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Abstract

I study endogenous network formation in an environment in which individuals

want to forecast a stochastic state and it is costly for them to communicate with oth-

ers to exchange some exogenously observed information. Due to the existence of

information complementarities, individuals’ preferences for networks in which they

have multiple neighbors cannot be characterized by a linear ranking of the pairwise

correlations between their signals. Instead, these complementarities generate a coun-

terintuitive result: for a fixed number of individuals, information structures exist in

which all signals are conditionally positively correlated, and these are preferred to

a structure in which all signals are conditionally independent. Therefore, it may be

that the only strongly stable network consists of two cliques with signals that are

highly positively correlated within each clique that generate different beliefs across

cliques, even when there are opportunities to exchange information with individuals

sharing less correlated signals. Thus, this model exemplifies how homophily and

belief polarization can coexist in a rational environment.
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larization.
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1 Introduction

Homophily and belief polarization are two of the most pervasive characteristics of so-

cial networks. Homophily is the tendency of individuals to relate to others with similar

backgrounds in terms of characteristics such as ethnicity, gender, religion, and educa-

tion,1 while belief polarization is the fact that individuals’ beliefs and conceptions about

specific matters differ across groups.2 In a frictionless environment in which individuals

are completely rational and their objective is to learn, one would not expect homophily

and belief polarization to arise since the agents within the various groups would com-

municate with those who have different beliefs from their own, and information would

spread throughout the whole network (DeGroot (1974), DeMarzo, Vayanos, and Zwiebel

(2003)). The literature has pointed out the distortions in an environment that might dis-

rupt this logic, ranging from different meet-rates across and inside groups, along with

the higher returns of being with individuals in the same group (Currarini, Jackson, and

Pin, 2009), to psychological factors, such as feeling at ease among those with similar

backgrounds (Kets and Sandroni, 2016).

I investigate a new motive that arises in a fully rational environment in which indi-

viduals are only able to communicate their private signals: due to complementarities in

information it may be optimal for an individual to communicate with those who have

information that is highly correlated with her signal. These preferences originate from

the fact that some signal structures allow for forecasting a stochastic state when all sig-

nals are positively conditionally correlated with higher precision than when the signals

are conditionally independent. As a result, I can find instances in which homophily

and belief polarization simultaneously appear in the endogenous network. In my model

a finite number of individuals want to forecast a stochastic state about which they are

uncertain. Each individual receives a private signal and can decide whether to share his

1For a summary of the empirical evidence, see, for example, McPherson, Smith-Lovin, and Cook
(2001).

2For example, despite strong scientific evidence that the planet is warming, in large part due to human
activity, a partisan divide exists in public opinion as to whether or not this is true (Dunlap, McCright, and
Yarosh (2016)).
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signal with others. If two individuals agree to engage in costly communication,3 a new

social link is created. Communication decisions such as these generate a social network.

For the sake of simplicity, I assume that individuals face a quadratic loss when forecast-

ing, so their objective is to pick the right set of links to minimize the communication cost

plus the conditional variance given the information they gather.

I prove that for generic correlation matrices, the only network that satisfies a strong

definition of stability, due to Dutta and Mutuswami (1997), is a network of discon-

nected cliques. Focusing only on disconnected cliques, I characterize the conditions

under which n > 2 signals generate a very precise forecast of the state. It turns out that

there is a continuum of correlation matrices such that observing all the signals will allow

individuals to learn the state perfectly, and many of these matrices contain only positive

correlations.4 These complementarities in information can be very powerful. For any

number of signals K, there are information structures such that after observing all K

signals, the agents learn the state perfectly, but if they observe any subset of the signals,

they learn almost as little as a single individual would.

This approach leads to new economic insights. First, I present an example where the

indirect preferences become reversed: an individual’s preferences over who he wants

to share information with depends on the number of people with whom he wants to

communicate. Second, the size of the cliques in the stable network is limited only by the

cost of forming links; if this cost is small enough, it is always possible to find a correlation

matrix for which the unique strongly stable network consists of a clique containing all

the individuals.

Finally, homophily and belief polarization can coexist in my model’s environment.

For each small δ ≥ 0, there is a two-block matrix, with all intra-clique correlations larger

than a threshold ρ̃ > 0, for which the unique strongly stable network consists of the two

cliques and the ex-ante expected value of the squared difference of the forecasts between

the two cliques is larger than δ. Due to the information complementarities, individu-

als with similar information optimally communicate between themselves, emulating the

3Time and resources have to be spent in order to communicate with other individuals.
4This result is robust in the sense that the variance reduction is continuous in the correlations.

2



homophily patterns that have been found in social networks. At the same time, as the

individuals’ forecasts are different across cliques, for an external observer it will appear

as if the cliques’ beliefs are polarized. An interesting applied insight is that these phe-

nomena are easier to sustain when the cost of communicating is smaller, and certainly

this cost has decreased in recent years due to the surge in online social networks; and

during this time belief polarization has simultaneously increased.

I show that in my model these two phenomena are closely associated since higher

levels of belief disagreement require higher intra-clique correlations. On one hand, an

upper bound for the intra-clique posterior variance is the posterior variance between any

pair, and this variance decreases with respect to the correlation. On the other hand, a

low correlation between two individuals in a clique means that they can provide more

information to the individuals in the other clique, making it more difficult to deter

deviations.

1.1 Related Literature

As noted above, my result can be considered a new explanation for the homophily phe-

nomenon (see Currarini, Jackson, and Pin (2009),Kets and Sandroni (2016)). Golub and

Jackson (2012) show that homophily can reduce the speed of learning when individuals

are only able to take averages of their neighbors’ beliefs. My work focuses on what kinds

of networks can be formed when only signals, and not beliefs, can be communicated,

and I show how this may result in the presence of homophily in the endogenous stable

network.

There is a growing literature that studies how individuals acquire signals in similar

Gaussian environments. Sethi and Yildiz (2016) ] study an environment where individ-

uals do not know other priors and choose whom to observe, so they can simultaneously

learn about the state and others’ priors. Liang, Mu, and Syrgkanis (2017) study infor-

mation acquisition patterns by two agents, a myopic one and a fully rational one, when

the agents can decide sequentially which signals to acquire from a set of correlated sig-

nals that identify the state. Kambhampati, Segura-Rodriguez, and Shao (2018) study the
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inefficiency patterns that can arise in a stable matching, when individuals can decide

with whom to match and how many signals to acquire from a correlated information

structure after they are matched.

The paper whose results resemble mine the most is Sethi and Yildiz (2018). In their

environment individuals have different priors and can decide whom to observe over ev-

ery period. The prior realizations are both correlated between individuals in the same

group and independent across groups. Their main result is that when the intra-group

correlation is large enough, individuals will observe only others in the same group.

In contrast to the complementarities of information I describe, the explanation for ho-

mophily in their environment is that individuals understand other biases better when

the correlation between their priors is high. There is previous work (e.g., Meyer and

Strulovici (2015)) that has focused on finding the right measure of interdependencies for

non-Gaussian environments with more than two signals. I contribute by showing that in

any information environment, the correlation structures of signals that do not provide

new information or that lead to perfect learning cannot be summarized by simple linear

rankings of the pairwise correlations.

