in Northern sea ice. Indeed, since accurate satellite

measurements began in 1978, the extent of Arctic summer sea ice has shrunk by about 40

percent, a loss in area comparable to the western continental United States. This drop in

sea ice is one of the most conspicuous warning signs of ongoing climate change. In addition,

the reduction of sea ice plays a critical role in the pace of future global climate change and

has important implications for the polar region and the rest of the world.

At a regional level, diminishing sea ice alters polar ecosystems and habitats and intro-

duces major economic opportunities and risks. For example, new deposits of natural gas,

petroleum, and other natural resources will become accessible for extraction, emission, and

possible spillage (Petrick et al., 2017). Also, reduced ice coverage facilitates tourism and the

use of Arctic shipping routes, which are shorter than traditional passages via the Suez or

Panama Canals. These new routes reduce sailing times but increase Arctic environmental

risks from, for example, discharges, spills, and soot deposits (Bekkers et al., 2016). Finally,

melting sea ice will have geopolitical consequences for Arctic sea-lane control (Ebinger and

Zambetakis, 2009).

Although these proximal effects are important, the far-reaching implications of diminished

Arctic sea ice for regulating global climate and weather are even more consequential. Higher

Arctic temperatures promote thawing and erosion of the polar permafrost, which can result

in the release of large amounts of carbon dioxide and methane and provide a significant

impetus to further global warming (Tanski et al., 2019). Increasing Arctic temperatures

also hasten the melting of the Greenland ice sheet, further pushing up sea levels (Trusel

et al., 2018). In addition, less sea ice and more open water diminishes the reflectivity (or

albedo) of the Arctic region, so that, over time, a greater share of solar heat is absorbed by

the earth, which leads to increased temperatures worldwide and further Arctic amplification

(Hudson, 2011). Finally, a warming Arctic and loss of ice cover can alter the global dynamics

of ocean and air streams, and this effect already appears to be changing weather patterns

at sub-polar latitudes (Petoukhov and Semenov, 2010) and weakening thermohaline ocean

circulation including the current that warms Europe (Liu and Fedorov, 2019).

In brief, the loss of Arctic sea ice is not just a stark indicator of a changing climate, but it

also plays an integral role in the timing and intensity of further global climate change. Not

surprisingly then, the downward trend in Arctic sea ice has been the subject of hundreds



of research studies. The forecasting literature alone is voluminous and impressive in both

methodology and substance.1 Although the importance of accurate polar prediction is hard

to overstate, substantial uncertainty still remains about the future evolution of sea ice.

Indeed, obtaining a deeper understanding of Arctic sea ice loss has been called a “grand

challenge of climate science” (Kattsov et al., 2010).

Much forward-looking sea ice analysis has been based on large-scale climate models, which

represent of the fundamental physical, chemical, and biological drivers of the earth’s climate.

These models attempt to capture the dynamics of the oceans, atmosphere, cryosphere, and

land surface at a high frequency and a granular level of geographic and spatial detail. Such

structural physical models are invaluable for understanding climate variation, determining

event and trend attribution, and assessing alternative scenarios. However, from a forecasting

perspective, climate models have generally underestimated the amount of lost sea ice in recent

decades (Stroeve et al., 2007; Stroeve et al., 2012b; Jahn et al., 2016; and Rosenblum and

Eisenman, 2017). In addition, long-range sea ice projections can differ widely across climate

models (Stroeve and Notz, 2015).

Given the global significance of Arctic conditions and the progress yet to be made on

structural global climate models, we provide a statistical analysis of the long-run future

evolution of Arctic sea ice. There is already some evidence that small-scale statistical models

with no explicitly embedded physical science can have some success in forecasting Arctic

sea ice (Guemas et al., 2016; Wang et al., 2016). Our work is distinguished by its use of

intrinsically stochastic “unobserved components” models, with detailed attention to trend,

seasonality, and serial correlation. Based on several decades of satellite data, we provide

statistical forecasts of the future loss of Arctic sea ice.2 Importantly, these forecasts provide

probability assessments of a range of long-run outcomes and quantify both model parameter

uncertainty and intrinsic uncertainty. Of particular interest are probability assessments of

the timing of an ice-free Arctic, an outcome with vital economic and climate consequences

(Massonnet et al., 2012; Snape and Forster, 2014; and Jahn et al., 2016). For this analysis,

we also introduce a novel statistical modeling mechanism – a shadow ice interpretation –

that allows us to readily account for the zero lower bound on the extent of Arctic sea ice in

our model.

1Recent research includes Petty et al. (2017), Ono et al. (2018), Serreze and Meier (2019), and Ionita
et al. (2019). Ongoing prediction research forums include the Sea Ice Prediction Network at https://www.
arcus.org/sipn and the Polar Prediction Project at https://www.polarprediction.net.

2Our analysis does not examine prediction skill in real-time repeated forecasting, as in Ionita et al. (2019),
but considers very long-range projections at a point in time, as in Guemas et al. (2016) .
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Our resulting distributional forecasts suggest an ice-free Arctic summer is more likely

than not within two decades – much sooner than the projections from many large-scale

climate models. In particular, we contrast our statistical forecasts with projections from

the ensemble of model simulations conducted for the fifth Coupled Model Intercomparison

Project (CMIP5) – a highly-regarded central source for international global climate model

projections. On average, these climate models envisage ice-free Arctic conditions close to the

end of the century (assuming a range of business-as-usual carbon emissions paths). Thus,

besides their relevance for environmental and economic planning, our probability assessments

may also provide a useful benchmark for assessing or calibrating global climate models going

forward.

