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1 Introduction

In many economic activities, agents face uncertainty about the underlying payoff
structure, and experimentation is useful to resolve such a problem. Suppose that
two firms enter a new market. The firms are not familiar with the structure of
the market, and in particular do not know how profitable the market is (e.g., the
intercept of the demand function). The firms interact repeatedly; every period,
each firm chooses a price and then privately observes its sales level, which is
stochastic due to an i.i.d. demand shock. Actions (prices) are perfectly observable.
In this situation, the firms can eventually learn the true profitability of the market
through sales; they may conclude that the market is profitable if they observe
high sales frequently. However, since sales are private information, a firm faces
uncertainty about whether the rival firm also believes that the market is profitable.
Such higher-order beliefs have a significant impact on the firms’ incentives: For
example, suppose that choosing a high price is a “risky” action, in the sense that it
yields a high profit only if the market is profitable enough and the rival firm also
chooses a high price. Then even when a firm believes that the market is profitable,
if it believes that the rival firm is pessimistic about the market profitability (and
hence will choose a low price likely), it may prefer choosing a low price rather
than a high price. Note also that each firm can manipulate the rival firm’s belief
(both the first and higher-order beliefs) via a signaling effect: Even if firm A
believes that the market is not very profitable, it may still be tempted to choose a
high price today, because by doing so, firm B updates the posterior upwards and
starts to choose a high price in later periods, which is beneficial for firm A. Can the
firms sustain collusion in such a situation? I.e., is there an equilibrium in which
they can coordinate on the high price if the market is profitable, and on the low
price if not? More generally, does a long-run relationship facilitate cooperation,
when players privately learn the unknown economic state?

To address this question, we develop a general model of repeated games with
individual learning. In our model, Nature moves first and chooses the state of
the world ω (e.g., the market profitability in the duopoly market). The state is
fixed throughout the game and is not observable to players. Then players play
an infinitely repeated game. Each period, players observe private signals, whose
distribution depends on the state. A player’s stage-game payoff depends both
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on actions and on her private signal, so the state (indirectly) influences expected
payoffs through the signal distribution.

In general, when players have private information about the economic state,
they can effectively coordinate their play if they commonly learn the state so
that the state becomes almost common knowledge in the long run. Cripps, Ely,
Mailath, and Samuelson (2008) show that common learning indeed occurs, if
players learn the state from i.i.d. private signals. Unfortunately, their result does
not apply to our setup, because (i) the signal distribution is influenced by actions,
which are endogenously determined in equilibrium, and (ii) a player learns the
state not only from her private signals, but from the opponents’ actions. Accord-
ingly, in our model, it is not obvious if common learning occurs. Another compli-
cation in our model is that while actions are perfectly observable, a player needs
to rely on her private signals in order to detect the opponents’ deviations, because
in general the opponents choose different actions depending on their signals in
equilibrium. In this sense, our model is a variant of repeated games with private
monitoring, and it is well-known that finding an equilibrium in such a model is a
hard problem (see Sugaya (2019), for example).

Despite such complications, we find that there indeed exist equilibria in which
players commonly learn the state and obtain Pareto-efficient payoffs state by state.
More generally, we find that the folk theorem holds so that any feasible and in-
dividually rational payoff (not only efficient outcomes) can be achievable as an
equilibrium payoff. Our solution concept is an ex-post equilibrium, in that our
equilibrium strategy is a sequential equilibrium regardless of the state; so it an
equilibrium even if the initial prior changes.1 For a fixed discount factor δ , the
set of ex-post equilibrium payoffs is smaller than the set of sequential equilibrium
payoffs, because providing ex-post incentives is more costly in general. However,
it turns out that in our model, this cost becomes almost negligible as the discount
factor approaches one, and accordingly we can obtain the folk theorem using ex-
post equilibria.

1Some recent papers use ex-post equilibria in different settings of repeated games, such as per-
fect monitoring and fixed states (Hörner and Lovo (2009) and Hörner, Lovo, and Tomala (2011)),
public monitoring and fixed states (Fudenberg and Yamamoto (2010) and Fudenberg and Ya-
mamoto (2011a)), private monitoring and fixed states (Yamamoto (2014)), and changing states
with an i.i.d. distribution (Miller (2012)). Note also that there are many papers working on ex-
post equilibria in undiscounted repeated games; see Koren (1992) and Shalev (1994), for example.
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To establish the folk theorem, we need the following two conditions. The
first condition is the statewise full-rank condition, which requires that there be an
action profile such that different states generate different signal distributions, even
if someone unilaterally deviates. This condition ensures that each player can learn
the true state from private signals, and that no one can stop the opponents’ state
learning. The second condition is the correlated learning condition. Roughly,
it requires that signals be correlated across players, so that a player’s signal is
informative about the opponents’. These conditions are not only sufficient, but
“almost necessary” for our result. Indeed, if the statewise full-rank condition does
not hold, one can obtain a payoff significantly higher than the minimax payoff, by
preventing the opponents’ state learning. Also, if the correlated learning condition
does not hold, we can construct an example in which the folk theorem cannot be
obtained by ex-post equilibria. See Appendix D for more details.

Our proof of the folk theorem is constructive, and it builds on the idea of block
strategies of Hörner and Olszewski (2006) and Wiseman (2012). For the sake of
exposition, suppose for now that there are only two players and two states, ω1 and
ω2. In our equilibrium, the infinite horizon is divided into a sequence of blocks.
At the beginning of the block, each player i chooses a state-specific plan about
whether to reward or punish the opponent: Her plan is either “reward the opponent
at both states,” “punish the opponent at both states,” “reward at state ω1 but punish
at ω2,” or “reward at state ω2 but punish at ω1.” As will be explained shortly,
the use of state-specific punishments is crucial in order to provide appropriate
incentives in our environment.

In the first T periods of the block, player 1 collects private signals and makes
an inference ω(1) about the state ω . Similarly, in the next T periods, player 2
makes an inference ω(2) about the state. We take T sufficiently large, so that
each player i’s inference ω(i) matches the true state almost surely. Then in the
next period, each player reports her inference ω(i) using actions, and check if
they indeed agree on the state. Then depending on the reported information and
on the plan chosen at the beginning of the block, they adjust the continuation play
in the rest of the block. For example, if both players report ω1 and plan to reward
each other at ω1, they will choose an action profile which yields high payoffs to
both players at ω1. At the end of the block, (again, via actions) players report
their private signals during the learning phase in earlier periods; this information
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is used to make a minor modification to the continuation play (the punishment
plan for the next block), which helps to provide right incentives. Once the block
is over, a new block starts and players behave as above again.

It is important that players make the inference ω(i) based only on the signals
during the current block; it does not depend on the signals in the previous blocks.
This property ensures that even if someone makes a wrong inference (i.e., ω(i)
does not match the true state), it does not have a long-run impact on payoffs.
Indeed, in the next block, players can learn the true state with high probability
and adjust the continuation play. This implies that even if a player deviates during
the learning phase, its impact on a long-run payoff is not very large, which helps
to deter such a deviation.

We find that this “learning, communication, and coordination” mechanism
works effectively and approximates the Pareto-efficient frontier. Also, common
learning occurs in this equilibrium. A key is that players communicate truthfully
in our equilibrium, which makes (a piece of) their private information public and
facilitates common learning. So in our equilibrium, a signaling effect helps to
achieve common learning.

A critical step in our proof is to show that it is indeed possible to provide ap-
propriate incentives for such truthful communication.2 To provide such truthful
incentives, signal correlation plays a crucial role. Recall that player i makes an
inference ω(i) using private signals pooled over the T -period interval. Since sig-
nals are correlated across players, the opponent’s signal frequency f−i during this
interval is informative about player i’s signal frequency fi, and hence informative
about player i’s inference ω(i). This suggests that the opponent can statistically
distinguish player i’s misreport. A similar idea appears in the mechanism design
literature (e.g., Crémer and Mclean (1988)), but a new complication is that the un-
known state ω influences the signal correlation, which makes signals ambiguous.
For example, there may be player i’s signal which is highly correlated with the
opponent’s signal z−i conditional on the state ω1, but is correlated with a different
signal z̃−i conditional on the state ω2.

To deter player i’s misreport using such ambiguous signals, state-contingent

2Allowing cheap-talk communication does not simplify our analysis, due to this problem; we
need to find a mechanism under which players report truthfully in the cheap-talk communication
stage, and it is essentially the same as the problem we consider here.
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punishments are helpful. A rough idea is that the opponent interprets her signal
frequency f−i taking a state ω as given, and decides whether to punish player i or
not for that state ω . For example, suppose that the opponent’s signal frequency f−i

is typical of the state ω1, i.e., it is close to the true signal distribution at ω1. Then
conditional on the state ω1, the opponent believes that player i’s observation is
also typical of the state ω1 and hence i’s inference is ω(i)=ω1. On the other hand,
conditional on the state ω2, the opponent may not believe that player i’s inference
is ω(i) = ω1, since signals are interpreted differently at different states. Suppose
now that player i reports ω(i) = ω1. Should the opponent punish player i? The
point is that this report is consistent with the opponent’s signals conditional on the
state ω1, but not conditional on ω2. This suggests that the opponent should punish
player i only at the state ω2, by playing a continuation strategy which yields a low
payoff to player i conditional on the state ω2 but a high payoff conditional on ω1.
That is, the opponent should choose the plan “reward player i at ω1 but punish at
ω2” more likely in the next block.

In the proof, we carefully construct such a state-contingent punishment mech-
anism so that player i’s misreport is indeed deterred. In particular, we find that
there is a punishment mechanism such that

(i) If everyone reports truthfully, the probability of a punishment being trig-
gered is almost negligible.

(ii) The truthful report is ex-post incentive compatible, that is, regardless of the
true state ω and the true inference ω(i), reporting ω(i) truthfully is a best
reply for each player i.

The first property ensures that even though a punishment destroys the total welfare
(players choose inefficient actions once it is triggered), the equilibrium payoff can
still approximate the Pareto-efficient outcome.3 The second property implies that
any misreport is not profitable, regardless of player i’s belief about the state ω .
This in particular implies that player i’s history in the previous blocks, which
influences her belief about ω , is irrelevant to her incentive in the current block;
her incentive is solely determined by her history within the current block. This

3Fudenberg, Levine, and Maskin (1994) show that this inefficiency can be avoided if contin-
uation payoffs take the form of “utility transfers.” Unfortunately this technique does not seem to
apply to our setup, because players condition their play on their private signals.
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allows us to use a recursive technique to construct an equilibrium in the infinite-
horizon game.

The design of the state-contingent punishment mechanism is a bit compli-
cated, because player i’s belief about the opponent’s signal frequency f−i is also
influenced by the unknown state ω . For example, suppose that player i’s signal
frequency fi during the T period interval is typical of the state ω1, so that her
inference is ω(i) = ω1. With such an observation fi, conditional on the state ω1,
she believes that the opponent believes that player i’s inference is ω(i) = ω1, and
hence the truthful report of ω(i) = ω1 is a best reply. However, conditional on the
state ω2, she need not believe that the opponent believes ω(i) = ω1 in general. So
to satisfy the property (ii) above, we need to carefully design a (state-contingent)
punishment mechanism for the state ω2, that is, reporting ω(i) = ω1 must be a
best reply for player i at ω2 even though she does not expect the opponent to be-
lieve ω(i) = ω1. More generally, we need to find a mechanism with which for
each given observation fi, player i’s best reply does not depend on the state (the
truthful report of ω(i) must be a best reply at both states), even though her belief
about the opponent’s belief depends on the state. One way to solve this problem
is to let the opponent make player i indifferent over all reports, regardless of the
observation f−i; then the truthful report of ω(i) is always a best reply for player
i. But it turns out that such a mechanism does not satisfy the property (i) above
and causes inefficiency, that is, a punishment is triggered with positive probability
and destroys the total welfare even on the equilibrium path.4 To avoid such ineffi-
ciency while maintaining truthful incentives, we consider a mechanism in which
the opponent makes player i indifferent only after some (but not all) observations
f−i. It turns out that this idea “almost” solves our problem, that is, it allows us to
construct a mechanism in which the truthful report of the summary inference ω(i)
is an approximate best reply regardless of the past history, while minimizing the
welfare destruction. Of course, this is not an exact solution to our problem, as we
need the truthful report to be an exact best reply. To fix this problem, in the last
step of the proof, we modify the equilibrium strategy a bit; we let players reveal
her signal sequence during the learning phase (this is different from ω(i), which
is just a summary statistics of the observed signals) at the end of each block, and

4This is similar to the fact that belief-free equilibria of Ely, Hörner, and Olszewski (2005)
cannot attain the Pareto-efficient outcome when monitoring is imperfect.
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use this information to provide an extra incentive to report the summary inference
ω(i) truthfully. See Section 4.5 for more details.

Fudenberg and Yamamoto (2010) also use the idea of state-contingent punish-
ments, but their proof is not constructive. In particular, both state learning process
and intertemporal incentives are implicitly described through the motion of con-
tinuation payoffs. The interaction of these two forces complicates the motion of
continuation payoffs, which makes it difficult to see how players learn the state
in equilibrium, and how they use this information to punish a deviator. In con-
trast, our proof is constructive, and we explicitly describe how each player learns
the state in each block and chooses a state-contingent punishment plan. We hope
that this helps to understand the role of state-contingent punishment in a more
transparent way.

In Section 5, we extend the analysis to the case in which actions are not ob-
servable. In this new setup, players need to monitor the opponents’ actions only
through noisy private signals, whose distribution is influenced by the unknown
state ω . So it is a repeated game with private monitoring and unknown monitor-
ing structure. We find that the folk theorem still holds when the identifiability
conditions are strengthened. This result generalizes various efficiency theorems
for repeated games with private monitoring5 (in particular the folk theorem of
Sugaya (2019)) to the case in which the monitoring structure is unknown.

To the best of our knowledge, this is the first paper which considers com-
mon learning with strategic players.6 Cripps, Ely, Mailath, and Samuelson (2008)
shows that common learning occurs when players are not strategic, i.e., players
observe private signals about the state each period, without taking actions. In the

5For example, the efficient outcome is approximately achieved in the prisoner’s dilemma, when
observations are nearly perfect (Sekiguchi (1997), Bhaskar and Obara (2002), Piccione (2002), Ely
and Välimäki (2002), Yamamoto (2007), Yamamoto (2009), Hörner and Olszewski (2006), Chen
(2010), and Mailath and Olszewski (2011)), nearly public (Mailath and Morris (2002), Mailath
and Morris (2006), and Hörner and Olszewski (2009)), statistically independent (Matsushima
(2004), Yamamoto (2012)), and even fully noisy and correlated (Kandori (2011), Fong, Gossner,
Hörner and Sannikov (2011), Sugaya (2012), and Sugaya (2019)). Kandori (2002) and Mailath
and Samuelson (2006) are excellent surveys. See also Lehrer (1990) for the case of no discounting,
and Fudenberg and Levine (1991) for the study of approximate equilibria with discounting.

6A recent paper by Basu, Chatterjee, Hoshino, and Tamuz (2017) considers a similar question,
but their analysis is quite different from ours because (i) they impose a special assumption on the
payoff function (there are only two actions, and one of them is a dominant action) and (ii) they
assume conditionally independent signals.

8



follow-up paper (Cripps, Ely, Mailath, and Samuelson (2013)), they extend the
analysis to the case in which signals are not i.i.d.. They argue:

We are motivated by a desire to better understand the structure of
equilibria in repeated games of incomplete information. [...] An un-
derstanding of common learning in this setting requires extending the
setting of Cripps, Ely, Mailath, and Samuelson (2008) in two chal-
lenging directions: The signal distributions are intertemporally de-
pendent and endogenous (being affected by the actions of the agents).
[...] While we are ultimately interested in the signals that both ex-
hibit intertemporal dependence and endogenously determined distri-
butions, this paper focuses on intertemporal dependence, maintaining
the assumption that the distributions are exogenously determined.

Our work addresses their concern above. Indeed, in our model, signal distribu-
tions are endogenously determined in equilibrium and intertemporally dependent.
We find that players’ strategic behavior has a substantial impact on the result:
With non-strategic players, Cripps, Ely, Mailath, and Samuelson (2013) show that
common learning occurs only when the signal distribution satisfies some restric-
tive condition. In contrast, we find that with strategic players, common learning
occurs in general, thanks to the signaling effect discussed above.

Our work belongs to the literature on learning in repeated games. Most of the
existing work assumes that players observe public (or almost public) signals about
the state, and focuses on equilibria in which players ignore private information.
(Wiseman (2005), Wiseman (2012), Fudenberg and Yamamoto (2010), Fudenberg
and Yamamoto (2011a)). An exception is Yamamoto (2014), who considers the
case in which players learn from private signals only. The difference from this
paper is that he focuses on belief-free equilibria, which are a subset of sequential
equilibria. An advantage of belief-free equilibrium is its tractability; it does not re-
quire players’ coordination, and a player’s higher-order belief is payoff-irrelevant.
But unfortunately, its payoff set is bounded away from the Pareto-efficient fron-
tier in general, due to the lack of coordination. In order to avoid such inefficiency,
we consider sequential equilibria in which players coordinate their play through
communication. As noted earlier, a player’s best reply in such communication is
very sensitive to her higher-order belief (her belief about the opponent’s signals),

9



which makes our analysis quite different from the ones in the literature.

2 Repeated Games with Individual Learning

Given a finite set X , let △X be the set of probability distributions over X . Given a
subset W of �n, let coW denote the convex hull of W .

We consider an N-player infinitely repeated game, in which the set of players
is denoted by I = {1, · · · ,N}. At the beginning of the game, Nature chooses the
state of the world ω from a finite set Ω. Assume that players cannot observe the
true state ω , and let µ ∈△Ω denote their common prior over ω .7 Throughout the
paper, we assume that the game begins with symmetric information: Each player’s
initial belief about ω is equal to the prior µ . But it is straightforward to extend
our analysis to the asymmetric-information case as in Fudenberg and Yamamoto
(2011a).8

Each period, players move simultaneously, and each player i ∈ I chooses an
action ai from a finite set Ai. The chosen action profile a ∈ A ≡×i∈IAi is publicly
observable, and in addition, each player i receives a private signal zi about the
state ω from a finite set Zi. The distribution of the signal profile z ∈ Z ≡ ×i∈IZi

depends on the state of the world ω and on the action profile a ∈ A, and is de-
noted by πω(·|a) ∈ △Z. Let πω

i (·|a) denote the marginal distribution of player
i’s signal zi given ω and a, that is, πω

i (zi|a) = ∑z−i∈Z−i πω(z|a). Likewise, let
πω
−i(·|a) be the marginal distribution of the opponents’ signals z−i. Player i’s pay-

off is uω
i (a,zi), so her expected payoff given the state ω and the action profile a

is gω
i (a) = ∑zi∈Zi πω

i (zi|a)uω
i (a,zi).9 Let gω(a) = (gω

i (a))i∈I be the payoff vector
given ω and a. As usual, we write πω(α) and gω

i (α) for the signal distribution

7Because our arguments deal only with ex-post incentives, they extend to games without a
common prior. However, as Dekel, Fudenberg, and Levine (2004) argue, the combination of
equilibrium analysis and a non-common prior is hard to justify.

8Specifically, all the results in this paper extend to the case in which each player i has initial
private information θi about the true state ω , where the set Θi of player i’s possible private in-
formation is a partition of Ω. Given the true state ω ∈ Ω, player i observes θ ω

i ∈ Θi, where θ ω
i

denotes θi ∈ Θi such that ω ∈ θi. In this setup, private information θ ω
i allows player i to narrow

down the set of possible states; for example, player i knows the state if Θi = {(ω1), · · · ,(ωo)}.
9If there are ω ∈ Ω and ω̃ , ω such that uω

i (a,zi) , uω̃
i (a,zi) for some ai ∈ Ai and z ∈ Z, then

it might be natural to assume that player i does not observe the realized value of ui as the game is
played; otherwise players might learn the true state from observing their realized payoffs. Since
we consider ex-post equilibria, we do not need to impose such a restriction.
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and the expected payoff when players play a mixed action profile α ∈ ×i∈I△Ai.
Similarly, we write πω(ai,α−i) and gω

i (ai,α−i) for the signal distribution and the
expected payoff when players −i play a mixed action α−i ∈ × j,i△A j.

As emphasized in the introduction, uncertainty about the payoff functions is
common in applications. Examples that fit our model include:

• Oligopoly market with unknown demand function. Often times, firms do
not have precise information about the market structure, and such a situation
is a special example of our model. To see this, let I be the set of firms, ai be
firm i’s price, and zi be firm i’s sales level. The distribution πω(·|a) of sales
levels depends on the unknown state ω , which means that the firms do not
know the true distribution of the sales level.

• Team production and private benefit. Consider agents working on a joint
project who do not know the profitability of the project; they may learn
the true profitability through their experience over time. To describe such a
situation, let I be the set of agents, ai be agent i’s effort level, and zi be agent
i’s private profit from the project. The distribution πω(·|a) of private profits
depends on the unknown state ω , so the agents learn the true distribution
through their observations over time.

In the infinitely repeated game, players have a common discount factor δ ∈
(0,1). Let (aτ ,zτ

i ) ∈ A×Zi be player i’s private observation in period τ , and let
ht

i = (aτ ,zτ
i )

t
τ=1 be player i’s private history until period t ≥ 1. Let h0

i = /0, and for
each t ≥ 0, and let Ht

i be the set of all private histories ht
i. Let ht = (ht

i)i∈I denote
a profile of t-period private histories, and Ht be the set of all history profiles ht . A
strategy for player i is defined to be a mapping si :

∪∞
t=0 Ht

i →△Ai. Let Si be the
set of all strategies for player i, and let S =×i∈ISi.

The feasible payoff set for a given state ω is defined as

V (ω)≡ co{gω(a)|a ∈ A},

that is, V (ω) is the convex hull of possible stage-game payoff vectors at the state
ω . Then the feasible payoff set for the overall game is defined as

V ≡×ω∈ΩV (ω).
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Thus each feasible payoff vector v ∈ V specifies payoffs for each player and for
each state, i.e., v = ((vω

1 , · · · ,vω
N ))ω∈Ω. Note that a given v ∈V may be generated

using different action distributions at different states ω . We will show that there
are equilibria which approximate payoffs in V if the state is statistically identified
by private signals so that players learn it over time.

Player i’s minimax payoff for a given state ω is defined as

mω
i ≡ min

α−i
max

ai
gω

i (ai,α−i).

Let αω(i) denote the (possibly mixed) minimax action profile against player i
conditional on ω . Let V ∗ be the set of feasible and individually rational payoffs,
that is,

V ∗ ≡ {v ∈V |vω
i ≥ mω

i ∀i∀ω}.

Here the individual rationality is imposed state by state; i.e., V ∗ is the set of fea-
sible payoffs such that each player obtains at least her minimax payoff for each
state ω .10 Throughout the paper, we assume that the set V ∗ is full dimensional:

Condition 1. (Full Dimension) dimV ∗ = |I|× |Ω|.

10If there are only two players and our Condition 2 holds, the minimax payoff mω
i indeed char-

acterizes player i’s minimum equilibrium payoff in the limit as δ → 1. Precisely, we can show that
for any vi < ∑ω∈Ω µ(ω)mω

i , there is δ ∈ (0,1) such that for any δ ∈ (δ ,1), player i’s expected
payoff (here we consider the expected payoff given the initial prior µ) is at least vi for all Nash
equilibria. For simplicity, suppose that there are only two states, ω and ω̃ . (It is not difficult to
extend the argument to the case with more than two states.) Fix an arbitrary Nash equilibrium σ .
Let a∗ be as in Condition 2, and let σT

i be player i’s strategy with the following form:

• Play a∗ for the first T periods, and make an inference ω(i) as in Lemma 1.

• In each period t > T , choose ai ∈ argmaxgω(i)
i (ãi,α−i|ω(i),ht−1

i
) where α−i|ω∗,ht−1

i
is the

distribution of the opponent’s actions conditional on the history ht−1
i and the true state ω∗.

From Lemma 1 (i) and (ii), the probability that ω(i) coincides with the true state is at least 1−
2exp(−T

1
2 ), regardless of the opponent’s play. Hence if player i deviates to σT

i , her payoff is at
least

(1−δ T )gi +δ T ∑
ω∗∈Ω

µ(ω∗)
{(

1−2exp(−T
1
2 )
)

mω∗
i +2exp(−T

1
2 )gi

}
where gi = minω,a gω

i (a). Player i’s equilibrium payoff is at least this deviation payoff, which
approximates ∑ω∈Ω µ(ω)mω

i when we take δ → 1 and then T → ∞. This proves the above claim.
When there are more than two players, player i’s minimum equilibrium payoff can be below

∑ω∈Ω µ(ω)mω
i even in the limit as δ → 1. This is because the opponents may be able to use

correlated actions to punish player i, when private signals are correlated.
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3 The Folk Theorem with Individual Learning

In this section, we will present our main result, the folk theorem for games with
individual learning. In our equilibrium, common learning occurs, so that the state
becomes approximate common knowledge, even though players learn the state
from private signals.

We will use an ex-post equilibrium as an equilibrium concept:

Definition 1. A strategy profile s is an ex-post equilibrium if it is a sequential
equilibrium in the infinitely repeated game in which ω is common knowledge for
each ω .

In an ex-post equilibrium, after every history ht , player i’s continuation play
is a best reply regardless of the true state ω . Hence these equilibria are robust to
a perturbation of the initial prior, that is, an ex-post equilibrium is a sequential
equilibrium given any initial prior.

We will provide a set of conditions under which the folk theorem is established
using ex-post equilibria. Our first condition is the statewise full-rank condition of
Yamamoto (2014), which requires that there be an action profile such that each
player i can learn the true state ω from her private signal zi:

Condition 2. (Statewise Full Rank) There is an action profile a∗ ∈ A such that
πω

i (·|a j,a∗− j) , π ω̃
i (·|a j,a∗− j) for each i, j , i, a j, ω , and ω̃ , ω .

Intuitively, the statewise full rank implies that player i can statistically distin-
guish ω from ω̃ through her private signal zi, even if someone else unilaterally
deviates from a∗.11 We fix this profile a∗ throughout the paper. Note that Condi-
tion 2 is satisfied for generic signal structures if |Zi| ≥ 2 for each i.

Our next condition is about the correlation of players’ private signals. The
following notation is useful. Let πω(z−i|a,zi) denote the conditional probability

11 This condition is stronger than necessary. For example, our proof extends with no difficulty
as long as for each (i,ω, ω̃) with ω , ω̃ , there is an action profile a such that πω

i (·|a′j,a− j) ,
π ω̃

i (·|a′j,a− j) for each j , i and a′j. That is, each player may use different action profiles to
distinguish different pairs of states. But it significantly complicates the notation with no additional
insights. Also, while Condition 2 requires that all players can learn the state from private signals,
it is easy to see that our proof is valid as long as there are at least two players who can distinguish
the state.
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of z−i given that the true state is ω , players play an action profile a, and player i
observes zi; i.e.,

πω(z−i|a,zi) =
πω(z|a)
πω

i (zi|a)
.

Let πω(z−i|a,zi) = 0 if πω
i (zi|a) = 0. Then let Cω

i (a) be the matrix such that
the rows are indexed by the elements of Z−i, the columns are indexed by the el-
ements of Zi, and the (z−i,zi)-component is πω(z−i|a,zi). Intuitively, the matrix
Cω

i (a) maps player i’s observations to her estimate (expectation) of the opponents’
observations conditional on the true state being ω . To get the precise meaning,
suppose that players played an action profile a for T periods, and player i observed
a signal sequence (z1

i , · · · ,zT
i ). Let fi ∈ △Zi denote the corresponding signal fre-

quency, i.e., let fi = ( fi[zi])zi∈Zi where fi[zi] =
|{t≤T |zt

i=zi}|
T for each zi. Given this

observation fi (and given the true state being ω), the conditional expectation of
the opponents’ signal frequency during these T periods is represented by Cω

i (a) fi.
So the matrix Cω

i (a) converts player i’s signal frequency fi to her estimate of the
opponents’ signal frequencies, when the state ω is given.

We impose the following condition:

Condition 3. (Correlated Learning) Cω
i (a

∗)π ω̃
i (a∗) , πω

−i(a
∗) for each i and for

each (ω, ω̃) with ω , ω̃ .

Roughly, this condition requires that signals are correlated across players, so
that if a player observes some “unusual” signal frequency, then she believes that
the opponent’s observation is also “unusual.” To better understand, suppose that
players played a∗ for a while and player i’s signal frequency was equal to the true
distribution π ω̃

i (a∗) for some state ω̃ . Note that this signal frequency is “unusual”
if the true state were ω , ω̃ . Condition 3 requires that in this case, player i be-
lieves that conditional on the state ω , the opponent’s signal frequency is also “un-
usual” and different from the ex-ante distribution πω

−i(a
∗). This condition holds

for generic signal structures, since it can be satisfied by (almost all) small pertur-
bations of the matrix Cω

i (a
∗).12

The following is the main result of this paper:

12Condition 3 does not hold if signals are conditionally independent, in that πω(z|a) =

∏i∈I πω
i (zi|a) for all ω and a. In Appendix D, we present an example with conditionally inde-

pendent signals in which ex-post equilibria cannot approximate the Pareto-efficient frontier.
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Proposition 1. Under Conditions 1 through 3, the folk theorem holds, i.e., for
any v ∈ intV ∗, there is δ ∈ (0,1) such that for any δ ∈ (δ ,1), there is an ex-post
equilibrium with payoff v.

This proposition asserts that there are ex-post equilibria in which players even-
tually obtain payoffs as if they knew the true state and played an equilibrium for
that state. The next proposition shows that in these equilibria, the state indeed
becomes (approximate) common knowledge in the long run.

Proposition 2. Suppose that players play an equilibrium constructed in the proof
of Proposition 1. Then common learning occurs, i.e., the state becomes approxi-
mate common knowledge in the sense of Monderer and Samet (1989).

For completeness, the formal definition of common learning is given in Ap-
pendix C. Cripps, Ely, Mailath, and Samuelson (2008) argue that common learn-
ing helps to facilitate players’ coordination, and show that it occurs if player are
not strategic (so there is no signaling effect) and their signals are i.i.d. over time.
In the follow-up paper (Cripps, Ely, Mailath, and Samuelson (2013)), they also
show that this result relies on the i.i.d. assumption; that is, they show that com-
mon learning does not occur in general, if players are not strategic and signals are
not i.i.d. over time. Our Proposition 2 shows that this negative result overturns if
players are strategic. That is, for generic signal distributions, there are equilibria
in which players commonly learn the state and coordinate the play to approximate
the Pareto-efficient outcome.

In the next section, we provide the proof of Proposition 1 for games with two
players and two states. The proof for the general case can be found in Appendix
B. The proof of Proposition 2 can be found in Appendix C.

4 Proof of Proposition 1 with |I|= |Ω|= 2 and |Ai| ≥
|Zi|

In this section, we will prove Proposition 1 for two-player games with two states
(so I = {1,2} and Ω = {ω1,ω2}). Our proof technique is valid even in the case
with more players and more states, but it significantly complicates the notation.
See Appendix B for more details. We also assume |Ai| ≥ |Zi| for each i. This
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assumption greatly simplifies the structure of the “detailed report round” which
will appear in our proof. Again, we will explain how to drop this assumption in
Appendix B.

Fix an arbitrary payoff vector v ∈ intV ∗. We will construct an ex-post equi-
librium with payoff v, by extending the idea of block strategies of Hörner and
Olszewski (2006). A key difference from Hörner and Olszewski (2006) is that in
our equilibrium, each player makes an inference about the state ω from private
signals, and publicly reports it in order to coordinate the continuation play. A
crucial step in the proof is how to induce the truthful report of the inference.

For each state ω , we choose four values, vω
1 , vω

2 , vω
1 , and vω

2 , as in Figure
1. That is, we choose these values so that the rectangle ×i∈I[vω

i ,v
ω
i ] is in the

interior of the feasible and individually rational payoff set for ω , and contains the
payoff v. Looking ahead, these values are “target payoffs” in our equilibrium: We
will construct an equilibrium in which player i’s payoff in the continuation game
conditional on the state ω is vω

i if the opponent plans to punish her, and vω
i if the

opponent plans to reward her.

vω
1vω

1

vω
2

vω
2

vω

Player 2’s
payoffs

Player 1’s payoffs

V (ω)

gω(aω,GB)

gω(aω,BB) gω(aω,BG)

gω(aω,GG)

Figure 1: Actions aω,GG, aω,GB, aω,BG, and aω,BB

For each state ω , we take four action profiles, aω,GG, aω,GB, aω,BG, and aω,BB

such that the corresponding stage-game payoffs surround the rectangle, as in Fig-
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ure 1. Formally, choose these profiles so that13

max{gω
1 (a

ω,BB),gω
1 (a

ω,GB)}< vω
1 < vω

1 < min{gω
1 (a

ω,GG),gω
1 (a

ω,BG)}

and

max{gω
2 (a

ω,BB),gω
2 (a

ω,BG)}< vω
2 < vω

2 < min{gω
2 (a

ω,GG),gω
2 (a

ω,GB)}.

Intuitively, the ith capital letter in the superscript (G for good, and B for bad)
describes whether player i plans to reward or punish the opponent. Player i’s
payoff is above vω

i when the opponent rewards her, and is below vω
i when the

opponent punishes her. Note that the definition of these action profiles is very
similar to that in Hörner and Olszewski (2006).