2 Model

I study a society with a finite number of agents N = {1, ..., N}, N ≥ 2. Individuals are

uncertain about a stochastic state, θ ∈ R, which they want to forecast. They evaluate

their estimate using a quadratic loss function; that is, if their forecast is a ∈ R they

receive a utility equal to u(a, θ) = −(a− θ)2.

I assume that all the agents share a common prior belief that follows a Normal dis-

tribution, with mean µθ and precision τθ. Each agent privately observes an unbiased

Normal signal, yi, with precision τ. I allow the individuals’ signals to be correlated in

any feasible way. Its correlation matrix, which I denote by Σ, only needs to be a positive

semidefinite matrix, and, in particular, it does not have to be invertible. Explicitly, the

vector of signals is distributed according to:
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y1
...

yN

 ∼ N




θ
...

θ

 , τ−1


1 ρ12 · · · ρ1N
...

... . . . ...

ρN1 · · · · · · 1


 .

Individuals can communicate with others and learn their signal realizations. Com-

munication is a costly activity: if an agent communicates with K other individuals, he

has to pay a cost c(K), with c an increasing function.5 I impose three restrictions in the

communication protocol. First, individuals must decide with whom to communicate be-

fore they observe the realization of their own signals. Second, communication between

two individuals actually occurs only if both of them agree to communicate. Finally,

individuals can communicate only the realization of their signals, not their beliefs.6

The communication links that are created define a network in the set N . The endoge-

nous network is represented by the matrix g, where gij = 1 if agents i and j communicate

and 0 otherwise.

The timing in the model is summarized in Figure 1. Each individual first decides with

whom to communicate. Once the communication network has formed, Nature draws

the individuals’ signals. Upon observing their own signals, the agents communicate,

and, with the signals gathered, each individual chooses a forecast a.

Individuals
form links

Nature draws
signals

Individuals
communicate

Individuals choose
forecast a

Figure 1: Timing in the model.

3 Optimal Action and Endogenous Networks

The objective of this section is twofold. First, I describe the optimal agents’ forecast after

observing any set of signals. Second, I characterize the shape of the communication

5If communication were without cost, individuals would communicate with everybody since observ-
ing more signals would allow them to make a better forecast.

6One possible interpretation for this assumption is that individuals can only communicate information
they can support with evidence.
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network that endogenously arises. I do not model how each communication link forms,

but I require that the resulting network must satisfy a strong notion of stability.

Fix a network g. Agent i observes her own signal and her neighbors’ signals—that

is, she learns the signals received by Ni(g) = {j : gij = 1} ∪ {i}. Since individual i

suffers a quadratic loss, her optimal forecast is equal to the conditional expectation, and

her expected utility, which I denote by Ui(g), is equal to the negative of the posterior

variance minus the communication cost she has to pay, c(|Ni(g)| − 1). In the Normal

environment the posterior variance is independent of the signals’ realization and can be

expressed in a simple closed form solution. Lemma 1 formalizes this discussion.7

Lemma 1 Fix agent i and a network g. Let ΣNi(g) be the correlation matrix between the signals

i observes. For any signal realization xNi(g), individual i’s optimal action is a = E[θ | xNi(g)],

and individual i’s expected utility is

Ui(g) = Ui(Ni(g)) = −Var
(

θ | xNi(g)

)
− c(|Ni(g)| − 1).

Let B be a base of the null space of ΣNi(g). If 1′Ni(g)B = 0 then

Var(θ | xNi(g)) = (τ1′Ni(g)Σ
+
Ni(g)1Ni(g) + τθ)

−1,

where Σ+
Ni(g) is the Moore-Penrose pseudoinverse of ΣNi(g), and if 1′Ni(g)B 6= 0 then Var(θ |

xNi(g)) = 0.

I use the Moore-Penrose pseudoinverse, a generalization of the inverse of a matrix,

to account for the possibility that the correlation matrix of a group of signals is singular.

When the correlation matrix is invertible this generalization coincides with the inverse

of the matrix, and if it is singular it can be thought of as an approximation of the inverse

by the inverse of nearby positive definite matrices.8 The lemma provides two important

insights. First, an agent, conditional on the number of signals, prefers the set of signals

with the highest sum of the entries in Σ̂+
Ni(g). As the inverse of a matrix is a highly

nonlinear function, no simple ranking of the pairwise correlations corresponds to the in-

7The proof of this lemma and all others not in the main text can be found in Appendix A.
8Formally, for any symmetric matrix A, A+ = T(lim

δ→0
(D2 + δ2 I)−1D)T′, where D is a diagonal matrix

and T is an orthogonal matrix such that A = TDT′. Its proof can be found on page 23 Albert (1972).
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dividual’s preferences over groups of signals. I analyze in Section 4 the relation between

the pairwise correlations and the individuals’ preferences. Second, an individual’s util-

ity depends only on the neighbors she has. In particular, an agent is indifferent as to the

choice od networks as long as she has the same set of neighbors. This fact will be critical

for my network characterization.

In my environment there are two ways in which an individual’s utility can be equal in

two different networks, g and g′. The first one occurs when the individual has the same

number of neighbors in the two networks and 1′Ni(g)Σ
−1
Ni(g)1Ni(g) = 1′Ni(g′)Σ

−1
Ni(g′)1Ni(g′).

The second occurs if the difference in communication costs is offset by the difference in

the posterior variances. While the first occurs only in a zero measure space, the second

one can be destroyed by a small perturbation in the cost function. To avoid these peculiar

cases I introduce the following assumption.

Assumption 1 If individual i’s neighbors differ in two networks g and g′, then Ui(g) 6= Ui(g′).

Since I know the payoff for any individual in any possible network, I can characterize

which networks endogenously arise. I require that the endogenous network be strongly

stable, a concept introduced by Dutta and Mutuswami (1997).9 I say that a network

is strongly stable (Dutta and Mutuswami, 1997) if there is no coalition that can strictly

improve the utility of each of its individual members by merely creating extra links

within the coalition or cutting an existing link that is held by someone in the coalition.

Formally,10

Definition 1 A network g is strongly stable with respect to U if there is no S ⊆ {1, . . . , N}

or network g′ that satisfies

• If g′ij = 1 and gij = 0 then i, j ∈ S.

• If g′ij = 0 and gij = 1 then either i ∈ S or j ∈ S.

9I could ask for a weaker solution concept such a pairwise stability, a notion introduced by Jackson
and Wolinsky (1996). This alternative notion only requires that no pair has incentive to deviate, but this
requirement is too weak for my interests.

10There is another notion of strong stability due to Jackson and Van den Nouweland (2005). The only
difference is that the group will deviate if it can weakly increase the utility of all its members and strictly
increase the utility of at least of one of them. Assumption 1 makes both definitions equivalent in my
environment.
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such that ∀i ∈ S, Ui(g′) > Ui(g).

Since in my environment all individuals attain the same level of utility when observ-

ing the same set of signals, it makes sense to look at networks where if individual i has

as neighbors both j and k, then individuals j and k are neighbors as well. In other words,

individuals may have incentive to form closed and disconnected cliques. Definition 2

formally defines this class of networks. Theorem 1 shows that a disconnected clique

network is the only one that satisfies strong stability.