We proceed as follows. In section 2, we introduce a linear statistical model and use it

to produce long-range sea ice point forecasts. In section 3, we introduce the “shadow ice”

concept to account for the zero-ice lower bound. In section 4, we generalize to a nonlinear

(quadratic) statistical model and to interval forecasts that incorporate several forms of un-

certainty. In section 5, we compare our statistical model forecasts to global climate model

forecasts with particular attention to hard versus soft landings at zero ice. In section 6, we

make probabilistic assessments of several sea ice scenarios. We conclude in section 7.

2 A Linear Statistical Model and Point Forecasts

Arctic sea ice has been continuously monitored since 1978 using satellite-based passive mi-

crowave sensing, which is unaffected by cloud cover or a lack of sunlight. For a polar region

divided into a grid of individual cells, the satellite data provide a brightness reading for each

cell, which can be converted into fractional ice surface coverage estimates for each cell. Sea

ice extent, SIE – a common measure of total ice area – is the total area of all cells with at

least 15 percent ice surface coverage. That is, SIE rounds down cells with measured cover-

age of less than 15 percent to zero and rounds up cells that pass the 15 percent threshold

to full coverage.3 The up-rounding in SIE is effectively a bias correction, as melting pools

on summer ice surfaces can be mistaken for ice-free open water. Our analysis uses monthly

average SIE data from November 1978 through October 2019 from the National Snow and

Ice Data Center (NSIDC). The NSIDC data use the NASA team algorithm to convert the

3Another measure of Arctic ice is sea ice area, which adds together the measured fractions of ice-covered
areas of all cells that pass the 15 percent threshold. For details, see Stroeve and Notz (2015).

3



Figure 1: Arctic Sea Ice Extent (SIE) and Fitted Linear Trend

Notes: We show monthly average Arctic sea ice extent (SIE) from November 1978 to October 2019 with a
fitted linear trend. Each monthly observation is a dot, and September and March observations are colored
red and blue, respectively.

satellite microwave brightness readings into measured ice coverage (Fetterer et al., 2017).4

Figure 1 plots the time series of Arctic SIE – each monthly average observation is a dot

– with an estimated linear trend superimposed. The clear downward trend is accompanied

by obvious seasonality. A more subtle feature is the possible time variation in the seasonal

effects, which may be trending at different rates and possibly nonlinearly. These effects turn

out to be of interest in a complete statistical representation of the dynamics of sea ice.

A simple initial representation to capture this variation is a linear statistical model with

twelve intercepts, one for each month, each of which may be differently trending, and poten-

tially serially correlated stochastic shocks:

SIEt =
12∑
i=1

δiDit +
12∑
j=1

γjDit·TIMEt + εt (1)

4We interpolate the missing December 1987 and January 1988 observations with fitted values from a
regression on trend and monthly dummies estimated using the full data sample.
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Figure 2: SIE: Linear Model Fits and Point Forecasts

Notes: The lines are the twelve in-sample fitted trends and out-of-sample forecasts for Arctic SIE in each
month from the linear model (1). The months with maximal and minimal sea ice extent are colored – March
in blue and September in red – and the blue and red dots are the March and September historical SIE data.
The out-of-sample period is shaded gray.

εt = ρεt−1 + vt

vt ∼ iid(0, σ2),

where the Di’s are monthly dummy variables (Dit=1 in month i and 0 otherwise, i=1, ..., 12)

and TIME is a time dummy (TIMEt=t). Model (1) – and other versions below – are

estimated by maximizing the Gaussian likelihood. Detailed regression results for model (1)

are in column (6) of Table A1 in Appendix A.

Figure 2 shows the resulting linear trends for all twelve months, highlighting March in

blue and September in red. All of the monthly trends slope downward – an indication of

a warming climate – and are highly significant. The slopes of the linear trends also differ

across months (Serreze and Meier, 2019; Cavalieri and Parkinson, 2012). In particular, the

summer months of July through October have notably steeper downward sloping trends than

the winter months of December through May. The estimated September trend, for example,

is twice as steep as the March trend, and the difference is highly statistically significant.

These linear trends are also extrapolated out of sample (shaded gray) through the end of the

century. For example, September sea ice extent is projected to reach zero just after 2072.
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Such linear point forecasts are a useful first step, but they can be improved by allowing for

nonlinearity in the trends and by quantifying forecast uncertainty – as described in section

4. First, however, we elucidate a “shadow ice” modeling approach that takes into account

the fact that the measured amount of sea ice is bounded below by zero.

3 A Shadow Ice Interpretation

One consideration for downward trending statistical models for Arctic sea ice is that the

measured amount of sea ice will always be non-negative. In contrast, extrapolations of simple

trending models will eventually push into negative territory. There are various functional

forms that can be used to model such bounded time series, and the appropriate representation

depends very much on the details of the real-world phenomenon under examination.5 Some

bounds act like reflecting barriers, so the variable of interest spends very little time at the

constraint. Other bounds are absorbing states, and once reached, they may be sustained for

some time.

With positive amounts of sea ice, fluctuations in SIE can serve as a rough approximation

for changes in the amount of thermal energy in the Arctic; that is, hotter and colder surface

temperatures are reflected in less or more ice, respectively. However, this connection breaks

down when the ice disappears: While SIE is fixed at zero, the surface temperature of the

Arctic ocean can continue to warm. Furthermore, the warmer the ocean becomes, the less

likely there will be a quick return of sea ice, which is indicative of a partially-absorbing state.

