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Abstract: Climate change is a multidimensional shift. While much research has documented
rising mean temperature levels, we also examine range-based measures of daily temperature
volatility. Specifically, using data for select U.S. cities over the past half-century, we compare
the evolving time series dynamics of the average temperature level, AVG, and the diurnal
temperature range, DTR (the difference between the daily maximum and minimum tem-
peratures at a given location). We characterize trend and seasonality in these two series
using linear models with time-varying coefficients. These straightforward yet flexible ap-
proximations provide evidence of evolving DTR seasonality, stable AVG seasonality, and
conditionally Gaussian but heteroskedastic innovations for both DTR and AVG.
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1 Introduction

Climate change can be defined as the variation in the joint probability distribution describing

the state of the atmosphere, oceans, and fresh water including ice (Hsiang and Kopp, 2018).

These are complex, multidimensional physical systems, and the various features of climate

change have been described using a diverse set of summary statistics. One of the most

important aspects of climate change is the evolving distribution of temperature, and many

subsidiary indicators have been used to measure this variation, including, for example, mean

temperature, temperature range, hot and cold spell duration, frost days, growing season

length, ice days, heating and cooling degree days, and start of spring dates (Masson-Delmotte

et al., 2018; Reidmiller et al., 2018). Of course, the level of temperature – the central

tendency of the distribution – has attracted the most attention, in particular, regarding

the upward trend in the average daily temperature (AVG). In contrast, less attention has

been given to temperature volatility, which can be measured by the diurnal temperature

range (DTR), which is the difference between the daily maximum temperature (MAX) and

minimum temperature (MIN) at a given location.

Similar to changes in temperature averages, changes in temperature ranges and variability

can also have important effects on environmental and human health (Davy et al., 2017). For

example, the incidence of temperature extremes such as heat waves depends critically on how

the whole distribution of temperature is shifting – including both the central tendency and

variability. Of course, such temperature extremes can have notable adverse effects on society

and the economy. Temperature variability can stress workers and lower labor productivity,

but it can also have direct effects on output. A salient example is agriculture, whose output

is a function of capital, labor, and weather inputs.1 Indeed, the very viability of certain

agricultural sub-industries, notably wine or maple syrup production, is crucially dependent

on temperature ranges. For example, Robinson (2006) notes that

Diurnal temperature variation is of particular importance in viticulture. Wine

regions situated in areas of high altitude experience the most dramatic swing in

temperature variation during the course of a day. In grapes, this variation has

the effect of producing high acid and high sugar content as the grapes’ exposure

to sunlight increases the ripening qualities while the sudden drop in temperature

at night preserves the balance of natural acids in the grape. (p. 691)

1Wigglesworth (2019) finds an important role of DTR in a panel study of U.S. state-level agricultural
production over and above standard covariates like capital, labor, and AVG.



To better understand the full nature of the changing distribution of temperature, we

examine DTR in select cities in the United States over the past half-century, quantifying

both conditional-mean and conditional-variance dynamics. Our contribution is importantly

methodological as we characterize the trend and seasonality in DTR using linear models

that are easy to interpret but also quite adept at accounting for variation in the temperature

distribution. We allow for time-varying coefficients, which provide a straightforward yet

flexible approximation to more general nonlinear effects. Although our focus is on DTR,

we also provide a parallel analysis for AVG, which allows valuable interpretive context and

contrast. Our work reveals an evolving DTR conditional mean seasonal pattern, in contrast

to the fixed AVG conditional mean seasonal pattern. In addition, our work reveals clear

seasonality in conditional variance dynamics, both for DTR and AVG, although the evidence

is weaker as to their evolution.

The previous research literature that examined DTR struggled for some time to develop

firm conclusions about the dynamics of temperature variability. Even the direction of the

trend in DTR has been somewhat contentious (Alexander and Perkins, 2013). Recent work

has established that the downward trend in DTR in many locations reflects a more rapid

warming of MIN than MAX – generally the result of nighttime lows rising faster than daytime

highs (Davy et al., 2017). However, this differential trending of MIN and MAX, or “diurnal

asymmetry,” is not geographically uniform because of variation in vegetation, cloud cover,

and other factors (Jackson and Forster, 2010; Sun and Pinker, 2014). Along with this trend

in temperature variability, seasonal variation in DTR has also been considered by a few

authors, including Ruschy et al. (1991) and Durre and Wallace (2001), who describe a lower

temperature range in winter than at other times. Qu et al. (2014) also provide some evidence

that the seasonality of DTR in the United States may be changing over time. To capture as

much variation as possible in the distribution of DTR – including trend and seasonal – we

use linear time series models with time-varying coefficients to provide simple yet powerful

representations.

We proceed as follows. In section 2, we provide an introductory analysis for a repre-

sentative city, Philadelphia. Then, in section 3, we broaden the analysis to include fifteen

geographically dispersed U.S. cities, characterizing both conditional-mean and conditional-

variance dynamics. We conclude in section 4.
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Figure 1: Estimated Densities, AVG and DTR, Philadelphia

Notes to figure: We show kernel density estimates for daily AVG and DTR, 1960-2017.