Definition 2 The network g consists of disconnected cliques g1, . . . , gM if ·∪igi = N , for

all i, j ∈ gl, gij = 1 and if i ∈ gli , j ∈ glj , li 6= lj then gij = 0.

Theorem 1 Suppose assumption 1 is satisfied.11 There is a unique strongly stable network, and

it is a disconnected clique network.

Proof The set 2N \ ∅ contains all the possible cliques that can be formed. By Lemma 1

each clique is associated with a unique utility level for each of its members. Since 2N \∅

is a finite set, we can order the utility generated in each of the cliques, from the highest

to the lowest.

Form the clique that gives the highest utility (if there are ties, pick one of the largest

cliques) and call it S1. From the cliques without individuals in S1 pick the clique that

gives the highest utility (if there are ties, pick one of the largest cliques) and call it S2.

Continue inductively. This process delivers a partition S := {S1, S2, . . . , Sm}. I will show

that this partition is strongly stable.

Consider the incentives to deviate for an individual in clique S1. If individual i in

clique S1 decides to create links with individuals in A1 and cut links with individuals in

C1, he will obtain utility as being in group S1 ∪ A1 \ C1. However, individual i weakly

prefers group S1 over S1 ∪ A1 \ C1. Therefore, no player in S1 can be part of a deviat-

ing group. Continuing inductively allows us to conclude that the disconnected clique

network defined by S is strongly stable.

11Without Assumption 1, the first part of the proof implies that one of the strongly stable networks is a
disconnected clique network, but I cannot argue that all strongly stable networks belong to this class.
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To prove uniqueness, I use assumption 1. Suppose a network g is strongly stable.

Take the individuals in S1 = {i1
1, . . . , im

1 }. Let D = {1 ≤ l ≤ m : ∃k 6= l ∈ S1 with gikil =

0 or ∃j /∈ S1 with gil j = 1} and suppose that D is non-empty. By definition all individ-

uals in D are derive a lower utility than would be the case if they formed the clique S1.

If D = S1 they have a strict incentive to create the network where clique S1 forms. If

D 6= S1 for all j ∈ S1 \ D, individual j is connected to everyone else in S1 and has no

connections outside S1. Therefore, the individuals in D are able to create the clique S1

by creating links between individuals in D and cutting links with individuals outside

S1, a network they strictly prefer. This contradicts the assumption that network g is

strongly stable. Thus it must be that g contains the disconnected clique S1. Inductively

we conclude that g must be the disconnected clique network defined by S.

This result implies that in an environment where individuals can only communicate

their own experiences, they will create disjointed clusters of information.12 From now on

I assume that the endogenous network is a disconnected clique network. My objective

is to characterize how individuals partition into cliques.

To the best of my knowledge, Theorem 1 is not a direct consequence of any of the

results in the literature. Jackson and Van den Nouweland (2005) focuses on studying

the set of strongly stable networks when the value function satisfies anonymity. My

environment does not satisfy this property; instead, an individual’s identity character-

izes the complementarity of others’ information with his own. Dutta and Mutuswami

(1997) focuses on finding an allocation rule that delivers strongly stable outcomes. My

allocation rule is fixed and does not coincide with the one they proposed.

Since Theorem 1 implies that the only strongly stable network consists of discon-

nected cliques, my result is related to the literature on coalition formation. In particu-

lar, if I restrict attention to coalitions alone, my environment satisfies the Top Coalition

Property introduced by Banerjee, Konishi, and Sönmez (2001). Since by assumption 1

the preferences in my environment are strict, I obtain that the cliques in the network de-

12The disconnected clique network characterized in Theorem 1 satisfies other notions of stability. It
satisfies pairwise stability, and under Assumption 1, it is the only strongly stable network as defined by
Jackson and Van den Nouweland (2005) and the unique farsighted stable network as defined by Herings,
Mauleon, and Vannetelbosch (2009).
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scribed in the theorem correspond to the elements of the unique partition in the Core.13

This means that the strongly stable network maximizes social welfare as well.

4 Higher Order Information Complementarities

This section studies two questions: How does the posterior variance relate to correlation

structure inside any possible clique? And, for a given clique, what is the marginal value

of adding a new individual? The answer to these questions will give us some interesting

economic insights that I will present and discuss in Section 5.

I start by studying how the posterior variance relates to the correlation matrix. Con-

sider first the simple case in which there are only two individuals in a clique, {i, j}. By

Lemma 1 the posterior variance is given by

1
2

1+ρij
τ + τθ

.

This posterior variance has some important properties. First, when the correlation is

−1, the posterior variance is 0. The reason is that the realized signals are going to be

symmetrically located around the mean, and thus the individuals can perfectly forecast

the state by taking the average of the two signals. Second, when the correlation is 1

the reduction of the variance after observing both signals is exactly the same as when

observing only one of the signals since the realizations of the signals coincide. Third,

the posterior variance is continuous and strictly increases with respect to the pairwise

correlation.

I show through a series of results that most of these properties still hold when con-

sidering larger cliques. Theorem 2 establishes that, for any clique size, when a new

member is added the resulting posterior variance ranges from 0 to the posterior vari-

ance in the original clique. However, the intuition is trickier than when the clique has

two agents. The new challenge is that the variance reduction that results when a new

signal is observed is not a monotonous function of the correlation coefficients or linear

combinations of them, and thus I need to focus my analysis on the correlation matrix

13See Theorem 2 in Banerjee, Konishi, and Sönmez (2001).
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itself. The key insight is that the signal observed by an individual provides direct infor-

mation, and simultaneously it helps, in a nonlinear fashion, in the interpretation of the

information provided by others. I call such complementaries Higher Order Information

Complementarities.

Theorem 2 Let An−1 be a positive definite correlation matrix of dimension (n− 1)× (n− 1)

and P a vector of dimension (n− 1)× 1 such that P′A−1
n−1P ≤ 1. Let

An =

 An−1 P

P′ 1

 .

1. An is positive semidefinite.

2. Var(θ | An) = Var(θ | An−1) if and only if ∃{a1, . . . , an−1} such that ∑n−1
k=1 an = 1 and

P = a1A1 + . . . + an−1An−1,

where Ai is An−1’s i-th column. Further, An is invertible if and only if ∀i, ai 6= 1.

3. Var(θ | An) = 0 if and only if An is singular and none of the entries of P are equal to 1.14

The proof of Theorem 2 consists of two parts. First, by using the Cholesky decom-

position of the correlation matrix, I can express the n-th signal as a linear combination

between the state, the previous n− 1 signals, and independent noise:

yn =

(
1−

n−1

∑
k=1

an,k

)
θ + an,1y1 + an,2y2 + . . . + an,n−1yn−1 + annεn.

This clearly defines two extreme cases. On one hand, if ann = 0 and 1 6= ∑n−1
k=1 an,k,

after observing the n signals the individuals in the clique can recover the state perfectly

since the state can be expressed as a linear combination of the signals. On the other

hand, if 1 = ∑n−1
k=1 an,k, observing the first n− 1 signals or observing all of them produces

the same reduction in the variance since the last signal is just a linear combination of the

previous signals and independent noise.