To account for this effect, the negative values of sea ice produced by a statistical model

can be viewed as a rough expression of ocean temperature. Thus, we redefine the left-hand

side variable of the unconstrained model as a shadow surface ice extent, SIE∗. We view

SIE∗ as a notional variable that equals measured surface ice when positive, but that may

also go negative to represent ocean thermal energy more broadly. Formally, to translate

negative model-based sea ice values into nonnegative sea ice observations, our shadow ice

model modifies the unconstrained model (1) to respect the zero lower bound for ice:

SIE∗t =
12∑
i=1

δiDit +
12∑
j=1

γjDjt·TIMEt + εt (2)

εt = ρεt−1 + vt

5One modeling approach is to rescale the bounded time series data to the real line using, say, a log-ratio
transformation (Wallis, 1987). Alternatively, a time series can be modeled in the original bounded sample
space using, for example, the beta autoregressive model of Rocha and Cribari-Neto (2008).
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vt ∼ iid(0, σ2)

SIEt = max(SIE∗t , 0).

That is, we now interpret our earlier unconstrained linear model of surface ice as a model of

shadow ice, SIE∗, so that the observed extent of sea ice, SIE, is the maximum of SIE∗ and

zero.6

The shadow ice model respects the nonlinearity of observed ice at the zero lower bound

but retains tractability. It also allows us to translate the long-range forecasts from downward

trending models like model (1) – including distributional projections – into observed data

that are always non-negative. As a matter of physical interpretation, very negative values of

shadow ice extent, SIE∗, represent environments in which the thermal content of the Arctic

ocean is high enough that an immediate return to a positive SIE is unlikely. This shadow

ice structure provides an intuitive and simple approximation of the thermodynamics of the

Arctic ocean transition between sea ice and open water and serves as a useful modeling tool

for observed SIE dynamics.7

4 A Quadratic Statistical Model and Interval Forecasts

A downward linear trend is a common representation of the secular decline in Arctic sea ice,

but linearity is not assured by the physical science. There are a variety of climate feedback

mechanisms that could hasten or retard the pace of sea ice loss. The well-known ice albedo

effect occurs as sea ice cover is reduced, and the resulting darker ocean surface absorbs more

energy, which in turn further reduces sea ice (Stroeve et al., 2012b). This feedback effect

amplifies sea ice seasonality and may progressively steepen the downward trend in SIE over

time (Schroeder et al., 2014). The geography of the Arctic Ocean, which is constrained

by land masses that can partially block expanding winter ice becomes less relevant as sea

ice shrinks, and relaxing this constraint may allow greater seasonal variation and a steeper

downward sea ice trend (Serreze and Meier, 2019). However, there are offsetting negative

feedback mechanisms – associated, for example, with increased cloud cover – that could

slow the rate of sea ice loss over time (Portner et al., 2019). Indeed, Stroeve and Notz

6A similar framework has been successfully applied in finance to model nominal interest rates near their
zero lower bound (Christensen and Rudebusch, 2014; Bauer and Rudebusch, 2016).

7Wang et al. (2016) take a different approach by simply constraining the model by the lower bound (for
sea ice concentration in their case), so negative predicted values are is simply set to zero. In a dynamic
model with lagged sea ice, this procedure will result in a representation of a physical bound that is much
closer to a reflecting barrier.

7



(2015) argue against trend amplification in favor of trend constancy (linearity) or trend

attenuation. Moreover, as described in the next section, long-range SIE projections from

large-scale global climate models appear dominated by feedback mechanisms that slow the

rate of September sea ice loss over time.8

The lack of a complete understanding of the drivers of Arctic sea ice recommends con-

sideration of a flexible empirical SIE specification, so we generalize from linear to quadratic

trends:

SIE∗t =
12∑
i=1

δiDit +
12∑
j=1

γjDjt·TIMEt +
12∑
k=1

αkDkt·TIME2
t + εt (3)

εt = ρεt−1 + vt

vt ∼ iid(0, σ2)

SIEt = max(SIE∗t , 0).

We label model (3) as the “general” quadratic model as no constraints are imposed on

the twelve quadratic (αk) parameters. The linear model (2) of course emerges as a special

(constrained) case, when α1=...=α12=0.

Figure 3 shows the SIE estimation fits and forecasts from the general quadratic model,

by month, with March and September highlighted in blue and red, respectively. The trend

curvatures for all months are strikingly similar: the trends for all months decrease at an

increasing rate. That is, the estimated αk coefficients are negative for every month, indicating

that SIE is diminishing at an increasing rate. (Detailed estimation results of model (3)

appear in column (1) of Table A1 in Appendix A.) The size of the estimated negative

coefficients on the quadratic trend terms and their statistical significance vary by month.

The most negative and significant αk coefficients are in the summer months of August,

September, and October, and these months show the greatest trend rates of decline. An F

test of joint hypothesis that α8=α9=α10=0 produces a p-value of 0.00.9 Relative to a linear

trend model, the nonlinear trend model forecasts lower sea ice at long horizons. February-

April SIE point forecasts nevertheless remain well above zero through the century, but

August-October point forecasts approach zero much more quickly. Indeed the quadratic

8More extreme forms of nonlinearity – such as discontinuous breaks, tipping points, and thresholds – are
possible but viewed as less likely (Stroeve and Notz, 2015). Goldstein et al. (2018) argue that Arctic sea ice
is best modeled by step-like shifting means at fitted breakpoints. However, modified statistical information
criteria that properly account for the implicit flexibility of such breakpoints – following Hall et al. (2013) –
do not favor such a shifting mean models relative to a linear trend.

9Because TIME2 and TIME are correlated, an insignificant αk coefficient would not necessarily imply
that nonlinearity is unimportant.
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Figure 3: SIE: General Quadratic Model Fits and Point Forecasts

Notes: The curves are the twelve in-sample fitted trends and out-of-sample forecasts for Arctic SIE in each
month from the general quadratic model (3). The months with maximal and minimal sea ice extent are
colored – March in blue and September in red – and the blue and red dots are the March and September
historical SIE data. The out-of-sample period is shaded gray.

September point forecast hits zero in 2045.