2 Philadelphia

We introduce and illustrate our approach by studying temperature data measured at the

Philadelphia airport (PHL) in a step-by-step fashion. We present most results graphically,

while regression results on which these graphs are based appear in Appendix A.2. The

underlying data are the daily MAX and MIN measured in degrees Fahrenheit, obtained

from the U.S. National Ocean and Atmospheric Administration’s Global Historical Climate

Network database (GHCN-daily).3 Our sample period is from 01/01/1960 to 12/31/2017,

which covers the period of almost all recent climate change.

2.1 Distributions

The daily MAX and MIN are informative of both the central tendency and variability of

the daily continuous-time temperature record. In particular, the daily average temperature,

AVG=(MAX+MIN)/2, is a natural measure of central tendency, and the daily temperature

range, DTR=MAX-MIN, is a natural measure of volatility or variability. DTR is not only a

natural and intuitive estimator of daily volatility, but it is also highly efficient statistically.

The “daily range” has a long and distinguished tradition of use in econometrics due to its

good properties in estimating underlying quadratic variation from discretely-sampled data

(Alizadeh et al., 2002). AVG has been studied and modeled extensively (Raftery et al.,

2EViews code is available at https://www.sas.upenn.edu/~fdiebold/papers/paper122/DTRcode.txt
3The data are available at https://www.ncdc.noaa.gov/ghcn-daily-description. For details, see

Menne et al. (2012) and Jaffres (2019).
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Figure 2: Data and Estimated Trends, AVG and DTR, Philadelphia

Notes to figure: We show time series of daily AVG and DTR (gray) together with estimated linear trends
(blue), 1960-2017. The vertical axes are scaled differently in the two panels, and they are in degrees Fahren-
heit.

2017), and DTR much less so.

In Figure 1, we show kernel estimates of the unconditional densities of AVG and DTR.

The bimodal shape of the AVG density reflects the strong seasonality in AVG. The “winter

mode” is around 40◦F, and the “summer mode” is around 75◦F. The AVG density contrasts

sharply with the unimodal approximately-symmetric density of DTR, which is centered

around 19◦F and much less dispersed.

2.2 Trend

In Figure 2, we display time series plots of the entire data sample of AVG and DTR with

fitted linear trends superimposed. The regression is

Y → c, T IME, (1)

where Y is AVG or DTR, c is a constant, and TIME is a time trend (that is, TIMEt = t

and t = 1, ..., T ). Here and throughout, we use Newey and West (1987) heteroskedasticity

and autocorrelation consistent (HAC) standard errors to assess statistical significance.

The AVG trend slopes upward and is statistically significant, which is consistent with the

overall global warming during this period. The steepness of this trend is surprising, as the

AVG trend grows by nearly five degrees Fahrenheit over the course of the 57-year 1960-2017
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sample. This increment is a bit more than twice as much as the average global increase over

the same period (Rudebusch, 2019). The faster upward trend in the Philadelphia airport

average temperature likely reflects two key factors: (1) average temperatures in growing

cities tend to rise more quickly due to an increasing urban heat island effect and (2) average

land temperatures generally grow more quickly than the global average, which includes ocean

areas that are slow to warm.

As for Philadelphia temperature variability, DTR also has a significant trend, and it

slopes downward, dropping by more than two degrees over the course of the sample – a

diurnal asymmetry. The downward DTR trend arises from different trends in the underlying

MAX and MIN. Both trend upward, but MIN is on a steeper incline as evening temperatures

warm more quickly. Hence, the spread between MAX and MIN tends to shrink, and DTR

decreases over time. As noted by Dai et al. (1999), Davy et al. (2017), and Vinnarasi et al.

(2017), such a downward trend is not found at all locations; however, the relatively muted

upward trend in MAX can generally be ascribed to increased cloud cover, soil moisture, and

precipitation, which lead to decreased surface solar radiation and increased daytime surface

evaporative cooling.

The overall picture, then, involves not only an upward trend in AVG, but also a gradual

tightening of daily fluctuations around that trend. Warming is not only happening, but

progressively less volatility as well. As a result, the increases in heat are becoming harder to

avoid at night, with potentially adverse consequences that likely fall disproportionately on

the poor and vulnerable.

2.3 Fixed Seasonality

In Figure 3, we show the actual and fitted values from regressions of de-trended AVG and

DTR on 12 monthly seasonal dummies,

Ỹ → D1, ..., D12, (2)

where Ỹ is de-trended AVG or DTR – the residuals from regression (1) – and Dit = 1 if

day t is in month i, and 0 otherwise.4 This model is effectively an intercept regression for

deviations from trend, allowing for a different intercept each month.

As shown in the top panel of Figure 3, AVG displays pronounced seasonality. The

4There is of course no need for an intercept, which would be completely redundant and hence cause
perfect multicollinearity.
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Figure 3: De-Trended Data and Estimated Fixed Seasonals, AVG and DTR, Philadelphia

Notes to figure: We show time series of daily linearly de-trended AVG and DTR (gray) together with
estimated fixed seasonals (blue) from regressions of daily linearly de-trended data on 12 monthly seasonal
dummies, 1960-2017. The vertical and horizontal axes are scaled identically in the top and bottom panels.
The vertical axes are in degrees Fahrenheit.

seasonality is highly significant and is responsible for a large amount AVG variation. The

R2 of the seasonal AVG regression (2) is .81. As with the upward trend in AVG, strong

seasonality in deviations of AVG from its trend is hardly surprising – it’s cold in the winter

and hot in the summer.