14I use the normality assumption to prove only the ”only if” part of the argument. Therefore, in any
setting with unbiased signals, it is possible to identify correlation matrices that generate the extreme values
of the posterior variance.
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The second part of the proof studies how these linear combinations relate to the cor-

relation structure between the n signals. First, I show that observing all n signals allows

individuals to learn the state perfectly if and only if the correlation matrix between the

n signals is singular and all the correlation submatrices are invertible.15 Second, I show

that the n− th signal does not provide any extra information if and only if the correla-

tion vector between the n-th signal and the previous signals can be expressed as a linear

combination of the columns of the correlation matrix between the first n − 1 signals,

where the sum of the weights in the linear combination is equal to 1.

Example 1 presents interesting insights that are embedded in the result. First, it may

be that the individuals learn the state perfectly even when many of the correlations are

positive. Second, the amount of information provided by the signals is not a monotonic

function of the correlation coefficients. Finally, a correlation matrix does not need to be

singular to contain a signal that is redundant.

Example 1 Suppose the correlation matrix is given by


1 0

√
2

2

0 1
√

2
2√

2
2

√
2

2 1

 .

According to Theorem 2, perfect learning occurs in a clique with signals that share this corre-

lation pattern since this matrix is singular and all of the correlation submatrices are invertible.

Now, suppose the correlation matrix is given by


1 0 0.5

0 1 0.5

0.5 0.5 1

 .

In this case the third column of the matrix is a convex combination of the first two columns

of the matrix. According to Theorem 2 this implies that the third person signal is redundant in

15The condition that all the correlation submatrices must be invertible has two implications. First, none
of the correlations can be 1. Second, any case in which the individuals can learn the state perfectly with
fewer than n signals must be excluded: n must be construed as the smallest number of signals that allow
the individuals to learn the state perfectly.
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this clique.This happens even when this matrix is invertible.

Furthermore, some of the correlations in the second matrix are smaller than in the first matrix.

This exemplifies the argument that the reduction in the variance does not need to be monotonic

in the correlation coefficients.

Figure 2: Ex-post variance for different correlations ρ13 and ρ23 when fixing ρ12 = −0.2,
σ = 1 and σθ = 2.

Figure 2 represents the posterior variance as a function of the correlation matrix

when there are three signals. In the figure I fix the correlation between y1 and y2 and

allow the other two correlations to vary. I highlight three properties. First, due to the

complementarities in information that I discussed earlier, many correlation matrices that

contain only positive correlations generate a small posterior variance. Second, there is

a continuum of correlation matrices in which the third signal is redundant. This set

corresponds to the hyperplane that connects the two extreme points with a correlation

equal to 1, and except for the two extreme points, all matrices in this set are invertible.

Third, the posterior variance is not monotone in the pairwise correlations: along the

main diagonal the posterior variance is strictly concave, a result that I generalize in

Proposition 2.

Example 2 shows how we can use Theorem 2 to built interesting extreme cases. The

example shows that there are information structures for which the posterior variance

13



of a clique with two or three signals is similar to the posterior variance after observing

only one signal, but after observing four signals the clique learns the state perfectly. The

key insight from the example is that having small groups that generate little information

does not imply that there cannot be larger groups containing these smaller ones that

generate plenty of information. I extend this intuition to the case with many signals in

my analysis of the economic insights in Section 5.

Example 2 Suppose τ = τθ = 1. Suppose that there is a group with four individuals with

correlation matrix

Σ =


1 0.9 0.982 0.9876

0.9 1 0.918 0.9219

0.983 0.918 1 0.9994

0.9876 0.9219 0.9994 1


(1, 2) is the size-two group with the smallest posterior variance: 0.4872. Upon the formation

of group (1, 2, 4), the posterior variance only reduces to 0.4869, and this is the lowest conditional

variance in a group with three agents. However, the posterior variance in the clique with the four

individuals reduces to 0; that is, the state is learned perfectly.

I have discussed cases in which adding a new person to a clique either adds or does

not add information; I have also looked a cases in which adding a new person allows the

clique to learn the state perfectly. Although this is an interesting characterization, I am

interested in whether the variance reduction is similar for nearby information structures.

Proposition 1 states a particular form of continuity that holds everywhere except at

a finite number of points. I cannot strengthen this result to uniform continuity since

the variance reduction is more sensitive to small changes in the correlations when the

correlations are positive.

Proposition 1 Let An be a correlation matrix of dimension n× n, An−1 the correlation matrix

of the first n− 1 signals, and P the correlation vector between the n-th signal and all other n− 1

signals. Suppose that either P′A−1
n−1P 6= 1 or ∀i ∈ {1, . . . , n− 1} pi 6= 1. For all ε > 0, there
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exists δ > 0 such that if
∥∥P− P̂

∥∥ < δ and P̂′A−1
n−1P̂ ≤ 1 then∣∣Var(θ | An)−Var(θ | Ân)

∣∣ < ε,

where Ân is obtained from An−1 by adding P̂.

The other interesting question is how much variance reduction the agents can obtain

when their correlation matrix is far from the extreme cases described in Theorem 2.

Proposition 2 shows that the posterior variance is concave when I consider a particular

direction in the set of feasible correlation matrices. In the proposition I show that if

the new signal has a uniform correlation with the previous n− 1 signals, there exists a

positive threshold such that the posterior variance increases for correlations lower than

the threshold and it decreases in the opposite case. While the effect for correlations to

the left of the threshold follows the intuition from the two signals case, an opposite effect

appears for positive correlations when I consider many signals.

Proposition 2 Let An−1 be a positive definite correlation matrix of dimension (n− 1)× (n− 1)

and let P = (p, . . . , p) be the correlation vector between the n-th signal and the previous n− 1

signals such that P′A−1
n−1P ≤ 1. Let An be the resulting n × n correlation matrix. Then,

∂Var(θ|An)
∂p is negative if p > 1

1′n−1 A−1
n−11n−1

and it is positive if p < 1
1′n−1 A−1

n−11n−1
.

5 Economic Implications

In this section I present the main economic insights from this approach. First, I introduce

an example that shows how individuals’ preferences concerning their interlocutors can

change when clique size is taken into consideration. Second, I show that the fact that

a correlation matrix is positive semidefinite does not restrict the maximum size of a

clique. Finally, I show that certain information structures endogenously generate cliques

of individuals where information is highly correlated and individuals’ forecasts differ

across cliques. When both of these effects occur simultaneously I say that in equilibrium

homophily and polarization coexist.
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5.1 Reversion of Preferences

An interesting property of this environment is that the reduced form preferences of

individuals deciding which group to join depend critically on the size of the potential

group. An individual’s choice of a partner with whom to form a group of two depends

only on partial correlations, while choosing fellow members of a group of three people

depends on the inverse of a 3× 3 matrix. Here I present an interesting example where

individuals’ preferences in terms of joining a group become reversed when clique size

increases.

Suppose τ = τσ = 1 and the signals are correlated according to the network depicted

in Figure 3. The number in each circle is the identity of the individual, and the numbers

next to the edges are the correlations between their signals.