Table 1 summarizes the results from an in-depth statistical investigation of the sum-

mer and non-summer differences in quadratic trend curvature using two standard model

selection criteria: the Akaike information criterion (AIC ) and the Bayesian information cri-

terion (BIC ). The AIC and BIC are estimates of out-of-sample forecasting performance

(mean-squared error), formed by penalizing estimates of in-sample forecasting performance

for degrees of freedom used in model fitting and differing only in the precise penalty ap-

plied (Diebold, 2007). The table reports these model selection criteria for six versions of

the quadratic trend model (3) with various equality constraints imposed on the quadratic

coefficients α1, ..., α12 (with corresponding estimation results in Table A1 in Appendix A).

The models favored by AIC and BIC – that is, those with smaller values – are very

similar and involve summer and non-summer restrictions. The AIC selects a model with

equal αk’s for the nine non-summer months (November-July) and unconstrained αk’s for

the three summer months (August-October). The BIC, which penalizes degrees of freedom

more harshly, selects a slightly more constrained model, with the non-summer αk’s again

constrained to be equal and the three summer αk’s also constrained to be equal. Compared

9



Table 1: Akaike and Bayes Information Criteria for Quadratic Coefficient Constraints

(1) (2) (3) (4) (5) (6)

NONE Seq NSeq Seq+NSeq ALLeq ALL0

AIC -0.0673 [3] -0.0651 [4] -0.0913 [1] -0.0877 [2] -0.0639 [5] -0.0569 [6]

BIC 0.2569 [6] 0.2421 [5] 0.1647 [2] 0.1513 [1] 0.1665 [4] 0.1649 [3]

Notes: We show AIC and BIC vaules for the quadratic model with various equality constraints imposed
on the quadratic coefficients α1, ..., α12. “NONE” denotes no constraints, which corresponds to the general
quadratic model (3). “Seq” (“Summer equal”) denotes August-October equal (α8=α9=α10). “NSeq” (“Non-
Summer equal”) denotes November-July equal (α11=α12=α1=...=α7). “Seq+NSeq” denotes summer months
equal and non-summer months (separately) equal, which corresponds to the simplified quadratic model.
“ALLeq ” denotes all months equal (α1=...=α12). “ALL0” denotes all months 0 (α1=...=α12=0), which
corresponds to the linear model (1). Model ranks appear in brackets, where [1] denotes the best (smallest)
criterion value. We show in boldface the best two models according to each criterion.

to the unconstrained version of equation (3) – the general model – both the AIC and BIC

prefer specifications with some summer and non-summer equality constraints imposed. Still,

the constraints are not very binding, so their imposition saves degrees of freedom without

substantially degrading fit. All told, the results of Table 1 suggest a “simplified” quadratic

model, namely model (3) with both summer and non-summer quadratic coefficients con-

strained separately to equality: α8=α9=α10 and α11=α12=α1=...=α7.

Figure 4 shows the simplified quadratic model fits and forecasts. The simplified model

point forecasts are very similar to those of the general quadratic model in Figure 3, with a

zero-ice September also reached in 2045, but the rank ordering of the months in terms of

SIE is better preserved going forward. Going beyond these point forecasts, an important

advantage of a formal statistical approach is that it can quantify the amount of future

uncertainty. Figure 4 supplements the simplified quadratic trend point forecasts with interval

or probability density forecasts. When making long-horizon interval forecasts, it is crucial to

account for parameter estimation error, because its deleterious effects grow with the forecast

horizon. For example, although parameter estimation error may have small effects on 6-

month-ahead intervals, it will be greatly compounded for 600-month-ahead intervals. An

estimate of the time-t standard deviation of the forecast error, which accounts for parameter

estimation error, is δt=s
√

1 + x′t(X
′X)−1xt, where s is the standard error of the regression,

xt is a 36×1 column vector of time-t right-hand-side variables, X is a T×36 matrix whose

columns contain the regression’s right-hand-side variables over time, and T is sample size.10

10See for example Johnston and DiNardo (1972), pp. 153-155, for derivation of this canonical result.
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Figure 4: SIE: Simplified Quadratic Model Fits, Point Forecasts, and Interval Forecasts

Notes: The curves are the twelve in-sample fitted trends and out-of-sample forecasts for Arctic SIE in each
month from the simplified quadratic model. The months with maximal and minimal sea ice extent are
colored – March in blue and September in red – and the blue and red dots are the March and September
historical SIE data. The out-of-sample period is shaded gray. The March and September forecasts also
have ± 2 s.e. blue and red dotted bands that account for parameter estimation uncertainty and intrinsic
uncertainty error.

We use δt to produce the ± 2 δt pointwise prediction intervals of Figure 4. Under normality

of the shocks underlying the simplified quadratic model, the ± 2 δt intervals are approximate

95 percent confidence intervals.11 The intervals widen rapidly; indeed the September interval

starts to include zero before 2040.12

Finally, in Figure 5 we zoom in on the 2060-2062 (36-month) segment of the simplified

quadratic model shadow ice forecast. The point forecast trends down and is seasonally

below zero by then. (Indeed, as already discussed, the point forecast is seasonally below zero

well before then.) Moreover, the ± 2 s.e. intervals widen over time, and entire intervals are

seasonally below zero by then. Hence it appears that, with near certainty, summer SIE will

11Normality of the v shocks does not appear unreasonable, as the simplified quadratic model residuals
have skewness and kurtosis of -0.17 and 3.73, respectively. We also obtained similar results without assuming
normality via bootstrap simulation, which we discuss in section 6.