There is also significant seasonality in DTR, as shown in the bottom panel of Figure 3.

The DTR seasonality was hard to detect visually in the time series plot of Figure 2, because

it is buried in much more noise than that of AVG. The R2 of the seasonal DTR regression

(2) is only .07.

In Figure 4, we show the estimated monthly seasonal factors for AVG (left panel) and

DTR (right panel). They are simply the 12 estimated coefficients on the 12 monthly dummies

in the seasonal regression (2). The seasonal pattern for AVG is as expected – smooth and

unimodal, high in the summer and low in the winter, achieving its maximum in July and

its minimum in January. In contrast, the seasonal pattern for DTR is clearly bi-modal,

with one mode in April-May and one in October. DTR’s two annual peaks (spring and fall)

and two annual troughs (winter and summer) contrast sharply with AVG’s single annual

peak (summer) and single annual trough (winter). This “twin-peaks” or “M-shaped” DTR
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Figure 4: Estimated Fixed Twelve-Month Seasonal Patterns, AVG and DTR, Philadelphia

Notes to figure: We show estimated fixed twelve-month seasonal patterns for AVG and DTR, based on
regressions of daily linearly de-trended data on 12 monthly seasonal dummies, 1960-2017. The vertical axes
are scaled differently in the left and right panels, and they are in degrees Fahrenheit.

pattern is common across many U.S. cites. Moreover, as we shall show, in many locations,

the DTR seasonal pattern has evolved noticeably over time with climate change.

2.4 Evolving Seasonality

The AVG and DTR trends documented thus far are trends in level. More subtle are trends

in seasonality – that is, trends in the tent-shaped AVG seasonal pattern and the M-shaped

DTR seasonal pattern. In that case, the seasonal patterns shown in Figure 4, estimated

over the full sample 1960-2017, would be the sample averages that would not capture the

evolution of the distribution over time.

We now explore the possibility of evolving seasonality by allowing for trends in the

seasonal factors. Mechanically, this involves regressing de-trended AVG or DTR not only on

12 monthly dummies, but also those same 12 dummies interacted with time,

Ỹ → D1, ..., D12, D1·TIME, ..., D12·TIME, (3)

where Ỹ is de-trended AVG or DTR, Dit = 1 if day t is in month i and 0 otherwise,

and TIMEt = t. Regression (3) can capture linearly-trending seasonal deviations from a

linear trend. Effectively, it allows for a different intercept each month, with those intercepts

themselves potentially trending at different rates. In the special case where all interaction
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Figure 5: Estimated Evolving Twelve-Month Seasonal Patterns, DTR and AVG, Philadel-
phia, 1960 vs. 2017

Notes to figure: We show the estimated twelve-month seasonal patterns of AVG and DTR, based on regres-
sions of daily linearly de-trended data on 12 monthly seasonal dummies, and those same dummies interacted
with time, 1960-2017. 1960 is blue, and 2017 is red. The vertical axes are scaled differently in the left and
right panels, and they are in degrees Fahrenheit.

coefficients are zero, it collapses to fixed seasonal deviations from linear trend, as explored

in section 2.3.

For AVG, there are no gains from estimating the more flexible seasonal specification (3).

The interaction terms are universally insignificantly different from zero, clearly indicating

no change over time in the AVG seasonal pattern. In the left panel of Figure 5, we show

the estimated seasonal factors for AVG for the first year (1960) and last year (2017) of

our sample. This range provides the maximum contrast, but the two seasonal patterns are

nevertheless essentially identical.

The results for DTR, however, are very different. Unlike the AVG seasonal, which does

not evolve, the DTR seasonal changes significantly over time. The January-through-March

DTR interaction coefficients are significantly positive, indicating that the winter DTR low

is increasing. In addition, all May-through-October interaction coefficients are negative,

and the October coefficient is large and highly significantly negative. This corresponds to

progressively lower DTR highs in Octobers, so that the fall DTR peak is gradually vanishing.

Both effects (higher winter DTR lows, and lower fall DTR highs) are visually apparent in

the right panel of Figure 5, in which we contrast the estimated DTR M-shaped seasonal

pattern in the first year (1960) and last year (2017) of our sample.
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Figure 6: Fifteen Cities

Note to figure: We show the fifteen cities for which we study AVG and DTR, by airport code.

3 Fifteen Cities

We now expand our analysis to include data from the airports of the fifteen U.S. cities shown

in Figure 6. As with the Philadelphia case study in section 2, we obtain the underlying

daily MAX and MIN data, from which we construct daily AVG and DTR, from the U.S.

National Ocean and Atmospheric Administration’s GHCN-daily, https://www.ncdc.noaa.

gov/ghcn-daily-description. Our sample period is 01/01/1960-12/31/2017.5

We choose these city weather reporting stations because all of them have had temperature

derivatives traded on the Chicago Merchantile Exchange (CME). Consideration of such CME

cities is of interest for several reasons. First, these locations cover a diverse set of climates,

so they can provide a check of the robustness of our Philadelphia results. Second, they

are urban locations that represent large numbers of people and a sizable share of economic

activity – one reason that their CME contracts are traded. Finally, the valuations of weather

derivatives traded in financial markets depend on the evolution of the stochastic structure of

5There were a (very) few missing observations, in which case we interpolated using an average of the
immediately previous and subsequent days’ values, rounded to the nearest integer. The missing observations
are: BWI max: 1/7/04, min: 1/6/04, DSM max: 9/15/96, min: 9/15/96, and TUS max: 5/10/10, 8/18/17,
8/19/17, min: 5/11/10, 8/18/17, 8/19/17.
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temperature dynamics, which is precisely the focus of our modeling efforts and so naturally

paired with the CME cities.