3

1

4

2

0.4

0.9

−0.2

0.5
0.40.5

Figure 3: Preferences Reversion Examples.

By Proposition 2, an individual considering the formation of only one communication

link prefers to join the person who receives the signal that is less correlated with hers.

Thus, Player 1 (Player 2) prefers to form a pair with Player 3 rather than with Player 4;

that is,

3 �1(2) 4.

Theorem 2 implies that Player 3 does not add any extra information when he joins the

pair (1, 2) since ρ13 + ρ23 = 1 + ρ12. But this condition does not hold for Player 4; that is,

Player 4 will provide extra information beyond the information shared by Players 1 and

2. Hence, their preferences have reversed:

4 �(1,2) 3.
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Although in this section I introduced a very particular example, it exemplifies a

pervasive property of the model. My analysis in Section 4 shows that a coalition may

prefer to include new individuals with whom they have highly correlated information,

and this preference depends as well on the identity of the coalition members.16

5.2 Which is the optimal size of a clique?

In this section I tackle the question of whether it is possible to characterize the size of the

cliques in a strongly stable network. I show that the fact of the correlation matrix being

positive semidefinite does not impose any limit in the size of an endogenous clique.

The reason for this is that it is always possible to build a correlation matrix for which

any clique of a size K − 1 or less learns nearly the same amount as a single individual,

whereas the K individuals coalition can figure out the state perfectly.

This matrix can be built in the following way. I start with two individuals with a

very high pairwise correlation—say, ρ12 = 0.99, and they learn almost as much as a

single individual. By Theorem 2, I can add a third individual that does not add any

extra information. I can repeat the process any number of times—say, until I have K− 1

individuals in a group. Finally, Theorem 2 allow us to add a K-th individual such that

the K individuals coalition can learn the state perfectly. This procedure will fulfill my

objective unless the last individual is part of coalition with fewer than K− 1 individuals

in which extra information is created. Lemma 2 shows that I can pick the last individual

such that this is not the case. The critical observation is that I can pick the last signal close

to the one that generates a singular matrix and does not provide any extra information.

If this is done, the last signal is closed to the hyperplane in which no information is

created for any coalition with fewer than K individuals.

Lemma 2 For each number of individuals K there exists a correlation matrix Σ such that the state

is learned perfectly when all signals are observed and, for any subset of signals, an individual can

learn almost as much as he can when observing only one signal; that is, for each ε > 0 and any

16Deciding whom to spend free time with is another situation where this result may be applied. An
agent may spend time with different groups of friends instead of simultaneously meeting all of them.
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subgroup of k individuals with k < K, Var(θ | Σk) ≥ 1
τ+τθ
− ε.

This implies that it is always possible to find correlation structures for which the only

strongly stable network consists of a clique containing all of the individuals in society.

This happens whenever the cost of forming a clique containing all individuals is smaller

than the difference between the value of learning the state perfectly and the value of

the information an individual can learn by herself. In other words, the fact that the

correlation matrix is positive semidefinite does not impose any limit in the optimal size

of a clique.

Theorem 3 Suppose c(N− 1) < 1
τ+τθ

. Then there exists a correlation matrix such that forming

one clique with all individuals in it is the only strongly stable network.

Proof Take ε =
1

τ+τθ
−c(N−1)

2 > 0. By Lemma 2 there exist K signals with correlation

matrix Σ such that Var(θ | Σ) = 0 and for any subgroup of k < K signals Var(θ | Σk) ≥
1

τ+τθ
− ε. By forming a group with k < K individuals, each of the individuals in this

subgroup obtains a utility smaller than or equal to

− 1
τ + τθ

+ ε− c(k− 1) ≤ − 1
τ + τθ

+ ε < −c(K− 1),

which is the utility each of them can obtain by forming the clique with all individuals.

If Σ is the correlation matrix of the signals, then the only strongly stable network has a

clique with all individuals in it.

5.3 Homophily and Belief Polarization

In this section I analyze how homophily and belief polarization can be rationalized by

my model. I first introduce the definition will use for these phenomena.

Definition 3 I say that a strongly stable network is

a. ρ−homophilic if the correlations between all individuals in a clique are larger than ρ; and

b. δ−polarized if the ex-ante expected value of the squared difference of the forecasts between

two cliques is at least equal to δ.
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For high ρ, saying that the stable network is ρ−homophilic means that individuals

with similar information optimally communicate with each other, creating patterns that

appear homophilic. For high δ, saying that the endogenous network is δ−polarized

means that we expect individuals in different cliques to have different beliefs about the

value of the stochastic state.

There is a close relationship between δ−polarization and the posterior variances in

each of the cliques. When in both cliques the posterior variance is close to the prior

variance, the difference in the forecasts must be small since in both cliques the forecasts

are close to the prior mean. When in both cliques the posterior variance is close to

zero, the difference in the forecasts has to be small since in both cliques the forecasts

are close to the realization of θ. The difference between the forecasts has to be larger

for intermediate values of the posterior variances: when forecasting, the agents assign

similar weights to the prior mean and to the signal realization. Therefore, as we increase

the posterior variance in both cliques, the difference between the forecasts first increases

and then decreases as both posterior variances approach the prior variance. The next

lemma formalizes this intuition.

Lemma 3 Suppose that in a strong stable network two cliques form and all the signals across the

cliques are independent. Let v1 and v2 be the posterior variance in each of the cliques. Then the

ex-ante expected value of the squared difference of the forecasts is:

v1 + v2 − 2τθv1v2.

Suppose v2 = kv1, k 6= 0. Then this expectation increases in v1 iff v1 ≤ 1+k
4kτθ

and decreases in v1

otherwise.

Example 3 shows that the endogenous network that arises in my environment can

exhibit both homophily and belief polarization. Due to the complementarities of infor-

mation that I introduced in Section 4, individuals with high correlations form a clique

even when there are opportunities to link with individuals that have signals that are

independent from theirs. At the same time, since there is no information flowing across

the two cliques, the agents’ posterior beliefs across the two cliques are different.
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Example 3 Assume τ = τθ = 1, c(k) = 0.01k2, and N = 6. The correlation structure between

the agents’ signals is depicted on Figure 4.

0
.8
5

0
.8
5

0
.6
5

0

0

0

0

1

2

3

4

5

6

Figure 4: Correlation structure for example 3.

In this signal structure there are two identical cliques, {1, 2, 3} and {4, 5, 6}, with positive

intra-clique correlations, and all signals are independent across these cliques. I show that the

unique strongly stable network only contains these two cliques.

First, it can be calculated that the utility in a coalition with two individuals who receive

independent signals is −0.343, which is the largest utility of a two-agent coalition. Naively

carrying over the intuition from the two-agent coalitions, I would conclude that the clique with

two zero correlations and a correlation equal to 0.65 should have the smaller variance of any three-

agent coalition, but this is not the case. The three-agent coalitions that minimize the variance are

{1, 2, 3} and {4, 5, 6}. The net utility in any of these coalitions is −0.2708. One of the four-agent

coalitions that maximizes the net utility is {1, 2, 3, 4}. In this coalition the net utility is −0.2775.