Then we pick ε > 0 sufficiently small so that all the following conditions hold:

• For each ω ,

max{gω
1 (a

ω,GB),gω
1 (a

ω,BB),mω1
1 }< vω

1 − ε, (1)

max{gω
2 (a

ω,BG),gω
2 (a

ω,BB),mω2
2 }< vω

2 − ε, (2)

min{gω
1 (a

ω,GG),gω
1 (a

ω,BG)}> vω
1 +2ε, (3)

min{gω
2 (a

ω,GG),gω
2 (a

ω,GB)}> vω
2 +2ε. (4)

• For each ω and ω̃ , ω ,

|πω
−i(a

∗)−Cω
i (a

∗)π ω̃
i (a∗)|> 2

√
ε. (5)

• For each ω , ω̃ , ω , and fi ∈△Zi with |π ω̃
i (a∗)− fi|< ε ,

|Cω
i (a

∗)π ω̃
i (a∗)−Cω

i (a
∗) fi|<

√
ε. (6)

Note that (5) indeed holds for small ε , thanks to Condition 3. Similarly, (1)
through (4) follow from the definition of aω,GG, aω,GB, aω,BG, and aω,BB, and
the fact that vω

i is larger than the minimax payoff mω
i . In the rest of the proof, we

fix this parameter ε .

13For some payoff function, such action profiles aω,xω
may not exist. In this case, as in Hörner

and Olszewski (2006), we take action sequences (aω,xω
(1), · · · ,aω,xω

(n)) instead of action pro-
files; the rest of the proof extends to this case with no difficulty.
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4.1 Automaton with State-Contingent Punishment

In our equilibrium, the infinite horizon is divided into a series of blocks with length
Tb, where a parameter Tb is to be specified. Each player i’s equilibrium strategy
is described as an automaton strategy over blocks. At the beginning of the block,
she chooses an automaton state xi from the set Xi = {GG,GB,BG,BB}. (So there
are four possible automaton states.) This automaton state xi determines her play
during the block; player i with an automaton state xi plays a block strategy sxi

i (to
be specified). See Figure 2.

xi = GG
Play sGG

i

xi = GB
Play sGB

i

xi = BG
Play sBG

i

xi = BB
Play sBB

i

Figure 2: Automaton

The automaton state xi can be interpreted as player i’s state-contingent plan
about whether to reward or punish the opponent. To be more precise, note that
each automaton state xi consists of two components, and let xω1

i ∈ {G,B} denote
the first component and xω2

i ∈ {G,B} denote the second. The first component xω1
i

represents player i’s plan about whether to punish the opponent if the true state
were ω1. Similarly, the second component xω2

i represents her plan if the true state
were ω2. For example, if player i’s automaton state is xi = GB, then during the
current block, she rewards the opponent at state ω1 and punishes the opponent at
state ω2. (In other words, we will choose the corresponding block strategy sGB

i

so that it yields a high payoff to the opponent conditional on ω1 but a low payoff
conditional on ω2.) Likewise, If xi = BG, she punishes the opponent at state ω1

but rewards at state ω2. If xi = GG, she rewards the opponent at both states. If
xi = BB, she punishes the opponent at both states.
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After the block, each player i chooses a new automaton state (plan) x̃i =

(x̃ω1
i x̃ω2

i ) for the next block. Specifically, for each state ω , the new plan for the
state ω is determined by a transition rule ρω

i (·|xω
i ,h

Tb
i ) ∈△{G,B}; that is, given

the current plan xω
i and the current block history hTb

i , player i randomly selects a
new plan x̃ω

i ∈ {G,B} according to this distribution ρω
i . Note that the current plan

xω̃
i for state ω̃ does not directly influence the new plan x̃ω

i for state ω , ω̃ .

Reward −i Punish −i

ρω
i (B|G,hTb

i )

ρω
i (G|B,hTb

i )

ρω
i (G|G,hTb

i ) ρω
i (B|B,hTb

i )

xω
i = Bxω

i = G

Figure 3: Transition of xω
i

In what follows, we will carefully choose the block strategies sGG
i , sGB

i , sBG
i ,

and sBB
i and the transition rules ρω1

i and ρω2
i so that the resulting automaton strat-

egy is indeed an equilibrium.

4.2 Block Strategy sxi
i

4.2.1 Brief Description

Let Tb = 2T +1+T 2 +4T , where T > 0 is to be specified. As noted, we regard
the infinite horizon as a sequence of blocks with length Tb. Each block is further
divided into four parts: The first 2T periods of the block are the learning round.
The next period is the summary report round, and then the next T 2 periods are the
main round. The remaining 4T periods are the detailed report round. See Figure
4.

Learning
Summary Report

Main Detailed Report

2T 1 T 2 4T

Figure 4: Structure of the block. Time goes from left to right.
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As will be explained, we will choose T sufficiently large, so that the main
round is much longer than the other rounds. Thus, the average payoff during the
block is approximately the payoff during the main round. In other words, the
payoffs during the learning round and the two report rounds are almost negligible.

The role of each round is roughly as follows.

Learning Round: The first T periods of the learning round are player 1’s learn-
ing round, in which player 1 collects private signals and makes an inference ω(1)
about the true state ω . The next T periods are player 2’s learning round, in which
player 2 makes an inference ω(2) about the state. During the learning round,
players play the action profile a∗, so Condition 2 ensures that players can indeed
distinguish the state statistically. Player i’s inference ω(i) takes one of three val-
ues: ω1, ω2, or /0. Roughly, she chooses ω(i) = ω1 if the signal frequency during
her learning round is close to the true distribution πω1

i (a∗) at ω1, and ω(i) = ω2 if
it is close to the true distribution πω2

i (a∗) at ω2. Otherwise, she chooses a “null”
inference ω(i) = /0. More details will be given in the next subsubsection. Let
T (i) denote the set of the periods included in player i’s learning round. That is,
T (1) = {1, · · · ,T} and T (2) = {T +1, · · · ,2T}.

Summary Report Round: The next period is the summary report round, in
which each player i publicly reports her inference ω(i) using her action. For sim-
plicity, we assume that each player has at least three actions, so that she can indeed
represent ω(i) ∈ {ω1,ω2, /0} by one-shot actions.14 This “communication” allows
players to coordinate their continuation play. Note that ω(i) is just a summary
statistic of player i’s observation during the learning round, and hence this round
is called “summary report.”

14This assumption is not essential. If there is a player who has only two actions, we can modify
the structure of the block, so that the summary report round consists of two periods and each player
represents her inference by a sequence of actions. The rest of the proof remains the same. (When
the summary report round consists of two periods, each player can obtain partial information
about the opponent’s inference ω(−i) after the first period of the summary report round. But this
information does not influence players’ incentives, that is, the truthful report of ω(i) is still a best
reply. This is so because in our equilibrium, the truthful report of ω(i) is a best reply, regardless
of the opponent’s inference ω(−i).)
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Main Round: The next T 2 periods are the main round, in which players co-
ordinate their play depending on the information revealed in the summary report
round. If players report the same state ω in the summary report round, then players
play the block strategy of Hörner and Olszewski (2006) during the main round:

• If both players report the same state ω in the summary report round, then
in the first period of the main round, they “communicate” again and each
player i reports her current plan xω

i ∈ {G,B} for this state ω . After that,
players choose the action profile aω,xω

until the main round ends, where
xω = (xω

1 xω
2 ) is the reported plan. (Recall that this action profile aω,xω

is
chosen as in Figure 1.) If someone (say player i) deviates from this action
profile aω,xω

, she will be minimaxed by αω(i). That is, players minimax
the deviation, assuming that the summary report ω is the true state.

So if players report the same state ω in the summary report round, they coordinate
their play during the main round and choose an action profile which is consistent
with the current plan. By the definition of the action aω,xω

, each player i obtains
a payoff higher than vω

i if the opponent plans to reward her (i.e., xω
−i = G), and a

payoff lower than vω
i if the opponent plans to punish her (i.e., xω

−i = B).
If players’ reports in the summary report round do not coincide, or if someone

reports the null inference ω(i) = /0, they adjust their play in the following way:

• If one player reports ω but the other reports /0, then the play during the main
round is the same as above. (Intuitively, reporting ω(i) = /0 is treated as an
abstention.)

• If both players report /0, then the play during the main round is the same as
the case in which both players report ω1.

• If one player reports ω1 while the other reports ω2, then each player i reveals
xω(i)

i in the first period of the main round, and then chooses the minimax
action αω(i)

i (−i), where ω(i) denotes the state reported by player i. That
is, each player minimaxes the opponent, assuming that her own summary
report is the true state.

Detailed Report Round: The remaining 4T periods of the block are the detailed
report round. Recall that in the summary report round, each player reports only
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ω(i), which is a summary statistic of her observation during the learning round.
Now, in the detailed report round, each player reports her full history during the
learning round. Specifically, in the first T periods, player 1 reports her observation
(zt

1)t∈T (1) during her own learning round. The assumption |Ai| ≥ |Zi| ensures that
players can reveal her signal zi by choosing one action, so she can indeed report
her signal sequence (zt

1)t∈T (1) using T periods. In the next T periods, player
2 reports her observation (zt

2)t∈T (2) during her own learning round. After that,
player 1 reports her observation (zt

1)t∈T (2) during the opponent’s learning round,
and then player 2 reports (zt

2)t∈T (1). This information (the detailed report) can be
used to double-check whether the opponent’s summary report earlier was truthful
or not, and it influences the choice of the new automaton state x̃i for the next block.
We will explain more on this later.

For each automaton state xi, let sxi
i be the block strategy which chooses actions

as described above. That is, sxi
i chooses the action a∗i and makes the inference

ω(i) in the learning round; reports the summary inference ω(i) in the summary
report round; coordinates the play as above in the main round; and then reports
the actual signal sequence (zt

i)t∈T (i) in the detailed report round. The definition of
sxi

i here is informal, because we have not explained how player i forms ω(i).

Remark 1. Since player 1 makes her inference ω(1) in the first T periods of
the block and player 2 makes her inference ω(2) in the next T periods, player
1’s belief about the opponent’s inference ω(2) and player 1’s belief about the
opponent’s belief about her inference ω(1) are not correlated. Indeed, the latter
belief depends only on the history during the first T periods of the block, while the
former depends on the history during the next T periods. This property is crucial
in order to prove Lemma 3.

4.2.2 Inference Rule

To complete the definition of the block strategy sxi
i , we will explain how each

player i forms the inference ω(i) during her learning round.
Recall that player i’s learning round consists of T periods. Let hT

i denote
player i’s history during this round, and let HT

i denote the set of all such histories.
Player i’s inference rule is defined as a mapping P : HT

i →△{ω1,ω2, /0}. That is,

22



given a private history hT
i , player i (randomly) chooses the inference ω(i) from

the set {ω1,ω2, /0}, according to the distribution P(·|hT
i ). It is important that we

allow player i to choose ω(i) randomly; this property is needed in order to prove
Lemma 1 below.

Given an inference rule P, let P̂(·|ω,a1, · · · ,aT ) denote the conditional distri-
bution of ω(i) induced by P given that the true state is ω and players play the
action sequence (a1, · · · ,aT ) during player i’s learning round. That is,

P̂(·|ω,a1, · · · ,aT ) = ∑
hT

i ∈HT
i

Pr(hT
i |ω,a1, · · · ,aT )P(·|hT

i )

where Pr(hT
i |ω,a1, · · · ,aT ) denotes the probability of hT

i when the true state is
ω and players play (a1, · · · ,aT ). Likewise, for each t ∈ {0, · · · ,T −1} and ht , let
P̂(·|ω,ht

−i,a
t+1, · · · ,aT ,) be the conditional distribution of ω(i) given that the true

state is ω , the opponent’s history up to the tth period is ht
−i = (aτ ,zτ

−i)
t
τ=1, and

players play (at+1, · · · ,aT ) thereafter. Given hT
i , let fi(hT

i ) ∈ △Zi denote player
i’s signal frequency induced by hT

i . That is, fi(hT
i )[zi] =

|{t|zt
i=zi}|
T for each zi.

The following lemma shows that there is an inference rule P which satisfies
some useful properties. The proof is similar to Fong, Gossner, Hörner and San-
nikov (2011) and Sugaya (2019), and can be found in Appendix A.

Lemma 1. Suppose that Condition 2 holds. Then there is T such that for any T >

T , there is an inference rule P : HT
i →△{ω1,ω2, /0} which satisfies the following

properties:

(i) If players do not deviate from a∗, the inference ω(i) coincides with the true
state with high probability: For each ω ,

P̂(ω(i) = ω|ω,a∗, · · · ,a∗)≥ 1− exp(−T
1
2 ).

(ii) Regardless of the past history, the opponent’s deviation cannot manipulate
player i’s inference with high probability: For each ω , t ∈ {0, · · · ,T − 1},
ht , (aτ)T

τ=t+1, and (ãτ)T
τ=t+1 such that aτ

i = ãτ
i = a∗i for all τ ≥ t +1,

|P̂(·|ω,ht
−i,a

t+1, · · · ,aT )− P̂(·|ω,ht
−i, ã

t+1, · · · , ãT )| ≤ exp(−T
1
2 ).

(iii) Suppose that no one deviates from a∗. Then player i’s inference is ω(i) =ω ,
only if her signal frequency is close to the true distribution πω

i (a∗) at ω:
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For all hT
i = (at ,zt

i)
T
t=1 such that at = a∗ for all t and such that P(ω(i) =

ω|hT
i )> 0,

|πω
i (a∗)− fi(hT

i )|< ε.

Clause (i) ensures that state learning is almost perfect. Clause (ii) asserts that
state learning is robust to the opponent’s deviation. Note that both clauses (i) and
(ii) are natural consequences of Condition 2, which guarantees that player i can
learn the true state even if someone else unilaterally deviates. Clause (iii) implies
that player i makes the inference ω(i) =ω only when her signal frequency is close
to the true distribution πω

i (a∗) at state ω . So if player i’s signal frequency is not
close to πω1

i (a∗) or πω2
i (a∗), her inference must be ω(i) = /0. (On the other hand,

as can be seen from the proof of the lemma, player i mixes ω(i) = ω and ω(i) = /0
if her signal frequency is close to πω

i (a∗). See Figure 5.)

B

A

ω(i) = /0

Mix ω(i) = ω1 and ω(i) = /0

Mix ω(i) = ω2 and ω(i) = /0

Figure 5: The triangle is the set of signal frequencies, △Zi. The point A denotes
πω1

i (aG), while B denotes πω2
i (aG).

Clause (iii) is useful when we derive a bound on player i’s higher-order belief
(i.e., player i’s belief about the opponent’s signal frequency f−i, which is informa-
tive about player i’s inference ω(i) about the state). Let Pr( f−i|ω,a∗, · · · ,a∗, fi)

denote the probability of the opponent’s signal frequency being f−i, given that
the true state is ω , players play a∗ for T periods, and player i’s signal frequency
during these periods is fi. Then we have the following lemma:

Lemma 2. Suppose that Condition 3 holds. Then there is T such that for any
T > T , ω , ω̃ , ω , and hT

i such that | fi(hT
i )−π ω̃

i (a∗)|< ε , we have

∑
f−i:| f−i−πω

−i(a
∗)|<ε

Pr( f−i|ω,a∗, · · · ,a∗, fi(hT
i ))< exp(−T

1
2 ).
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Roughly, this lemma implies that if player i has the inference ω(i) = ω̃ (which
is unusual conditional on the state ω , ω̃), then she believes that conditional on
the state ω , the opponent’s observation is also unusual and not close to the ex-ante
distribution πω

−i(a
∗). To see this, suppose that player i’s inference is ω(i) = ω̃ .

Then from Lemma 1(iii), we must have | fi(hT
i )− π ω̃

i (a∗)| < ε . Then from the
lemma above, player i believes that the opponent’s observation is not close to the
ex-ante distribution. As will be explained, this result plays a crucial role in order
to induce the truthful summary report.

Proof. Pick hT
i such that

|π ω̃
i (a∗)− fi(hT

i )|< ε.

Using (6), we have

|Cω
i (a

∗)π ω̃
i (a∗)−Cω

i (a
∗) fi(hT

i )| ≤
√

ε.

Combining this with (5),

|Cω
i (a

∗) fi(hT
i )−πω

−i(a
∗)| ≥

√
ε.

Accordingly, in order to have
∣∣πω

−i(a
∗)− f−i

∣∣< ε , the distance between Cω
i (a

∗) fi(hT
i )

and f−i must be at least
√

ε − ε . However, Hoeffding’s inequality implies that
the probability of such an event is less than exp(−T

1
2 ) for sufficiently large T .

Q.E.D.

Remark 2. Allowing the null inference ω(i) = /0 is important. As noted in the
introduction, given player i’s observation fi, different states induce different be-
liefs about the opponent’s observation f−i. In particular, at the point fi = C in
Figure 6, player i has “conflicting beliefs” at different states; she believes that (i)
conditional on the state ω1, the opponent’s signal frequency f−i is typical of the
state ω1 so that the opponent believes that player i’s inference is ω(i) = ω1, but
(ii) conditional on the state ω2, the opponent’s signal frequency f−i is typical of
the state ω2 so that the opponent believes that player i’s inference is ω(i) = ω2.
In this case, reporting ω(i) = ω1 cannot be a best reply at the state ω2, because it
contradicts with the opponent’s expectation illustrated in (ii) above, and triggers a
state-contingent punishment. (See the proof of Lemma 3 for the formal descrip-
tion of the punishment mechanism.) At the same time, reporting ω(i) =ω2 cannot
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be a best reply at the state ω1, as it contradicts with the opponent’s expectation de-
scribed in (i). So reporting ω(i) = ω1 and ω(i) = ω2 cannot be ex-post incentive
compatible when player i has such conflicting beliefs. Instead, in our equilibrium,
she makes the null inference ω(i) = /0 and reports it truthfully when she has such
conflicting beliefs.

State ω2State ω1

A

B
C

A

C BL

Figure 6: Each line in the left triangle is the set of signal frequencies fi which give
the same expectation about the opponent’s signal frequency at the state ω1. That
is, Cω1

i (a∗) fi =Cω1
i (a∗) f̃i for any fi and f̃i on the same line. At the point fi = A,

player i believes that the opponent’s observation is typical of the state ω1, in that
Cω1

i (a∗) fi = πω1
−i (a

∗); so the same is true at the point fi =C. Likewise, each line
in the right triangle is the set of fi which induce the same expectation at the state
ω2. At the point fi = B, player i believes that the opponent’s observation is typical
of the state ω2, and the same is true at the point fi =C.

4.3 Transition Rule ρi and Equilibrium Conditions

We have defined the block strategy sxi
i : Players learn the state in the learning

round, report the summary inference ω(i) in the summary report round, coordinate
the play in the main round, and then report the full information in the detailed
report round. What remains is to find transition rules ρω1

i and ρω2
i so that the

resulting automaton strategy is an equilibrium.
Formally, we choose the transition rules so that both the promise-keeping con-

dition and the incentive-compatibility condition hold. The promise-keeping con-
dition requires that the target payoffs be exactly achieved state by state; for ex-
ample, if the opponent’s current automaton state is x−i = GB, player i’s payoff in
the continuation game must be vω1

i conditional on the state ω1 (since player i is
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rewarded at ω1) and vω2
i conditional on the state ω2 (since player i is punished at

ω2). Formally, it requires

vω
i = (1−δ Tb)

Tb

∑
t=1

δ t−1E[gω
i (a

t)|ω,sx]+δ Tb
{

vω
i −E[ρω

−i(B|G,hTb
−i)|ω,sx](vω

i − vω
i )
}

(7)

for each ω , i, and x = (x1,x2) with xω
−i = G, and

vω
i = (1−δ Tb)

Tb

∑
t=1

δ t−1E[gω
i (a

t)|ω,sx]+δ Tb
{

vω
i +E[ρω

−i(G|B,hTb
−i)|ω,sx](vω

i − vω
i )
}

(8)

for each ω , i, and x with xω
−i = B. (7) asserts that if xω

−i = G so that the opponent
plans to reward player i for the state ω , then player i’s payoff in the continuation
game is exactly vω

i conditional on the state ω . Indeed, the first term in the right-
hand side is player i’s payoff in the current block, and the second term is her
continuation payoff. (The term E[ρω

−i(B|G,hTb
−i)|ω,sx] is the probability that the

opponent switches to the punishment plan xω
−i = B after the block, in which case

player i’s continuation payoff goes down from vω
i to vω

i .) Similarly, (8) asserts
that if the opponent plans to punish player i for the state ω , player i’s payoff in
the continuation game is vω

i conditional on the state ω . The above conditions
imply that player i’s payoff is solely determined by the opponent’s plan x−i, and
is independent of her own plan xi. (While her current block payoff depends on
the plan xi, this effect is offset by the continuation payoffs, so the total payoff
is indeed independent of xi.) So in each block, player i is indifferent over the
four strategies, sGG

i , sGB
i , sBG

i , and sBB
i . This in turn implies that randomizing the

automaton state xi at the beginning of the block is indeed a best reply for player i.
The incentive-compatibility condition requires that deviating to any other block

strategy sTb
i , sxi

i be not profitable, in each period of the block. That is,

(1−δ Tb−t)
Tb

∑
τ=t+1

δ τ−1
(

E[gω
i (a

τ)|ω,sTb
i ,sx−i

−i ,h
t
i]−E[gω

i (a
τ)|ω,sx,ht

i]
)

≤ δ Tb−t
(

E[ρω
−i(B|G,hTb

−i)|ω,sTb
i ,sx−i

−i ,h
t
i]−E[ρω

−i(B|G,hTb
−i)|ω,sx,ht

i]
)
(vω

i − vω
i )

(9)
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for each ω , i, sTb
i , t, ht

i, and x with xω
−i = G, and

(1−δ Tb−t)
Tb

∑
τ=t+1

δ τ−1
(

E[gω
i (a

τ)|ω,sTb
i ,sx−i

−i ,h
t
i]−E[gω

i (a
τ)|ω,sx,ht

i]
)

≤ δ Tb−t
(

E[ρω
−i(B|B,h

Tb
−i)|ω,sTb

i ,sx−i
−i ,h

t
i]−E[ρω

−i(B|B,h
Tb
−i)|ω,sx,ht

i]
)
(vω

i − vω
i )

(10)

for each ω , i, sTb
i , t, ht

i, and x with xω
−i = B. Here the left-hand side measures

how much the block payoff increases by deviating in period t + 1 of the block,
and the right-hand side measures how much it decreases the continuation payoff
after the block. So these inequalities imply that in any period of the block, devi-
ating from the prescribed strategy sxi

i is not profitable, regardless of the true state.
Accordingly, the resulting automaton strategy is an ex-post equilibrium.

4.4 Complete-Information Transfer Game

In what follows, we will explain how to find the transition rules which satisfy
the above conditions (7) through (10). This completes our proof, because the
resulting automaton strategy is indeed an equilibrium and any payoff in the set
×ω∈Ω×i∈I [vω

i ,v
ω
i ] can be achieved by randomizing the initial automaton state. In

particular, the payoff v is exactly achievable.
It turns out that finding such transition rules is equivalent to finding appropriate

“transfer rules.” This is so because continuation payoffs after the block play a role
like that of transfers in the mechanism design. A similar idea appears in various
past work, e.g., Fudenberg and Levine (1994).

As such, we will focus on the following complete-information transfer game:
Consider a repeated game with Tb periods. Assume complete information, so that
a state ω is given and common knowledge. After the game, player i receives a
transfer according to some transfer rule Uω

i : HTb
−i → R, so player i’s (unnormal-

ized) payoff in this game is
Tb

∑
t=1

δ t−1gω
i (a

t)+δ TbUω
i (hTb

−i).

Let Gω
i (s

Tb,Uω
i ) denote player i’s expected payoff in this game, when players

play sTb . Also, for each history ht
i with t ≤ Tb, let Gω

i (s
Tb,Uω

i ,ht
i) denote player

i’s payoff in the continuation game after history ht
i.
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A few remarks are in order. First, this is the complete-information game,
so the state ω is given and common knowledge. The analysis of this complete-
information game is useful, because our goal is to construct an equilibrium which
satisfies the ex-post incentive compatibility conditions (9) and (10); these condi-
tions require that player i’s deviation be not profitable even when the state ω is
publicly revealed at the beginning of the game.

Second, the transfer Uω
i is state-specific, that is, we use different transfer

rules Uω
i for different states ω . This captures the idea that punishments are

state-specific in our equilibrium in the infinite-horizon game. Specifically, once
the block is over, the opponent chooses a state-specific punishment plan x−i =

(xω1
−i ,x

ω2
−i) for the continuation game, and player i’s continuation payoff condi-

tional on ω is solely determined by the punishment plan xω
−i for the state ω

(see (7) and (8)). Since the opponent chooses these plans xω1
−i and xω2

−i indepen-
dently, player i’s continuation payoffs for different states take quite different val-
ues. Hence the transfer rule Uω

i should depend on ω .
Third, the amount of the transfer depends on the opponent’s history hTb

−i, but
not on player i’s history hTb

i . Again this comes from the fact that player i’s con-
tinuation payoff is determined by the opponent’s plan x−i, which is influenced by
the opponent’s history hTb

−i but not by hTb
i .

Our goal in this subsection is to prove the following two lemmas. The first
lemma is:

Lemma 3. There is T such that for any T > T , there is δ ∈ (0,1) such that for
each δ ∈ (δ ,1), i, and ω , there is a transfer rule Uω,G

i : HTb
−i → R which satisfies

the following properties.

(i) 1−δ
1−δ Tb

Gω
i (s

x,Uω,G
i ) = vω

i for all x with xω
−i = G.

(ii) Gω
i (s

Tb
i ,sx−i

−i ,U
ω,G
i ,ht

i)≤ Gω
i (s

x,Uω,G
i ,ht

i) for all sTb
i , ht

i, and x with xω
−i = G.

(iii) −(vω
i − vω

i )≤ (1−δ )Uω,G
i (hTb

−i)≤ 0 for all hTb
−i.

To interpret this lemma, consider the complete-information game with the
state ω1. Suppose that the opponent plays the block strategy sGG

−i or sGB
−i . That

is, the opponent plans to reward player i for the state ω1. Clauses (i) implies
that if the transfer rule Uω1,G

i is appropriately chosen, then player i becomes in-
different over the prescribed block strategies, sGG

i , sGB
i , sBG

i , and sBB
i , and these
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strategies yield the target payoff vω1
i exactly. Clause (ii) requires that with this

transfer rule Uω1,G
i , any deviation from the prescribed strategies should not be

profitable. Clause (iii) requires that this transfer be non-positive (and bounded),
that is, the transfer takes a form of welfare destruction. This last condition comes
from the fact that player i’s continuation payoff at state ω , which is represented
by the second term in the right-hand side of (7) and (9), is in the interval [vω

i ,v
ω
i ]

and hence below the target payoff vω
i .

As noted in the introduction, a key step in the proof is to construct a trans-
fer rule which induces the truthful summary report, while keeping the welfare
destruction small. To do so, we consider a transfer rule with which the opponent
makes player i indifferent over reports in the summary report round after some (but
not all) histories. In the next subsection, we will provide a sketch of the proof. The
formal proof can be found in Appendix A. (In the complete-information transfer
game, the state ω is common knowledge, but each player i still makes an inference
ω(i) and reports it, just as specified in the description of sxi

i . In particular, when
the inference is ω(i) = ω̃ , player i reports it, even though she knows that it does
not coincide with the true state ω . We need to find a transfer rule under which this
report is indeed incentive compatible.)

Once we have this lemma, we can construct a transition rule ρω
−i(·|G,hTb

−i)

which satisfies the desired properties (7) and (9), by setting

ρω
−i(B|G,hTb

−i) =−
(1−δ )Uω,G

i (hTb
−i)

vω
i − vω

i
.

for each hTb
−i. Indeed, simple algebra shows that Lemma 3(i) implies (7), and

Lemma 3(ii) implies (9). Lemma 3(iii) ensures that ρω
−i(B|G,hTb

−i) defined here is
indeed a probability.

The second lemma is a counterpart to the above lemma. It considers the case
in which the opponent plans to punish player i (i.e., xω

−i = B).

Lemma 4. There is T such that for any T > T , there is δ ∈ (0,1) such that for
each δ ∈ (δ ,1), i, and ω , there is a transfer rule Uω,B

i : HTb
−i → R which satisfies

the following properties.

(i) 1−δ
1−δ Tb

Gω
i (s

x,Uω,B
i ) = vω

i for all x with xω
−i = B.

(ii) Gω
i (s

Tb
i ,sx−i

−i ,U
ω,B
i ,ht

i)≤ Gω
i (s

x,Uω,B
i ,ht

i) for all sTb
i , ht

i, and x with xω
−i = B.
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(iii) 0 ≤ (1−δ )Uω,B
i (hTb

−i)≤ vω
i − vω

i for all hTb
−i.

The last constraint requires the transfer to be non-negative. This comes from
the fact that player i’s continuation payoff at state ω is chosen from the interval
[vω

i ,v
ω
i ] and always above the target payoff vω

i .
It turns out that the proof of this lemma is much simpler than that of the previ-

ous lemma. In particular, we can construct a transfer rule with which the opponent
makes player i indifferent over all reports in the summary report round after ev-
ery history (just as in belief-free equilibria of Ely, Hörner, and Olszewski (2005)).
This is analogous to Hörner and Olszewski (2006); their transfer rule for the pun-
ishment state makes a player indifferent over all actions each period of the block,
while the transfer rule for the reward state has a much more complicated form.
See Appendix A for the formal proof.

Again, once we have this lemma, we can construct a transition rule ρω
−i(·|G,hTb

−i)

which satisfies the desired properties (8) and (10), by setting

ρω
−i(G|B,hTb

−i) =
(1−δ )Uω,B

i (hTb
−i)

vω
i − vω

i

So Proposition 1 immediately follows, once we prove the above two lemmas.

4.5 Proof Sketch of Lemma 3

As noted earlier, a key step in the proof is to show that the opponent can deter a
misreport of the summary inference ω(i) using a transfer, subject to the constraint
that the expected welfare destruction is small. In what follows, we will explain
how to construct such a transfer rule. For simplicity, we will assume that players
do not deviate from the prescribed strategy sx during the learning round and the
main round. That is, we will focus on incentives in the two report rounds.

To begin with, it is useful to point out that player i’s deviation in the summary
report round can be easily deterred by making her indifferent over all summary
reports, but it requires a huge welfare destruction. Let gω

i = maxa∈A |gω
i (a)|. Pick

a constant C, and for each block history hTb
−i, choose the transfer Ûω,G

i (hTb
−i) so that

1−δ
1−δ Tb

[
Tb

∑
t=1

δ t−1gω
i (a

t)+δ TbÛω,G
i (hTb

−i)

]
=C. (11)
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That is, we choose the transfer so that player i’s total payoff is exactly C, regard-
less of the play during the block. Then obviously player i is indifferent over all
actions in each period of the block, so the truthful summary report is a best reply.
Also, if we choose a small C (say, C = −2gω

i ), we can ensure that the transfer
Ûω,G

i (hTb
−i) is negative for each hTb

−i so that clause (iii) of the lemma holds. (From
(11), the transfer Ûω,G

i (hTb
−i) is negative if the constant C is less than the average

block payoff, 1−δ
1−δ Tb ∑Tb

t=1 δ t−1gω
i (a

t).)
Unfortunately, this transfer rule Ûi does not satisfy clause (i). Indeed, player

i’s payoff in this transfer game is C =−2gω
i , which is much lower than the target

payoff vω
i . This shows that making player i indifferent requires a huge welfare

destruction.
Intuitively, this inefficiency result can be understood as follows. Consider the

infinite-horizon game, and suppose that the true state is ω1. Suppose that player i
is indifferent over all summary reports in each block. Then her equilibrium payoff
must be equal to her payoff when she reports ω(i) = ω2 in every block. But this
payoff must be much lower than the target payoff vω

i in general, because players
never agree that the true state be ω1 and they always choose inefficient actions.

In what follows, we will show that by modifying the transfer rule above, the
expected welfare destruction can be significantly reduced, without affecting player
i’s incentive. We do so in two steps. As a first step, we will construct a transfer
rule which “approximately” satisfies the desired properties; i.e., we will construct
a transfer rule such that the expected welfare destruction is small and the truth-
ful summary report is an approximate best reply (but not an exact best reply) for
player i. As will be seen, in this transfer rule, the opponent makes player i indif-
ferent at some histories, but not in other cases; this helps to reduce the expected
welfare destruction, without affecting player i’s incentives by much. Then as a
second step, we will modify the transfer rule further so that the truthful summary
report is an exact best reply for player i. In this second step, communication in
the detailed report round plays a central role.

4.5.1 Step 1: Approximate Incentive Compatibility

In this step, we will construct a transfer rule such that the expected welfare de-
struction is small but yet the truthful summary report is an approximate best reply
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for player i. We will first describe how to choose the transfer rule, and then pro-
vide its interpretation.

• If the opponent could not make the correct inference (i.e., ω(−i) ,ω), then
choose the transfer Ũω,G

i (hTb
−i) as in (11). This makes player i indifferent

over all reports in the summary report round.

• If the opponent’s signal frequency f−i during player i’s learning round is not
typical of ω (i.e., | f−i −πω

−i(a
G)|> ε), then choose the transfer Ũω,G

i (hTb
−i)

as in (11). Again, this makes player i indifferent over all reports in the
summary report round.