The full set of historically-traded cities includes: Atlanta, ATL; Boston, BOS; Baltimore

Washington, BWI; Chicago, ORD; Cincinnati, CVG; Dallas Fort Worth, DFW; Des Moines,

DSM; Detroit, DTW; Houston, IAH; Kansas City, MCI; Las Vegas, LAS; Minneapolis St

Paul, MSP; New York, LGA; Portland, PDX; Philadelphia, PHL; Sacramento, SAC; Salt

Lake City, SLC, and Tuscon, TUS.6 We exclude Houston, Kansas City, and Sacramento,

however, due to large amounts of missing data, leaving fifteen cities. Presently eight cities

are traded (Atlanta, Chicago, Cincinnati, Dallas, Las Vegas, Minneapolis, New York, and

Sacramento), and all but Sacramento are in our fifteen.7

In addition to expanding our analysis to include more cities, we also employ a more so-

phisticated modeling approach that jointly captures trend, seasonality, and serial correlation,

and we implement it for both conditional-mean and conditional-variance dynamics. Our ap-

proach builds on Campbell and Diebold (2005), but with several important differences. We

study the variability as well as the central tendency of temperature, explore time-varying

seasonality, and consider more cities and a longer data sample.

3.1 Conditional Mean Dynamics

We view the sequential approach employed in section 2 – fitting a trend and then character-

izing seasonality in the de-trended data – as intuitive and transparent. We now consolidate

and extend various aspects of that approach, to arrive at a simple yet powerful joint model.

Regarding consolidation, we move from a multi-step sequential conditional mean modeling

approach to a single-step joint approach with a single conditional mean estimation. Regard-

ing extension, we now include an autoregressive lag in the model. The single autoregressive

lag facilitates simple assessment of the strength of serial correlation in the deviations from the

trend/seasonal, and it also provides potentially valuable pre-whitening for HAC covariance

matrix estimation, as emphasized in Andrews and Monahan (1992).

We proceed by regressing AVG or DTR on an intercept and 11 monthly seasonal dummies

to capture seasonal intercept variation (we drop July, so the included constant captures July

and all estimated seasonal effects are relative to July), a linear trend and 11 seasonal dummies

interacted with it to capture seasonal trend slope variation (we drop the July interaction),

6See ftp://ftp.cmegroup.com/weather/usa/temperature/historical/daily.
7See https://www.cmegroup.com/trading/weather/temperature-based-indexes.html.
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Table 1: AVG, Conditional Mean Dynamics, Fifteen Cities

(1) (2) (3) (4) (5) (6) (7)
station ∆trend p(nt) p(ns) p(nts) ρ R2

ATL 4.36∗ 0.00 0.00 0.00 0.76∗ 0.90
BOS 2.06∗ 0.00 0.00 0.73 0.67∗ 0.89
BWI 2.25∗ 0.00 0.00 0.80 0.71∗ 0.90
CVG 2.53 0.04 0.00 0.94 0.74∗ 0.89
DFW 3.44∗ 0.00 0.00 0.55 0.72∗ 0.89
DSM 3.93∗ 0.00 0.00 0.17 0.76∗ 0.91
DTW 4.09∗ 0.00 0.00 0.99 0.74∗ 0.91
LAS 6.05∗ 0.00 0.00 0.41 0.82∗ 0.96
LGA 4.03∗ 0.00 0.00 0.97 0.71∗ 0.91
MSP 4.72∗ 0.00 0.00 0.18 0.77∗ 0.93
ORD 2.86∗ 0.00 0.00 0.78 0.74∗ 0.90
PDX 2.55∗ 0.00 0.00 0.26 0.76∗ 0.90
PHL 4.78∗ 0.00 0.00 0.95 0.72∗ 0.91
SLC 3.92∗ 0.00 0.00 0.67 0.77∗ 0.93
TUS 4.89∗ 0.00 0.00 0.33 0.79∗ 0.93

Median 3.93 0.00 0.00 0.67 0.74 0.91

Notes to table: All results are based on daily data, 1960-2017. Column 1 reports measurement station by

airport code. Column 2 reports the estimated trend movement over the entire 57-year sample in degrees

Fahrenheit, using a simple regression on linear trend. The remaining columns report results from the

conditional-mean regression (4). p(nt) is the robust p-value for a Wald test of no trend (all coefficients on

TIME and D·TIME interactions are 0), p(ns) is the robust p-value for a Wald test of no seasonality (all

coefficients on D’s and D·TIME interactions are 0), and p(nts) is the robust p-value for Wald a test of

no trend in seasonality (all coefficients on D·TIME interactions are 0). ρ is the estimated autoregressive

coefficient, and R2 is the coefficient of determination. Asterisks denote significance at the one percent level.