12In contrast, interval forecasts that fail to account for parameter estimation uncertainty quickly approach
(by about 12 months ahead) the fixed-width interval ± 2 δ, where δ is the estimated unconditional standard
deviation of the AR(1) disturbance in equation (3),

√
σ̂2/(1−ρ̂2) ≈ 0.32 and fail to widen with forecast

horizon.
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Figure 5: SIE∗: Simplified Quadratic Model Point and Interval Forecasts

Notes: We show the forecast of Arctic shadow sea ice extent, SIE∗, for 2060-2062, based on the simplified
quadratic model. The solid black line is the point forecast, the shaded area is the ± 2 s.e. band, and the red
line denotes zero.

vanish by 2060. This result is also clear from our earlier Figure 4, but Figure 5 highlights it

in a different and complementary way.

5 Statistical versus Climate Model Projections

Of the many analyses of the long-term future evolution of Arctic ice, most have focused

on projections from large-scale climate models. Such models are based on the underlying

physical, chemical, and biological processes that govern the dynamics of weather and climate

across ocean, air, ice, and land. The models fit an immense number of variables at a high

temporal frequency and a granular spatial scale (e.g., a 30-minute time interval and a 100km

worldwide grid). Dozens of scientific groups around the world have constructed and currently

maintain such models. Occasionally, these groups conduct concurrent simulations as part

of the Coupled Model Intercomparison Project (CMIP) that involve common sets of inputs

including carbon emissions scenarios. The most recently completed iteration or phase of this

project is the fifth one, denoted CMIP5 (Taylor et al., 2012). The CMIP5 model comparison

study was the main source of climate projections included by the International Panel on

12



Climate Change (IPCC) in its landmark Fifth Assessment Report.

Arctic SIE is a key variable projected by climate models, and the models included in

CMIP5 are generally judged to provide a better fit to Arctic sea ice than earlier CMIP

iterations.13 Figure 6 shows three projections for September SIE constructed as averages

across sets of CMIP5 global climate models. These multi-model mean projections are con-

structed under three different scenarios, or Representative Concentration Pathways (RCPs),

for future greenhouse gas concentrations. The brown, yellow, and blue lines are averages

of the models, respectively, under a high level of carbon emissions (RCP8.5), a medium

level (RCP6.0, yellow), and a low level (RCP4.5, blue).14 The first two higher emissions

scenarios are viewed as more likely business-as-usual outcomes and are the most relevant to

compare to statistical projections that extend the historical sample of past data and assume

a continuation of the world economy’s current population and development trajectories.15

The solid red line in Figure 6 shows the September trend from the simplified quadratic

model estimated on the full sample from November 1978 to October 2019. The dotted lines

bracketing this forecast provide an approximate 95 percent confidence interval. However, the

CMIP5 climate model projections are only based on data through 2005 and do not include

the past dozen or so years of sea ice observations. For comparability to these climate model

projections, we re-estimated the simplified quadratic model using data from 1978 through

2005, and the September trend from this pre-2006 model is shown as the dashed red line.

An interesting first result is that from the close conjunction of the two simplified model

statistical projections (the solid and dashed red lines), the addition of data from 2006 to

2019 does not lead to a significant revision in the statistical trend model. The very modest

differences between the pre-2006 estimated quadratic trend and the full-sample version is an

indication of the stability and suitability of the simplified statistical model.

Comparing the statistical and climate model projections in Figure 6 reveals two salient

features. First, throughout the forecast period, the full-sample statistical model projection is

significantly lower than any of the climate multi-model mean projections. Indeed, the climate

13Stroeve et al. (2007) describes the poor sea ice fit of the CMIP3 models, while the somewhat improved
fit of the CMIP5 models is noted by in Stroeve et al. (2012b).

14The climate model data are described in Serreze and Meier (2019) and Stroeve et al. (2012b) and were
kindly provided by Andrew Barrett at the National Snow and Ice Data Center. The model sets averaged
for each scenario are not identical, with the RCP4.5, RCP6.0, and RCP8.5 scenarios based on 26, 8, and 25
climate models, respectively.

15In the RCP8.5 scenario, continuing increases in greenhouse gas emissions through the end of the century
raise the 2100 global average temperature by about 4.0-6.0◦C above pre-industrial levels (Reidmiller et al.,
2018). In the RCP4.5 scenario, greenhouse gas emissions level off before mid-century, and the 2100 global
average temperature is approximately 2.0-3.0◦C above pre-industrial levels.
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Figure 6: September SIE: Statistical and Climate Model Fits, Point Forecasts, and Interval
Forecasts

Notes: We show fitted values and forecasts of Arctic sea ice extent, SIE. The solid black line is the historical
data for September Arctic sea ice extent from 1979 to 2019. Mean projections from CMIP5 climate models
are shown assuming underlying pathways of a high level of emissions (RCP8.5, brown), medium emissions
(RCP6.0, yellow), and lower emissions (RCP4.5, blue). The climate model projections start in 2006. The
red dashed line is the fitted and projected simplified quadratic model estimated using data from 1979 to
2005. The red solid line is the fitted and projected simplified quadratic trend model estimated using the
full sample from 1979 to 2019, and the red dotted lines are 95% confidence intervals around that projection
taking into account parameterestimation uncertainty and intrinsic uncertainty.

model mean projections are well outside the 95 percent confidence intervals. Relative to the

statistical model estimated on data before 2006 or the full-sample version, the climate model

means are overestimating the 2019 SIE trend by about 1.0 million km2. This wedge is

projected to increase dramatically over the next two decades. Indeed, the pre-2006 and full-

sample statistical trend models project zero ice in 2042 and 2044, respectively, but none of the

climate model mean projections reach a completely ice-free Arctic in this century. Notably,

even assuming a high level of emissions (RCP8.5) – which is a scenario with continuing

increases in average global surface temperatures throughout this century – the multi-model

mean projection never reaches zero Arctic summer sea ice.

Second, in contrast to the statistical projection, the climate model mean projections

show a decreasing rate of ice loss over time – that is, a concave rather than convex structure.