• If the opponent’s inference is correct (ω(−i) = ω) and if the opponent’s
signal frequency f−i is typical of ω (| f−i −πω

−i(a
G)|< ε), then

– If player i reports the wrong inference ω(i) = ω̃ , choose the transfer
Ũω,G

i (hTb
−i) as in (11).

– If player i reports ω(i) =ω or ω(i) = /0, choose the transfer Ũω,G
i (hTb

−i)

so that

1−δ
1−δ Tb

[
Tb

∑
t=1

δ t−1gω
i (a

t)+δ TbŨω,G
i (hTb

−i)

]
= vω

i . (12)

That is, we set the transfer so that player i’s total payoff is exactly vω
i .

This transfer Ũω,G
i (hTb

−i) is still negative and satisfies clause (iii) of the
lemma, because in this case, players play aω,xω

with xω
−i = G during

the main round, so that the average block payoff 1−δ
1−δ Tb ∑Tb

t=1 δ t−1gω
i (a

t)

is greater than vω
i .

The first two bullet points consider the case in which the opponent’s obser-
vation is “irregular.” Indeed, in the complete-information game with the state ω ,
the probability of the opponent not having the correct inference is close to zero
(Lemma 1(i)), and the probability of the signal frequency f−i being not typical of
ω is close to zero (the law of large numbers). After such irregular observations,
the opponent makes player i indifferent, using the huge welfare destruction (11).

The third bullet point considers the case in which the opponent’s observation
is “regular.” In this case, (given that the opponent’s signal frequency f−i is typical
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of ω) the opponent believes that player i’s signal frequency is also typical of ω ,
and hence the opponent believes that player i’s inference is ω(i) = ω or ω(i) = /0.
(See Figure 5.) So the opponent punishes player i when her detailed report is not
consistent with this belief; that is, player i receives the huge negative transfer (11)
if she reports the wrong inference ω(i) = ω̃ . Otherwise, the opponent sets the
transfer as in (12), so that player i enjoys a high payoff of vω

i .
The following table summarizes the discussions so far, and describes player i’s

best reply when she knows the opponent’s inference ω(−i) and signal inference
f−i.

If | f−i −πω
−i(a

∗)|< ε If | f−i −πω
−i(a

∗)| ≥ ε
If ω(−i) = ω Report ω(i) = ω or ω(i) = /0 All reports are indifferent
If ω(−i) , ω All reports are indifferent All reports are indifferent

Table 1: Player i’s best reply in the summary report round, given the state ω .

A point of the transfer rule above is that the huge welfare destruction (11)
occurs only when the opponent’s observation is irregular, or player i’s summary
report is irregular (i.e., ω(i) = ω̃). In the complete-information game with the
state ω , these events do not occur almost surely, and hence the expected welfare
destruction is small. Indeed, player i’s expected payoff in the transfer game is
approximately vω

i , because on the equilibrium path, the transfer (12) will be used
almost surely. Hence the above transfer rule approximately satisfies clause (i) of
the lemma.

At the same time, with the transfer rule above, the truthful summary report
is an approximate best reply for player i. To see this, suppose, hypothetically,
that player i knows the opponent’s inference ω(−i) before it is reported in the
summary report round. The following lemma shows that the truthful summary
report is (at least) an approximate best reply, regardless of ω(−i). This result
implies that the truthful summary report is an approximate best reply, even if
player i does not know ω(−i). A key in the proof is that when player i’s summary
inference is ω(i) = ω̃ (which is not typical in the complete-information game with
the state ω), she believes that the opponent’s observation f−i is not typical of ω ,
in which case the opponent makes her indifferent over all summary reports using
the transfer rule (11). This property ensures that player i is almost indifferent over
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all summary reports, and hence the truthful report of ω(i) = ω̃ is an approximate
best reply. Given player i’s signal frequency fi ∈ △Zi during her own learning
round, let

pω
i ( fi) = ∑

f−i:|πω
−i(a

∗)− f−i|<ε
Pr( f−i|ω,a∗, · · · ,a∗, fi),

that is, pω
i ( fi) denotes the conditional probability of the opponent’s signal fre-

quency f−i being close to the ex-ante distribution πω
−i(a

∗).

Lemma 5. Suppose that no one has deviated from a∗ during the learning round.
Suppose that player i knows the opponent’s inference ω(−i) before it is reported
in the summary report round. If ω(−i) , ω , then player i is indifferent over all
actions in the summary report round, and hence the truthful summary report is a
best reply for player i. If ω(−i) = ω , then the following properties hold;

• If player i’s inference is ω(i) = ω , the truthful summary report is a best
reply.

• If player i’s inference is ω(i) = /0, the truthful summary report is a best
reply.

• If player i’s inference is ω(i) = ω̃ , ω , the truthful summary report is
not an exact best reply: A one-shot deviation by reporting ω(i) = ω or
ω(i) = /0 improves her payoff by (vω

i +2gi)pω
i ( fi), where fi is player i’s sig-

nal frequency during her own learning round. However, we have pω
i ( fi)<

exp(−T
1
2 ), so the truthful summary report is an approximate best reply

when T is large.

Proof. From the last row of Table 1, it is clear that player i is indifferent over all
actions when ω(−i) , ω . So we will focus on the case in which ω(−i) = ω .

Case 1: Player i’s inference is ω(i) = ω . From Table 1, reporting ω(i) = ω is
a best reply regardless of f−i. Hence, the truthful report of ω(i) = ω is an exact
best reply, regardless of player i’s belief about f−i.

Case 2: Player i’s inference is ω(i)= /0. For the same reason, reporting ω(i)=
/0 truthfully is a best reply for player i regardless of her belief.

Case 3: Player i’s inference is ω(i) = ω̃ , ω . Note that player i believes
that | f−i −πω

−i(a
∗)| ≥ ε with probability 1− pω

i ( fi), and | f−i −πω
−i(a

∗)|< ε with
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probability pω
i ( fi). From Table 1, player i is indifferent over all summary reports

in the former case. However, in the latter case, the truthful summary report is not
a best reply; the truthful report of ω(i) = ω̃ leads to the huge negative transfer
(11) and yields a payoff of −2gω

i , while reporting ω(i) = ω or ω(i) = /0 leads
to the transfer (12) and yields a payoff of vω

i . So the expected gain by reporting
ω(i) = ω or ω(i) = /0 is indeed (vω

i +2gi)pω
i ( fi).

Now, recall that from Lemmas 1(iii) and 2, whenever player i’s inference is
ω(i)= ω̃ , we have pω

i ( fi)< exp(−T
1
2 ). Hence the expected gain above converges

to zero as T → ∞. Q.E.D.

A few comments are in order. First, under the transfer rule Uω
i above, report-

ing the null inference ω(i) = /0 is “executed” in the sense that it always yields the
same payoff as the one by reporting the correct inference ω(i) = ω , and hence
always a best reply in the complete-information game with the state ω . Since
we choose such a transfer rule Uω

i for each state ω , reporting the null inference
ω(i) = /0 is a best reply regardless of the state ω , and of the opponent’s inference
ω(−i), and of the opponent’s signal frequency f−i. This property is useful to solve
the problem raised in Remark 2, because even if player i has conflicting beliefs
about the opponent’s beliefs at different states (recall the point C in Figure 6 in
the introduction), reporting the null inference ω(i) = /0 is a best reply for player i
at both states.

Second, for the above argument to work, it is crucial that player i’s inference
rule is chosen in such a way that the set of player i’s observations which induce the
inference ω(i) = ω is isolated with the one which induce the inference ω(i) = ω̃ .
That is, the two circles in Figure 5 are disjoint, and there is no “knife-edge” case in
which player i’s inference switches from ω(i) = ω1 to ω(i) = ω2. This property,
together with the correlated learning condition (Condition 3), ensures that the
opponent can almost perfectly distinguish whether player i’s inference is ω(i)=ω
or ω(i) = ω̃ . Indeed, conditional on the state ω , the opponent’s signal frequency
f−i is typical of ω almost surely given that player i has the correct inference
ω(i) = ω , while f−i is not typical of ω almost surely given that player i has the
wrong inference ω(i) = ω̃ . So if player i deviates by reporting ω(i) = ω when the
true inference is ω(i) = ω̃ , the opponent can detect this misreport almost surely.
This property is useful in order to deter player i’s misreport, while maintaining
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the expected welfare destruction small.

4.5.2 Step 2: Exact Incentive Compatibility

The transfer rule Ũω,G
i in the previous step does not ensure that the truthful sum-

mary report be a best reply. Specifically, when player i has the wrong inference
ω(i) = ω̃ , she can improve her payoff by misreporting. So in order to satisfy
clause (ii) of the lemma, we need to modify the transfer rule further. The idea is
to give a “bonus” to player i when she reports the wrong inference ω(i) = ω̃ . This
gives an extra incentive to report ω(i) = ω̃ truthfully.

As in the previous step, we will first explain how to choose the transfer rule,
and then provide its interpretation. Recall that in the detailed report round, player
i reports her full signal sequence (zt

i)t∈T (i) during her own learning round. Let
(ẑt

i)t∈T (i) denote the reported signal sequence, and let f̂i ∈ △Zi denote the signal

frequency computed from this sequence. That is, f̂i(zi) =
|{t≤T |ẑt

i=zi}|
T . Let e(zi)

denote the |Zi|-dimensional column vector where the component corresponding
to zi is one and the remaining components are zero. Similarly, let e(z−i) denote
the |Z−i|-dimensional column vector where the component corresponding to z−i

is one and the remaining components are zero. We define the transfer rule Uω,G
i

as follows:

• If the opponent could not make the correct inference (i.e., ω(−i) ,ω), then
choose the transfer Uω,G

i (hTb
−i) as in (11). This makes player i indifferent

over all reports in the summary report round.

• If the opponent’s inference is correct (ω(−i) = ω), then

– If player i reports ω(i) = ω or ω(i) = /0, set

Uω,G
i (hTb

−i) = Ũω,G
i (hTb

−i)−
1−δ Tb

δ Tb(1−δ )
ε
T ∑

t∈T (i)

∣∣e(zt
−i)−Cω

i (a
∗)e(ẑt

i)
∣∣2 .

– If player i reports ω(i) = ω̃ , set

Uω,G
i (hTb

−i) = Ũω,G
i (hTb

−i)+
1−δ Tb

δ Tb(1−δ )

(
bω

i ( f̂i)−
ε
T ∑

t∈T (i)

∣∣e(zt
−i)−Cω

i (a
∗)e(ẑt

i)
∣∣2)
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where

bω
i ( f̂i) =

{
(vω

i +2gi)pω
i ( fi) if | f̂i −π ω̃

i (aG)|< ε
0 otherwise

.

Compared to the transfer rule Ũω,G
i in the previous subsection, here we have

two new terms, bω
i ( f̂i) and ε

T ∑t∈T (i)
∣∣e(zt

−i)−Cω
i (a

∗)e(ẑt
i)
∣∣2. Very roughly speak-

ing, the term bω
i ( f̂i) helps to provide truthful incentives in the summary report

round, while the term ε
T ∑t∈T (i)

∣∣e(zt
−i)−Cω

i (a
∗)e(ẑt

i)
∣∣2 helps to provide truthful

incentives in the detailed report round. In what follows, we will explain this trans-
fer rule in more detail.

The first bullet point considers the case in which the opponent does not have
the correct inference. In this case, we choose the transfer rule just as in the pre-
vious step, that is, the transfer is chosen so that regardless of player i’s play, her
payoff in the transfer game is C =−2gω

i . This implies that if player i can observe
the opponent’s inference ω(−i) and if ω(−i) , ω , then she is indifferent over all
summary reports, just as in Lemma 5.

The second bullet point considers the case in which the opponent has the
correct inference ω(−i) = ω . In this case, if the transfer rule Ũω,G

i in the pre-
vious step is used, the truthful report of ω(−i) = ω̃ is suboptimal; indeed, as
shown in Lemma 5, reporting ω(i) = ω or ω(i) = /0 improves her payoff by
(vω

i +2gi)pω
i ( fi). To fix this problem, we give a bonus payment bω

i ( f̂i) to player i
when she reports ω(−i) = ω̃ . For simplicity, assume for now that player i is truth-
ful in the detailed report round so that f̂i = fi. When | fi−π ω̃

i (aG)|< ε , we set the
amount of the bonus equal to the expected gain by misreporting in the summary
report round, (vω

i +2gi)pω
i ( fi). This makes player i indifferent over all reports in

the summary report round, so the truthful summary report becomes an exact best
reply. See the shaded area in Figure 7.

On the other hand, when | fi −π ω̃
i (aG)| ≥ ε , we set bω

i ( fi) = 0. That is, we
do not pay a bonus payment even if player i reports ω(i) = ω̃ . This is so because
in this case, Lemma 1(iii) ensures that player i’s true inference must be either
ω(i) = ω or ω(i) = /0; so if player i reports ω(i) = ω̃ , it should be regarded as a
misreport, and we do not pay a bonus payment.
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B

A No bonus, ω(i) = ω1 and ω(i) = /0 are best replies

Bonus is paid, all reports are indifferent

No bonus, ω(i) = ω1 and ω(i) = /0 are best replies

Figure 7: Player i’s incentive in the complete-information game with ω1, assuming
that fi = f̂i.

Thanks to the bonus payment above, the truthful summary report becomes an
exact best reply, provided that player i is truthful in the detailed report round.
However, given the specification of the bonus function bω

i above, player i may
want to misreport in the detailed report round. Indeed, since the bonus payment
bω

i ( f̂i) depends on player i’s detailed report f̂i, she may want to manipulate f̂i in
order to maximize this bonus payment bω

i ( f̂i).
To deter such a misreport in the detailed report round, we have the additional

term, ε
T ∑t∈T (i)

∣∣e(zt
−i)−Cω

i (a
∗)e(ẑt

i)
∣∣2, in the transfer Uω,G

i . To better understand
this term, note that Cω

i (a
∗)e(ẑt

i) is player i’s forecast about the opponent’s signal
distribution in period t when she observed ẑt

i in that period. On the other hand,
the term e(zt

−i) is the actual realization of the opponent’s signal. It turns out that
if player i misreports ẑt

i, then the difference
∣∣e(zt

−i)−Cω
i (a

∗)e(ẑt
i)
∣∣2 between the

forecast and the realization becomes larger, which decreases the amount of the
transfer. This provides an extra incentive to report zt

i truthfully in the detailed
report round, and this effect is of order 1

T , as the coefficient on the this term is ε
T .

On the other hand, the gain by misreporting zt
i is at most of order O(exp(−T

1
2 )),

because Lemma 2 ensures that the bonus payment is of order O(exp(−T
1
2 )). Since

the former effect is larger than the latter, player i indeed reports truthfully in the
detailed report round. See Lemma 22 in the formal proof for more details.

So far we have explained that the transfer rule above induces right incentives in
the two (both summary and detailed) report rounds. Note also that we have made
only a small change in the transfer rule, relative to the one in the previous step;
indeed, the two new terms, bω

i ( f̂i) and ε
T ∑t∈T (i)

∣∣e(zt
−i)−Cω

i (a
∗)e(ẑt

i)
∣∣2, are quite
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small. Accordingly, player i’s payoff in the transfer game is still approximately
the target payoff vω

i , so that clause (i) of the lemma is approximately satisfied. So
by adding a small constant term to the transfer, we can satisfy clause (i) of the
lemma exactly. More details are given in the formal proof.

5 Private Monitoring of Actions

In this section, we consider the case in which actions are not observable, so that
players need to monitor the opponents’ actions via noisy private signals. Since
the distribution of the signals depends on the unknown state ω , the monitoring
structure is unknown to players. So the model is now a repeated game with private
monitoring and unknown monitoring structure.

5.1 Setup and Weak Ex-Post Equilibrium

We consider infinitely repeated games in which the set of players is denoted by
I = {1, · · · ,N}. As in the case with observed actions, we assume that Nature
chooses the state of the world ω from a finite set Ω = {ω1, · · · ,ωo}. Assume
that players cannot observe the true state ω , and let µ ∈ △Ω denote their com-
mon prior over ω . Each period, players move simultaneously, and player i ∈ I
chooses an action ai from a finite set Ai and observes a private signal yi from
a finite set Yi. Note that player i does not observe the opponents’ actions a−i.
Let A ≡ ×i∈IAi and Y ≡ ×i∈IYi. The distribution of the signal profile y ∈ Y de-
pends on the state of the world ω and on the action profile a ∈ A, and is de-
noted by πω(·|a) ∈ △Y . Let πω

i (·|a) denote the marginal distribution of yi ∈ Yi

at state ω conditional on a, that is, πω
i (yi|a) = ∑y−i∈Y−i πω(y|a). Player i’s ac-

tual payoff is uω
i (ai,yi), so her expected payoff at state ω given an action pro-

file a is gω
i (a) = ∑yi∈Yi πω

i (yi|a)uω
i (ai,yi). We write πω(α) and gω

i (α) for the
signal distribution and expected payoff when players play a mixed action pro-
file α ∈ ×i∈I△Ai. Similarly, we write πω(ai,α−i) and gω

i (ai,α−i) for the sig-
nal distribution and expected payoff when the opponents play a mixed action
α−i ∈ × j,i△A j. Let gω(a) denote the vector of expected payoffs at state ω given
an action profile a.

Note that the model studied in the earlier sections is a special case of the one
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above. To see this, let Yi = A×Zi and assume that πω
i (yi|a) = 0 for each i, ω , a,

and yi such that yi = (a′,zi) where a′ , a. Then actions are perfectly observable
(as yi must be consistent with the action profile a), and players learn the true state
ω from private signals zi. Other examples that fit our model include:

• Secret price-cutting of Stigler (1964) with unknown demand function. I is
the set of firms in an oligopoly market, ai is firm i’s price, and yi is firm
i’s sales level. Often times, firms do not have precise information about the
demand function, and hence do not know the distribution π of sales levels.

• Moral hazard with subjective evaluation and unknown evaluation distribu-
tion. I is the set of agents working in a joint project, ai is agent i’s effort
level, and yi is agent i’s subjective evaluation about the opponents’ perfor-
mance. Often times, agents do not know how the opponents form their
subjective evaluations, and hence do not know the distribution π .

In the infinitely repeated game, players have a common discount factor δ ∈
(0,1). Let (aτ

i ,y
τ
i ) be player i’s pure action and signal in period τ , and we denote

player i’s private history from period one to period t ≥ 1 by ht
i = (aτ

i ,y
τ
i )

t
τ=1. Let

h0
i = /0, and for each t ≥ 0, and let Ht

i be the set of all private histories ht
i. Also,

we denote a profile of t-period histories by ht = (ht
i)i∈I , and let Ht be the set of all

history profiles ht . A strategy for player i is defined to be a mapping si :
∪∞

t=0 Ht
i →

△Ai. Let Si be the set of all strategies for player i, and let S =×i∈ISi.
In this section, we use the following equilibrium concept:

Definition 2. A strategy profile s is a weak ex-post equilibrium if it is a Nash
equilibrium in the infinitely repeated game where ω is common knowledge for
each ω .

By the definition, in a weak ex-post equilibrium, player i’s continuation play
after any on-path history hi is optimal regardless of the true state ω . On the other
hand, player i’s play after off-path history hi may be suboptimal for some state
ω . Therefore, a weak ex-post equilibrium is not necessarily a sequential equilib-
rium for some initial prior. However, if the full support assumption holds so that
πω(y|a)> 0 for all ω , a, and y, then given any initial prior, any payoff achievable
by weak ex-post equilibria is also achievable by sequential equilibria. Indeed,
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given any weak ex-post equilibrium s and given any initial prior, there is a se-
quential equilibrium s̃ in which the play on the equilibrium path is identical with
that of s (so s and s̃ yield the same equilibrium payoffs given any state ω). See
Sekiguchi (1997) for a proof.

5.2 Identifiability Conditions

Now we will state a set of assumptions under which the folk theorem holds. We
will use the following notation. Let πω(a−i,y−i|ai,α−i,yi) be the probability of
(a−i,y−i) given that the profile (ai,α−i) is chosen and player i observes yi. Let
π̃ω

i (α) be the distribution of (ai,yi) when players play α at state ω . Likewise,
let π̃ω

−i(α) be the distribution of (a−i,y−i) when players play α at state ω . Let

Π( j,ω)
i (α) be the affine hull of π̃ω

i (a j,α− j) for all a j. Roughly, Π( j,ω)
i (α) includes

the set of all possible distributions of (ai,yi) when the true state is ω , players
− j choose α , but player j may deviate from α by taking an arbitrary action a j.
Likewise, let Π( j,ω)

−i (α) be the affine hull of π̃ω
−i(a j,α− j) for all a j. Let Cω

i (α)

be the matrix which maps player i’s private observation fi ∈ △(Ai ×Yi) to her
estimate about the opponents’ private observation f−i ∈△(A−i×Y−i) conditional
on ω and α . Note that fi here is a frequency of (ai,yi), rather than a frequency of
yi.

When players know the monitoring structure (i.e., |Ω| = 1), Sugaya (2019)
shows that the folk theorem holds in repeated games with private monitoring un-
der a set of assumptions on the signal structure π . In this paper, we impose the
same assumptions on the signal structure πω for each state ω . The following is
the assumption for games with two players. (We will not state the assumptions
for games with more than two players, as they involve a complex and lengthy
notation. See Sugaya (2019) for details.)

Condition 4. (Regular Environment When |I| = 2) For each ω , the following
conditions hold:

(i) πω(y|a)> 0 for each a and y.

(ii) For each i and ai, the marginal distributions {πω
i (a)|a−i ∈ A−i} are linearly

independent .
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(iii) For each i, a, and ã−i , a−i, we have πω
i (yi|a) , πω

i (yi|ai, ã−i) for all yi.

(iv) For each i, there is α−i such that for each (ai,yi) and (ãi, ỹi) with (ai,yi) ,
(ãi, ỹi), there is (a−i,y−i) such that πω(a−i,y−i|ai,α−i,yi), πω(a−i,y−i|ãi,α−i, ỹi).

Clause (i) is the full support assumption, which requires that each signal pro-
file y can happen with positive probability given any state ω and given any action
profile a. Clause (ii) is a version of individual full-rank of Fudenberg, Levine,
and Maskin (1994), which requires that player i can statistically distinguish the
opponent’s actions through her private signal. Clause (iii) ensures that different
actions of the opponent induce different probability on each signal yi. Clause (iv)
requires that when the opponent chooses a particular mixed action α−i, different
histories of player i induce different beliefs about the opponent’s history. Note
that Condition 4 holds for generic choice of π , if |Yi| ≥ |A−i| for each i.

The next condition extends the statewise full-rank condition and correlated
learning condition for games with observable actions to the current setup. When
monitoring is imperfect, player i’s deviation is not directly observable, and she
may secretly deviate to manipulate the opponents’ state learning and/or the oppo-
nents’ belief about player i’s belief. The following condition is useful in order to
deter such a manipulation.

Condition 5. (Statewise Full Rank and Correlated Learning) For each i, ω ,
and ω̃ , ω , there is player i’s pure action ai and the opponents’ (possibly mixed)
action α−i which satisfy the following conditions:

(i) Π( j,ω)
i (ai,α−i)∩Π(l,ω̃)

i (ai,α−i) = /0 for each j , i and l , i (possibly j = l).

(ii) If fi ∈
∪

j,i Π( j,ω̃)
i (ai,α−i) then Cω

i (ai,α−i) fi <Π(i,ω)
−i (ai,α−i). Likewise, if

fi ∈
∪

j,i Π( j,ω)
i (ai,α−i) then Cω̃

i (ai,α−i) fi <Π(i,ω̃)
−i (ai,α−i).

Condition 5(i) is the statewise full-rank condition, which generalizes Condi-
tion 2 to the private-monitoring case. To see its implication, suppose that players
play the action profile (ai,α−i) for T periods and that player i tries to distinguish
ω from ω̃ using private signals during this T -period interval. Note that when
Condition 5(i) holds, we have(∪

j,i

Π( j,ω)
i (ai,α−i)

)
∩

(∪
j,i

Π( j,ω̃)
i (ai,α−i)

)
= /0.
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This implies that player i can distinguish ω from ω̃ even if someone else secretly
and unilaterally deviates from (ai,α−i). In other words, the opponents’ devia-
tion cannot manipulate player i’s state learning. This condition is similar to the
statewise full-rank condition of Yamamoto (2014).

Condition 5(ii) generalizes the correlated learning condition (Condition 3) to
the private-monitoring case. Intuitively, it requires that signals are correlated
across players so that if player i observes an “unusual” signal frequency, then the
opponent also observes an “unusual” signal frequency. To be more precise, recall
that Condition 3 requires that if player i’s signal frequency is the true distribution
at state ω̃ (which is unusual at state ω , ω̃), then she believes that conditional on
the state ω , the opponent’s signal frequency is not close to the true distribution at
ω (which is also unusual at state ω). Condition 5(ii) strengthens this condition,
and requires that if player i’s signal frequency is the true distribution at state ω̃ or
the ones induced by the opponent’s unilateral deviation, then she believes that the
opponent’s signal frequency is not close to the true distribution at ω or the ones
induced by player i’s unilateral deviation.

So Condition 5(ii) is stronger than Condition 3 in two respects. First, Condi-
tion 5(ii) imposes a restriction on player i’s posterior belief when her signal fre-
quency is the ones induced by the opponent’s deviation (i.e., fi ∈

∪
j,i Π( j,ω̃)

i (ai,α−i)).
This implies that the opponent’s secret deviation at state ω̃ cannot manipulate
whether player i’s posterior falls into the set Π(i,ω)

−i (ai,α−i).
Second, Condition 5(ii) requires that player i’s posterior be different from not

only the true distribution πω
−i(ai,α−i) at state ω , but also the ones induced by

player i’s deviation. This implies that player i cannot pretend to have an “un-
usual” signal frequency fi ∈

∪
j,i Π( j,ω̃)

i (ai,α−i) by deviating from (ai,α−i) se-
cretly. This property is useful when we bound player i’s gain by deviating during
her own learning round.

The following proposition shows that Condition 5 is generically satisfied if
each player’s signal space is large enough. The proof can be found in Appendix
A.

Proposition 3. Suppose that |Yi| ≥ 2|A j|−1 and |A−i|×|Y−i| ≥ |Ai|+ |A j|−1 for
each i and j , i. Then Condition 5 is satisfied for generic choice of π .

In order to obtain the folk theorem under private monitoring, we need one
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more condition. Recall that, in the perfect-monitoring game, we have constructed
an equilibrium in which each player makes a summary inference about the state
ω in the learning round, and then reports it in the summary report round. To
prove the folk theorem for games with private monitoring, we will construct an
equilibrium with a similar structure, that is, in our equilibrium, there is an sum-
mary report round in which players report their private inferences. However, it
is a priori unclear whether communication via actions can be meaningful when
monitoring is imperfect. A major problem is that each player needs to make an
inference about the message of the opponents based on noisy, ambiguous signals.
Also, since signals are private, a player can deviate in the continuation game by
pretending as if she received a wrong message in the summary report round. It
turns out that the following condition is enough to avoid these difficulties:

Condition 6. For each i and (ω, ω̃) with ω , ω̃ , there is player i’s pure action
ai and two (possible mixed) actions of the opponents, mω

−i and mω̃
−i, such that for

each fi, there is ω∗ ∈ {ω, ω̃} such that Cω∗
i (ai,mω∗

−i ) fi <Π(i,ω∗)
−i (ai,mω∗

−i ).

To interpret this condition, suppose that there are only two players and two
states, ω and ω̃ . In the proof, we will construct an equilibrium in which the oppo-
nent reports her inference ω(−i) to player i via actions; specifically, the opponent
chooses mω

−i for T periods when her inference is ω(−i) = ω , and she chooses
mω̃
−i for T periods when ω(−i) = ω̃ . Player i needs to distinguish these two

cases based on her signal frequency during this T -period interval. Let fi denote
this signal frequency. Condition 6 requires that regardless of the realized signal
frequency fi, player i believes that in at least one of the two cases above, (con-
ditional on that the state matches the opponent’s inference) the opponent’s signal
frequency is “unusual” in the sense that it is different from the ex-ante distribution
or the ones induced by player i’s deviation.

The next proposition shows that Condition 6 is generically satisfied if

|Yi| ≥ 2(|Ai|+max{0, |Yi|− |A−i|× |Y−i|})−1 (13)

for each i. Roughly speaking, this rank condition (13) requires that the numbers
of private signals be similar across all players. For example, consider the extreme
case in which the signal space is identical for all players, i.e., |Yi|= |Yj| for each i
and j. (Note that this assumption is common in the mechanism design literature,
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see Crémer and Mclean (1988), for example.) Then we have |Yi|− |A−i|× |Y−i|<
0, and hence (13) reduces to |Yi| ≥ 2|Ai| − 1. On the other hand, if player i’s
signal space is much larger than the others’ so that |Yi|> 2|A−i|× |Y−i|, then it is
easy to check that (13) never holds. The proof of the proposition can be found in
Appendix A.

Proposition 4. Suppose that (13) holds for each i. Then Condition 6 is satisfied
for generic choice of π .

Now we are ready to state the folk theorem for games with private monitoring:

Proposition 5. Suppose that Conditions 1, 5, and 6 holds. Suppose also that the
assumption in Sugaya (2019) is satisfied for each ω (When |I|= 2, it is precisely
Condition 4). Then the folk theorem holds, i.e., for any v∈ intV ∗, there is δ ∈ (0,1)
such that for any δ ∈ (δ ,1), there is a weak ex-post equilibrium with payoff v.

6 Proof of Proposition 5 with |I|= |Ω|= 2

6.1 Automaton with State-Specific Punishments

Fix an arbitrary payoff vector v ∈ intV ∗. To prove the proposition, we need to
construct a weak ex-post equilibrium with payoff v. In what follows, we will
briefly describe how to construct such an equilibrium for the case in which there
are only two players and two states, ω1 and ω2. Take vω

i and vω
i as in the perfect-

monitoring case, that is, for each ω , take vω
i and vω

i for each i so that mω
i < vω

i <

vω
i < vω

i for each i and that the product set ×i∈I[vω
i ,v

ω
i ] is in the interior of the set

V (ω).
As in the perfect-monitoring case, our equilibrium strategy is an automaton

over blocks with length Tb. (See Figure 2.) Each player i’s automaton state is de-
noted by xi = (xω1

i ,xω2
i )∈ {G,B}2, and it can be interpreted as her state-contingent

plan about whether to reward or punish the opponent. That is, player i plans to re-
ward the opponent at state ω if xω

i =G, and punish the opponent if xω
i =B. Pick K

such that K ≥ log2 |Ai||Yi| for each i, and then let Tb = 4T +T 3+8KT 2+8LK2T 2.
The parameters L and T will be specified later.

Let sxi
i denote the block strategy induced by the automaton state xi, and ρi

denote the transition rule. Our goal is to find sxi
i and ρi which satisfy the promise-

46



keeping condition (7) and (8), and the incentive compatibility condition which is
now simplified to:

vω
i ≥ (1−δ Tb)

Tb

∑
t=1

δ t−1E[gω
i (a

t)|ω,sTb
i ,sx−i

−i ]+δ Tb
{

vω
i −E[ρω

−i(B|G,hTb
−i)|ω,sTb

i ,sx−i
−i ](v

ω
i − vω

i )
}

(14)

for each ω , i, sTb
i , and x−i with xω

−i = G, and

vω
i = (1−δ Tb)

Tb

∑
t=1

δ t−1E[gω
i (a

t)|ω,sTb
i ,sx−i

−i ]+δ Tb
{

vω
i +E[ρω

−i(G|B,hTb
−i)|ω,sTb

i ,sx−i
−i ](v

ω
i − vω

i )
}

(15)

for each ω , i, sTb
i , and x−i with xω

−i = B. Unlike (9) and (10), the incentive con-
ditions above do not require sequential rationality of sxi

i ; they require only that
the strategy sxi

i be a best reply in the normal-form game. However, this difference
is not essential. As shown by Sekiguchi (1997), Nash equilibria and sequential
equilibria are payoff-equivalent under the full support assumption. Accordingly,
if (7), (8), (14), and (15) hold, then any payoff in the set ×ω∈Ω ×i∈I [vω

i ,v
ω
i ] can

be achievable by sequential equilibria, just as in the perfect-monitoring case.

6.2 Block Strategy sxi
i

6.2.1 Brief Description

As described in Figure 2, in our equilibrium, player i’s play in each block is solely
determined by the automaton state xi; she will play a block strategy sxi

i if the
current automaton state is xi. In what follows, we will explain how to construct
this block strategy sxi

i .
As in the perfect-monitoring case, each block is divided into four parts: the

learning round, the summary report round, the main round, and the detailed report
round. Specifically:

Learning Round: The first T periods of the block are player 1’s learning round,
and the next T periods are player 2’s learning round. In player i’s learning round,
players play the profile (ai,α−i) which satisfies Condition 5. Then, based on the
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realized signal frequency fi, player i makes an inference ω(i) about the true state.
Roughly, she chooses ω(i) = ω1 if fi is close to Π( j,ω1)

i (ai,α−i), and chooses
ω(i) = ω2 if fi is close to Π( j,ω2)

i (ai,α−i). Otherwise, she chooses ω(i) = /0. Note
that the opponent cannot manipulate this inference ω(i) much; e.g., if the true
state is ω1, then regardless of the opponent’s action, player i’s signal frequency
will be in the neighborhood of Π(−i,ω1)

i (ai,α−i), in which case player i makes the
inference ω(i) = ω1.