See text for details.
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Table 2: DTR, Conditional Mean Dynamics, Fifteen Cities

(1) (2) (3) (4) (5) (6) (7)
station ∆trend p(nt) p(ns) p(nts) ρ R2

ATL -1.65∗ 0.00 0.00 0.14 0.38∗ 0.18
BOS -0.48∗ 0.00 0.00 0.00 0.25∗ 0.10
BWI -0.43 0.34 0.00 0.50 0.38∗ 0.19
CVG -1.31∗ 0.00 0.00 0.04 0.32∗ 0.17
DFW -1.31∗ 0.00 0.00 0.64 0.40∗ 0.17
DSM -0.51∗ 0.00 0.00 0.03 0.32∗ 0.15
DTW -2.88∗ 0.00 0.00 0.00 0.33∗ 0.27
LAS -7.02∗ 0.00 0.00 0.13 0.46∗ 0.37
LGA 0.03∗ 0.00 0.00 0.00 0.23∗ 0.14
MSP -3.07∗ 0.00 0.00 0.00 0.31∗ 0.18
ORD -2.03∗ 0.00 0.00 0.00 0.30∗ 0.20
PDX -1.68∗ 0.00 0.00 0.63 0.50∗ 0.45
PHL -2.13∗ 0.00 0.00 0.00 0.34∗ 0.19
SLC -4.21∗ 0.00 0.00 0.00 0.44∗ 0.47
TUS 0.48 0.05 0.00 0.03 0.51∗ 0.35

Median -1.65 0.00 0.00 0.03 0.34 0.19

Notes to table: See Table 1.

and a first-order autoregressive lag:8

Y → c, T IME, Y (−1), D1, ..., D6, D8, ..., D12, D1·TIME, ...,D6·TIME,D8·TIME, ...,D12·TIME, (4)

where Y is AVG or DTR, TIMEt = t, Y (−1) denotes a 1-day lag, and Dit = 1 if day

t is in month i and 0 otherwise. The joint model (4) allows for different intercepts each

month, with the different intercepts potentially trending linearly at different rates, and for

serially correlated deviations from the trend/seasonal.9 We summarize the estimation results

in Tables 1 and 2, in which we show the weather station identifier (airport code) in column

1, and various aspects of the estimation results in subsequent columns.10

8We continue to use HAC standard errors despite the inclusion of a first-order autoregressive lag, both
because we view the autoregressive lag as a simple pre-whitening strategy rather than a definitive model of
serial correlation, and to maintain robustness to heteroskedasticity in temperature shocks.

9We have explored – and generally confirmed – the robustness of our results by comparing them to those
obtained from a more flexible model with quadratic terms as well as assessing the structural stability of
regressions.

10Detailed regression results for all cities are in Appendix B, and underlying EViews code is at https:

//www.sas.upenn.edu/~fdiebold/papers/paper122/DTRcode.txt.
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3.1.1 Trend

As shown in column 2 of Table 1, the estimated AVG trend movements over the full sample

are large and positive in each city. They are also all highly statistically significant (column

3), with a median p-value of 0.00 for Wald tests of the null hypothesis of no trend. These

p-values are denoted p(nt), where “nt” stands for “no trend”, which corresponds to zero

coefficients on TIME and all TIME interactions in regression (4) (in which case it collapses

to seasonal intercepts with serial correlation). The median estimated trend movement is

3.38◦F, greater than the consensus estimate of the increase in the mean global temperature

over the same period, as U.S. airports have warmed more quickly than the global average.

Similarly, in column 2 of Table 2, we report the estimated full-sample trend movements

for DTR. All but one are negative, and most are significant at the one percent level. The

median estimated trend movement is -1.45◦F, with a median p-value, p(nt), of 0.00 for the

no-trend null hypothesis (column 3). Interestingly, LAS, which has the largest upward AVG

trend, also has the largest downward DTR trend.

3.1.2 Seasonality

In column 4 of Tables 1 and 2, we report p-values for Wald tests of the hypothesis of no AVG

and DTR seasonality, respectively. These p-values are denoted p(ns), where “ns” stands for

“no seasonality”, which corresponds to zero coefficients on all included seasonal dummies

and dummy interactions in regression (4) (in which case it collapses to linear trend with

serial correlation). There is of course strong evidence of seasonality in AVG with all p(ns)’s

equal to 0.00. Less well known is the similarly strong seasonality in DTR with all p(ns)’s

again equal to 0.00.

In column 5 of Tables 1 and 2, we report p-values for Wald tests of the hypothesis of

no evolving (i.e., trending) AVG and DTR seasonality, respectively. These p-values are

denoted p(nts), where “nts” stands for “no trending seasonality”, which corresponds to zero

coefficients on all seasonal dummy interactions in regression (4) (in which case it collapses

to linear trend and fixed seasonal dummies with serial correlation). The results are striking.

There is no evidence for evolving seasonality in AVG; the median AVG p(nts) is 0.67. In

contrast, there is strong evidence of evolving seasonality in DTR; the median DTR p(nts) is

0.03.
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3.1.3 Serial Correlation

Estimated AVG and DTR serial correlation coefficients appear in column 6 of Tables 1 and

2, respectively. All are positive and significant at the one percent level. Their magnitudes,

however, are very different. All those for AVG are around 0.75, whereas all those for DTR

are around 0.35.

It is interesting to note that, although the signal in both AVG and DTR is clearly driven

by trend, seasonal, and cyclical components, the AVG signal is burried in much less noise.