Groups with 5 and 6 individuals are too costly to be formed in equilibrium. Therefore, the only

strongly stable network consists of the cliques {1, 2, 3} and {4, 5, 6}.

Since the posterior variance in each of the cliques is equal to 0.23, Lemma 3 implies that the

expected value of the squared difference between the forecasts is 0.41, which is almost half of the

prior standard deviation. Therefore, this network is 0.65−homophilic and 0.41−polarized.

Theorem 4 generalizes the example. I assume that there are two cliques such that all

inter-clique signals are independent. Under some mild conditions on the cost function,

I show that for any δ small enough there exists ρ sufficiently large such that the only
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strongly stable network is ρ−homophilic and δ−polarized. The last two conditions in

the theorem are always satisfied for small enough δ since there is a strictly increasing

mapping between δ and v. The first condition deserves some discussion. This condition

implies that the level of inter-clique disagreement that can be sustained decreases as the

cliques become large. The reason is that a clique with a large number of individuals is

stable only if the agents in the clique can learn very well, a condition implying imme-

diately that the variance inside the clique is small and, by Lemma 1, that there is little

polarization. Another implication is that obtaining a polarized society is easier when

the communication cost is smaller. This finding is especially relevant in light of recent

technologies, such as online social networks, which have reduced the communication

cost at the same time that political polarization has increased.

Theorem 4 Suppose there are two cliques of individuals of sizes 3 ≤ n ≤ m such that all inter-

clique correlations are 0. Let δ < 4τ
(τθ+2τ)2 and v = 1−

√
1−2τθδ
2τθ

. Suppose that the following three

conditions are satisfied:

1. c(m− 1) < 1
τθ+2τ − v,

2. min{c(n)− c(n− 1), c(m)− c(m− 1)} > v2τ
vτ+1 , and

3. c(n + m− 1)− c(m− 1) > v
2 .

There exist ρ̃ > 0 and a correlation matrix with all intra-clique correlations larger than ρ̃

such that the only strongly stable network consists of the two cliques, and this network is

ρ̃−homophilic and δ−polarized.

I conclude this section by analyzing the relationship between level of polarization and

homophily in a network. There are two effects. First, high levels of belief disagreement

require large intra-clique correlations: if they are too low, then individuals will be able

to learn the state very well just by forming pairs. However, there is a second effect that

reinforces the first one: two individuals in a clique and a third one in another clique can

learn more when the correlation between the signals of the two individuals in the same

clique is lower,making a joint deviation between these three individuals more profitable.
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Therefore, this outside option effect reduces the number of correlation structures that

are consistent with high levels of disagreement.

Corollary 1 Suppose δ < 1
τθ+2τ . Higher beliefs polarization requires that the endogenous net-

work is more homophilic.

6 Discussion

In this paper I have introduced an environment in which rational individuals want to

forecast a stochastic state, and communicating the information they exogenously ob-

served to others is costly. By studying the endogenous network that forms from the

individuals’ optimal communication decisions, I conclude that homophily and belief

polarization can simultaneously emerge. Thus I offer a novel explanation for why ho-

mophily patterns are observed in the real world, using a model that does not require

introducing behavioral biases or asymmetric frictions across groups.

In the process of working out this explanation, I discovered a counterintuitive statis-

tical result: after observing a finite number of highly conditionally correlated signals, an

individual can learn the state perfectly. This is an interesting result that might be im-

portant when studying other environments, and I point out two related situations that I

believe are interesting for future work.

As a first example, consider a storyteller who wants to maximize the time a listener is

exposed to his message and who wants to convey a narrative that is coherent and carries

a clear message to the audience. My results suggest a way for the storyteller to achieve

these objectives simultaneously: he can send a coherent message and keep the listener’s

attention for a long time by splitting the information into many positively correlated

signals in a way that these signals communicate the whole message he wants to convey.

As another related example, consider a listener who needs to decide between two

storytellers and pay attention to one of them. The listener will also have an opportunity

to communicate with others who have listened to the storytellers. Assume that each

storyteller sends a finite number of messages that are positively correlated and allow the
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listener to learn perfectly the state after processing all the messages, but these messages

are independent across storytellers. A coordination effect emerges if the listener knows

that he might miss some of the messages his storyteller sends: by communicating with

individuals that have listened to the same storyteller, he is likely to recover information

he has missed and recover the state perfectly, while if he communicates with individuals

who have listened to the other storysteller, he may never learn the state perfectly.
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For any function g : XNi(g) → R, where XNi(g) is the set of possible realizations of

signals observed by individual i,

−ExNi(g),θ

[
(g(xNi(g))− θ)2

]
≤ −ExNi(g),θ

[
(E(θ | xNi(g))− θ)2

]
= −ExNi(g)

[
Eθ

[
(E(θ | xNi(g))− θ)2 | xNi(g)

]]
= −Var(θ | xNi(g)).

The inequality follows from E
[
(b− θ)2|xNi(g)

]
being minimized by setting b = E[θ|xNi(g)].

The first equality follows from the Law of Iterated Expectations, and the second equality

follows from the definition of conditional variance.

Let Σ be the correlation matrix of joint signals XNi(g), and 1|Ni(g)| be a |Ni(g)|-column

vector of 1s.

First, suppose that Σ is invertible. The likelihood function of joint signals is p(xNi(g)|θ) =

det(2πσ−2Σ)−
1
2 exp

(
− 1

2

[
(θ · 1|Ni(g)|− xNi(g))

′σ−2Σ−1(θ · 1|Ni(g)|− xNi(g))
])

, and the prior

density is p(θ) = (2πσ−2)−
1
2 exp

(
− 1

2

[
(θ − µθ)

2σ−2
θ

])
.

By Bayes rule, the posterior distribution of θ|xNi(g) is proportional to,

p(xNi(g)|θ)p(θ) ∝ exp
(
− 1

2
[
(θ − µθ)

2σ−2
θ + (θ · 1|Ni(g)| − xNi(g))

′σ−2Σ−1(θ · 1|Ni(g)| − xNi(g))
])

∝ exp
(
− 1

2
[
θ2(σ−2

θ + σ−21′|Ni(g)|Σ
−11|Ni(g)|)

− θ(2µθσ−2
θ + σ−2(x′Ni(g)Σ

−11|Ni(g)| + 1′|Ni(g)|Σ
−1xNi(g))

])
∝ exp

(
− 1

2
[
θ − A

]′C[θ − A
])

,

where C = (σ−2
θ + σ−21′|Ni(g)|Σ

−11|Ni(g)|), A = C−1(µθσ−2
θ + σ−21′|Ni(g)|Σ

−1xNi(g)), and

the proportionality operator eliminates positive constants. Since the derived expression

is the kernel of a normal distribution, Var(θ | x) = C−1.