Summary Report Round: The next 2T periods are the summary report round.
The first T periods are player 1’s summary report round, in which player 1 reports
her summary inference ω(1) about the true state. The next T periods are player
2’s summary report round, in which player 2 reports her inference ω(2). Choose
ai, mω1

−i , and mω2
−i as in Condition 6. In player −i’s summary report round, player i

chooses ai every period, while player −i’s chooses either mω1
−i or mω2

−i depending on
her inference ω(−i). Specifically, she chooses mω1

−i if her inference is ω(−i)=ω1,
and she chooses mω2

−i if her inference is ω(−i) = ω2. If ω(−i) = /0, she randomly
selects mω1

−i or mω2
−i and chooses it for T periods. After T periods, player i makes

an inference ω̂(−i) about the opponent’s report, using the private observation fi.
Specifically:

• If player i does not deviate from ai and if Cω1
i (ai,m

ω1
−i) fi is ε-close to Π(i,ω1)

−i (ai,m
ω1
−i),

then let ω̂(−i) = ω1.15

• If player i does not deviate from ai and if Cω2
i (ai,m

ω2
−i) fi is ε-close to Π(i,ω2)

−i (ai,m
ω2
−i),

then let ω̂(−i) = ω2.

• For all other cases, choose ω̂(−i) = ω1 or ω̂(−i) = ω2 randomly.

In words, player i chooses ω̂(−i) = ω if she believes that (conditional on that the
true state is ω and the opponent reported ω(−i) = ω) the opponent’s observation
f−i is typical of ω . The above inference rule is well-defined, because Condition 6
ensures that the events stated in the first two bullet points never occur at the same
time. So if player i chooses ω̂(−i) = ω̃ (which is unusual given the state ω and the
opponent’s report ω(−i)=ω), then she believes that almost surely, the opponent’s

15Here, a distribution f−i ∈△(A−i×Y−i) is ε-close to a set B ⊆△(A−i×Y−i) if there is f̃−i ∈ B
such that | f−i − f̃−i| ≤ ε .
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observation is also unusual in the sense that it is not close to Π(i,ω)
−i (ai,mω

−i). This
property plays a crucial role when we prove Lemma 11 later.

Main Round: The next T 3 periods are the main round. This round is much
longer than the other rounds, so the average payoff in the block is approximated
by the one in the main round, as in the perfect-monitoring case. During the main
round, each player i plays one of the four strategies: sω1,G

i , sω1,B
i , sω2,G

i , or sω2,B
i .

The formal definition of these strategies will be given shortly, but roughly speak-
ing, the strategy sω1,G

i yields a high payoff to the opponent conditional on the state
ω1, so it can be used to reward the opponent at ω1. Similarly, sω2,G

i yields a high
payoff at ω2, so player i uses it when she plans to reward the opponent at ω2.
On the other hand, sω1,B

i and sω2,B
i are used for state-specific punishments; sω1,B

i

yields a low payoff at ω1, while sω2,B
i yields a low payoff at ω2. At the beginning

of the main round, each player i chooses one of these strategies, depending on her
current plan xi = (xω1

i ,xω2
i ) and the history in the learning and summary report

rounds. Specifically,

• If player i’s inference is ω(i) = ω1, then play sω1,x
ω1
i

i , where xω1
i is player i’s

current plan for the state ω1.

• Similarly, if her inference is ω(i) = ω2, then play sω2,x
ω2
i

i .

• If she has the null inference ω(i) = /0, then...

– If ω̂(−i) = ω1, play sω1,x
ω1
i

i .

– If ω̂(−i) = ω2, play sω2,x
ω2
i

i .

That is, if player i could learn the state in the learning round (i.e., ω(i) = ω),
then she ignores the opponent’s report in the summary report round and chooses
the strategy sω,G

i or sω,B
i , depending on her current plan xω

i for the state ω . If
she has the null inference ω(i) = /0, then she chooses a strategy depending on
the opponent’s report in the summary report round, in order to coordinate the
continuation play.
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Detailed Report Round: The last 8KT 2 + 8LK2T 2 periods of the block are
the report round, in which each player i reports her private histories in her own
learning round and the opponent’s summary report round. (She does not report the
history during the opponent’s learning round or her own summary report round.)
The way she reports is similar to that of Sugaya (2019) and will be explained later.

The description of the block strategy sxi
i above is informal, as we have not

specified the inference rule ω(i), the strategies for the main round, or the strategies
for the detailed report round. In what follows, we will explain how to choose them.

6.2.2 Inference Rule ω(i)

We will explain how each player i forms the inference ω(i) from signals during
her learning round. Recall that player i’s learning round consists of T periods. Let
hT

i denote player i’s history during this round, and let HT
i denote the set of all such

histories. As in the perfect-monitoring case, player i’s inference rule is defined as
a mapping P : HT

i → △{ω1,ω2, /0}. That is, given a private history hT
i , player i

(randomly) chooses the inference ω(i) from the set {ω1,ω2, /0}, according to the
distribution P(·|hT

i ).
Given an inference rule P, let P̂(·|ω,α1, · · · ,αT ) denote the conditional dis-

tribution of ω(i) given that the true state is ω and players play the action se-
quence (α1, · · · ,αT ) during player i’s learning round. Likewise, for each t ∈
{0, · · · ,T − 1} and ht

−i, let P̂(·|ω,ht ,α t+1, · · · ,αT ,) be the conditional distribu-
tion of ω(i) given that the true state is ω , the history profile up to the tth period is
ht , and players play (α t+1, · · · ,αT ) thereafter. Given hT

i , let fi(hT
i ) ∈ △(Ai ×Yi)

denote player i’s outcome frequency induced by hT
i .

The following lemma shows that there is an inference rule P which satisfies
some useful properties.

Lemma 6. Suppose that Condition 5 holds. Then there is T such that for any T >

T , there is an inference rule P : HT
i →△{ω1,ω2, /0} which satisfies the following

properties:

(i) If players do not deviate from (ai,α−i), the inference ω(i) coincides with
the true state almost surely: For each ω ,

P̂(ω(i) = ω|ω,(ai,α−i), · · · ,(ai,α−i))≥ 1− exp(−T
1
2 ).
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(ii) Regardless of the past history, the opponent’s deviation cannot manipu-
late player i’s inference almost surely: For each ω , t ∈ {0, · · · ,T − 1}, ht ,
(aτ)T

τ=t+1, and (ãτ)T
τ=t+1 such that aτ

i = ãτ
i = ai for all τ ≥ t +1,

|P̂(·|ω,ht ,at+1, · · · ,aT )− P̂(·|ω,ht , ãt+1, · · · , ãT )| ≤ exp(−T
1
2 ).

(iii) Suppose that player i does not deviate from (ai,α−i). Then she has the in-
ference ω(i) = ω , only if her observation is close to the set Π( j,ω)

i (ai,α−i):
For all hT

i = (at
i,y

t
i)

T
t=1 such that at

i = ai for all t and such that P(ω(i) =
ω|hT

i )> 0, fi(hT
i ) is ε-close to the set Π( j,ω)

i (ai,α−i).

Clauses (i) and (ii) are exactly the same as those in Lemma 1, which ensure
that state learning is almost perfect and robust to the opponent’s deviation. Clause
(iii) is slightly different from that in Lemma 1; now player i makes the inference
ω(i) = ω not only when her signal frequency is close to the true distribution
πω

i (ai,α−i) at state ω , but also when her signal frequency is close to the ones
induced by the opponent’s deviation. This change is needed in order to obtain
clause (ii) under imperfect monitoring. Indeed, the opponent can generate any
signal frequency fi in the set Π( j,ω)

i (ai,α−i) by secretly deviating from α−i, so for
the inference ω(i) to be non-manipulable by the opponent, player i must make the
same inference for all fi in this set.

Proof. The proof is very similar to that of Lemma 1; we define the base score, the
random score, and the final score, and the inference ω(i) is determined by these
scores. Here we will illustrate only the definition of the base score when actions
are not observable. The rest of the proof is exactly the same as that of Lemma 1.

Let fi ∈ △(Ai ×Yi) denote player i’s observation during her learning round.
Then we compute a base score qbase

i ∈�|Yi| using the following formula:

qbase
i = Qi fi

where Qi is a |Ai ×Yi|× |Yi| matrix, so it is a linear operator which maps an ob-
servation fi to a score vector qbase

i . (Here, both fi and qbase
i are column vectors.)

From Condition 5(i), there is a matrix Qi and |Yi|-dimensional column vectors qω1
i

and qω2
i with qω1

i , qω2
i such that for each a−i,

Qiπω
i (ai,a−i) =

{
qω1

i if ω = ω1

qω2
i if ω = ω2

.
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That is, we choose a matrix Qi so that the opponent cannot influence the expected
value of the base score, as in the perfect-monitoring case. The only difference is
that the matrix Qi cannot depend on a−i, as actions are not observable. Q.E.D.

6.2.3 Strategy sω,xω
i

i for the Main Round

As noted earlier, during the main round, each player i plays one of the four strate-
gies, sω1,G

i , sω1,B
i , sω2,G

i , or sω2,B
i . The following lemma shows how to choose these

strategies. Roughly speaking, these strategies are “block strategies” in Sugaya
(2019), and they are chosen so that (with some appropriate transfer functions) the
target payoffs are achieved when the state ω is common knowledge. The lemma
directly follows from the main theorem of Sugaya (2019), and hence we omit the
proof.

Lemma 7. Suppose that |I| = 2 and Condition 4 holds. For each ω , there is
C > 0, C > 0, and T such that for each T > T , there is δ ∈ (0,1) such that for
each δ ∈ (δ ,1) and i, there are T 3-period strategies sω,G

i and sω,B
i and transfers

Uω,G
i : HT 3

−i → R and Uω,B
i : HT 3

−i → R such that the following conditions hold for
each i:

(i) In the T 3-period complete-information transfer game with (ω,Uω,G
i ), both

sω,G
i and sω,B

i are best replies against sω,G
−i and yield vω

i .

(ii) In the T 3-period complete-information transfer game with (ω,Uω,B
i ), both

sω,G
i and sω,B

i are best replies against sω,B
−i and yield vω

i .

(iii) −CT 3 <Uω,G
i (hT 3

−i)<−CT 3 and CT 3 <Uω,B
i (hT 3

−i)<CT 3 for each hT 3

−i .

To interpret this lemma in our context, suppose that the true state is ω . Sup-
pose also that both players could learn the state in the learning round (i.e., ω(i) =
ω for each i), so that each player i plays either sω,G

i or sω,B
i during the main round,

depending on her current plan xω
i . The lemma above ensures that playing these

strategies sω,G
i and sω,B

i during the main round is indeed incentive compatible, and
that each player i’s payoff is solely determined by the opponent’s plan xω

−i about
whether to reward or punish player i. Specifically, clause (i) considers the case
in which the opponent chooses sω,G

−i (i.e., the opponent plans to reward player i at
state ω), and it asserts that if player i can receive an additional transfer Uω,G

i (hT 3

−i)
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after the main round, then both sω,G
i and sω,B

i are best replies for player i, and
yield the payoff vω

i . Likewise, clause (ii) considers the case in which the oppo-
nent plans to punish player i at state ω , and it asserts that if there is an additional
transfer Uω,B

i (hT 3

−i), then both sω,G
i and sω,B

i are best replies for player i, and yield
the payoff vω

i .

6.2.4 Strategy for the Detailed Report Round

To complete the definition of the block strategies sGG
i , sGB

i , sBG
i , and sBB

i , we have
to specify the play during the detailed report round, in which each player i re-
ports her observation (at

i,y
t
i) during her own learning round and the opponent’s

summary report round. With an abuse of notation, let h2T
i = (at

i,y
t
i)

2T
t=1 denote

the information player i should report, that is, (at
i,y

t
i)

T
t=1 denotes player i’s history

during her own learning round, and (at
i,y

t
i)

2T
t=T+1 denotes her history during the

opponent’s summary report round. Let h2T
−i denote the opponent’s history during

these rounds. Note that h2T
−i is informative about player i’s history h2T

i , as signals
are correlated across players.

The detailed report round is divided into four parts: Player 1’s detailed report
round for state ω1, player 1’s detailed report round for state ω2, player 2’s detailed
report round for state ω1, and player 2’s detailed report round for state ω2. In
player i’s detailed report round for state ω , she reports her private information
h2T

i , using a strategy which effectively transmits this information to the opponent
conditional on the state ω . Since there is a report round for each state ω , she
can effectively transmit the information h2T

i regardless of the true state ω . For
notational convenience, let R = 2KT 2 +2LK2T 2 denote the length of each round.

Specifically, player i’s reporting strategy for state ω is a mapping σ report,ω
i :

H2T
i → SR

i . That is, given private information h2T
i , player i plays a pure strategy

σ report,ω
i (h2T

i ) during her detailed report round for state ω . Meanwhile, the oppo-
nent mixes all actions each period and makes an inference about player i’s detailed
report, using her observation hR

−i. Formally, the opponent’s inference rule is given
by a mapping Pω : HR

−i →△H2T
i .

The following lemma shows that there is a reporting strategy σ report,ω
i and an

inference rule Pω such that the opponent’s inference matches player i’s detailed
report almost surely, and such that player i has a strict incentive to report truthfully
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if she receives an additional transfer U report,ω
i (h2T

−i ,h
R
−i). Here the transfer U report,ω

i

depends not only on the opponent’s history hR
−i during the detailed report round,

but also on the history h2T
−i during the time in which player i observes the his-

tory h2T
i . The idea is very similar to the one for the perfect monitoring case; the

opponent’s observation h2T
−i is informative about player i’s observation h2T

i , and
hence useful to detect player i’s misreport. Let Pr(h2T

−i |ω,h2T
i ,α−i,mω

−i) denote
the probability of h2T

−i conditional on that the true state is ω , player i’s history is
h2T

i , and the opponent plays α−i during player i’s learning round and mω
−i during

her own summary report round. Also, let Pr(hR
−i|ω,sR

i ) denote the probability of
the opponent’s history during the detailed report round being hR

−i conditional on
that the true state is ω , player i plays sR

i during the detailed report round, and the
opponent mixes all actions each period. Similarly, let Pr(hR

−i|ω,sR
i ,h

τ
i ) denote the

probability of hR
−i given that the history during the first τ periods of the detailed

report round is hτ
i .

Lemma 8. There are C > 0, L, and T such that for any T > T , ω , and i, there is
a reporting strategy σ report,ω

i , an inference rule Pω , and a transfer rule U report,ω
i

which satisfy the following properties:

(i) For each h2T
i ,

∑
hR
−i∈HR

−i

Pr(hR
−i|ω,σ report,ω

i (h2T
i ))Pω(hR

−i)[h
2T
i ]≥ (1− exp(−T

1
2 ))2T .

(ii) For each h2T
i ,

∑
h2T
−i∈H2T

−i

∑
hR
−i∈HR

−i

Pr(h2T
−i |ω,h2T

i ,α−i,mω
−i)Pr(hR

−i|ω,σ report,ω
i (h2T

i ))U report,ω
i (h2T

−i ,h
R
−i)= 0.

(iii) For each h2T
i , for each on-path history hτ

i with Pr(hτ
i |ω,σ report,ω

i (h2T
i ))> 0,

and for each pure strategy sR
i with sR

i (h
τ
i ) , σ report,ω

i (h2T
i )[hτ

i ],

∑
h2T
−i∈H2T

−i

∑
hR
−i∈HR

−i

Pr(h2T
−i |ω,h2T

i ,α−i,mω
−i)Pr(hR

−i|ω,σ report,ω
i (h2T

i ),hτ
i )U

report,ω
i (h2T

−i ,h
R
−i)

≥ ∑
h2T
−i∈H2T

−i

∑
hR
−i∈HR

−i

Pr(h2T
−i |ω,h2T

i ,α−i,mω
−i)Pr(hR

−i|ω,sR
i ,h

τ
i )U

report,ω
i (h2T

−i ,h
R
−i)+

1
T 18
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(iv) |U report,ω
i (h2T

−i ,h
R
−i)|<CT 2 for all h2T

−i and hR
−i.

Clause (i) of the lemma asserts that communication is almost perfect, in the
sense that the opponent’s inference matches player i’s detailed report almost surely.
(Note that the right-hand side of the inequality is at least 1−2T exp(−T

1
2 ), which

converges to one according to l’Hôpital’s rule.) Clause (ii) implies that the ex-
pected value of the transfer U report,ω

i is zero, if player i reports truthfully and the
opponent plays mω

−i in her summary report round (which happens when the op-
ponent’s inference is ω(−i) = ω). Clause (iii) ensures that in each period of the
detailed reporting round, player i has a strict incentive to follow the reporting
strategy σ report,ω

i , if we ignore the stage-game payoffs. Clause (iv) gives a bound
on the transfer function U report,ω

i .

Proof. The proof is very similar to the one for Lemma 14 of Sugaya (2019).
Specifically, Sugaya considers an equilibrium in which each player i reports both
(i) her history in the “review block” and (ii) her history in the “non-review block.”
The reporting strategy for (ii) is much simpler than the one for (i), and our re-
porting strategy is exactly the same as this simpler one. So we provide only the
outline of the proof.16

To illustrate the idea, consider the case in which each player i has two actions,
aG

i and aB
i , and two signals, yG

i and yB
i . Fix ω . Player i’s detailed report round for

ω consists of two stages:
Stage 1: Player i reports h2T

i = (at
i,y

t
i)

2T
t=1 using her actions. Specifically, in the

first T periods of this stage, she reports the first component a1
i of her message; she

chooses aG
i for T periods if a1

i = aG
i , and aB

i for T periods if a1
i = aB

i . By the law
of large numbers, the opponent can obtain very accurate information about player
i’s message. Similarly, in the next T periods, she reports the second component
y1

i of her message; she chooses aG
i for T periods if y1

i = yG
i , and aB

i for T periods
if y1

i = yB
i . In this way, she reports each component of h2T

i sequentially. The total
length of this stage is T ·4T = 4T 2, because h2T

i has 4T components.

16Sugaya’s proof uses public randomization, in two places. First, in his block strategy, only
one of the players reports the history, and this player is chosen by public randomization. Second,
public randomization is used when a player reports her history in the review block. In our lemma,
we do not need public randomization because we have a report round for each player i and we use
the communication protocol for the history in the non-review block, rather than the one for the
review block.
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If signals are conditionally independent (i.e., if signals are not correlated across
players), the above communication protocol is enough for the result we want: We
can find an inference rule and a transfer rule such that the opponent’s inference
coincides with player i’s message almost surely, and the truthful report (taking a
constant action for each T -period interval) is a best reply for player i. The point
here is that under the conditionally independence assumption, player i’s signal has
no information about the opponent’s signal and hence no information about the op-
ponent’s inference. This property greatly simplifies player i’s incentive problem
(Matsushima (2004) and Lemma 53 of Sugaya (2019)).

When signals are not conditionally independent, player i’s signal is informa-
tive about the opponent’s inference, which complicates player i’s incentive prob-
lem. To avoid this problem, we need an additional communication stage:

Stage 2: Player i reports her private history during the first stage. With an
abuse of notation, let h4T 2

i = (at
i,y

t
i)

4T 2

t=1 denote this history. In the first L periods of
this second stage, she reports a1

i , the first component of the history h4T 2

i . Specif-
ically, she plays some L-period strategy σG

i if a1
i = aG

i , and plays σB
i if a1

i = aB
i .

The strategy σG
i is very similar to but slightly different the constant action aG

i ; it
chooses aG

i in most periods, but after some histories, it chooses different actions.
Likewise, the strategy σB

i is quite similar to the constant action aB
i . Since these

strategies induce different actions in most periods, the opponent can obtain very
accurate information about player i’s message. Player i reports other components
of h4T 2

i in the same way. The total length of this stage is L ·8T 2 = 8LT 2, as h4T 2

i

has 8T 2 components.
After the second stage, the opponent makes an inference about player i’s mes-

sage h2T
i , according to some inference rule P : H4T 2+8LT 2

−i →△H2T
i . Very roughly,

using the information during the second stage, the opponent adjusts the inference
carefully so that player i’s signals during the first stage has no information about
the opponent’s inference P. Then player i’s incentive problem during the first
stage becomes essentially the same as the one for the conditionally-independent
case, so that we can find a transfer rule with which the truthful report during the
first stage is a strict best reply for player i.

We also need to choose a transfer rule in such a way that the truthful report
during the second stage is a strict best reply for player i. This is a delicate problem
because signals are not conditionally independent; but it can be done if we choose
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the reporting strategies σG
i and σB

i carefully. See Lemma 55 of Sugaya (2019) for
more details. Q.E.D.

6.3 Transition Rule ρi

So far we have defined the four block strategies sGG
i , sGB

i , sBG
i , and sBB

i . What
remains is to find the transition rule ρi which satisfies the promise-keeping con-
dition (7) and (8) and the incentive compatibility condition (14) and (15). As in
the perfect-monitoring case, this problem is equivalent to find appropriate “trans-
fer rules.” So consider the complete-information transfer game with length Tb in
which the state ω is common knowledge and player i receives a transfer after the
game. Our goal is to show the following lemma, which is a counterpart to Lemmas
3 and 4.

Lemma 9. There is T such that for any T > T , there is δ ∈ (0,1) such that for each
δ ∈ (δ ,1), i, and ω , there are transfer rules Uω,G

i : HTb
−i → R and Uω,B

i : HTb
−i → R

which satisfies the following properties.

(i) For each x,

1−δ
1−δ Tb

Gω
i (s

x,U
ω,xω

−i
i ) =

{
vω

i if xω
−i = G

vω
i if xω

−i = B

(ii) Gω
i (s

Tb
i ,sx−i

−i ,U
ω,xω

−i
i )≤ Gω

i (s
x,U

ω,xω
−i

i ) for all sTb
i and x.

(iii) −vω
i −vω

i
1−δ ≤Uω,G

i (hTb
−i)≤ 0 ≤Uω,B

i (hTb
−i)≤

vω
i −vω

i
1−δ for all hTb

−i.

6.4 Proof of Lemma 9

The outline of the proof is somewhat similar to that of Lemma 3 for the perfect-
monitoring case. As a first step, we will construct a transfer rule Ũ

ω,xω
−i

i which
satisfies clause (ii) “approximately,” i.e., the prescribed strategy sxi

i is an approx-
imate best reply given this transfer rule. Then we will modify this transfer rule
so that clause (ii) holds exactly, in the sense that the prescribed strategy sxi

i is an
exact best reply. Also we will show that this transfer rule satisfies clause (i). Then
we will modify the transfer rule further so that clause (iii) holds.
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6.4.1 Step 1: Construction of Ũ
ω,xω

−i
i

In this step, we will construct a transfer rule Ũ
ω,xω

−i
i such that the prescribed strat-

egy sxi
i is an approximate best reply in the complete-information transfer game.

For each ω and i, let ũω,G
i : A−i ×Y−i → R be such that

gω
i (a)+ ∑

y∈Y
πω(y|a)ũω,G

i (a−i,y−i) = vω
i .

That is, ũω,G
i is chosen in such a way that player i becomes indifferent over all ac-

tions in the one-shot game with the true state ω , if she maximizes the stage-game
payoff gω

i (a) plus the transfer ũω,G
i (a−i,y−i). We choose this function carefully

so that the resulting payoff is exactly equal to the target payoff vω
i in Lemma 9(i).

Likewise, let ũω,B
i : A−i ×Y−i → R be such that

gω
i (a)+ ∑

y∈Y
πω(y|a)ũω,B

i (a−i,y−i) = vω
i .

The existence of these functions is guaranteed under Condition 4.
The opponent’s block history hTb

−i is regular given ω if all the following con-
ditions hold:

(R1) The opponent’s inference is ω(−i) = ω .

(R2) The opponent’s signal frequency during player i’s learning round is ε-close
to Π(i,ω)

−i (ai,α−i).

(R3) The opponent’s signal frequency during her summary report round is ε-
close to Π(i,ω)

−i (ai,mω
−i).

The opponent’s history h4T
−i during the learning and summary report rounds is

regular given ω if the above three conditions hold. A history hTb
−i (or h4T

−i ) is
irregular if it is not regular. Intuitively, the opponent’s history is irregular when
her observation during the learning or summary report round is not typical of the
state ω .

For each ω and xω
−i ∈ {G,B}, consider the following transfer rule Ũ

ω,xω
−i

i :

• For any regular history hTb
−i,

Ũ
ω,xω

−i
i (hTb

−i) =
4T

∑
t=1

ũ
ω,xω

−i
i (at

−i,y
t
−i)

δ Tb−t+1 +
U

ω,xω
−i

i (hmain
−i )

δ 4R +
Tb

∑
t=4T+T 3+1

ũ
ω,xω

−i
i (at

−i,y
t
−i)

δ Tb−t+1

(16)
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where hmain
−i denotes the opponent’s history during the main round.

• For any irregular history hTb
−i,

Ũ
ω,xω

−i
i (hTb

−i) =
Tb

∑
t=1

ũ
ω,xω

−i
i (at

−i,y
t
−i)

δ Tb−t+1 (17)

So if the history is irregular, then the opponent makes player i indifferent over
all actions each period, using the transfer rule (17). If the history is regular, the
transfer (16) is used. The first term offsets the stage-game payoffs during the
learning and summary report rounds. Similarly, the last term offsets the stage-
game payoffs during the detailed report round. The second term is the transfer
defined in Lemma 7, which is useful to discipline player i’s incentive during the
main round.

6.4.2 Step 2: Ũ
ω,xω

−i
i approximately satisfies clause (ii)

Take a state ω and the opponent’s automaton state x−i as given, and suppose that
player i receives the above transfer Ũ

ω,xω
−i

i after the block. In what follows, we
will show that in such an complete-information transfer game, the block strategy
sxi

i is an approximate best reply for player i. To do so, we will first find player i’s
optimal strategy s∗i in this complete-information transfer game, and then show that
this optimal strategy s∗i and the block strategy sxi

i yield almost the same payoff.
It turns out that the following strategy s∗i is a best reply for player i in the

complete-information transfer game with the state ω:

• The play during the learning, summary report, and detailed report rounds
are exactly the same as the one induced by sxi

i .

• During the main round, play sω,G
i or sω,B

i regardless of the past history.

This optimal strategy s∗i differs from the prescribed strategy sxi
i regarding the play

during the main round. While the optimal strategy s∗i always induces sω,G
i or sω,B

i

regardless of the past history, the prescribed strategy sxi
i may induce sω̃,G

i or sω̃,B
i ,

depending on the history in player i’s learning round and the opponent’s summary
report round. For example, if player i has the wrong inference ω(i) = ω̃ , the
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prescribed strategy induces sω̃,G
i or sω̃,B

i . Let H2T,ω̃
i denote the set of all such on-

path histories h2T
i , that is, it is the set of histories h2T

i such that player i did not
deviate during these rounds and such that the strategy sxi

i induces sω̃,G
i or sω̃,B

i .
The following lemma shows that the above strategy s∗i is indeed a best reply

in the complete-information transfer game.

Lemma 10. Take ω and x−i as given, and consider the complete-information
transfer game with (ω,Ũ

ω,xω
−i

i ). Then s∗i is a best reply against sx−i
−i , and yields a

payoff of vω
i if xω

−i = G, and a payoff of vω
i if xω

−i = B. In particular, playing s∗i is a
best reply in each period of the block, regardless of the past history (even if player
i has deviated from s∗i in the past).

Proof. We prove the lemma by backward induction. Consider player i’s incentive
during the detailed report round. Here, player i is indifferent over all actions each
period, because the stage-game payoffs are offset by the term ũ

ω,xω
−i

i in the transfer

rule Ũ
ω,xω

−i
i . Hence playing s∗i in the detailed report round is a best reply, regardless

of the past history. By the definition of ũ
ω,xω

−i
i , player i’s per-period payoff during

the detailed report round (augmented with the transfer ũ
ω,xω

−i
i ) is vω

i if xω
−i = G,

and is vω
i if xω

−i = B.
Next, consider player i’s incentive during the main round. Suppose for now

that player i knows the opponent’s past history h4T
−i . There are two cases to be

considered:
Case 1: The opponent’s history h4T

−i is irregular. In this case, the transfer rule
(17) will be used, so player i is indifferent over all actions each period. Hence
playing s∗i is a best reply. Again, by the definition of ũ

ω,xω
−i

i , player i’s per-period
payoff during the main round is exactly equal to the target payoff; it is vω

i if
xω
−i = G, and is vω

i if xω
−i = B.

Case 2: The opponent’s history h4T
−i is regular. In this case, (R1) holds so

that the opponent will play s
ω,xω

−i
−i during the main round. Also, the transfer rule

(16) will be used, so during the main round, player i maximizes the sum of the
stage-game payoffs and the second term U

ω,xω
−i

i of the transfer. Then from Lemma
7, sω,G

i and sω,B
i are both best replies for player i during the main round, and her

per-period payoff during the round is vω
i if xω

−i = G, and is vω
i if xω

−i = B.
In sum, regardless of the opponent’s past history h4T

−i , playing s∗i during the
main round is a best reply. Hence, playing s∗i is a best reply even if player i does
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not know the opponent’s history h4T
−i . Note that player i’s continuation payoff from

the main round equals the target payoff (i.e., it is vω
i if xω

−i = G, and vω
i if xω

−i = B),
regardless of the opponent’s past history h4T

−i .
Finally, consider player i’s incentive in the learning and summary report rounds.

Actions in these rounds have two effects: First, they influence the stage-game
payoffs. Second, they influence the opponent’s history h4T

−i , which influences the
opponent’s continuation strategy from the main round. However, the first effect
is offset by the transfer ũ

ω,xω
−i

i . Also, the second effect does not impact player i’s
incentive, because as noted above, player i’s continuation payoff from the main
round does not depend on the opponent’s history h4T

−i . Hence player i is indifferent
over all actions during the learning and summary report rounds, and playing s∗i is
a best reply. Player i’s per-period payoff during these rounds is equal to the target
payoff, and thus her per-period payoff in the whole block is also equal to the target
payoff, as desired. Q.E.D.

Recall that the prescribed strategy sxi
i and the optimal strategy s∗i above induce

the same play after almost all on-path histories; they induce different actions only
in the main round, and only when h2T

i ∈ H2T,ω̃
i . So the prescribed strategy sxi

i is
suboptimal only in the main round, and only when h2T

i ∈ H2T,ω̃
i ; only in such a

case, player i obtain a positive gain by deviating. In what follows, we will show
that this gain is small, so the prescribed strategy sxi

i is an approximate best reply.
Let pω

i (h
2T
i ) denote the conditional probability that (R2) and (R3) hold given

player i’s history h2T
i and the opponent’s inference ω(−i) = ω , i.e., let

pω
i (h

2T
i ) = ∑

h2T
−i :(R2) and (R3) hold

Pr(h2T
−i |ω,h2T

i ,α−i,mω
−i).

The following lemma shows that this probability is small for each history h2T
i ∈

H2T,ω̃
i . This is a counterpart to Lemma 2, and Conditions 5(ii) and 6 play a crucial

role in the proof.

Lemma 11. pω
i (h

2T
i )≤ exp(−T

1
2 ) for any h2T

i ∈ H2T,ω̃
i .

Proof. If h2T
i ∈ H2T,ω̃

i , we must have ω(i) = ω̃ or ω̂(−i) = ω̃ . (Otherwise, the

prescribed strategy does not induce s
ω̃,xω̃

−i
i in the main round.) We will prove the

result for each case.
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Case 1: ω(i) = ω̃ . From Lemma 6(iii), player i’s observation fi during her
own learning round must be ε-close to the set Π( j,ω)

i (ai,α−i). Then from Condi-
tion 5(ii), player i should believe that the opponent’s observation f−i during player
i’s learning round is not in the ε-neighborhood of Π(i,ω)

−i (ai,α−i) almost surely.
This means that player i believes that (R2) does not hold almost surely, and hence
the result follows. (Use Hoeffding’s inequality to get the bound exp(−T

1
2 ).)

Case 2: ω̂(−i) = ω̃ . Let fi be player i’s observation during the opponent’s
summary report round. Then by the definition of ω̂(−i), Cω̃

i (ai,mω̃
−i) fi must be

ε-close to Π(i,ω̃)
−i (ai,mω̃

−i). Then from Condition 6, Cω
i (ai,mω

−i) fi is not ε-close to

Π(i,ω)
−i (ai,mω

−i). This implies that player i believes that (R3) does not hold almost
surely, and hence the result. Q.E.D.

The next lemma is the main result in this step: It shows that the prescribed
strategy sxi

i is an approximate best reply when T is large.

Lemma 12. Take ω and x as given, and consider the complete-information trans-
fer game with (ω,Ũ

ω,xω
−i

i ). Suppose hypothetically that player i knows the oppo-
nent’s inference ω(−i). Consider the main round, and suppose that player i’s past
history is h2T

i ∈ H2T,ω̃
i . Then the following results hold:

• If ω(−i) , ω , player i is indifferent over all actions in the main round, so
playing the prescribed strategy sxi

i is an exact best reply.

• If ω(−i) = ω , the prescribed strategy sxi
i is not optimal for player i; by

playing sω,G
i or sω,B

i in the main round. she can improve her expected (un-
normalized) payoff by

pω
i (h

2T
i )

 E
[

∑T 3

t=1 δ t−1gω
i (a

t)+δ T 3
U

ω,xω
−i

i (hmain
−i )

∣∣∣ω,sω,xω
]

−E
[

∑T 3

t=1 δ t−1gω
i (a

t)+δ T 3
U

ω,xω
−i

i (hmain
−i )

∣∣∣ω,sω̃,xω̃
i

i ,s
ω,xω

−i
−i

]  .