As shown in column 7 of Tables 1 and 2, respectively, all AVG regression R2 values are

around 0.9, whereas all those for DTR are around 0.2.

3.2 Conditional Variance Dynamics

To allow for residual heteroskedasticity, we proceed exactly as in the conditional mean re-

gression, whether for AVG or DTR, except that the left-hand-side variable is now a squared

residual from the conditional mean regression:

e2 → c, T IME, e2(−1), D1, ..., D6, D8, ..., D12, D1·TIME, ...,D6·TIME,D8·TIME, ...,D12·TIME. (5)

The key point is that residual signs don’t matter in the conditional-variance regression (5),

because the residuals are squared. Instead the regression explains the squared variation in

the residuals, which is their volatility, or more precisely (in conditional expectation) their

conditional variance. The conditional-variance regression results appear in Tables 3 and 4,

which are in precisely the same format as our earlier conditional-mean Tables 1 and 2.

Interestingly, AVG and DTR conditional variance e2 dynamics display the same compo-

nent structure as did the conditional mean dynamics, although the patterns of trend and

seasonality differ. The trend patterns are similarly downward for both AVG and DTR.

The seasonal patterns are similarly high in the winter for both AVG and DTR. The condi-

tional variance trend and seasonal effects tend to be significant, but the conditional variance

regressions are noisy, with R2’s around 0.05.

3.3 Shock Distributions

Armed with estimates of residual conditional standard deviations (the square roots of the

fitted values from regression (5)), we can examine the densities of standardized residuals,

that is the densities of the ultimate underlying AVG and DTR shocks. We show their

skewness and kurtosis in Table 5. For each station, skewness is approximately 0 and kurtosis
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Table 3: AVG, Conditional Variance Dynamics, Fifteen Cities

(1) (2) (3) (4) (5) (6) (7)
station ∆trend p(nt) p(ns) p(nts) ρ R2

ATL -0.29 0.23 0.00 0.34 0.07∗ 0.11
BOS -0.01 0.02 0.00 0.02 0.07∗ 0.04
BWI -0.03 0.44 0.00 0.54 0.05∗ 0.06
CVG -0.43∗ 0.00 0.00 0.52 0.04∗ 0.10
DFW -0.11 0.82 0.00 0.77 0.09∗ 0.11
DSM -0.34∗ 0.00 0.00 0.25 0.05 0.08
DTW -0.53∗ 0.00 0.00 0.07 0.05∗ 0.05
LAS -0.61 0.46 0.00 0.39 0.09∗ 0.03
LGA -0.04 0.36 0.00 0.52 0.06∗ 0.05
MSP -0.79∗ 0.00 0.00 0.00 0.04∗ 0.08
ORD -0.79∗ 0.00 0.00 0.40 0.04∗ 0.05
PDX -0.03 0.38 0.00 0.30 0.10∗ 0.02
PHL -0.25∗ 0.00 0.00 0.29 0.05∗ 0.06
SLC -0.14 0.05 0.00 0.04 0.08∗ 0.02
TUS 0.02 0.03 0.00 0.03 0.03∗ 0.04

Median -0.25 0.03 0.00 0.30 0.05 0.05

Notes to table: All results are based on daily data, 1960-2017. Column 1 reports measurement station by

airport code. Column 2 reports the estimated trend movement over the entire 57-year sample in degrees

Fahrenheit, using a regression of absolute residuals from conditional-mean regression (4) on linear trend.

(We use absolute rather than squared residuals for the column 2 regression to keep the units in degress

Fahrenheit.) The remaining columns report results from the conditional-variance regression (5). p(nt) is the

robust p-value for a Wald test of no trend (all coefficients on TIME and D·TIME interactions are 0), p(ns)

is the robust p-value for a Wald test of no seasonality (all coefficients on D’s and D·TIME interactions are

0), and p(nts) is the robust p-value for Wald a test of no trend in seasonality (all coefficients on D·TIME

interactions are 0). ρ is the estimated autoregressive coefficient, and R2 is the coefficient of determination.

Asterisks denote significance at the one percent level. See text for details.
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Table 4: DTR, Conditional Variance Dynamics, Fifteen Cities

(1) (2) (3) (4) (5) (6) (7)
station ∆trend p(nt) p(ns) p(nts) ρ R2

ATL -0.86∗ 0.00 0.00 0.00 0.01 0.10
BOS -0.28 0.13 0.00 0.65 0.07∗ 0.03
BWI -0.32 0.31 0.00 0.90 0.04∗ 0.04
CVG -0.64∗ 0.00 0.00 0.72 0.03∗ 0.05
DFW -0.44 0.12 0.00 0.91 0.03∗ 0.11
DSM -0.50∗ 0.01 0.00 0.87 0.01 0.06
DTW -1.14∗ 0.00 0.00 0.00 0.05∗ 0.03
LAS -1.23∗ 0.00 0.00 0.00 0.04∗ 0.04
LGA -0.47∗ 0.00 0.00 0.14 0.06∗ 0.03
MSP -1.44∗ 0.00 0.00 0.26 0.04∗ 0.03
ORD -1.05∗ 0.00 0.00 0.02 0.04∗ 0.03
PDX -0.79∗ 0.00 0.00 0.01 0.00 0.05
PHL -0.89∗ 0.00 0.00 0.02 0.07∗ 0.05
SLC -0.77∗ 0.00 0.00 0.02 0.05∗ 0.02
TUS 0.21 0.15 0.00 0.63 0.01 0.04

Median -0.77 0.00 0.00 0.14 0.04 0.04

Notes to table: See Table 3.

is approximately 3, corresponding to conditional normality. Indeed for DTR the median

skewness and kurtosis are 0.00 and 3.00, respectively.