14



Specifically, the climate model projections all display a roughly linear decline for the first

couple of forecast decades (through around 2040) and then start to level out. For the lower

emissions RCP4.5 scenario, the leveling out and deceleration of sea ice partly reflects a

slowdown in the pace of global temperature increases. This effect is not at work in the

RCP8.5 scenario as temperatures steadily climb through 2100. However, very close to zero

sea ice extent, the leveling out of SIE in RCP8.5 appears to reflect the hypothesized difficulty

of melting the thick sea ice clinging near northern coastlines – notably in Greenland and

Canada. Climate models generally assume that these coastal regions will retain sea ice for a

time even after the open Arctic Sea is free of ice. Therefore, a common definition of “ice-free”

or “nearly ice-free” in the literature is a threshold of 1.0 million km2 rather than zero SIE

(Wang and Overland, 2009). Still, even with this higher threshold, the three climate model

mean projections only reach a nearly ice-free Arctic in 2068, 2089, and >2100 for successively

lower emissions scenarios, respectively. In contrast, the pre-2006 statistical projection reaches

the higher 1.0 million km2 threshold in 2037, and the full-sample statistical model reaches

that level in 2039.

Some have argued that climate models generally do well in representing the large-scale

evolution of Arctic sea ice (Stroeve and Notz, 2015), but a number of studies have noted that

the CMIP5 global climate models overpredicted the amount of Arctic sea ice (Massonnet

et al., 2012; Stroeve et al., 2012a; Serreze and Meier, 2019). That overprediction continues,

and its source is not well understood. One proposed correction to this overprediction has

been to focus on the models that fit the historical SIE data better according to certain

metrics (Wang and Overland, 2012). However, there is no agreed upon model selection

criterion. Also, Rosenblum and Eisenman (2017) discount such model selection because

models with more accurate sea ice readings also tend to overpredict global temperatures, so

the selected climate models may be getting sea ice loss right for the wrong reason. Finally,

it should be noted that from a statistical viewpoint, focusing on a simple average forecast

from many models has been shown to be a robust prediction strategy (Diebold and Shin,

2019).

In some respects, the wide differences between the statistical and climate model projec-

tions are not too surprising. In climate models, the monthly observations on total Arctic

SIE are a high-level output from complex, nonlinear, granular representations of the relevant

underlying science. Obtaining good SIE predictions from these models requires correctly

specifying a host of detailed subsidiary processes. Such a bottom-up modeling procedure

has important advantages in structural interpretation and counterfactual scenario analysis.
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However, in a variety of disciplines, a bottom-up procedure, which carries the possibility

that small misspecifications can accumulate and affect high-level aggregates, has not been

found to improve prediction relative to a top-line procedure that directly models the object

of interest (Diebold, 2007). Thus, based on broad previous experience, we believe that direct

statistical projections of Arctic SIE are likely to be relatively accurate.

6 Probability Assessments of an Ice-Free Arctic

An advantage of a formal statistical model is its ability to make probability density forecasts

for a range of possible reduced Arctic sea ice scenarios. Of particular interest are probability

assessments of an ice-free or nearly ice-free Arctic, that is, the probability that SIEt equals

zero or is less than or equal to some threshold γ, respectively. Formally, such event proba-

bilities can be denoted as P (SIEt≤γ), which represents the probability that sea ice extent

is less than or equal to γ in month t. We estimate these scenario probability distributions

using the simplified quadratic model and a stochastic simulation procedure that accounts for

parameter estimation uncertainty and allows for potentially non-Gaussian serially correlated

stochastic shocks. From a given set of simulated paths, we estimate the event probabilities

of interest as the proportion of simulated paths in which the event occurs out of the total

number of paths.16

An event that has attracted much attention in the literature is the initial occurrence of an

ice-free or nearly ice-free September. We calculate the probability for each September with

date t0 so that SIEt0≤γ and SIEt>γ for all t<t0. Specifically, for a given γ and simulation i,

we determine the year in which September SIEt first reaches γ, and then we cumulate across

across all simulations to build a distributional estimate. The red lines in Figure 7 provide the

resulting probability distributions for an initial “ice-free” Arctic September for γ=0, γ=1,

and γ=2, that is, for progressively more lenient definitions of “ice-free.” As noted above, the

middle value of γ, which represents Arctic sea ice of less than 1 million km2, is a popular

benchmark in the literature (Wang and Overland, 2012). For that particular threshold,

the statistical model produces a distribution centered at 2039.17 Of particular interest is

the probability distribution of dates taking into account model parameter uncertainty and

stochastic shock uncertainty, and this distribution shows about a 60 percent probability of

an effectively ice-free September Arctic occurring in the 2030s.

16We provide details on this simulation procedure in Appendix B. For further discussion of the econometrics
of threshold event probabilities, see Bauer and Rudebusch (2016).

17Both the mean and median round to 2039 despite a slightly skewed distribution toward longer times.
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Figure 7: Probability Distributions of First Ice-Free September and First Ice-Free Summer

Notes: We display probability distributions from the simplified quadratic trend model for the date of the
first effectively ice-free September (in red) and first ice-free summer (in black). The “ice-free” threshold is
defined as SIE = 0, 1, or 2 million km2. The brown vertical line denotes the date that the mean CMIP5
climate model projection for RCP8.5 reaches SIE ≤ 1 million km2.

The distribution with γ=1 is bracketed on either side by distributions that use the higher

and lower thresholds. The γ=0 distribution has a median date of 2044 and a 95 percent

range from 2039 to 2053. The γ=2 distribution has a median date of 2033 and an earlier and

slightly narrower 95 percent range from 20230 to 2039. The climate modeling literature has

pointed to several factors that underpin the uncertainty in the timing of an initial September

ice-free Arctic including natural climate variability, emissions path uncertainty, and model

uncertainties related to sea ice dynamics among other elements (Serreze and Meier, 2019).