From Lemma 11, pω
i (h

2T
i )≤ exp(−T

1
2 ) for any h2T

i ∈ H2T,ω̃
i , so this gain is

approximately zero for large T .

To interpret this deviation gain, note that ∑T 3

t=1 δ t−1gω
i (a

t)+δ T 3
U

ω,xω
−i

i (hmain
−i )

is the (unnormalized) payoff in the main round, augmented with the transfer
U

ω,xω
−i

i . From Lemma 7, the strategies sω,G and sω,B maximize this value, while
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the strategies sω̃,G
i and sω̃,B

i do not. Hence the term in the brackets is positive. It is
multiplied by the probability pω

i (h
2T
i ), because player i believes that the transfer

U
ω,xω

−i
i is used with this probability (see the proof below for more details).

Proof. If ω(−i) , ω , the opponent’s history is irregular and the transfer rule (17)
will be used for sure. Hence player i is indifferent over all actions in the main
round.

Now suppose that ω(−i) = ω . In this case, player i believes that the oppo-
nent’s history is regular with probability pω

i (h
2T
i ), and irregular with 1− pω

i (h
2T
i ).

In the latter case, the transfer rule (17) will be used and player i becomes indiffer-
ent over all actions in the main round. So the gain by deviating is zero in this case.
In the former case, the transfer rule (16) will be used, so in the main round, player
i maximizes the sum ∑T 3

t=1 δ t−1gω
i (a

t)+δ T 3
U

ω,xω
−i

i (hmain
−i ) of the stage-game pay-

offs and the transfer U
ω,xω

−i
i . From Lemma 7, the strategies sω,G

i and sω,B
i maximize

the expected value of this sum, while sω̃,G
i and sω̃,B

i do not. Hence deviating from
the prescribed strategy is profitable. The expected deviation gain is the differ-

ence between the payoff yielded by sω,G
i and the one by s

ω̃,xω̃
−i

i , multiplied by the
probability pω

i (h
2T
i ). This is precisely the value stated in the lemma. Q.E.D.

6.4.3 Step 3: Construction of Û
ω,xω

−i
i and clauses (i) and (ii)

In the previous step, we have constructed the transfer rule Ũ
ω,xω

−i
i such that the

prescribed strategy sxi
i is an approximate best reply. In particular, the prescribed

strategy sxi
i is suboptimal only in the main round, and only when the past history

is h2T
i ∈ H2T,ω̃

i .

In what follows, we will slightly modify the transfer rule Ũ
ω,xω

−i
i so that the

prescribed strategy sxi
i is an exact best reply even after histories h2T

i ∈ H2T,ω̃
i .

Also, we will show that the new transfer rule satisfies clause (i) of the lemma, i.e.,
the prescribed strategy achieves the target payoff.

To simplify the notation, let ĥ2T,ω
i denote the opponent’s inference about player

i’s detailed report h2T
i during player i’s detailed report round for ω .17 That is, let

ĥ2T,ω
i = Pω(hR

−i) where hR
−i is the opponent’s history during player i’s detailed

17Here h2T
i does not have the superscript ω , because player i will report the same message h2T

i
in each report round.
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report round for ω . Suppose for now that communication in the detailed report
round is perfect; that is, ĥ2T,ω

i = h2T
i with probability one if player i reports h2T

i .
Later on, we will explain how the idea can be extended to the case in which com-
munication is imperfect.

We will add the following adjustment term to the transfer:

Uadjust,ω
i (hTb

−i)

=


pω

i (ĥ
2T
i )

 4T+T 3

∑
t=4T+1

ũ
ω,xω

−i
i (at

−i,y
t
−i)

δ Tb−t+1 −
U

ω,xω
−i

i (hmain
−i )

δ 4R

 if ω(−i) = ω and ĥ2T,ω
i ∈ H2T,ω̃

i

0 otherwise

The idea of this adjustment term is as follows. Lemma 12 shows that the pre-
scribed strategy is not a best reply, because the transfer U

ω,xω
−i

i (hmain
−i ) is used with

probability pω
i (h

2T
i ), in which case playing s

ω̃,xω̃
−i

i in the main round is suboptimal.
As will be explained, the adjustment term above fixes this problem because (i) it
eliminates the effect of U

ω,xω
−i

i (hmain
−i ) by subtracting pω

i (ĥ
2T
i )U

ω,xω
−i

i (hmain
−i ) and (ii)

it makes player i indifferent in the main round by adding the term ũ
ω,xω

−i
i (at

−i,y
t
−i).

We do not make an adjustment (i.e., Uadjust,ω
i (hTb

−i) = 0) if ω(−i) ,ω . Indeed,
in this case, the prescribed strategy is a best reply even without an adjustment
(Lemma 12). Likewise, we do not make an adjustment if h2T,ω

i < H2T,ω̃
i . In this

case, the prescribed strategy induces sω,G
i or sω,B

i in the main round, which is a
best reply even without an adjustment.

Note that the adjustment term Uadjust,ω
i (hTb

−i) above is small, because Lemma
11 ensures that the probability pω

i (h
2T
i ) is small for each h2T

i ∈ H2T,ω̃
i . Formally,

we have the following lemma.

Lemma 13. There is T such that for any T >T and hTb
−i, we have |Uadjust,ω

i (hTb
−i)|<

CT 3 exp(−T
1
2 ), where C is chosen as in Lemma 7.

Now define the new transfer rule as

Û
ω,xω

−i
i (hTb

−i) =

 Ũ
ω,xω

−i
i (hTb

−i)+
U report,ω

i (h
Tb
−i)

δ 4R +Uadjust,ω
i (hTb

−i) if ω(−i) = ω
Ũ

ω,xω
−i

i (hTb
−i) otherwise

.

Here we add two additional terms U report,ω
i and Uadjust,ω

i to the original transfer

rule Ũ
ω,xω

−i
i , if ω(−i) = ω . We write U report,ω

i (hTb
−i) rather than U report,ω

i (h2T
−i ,h

R
−i)

for shorthand notation.
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In the rest of this step, we will show that the prescribed strategy sxi
i is an exact

best reply if we use this new transfer rule Û
ω,xω

−i
i . We first show that the truthful

report during the detailed report round is optimal for player i:

Lemma 14. Take ω and x−i as given. If T is sufficiently large, then regardless of
the past history (even if player i has deviated before the detailed report round),
the truthful report of h2T

i is a best reply for player i in the detailed report round.

Proof. During the detailed report round for ω̃ , player i is indifferent over all ac-
tions. This is so because actions during this round does not influence the additional
terms U report,ω

i and Uadjust,ω
i , and player i’s problem is essentially the same as the

one with the original transfer rule Ũ
ω,xω

−i
i .

So we will focus on the detailed report round for ω . Suppose for now that
player i can observe the opponent’s inference ω(−i). If ω(−i) , ω , then the

transfer rule is Û
ω,xω

−i
i (hTb

−i) = Ũ
ω,xω

−i
i (hTb

−i) = ∑Tb
t=1

ũ
ω,xω

−i
i (at

−i,y
t
−i)

δ Tb−t+1 , so player i is in-
different over all actions during the detailed report round.

If ω(−i) = ω , then player i’s actions during the detailed report round influ-
ence U report,ω

i and Uadjust,ω
i . If player i deviates in the detailed report round, it may

increase the adjustment term Uadjust,ω
i , but from Lemma 13, this effect is of order

T 3 exp(−T
1
2 ). On the other hand, such a deviation will decrease the expected

value of U report,ω
i , and this effect is at least 1

T from Lemma 8(iii). So for suffi-
ciently large T , the loss is greater than the gain, and a deviation is not profitable
for player i.

In sum, regardless of the opponent’s inference ω(−i), the truthful report is
a best reply for player i in the detailed report round. So even if player i cannot
observe ω(−i), the truthful report is still a best reply. Q.E.D.

Next, we will show that the prescribed strategy sxi
i is optimal in the main round

after every on-path history h4T
i , thanks to the adjustment term Uadjust,ω

i . (The
result does not extend to off-path histories, that is, the prescribed strategy may be
suboptimal at off-path histories h4T

i in which player i has deviated in the learning
or summary report rounds.)

Lemma 15. Take ω , xi, and x−i as given, and pick T as in Lemma 14. After every
history h4T

i such that player i did not deviate in the learning or summary report
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rounds, playing the continuation strategy sxi
i |h4T

i
is a best reply for player i in the

continuation game.

Proof. Suppose for now that player i can observe the opponent’s inference ω(−i).
As explained in the proof of Lemma 8, if ω(−i) , ω , player i is indifferent over
all actions each period of the block, so playing sxi

i |h4T
i

is optimal for player i.
If ω(−i) = ω , player i faces a more complex problem. There are two cases to

be considered.
Case 1: Player i’s past history is h2T

i ∈ H2T,ω̃
i . Note that this is the case in

which the prescribed strategy sxi
i induces s

ω̃,xω̃
−i

i , which is suboptimal under the

original transfer rule Ũ
ω,xω

−i
i .

Recall that the original transfer rule Ũ
ω,xω

−i
i takes the form (16) if the conditions

(R1)-(R3) hold, and takes the form (17) otherwise. Since we assume that player
i observes ω(−i) = ω , she knows that (R1) holds. Hence, player i with history
h2T

i assigns probability pω
i (h

2T
i ) on the transfer rule (16), and the remaining prob-

ability 1− pω
i (h

2T
i ) on (17). Hence, in expectation, player i faces the following

transfer rule:

pω
i (h

2T
i )

 4T

∑
t=1

ũ
ω,xω

−i
i (at

−i,y
t
−i)

δ Tb−t+1 +
U

ω,xω
−i

i (hmain
−i )

δ 4R +
Tb

∑
t=4T+T 3+1

ũ
ω,xω

−i
i (at

−i,y
t
−i)

Tb − t +1


+(1− pω

i (h
2T
i ))

Tb

∑
t=1

ũ
ω,xω

−i
i (at

−i,y
t
−i)

δ Tb−t+1

+
U report,ω

i (hTb
−i)

δ 4R +Uadjust,ω
i (hTb

−i) (18)

Since player i reports h2T
i truthfully in the detailed report round (see Lemma 14),

by the definition of the adjustment term Uadjust,ω
i , we have

Uadjust,ω
i (hTb

−i) = pω
i (h

2T
i )

 4T+T 3

∑
t=4T+1

ũ
ω,xω

−i
i (at

−i,y
t
−i)

δ Tb−t+1 −
U

ω,xω
−i

i (hmain
−i )

δ 4R

 .

Plugging this into the above display, the transfer rule can be simplified to

Tb

∑
t=1

ũ
ω,xω

−i
i (at

−i,y
t
−i)

δ Tb−t+1 +
U report,ω

i (hTb
−i)

δ 4R .
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Since the second term U report,ω
i is not influenced by the history during the main

round, this transfer rule makes player i indifferent over all actions in the main
round. Hence playing sxi

i |h4T
i

is a best reply for player i.

Case 2: Player i’s past history is h2T
i < H2T,ω̃

i . This is the case in which the

prescribed strategy sxi
i induces s

ω,xω
−i

i in the main round.
Again, player i faces the transfer rule (18), but now Uadjust,ω

i (hTb
−i) = 0, since

we consider the case with h2T
i < H2T,ω̃

i . So essentially player i faces the transfer
rule (16) with probability pω

i (h
2T
i ), and (17) with the remaining probability. As

discussed in the proof of Lemma 10, in any case, playing sω,xω
i

i during the main
round is optimal.

In sum, regardless of the opponent’s inference ω(−i), playing the continuation
strategy sxi

i |h4T
i

is a best reply for player i. Hence the same is true even if player i
does not observe ω(−i). Q.E.D.

Finally, we consider player i’s incentives during the learning and summary
report rounds. The following lemma shows that sxi

i is an exact reply so that clause
(ii) holds. It also shows that the target payoff is exactly achieved, and hence clause
(i) holds.

Lemma 16. Take ω and x−i as given, and pick T as in Lemma 14. Then for any
automaton state xi, the corresponding block strategy sxi

i is a best reply, and yields
a payoff of vω

i if xω
−i = G and vω

i if xω
−i = B.

Proof. As in the case with the original transfer Ũ
ω,xω

−i
i , the strategy s∗i is a best

reply in the entire block game when the new transfer rule Û
ω,xω

−i
i is used. (The

proof is very similar to that of Lemma 10 and hence omitted.) Now, recall that sxi
i

and s∗i induce the same actions during the learning and summary report rounds.
This, together with Lemma 15, implies that s∗i and sxi

i yield the same payoff in the
block. Hence sxi

i is a best reply in the whole block game with the transfer rule

Û
ω,xω

−i
i .

To compute the payoff, recall that the strategy s∗i achieves the target payoff

when the original transfer rule Ũ
ω,xω

−i
i is used (Lemma 10). Note also that given

this strategy s∗i and the opponent’s inference ω(−i) = ω , the expected value of
the additional terms is zero. (Specifically, the expected value of U report,ω

i is zero

because of Lemma 8. The expected value of Uadjust,ω
i is zero because both U

ω,xω
−i

i
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and ∑4T+T 3

t=4T+1
ũ

ω,xω
−i

i (at
−i,y

t
−i)

δ Tb−t+1 yield the same expected value if sω,xω
is played during

the main round.) Accordingly, the strategy s∗i achieves the target payoff even when

the new transfer rule Û
ω,xω

−i
i is used. This immediately implies the result, as sxi

i and

s∗i yield the same payoff against this transfer rule Û
ω,xω

−i
i . Q.E.D.

So far we have assumed that communication in the detailed report round is per-
fect. When communication is imperfect, we need to perturb the adjustment term
Uadjust,ω

i . We will consider the adjustment term which depends only on ω(−i),
hmain
−i , and ĥ2T,ω

i , and we will write Uadjust,ω
i (ω(−i),hmain

−i , ĥ2T,ω
i ) to emphasize

this dependence.
When ω(−i) , ω , we let Uadjust,ω

i (ω(−i),hmain
−i , ĥ2T,ω

i ) = 0, just as in the
perfect-communication case. When ω(−i) = ω , we slightly perturb the adjust-
ment term so that it solves

∑
ĥ2T,ω

i

Pr(ĥ2T,ω
i |ω,σ report,ω

i (h2T
i ))Uadjust,ω

i (ω(−i) = ω,hmain
−i , ĥ2T

i )

=


pω

i (ĥ
2T
i )

 4T+T 3

∑
t=4T+1

ũ
ω,xω

−i
i (at

−i,y
t
−i)

δ Tb−t+1 −
U

ω,xω
−i

i (hmain
−i )

δ 8T 2

 if h2T
i ∈ H2T,ω̃

i

0 otherwise

.

for each hmain
−i and h2T

i . That is, the expected value of the adjustment Uadjust,ω
i

after the main round (so hmain
−i is given) but before player i reports h2T

i is exactly
the same as the one for the perfect-communication case. Obviously, player i’s
incentive with this new adjustment term is the same as the one for the perfect-
communication case, and hence sxi

i is a best reply for player i. Also clause (i) still
holds, as the expected value of the adjustment term does not change.

6.4.4 Step 4: Construction of U
ω,xω

−i
i and clause (iii)

The transfer rule Û
ω,xω

−i
i in the previous step satisfies clauses (i) and (ii) of the

lemma. However, it does not satisfy clause (iii). To see this, consider the transfer
rule Ûω,G

i , and suppose that the opponent’s history hTb
−i is irregular. Then the

transfer takes the form

Ûω,G
i (hTb

−i) = Ũω,G
i (hTb

−i) =
Tb

∑
t=1

ũω,G
i (a−i,y−i)

δ Tb−t+1 .
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In general, the function ũω,G
i (at

−i,y
t
−i) takes a positive value for some (a−i,y−i),

and thus for some history hTb
−i, we have Ûω,G

i (hTb
−i) > 0. This implies that Ûω,G

i

does not satisfy clause (iii) of the lemma in general. The same argument applies
to Ûω,B

i , and it is easy to see that Ûω,B
i (hTb

−i)< 0 for some hTb
−i.

In what follows, we will further modify the transfer rule to fix this problem.
Suppose that after the block, the opponent randomly chooses a number θ ω ∈
{0,1,2,3,4,5,6}, depending on the block history. Formally, the distribution of
this random variable θ ω is described by a mapping Qω : HTb

−i →△{0,1,2,3,4,5,6};
given a block history hTb

−i, the opponent chooses θ ω according to the distribution
Qω(·|hTb

−i) ∈△{0,1,2,3,4,5,6}. We choose this mapping Qω as in the following
lemma. The proof will be given in the next step.

Lemma 17. For each ω , there is Qω : HTb
−i →△{0,1,2,3,4,5,6} which satisfies

the following properties.

(i) θ ω ≥ 1 if the opponent’s history hTb
−i is irregular: Qω(θ ω = 0|hTb

−i) = 0 for
each irregular history hTb

−i.

(ii) Given a state ω , the expected value of θ ω is small, and it is independent of
player i’s strategy sTb

i and of the opponent’s automaton state x−i: Let

E[θ ω |ω,sTb
i ,sx−i

−i ] = ∑
h

Tb
−i∈H

Tb
−i

Pr(hTb
−i|s

Tb
i ,sx−i

−i ) ∑
θ ω∈{0,1,2,3,4,5,6}

Qω(θ ω |hTb
−i).

Then E[θ ω |ω,sTb
i ,sx−i

−i ] is independent of sTb
i and x−i (so we denote it by

E[θ ω |ω]), and E[θ ω |ω]≤ 6exp(−T
1
2 ).

Now we define a new transfer rule Uω,G
i such that for each hTb

−i,

Uω,G
i (hTb

−i) = Ûω,G
i (hTb

−i)−2Tbuiθ ω +2TbuiE[θ ω |ω],

where u > 0 is a constant such that ui > |ũω,xω
−i

i (a−i,y−i)| for all xω
−i, a−i, and y−i.

That is, we add two terms, −2Tbuiθ ω and 2TbuiE[θ ω |ω]. Similarly, for each hTb
−i,

let
Uω,B

i (hTb
−i) = Ûω,B

i (hTb
−i)+2Tbuiθ ω −2TbuiE[θ ω |ω].

Note that these additional terms do not influence player i’s incentive. Indeed,
the first additional term 2Tbuiθ ω is independent of player i’s strategy (Lemma
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17(ii)), and the second one is just a constant. Hence, the new transfer rule U
ω,xω

−i
i

still satisfies Lemma 9(ii). Also this transfer rule satisfies Lemma 9(i), because
the sum of these additional terms is zero in expectation.

So what remains is to prove Lemma 9(iii). We will first show that −vω
i −vω

i
1−δ <

Uω,G
i (hTb

−i)< 0 for each hTb
−i. There are three cases to be considered.

Case 1: hTb
−i does not satisfy (R1). In this case, Lemma 17(i) implies that θ ω ≥

1 with probability one. Also, by the construction, Ûω,G
i (hTb

−i) = ∑Tb
t=1

ũω,G
i (at

−i,y
t
−i)

δ Tb−t+1 .

Hence, using ui > |ũω,G
i (a−i,y−i)| and Lemma 17(ii), we have

−
Tb

∑
t=1

ui

δ Tb−t+1 −12Tbui −12Tbui exp(−T
1
2 )

<Uω,G
i (hTb

−i)<
Tb

∑
t=1

ui

δ Tb−t+1 −2Tbui +12Tbui exp(−T
1
2 ),

where the lower bound is derived by considering the case with θ ω = 6, and the
upper bound is derived by considering the case with θ ω = 1. Taking the limit as
δ → 1,

−13Tbui −12Tbui exp(−T
1
2 )< lim

δ→1
Uω,G

i (hTb
−i)<−Tbui +12Tbui exp(−T

1
2 ).

When T is sufficiently large, Tb exp(−T
1
2 ) is almost negligible, so

−14Tbui < lim
δ→1

Uω,G
i (hTb

−i)< 0.

So in the limit as δ → 1, the transfer Uω,G
i (hTb

−i) satisfies the inequality in Lemma
9(iii). By the continuity, the same inequality holds for δ close to one.

Case 2: hTb
−i satisfies (R1) but it is irregular (so (R2) or (R3) does not hold).

As in the previous case, Lemma 17(i) implies that θ ω ≥ 1 with probability one.
Also, by the construction, we have

Ûω,G
i (hTb

−i) =
Tb

∑
t=1

ũω,G
i (at

−i,y
t
−i)

δ Tb−t+1 +Uadjust,ω
i (hTb

−i)+
U report,ω

i (hTb
−i)

δ 4R .

Thus from ui > |ũω,G
i (a−i,y−i)| and Lemmas 8, 13, and 17(ii), we obtain

−
Tb

∑
t=1

ui

δ Tb−t+1 −T 3 exp(−T
1
2 )− CT 2

δ 4R −12Tbui −12Tbui exp(−T
1
2 )

<Uω,G
i (hTb

−i)<
Tb

∑
t=1

ui

δ Tb−t+1 +T 3 exp(−T
1
2 )+

CT 2

δ 4R −2Tbui +12Tbui exp(−T
1
2 ).
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Again, we take θ ω = 6 and θ ω = 1 to obtain the lower and upper bounds, respec-
tively. Taking the limit as δ → 1,

−T 3 exp(−T
1
2 )−CT 2 −13Tbui −12Tbui exp(−T

1
2 )

< lim
δ→1

Uω,G
i (hTb

−i)< T 3 exp(−T
1
2 )+CT 2 −Tbui +12Tbui exp(−T

1
2 ).

When T is sufficiently large, T 3 exp(−T
1
2 ) and Tb exp(−T

1
2 ) are almost negligi-

ble, and also Tbui >CT 2. Hence,

−14Tbui < lim
δ→1

Uω,G
i (hTb

−i)< 0.

As in Case 1, this implies the desired inequality for δ close to one.
Case 3: hTb

−i is regular. In this case, we have

Ûω,G
i (hTb

−i) =
4T

∑
t=1

ũω,G
i (at

−i,y
t
−i)

δ Tb−t+1 +
Uω,G

i (hmain
−i )

δ 8T 2 +
Tb

∑
t=4T+T 3+1

ũω,G
i (at

−i,y
t
−i)

δ Tb−t+1

+Uadjust,ω
i (hTb

−i)+
U report,ω

i (hTb
−i)

δ 4R .

Hence from ui > |ũω,G
i (a−i,y−i)| and Lemmas 7, 8, 13, and 17(ii),

−
4T

∑
t=1

ui

δ Tb−t+1 −CT 3 −
Tb

∑
t=4T+8T 2+1

ui

δ Tb−t+1 −T 3 exp(−T
1
2 )− CT 2

δ 4R −12Tbui −12Tbui exp(−T
1
2 )

<Uω,G
i (hTb

−i)

<
4T

∑
t=1

ui

δ Tb−t+1 −CT 3 +
Tb

∑
t=4T+8T 2+1

ui

δ Tb−t+1 +T 3 exp(−T
1
2 )+

CT 2

δ 4R +12Tbui exp(−T
1
2 ).

Here we take θ ω = 0 (rather than θ ω = 1) to obtain the upper bound; this is
so because Lemma 17(i) does not apply when the opponent’s history is regular.
Taking the limit as δ → 1,

−CT 3 −T 3 exp(−T
1
2 )−CT 2 −13Tbui −12Tbui exp(−T

1
2 )

< lim
δ→1

Uω,G
i (hTb

−i)< (4T +8T 2)ui −CT 3 +T 3 exp(−T
1
2 )+CT 2 +12Tbui exp(−T

1
2 ).

When T is sufficiently large, T 3 exp(−T
1
2 ) and Tb exp(−T

1
2 ) are almost negligi-

ble, and also CT 3 > (4T +8T 2)ui +CT 2. Hence

−CT 3 −CT 2 −14Tbui < lim
δ→1

Uω,G
i (hTb

−i)< 0.
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As in the previous cases, this implies the desired inequality for δ close to one.
In sum, regardless of the opponent’s history hTb

−i, the transfer Uω,G
i (hTb

−i) satis-
fies the inequality in Lemma 9(iii). The same argument applies to the transfer rule
Uω,B

i .

6.4.5 Step 5: Proof of Lemma 17

We define θ ω as a sum of three random variables:

θ ω = θ ω,1 +θ ω,2 +θ ω,3.

For each k ∈ {1,2,3}, we will choose the random variable θ ω,k so that

(i) θ ω,k ≥ 1 if (Rk) does not hold.

(ii) Given that the true state is ω , the expected value of θ ω,k is less than 2exp(−T
1
2 ),

and it is independent of player i’s strategy sTb
i and of the opponent’s automa-

ton state x−i.

If there are such θ ω,1, θ ω,2, and θ ω,3, then the result immediately follows. So we
will explain how to find such θ ω,1, θ ω,2, and θ ω,3.

Substep 1: Construction of θ ω,1

In the opponent’s learning round, the opponent computes the base score, the
random score, and the final score, and determines the inference ω(−i) depending
on these scores. (See the proofs of Lemmas 1 and 6.) By the definition of ω(−i),
(R1) does not hold if and only if

(a) |qω
−i −qrandom

−i | ≥ 2ε̃ , or

(b) |qbase
−i −qrandom

−i | ≥ ε̃ .

Let ξ ∈ {0,1} be such that ξ = 1 if and only if (a) holds, and let η ∈ {0,1} be
such that η = 1 if and only if (b) holds. Let θ̃ ω,1 = ξ +η .

Obviously this variable θ̃ ω,1 satisfies the property (i) above, that is, θ̃ ω,1 ≥ 1
if (R1) does not hold. Also, the expected value of ξ is independent of player
i’s strategy sTb

i and of the opponent’s automaton state x−i, as the distribution of
the random score qrandom

−i is independent of sTb
i and x−i. However, the variable
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θ̃ ω,1 = ξ +η does not satisfy the property (ii) above, because the expected value
of η depends on player i’s strategy sTb

i . In what follows, we will modify this
variable η so that its expected value is independent of sTb

i .
Let hT

−i denote the opponent’s history during her own learning round. For each
hT
−i, let

p̂ω(hT
−i) = Pr(|qbase

−i −qrandom
−i | ≥ ε̃|ω,hT

−i)

be the probability that (b) occurs conditional on hT
−i. By Hoeffding’s inequality,

p̂ω(hT
−i)≤ exp(−T

1
2 ).

Then define η̂1 ∈ {0,1} such that

• If (b) holds, then let η̂1 = 1.

• If not, then let η̂1 = 1 with probability exp(−T
1
2 )−p̂ω (hT

−i)

1−p̂ω (hT
−i)

, and let η̂1 = 0 with
the remaining probability.

That is, we let η̂1 = 1 not only when (b) occurs, but also when (b) does not occur,
with positive probability. This probability is adjusted depending on the opponent’s
history hT

−i so that all histories hT
−i induce the same probability of η̂ = 1. Indeed,

given hT
−i, the probability of η̂ = 1 is

Pr(|qbase
−i −qrandom

−i | ≥ ε̃|ω,hT
−i)+(1−|qbase

−i −qrandom
−i | ≥ ε̃|ω,hT

−i)
exp(−T

1
2 )− p̂ω(hT

−i)

1− p̂ω(hT
−i)

= p̂ω(hT
−i)+(1− p̂ω(hT

−i))
exp(−T

1
2 )− p̂ω(hT

−i)

1− p̂ω(hT
−i)

= exp(−T
1
2 ).

Accordingly, the expected value of the random variable θ ω,1 = ξ 1 + η̂1 is in-
dependent of player i’s strategy sTb

i and of the opponent’s automaton state x−i.
Also this expected value is at most 2exp(−T

1
2 ), as the expected value of η̂1 is

exp(−T
1
2 ) (this is shown in the above display) and the expected value of ξ 1 is at

most exp(−T
1
2 ) (this follows from Hoeffding’s inequality). Hence this random

variable θ ω,1 = ξ 1 + η̂1 satisfies the desired properties (i) and (ii).

Substep 2: Construction of θ ω,2
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To define θ ω,2, consider player i’s learning round, in which players are sup-
posed to play (ai,α−i). Let f−i ∈△(A−i×Y−i) denote the opponent’s observation
during this round, and let πω

−i(ãi,α−i) denote the distribution of (a−i,y−i) given
ω and (ãi,α−i) for shorthand notation.

After this round, the opponent computes a base score qbase
−i ∈ R|A−i|×|Y−i| using

the formula
qbase
−i = Q−i f−i,

where Q−i is a |A−i ×Y−i| × |A−i ×Y−i| matrix. We choose this matrix so that
there is some qω

−i ∈ R|A−i|×|Y−i| such that

Q−iπω
−i(ãi,α−i) = qω

−i

for each ãi. That is, we choose Q−i so that player i cannot influence the expected
value of the base score. Condition 4 ensures that such a matrix exists. Then
the opponent generates a random score qrandom

−i , just as explained in the proof of
Lemma 1.

Take ε̃ smaller than ε . Then (R2) does not hold only if |qω
−i −qbase

−i | ≥ ε̃ . This
in turn implies that (R2) does not hold only if

(a) |qω
−i −qrandom

−i | ≥ ε̃
2 , or

(b) |qbase
−i −qrandom

−i | ≥ ε̃
2 .

Define ξ 2 and η̂2 as in the previous substep, and let θ ω,2 = ξ 2 + η̂2. Then this
random variable satisfies the desired properties (i) and (ii). The proof is very
similar to the one in the previous substep and hence omitted.

Substep 3: Construction of θ ω,3

The argument is exactly the same as the one for θ ω,2, and hence omitted.
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Ely, J., and J. Välimäki (2002): “A Robust Folk Theorem for the Prisoner’s
Dilemma,” Journal of Economic Theory 102, 84-105.

Fong, K., O. Gossner, J. Hörner, and Y. Sannikov (2011): “Efficiency in a Re-
peated Prisoner’s Dilemma with Imperfect Private Monitoring,” mimeo.

Forges, F. (1984): “Note on Nash Equilibria in Infinitely Repeated Games with
Incomplete Information,” International Journal of Game Theory 13, 179-187.

Fudenberg, D., and D.K. Levine (1991): “Approximate Equilibria in Repeated
Games with Imperfect Private Information,” Journal of Economic Theory 54,
26-47.

75



Fudenberg, D., and D.K. Levine (1994): “Efficiency and Observability in Games
with Long-Run and Short-Run Players,” Journal of Economic Theory 62, 103-
135.

Fudenberg, D., D.K. Levine, and E. Maskin (1994): “The Folk Theorem with
Imperfect Public Information,” Econometrica 62, 997-1040.

Fudenberg, D., and Y. Yamamoto (2010): “Repeated Games where the Payoffs
and Monitoring Structure are Unknown,” Econometrica 78, 1673-1710.

Fudenberg, D., and Y. Yamamoto (2011a): “Learning from Private Information in
Noisy Repeated Games,” Journal of Economic Theory 146, 1733-1769.

Hart, S. (1985): “Nonzero-Sum Two-Person Repeated Games with Incomplete
Information,” Mathematics of Operations Research 10, 117-153.

Hörner, J., and S. Lovo (2009): “Belief-Free Equilibria in Games with Incomplete
Information,” Econometrica 77, 453-487.

Hörner, J., S. Lovo, and T. Tomala (2011): “Belief-Free Equilibria in Games with
Incomplete Information: Characterization and Existence,” Journal of Economic
Theory 146, 1770-1795.

Hörner, J., and W. Olszewski (2006): “The Folk Theorem for Games with Private
Almost-Perfect Monitoring,” Econometrica 74, 1499-1544.

Hörner, J., and W. Olszewski (2009): “How Robust is the Folk Theorem with
Imperfect Public Monitoring?,” Quarterly Journal of Economics 124, 1773-
1814.

Kandori, M. (2002): “Introduction to Repeated Games with Private Monitoring,”
Journal of Economic Theory 102, 1-15.

Kandori, M. (2011): “Weakly Belief-Free Equilibria in Repeated Games with
Private Monitoring,” Econometrica 79, 877-892.

Kandori, M., and H. Matsushima (1998): “Private Observation, Communication
and Collusion,” Econometrica 66, 627-652.

Koren, G. (1992): “Two-Person Repeated Games where Players Know Their Own
Payoffs,” mimeo.

Lehrer, E. (1990): “Nash Equilibria of n-Player Repeated Games with Semi-
Standard Information,” International Journal of Game Theory 19, 191-217.

76



Mailath, G.J., and S. Morris (2002): “Repeated Games with Almost-Public Mon-
itoring,” Journal of Economic Theory 102, 189-228.

Mailath, G.J., and S. Morris (2006): “Coordination Failure in Repeated Games
with Almost-Public Monitoring,” Theoretical Economics 1, 311-340.

Mailath, G.J., and W. Olszewski (2011): “Folk Theorems with Bounded Recall
and (Almost) Perfect Monitoring,” Games and Economic Behavior 71, 174-
192.

Mailath, G.J., and L. Samuelson (2006): Repeated Games and Reputations:
Long-Run Relationships. Oxford University Press, New York, NY.

Matsushima, H. (2004): “Repeated Games with Private Monitoring: Two Play-
ers,” Econometrica 72, 823-852.

Miller, D. (2012): “Robust collusion with private information,” Review of Eco-
nomic Studies 79, 778-811.

Monderer, D., and D. Samet (1989) “Approximating Common Knowledge with
Common Beliefs,” Games and Economic Behavior 1, 170-190.

Piccione, M. (2002): “The Repeated Prisoner’s Dilemma with Imperfect Private
Monitoring,” Journal of Economic Theory 102, 70-83.