Now suppose that Σ is singular with rank r < |Ni(g)|. Let the vector B be a basis

of the null space of Σ. With a singular correlation matrix the distribution assigns pos-

itive probability only in an affine subspace of Rr. In this subspace the density can be
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expressed (see for example Rao (1973)) as

f (xNi(g) | θ, Σ) = (2π)−
1
2 det(Λ)−

1
2 exp{−1

2(xNi(g) − θ · 1|Ni(g)|)
′Σ+(xNi(g) − θ · 1|Ni(g)|)}

such that B′xNi(g) = θB′1|Ni(g)| with probability 1,

where Σ̂+ represents the Moore-Penrose pseudoinverse of Σ, and Λ is the r× r diagonal

matrix that contains the positive eigenvalues of Σ.

Suppose first that B′1|Ni(g)| = 0. Then for any xNi(g) such that B′xNi(g) = 0 I can follow

the same procedure as before and obtain Var(θ | xNi(g)) = (σ−2
θ +σ−21′|Ni(g)|Σ

+1|Ni(g)|)
−1.

If in the contrary, B′1|Ni(g)| = k 6= 0 I can rewrite the condition that defines the subspace

as θ =
B′xNi(g)

k , that is, after observing the realization xNi(g), the individuals can perfectly

recover θ. In such a case, Var(θ | xNi(g)) = 0.

Proof Theorem 2

The Schur Complement of An−1 in An is given by 1− P′A−1
n−1P. The proof of 1. is im-

mediate from the Schur Complement characterization of positive definiteness (semidef-

initeness) (See for example Boyd and Vandenberghe (2004)).

Before proving parts 2. and 3. I present two lemmas that will be important for their

proof. I start by showing that a generalization of the Cholesky Decomposition is valid

in my environment.

Lemma 4 Fix a correlation matrix An of dimension n× n. There exist a vector ε = (ε1, . . . , εn)

of independent random variables and a lower triangular matrix C ∈ Rn×n such that

y = θ + C ε
y1

y2
...

yM

 =


θ

θ
...

θ

 +


1 0 0 . . . 0

c21 c22 0 . . . 0
...

... . . . ...
...

cM1 cM2 cM3 . . . cMM




ε1

ε2
...

εM


Proof If An is positive definite, the result is immediate from the Cholesky Decomposition

of An. If An is singular use the LDL decomposition and take C = LD
1
2 , which is well
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defined since D is a non-negative diagonal matrix.

Let C̄n−1 be the (n− 1)× (n− 1) principal submatrix obtained by removing the last

column and row from C and Cn the first n− 1 entries of the n-th row of C. The matrix

C̄m−1 is invertible as long as all of its diagonal components are non zero, which is implied

by the correlation matrix between the n − 1 signals being positive definite. From the

definition of the matrix C, ρij can be rewritten as ρij = ∑n
k=1 cikcjk. Then the correlation

vector between the observation n-th and the first n− 1 observations can be written as:

P′ = CnC̄′n−1 = CnC̄−1
n−1C̄n−1C̄′n−1 = CnC̄−1

n−1An−1 (1)

Let an,i to be the i − th entry of the vector CnC̄−1
n−1. Therefore, ρni = ∑n−1

k=1 an,i Aki, or

equivalently P = an,1A1 + . . . + an,n−1An−1.

Furthermore, if the correlation matrix between the first n− 1 signals is positive defi-

nite I have:

Yn−1 = θn−1 + C̄n−1En−1 ⇒ En−1 = C̄−1
n−1(Yn−1 − θn−1)

Therefore, signal yn can be rewritten as a function of only the first n− 1 signals, the state

and εn as follows:

yn = θ + (Cn, cnn)En = θ(1− CnC̄−1
n−11′(n−1)) + CnC̄−1

n−1Ŷn−1 + cnnεn

= θ
(

1−∑n−1
k=1 an,k

)
+ an,1y1 + . . . an,n−1yn−1 + cnnεn.

The following lemma characterizes in which cases the coalition can learn perfectly

the state and in which cases the last signal is redundant in terms of these linear combi-

nations.

Lemma 5 Suppose that n− 1 signals have a positive definite correlation matrix. Then:

1. If
(

1−∑n−1
k=1 ank

)
6= 0 and cnn = 0, the n signals perfectly reveal the state.

2. If
(

1−∑n−1
k=1 ank

)
= 0, the n-th signal is redundant given the other n− 1 signals.

Proof The assumptions in case 1 imply that yn = an,0θ + an,1y1 + . . . + an,n−1yn−1 with

an,0 = 1− ∑n−1
k=1 an,k 6= 0. Then after observing the n signals the agents can invert the
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expression above to find θ as

θ =
1

an,0
yn −

an,1

an,0
y1 − . . .− an,n−1

an,0
yn−1.

The assumption in case 2 implies that yn = an,1y1 + . . . + an,n−1yn−1 + cnnεn. Signal

yn does not contain any extra information about θ, so signal yn is redundant given all

the other n− 1 signals.

Now I proceed to prove part 2. From Lemma 5 I conclude the first direction in part

2.: if ∑i ani = 1 it has to be that Var(θ | An) = Var(θ | An−1).

Now suppose that Var(θ | An) = Var(θ | An−1). If An is singular then cnn =

0 and ∑i ani has to be equal to 1; if not the coalition could learn the state perfectly

according to Lemma 5. Suppose An is invertible. Then Lemma 1 implies that 1′n A−1
n 1n =

1′n−1A−1
n−11n−1. An can be written as:

An =

An−1 P

P′ 1

 =

An−1 0n×1

01×n 1

+

0n×1 P

1 0

 P′ 0

01×p−1 1

 = Ān−1 + UV.

Clearly Ān−1 is invertible since An−1 is. The Woodbury Matrix Identity implies that:

A−1
n = Ā−1

n−1 − Ā−1
n−1U(I −VĀ−1

n−1U)−1VĀ−1
n−1.

The sum of the entries of Ā−1
n−1 is equal to 1′n−1An−11n−1 + 1. From the definition of

the matrices and using that the inverse of a block matrix is equal to the matrix formed

by the inverse of each block, I obtain,

Ā−1
n−1U(I −VĀ−1

n−1U)−1VĀ−1
n−1 =

0n×1 A−1
n−1P

1 0

 1
1−P′A−1

n−1P

 1 −P′A−1
n−1P

−1 1

P′A−1
n−1 0

0n×1 1


= 1

1−P′A−1
n−1P

−A−1
n−1PP′A−1

n−1 A−1
n−1P

P′A−1
n−1 −P′A−1

n−1P


and the sum of its entries is 1

1−P′A−1
n−1P

[1′A−1
n−1P(2− P′A−1

n−11n−1)− P′A−1
n−1P]. I con-

clude that,

1′n A−1
n 1n = 1′n−1A−1

n−11n−1 + 1− 1
1− P′A−1

n−1P
[1′n−1A−1

n−1P(2− P′A−1
n−11n−1)− P′A−1

n−1P]. (2)
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Since 1′n A−1
n 1n = 1′n−1A−1

n−11n−1, it has to be that 1′n−1A−1
n−1P(2− P′A−1

n−11n−1) = 1.

This is a quadratic equation in P′A−1
n−11n−1 with unique solution P′A−1

n−11n−1 = 1. From

Equation (1) I conclude that CnC̄−1
n−11n−1 = 1, that is, ∑i ani = 1.