These factors are at least partially accounted for in our analysis.

The multi-model mean CMIP5 climate projections described above are well outside the

above-described distributional ranges. For a threshold of 1 million km2, the mean projections

reach a nearly ice-free Arctic in 2068 and 2089 under the RCP8.5 and RCP6.0 scenarios,

respectively. The former date is denoted by a vertical brown bar in Figure 7. The range of

dates across individual models is also extremely wide, stretching well over a century (Jahn
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et al., 2016). To narrow this range, researchers have omitted models with poor performance

using a variety of sea ice metrics. With such model selection procedures, the range of dates

for a first nearly ice-free September is narrowed greatly to a 20-year span that runs from

the 2040s to 2060s (Massonnet et al., 2012; Thackeray and Hall, 2019).18 Even such a

carefully circumscribed span is roughly a decade later than the simplified quadratic trend

model produces. Moreover, the climate model simulation exercises are not designed to yield

formal error estimates or measures of uncertainty as the spread of climate model forecasts

in an ensemble is insufficient to completely characterize forecast uncertainty.

Finally, we note the availability of density forecasts for a variety of richer joint scenarios

of interest. As one example, Jahn et al. (2016) describe other definitions of “ice-free” that

involve, for example, 5-year running means. Alternatively, “ice-free” may require no ice

for several consecutive months, for example, to accommodate meaningful freight shipping,

tourism, mining, and commercial fishing (Yevgeny et al., 2017). For example, the strong

Autumn demand for international freight shipping to satisfy year-end Western holiday con-

sumer demand could make a multi-month ice-free Arctic shipping lane of interest. In this

case, the probability distribution of the initial occurrence of an “ice-free” summer – a joint

ice-free August, September, and October – could be relevant. Figure 7 shows this distribu-

tion in black assuming an ice-free threshold of γ=1. This density is notably shifted right –

and more right-skewed – compared to the September scenarios.

7 Concluding Remarks

A rapidly warming Arctic is an ominous sign of the broader climate change caused by hu-

man activity, but declining Arctic sea ice also has an important influence on the pace and

intensity of future climate change. Using statistical models, we have provided probabilistic

projections of 21st-century Arctic sea ice that account for both intrinsic uncertainty and

parameter estimation uncertainty. These projections indicate that summertime Arctic sea

ice will quickly diminish and disappear – with about a 60 percent probability of an effectively

ice-free September Arctic occurring within two decades.

By contrast, the average projection from leading climate models implies an initial seasonal

ice-free Arctic several decades later – even assuming a business-as-usual emissions path.

The slow and decreasing pace at which large-scale climate models reach an ice-free Arctic

may be a serious shortcoming, and such conservative projections of sea ice loss could be a

18Again, the caveats of Rosenblum and Eisenman (2017) regarding such model selection are relevant.
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misleading guide for global climate policy.19 There are numerous examples, across many

disciplines, showing that parsimonious statistical representations can provide forecasts that

are at least as accurate as the ones from detailed structural models.20 However, rather than

treat statistical models as just forecast competitors to climate models, there is very likely

to be scope to use them as complementary representations going forward. The mechanisms

governing Arctic sea ice loss and connecting that loss to atmospheric, oceanic, and permafrost

responses are not fully captured in climate models. Statistical models may be able to help

assist in bridging such gaps until a more complete understanding is available. In addition,

statistical models may also be able to provide a benchmark for model performance that can

be used for model calibration or tuning. Finally, the statistical models may also play a useful

role in helping select among various climate models. All this suggests that further statistical

model research extended to a multivariate setting – say, jointly treating Arctic sea ice and

other variables – may be of particular interest.

19Our statistical results are very much in line with the concerns of Stroeve et al. (2007) regarding the pos-
sibility that the slow projected decline in Arctic sea ice by climate models suggests they are underestimating
the effects of greenhouse gases.

20A classic example from economics is Nelson (1972), who showed that simple statistical models forecast
the economy as well as large-scale structural models based on economic theory.
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Appendices

A Detailed Regression Estimation Results

Table A1: Regression Estimation Results, Quadratic Model with Restrictions

SIE∗t =
∑12

i=1 δiDit +
∑12

j=1 γjDjt·TIMEt +
∑12

k=1 αkDkt·TIME2
t + εt

εt = ρεt−1 + vt

vt ∼ iid(0, σ2)

SIEt = max(SIE∗t , 0)

(1) (2) (3) (4) (5) (6)

NONE Seq NSeq Seq+NSeq ALLeq ALL0

δ1 15.1121* 15.1372* 15.0865* 15.0922* 15.0373* 15.2274*

δ2 15.9436* 15.9570* 15.9404* 15.9457* 15.8894* 16.0804*

δ3 16.0792* 16.0820* 16.0049* 16.0100* 15.9524* 16.1446*

δ4 15.3521* 15.3443* 15.2278* 15.2326* 15.1741* 15.3674*

δ5 13.8027* 13.7832* 13.7604* 13.7650* 13.7056* 13.9001*

δ6 12.4776* 12.4443* 12.4352* 12.4397* 12.3796* 12.5749*

δ7 10.4243* 10.3733* 10.4804* 10.4849* 10.4243* 10.6202*

δ8 8.0945* 8.0202* 8.1441* 8.0754* 8.2547* 8.4508*

δ9 7.4698* 7.3645* 7.5179* 7.4201* 7.6022* 7.7976*

δ10 9.1633* 9.2520* 9.2146* 9.3080* 9.4932* 9.6870*

δ11 11.4307* 11.4872* 11.4928* 11.4997* 11.4488* 11.6374*

δ12 13.5642* 13.6042* 13.5673* 13.5735* 13.5205* 13.7097*

(Continued on next page.)
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Estimation Results, Quadratic Model with Restrictions (Continued)