Radner, R., R. Myerson, and E. Maskin (1986): “An Example of a Repeated
Partnership Game with Discounting and with Uniformly Inefficient Equilibria,”
Review of Economic Studies 53, 59-70.

Sekiguchi, T. (1997): “Efficiency in Repeated Prisoner’s Dilemma with Private
Monitoring,” Journal of Economic Theory 76, 345-361.

Shalev, J. (1994): “Nonzero-Sum Two-Person Repeated Games with Incomplete
Information and Known-Own Payoffs,” Games and Economic Behavior 7, 246-
259.

Sorin, S. (1984): “Big Match with Lack of Information on One Side (Part I),”
International Journal of Game Theory 13, 201-255.

Sorin, S. (1985): “Big Match with Lack of Information on One Side (Part II),”
International Journal of Game Theory 14, 173-204.

Stigler, G.J. (1964): “A Theory of Oligopoly,” Journal of Political Economy 72,
44-61.

77



Sugaya, T. (2012): “Belief-Free Review-Strategy Equilibrium without Condi-
tional Independence,” mimeo.

Sugaya, T. (2019): “Folk Theorem in Repeated Games with Private Monitoring,”
mimeo.

Wiseman, T. (2005): “A Partial Folk Theorem for Games with Unknown Payoff
Distributions,” Econometrica 73, 629-645.

Wiseman, T. (2012) “A Partial Folk Theorem for Games with Private Learning,”
Theoretical Economics 7, 217-239.

Yamamoto, Y. (2007): “Efficiency Results in N Player Games with Imperfect
Private Monitoring,” Journal of Economic Theory 135, 382-413.

Yamamoto, Y. (2009): “A Limit Characterization of Belief-Free Equilibrium Pay-
offs in Repeated Games,” Journal of Economic Theory 144, 802-824.

Yamamoto, Y. (2012): “Characterizing Belief-Free Review-Strategy Equilibrium
Payoffs under Conditional Independence,” Journal of Economic Theory 147,
1998-2027.

Yamamoto, Y. (2014): “Individual Learning and Cooperation in Noisy Repeated
Games,” Review of Economic Studies 81, 473-500.

78



Appendix A: Proofs of Lemmas

A.1 Proof of Lemma 1

We will formally explain how each player i forms the inference ω(i) from her
history hT

i in the learning round. We will introduce three different scoring rules,
a base score, a random score, and a final score. Then we will explain how these
scores are converted to the inference ω(i) and show that the resulting inference
rule satisfies all the desired conditions.

Step 1: Base Score

For simplicity, we first consider the case in which no one deviates from a∗ dur-
ing player i’s learning round. Let fi(a∗) = ( fi(a∗)[zi])zi∈Zi ∈△Zi denote player i’s
signal frequency during this round. Given a signal frequency fi(a∗), we compute
a base score qbase

i ∈�|Zi| using the following formula:

qbase
i = Qi(a∗) fi(a∗).

Here, Qi(a∗) is a |Zi|× |Zi| matrix, so it is a linear operator which maps a signal
frequency fi(a∗)∈△Zi to a score vector qbase

i ∈�|Zi|. (Here, both fi(a∗) and qbase
i

are column vectors.) The specification of the matrix Qi(a∗) will be given later.
From the law of large numbers, if the true state were ω , the score qbase

i should be
close to the expected score Qi(a∗)πω

i (a∗) almost surely. So if we choose a matrix
such that Qi(a∗)πω1

i (a∗) , Qi(a∗)πω2
i (a∗), then player i can distinguish ω1 from

ω2 using the base score.
If someone deviates from a∗ during the learning round, the base score will be

computed by a slightly different formula. Given a history hT
i = (at ,zt

i)
T
t=1 in player

i’s learning round, let β (a) denote the frequency of an action profile a during
the round, that is, let β (a) = |{t∈{1,··· ,T}|at=a}|

T for each a. Also, let fi(a) ∈ △Zi

denote the signal frequency for periods in which the profile a was played, that is,
fi(a) = ( fi(a)[zi])zi∈Zi where fi(a)[zi] =

|{t∈{1,··· ,T}|(at ,zt
i)=(a,zi)}|

T β (a) . For a which was
not played during the T periods, we set fi(a) = 0. We define the base score as:

qbase
i = ∑

a∈A
β (a)Qi(a) fi(a)

where for each a, Qi(a) is a |Zi| × |Zi| matrix which will be specified later. In
words, player i computes the score vector qbase

i (a) = Qi(a) fi(a) for each action
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profile a, and takes a weighted average of these scores over all a. Note that this
formula reduces to the previous one when no one deviates from a∗.

We choose the matrices Qi(a) as in the following lemma: (This lemma spec-
ifies the matrix Qi(a) only for a with a− j = a∗− j. For other a, let Qi(a) be the
normal matrix.)

Lemma 18. Suppose that Conditions 2 holds. Then for each i, there are |Zi|-
dimensional column vectors qω1

i and qω2
i with qω1

i , qω2
i such that for each j , i

and a j, there is a full-rank matrix Qi(a j,a∗− j) such that

Qi(a j,a∗− j)πω
i (a j,a∗− j) =

{
qω1

i if ω = ω1

qω2
i if ω = ω2

.

Proof. Directly follows from Condition 2. Q.E.D.

That is, we choose the matrices Qi(a) so that if the true state is ω , the expected
base score is qω

i regardless of the opponent’s actions during the learning round.
Since qω1

i , qω2
i , player i can indeed distinguish the true state using the base score.

While the opponent’s action cannot influence the expected value of the base
score, it may still influence the distribution of player i’s base score. Thus, if player
i uses the base score to distinguish the true state, player j may be able to manip-
ulate player i’s inference by deviating from a∗, so that clause (ii) of the lemma
fails. In the next step, we will modify the scoring rule to avoid this problem.

Step 2: Random Score

Let Qi(a) be as in Lemma 18, and for each zi, let qi(a,zi) be the column of the
matrix Qi(a) corresponding to signal zi. Note that qi(a,zi) is a |Zi|-dimensional
column vector, so let qi,k(a,zi) denote its kth component. Without loss of general-
ity, we assume that each entry of the matrix Qi(a) be in the interval [0,1], i.e., we
assume that qi,k(a,zi) ∈ [0,1].18

For each (a,zi), let κi(a,zi) ∈ {0,1}|Zi| be a random variable such that each
component is randomly and independently drawn from {0,1} and such that for
each k, the probability of the kth component being 1 is qi,k(a,zi). Note that

18If some entry of Qi(a) is not in [0,1], we consider the affine transformation of qi(a,zi), qω1
i ,

and qω2
i so that each entry is in [0,1].
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given (a,zi), the expected value of this random variable κi(a,zi) is exactly equal
to qi(a,zi).

Let hT
i = (at ,zt

i)
T
t=1 denote player i’s history during her learning round. Given

such a history hT
i , define the random score qrandom

i ∈�|Zi| as

qrandom
i =

1
T

T

∑
t=1

κi(at ,zt
i).

That is, we generates independent random variables (κi(at ,zt
i))

T
t=1 for each period-

t outcome (at ,zt
i), and define the random score as its average.

Note that for a given history hT
i during the learning round, the expected value

of the random score is exactly equal to the base score. This, together with the law
of large numbers, implies that if the true state is ω , the random score is close to
qω

i almost surely; hence player i can distinguish the state using the random score.
Also, by the construction, the opponent’s action cannot influence the distribution
of player i’s random score. (Here we use Lemma 18, which ensures that the
expected value of the base score does not depend on the opponent’s actions.) This
implies that if player i uses the random score to distinguish the true state, then
player j cannot manipulate player i’s inference at all.

However, the random score is not a sufficient statistic of player i’s signal fre-
quency fi. For example, even when the base score is close to qω

i so that the signals
indicate that ω is likely to be the true state, if there are too many unlucky draws
of the random variables κi(at ,zt

i), the random scores can be far away from qω
i .

Accordingly clause (iii) does not hold if player i uses the random score to make
the inference. In the next step, we will introduce the notion of the final score in
order to fix this problem.

Step 3: Final Score

Now we introduce the concept of a final score, which combines the advantages
of the base and random scores. Let ε̃ > 0 be a small number. Player i’s final score
qfinal

i is defined as

qfinal
i =

{
qrandom

i if |qrandom
i −qbase

i |< ε̃
qbase

i otherwise
.

In words, if the random score is close to the base score, it is used as the final score
Otherwise, the base score is used as the final score.
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By the definition, the final score is always close to the base score. This means
that player i’s final score is an “almost sufficient” statistic for her T -period private
history.

Another important property of the final score is that a player’s action cannot
influence the opponent’s score almost surely. To see this, note that conditional on
the T -period history (at ,zt

i)
T
t=1, the expected value of the random score qrandom

i is
equal to the base score qbase

i . This implies that with probability close to one, the
random score is close to the base score and hence the final score is equal to the
random score, which does not depend on the opponent’s deviation. Formally, for
any ε̃ > 0, there is T such that for any T > T , in any period of the learning round,
the probability that the opponent’s action can influence player i’s final score is less
than exp(−T

1
2 ).

Step 4: From the Final Score to the Inference

Now we will describe how each player i makes the inference ω(i). Recall that
ε̃ > 0 is a small number. We set ω(i) = ω1 if∣∣∣qω1

i −qfinal
i

∣∣∣< 2ε̃, (19)

and we set ω(i) = ω2 if ∣∣∣qω2
i −qfinal

i

∣∣∣< 2ε̃. (20)

If neither (19) nor (20) holds, then we set ω(i) = /0. In words, if the score is in the
2ε̃-neighborhood of the expected score at ω , then we set ω(i) = ω . Note that the
inference ω(i) is indeed well-defined if ε̃ is sufficiently small.

Now we show that this inference rule satisfies all the desired properties. Clause
(i) is simply a consequence of the law of large numbers. Clause (ii) follows from
the fact that the opponent’s deviation cannot influence player i’s final score almost
surely.

To prove clause (iii), suppose that no one deviates from a∗, and pick a signal
frequency fi such that player i will choose ω(i) = ω with positive probability. By
the definition of the final score, given this signal frequency fi, the resulting final
score is always within ε̃ of the base score qbase

i , which is equal to Qi(a∗) fi. Hence,
from (19) and (20), we must have

|qω
i −Qi(a∗) fi|< 3ε̃. (21)
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Since Qi(a∗) has a full rank, this implies

|πω
i (a∗)− fi|< Kε̃ (22)

for some constant K > 0. Hence clause (iii) follows.

A.2 Proof of Lemma 3

As in Section 4.5, we first construct a transfer rule Ũω,G
i which “approximately”

satisfies clause (ii) of the lemma. That is, we construct Ũω,G
i such that playing

the prescribed strategy sxi
i is a best reply for player i except the summary report

round, and it is an approximate best reply in the summary report round. Then
we modify this transfer rule Ũω,G

i and construct a new transfer rule Uω,G
i which

satisfies clause (ii) exactly. Then we show that the modified transfer rule Uω,G
i

satisfies clauses (i) and (iii) as well.
We begin with introducing the notion of regular histories. We first give the

definition and then give its interpretation. A block history hTb
−i is regular given

(ω,G) if it satisfies all the following conditions:

(G1) Players choose a∗ in the learning round.

(G2) In the summary report round, the opponent reports ω(−i) = ω , and player
i reports ω(i) = ω or ω(i) = /0.

(G3) The opponent reports xω
−i = G in the first period of the main round,

(G4) Players follow the prescribed strategy in the second or later periods of the
main round.

(G5) The opponent’s signal frequency f−i during player i’s learning round is
close to the ex-ante distribution πω

−i(a
∗), i.e., | f−i −πω

−i(a
∗)|< ε .

A history hTb
−i is irregular given (ω,G) if it is not regular.

Roughly, a history is regular if (i) no one makes an observable deviation from
the prescribed strategy sx, and (ii) no one reports a wrong inference, and (iii)
the opponent’s signal frequency f−i is typical of ω . Note that this concept is an
extension of “regular observations” briefly discussed in Section 4.5; now we allow
players’ deviations in the learning and the main round, and we call the history
irregular if such a deviation occurs.
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A.2.1 Step 1: Construction of Ũω,G
i

Choose a transfer rule Ũω,G
i : HTb

−i → R such that

• If the history hTb
−i is regular given (ω,G), choose Ũω,G

i (hTb
−i) so that it solves

1−δ
1−δ Tb

[
Tb

∑
t=1

δ t−1gω
i (a

t)+δ TbŨω,G
i (hTb

−i)

]
= vω

i . (23)

• If the history hTb
−i is irregular, choose Ũω,G

i (hTb
−i) so that

1−δ
1−δ Tb

[
Tb

∑
t=1

δ t−1gω
i (a

t)+δ TbŨω,G
i (hTb

−i)

]
=−2gω

i . (24)

In words, if (i) no one makes an observable deviation, and (ii) no one reports a
wrong inference, and (iii) the opponent’s observation f−i is typical of ω , then
the transfer Uω,G

i is chosen in such a way that player i’s payoff in the complete-
information transfer game is exactly the target payoff vω

i . On the other hand, if
player i makes an observable deviation or reports a wrong inference, or if the
opponent’s observation is not typical of ω , then we give a huge negative transfer
to player i so that the payoff goes down to −2gω

i . Note that this transfer rule is
very similar to the one in Section 4.5; the only difference is that player i receives
a huge negative transfer when there is a deviation in the learning round or in the
main round. So (assuming that no one has deviated in the learning round) player
i’s best reply in the summary report round is still as in Table 1 in Section 4.5.

A.2.2 Step 2: Ũω,G
i approximately satisfies clause (ii)

Consider the complete-information transfer game with the state ω and the transfer
rule Ũω,G

i above. Suppose that the opponent’s current plan is x−i with xω
−i = G.

We will show that the prescribed strategies sGG
i , sGB

i , sBG
i , and sBB

i are approximate
best replies for player i. We will first show that the strategies sGG

i , sGB
i , sBG

i , and
sBB

i are exact best replies except the summary report round.

Lemma 19. In the learning round, the main round, and the detailed report round,
the strategies sGG

i , sGB
i , sBG

i , and sBB
i are best replies for player i, regardless of the

past history.
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Proof. Actions in the detailed report round and in the first period of the main
round do not influence whether the resulting history is regular or not. Hence
player i is indifferent over all actions in these periods.

In the learning round and the second or later periods of the main round, player
i prefers not to deviate from the prescribed strategy sxi

i . This is so because such
deviations are observable and make the history irregular for sure, which yields the
worst payoff payoff −2gω

i . Q.E.D.

In what follows, we will focus on the incentive problem in the summary report
round. The next lemma shows that if someone has deviated during the learning
round, then the truthful summary report is an exact best reply.

Lemma 20. Suppose that someone has deviated from a∗ during the learning
round. Then player i is indifferent over all actions in the summary report round,
and hence the truthful summary report is a best reply.

Proof. If someone has deviated from a∗ in the learning round, then the opponent’s
history hTb

−i becomes irregular, regardless of player i’s summary report. Hence
player i is indifferent over all summary reports. Q.E.D.

Now, consider the case in which no one has deviated during the learning round.
In this case, Lemma 5 still holds, because the transfer rule constructed above is
exactly the same as the one in Section 4.5. So the truthful summary report is
indeed an approximate best reply.

A.2.3 Step 3: Construction of Uω,G
i and Clause (ii)

As explained, the transfer rule Ũω,G
i approximately satisfies clause (ii) of Lemma

3, but not exactly. Indeed, as shown in Lemma 5, the truthful report of ω(i) = ω̃
in the summary report round is not an exact best reply. So we will modify the
transfer rule Ũω,G

i in such a way that (ii) holds exactly. The idea here is very
similar to the one presented in Step 2 in Section 4.5; we give a “bonus” to player
i when she reports the incorrect inference ω(i) = ω̃ , which gives her an extra
incentive to report ω(i) = ω̃ truthfully.
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Define a bonus function bω
i : HTb

−i → R as

bω
i (h

Tb
−i) =



0 if player i reports ω(i) = ω or ω(i) = /0
0 if someone deviates in the learning round
0 if ω(−i) , ω
0 if | f̂i −π ω̃

i (a∗)| ≥ ε
(vω

i +2gω
i )pω

i ( f̂i) otherwise

.

This bonus function is the same as the one in Section 4.5, except that we specify
values for the case in which someone makes observable deviations. Recall that the
amount of the bonus by reporting ω(i) = ω̃ is (vω

i +2gω
i )pω

i ( f̂i), which is exactly
equal to the expected gain by misreporting in the summary report round (Lemma
5). This makes player i indifferent over all reports in the summary report round,
and thus the truthful report of ω(i) = ω̃ becomes a best reply.

The following lemma shows that the amount of the bonus, bω
i (h

Tb
−i), is very

small regardless of the opponent’s history hTb
−i. In order to obtain this lemma, it is

crucial that we pay a bonus only if | f̂i −π ω̃
i (a∗)| < ε; this condition ensures that

pω
i ( f̂i) is small and so is the bonus.

Lemma 21. There is T such that for any T > T and hTb
−i, we have bω

i (h
Tb
−i) <

3gω
i exp(−T

1
2 ).

Proof. Lemma 2 implies that whenever | f̂i − π ω̃
i (a∗)| < ε , we have pω

i ( f̂i) <

exp(−T
1
2 ). Then by the definition of bω

i , we obtain the lemma. Q.E.D.

Now we define the new transfer rule Uω,G
i as

Uω,G
i (hTb

−i) = Ũω,G
i (hTb

−i)+
1−δ Tb

δ Tb(1−δ )

(
cG +bω

i (h
Tb
−i)−

ε
T ∑

t∈T (i)

∣∣e(zt
−i)−Cω

i (a
∗)e(ẑt

i)
∣∣2) .

where cG is a constant term which will be specified later. Again the specification
of the transfer rule is very similar to the one in Section 4.5; a key is that we add
the terms bω

i (h
Tb
−i) and ε

T ∑t∈T (i)
∣∣e(zt

−i)−Cω
i (a

∗)e(ẑt
i)
∣∣2 in order to provide right

incentives in the two report rounds.
In what follows, we will verify that this transfer rule indeed satisfies clause

(ii) of the lemma. That is, the prescribed strategy sxi
i is a best reply in the transfer

game. The following lemma considers incentives in the detailed report round:
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Lemma 22. There is T > 0 such that for any T > T , the truthful report in the
detailed report round is a best reply for player i regardless of the past history. In
particular, the truthful report is a best reply even if player i has misreported in the
summary report round.

Proof. Recall that under the transfer rule Ũω,G
i , player i is indifferent over all

actions in the detailed report round. (This is so because her actions in the detailed
report round cannot influence whether the opponent’s history is regular or not.)
Thus, it is sufficient to check how player i’s deviation in the detailed report round
influences the additional terms, bω

i (h
Tb
−i)−

ε
T ∑t∈T (i)

∣∣e(zt
−i)−Cω

i (a
∗)e(ẑt

i)
∣∣2.

In the detailed report round, player i reports the signals (zt
i)t∈T (i) during her

own learning round, and the ones (zt
i)t∈T (−i) during the opponent’s learning round.

It is easy to see that the truthful report of (zt
i)t∈T (−i) is a best reply for player i,

because this report does not influence the additional terms above. So what remains
is to show that the truthful report of the signals (zt

i)t∈T (i) during her own learning
round is a best reply for player i.

Pick some t ∈ T (i), and suppose that player i deviates by reporting a sig-
nal z̃i , zt

i such that Cω
i (a

∗)e(zt
i) , Cω

i (a
∗)e(z̃i); that is, consider a misreport z̃i

such that the corresponding posterior distribution of z−i differs from the true pos-
terior distribution Cω

i (a
∗)e(zt

i). This misreport increases the expected value of∣∣e(zt
−i)−Cω

i (a
∗)e(ẑt

i)
∣∣2, and hence reduces the expected transfer.19 This effect is

of order 1
T , as we have the coefficient ε

T . This implies that this misreport is not
profitable, as the gain is at most of order exp(−T

1
2 ) from Lemma 21.

Next, suppose that player i deviates by reporting a signal z̃i , zt
i such that

Cω
i (a

∗)e(zt
i) = Cω

i (a
∗)e(z̃i). In this case, player i’s payoff is the same as the one

when she does not deviate; indeed, this misreport does not change bω
i (h

Tb
−i) or∣∣e(ẑt

−i)−Cω
i (a

∗)e(ẑt
i)
∣∣2. Hence this misreport is not profitable. Q.E.D.

The next lemma shows that thanks to the bonus function bω
i , the truthful report

19Indeed, as explained in Section 4.2 of Kandori and Matsushima (1998), we have

∑
z−i∈Z−i

Cω
i (a

∗)e(zt
i)[z−i]

∣∣e(z−i)−Cω
i (a

∗)e(zt
i)
∣∣2 < ∑

z−i∈Z−i

Cω
i (a

∗)e(zt
i)[z−i]

∣∣e(z−i)−Cω
i (a

∗)e(z̃t
i)
∣∣2

for this misreport z̃t
i , so the expected transfer indeed decreases. Note that the opponent’s block

strategy does not depend on the signal zt
−i, so regardless of the opponent’s past actions, player i’s

posterior belief about zt
−i is indeed Cω

i (a
∗)e(zt

i).
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in the summary report round is an exact best reply. This implies that the modified
transfer Uω,G

i satisfies Lemma 3(ii).

Lemma 23. The truthful report in the summary report round is a best reply for
player i, regardless of the past history.

Proof. Throughout the proof, we assume that player i will be truthful in the de-
tailed report round, since we have Lemma 22. Suppose, hypothetically, that player
i knows the opponent’s inference ω(−i) before it is revealed in the summary re-
port round. We will show that the truthful report of ω(i) is a best reply for player
i regardless of ω(−i). This implies that the truthful report is a best reply even if
player i does not know ω(−i), and hence the result.

First, suppose that someone deviated from a∗ in the learning round or the
opponent’s inference is ω(−i) , ω . In these cases, the bonus payment is zero
regardless of player i’s summary report. Also, from Lemmas 20 and 5, player i
is indifferent over all actions in the summary report round with the transfer Ũω,G

i .
Hence player i is indifferent over all actions in the summary report round even
with the new transfer rule, and the truthful report is a best reply.

Next, suppose that no one has deviated in the learning round, and that the
opponent’s inference is ω(−i) = ω . There are two cases to be considered.

Case 1: Player i’s signal frequency fi during her own learning round is such
that |π ω̃

i (a∗)− fi| ≥ ε . In this case, from Lemma 1(iii), player i’s inference must
be either ω(i) = ω or ω(i) = /0. Then from Lemma 5, the truthful report of ω(i) in
the summary report round is a best reply under the transfer rule Ũω,G

i . The same
result holds even under the new transfer Uω,G

i , because given that |π ω̃
i (a∗)− fi| ≥

ε , the bonus payment bω
i is zero regardless of player i’s summary report.

Case 2: Player i’s signal frequency fi during her own learning round is such
that |π ω̃

i (a∗)− fi| < ε . We claim that in this case, player i is indifferent over all
summary reports (and hence the truthful report of ω(i) is a best reply). Under the
transfer rule Ũω,G

i , reporting ω(i) = ω yields an expected payoff of pω
i ( fi)vω

i +

(1− pω
i ( fi))(−2gω

i ), since the probability of the block history being regular is
pω

i ( fi). The same is true when player i reports ω(i) = /0. On the other hand,
when player i reports ω(i) = ω̃ , the block history is always irregular, and hence
the expected payoff is −2gω

i . Obviously this payoff is worse than the one by
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reporting ω(i) = ω , and the payoff difference is

(pω
i ( fi)vω

i +(1− pω
i ( fi))(−2gω

i ))−2gω
i = (vω

i +2gω
i )pω

i ( fi).

Now, consider the modified transfer Uω,G
i , with which player i can obtain the

bonus bω
i by reporting ω̃ in the summary report round. Since the amount of the

bonus is precisely equal to the payoff difference above, player i is indifferent over
all summary reports, as desired. Q.E.D.

A.2.4 Step 4: Proof of Clause (i)

In what follows, we will show that the transfer rule Uω,G
i satisfies clauses (i) and

(iii) of Lemma 3, if we choose the constant term cG appropriately.
Let pω

−i denote the probability of the opponent’s block history hTb
−i being regu-

lar given (ω,G), conditional on that the state is ω and players play sx with xω
−i =G.

Note that this probability does not depend on the choice of x as long as xω
−i = G,

so it is well-defined. Then let

cG = (1− pω
−i)(v

ω
i +2gω

i )+E

[
ε
T ∑

t∈T (i)

∣∣e(zt
−i)−Cω

i (a
∗)e(ẑt

i)
∣∣2 −bω

i (h
Tb
−i)

∣∣∣∣∣ω,sx

]
.

(25)

Again, the expected value of |e(zt
−i)−Cω

i (a
∗)e(ẑt

i)|2 and bω
i (h

Tb
−i) does not depend

on the choice of x, and thus cG is well-defined.
Given this constant term cG, the resulting transfer rule Uω,G

i satisfies Lemma
3(i). To see why, suppose that players play sx with xω

−i = G. It follows from (23)
and (24) that if the transfer rule ŨG,ω

i is used, player i’s expected payoff in the
complete-information transfer game is

pω
−iv

ω
i − (1− pω

−i)2gω
i ,

where pω
−i is the probability of the opponent’s history being regular. Hence, if the

modified transfer rule UG,ω
i is used, player i’s payoff in the complete-information

transfer game is
1−δ

1−δ Tb
Gω

i (s
x,Uω,G

i ) =pω
−iv

ω
i − (1− pω

−i)2gω
i + cG

+E

[
bω

i (h
Tb
−i)−

ε
T ∑

t∈T (i)

∣∣e(zt
−i)−Cω

i (a
∗)e(ẑt

i)
∣∣2∣∣∣∣∣ω,sx

]
.

Plugging (25) into this equation, we obtain clause (i) of Lemma 3.
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A.2.5 Step 5: Proof of Clause (iii)

What remains is to prove Lemma 3(iii). That is, we need to show −(vω
i − vω

i ) <

(1−δ )Uω,G
i (hTb

−i)< 0 for all hTb
−i.

We begin with showing the first inequality, −(vω
i − vω

i ) < (1−δ )Uω,G
i (hTb

−i).
By the definition of gω

i , we have 1−δ
1−δ Tb ∑Tb

t=1 δ t−1gω
i (a

t) ≥ gω
i regardless of the

action sequence (a1, · · · ,aTb). Plugging this into (23) and (24), we obtain

δ Tb(1−δ )
1−δ Tb

Ũω,G
i (hTb

−i)≥−3gω
i ,

and hence

δ Tb(1−δ )
1−δ Tb

Uω,G
i (hTb

−i)≥−3gω
i + cG +bω

i (h
Tb
−i)−

ε
T ∑

t∈T (i)

∣∣e(zt
−i)−Cω

i (a
∗)e(ẑt

i)
∣∣2

for each hTb
−i. Equivalently,

(1−δ )Uω,G
i (hTb

−i)≥
1−δ Tb

δ Tb

(
−3gω

i + cG +bω
i (h

Tb
−i)−

ε
T ∑

t∈T (i)

∣∣e(zt
−i)−Cω

i (a
∗)e(ẑt

i)
∣∣2) .

For a fixed T , if we take δ close to one, 1−δ Tb

δ Tb
becomes arbitrarily close to zero,

so that the right-hand side is greater than −(vω
i − vω

i ). This implies the desired
inequality, −(vω

i − vω
i )< (1−δ )Uω,G

i (hTb
−i).

Now we prove the remaining inequality, (1−δ )Uω,G
i (hTb

−i) < 0. We consider
the following two cases.

Case 1: hTb
−i is regular given (ω,G). In this case, in all but one period of the

main round, players play aω,xω
with xω

−i = G, which yields more than vω
i +2ε to

player i, according to (3) and (4). So for sufficiently large T and δ close to one,
we have 1−δ

1−δ Tb ∑Tb
t=1 δ t−1gω

i (a
t)> vω

i +2ε . Plugging this into (23),

(1−δ )δ Tb

1−δ Tb
Ũω,G

i (hTb
−i)<−2ε.

Hence

(1−δ )δ Tb

1−δ Tb
Uω,G

i (hTb
−i)<−2ε + cG +bω

i (h
Tb
−i)−

ε
T ∑

t∈T (i)

∣∣e(zt
−i)−Cω

i (a
∗)e(ẑt

i)
∣∣2

≤−2ε + cG +bω
i (h

Tb
−i).
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Note that

cG ≤ (1− pω
−i)(v

ω
i +2gω

i )+
√

2ε −E
[
bω

i (h
Tb
−i)|ω,sx

]
,

since |e(zt
−i)−Cω

i (a
∗)e(ẑt

i)|2 ≤
√

2. Plugging this into the above inequality, we
have

(1−δ )δ Tb

1−δ Tb
Uω,G

i (hTb
−i)

<−(2−
√

2)ε +(1− pω
−i)(v

ω
i +2gω

i )−E
[
bω

i (h
Tb
−i)|ω,sx

]
+bω

i (h
Tb
−i).

Note that when T is large, pω
−i approximates 1 and bω

i (h
Tb
−i) approximates 0 for all

hTb
−i. (This follows from Lemma 21.) Hence for sufficiently large T ,

(1−δ )δ Tb

1−δ Tb
Uω,G

i (hTb
−i)<−(2−

√
2)ε < 0

as desired.
Case 2: hTb

−i is irregular given (ω,G). The proof is very similar to the one for
Case 1, and hence omitted.

A.3 Proof of Lemma 4

Fix i and ω arbitrarily. In what follows, we will construct a transfer rule Uω,B
i

which satisfies clauses (i) through (iii) in Lemma 4.
We begin with introducing the notion of regular histories. The definition here

is slightly different from the one in the proof of Lemma 3. The opponent’s history
is regular if she does not deviate from the prescribed strategy sx−i

−i and she makes
the correct inference ω(−i) = ω . Formally, the opponent’s block history hTb

−i is
regular given (ω,B) if it satisfies all the following conditions:

(B1) Player −i chooses a∗−i in the learning round.

(B2) Player −i reports ω(−i) = ω .

(B3) Player −i reports xω
−i = B in the first period of the main round.

(B4) Player −i followed the prescribed strategy sx−i
−i in the second or later periods

of the main round.

A history hTb
−i is irregular given (ω,B) if it is not regular.
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A.3.1 Step 1: Construction of Uω,B
i

Let cB > 0 be a constant which will be specified later. Then choose a transfer rule
Uω,B

i : HTb
−i → R so that

• For each history hTb
−i = (at ,zt

−i)
Tb
t=1 which is regular given (ω,B), choose

Uω,B
i (hTb

−i) so that it solves

1−δ
1−δ Tb

[
Tb

∑
t=1

δ t−1gω
i (a

t)+δ TbUω,B
i (hTb

−i)

]
= vω

i − τε
T

− cB (26)

where τ is the number of periods such that player i deviated from a∗ during
the opponent’s learning round.

• For each irregular hTb
−i, choose Uω,B

i (hTb
−i) so that

1−δ
1−δ Tb

[
Tb

∑
t=1

δ t−1gω
i (a

t)+δ TbUω,B
i (hTb

−i)

]
= 2gω

i − τε
T

− cB. (27)

In words, if the opponent plays the prescribed strategy and reports the correct
inference ω(−i) = ω (so that the history hTb

−i is regular), we adjust the transfer
Uω,B

i (hTb
−i) in such a way that player i’s total payoff in the complete-information

transfer game is vω
i − cB. As will be explained, cB is a constant number close to

zero; so this payoff is approximately the target payoff vω
i . On the other hand, if

the opponent deviates or reports something else, we give a huge positive transfer
to player i, and her total payoff goes up to 2gω

i − cB. If player i deviates in the
opponent’s learning round, it decreases the transfer a bit, due to the term τε

T .

A.3.2 Step 2: Proof of Clause (ii)

We claim that the transfer rule above satisfies clause (ii) of Lemma 4. That is, we
will show that the prescribed strategies sGG

i , sGB
i , sBG

i , and sBB
i are all best replies in

the complete-information transfer game with (ω,Uω,B
i ), if the opponent’s current

plan is x−i with xω
−i = B. The result follows from the following two lemmas.

Lemma 24. Player i is indifferent over all actions in player i’s learning round, the
summary report round, the main round, and the detailed report round, regardless
of the past history. Hence, deviating from sxi

i during these rounds is not profitable.
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Proof. By the construction of Uω,B
i , player i’s payoff in the complete-information

transfer game depends only on whether the opponent’s block history hTb
−i is regular

or not, and on the number of periods such that player i deviated from a∗ during
the opponent’s learning round. The result follows because player i’s play cannot
influence whether the resulting history is regular or not. Q.E.D.

Lemma 25. When T is large enough, a∗i is the unique best reply in each period
of the opponent’s learning round, regardless of the past history. Hence, deviating
from sxi

i during the opponent’s learning round is not profitable.

Proof. During the opponent’s learning round, deviating from a∗i has two effects:
First, it affects the distribution of the opponent’s inference ω(−i), and hence the
probability of the opponent’s history being regular. Second, it decreases the trans-
fer Uω,B

i due to the term τε
T . From Lemma 1(ii) and the law of large numbers (more

precisely, Hoeffding’s inequality), the first effect is at most of order O(exp(−T
1
2 )).

On the other hand, the second effect is proportional to 1
T . Thus for large T , the

second effect dominates, so that playing a∗i is optimal. This shows that clause (ii)
of Lemma 4 holds. Q.E.D.