4 Concluding Remarks

Climate change is one of the most consequential and pressing issues of our time. We have

focused on DTR as an important summary statistic for characterizing climate change. We

have provided new stochastic time series representations of DTR that can capture in partic-

ular its evolving seasonality. Throughout we have also provided parallel contrasting results

for AVG. Indeed the results in Tables 1-5 provide a detailed summary of both DTR and

AVG stochastic structure.

Our results may prove useful for assessing and improving structural climate models. In

previous research, Braganza et al. (2010), Zhou et al. (2010), Lewis and Karoly (2013),

and Rader et al. (2018) show that DTR is a useful metric to help assess the accuracy and

degree of fit of global climate models. They generally found that these models persistently
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Table 5: Skewness and Kurtosis, Standardized Residuals, Fifteen Cities

(1) (2) (3) (4) (5)
AVG DTR

station skew kurt skew kurt

ATL -0.68 3.74 -0.32 3.19
BOS 0.06 2.96 0.43 3.23
BWI -0.13 3.15 -0.09 2.92
CVG -0.31 3.23 0 2.86
DFW -0.64 4.10 -0.08 3.25
DSM -0.18 3.17 0.13 2.96
DTW -0.07 3.14 0.09 2.98
LAS -0.76 4.51 -0.44 3.07
LGA -0.14 3.02 0.43 3.55
MSP -0.12 3.17 0.22 3.00
ORD -0.13 3.24 0.16 2.90
PDX 0.04 3.14 0.11 2.80
PHL -0.20 3.09 -0.06 3.02
SLC -0.50 3.77 -0.28 2.98
TUS -0.69 4.16 -0.53 3.37

Median -0.18 3.17 0.00 3.00

Notes to table: We show sample skewness and kurtosis of residuals from the conditional-mean regression (4)

divided by square roots of fitted values from the conditional-variance regression (5). See text for details.

underestimated the trend in DTR, which was likely related to deficiencies in modeling water

vapor and cloud cover processes. Our new results on the evolving seasonality of DTR may

provide an additional, more refined, benchmark for such evaluations.

Our results may also prove useful for assessing financial market efficiency, that is, for

assessing whether the temperature forecasts embedded in financial asset prices accurately

reflect temperature’s underlying dynamics. Schlenker and Taylor (2019) address this issue

focusing on AVG, and it may be of interest to extend their analysis to incorporate our more

complete model of AVG dynamics, or to consider a multivariate modeling of AVG and DTR

extending the univariate approach undertaken in this paper.
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C. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou,

M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.) (2018), IPCC,

2018: Global Warming of 1.5 Degrees C. An IPCC Special Report on the Impacts of Global

Warming of 1.5 Degrees C Above Pre-Industrial Levels and Related Global Greenhouse Gas

Emission Pathways, in the Context of Strengthening the Global Response to the Threat

of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, http:

//www.ipcc.ch/report/sr15/.

Menne, M.J., I. Durre, R.S. Vose, B.E. Gleason, and T.G. Houston (2012), “An Overview of

the Global Historical Climatology Network Daily Database,” Journal of Atmospheric and

Oceanic Technology , 29, 897–910.

Newey, W.K. and K.D. West (1987), “A Simple, Positive Semi-definite, Heteroskedasticity

and Autocorrelation Consistent Covariance Matrix,” Econometrica, 55, 703–708.

Qu, M., J. Wan, and X. Hao (2014), “Analysis of Diurnal Air Temperature Range Change

in the Continental United States,” Weather and Climate Extremes , 4, 86–95.

Rader, J., K.B. Karnauskas, and J.Y. Luo (2018), “Diurnal Temperature Variability: an

Observations-Climate Model Intercomparison,” Unpublished Manuscript.

Raftery, A. E., A. Zimmer, D. M. W. Frierson, R. Startz, and P. Liu (2017), “Less Than 2◦C

Warming by 2100 Unlikely,” Nature Climate Change, 7, 637–641.

Reidmiller, D.R., C.W. Avery, D.R. Easterling, K.E. Kunkel, K.L.M. Lewis, T.K. May-

cock, and B.C. Stewart (eds.) (2018), USGCRP, 2018: Impacts, Risks, and Adapta-

tion in the United States: Fourth National Climate Assessment, Volume II, U.S. Global

Change Research Program, Washington, DC, USA. doi: 10.7930/NCA4.2018, https:

//nca2018.globalchange.gov/chapter/front-matter-guide.

Robinson, J. (2006), The Oxford Companion to Wine, Third Edition, Oxford University

Press.

Rudebusch, G.D. (2019), “Climate Change and the Federal Reserve,” FRBSF Economic

Letter .

Ruschy, D.L., D.G. Baker, and R.H. Skaggs (1991), “Seasonal Variation in Daily Temperature

Ranges,” Journal of Climate, 4, 1211–1216.