(1) (2) (3) (4) (5) (6)

NONE Seq NSeq Seq+NSeq ALLeq ALL0

γ1 -0.0026 -0.0029* -0.0023 -0.0024* -0.0017 -0.0040*

γ2 -0.0023 -0.0024 -0.0022* -0.0023* -0.0016 -0.0039*

γ3 -0.0027 -0.0028 -0.0018* -0.0019 -0.0012 -0.0035*

γ4 -0.0031 -0.0030 -0.0016 -0.0016 -0.0009 -0.0033*

γ5 -0.0019 -0.0016 -0.0014 -0.0014 -0.0007 -0.0031*

γ6 -0.0028 -0.0024 -0.0023* -0.0024* -0.0016 -0.0040*

γ7 -0.0034* -0.0028* -0.0041* -0.0042* -0.0034* -0.0058*

γ8 -0.0021 -0.0012 -0.0027 -0.0019 -0.0040* -0.0064*

γ9 -0.0030* -0.0018 -0.0036* -0.0024* -0.0045* -0.0069*

γ10 -0.0006 -0.0016 -0.0012 -0.0023* -0.0044* -0.0068*

γ11 -0.0021 -0.0028* -0.0029* -0.0030* -0.0023* -0.0046*

γ12 -0.0023 -0.0028 -0.0024* -0.0024* -0.0017 -0.0041*

α1 -2.72E-06 -2.11E-06 -3.40E-06 -3.29E-06 -4.78E-06* 0

α2 -3.31E-06 -2.99E-06 -3.40E-06 -3.29E-06 -4.78E-06* 0

α3 -1.53E-06 -1.47E-06 -3.40E-06 -3.29E-06 -4.78E-06* 0

α4 -3.24E-07 -5.17E-06 -3.40E-06 -3.29E-06 -4.78E-06* 0

α5 -2.38E-06 -2.84E-06 -3.40E-06 -3.29E-06 -4.78E-06* 0

α6 -2.39E-06 -3.18E-06 -3.40E-06 -3.29E-06 -4.78E-06* 0

α7 -4.78E-06 -5.96E-06* -3.40E-06 -3.29E-06 -4.78E-06* 0

α8 -8.57E-06* -1.03E-05* -7.35E-06* -8.96E-06* -4.78E-06* 0

α9 -7.89E-06* -1.03E-05* -6.69E-06* -8.96E-06* -4.78E-06* 0

α10 -1.24E-05* -1.03E-05* -1.11E-05* -8.96E-06* -4.78E-06* 0

α11 -4.99E-06* -3.57E-06 -3.40E-06 -3.29E-06 -4.78E-06* 0

α12 -3.45E-06 -2.48E-06 -3.40E-06 -3.29E-06 -4.78E-06* 0

ρ 0.7302* 0.7284* 0.7298* 0.7270* 0.7288* 0.7461*

σ2 0.0468* 0.0473* 0.0472* 0.0478* 0.0491* 0.0497*

Notes: We show maximum-likelihood estimates of the parameters of the general quadratic model (3),
with various equality constraints imposed on the quadratic coefficients α1, ..., α12. “NONE” denotes
no constraints, which corresponds to the general quadratic model (3). “Seq” (“Summer equal”) de-
notes August-October equal (α8=α9=α10). “NSeq” (“Non-Summer equal”) denotes November-July equal
(α11=α12=α1=...=α7). “Seq+NSeq” denotes summer months equal and non-summer months (separately)
equal, which corresponds to the simplified quadratic model. “ALLeq” denotes all months equal (α1=...=α12).
“ALL0” denotes all months 0 (α1=...=α12=0), which corresponds to the linear model (1). In each column,
we show constrained parameter estimates in boldface. “*” denotes significance at the ten percent level.



B Simulation Methods

We estimate scenario probability distributions using the simplified quadratic model (that is,

the quadratic model (3) subject to the constraints α8=α9=α10 and α11=α12=α1=...=α7) and

a simulation procedure that accounts for parameter estimation uncertainty and allows for

potentially non-Gaussian serially correlated stochastic shocks. To describe this simulation

procedure, it is useful to re-write the quadratic model (3) in a more concise notation:

SIE∗t = x′tβ + εt

εt = ρεt−1 + vt

vt ∼ iid(0, σ2)

SIEt = max(SIE∗t , 0),

where x′t=(D1t, ..., D12t, D1t·TIMEt, ..., D12t·TIMEt, D1t·TIME2
t , ..., D1t·TIME2

t ) and

β′=(δ1, ..., δ12, γ1, ..., γ12, α1, ..., α12). We estimate the model by maximum likelihood us-

ing the historical data sample t = 1, ..., T , as discussed earlier, and then we simulate

i = 1, ..., 10, 000 future paths based on the estimated model. Simulation i proceeds as

follows:

1. Draw β(i) from the sampling distribution of the estimated parameter vector β̂, and

form x′tβ
(i), t = T+1, ..., 2099M12.

2. Draw v
(i)
t by sampling with replacement from the observed v̂t’s (with equal weights

1/T ), t = T+1, ..., 2099M12.

3. Draw ρ(i) from the sampling distribution of ρ̂, and form ε
(i)
t = ρ(i)εt−1 + v

(i)
t , t =

T+1, ..., 2099M12, using the last observed historical residual ε̂T as the initial condition.

4. Form SIE
(i)
t = x′tβ

(i) + ε
(i)
t , t = T+1, ..., 2099M12.

Finally, we estimate event probabilities of interest as the relative frequency of occurrence

across the simulated paths.
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