A.3.3 Step 3: Proof of Clause (i)

Now we choose the constant term cB in such a way that the resulting transfer rule
Uω,B

i satisfies clause (i) of Lemma 4.
Let pω

−i denote the probability of the opponent making the correct inference
ω(−i) =ω , given that the true state is ω and players play a∗ in the learning round.
Then let

cB = (1− pω
−i)(2gω

i − vω
i )> 0. (28)

Given this constant term cB, the resulting transfer rule Uω,B
i satisfies clause (i)

of Lemma 4. To see why, suppose that players play sx with xω
−i = B. It follows

from (26) and (27) that player i’s expected payoff in the complete-information
transfer game is

1−δ
1−δ Tb

Gω
i (s

x,Uω,B
i ) = pω

−i(v
ω
i − cB)+(1− pω

−i)(2gω
i − cB),

where pω
−i is the probability of the opponent’s history being regular. Plugging (28)

into this equation, we obtain clause (i) of Lemma 4.
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A.3.4 Step 4: Proof of Clause (iii)

To complete the proof of Lemma 4, we need to show that the constructed transfer
rule Uω,B

i satisfies clause (iii) of Lemma 4.
We first show that (1− δ )Uω,B

i (hTb
−i) < vω

i − vω
i for each hTb

−i. By the defi-

nition of gω
i , player i’s average payoff in the block, 1−δ

1−δ Tb

[
∑Tb

t=1 δ t−1gω
i (a

t)
]
, is

at least −gω
i . Then from (26), (27), and cB > 0, we have δ Tb(1−δ )

1−δ Tb
Uω,B

i (hTb
−i) <

3gω
i , equivalently, (1− δ )Uω,B

i (hTb
−i) <

(1−δ Tb)3gω
i

δ Tb
. For a fixed T , by taking suf-

ficiently large δ , the right-hand side becomes arbitrarily small. Hence we have
(1−δ )Uω,B

i (hTb
−i)< vω

i − vω
i .

Next, we show that Uω,B
i (hTb

−i) > 0 for each hTb
−i. We consider the following

two cases.
Case 1: hTb

−i is regular given (ω,B). In this case, in most periods of the main
round, players played the action profile aω,xω

with xω
−i = B or the opponent played

the minimax action αω
−i(i). Both these actions yield payoffs lower than vω

i − ε to
player i, according to (1) and (2). Hence, when T is sufficiently large and δ is
close to one, we have

1−δ
1−δ Tb

[
Tb

∑
t=1

δ t−1gω
i (a

t)

]
< vω

i − ε.

Then since cB → 0 as T → ∞ (this follows from the fact that Lemma 1 ensures
pω
−i → 1), we obtain

1−δ
1−δ Tb

[
Tb

∑
t=1

δ t−1gω
i (a

t)

]
< vω

i − ε − cB.

Plugging this into (26), we obtain Uω,B
i (hTb

−i)> 0.
Case 2: hTb

−i is irregular given (ω,B). Since the value gω
i is greater than player

i’s stage-game payoff for any action profile a, we have

1−δ
1−δ Tb

[
Tb

∑
t=1

δ t−1gω
i (a

t)

]
< 2gω

i − ε − cB.

Plugging this into (27), we obtain Uω,B
i (hTb

−i)> 0.
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Appendix B: Proof of Proposition 1 for the General Case

In this appendix, we will explain how to prove Proposition 1 when we have more
than two players and more than two states.

Fix an arbitrary payoff vector v ∈ intV ∗. We will construct an equilibrium
which achieves this payoff v. For now, we maintain the assumption |Ai| ≥ |Zi| for
each i. At the end of this appendix, we will explain how to drop this assumption.

As in Section 4, for each state ω , choose payoffs vω
i and vω

i for each i so that
vω

i < vω
i < vω

i for each i and that the product set ×i∈I[vω
i ,v

ω
i ] is in the interior of

the set V ∗(ω). Then for each ω and xω ∈ {G,B}N , choose an action profile aω,xω

such that gω
i (a

ω,xω
) > vω

i for each i with xω
i−1 = G and gω

i (a
ω,xω

) < vω
i for each

i with xω
i−1 = B, where i−1 = N for i = 1. That is, we choose this action profile

aω,xω
so that player i’s payoff is lower than vω

i if player i− 1 plans to punish
player i, while the payoff is higher than vω

i if player i− 1 plans to reward player
i. Looking ahead, in our equilibrium, player i’s payoff is determined solely by
player i−1’s plan about whether to reward or punish player i.

Then as in Section 4, we pick ε > 0 sufficiently small so that all the following
conditions hold:

• For each ω , i, xω , and x̃ω such that xω
i−1 = B and x̃ω

i−1 = G,

max{gω
i (a

ω,xω
),mω

i }< vi − ε < vi +2ε < gω
i (a

ω,x̃ω
).

• For each ω and ω̃ , ω ,

|πω
−i(a

∗)−Cω
i (a

∗)π ω̃
i (a∗)|> 2

√
ε.

• For each ω , ω̃ , ω , and fi ∈△Zi with |π ω̃
i (a∗)− fi|< ε ,

|Cω
i (a

∗)π ω̃
i (a∗)−Cω

i (a
∗) fi|<

√
ε.

B.1 Automaton with State-Contingent Punishment

Let Tb =
(N+1)NT |Ω|(|Ω|−1)

2 +T 2+1, where T is to be specified later. As in Section
4, our equilibrium is described as an automaton over blocks. Specifically, the infi-
nite horizon is divided into a sequence of blocks with Tb periods. At the beginning
of each block, each player i chooses an automaton state xi = (xω

i )ω∈Ω ∈ {G,B}|Ω|.
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As in Section 4, this automaton state xi can be interpreted as player i’s state-
contingent plan about whether to reward or punish player i+ 1: The automaton
state xi has |Ω| components, and each component xω

i represents her plan at state
ω . Specifically, when xω

i = G, player i plans to reward player i+ 1 at state ω .
Likewise, when xω

i = B, player i plans to punish player i+ 1 at state ω . Each
player i’s play during the block is solely determined by this automaton state xi.
Let sxi

i denote the block strategy induced by an automaton state xi.
After each block, each player i randomly chooses a new automaton state (plan)

x̃i for the next block. Specifically. a new plan xω
i for state ω is chosen according

to some distribution ρω
i (·|xω

i ,h
Tb
i ) ∈△{G,B}.

B.2 Block Strategy sxi
i

B.2.1 Brief Description

We will describe the block strategy sxi
i for each automaton state xi. As in Section 4,

each block with length Tb is further divided into the Learning Round, the Summary
Report Round, the Main Round, and the Detailed Report Round. Specifically:

Learning Round: The first |Ω|(|Ω|−1)
2 T periods of the block are player 1’s learn-

ing round, in which player 1 collects private signals and makes an inference ω(i)∈
Ω∪ /0 about the state. Then there is player 2’s learning round, player 3’s learning
round, and so on. So in total, the learning round consists of |Ω|(|Ω|−1)

2 T periods.
The way each player i makes the inference ω(i) will be specified later. Let T (i)
denote the set of the periods included in player i’s learning round. Throughout the
learning round, players play a∗, so that Condition 2 ensures that state learning is
indeed possible.

Summary Report Round: The next period is the summary report round, in
which each player i reports her summary inference ω(i) through actions. For sim-
plicity, we assume that each player has at least |Ω|+ 1 actions so that she can
indeed represent ω(i) through one-shot actions; but this assumption is dispens-
able, as discussed in Section 4.
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Main Round: The next T 2 periods are the main round. As in Section 4, players’
play during the main round depends on the information reported in the summary
report round. Specifically:

• If all players report ω in the summary report round (i.e., if their inferences
coincide), then in the first period of the main round, each player i reveals
her plan xω

i for this state ω through her action. After that, players choose
aω,xω

until the main round ends, where xω = (xω
i )i∈I is the reported plan. If

someone (say player i) unilaterally deviates from this action profile aω,xω
,

she will be minimaxed by αω(i).

• If N −1 players report ω but one reports the null inference /0, then the play
during the main round is the same as above. (Intuitively, reporting ω(i) = /0
is treated as an abstention.)

• If all players report ω but one (say player j) reports ω̃ , ω , then during the
main round, each player i reveals xω

i , and then chooses the minimax action
αω

i ( j),

• Otherwise, the play during the main round is the same as the case in which
all players report ω1.

Detailed Report Round: The remaining N2T |Ω|(|Ω|−1)
2 periods of the block are

the detailed report round. In the first NT |Ω|(|Ω|−1)
2 periods of this round, each

player i reports the signal sequence (zt
i)t∈T (i) observed during her own learning

round. After that, each player i reports the signal sequence (zt
i)t∈T ( j) observed

during player j’s learning rounds, for each j , i.
For each automaton state xi, let sxi

i denote the block strategy which chooses
actions as described above. This definition is informal, because we have not yet
specified how player i forms the inference ω(i).

B.2.2 Inference Rule

We will explain how each player i makes an inference ω(i) in her own learning
round. The technique is very similar to the one for the two-state case, but the
notation is more involved.
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We regard player i’s learning round as a sequence of T -period intervals; since
player i’s learning round consists of |Ω|(|Ω|−1)

2 T periods, there are |Ω|(|Ω|−1)
2 such

intervals. In each interval, player i compares two states, ω and ω̃ , and makes
an inference about which one is more likely to be the true state. For example,
when there are three states ω1, ω2, and ω3, there are three intervals, and player i
compares ω1 with ω2 in the first interval, ω1 with ω3 in the second interval, and ω2

with ω3 in the last interval, Let T (i,ω, ω̃) denote the T -period interval in which
player i compares ω with ω̃ . By the definition, T (i) is the union of T (i,ω, ω̃) over
all possible pairs (ω, ω̃).

More specifically, in the interval T (i,ω, ω̃), player i makes an inference ri(ω, ω̃)∈
{ω, ω̃, /0}, depending on her private history hT

i . The inference rule is a mapping
P(ω,ω̃)

i : HT
i →△{ω, ω̃, /0}, that is, given a history hT

i during the interval, player i
randomly selects the inference ri(ω, ω̃) according to the distribution P(ω,ω̃)

i (hT
i ).

Given an inference rule P(ω,ω̃)
i , let P̂(·|ω∗,a1, · · · ,aT ) denote the probability dis-

tribution of ri(ω, ω̃), conditional on that the state is ω∗ and players play the action
sequence (a1, · · · ,aT ). Also, define P̂(·|ω,ht

−i,a
t+1, · · · ,aT ) as in Section 4.

We choose this inference rule P(ω,ω̃)
i as in the following lemma. The proof is

very similar to Lemma 1 and hence omitted.

Lemma 26. Suppose that Condition 2 holds. Then there is T such that for any
T > T , ω , and ω̃ ,ω , there is an inference rule P(ω,ω̃)

i : HT
i →△{ω, ω̃, /0} which

satisfies the following conditions:

(i) If players do not deviate from a∗, the inference ri(ω, ω̃) coincides with the
true state almost surely: For each ω ,

P̂(ri(ω, ω̃) = ω|ω,a∗, · · · ,a∗)≥ 1− exp(−T
1
2 ).

(ii) Regardless of the past history, player j’s deviation cannot manipulate player
i’s inference almost surely: For each ω , t ∈ {0, · · · ,T −1}, ht

−i, (a
τ)T

τ=t+1,
and (ãτ)T

τ=t+1 such that aτ
− j = ãτ

− j = a∗− j for all τ ,

|P̂(·|ω,ht
−i,a

t+1, · · · ,aT )− P̂(·|ω,ht
−i, ã

t+1, · · · , ãT )| ≤ exp(−T
1
2 ).

(iii) Suppose that no one deviates from a∗. Then player i’s inference is ω(i) =ω ,
only if her signal frequency is close to the true distribution πω

i (a∗) at ω: For
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all hT
i = (at ,zt

i)
T
t=1 such that at = a∗ for all t and such that P(ri(ω, ω̃) =

ω|hT
i )> 0,

|πω
i (a∗)− fi(hT

i )|< ε.

Clause (i) asserts that player i’s state learning is almost perfect, and clause (ii)
implies that player j’s gain is almost negligible even if she deviates in the interval
T (i,ω, ω̃). Clause (iii) implies that player i forms the inference ri(ω, ω̃) = ω only
if her signal frequency is close to the true distribution πω

i (a∗) at ω . So if her signal
frequency is not close to πω

i (a∗) or π ω̃
i (a∗), she forms the inference ri(ω, ω̃) = /0.

So far we have explained how each player i makes an inference ri(ω, ω̃) for
each pair (ω, ω̃). At the end of the learning round, she summarizes all these
inferences and makes a “final inference” ω(i) ∈ Ω∪ { /0}. Specifically, we set
ω(i) = ω if ri(ω, ω̃) = ω for all ω̃ , ω . In words, player i’s final inference is
ω(i)=ω if the state ω beats all the other states ω̃ ,ω in the relevant comparisons.
If such ω does not exist, then we set ω(i) = /0.

It is easy to see that Lemma 2 still holds in this environment:

Lemma 27. Suppose that Condition 3 holds. Then there is T such that for any
T > T , ω , ω̃ , ω , and hT

i such that | fi(hT
i )−π ω̃

i (a∗)|< ε , we have

∑
f−i:| f−i−πω

−i(a
∗)|<ε

Pr( f−i|ω,a∗, · · · ,a∗, fi(hT
i ))< exp(−T

1
2 ).

To interpret this lemma, suppose that player i’s final inference is ω(i) = ω̃ .
Then we must have ri(ω, ω̃) = ω̃ , and thus Lemma 26(iii) implies that | fi(hT

i )−
π ω̃

i (a∗)| < ε , where hT
i is player i’s history during T (i,ω, ω̃). Then from the

lemma above, player i must believe that “If my inference is wrong and the true
state is ω , then the opponents’ signal frequency during the interval T (i,ω, ω̃) must
be also distorted and not close to πω

−i(a
∗).” As in Section 4, this property plays a

crucial role in order to induce the truthful summary report.

B.3 Equilibrium Conditions

We have specified the block strategies sxi
i , so what remains is to find the transi-

tion rules ρi in such a way that the resulting automaton strategy is an equilibrium.
Formally, as in the two-player case, we will choose the transition rules ρi which
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satisfy both the promise-keeping condition and the incentive-compatibility condi-
tion. The promise-keeping condition requires

vω
i = (1−δ T )

Tb

∑
t=1

δ t−1E[gω
i (a

t)|ω,sx]+δ Tb
{

vω
i −E[ρω

i−1(B|G,hTb
i−1)|ω,sx](vω

i − vω
i )
}

(29)

for each ω , i, and x with xω
i−1 = G, and

vω
i = (1−δ T )

Tb

∑
t=1

δ t−1E[gω
i (a

t)|ω,sx]+δ Tb
{

vω
i +E[ρω

i−1(G|B,hTb
i−1)|ω,sx](vω

i − vω
i )
}

(30)

for each ω , i, and x with xω
i−1 = B. These conditions assert that player i’s repeated-

game payoff is determined by the plan xi−1 chosen by player i− 1. Specifically,
player i’s payoff is vω

i if player i−1 plans to reward player i, while the payoff is
vω

i if player i−1 plans to punish player i.
The incentive-compatibility condition requires that

(1−δ Tb−t)
Tb

∑
τ=t+1

δ τ−1
(

E[gω
i (a

τ)|ω,sTb
i ,sx−i

−i ,h
t
i]−E[gω

i (a
τ)|ω,sx,ht

i]
)

≤ δ Tb−t
(

E[ρω
i−1(B|G,hTb

i−1)|ω,sTb
i ,sx−i

−i ,h
t
i]−E[ρω

i−1(B|G,hTb
i−1)|ω,sx,ht

i]
)
(vω

i − vω
i )

(31)

for each ω , i, sTb
i , ht

i, and x with xω
i−1 = G, and

(1−δ Tb−t)
Tb

∑
τ=t+1

δ τ−1
(

E[gω
i (a

τ)|ω,sTb
i ,sx−i

−i ,h
t
i]−E[gω

i (a
τ)|ω,sx,ht

i]
)

≤ δ Tb−t
(

E[ρω
i−1(B|B,h

Tb
i−1)|ω,sTb

i ,sx−i
−i ,h

t
i]−E[ρω

i−1(B|B,h
Tb
i−1)|ω,sx,ht

i]
)
(vω

i − vω
i )

(32)

for each ω , i, sTb
i , ht

i, and x with xω
i−1 = B. That is, deviating to any other block

strategy sTb
i , sxi

i is not profitable, regardless of the state ω and the past history ht
i.

As discussed in Section 4, if the transition rules satisfy the above conditions,
then the resulting automaton is indeed an ex-post equilibrium, and the payoff v is
achievable by choosing the initial automaton state carefully. So in what follows,
we will find such transition rules ρi.

100



B.4 Complete-Information Transfer Game

As discussed in Section 4, finding appropriate transition rules is equivalent to find-
ing appropriate “transfer rules,” as continuation payoffs after the block can play
a role like that of transfers in the mechanism design. So consider the complete-
information transfer game in which (i) a state ω is given and common knowledge
and (ii) after Tb periods, the game ends and player i receives a transfer according
to some transfer rule Ui : HTb

i−1 → R. Note that the amount of the transfer depends
only on player (i− 1)’s history hTb

i−1. This restriction comes from the fact that
player i’s continuation payoff, which is represented by the second terms of the
right-hand sides of (29) and (30) depends only on hTb

i−1. Let Gω
i (s

Tb,Ui) denote
player i’s expected payoff in this auxiliary scenario game, when players play sTb .
Also, for each history ht

i with t ≤ Tb, let Gω
i (s

Tb,Ui,ht
i) denote player i’s payoff in

the continuation game after history ht
i. Our goal in this subsection is to prove the

following two lemmas. The first lemma is:

Lemma 28. There is T such that for any T > T , there is δ ∈ (0,1) such that for
each δ ∈ (δ ,1), i, and ω , there is a transfer rule Uω,G

i : HTb
i−1 → R which satisfies

the following properties.

(i) 1−δ
1−δ Tb

Gω
i (s

x,Uω,G
i ) = vω

i for all x such that xω
i−1 = G.

(ii) Gω
i (s

Tb
i ,sx−i

−i ,U
ω,G
i ,ht

i)≤ Gω
i (s

x,Uω,G
i ,ht

i) for all sTb
i , ht

i, and x with xω
−i = G.

(iii) −(vω
i − vω

i )≤ (1−δ )Uω,G
i (hTb

i−1)≤ 0 for all hTb
i−1.

To interpret this lemma, suppose that the opponents play the block strategy sx−i
−i

with xω
i−1 = G. That is, player i− 1 plans to rewards player i at state ω . Clauses

(i) and (ii) in the above lemma ensures that there is a transfer rule Uω,G
i such that

playing the prescribed block strategy sxi
i is a best reply for player i and yields the

payoff vi. Clause (iii) requires that this transfer be non-negative and bounded by
vω

i −vω
i

1−δ .
Once we have this lemma, we can construct a transition rule ρω

i−1(·|G,hTb
i−1)

which satisfies the desired properties (29) and (31), by setting

ρω
i−1(B|G,hTb

i−1) =−
(1−δ )Uω,G

i (hTb
i−1)

vω
i − vω

i

for each hTb
i−1.
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The second lemma is a counterpart to the above lemma, and considers the case
in which player i−1 plans to punish player i.

Lemma 29. There is T such that for any T > T , there is δ ∈ (0,1) such that for
each δ ∈ (δ ,1), i, and ω , there is a transfer rule Uω,B

i : HTb
i−1 → R which satisfies

the following properties.

(i) 1−δ
1−δ Tb

Gω
i (s

x,Uω,B
i ) = vω

i for all x with xω
i−1 = B.

(ii) Gω
i (s

Tb
i ,sx−i

−i ,U
ω,B
i ,ht

i)≤ Gω
i (s

x,Uω,B
i ,ht

i) for all sTb
i , ht

i, and x with xω
−i = B.

(iii) 0 ≤ (1−δ )Uω,B
i (hTb

i−1)≤ vω
i − vω

i for all hTb
i−1.

Again, once we have this lemma, we can construct a transition rule ρω
i−1(·|B,h

Tb
i−1)

which satisfies the desired properties (30) and (32), by setting

ρω
i−1(G|B,hTb

i−1) =
(1−δ )Uω,B

i (hTb
i−1)

vω
i − vω

i
.

So in order to complete the proof of Proposition 1, it is sufficient to prove the
above two lemmas.

B.5 Proof of Lemma 28

As in the proof of Lemma 3, we first construct a transfer rule Ũω,G
i which “ap-

proximately” satisfies clause (ii) of the lemma. That is, we will construct Ũω,G
i

such that playing the prescribed strategy sxi
i is an approximate best reply for player

i in the summary report round, and is an exact best reply in other rounds. After
that, we modify this transfer rule Ũω,G

i and construct Uω,G
i which satisfies clause

(ii) exactly. Then we show that the this transfer rule Uω,G
i satisfies clauses (i) and

(iii).
Recall that in the detailed report round, each player j , i reports her sig-

nal sequence (zt
j)t∈T (i,ω,ω̃) observed during the T -period interval T (i,ω, ω̃). Let

(ẑt
j)t∈T (i,ω,ω̃) denote the reported signal sequence, and let f̂ (ω,ω̃)

−i ∈ △Z−i denote
the signal frequency computed from the reported signals (ẑt

−i)t∈T (i,ω,ω̃). Due to

signal correlation, this signal frequency f̂ (ω,ω̃)
−i is informative about player i’s sig-

nals during T (i,ω, ω̃).
A block history hTb

i−1 is regular given (ω,G) if it satisfies all the following
conditions:
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(G1) Players choose a∗ in the learning round.

(G2) In the summary report round, each player j , i reports ω( j) =ω , and player
i reports ω(i) = ω or ω(i) = /0.

(G3) Player i−1 reports xω
i−1 = G in the first period of the main round,

(G4) Players follow the prescribed strategy in the second or later periods of the
main round.

(G5) The opponents’ detailed report f̂−i satisfies
∣∣∣πω

−i(a
∗)− f̂ (ω,ω̃)

−i

∣∣∣ < ε for all
ω̃ , ω

A history hTb
−i is irregular given (ω,G) if it is not regular.

As in the two-player case, the last condition (G5) requires that player i’s sum-
mary report be consistent with the opponents’ signals during the learning round.
If f̂ (ω,ω̃)

−i is close to the true distribution πω
−i(a

∗) at state ω , then the opponents be-
lieve that conditional on the state ω , player i’s signal frequency during T (i,ω, ω̃)

is also close to the true distribution πω
i (a∗) at state ω . Thus, if f̂ (ω,ω̃)

−i is close
to the true distribution πω

−i(a
∗) for each (ω, ω̃), then the opponents believe that

player i’s signal frequency is close to the true distribution in each T -period inter-
val within player i’s learning round, in which case player i’s inference is indeed
ω(i) = ω or ω(i) = /0.

B.5.1 Step 1: Construction of Ũω,G
i

Choose a transfer rule Ũω,G
i : HTb

i−1 → R such that

• For each regular history hTb
i−1, choose Ũω,G

i (hTb
i−1) so that it solves

1−δ
1−δ Tb

[
Tb

∑
t=1

δ t−1gω
i (a

t)+δ TbŨω,G
i (hTb

i−1)

]
= vω

i .

• For each irregular history hTb
i−1, choose Ũω,G

i (hTb
i−1) so that

1−δ
1−δ Tb

[
Tb

∑
t=1

δ t−1gω
i (a

t)+δ TbŨω,G
i (hTb

−i)

]
=−2gω

i .
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In words, after regular histories (which requires player i not to deviate from the
prescribed strategy and not to report a wrong state), we set the transfer Ũω,G

i so
that player i’s average payoff in the complete-information transfer game is equal
to vω

i . After irregular histories, we choose a huge negative transfer Ũω,G
i so that

player i’s payoff goes down to −2gω
i .

B.5.2 Step 2: Ũω,G
i approximately satisfies clause (ii)

With the transfer rule Ũω,G
i above, playing the prescribed strategy sxi

i is an ap-
proximate best reply for player i in the summary report round, and is an exact best
reply in other rounds. The proof is very similar to the one for Lemma 3, and hence
omitted.

B.5.3 Step 3: Construction of Uω,G
i and Clause (ii)

The transfer rule Ũω,G
i approximately satisfies Lemma 3(ii), but not exactly. The

reason is that the truthful report of ω(i) in the summary report round is not an
exact best reply at some histories. Specifically, if player i’s inference is ω(i) =
ω̃ , ω (i.e., her inference is incorrect), then the truthful report is not an exact best
reply.

So in order to satisfy (ii) exactly, we need to modify the transfer rule Ũω,G
i . As

in the proof of Lemma 4, the idea is to give a “bonus” to player i when she reports
ω(i) = ω̃ . This gives her an extra incentive to report ω(i) = ω̃ truthfully.

Recall that in the detailed report round, player i reports her signal sequence
(zt

i)t∈T (i,ω,ω̃) during her own learning round. Let (ẑt
i)t∈T (i,ω,ω̃) denote the reported

signal sequence, and let f̂ (ω,ω̃)
i ∈△Zi denote the signal frequency computed from

this sequence. Let Pr( f−i|ω,a∗, · · · ,a∗, fi) denote the conditional probability of
the opponents’ signal frequency over T periods being f−i, given that the true state
is ω , no one deviates from a∗ each period, and player i’s signal frequency is fi.
Let

pω
i ( f (ω,ω̃)

i ) = ∑
f (ω,ω̃)
−i :|πω

−i(a
∗)− f (ω,ω̃)

−i |<ε

Pr( f (ω,ω̃)
−i |ω,a∗, · · · ,a∗, f (ω,ω̃)

i ).
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Then define a bonus function bω
i : HTb

i−1 → R as

bω
i (h

Tb
i−1)=



0 if player i reports ω(i) = ω or ω(i) = /0
0 if someone deviates in the learning round
0 if some j , i reports ω( j) , ω
0 if player i reports ω(i) = ω̃ and | f̂ (ω,ω̃)

i −π ω̃
i (a∗)|> ε

(vω
i +2gω

i )∏ω̃,ω pω
i ( f̂ (ω,ω̃)

i ) otherwise

.

This is an extension of the bonus function for the two-player case. To interpret the
condition | f̂ (ω,ω̃)

i − π ω̃
i (a∗)| > ε , note that from Lemma 26(iii), if player i’s in-

ference is ω(i) = ω̃ , then her signal frequency in the T -period interval T (i,ω, ω̃)

must be close to the true distribution π ω̃
i (a∗) at state ω̃ . So if she reports ω(i) = ω̃

in the summary report round but reports | f̂ (ω,ω̃)
i −π ω̃

i (a∗)|> ε in the detailed re-
port round, it must be a consequence of player i’s misreport, either in the summary
report round or the detailed report round (or both). We do not pay a bonus in such
a case.

As in the proof of Lemma 3, we can show that the amount of the bonus is
small, that is, bω

i (h
Tb
i−1)< 3gω

i exp(−T
1
2 ) for sufficiently large T .

Now we are ready to define the modified transfer rule Uω,G
i which satisfies

Lemma 3(ii) exactly. Let e(zi) denote the |Zi|-dimensional column vector where
the component corresponding to zi is one and the remaining components are zero.
Similarly, e(z−i) denote the |Z−i|-dimensional column vector where the compo-
nent corresponding to z−i is one and the remaining components are zero. Then
define the transfer rule Uω,G

i as

Uω,G
i (hTb

i−1) = Ũω,G
i (hTb

i−1)+
1−δ Tb

δ Tb(1−δ )

(
cG +bω

i (h
Tb
i−1)−

ε
T ∑

t∈T (i)

∣∣e(ẑt
−i)−Cω

i (a
∗)e(ẑt

i)
∣∣2)

where cG is a constant term which will be specified later.
This transfer rule satisfies Lemma 28(ii). The proof is very similar to the

one for Lemma 3, and hence omitted. (Note that for each t ∈ T (i), player i re-
ports zt

i before the opponents report zt
−i; this ensures that the expected value of∣∣e(ẑt

−i)−Cω
i (a

∗)e(ẑt
i)
∣∣2 is minimized by the truthful report of zt

i.) Also, as in the
proof of Lemma 3, we can find a constant term cG such that the resulting transfer
rule Uω,G

i satisfies clauses (i) and (iii).
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B.6 Proof of Lemma 29

Fix i and ω arbitrarily. In what follows, we will construct a transfer rule Uω,B
i

which satisfies clauses (i) through (iii) in Lemma 4.
As in the proof of Lemma 4, it is useful to introduce the notion of regular

histories. Player (i− 1)’s block history hTb
i−1 is regular given (ω,B) if it satisfies

all the following conditions:

(B1) Players −i choose a∗−i in the learning round.

(B2) Players −i report ω in the summary report round.

(B3) Player i−1 reports xω
i−1 = B in the first period of the main round.

(B4) Players −i follow the prescribed strategy sx−i
−i in the second or later periods

of the main round.

In short, the history hTb
i−1 is regular if the opponents play the prescribed strategy

sx−i
−i with xω

i−1 = B and they learn the true state ω correctly. A history hTb
i−1 is

irregular given (ω,B) if it is not regular.

B.6.1 Step 1: Construction of Uω,B
i

Let gω
i = maxa∈A |gω

i (a)|, and let cB > 0 be a constant which will be specified
later. Choose a transfer rule Uω,B

i : HTb
i−1 → R such that

• For each regular history hTb
i−1 = (at ,zt

i−1)
Tb
t=1, choose Uω,B

i (hTb
i−1) so that it

solves

1−δ
1−δ Tb

[
Tb

∑
t=1

δ t−1gω
i (a

t)+δ TbUω,B
i (hTb

i−1)

]
= vω

i − τε
T

− cB

where τ is the number of periods such that player i deviated from a∗ during
the learning round.

• For each irregular history hTb
i−1, choose Uω,B

i (hTb
i−1) so that

1−δ
1−δ Tb

[
Tb

∑
t=1

δ t−1gω
i (a

t)+δ TbUω,B
i (hTb

i−1)

]
= 2gω

i − τε
T

− cB.
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In words, if the opponents play the prescribed strategies and learn the true state
ω correctly (so that the history hTb

i−1 is regular), we adjust the transfer Uω,B
i so that

player i’s payoff in the complete-information transfer game equals vω
i −cB. If not,

we give a huge positive transfer to player i so that her payoff goes up to 2gω
i −cB.

If player i deviates in the learning round, her payoff decreases due to the term τε
T .

B.6.2 Step 2: Proof of Clause (ii)

The transfer rule Uω,B
i above satisfies Lemma 29(ii), that is, deviating to any block

strategy sTb
i , sx

i is not profitable. The actual proof is very similar to the one for
Lemma 4, and hence omitted.

B.6.3 Step 3: Proof of Clauses (i) and (iii)

Now we choose the constant term cB such that the resulting transfer rule Uω,B
i

satisfies clauses (i) and (iii) of Lemma 29.
Let pω

−i denote the probability of all the opponents making the correct infer-
ence ω( j) = ω , given that the true state is ω and players play a∗ in the learning
round. Then let

cB = (1− pω
−i)(2gω

i − vω
i )> 0.

Then the resulting transfer rule Uω,B
i satisfies clauses (i) and (iii) of Lemma 29.

The proof is very similar to the one for Lemma 4, and hence omitted.

B.7 When |Ai|< |Zi| for Some i

So far we have assumed |Ai| ≥ |Zi| for all i. This ensures that during the detailed
report round, each player i can reveal her signal zi by choosing some action ai. If
this assumption is not satisfied, player i needs to spend more than one period in
order to reveal her signal, and it causes some complications on player i’s incentive
at off-path histories.20

20To illustrate the issue, suppose that player i had to choose an action sequence (a1
i ,a

2
i ) in order

to reveal her signal zi, but she had deviated from a1
i in the first period of the reporting phase. In

such a case, choosing a2
i in the next period need not be a best reply, even if we use the transfer

rule Uω,G
i defined in the proof of Lemma 28. Also her best reply depends on the state ω in such a

history.
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To fix this problem, we make the following two changes to the structure of the
detailed report round. Pick a natural number K such that K ≥ log|Ai| |Zi| for each
i.

• Each player i uses a sequence of actions (a1
i , · · · ,aK

i ) (rather than a single
action) to report a signal zi.

• Each player reports the same information |Ω| times (rather than once). Specif-
ically, after the main round, there is a “detailed report round for ω1,” in
which each player reports her history during the learning round. Then there
is a “detailed report round for ω2,” and players report the same informa-
tion again. Then there is a “detailed report round for ω3,” a “detailed report
round for ω4,” and so on.

Note that for each ω , the detailed report round for ω consists of N2KT |Ω|(|Ω|−1)
2

periods. So we have N2KT |Ω|2(|Ω|−1)
2 periods in total.

Choose a block strategy sxi
i so that

• The play in the learning, summary report, and main rounds is exactly the
same as in the case with |Ai| ≥ |Zi|.

• For each ω , in the detailed report round for ω ,

– Player i reports her history truthfully, as long as she has not deviated
in some earlier period within the round. (In particular, she reports
truthfully even if she has deviated in the learning, summary report, or
main round.)

– If player i has deviated within the round, she may choose other actions,
which will be specified later.

Note that the block strategy above induces the same play as the one in the case
with |Ai| ≥ |Zi|, except histories which are reached after player i’s own deviation.