19

http://www.ipcc.ch/report/sr15/
http://www.ipcc.ch/report/sr15/
https://nca2018.globalchange.gov/chapter/front-matter-guide
https://nca2018.globalchange.gov/chapter/front-matter-guide


Sun, D. and R. Pinker (2014), “Factors Contributing to the Spatial Variability of Satellite

Estimates of Diurnal Temperature Range in the United States,” IEEE Geoscience and

Remote Sensing Letters , 11, 1524–1528.

Vinnarasi, R., C.T. Dhanya, A. Chakravorty, and A. AghaKouchak (2017), “Unravelling

Diurnal Asymmetry of Surface Temperature in Different Climate Zones,” Nature.com

Scientific Reports, Volume 7, Article 7350, https://www.nature.com/articles/s41598-017-

07627-5 .

Wigglesworth, D.S. (2019), “Crop Production and Climate Change: The Importance of

Temperature Variability,” Unpublished Thesis, University of Pennsylvania.

Zhou, L., R.E. Dickinson, A. Dai, and P. Dirmeyer (2010), “Detection and Attribution

of Anthropogenic Forcing to Diurnal Temperature Range Changes from 1950 to 1999:

Comparing Multi-model Simulations with Observations,” Climate Dynamics , 35, 1289–

1307.

20



Appendices

A Sequential and Joint Regression Results for Philadel-

phia

PHL Trend Regression, AVG
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PHL Trend Regression, DTR
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PHL Fixed Seasonal Regression, AVG

Notes: The regression is based on de-trended data. See text for details.
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PHL Fixed Seasonal Regression, DTR

The regression is based on de-trended data. See text for details.
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PHL Evolving Seasonal Regression, AVG

The regression is based on de-trended data. See text for details.
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PHL Evolving Seasonal Regression, DTR

The regression is based on de-trended data. See text for details.
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PHL Joint Conditional Mean Regression, AVG
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PHL Joint Conditional Mean Regression, DTR
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PHL Joint Conditional Variance Regression, AVG
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PHL Joint Conditional Variance Regression, DTR
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B Joint Regression Results for Fifteen Cities

(For Online Publication Only)

ATL Joint Conditional Mean Regression, AVG
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ATL Joint Conditional Mean Regression, DTR
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ATL Joint Conditional Variance Regression, AVG
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ATL Joint Conditional Variance Regression, DTR
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BOS Joint Conditional Mean Regression, AVG
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BOS Joint Conditional Mean Regression, DTR
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BOS Joint Conditional Variance Regression, AVG
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BOS Joint Conditional Variance Regression, DTR
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BWI Joint Conditional Mean Regression, AVG
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BWI Joint Conditional Mean Regression, DTR
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BWI Joint Conditional Variance Regression, AVG
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BWI Joint Conditional Variance Regression, DTR
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ORD Joint Conditional Mean Regression, AVG
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ORD Joint Conditional Mean Regression, DTR
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ORD Joint Conditional Variance Regression, AVG
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ORD Joint Conditional Variance Regression, DTR
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CVG Joint Conditional Mean Regression, AVG
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CVG Joint Conditional Mean Regression, DTR
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CVG Joint Conditional Variance Regression, AVG
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CVG Joint Conditional Variance Regression, DTR
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DFW Joint Conditional Mean Regression, AVG
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DFW Joint Conditional Mean Regression, DTR

52



DFW Joint Conditional Variance Regression, AVG
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DFW Joint Conditional Variance Regression, DTR
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DSM Joint Conditional Mean Regression, AVG
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DSM Joint Conditional Mean Regression, DTR
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DSM Joint Conditional Variance Regression, AVG
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DSM Joint Conditional Variance Regression, DTR

58



DTW Joint Conditional Mean Regression, AVG
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DTW Joint Conditional Mean Regression, DTR

60



DTW Joint Conditional Variance Regression, AVG
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DTW Joint Conditional Variance Regression, DTR
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LAS Joint Conditional Mean Regression, AVG
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LAS Joint Conditional Mean Regression, DTR
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LAS Joint Conditional Variance Regression, AVG
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LAS Joint Conditional Variance Regression, DTR
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MSP Joint Conditional Mean Regression, AVG
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MSP Joint Conditional Mean Regression, DTR

68



MSP Joint Conditional Variance Regression, AVG
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MSP Joint Conditional Variance Regression, DTR
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LGA Joint Conditional Mean Regression, AVG
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LGA Joint Conditional Mean Regression, DTR
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LGA Joint Conditional Variance Regression, AVG
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LGA Joint Conditional Variance Regression, DTR

74



PDX Joint Conditional Mean Regression, AVG
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PDX Joint Conditional Mean Regression, DTR
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PDX Joint Conditional Variance Regression, AVG
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PDX Joint Conditional Variance Regression, DTR
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PHL Joint Conditional Mean Regression, AVG
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PHL Joint Conditional Mean Regression, DTR
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PHL Joint Conditional Variance Regression, AVG
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PHL Joint Conditional Variance Regression, DTR
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SLC Joint Conditional Mean Regression, AVG
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SLC Joint Conditional Mean Regression, DTR
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SLC Joint Conditional Variance Regression, AVG
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SLC Joint Conditional Variance Regression, DTR
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TUS Joint Conditional Mean Regression, AVG
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TUS Joint Conditional Mean Regression, DTR
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TUS Joint Conditional Variance Regression, AVG
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TUS Joint Conditional Variance Regression, DTR
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