In what follows, we will explain that Lemmas 28 and 29 still hold, if we spec-
ify the transfer rules and actions at off-path histories appropriately. This com-
pletes the proof, because it ensures that the resulting automaton strategy satisfies
the promise-keeping condition (29) and (30), and the incentive compatibility con-
dition (31) and (32).
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It is easy to see that Lemma 29 still holds, because the communication in the
detailed report round plays no role in the proof of the lemma. Indeed, if we choose
the transfer rule Uω,B

i as in Appendix B.6.1 it satisfies clauses (i) through (iii).
(We have not specified actions for some off-path histories in the detailed report
round, but this is not a problem because the transfer rule Uω,B

i makes player i
indifferent over all actions during the detailed report round. That is, regardless of
the specification of actions in these off-path histories, clause (ii) holds.)

The proof of Lemma 28 needs a minor modification. Fix ω , and fix a transfer
rule Ũω,G

i as in Appendix B.5.1. Define the bonus function bω
i and the transfer

rule Uω,G
i as in Appendix B.5.3, using the information exchanged in the detailed

report round for ω . That is, ẑi and f̂i which appear in the bonus function bω
i

and the additional terms in Uω,G
i are player i’s report in the detailed report round

for ω . (The information exchanged in the detailed report round for ω̃ , ω is
ignored, when we define these terms.) Complete the specification of the strategy
sxi

i (choose actions at off-path histories in the report round) so that for each ω , in
the detailed report round for ω , if player i has deviated within that round, let her
choose an action which maximizes her payoff in the complete-information game
with (ω,Uω,G

i ).
With this modification, clauses (i) through (iii) of Lemma 28 are satisfied.

Indeed, clause (i) holds because the play on the equilibrium path is the same as
in the previous case. Clause (ii) also holds, because in the complete-information
game with (ω,Uω,G

i ),

• The incentive problem in the learning, summary report, and main rounds is
the same as in the case with |Ai| ≥ |Zi|.

• In the detailed report round for ω , player i chooses a best reply after every
history.

• In the detailed report round for ω̃ ,ω , player i is indifferent over all actions.

Clause (iii) can be verified as in the case with |Ai| ≥ |Zi|.

Appendix C: Common Learning

In this appendix, we will provide the formal statement of Proposition 2 and its
proof. That is, we will prove that in our equilibria, common learning occurs and
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the state ω becomes approximate common knowledge in the sense of Monderer
and Samet (1989). For now, we assume full support, i.e., πω(z|a) > 0 for each
ω , a, and z. Also we assume that there are only two players. These assump-
tions are not necessary to obtain the result, but they considerably simplifies our
exposition. (See Cripps, Ely, Mailath, and Samuelson (2008) for how to extend
the theorem to the case in which there are more than two players and/or the full
support assumption is not satisfied.)

Fix a target payoff v∈ intV ∗, fix a sufficiently large δ , and construct an ex-post
equilibrium s as in Section 4. Given a common prior µ ∈ △Ω, this equilibrium
s induces a probability measure on the set of outcomes Ξ = Ω× (A1 ×A2 ×Z1 ×
Z2)

∞, where each outcome ξ = (ω,(at
1,a

t
2,z

t
1,z

t
2)

∞
t=1) ∈ H specifies the state of

the world ω and the actions and signals in each period. We use P ∈△F to denote
this measure, and use E[·] to denote expectations with respect to this measure.
Also, let Pω denote the measure conditional on a given state ω , and let Eω [·]
denote expectations with respect to this measure.

Recall that the set of t-period histories of player i is Ht
i = (aτ ,zτ

i )
t
τ=1. Let

{H t
i }∞

t=1 denote the filtration induced on ξ by player i’s histories. For any event
F ⊂ Ξ, the (H t

i -measurable) random variable E[1F |H t
i ] is the probability that

player i attaches to the event F given her information after period t. Let

Bt,q
i (F) = {ξ ∈ Ξ | E[1F |H t

i ](ξ )≥ q},

that is, Bt,q
i (F) is the set of outcomes ξ where player i attaches at least probability

q to event F after period t. Following Cripps, Ely, Mailath, and Samuelson (2008),
we say that player i individually learns the true state if for each ω and q ∈ (0,1),
there is t∗ such that for any t > t∗,

Pω(Bt,q
i ({ω}))> q,

where {ω} denotes the event that the true state is ω .
An event F ⊂ Ξ is q-believed after period t if each player attaches at least

probability q to event F . Let Bt,q(F) = Bt,q
1 (F)∩Bt,q

2 (F), that is, Bt,q(F) is the
event that F is q-believed after period t. An event F ⊂ Ξ is common q-belief after
period t if F is q-believed, and this event Bt,q(F) is q-believed, and this event
Bt,q(Bt,q(F)) is q-believed, and so on. Formally, the event that F is common
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q-belief after period t is denoted by

Bt,q(F) =
∩
n≥1

[Bt,q]n(F).

Following Cripps, Ely, Mailath, and Samuelson (2008), we say that players com-
monly learn the true state if for each ω and q ∈ (0,1), there is t∗ such that for any
t > t∗,

Pω(Bt,q({ω}))> q.

The following proposition is a formal version of Proposition 2.

Proposition 6. Players commonly learn the true state in the equilibrium s.

In out setup, each player updates her belief about the opponent’s signals through
two information channels. The first informational channel is private signals. Since
signals may be correlated across players, one’s private signal may have noisy in-
formation about the opponent’s signal. The second informational channel is the
opponent’s actions; since there is a correlation between the opponent’s signals
and actions, each player can learn the opponent’s signals through the action by the
opponent. We need to take into account both these effects in order to prove the
proposition.

The proof idea is roughly as follows. We begin with considering how signals
in the learning rounds influence players’ (higher-order) beliefs. To do so, suppose
hypothetically that suppose that players observe private signals in the learning
rounds only, and do not observe signals in the summary report, main, and detailed
report rounds.21 In our equilibrium, all these signals are publicly revealed in the
detailed report rounds, i.e., players’ private histories become public information
at the end of each block game. This implies that common learning happens if
players do not observe signals in the summary report, main, and detailed report
rounds.

Next, we consider our original model and investigate what happens if players
observe signals in the summary report, main, and detailed report rounds. Since
these signals do not influence actions in later periods, the second information
channel does not exist, that is, a player can learn the opponent’s signal in these

21Note that our equilibrium strategy is still an equilibrium in this new setup, as signals in the
summary report, main, and detailed report rounds do not influence players’ continuation play.
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rounds only through the correlation of private signals. Hence the inference prob-
lem here reduces to the one considered by Cripps, Ely, Mailath, and Samuelson
(2008), and we can apply their result to show that common learning happens if we
restrict attention to the effect of signals in these rounds. Taken together, we can
conclude that players commonly learn the state in our equilibrium. The formal
proof is as follows.

Proof. Given a period t, let T learning(t) denote the set of periods included in the
learning rounds of the past block games. (So T learning(t) does not include the pe-
riods in the learning round of the current block game.) Likewise, let T others(t)
denote the set of periods included in the summary report, main, or detailed re-
port rounds of the past block games. Note that the union T learning(t)∪T others(t)
denote the set of periods in the past block game, i.e., T learning(t)∪ T others(t) =
{1, · · · ,kTb} where k is an integer satisfying kTb < t ≤ (k+1)Tb.

By the construction of the equilibrium strategy, players have played the action
profile a∗ in all the periods in the set T learning(t), and all the signal profiles in
these periods are common knowledge thanks to the communication in the detailed
report rounds. For each outcome ξ , let f learning(t)[ξ ] ∈ △Z denote the empirical
distribution of signal profiles z in these periods. We will often omit [ξ ] when the
meaning is clear. Let Fω,learning(t) denote the event that the empirical distribution
f learning(t) is η-close to the true distribution at state ω , i.e.,

Fω,learning(t) = {ξ | | f learning(t)−πω(a∗)|< η}.

In the periods in the set T others(t), players’ actions are contingent on the past
histories and hence random. Let A∗ ⊆ A be the set of action profiles which can be
chosen in the summary report, main, or detailed report round with positive proba-
bility on the equilibrium path. Then given any outcome ξ , let {T others(t,a)[ξ ]}a∈A∗

be the partition of T others(t) with respect to the chosen action profile a, that is,
T others(t,a)[ξ ] is the set of the periods in T others(t) where players played the pro-
file a according to the outcome ξ . Let fi(t,a)[ξ ] be the empirical distribution of
player i’s signals zi in the periods in the set T others(t,a)[ξ ], i.e., fi(t,a) is the em-
pirical distribution of zi during the periods where players chose the action profile
a. Let Fω,1

i (t,a) be the event that this empirical distribution fi(t,a) is η-close to
the true distribution at state ω , i.e.,

Fω,1
i (t,a) = {ξ | | fi(t,a)−πω

i (a)|< η}.
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Also, let Fω,2
i (t,a) be the event that player i’s estimate (expectation) about the

opponent’s signal frequency in these periods is close to the true distribution at
state ω:

Fω,2
i (t,a) = {ξ | |Cω

i (a) fi(t,a)−πω
j (a)|< η −η2}.

Let
Fω

i (t,a) = Fω,1
i (t,a)∩Fω,2

i (t,a).

and let
Fω,others(t) =

∩
i

∩
a∈A∗

Fω
i (t,a).

In words, Fω,others(t) is the event that for each set of periods T others(t,a), each
player’s signal frequency is close to the true distribution at state ω , and her esti-
mate about the opponent’s signal frequency is also close to the true distribution at
state ω .

Given a natural number τ , let G(t,τ) denote the event that each action profile
a ∈ A∗ is chosen at least τ times in T others(t), that is,

G(t,τ) = {ξ | |T others(t,a)| ≥ τ ∀a ∈ A∗}.

Then let
Fω(t,τ) = G(t,τ)∩Fω,learning(t)∩Fω,others(t).

In the following, we will take large t and τ , and hence on the event G(t,τ), the
sets T learning(t) and T others(t,a) contain sufficiently many periods. Roughly, this
implies that on the event Fω(t,τ), (i) the signals in T learning(t), which are common
knowledge among players, reveal that the true state is almost surely ω , (ii) each
player’s signals in T others(t,a) reveal that the true state is almost surely ω , and (iii)
each player expects that the opponent’s signals in T others(t,a) also reveal that the
true state is almost surely ω .

We will establish three lemmas, which are useful to prove Proposition 6. The
first lemma shows that on this event Fω(t,τ), each player is almost sure that the
true state is ω when t and τ are sufficiently large.

Lemma 30. When η is sufficiently small, for any q ∈ (0,1), there is t∗ and τ such
that for any t > t∗ and ω , Fω(t,τ)⊆ Bt,q({ω}).
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Proof. Let µ t(ω|ht
i) = E[1{ω}|ht

i], that is, µ t(ω|ht
i) is player i’s belief on ω after

history ht
i. Given ht

i, let hpast
i and hcurrent

i denote the histories in the past block
game and the current block game, respectively. The discussion after Proposition
6 shows that for each ω and ω̃ , ω , we have

µ t(ω̃|ht
i)

µ t(ω|ht
i)
=

µ(ω̃)

µ(ω)

 ∏
t̃∈T learning(t)

π ω̃(zt̃ |a∗)
πω(zt̃ |a∗)


×

∏
a∈A∗

∏
t̃∈T others(t,a)

π ω̃
i (zt̃

i|a)
πω

i (zt̃
i|a)

 Pr(hcurrent
i |ω̃,hpast

i )

Pr(hcurrent
i |ω,hpast

i )

where Pr(hcurrent
i |ω,hpast

i ) denotes the probability that hcurrent
i occurs given ω and

hpast
i .

Take a sufficiently small η > 0. Since Fω(t,τ) ⊂ Fω,learning(t), it follows
from Lemma 1 of Cripps, Ely, Mailath, and Samuelson (2008) that on the event
Fω(t,τ), the term in the first set of parenthesis in the right-hand side converges to
zero as t → ∞. Similarly, since Fω(t,τ) ⊂ Fω,1

i (t,a), it follows that on the event
Fω(t,τ), for any small γ > 0 there is t∗ and τ such that for any t > t∗, we have

∏
t̃∈T others(t,a)

π ω̃
i (zt̃

i|a)
πω

i (zt̃
i|a)

< γ

for each a satisfying πω
i (a) , π ω̃

i (a). Also it is obvious that for each a satisfying
πω

i (a) = π ω̃
i (a),

∏
t̃∈T others(t,a)

π ω̃
i (zt̃

i|a)
πω

i (zt̃
i|a)

= 1.

Finally, since Tb is fixed, the term after the second set of parenthesis in the right-
hand side is bounded from above by some constant. (Note that the probability
distribution of x−i in the current block game conditional on (hpast

i ,ω) is the same
as that conditional on (hpast

i , ω̃) since x−i is determined by the action profiles in
the past block games and by the signals in the past learning rounds, which are
encoded in hpast

i .) Taken together, we can conclude that the likelihood µt(ω̃|ht
i)

µt(ω|ht
i)

is
close to zero on the event Fω(t,τ), when t and τ are large enough. This proves
the lemma. Q.E.D.

The second lemma shows that for any τ , the event Fω(t,τ) occurs with prob-
ability close to one if the true state is ω and t is sufficiently large.

114



Lemma 31. For any η ∈ (0,1), τ , and q ∈ (0,1), there is t∗ such that for any
t > t∗ and ω , Pω(Fω(t,τ))> q.

Proof. This directly follows from the law of large numbers. Note that there can
be a ∈ A∗ which is chosen only when someone make a wrong inference about ω
in the learning round and/or players choose a particular automaton state x; but
this does not cause any problem because such an event occurs for sure in the long
run. Q.E.D.

The last lemma shows that the event F̃ω(t,τ) = {ω}∩Fω(t,τ) is q-evident in
the sense that F̃ω(t,τ)⊆ Bt,q(F̃ω(t,τ)).

Lemma 32. When η is sufficiently small, for any τ , and q ∈ (0,1), there is t∗ such
that for any t > t∗ and ω , F̃ω(t,τ)⊆ Bt,q(F̃ω(t,τ)).

Proof. It is obvious that Fω,learning(t) ⊆ Bt,q(Fω,learning(t)). So it is sufficient to
show that {ω}∩G(t,τ)∩Fω

i (t,a)⊆ Bt,q
i ({ω}∩G(t,τ)∩Fω(t,a)) for each i and

a ∈ A∗.
Let F̂ω

i (t,a) = {ξ | |Cω
i (a

∗) fi(t,a)− πω
j (a

∗)| < η2}, that is, F̂ω
i (t,a) is the

event that player j’s realized signal frequency in T others(t,a) is close to player i’s
estimate. The triangle inequality yields

Fω,2
i (t,a)∩ F̂ω

i (t,a)⊆ Fω,1
j (t,a). (33)

Let Cω
i j (a

∗)=Cω
j (a

∗)Cω
i (a

∗). Since we assume full support, this matrix Cω
i j (a

∗)

is a contraction mapping when it is viewed as a mapping on △Zi with fixed point
πω

i (a∗). This means that there is r ∈ (0,1) such that on the event Fω,1
i (t,a), we

always have

|Cω
i j (a

∗) fi(t,a)−πω
i (a∗)|= |Cω

i j (a
∗) fi(t,a)−Cω

i j (a
∗)πω

i (a∗)|< rη .

Also, since Cω
j (a

∗) is a stochastic matrix, on the event F̂ω
i (t,a), we must have

|Cω
i j (a

∗) fi(t,a)−Cω
j (a

∗) f j(t,a)|= |Cω
j (a

∗)Cω
i (a

∗) fi(t,a)−Cω
j (a

∗) f j(t,a)|< η2.

Taken together, it follows that on the event Fω,1
i (t,a)∩ F̂ω

i (t,a),

|Cω
j (a

∗) f j(t,a)−πω
i (a∗)|< rη +η2.
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Fix a sufficiently small η so that rη +2η2 < η . Then we obtain

|Cω
j (a

∗) f j(t,a)−πω
i (a∗)|< η −η2

on the event Fω,1
i (t,a)∩ F̂ω

i (t,a), implying that Fω,1
i (t,a)∩ F̂ω

i (t,a)⊆ Fω,2
j (t,a).

This, together with (33), shows that

{ω}∩G(t,τ)∩Fω
i (t,a)∩ F̂ω

i (t,a)⊆ {ω}∩G(t,τ)∩Fω
j (t,a).

Lemma 3 of Cripps, Ely, Mailath, and Samuelson (2008) shows that, for any q,
there is t∗ and τ such that for any t > t∗,

{ω}∩G(t,τ)∩Fω
i (t,a)⊆ Bt,q

i ({ω}∩G(t,τ)∩ F̂ω
i (t,a)).

Therefore, we have

{ω}∩G(t,τ)∩Fω
i (t,a)⊆ Bt,q

i ({ω}∩G(t,τ)∩Fω
i (t,a)∩ F̂ω

i (t,a))

⊆ Bt,q
i ({ω}∩G(t,τ)∩Fω

i (t,a)∩Fω
j (t,a)),

as desired. Q.E.D.

Now we are ready to prove Proposition 6. Take a sufficiently small η , and fix
q. As Monderer and Samet (1989) show, an event F ⊂ Ξ is common q-belief if
it is q-evident. Since Lemma 32 shows that the event F̃ω(t,τ) is q-evident, it is
common q-belief whenever it occurs. Lemma 31 shows that this event F̃ω(t,τ)
occurs with probability greater than q at state ω , and Lemma 30 shows that the
state ω is q-believed on this event. This implies that players commonly learn the
true state. Q.E.D.

Appendix D: Conditionally Independent Signals

Proposition 1 shows that the folk theorem holds if signals are correlated across
players. Here we investigate how the result changes if signals are independently
distributed across players. Formally, we impose the following assumption:

Condition 7. (Independent Learning) For each ω , a, and z, πω(z|a)=∏i∈I πω
i (zi|a).
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That is, given any ω and a, signals are independently distributed across play-
ers. Under Condition 7, player i’s signal has no information about the opponents’
signals, and thus we have Cω

i (a
∗) fi = πω

−i(a
∗) for all fi ∈ △Zi. This implies that

if Condition 7 holds, then Condition 3 is not satisfied.
When signals are independently drawn, player i’s signals are not informa-

tive about the opponents’ signals, and thus player i’s best reply after history
ht

i = (aτ ,zτ)t
τ=1 conditional on the true state ω is independent of the past signals

(zτ)t
τ=1. Formally, we have the following proposition. Given player i’s strategy

si, let si|ht
i

be the continuation strategy after history ht
i induced by si.

Proposition 7. Suppose that Condition 7 holds. Suppose that players played an
ex-post equilibrium s until period t and that the realized history for player i is
ht

i = (aτ ,zτ)t
τ=1. Then for each ω and h̃t

i = (ãτ , z̃τ)t
τ=1 such that ãτ = aτ for all τ ,

it is optimal for player i to play si|h̃t
i

in the following periods given any true state
ω .

Proof. Take two different histories ht
i and h̃t

i which shares the same action se-
quence; i.e., take ht

i and h̃t
i such that ãτ = aτ for all τ . Since signals are indepen-

dent, player i’s belief about the opponents’ history ht
−i conditional on the true state

ω and the history ht
i is identical with the one conditional on the true state ω and

the history h̃t
i. This means that the set of optimal strategies for player i after history

ht
i at ω is the same as the one after history h̃t

i. Since s is an ex-post equilibrium,
si|h̃t

i
is optimal after history h̃t

i given ω , and hence the result follows. Q.E.D.

The key assumption in this proposition is that s is an ex-post equilibrium. If
s is a sequential equilibrium which is not an ex-post equilibrium, then player i’s
optimal strategy after period t depends on her belief about the true state ω , and
such a belief depends on her past signals (zτ)t

τ=1. Hence, her optimal strategy
after period t does depend on the past signals.

Using this proposition, we will show that when there are only two players,
there is an example in which ex-post equilibria cannot approximate some feasible
and individually rational payoffs. On the other hand, when there are more than
two players, we can prove the folk theorem by ex-post equilibria, as in the case of
correlated signals.
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D.1 Games with More Than Two Players

When there are more than two players, the folk theorem holds even if signals are
independently drawn;

Proposition 8. Suppose that Conditions 1, 2, and 7 hold. Suppose also that there
are at least three players, i.e., |I| ≥ 3. Then for any v ∈ intV ∗, there is δ ∈ (0,1)
such that for any δ ∈ (δ ,1), there is an ex-post equilibrium with payoff v.

An advantage of having more than two players is that a chance that a player can
manipulate the continuation play by misreporting in the summary report round is
slim, which makes it easier to provide the truth telling incentives in the summary
report round. To see this, suppose that there are three players and the true state
is ω . By the law of large numbers, each player can make the correct inference
(ω(i) = ω) in the learning round almost surely. If they report truthfully in the
summary report round, then everyone reports the same state ω and thus they can
agree that the true state is ω . Now suppose that player 1 deviates and reports
ω(1) = ω̃ in the summary report round. Then the communication outcome is
(ω̃,ω,ω); there are two players reporting ω and one player reporting ω̃ . In such
a case, we regard this outcome as a consequence of player 1’s deviation and ask
players to ignore player 1’s report; i.e., in the continuation play, we let players
behave as if they could agree that the true state is ω . This implies that player
1 has (almost) no incentive to misreport in the summary report round, since her
report cannot influence the continuation play (unless the opponents make a wrong
inference in the learning round). Using this property, we can make each player
indifferent over all reports in the summary report round so that she is willing to
report truthfully.

Note that the above argument does not apply when there are only two players.
If player 1 deviates and reports ω(1) = ω̃ , then the communication outcome is
(ω̃,ω) and it is hard to distinguish the identity of the deviator.

Proof. Fix a target payoff v ∈ intV ∗ arbitrarily. The goal is to construct an ex-post
equilibrium with payoff v when δ is close to one. As in the proof of Proposition
1, we regard the infinite horizon as a sequence of block games, and each player i’s
equilibrium strategy is described by an automaton with the state space {G,B}|Ω|.
A player’s strategy within the block game is very similar to the one in the proof of
Proposition 1, that is, each player i forms an inference ω(i) in the learning round,
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reports the inference ω(i) in the summary report round, and reveals her private
signals in the detailed report round. Only the difference is the behavior in the
main round. Specifically, we modify the last bullet point in Section 4.2.1 in the
following way:

• If there is j such that all the opponents l , j reported the same state ω
while player j reported a different state ω̃ in the summary report round,
then we ask players to behave as if everyone reported the same state ω in
the summary report round.

That is, in our equilibrium strategy, if players − j could agree in the summary
report round that the true state is ω , then players behave as if everyone could agree
that the true state is ω , regardless of player j’s report ω( j). Recall that in Section
4.2.1, we have asked players to choose the minimax actions in such histories. Let
sxi

i be the block-game strategy defined above, given the current intention xi.
What remains is to specify the transition rule of the automaton state xω

i . As
in the proof of Proposition 1, this problem is equivalent to finding appropriate
transfer rules. Choose the transfer rule Uω,B

i as in the proof of Lemma 4. Since
all the discussions in the proof of Lemma 4 do not rely on Condition 3, the same
result follows; i.e., given any intention profile x with xω

i−1 = B, the prescribed
strategy sxi

i is optimal against sx−i
−i in the complete-information transfer game with

(ω,Uω,B
i ).

As for the transfer function Uω,G
i , we cannot follow the proof of Proposition 1

directly, since Condition 3 plays an important role there. We modify the definition
of the regularity in the following way: A block-game history hTb

i−1 is regular with
respect to ω and xω

i−1 = G if it satisfies the following properties:

(G1) Players chose a∗ in the learning round.

(G2) In the summary report round, each player j , i reported ω( j) = ω .

(G3) xω
i−1 = G is reported in the first period of the main round.

(G4) Given the report in the summary report round and in the first period of the
main round, everyone followed the prescribed strategy in the second or later
periods of the main round.
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Note that when the block-game history is regular with respect to ω and xω
i−1 = G,

player i’s average block-game payoff is higher than vω
i at state ω for sufficiently

large T and δ . Let Hω,G
i−1 denote the set of all regular histories with respect to ω

and xω
i−1 = G.

Let cG > 0 be a constant, and we define the transfer rule Uω,G
i : HTb

i−1 → R in
the following way:

• If hTb
i−1 ∈ Hω,G

i−1 , then let Uω,G
i (hTb

i−1) be such that

1−δ
1−δ Tb

[
Tb

∑
t=1

δ t−1gω
i (a

t)+δ TbUω,G
i (hTb

i−1)

]
= vω

i + cG.

• Otherwise, let Uω,G
i (hTb

i−1) be such that

1−δ
1−δ Tb

[
Tb

∑
t=1

δ t−1gω
i (a

t)+δ TbUω,G
i (hTb

i−1)

]
=−2gω

i + cG.

In words, after regular histories, we set the transfer Uω,G
i so that the average payoff

of the complete-information transfer game is equal to vω
i + cG. After irregular

histories, we set the transfer Uω,G
i so that the average payoff in the complete-

information transfer game is equal to −2gω
i + cG, which is much lower than vω

i +

cG.
We check whether this transfer function provides appropriate incentives to

player i. Note that, by the construction of Uω,G
i , player i’s payoff in the complete-

information transfer game depends only on whether player (i− 1)’s block-game
history hTb

i−1 is regular or not. It is easy to see that player i is willing to follow the
prescribed strategy in the learning and main rounds, because (G1) and (G4) imply
that the block-game history becomes irregular for sure once player i deviates in
these rounds. Also, player i is indifferent among all actions in the summary and
detailed report rounds, because actions in these rounds cannot influence whether
the resulting history is regular or not. Therefore, for any current intention profile x
with xω

i−1 = G, the strategy sxi
i is optimal against sx−i

−i in the complete-information
transfer game with (ω,Uω,G

i ).
Now we specify the constant term cG. As in the proof of Proposition 1, we

choose cG in such a way that the expected payoff in the complete-information
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transfer game when players play the prescribed strategy profile is exactly equal to
vω

i . Then we can prove that there is T such that for any T > T , there is δ ∈ (0,1)
such that for any δ ∈ (δ ,1) we have 0 <−(1−δ )Uω,G

i (hTb
i−1)< vω

i − vω
i . for any

block history hTb
i−1. The proof is very similar to that of Proposition 4 and hence

omitted. Q.E.D.

D.2 Two-Player Games

Consider the following two-player games. There are two possible states, ω1 and
ω2. In each stage game, player 1 chooses either U or D, while player 2 chooses
either L or R. Given ω and a chosen action profile a, each player i observes
a private signal zi ∈ Zi = {zi(1),zi(2)}. The distribution of player 1’s signal z1

satisfies

πω1
1 (z1(1)|a) = πω2

1 (z1(2)|a) =
2
3

for all a. That is, the signal z1(1) is more likely if the true state is ω1, and the signal
z1(2) is more likely if the true state is ω2. On the other hand, the distribution of
player 2’s signal z2 satisfies

πω1
2 (z2(1)|a) =

1
2
, and πω2

2 (z2(2)|a) = 1

for all a. That is, the signal z2(1) reveals that the true state is ω1. We assume that
the signals are independently drawn across players. Assume also that the stage-
game payoff for ω1 is given by the left matrix, and the one for ω2 is given by the
right matrix:

L R
U 1, 0 0, 0
D 0, 1 0, 1

L R
U 0, 1 0, 1
D 0, 0 2, 0

In this example, the payoff vector (1,0) is feasible and individually rational at
ω1, and the payoff vector (2,0) is feasible and individually rational at ω2. Hence,
the payoff vector ((1,0),(2,0)) is in the set V ∗. However, this payoff vector cannot
be approximated by ex-post equilibria even when δ is close to one:

Proposition 9. Let ε < 2
3 . Then for any δ ∈ (0,1), any feasible and individually

rational payoff in the ε-neighborhood of ((1,0),(2,0)) is not achieved by an ex-
post equilibrium.
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The formal proof is given later, but the idea is as follows. To simplify the
discussion, let ε be close to zero. Suppose that the above proposition is not true,
so that there is an ex-post equilibrium s approximating ((1,0),(2,0)). Let s∗2 be
player 2’s strategy such that she deviates from the equilibrium strategy s2 by pre-
tending as if she observed the signal z2(2) in all periods, regardless of her true
observations. Suppose that the true state is ω1, and that player 1 follows the equi-
librium strategy s1 while player 2 deviates to s∗2. Since such a deviation should not
be profitable, player 2’s average payoff should be less than her equilibrium payoff,
which is close to 0. This implies that player 1 must play U with probability close
to one in almost all periods. (Otherwise, with a non-negligible probability player
1 takes D, which yields a payoff of 1 to player 2.) Then there must be a sequence
of player 1’s signals, (ẑτ

1)
∞
τ=1, such that player 1 chooses U with probability close

to one in almost all periods at state ω1 if the realized observation is (ẑτ
1)

∞
τ=1 and

player 2 plays s∗2. Let s∗1 be player 1’s strategy such that she deviates from the
equilibrium strategy s1 by pretending as if her observation was (ẑτ

1)
∞
τ=1.

Suppose that the true state is ω2, and that player 2 follows the equilibrium
strategy s2 while player 1 deviates to s∗1. Since the true state is ω2, player 2’s play
is exactly the same as s∗2; then by the definition of s∗1, player 1 must play U , which
gives a payoff of 0 to player 1, with a high probability in almost all periods. Thus
player 1’s average payoff must be close to 0; this is is less than her equilibrium
payoff, which approximates 2. Hence deviating to s∗1 is suboptimal when the true
state is ω2. However, this is a contradiction, because Proposition 7 ensures that
s∗1 is a best reply to s2 when the true state is ω2. Thus we cannot approximate
((1,0),(2,0)) by ex-post equilibria.

Of course, ex-post incentive compatibility is much stronger than sequential
rationality, and thus it may be possible to sustain ((1,0),(2,0)) using sequential
equilibria. However, sequential equilibria are not robust to a perturbation of the
initial prior; i.e., a sequential equilibrium may not constitute an equilibrium once
the initial prior is perturbed. This can be a problem, because researchers may not
know the initial prior to which the model is applied; indeed, the initial prior is pri-
vate information, which is difficult to observe, and also it may depend on the age
of relationship, which may not be known to researchers. On the other hand, ex-
post equilibria are robust to a specification of the initial prior, so researchers who
do not know such detailed information can regard them as equilibrium strategies.
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Proof. Fix ε < 2
3 . Fix an arbitrary payoff vector v in the ε-neighborhood of

((1,0),(2,0)), and fix an arbitrary discount factor δ ∈ (0,1). Suppose that there
is an ex-post equilibrium s with payoff v.

Let s∗2 be player 2’s strategy such that she deviates from s2 by pretending as if
she observed z2(2) in all periods. That is, let s∗2 be such that s∗2(h

t
2) = s2(h̃t

2) for
all t, ht

2 = (aτ ,zτ
2)

t
τ=1, and ht

2 = (ãτ , z̃τ
2)

t
τ=1 such that aτ = ãτ and z̃τ

2 = z2(2) for all
τ . Suppose that the true state is ω1 and that player 2 deviates to s∗2. Then player
2’s average payoff is

(1−δ )
∞

∑
t=1

δ t−1Eht−1
1

[s1(ht−1
1 )[D]|s1,s∗2,ω1].

Since deviating to s∗2 should not be profitable and the equilibrium payoff v is in
the ε-neighborhood of ((1,0),(2,0)), we have

(1−δ )
∞

∑
t=1

δ t−1Eht−1
1

[s1(ht−1
1 )[D]|s1,s∗2,ω1]≤ ε.

That is, the probability of player 1 choosing D is really small in expectation, if
the true state is ω1 and players play the profile (s1,s∗2). Then there must be a
sequence (ẑτ

1)
∞
τ=1 of player 1’s signals such that player 1 chooses D with a very

small probability if the realized signal sequence is (ẑτ
1)

∞
τ=1; that is, there is (ẑτ

1)
∞
τ=1

such that

(1−δ )
∞

∑
t=1

δ t−1E(a1,··· ,at−1)[s1(a1, · · · ,at−1, ẑ1
1, · · · , ẑt−1

1 )[D]|s1,s∗2,ω1]≤ ε. (34)

Let s∗1 be player 1’s strategy such that she deviates from s1 by pretending as if
her signal sequence is (ẑτ

1)
∞
τ=1; that is, let s∗1 be such that s∗1(h

t
1) = s1(h̃t

1) for all t,
ht

1 = (aτ ,zτ
1)

t
τ=1, and ht

1 = (ãτ , z̃τ
1)

t
τ=1 such that aτ = ãτ and z̃τ

1 = ẑτ
1 for all τ .

Suppose that the true state is ω2, and that player 2 follows the equilibrium
strategy s2 while player 1 deviates to s∗1. Since player 2 always observes z2(2) at
ω2 and (34) hold, we must have

(1−δ )
∞

∑
t=1

δ t−1Eht−1
1

[s1(ht−1
1 )[D]|s∗1,s2,ω2]

= (1−δ )
∞

∑
t=1

δ t−1E(a1,··· ,at−1)[s1(a1, · · · ,at−1, ẑ1
1, · · · , ẑt−1

1 )[D]|s1,s∗2,ω1]≤ ε;
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that is, player 1 must choose D with a very small probability in this case. Then,
because player 1’s payoff by taking U is 0, her average payoff is at most

(1−δ )
∞

∑
t=1

δ t−1Eht−1
1

[2s1(ht−1
1 )[D]|s∗1,s2,ω2]≤ 2ε.

This means that deviating to s∗1 at ω2 is suboptimal, since the equilibrium payoff
is at least 2−ε and ε < 2

3 . However, this contradicts with Proposition 7. Q.E.D.
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