The next lemma characterizes when is that the matrix An is invertible if ∑i ani = 1,

which concludes the proof of part 2.

Lemma 6 Suppose that ∑i ani = 1. The matrix An is singular iff ∃i ∈ 1, . . . , n− 1 such that

ani = 1 and anj = 0 for j 6= i.

Proof Remember that in the Cholesky decomposition cnn = 0 if and only if An is singular.

Since all the signals have the same variance it has to be that

cnn = 1−∑n−1
k=1 a2

nk + 2 ∑n−1
k=1 ∑j>k ankanjρkj

≥ 1−∑n−1
k=1 a2

nk − 2 ∑n−1
k=1 ∑j>k ankanj

= 1− (∑n−1
k=1 ank)

2 = 0

and the inequality is strict if two different ank and anj are non-zero, since by assumption∣∣ρjk
∣∣ < 1. Then cnn = 0 if and only if ani = 1 for some i and anj = 0 for j 6= i.

To prove 3. I will use the following lemma.

Lemma 7 If P′A−1
n−1P = 1, the conditions ∑i ani = 1 and ∃i ∈ 1, . . . , n− 1 such that pi = 1

are equivalent.

Proof First, by lemma 6 I know that P′A−1
n−1P = 1 and ∑i ani = 1 imply that ∃i ∈

1, . . . , n− 1 such that ani = 1 and anj = 0 for j 6= i. Then pi = ρni = ani = 1.

Now suppose that ∃i ∈ 1, . . . , n− 1 such that pi = 1. WLOG, reorder the first n− 1

observations such that p1 = 1. As p1 = cn1, it has to be that cn1 = 1. By part 2 I have

that 1 = P′A−1
n−1P = CnC̄−1

n−1An−1C̄′−1
n−1C′n = CnC′n. Then cnj = 0 for j 6= 1. I conclude

that CnC̄−1
n−1 = (1, 0, . . . , 0) since c11 = 1. Therefore, an1 = 1 and anj = 0 for j 6= 1, that is,

∑i ani = 1.

From part 1. I know that An being singular implies that P′A−1
n−1P = 1. By the last

lemma I can replace the condition pi 6= 1 by ∑i ani 6= 1. As An is singular we have
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cnn = 0. Therefore, Lemma 5 implies the if direction of part 3.

For the other direction suppose that Var(θ | An) = 0. By Lemma 1 it has to be that

An is singular. Further, ∑i ani has to be different from 1; if not, Lemma 5 implies that

Var(θ | An) = Var(θ | An−1) and this cannot be true since An−1 being invertible implies

that Var(θ | An−1) 6= 0. By Lemma 7 it has to be that for all i pi 6= 1.

Proof Proposition 1

Suppose P′A−1
n−1P 6= 1. By Lemma 1 and Theorem 2, Var(θ | An) = (τθ + τ1′n An1n)−1.

Besides, by equation 2

1′n A−1
n 1n = 1′n−1A−1

n−11n−1 +
1

1− P′A−1
n−1P

[1− 1′n−1A−1
n−1P(2− P′A−1

n−11n−1)]. (3)

Clearly, 1′n A−1
n 1n is a continuous function of P, so Var(θ | An) is a continuous function

of P.

Suppose P′A−1
n−1P = 1 and pi 6= 1 ∀i ∈ {1, . . . , n− 1}. Lemma 1 and Theorem 2 imply

that Var(θ | An) = 0. Take a sequence Pk → P such that the matrix Ak
n generated by

adding Pk to An−1 is positive semidefinite. As pi 6= 1 ∀i ∈ {1, . . . , n− 1} it has to be that

P′A−1
n−11 6= 1. Therefore for large k, P′k A−1

n−11 6= 1. Furthermore, P′k A−1
n−1Pk → 1.

If the sequence P′k A−1
n−1Pk is finally constant and equal to 1, I have Var(θ | Ak

n) = 0

for large k, completing the proof.

Suppose for all k, there exists k′ > k such that P′k′A
−1
n−1Pk′ 6= 1. Take the subsequence

generated by those indexes where the equality does not hold. Then I can use equation

3 to calculate 1′n Ak′
n
−1

1n. The function x(2 − x) has a unique maximum at 1 and the

maximum value is 1 which is reached when x = 1. Then, for large k the numerator of

the last summand is strictly positive since P′k′A
−1
n−11n−1 6= 1. As k′ → ∞ the denomina-

tor approaches 0 from the right since Ak′
n is positive definite and part 1 in Theorem 2.

Therefore, as k′ → ∞, 1′n Ak′
n
−1

1n → ∞ and Var(θ | Ak′
n )→ 0.

From both cases, if
∥∥P− P̂

∥∥ < δ and Ân is positive definite then the inequality∣∣Var(θ | An)−Var(θ | Ân)
∣∣ < ε holds, where Ân is obtained from An−1 by adding P̂.

Proof Proposition 2
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By equation 2, 1′n A−1
n 1n = 1′n−1A−1

n−11n−1 + 1− 1′n−1 A−1
n−1P(2−P′A−1

n−1P)−P′A−1
n−1P

1−P′A−1
n−1P

. If P =

(p, . . . , p), 1′n−1A−1
n−1P = p1′n A−1

n−11n and P′A−1P = p21′n−1A−1
n−11n−1. Then from Lemma

1 I conclude that:

∂Var(θ | An)

∂p
=

∂1′n A−1
n 1n

∂p

Var(θ | An)2

Solving for the derivative in the numerator I obtain

∂1′n A−1
n 1n

∂p =
21′n−1 A−1

n−11n−1(1−p1′n−1 A−1
n−11n−1)(1−p21′n−1 A−1

n−11n−1)−2p1′n−1 A−1
n−11n−1(1−p1′n−1 A−1

n−11n−1)
2

(1−p21′n−1 A−1
n−11n−1)2

=
21′n−1 A−1

n−11n−1(1−p1′n−1 A−1
n−11n−1)(1−p21′n−1 A−1

n−11n−1−p+p21′n−1 A−1
n−11n−1)

(1−p21′n−1 A−1
n−11n−1)2

=
21′n−1 A−1

n−11n−1(1−p1′n−1 A−1
n−11n−1)(1−p)

(1−p21′n−1 A−11n−1)2 ,

which is positive iff p < 1
1′n−1 A−1

n−11n−1
, since 1′n−1A−1

n−11n−1 > 0.

Proof Lemma 2

Fix ε > 0. Pick ρ12 < 1 such that 1
τ 1

1+ρ12
+τθ
≥ 1

τ+τθ
− ε

2 . Such correlation always exists

since the posterior variance continuously decreases with respect to ρ12 and when ρ12 = 1

it is given by 1
τ+τθ

.

By Theorem 2 I can sequentially find vectors P2, . . . , PK−1 such that the matrix with

K − 1 observations still have the same posterior variance and the matrix with the K − 1

observations is positive definite. Using the same Theorem, I can find the vector P̂K such

that the posterior variance remains the same and the matrix Σ̂ is singular. This implies

that the posterior variance after observing any k signals, with k < K, is greater than or

equal to 1
τ+τθ
− ε

2 .

By Theorem 2 and Proposition 1, I can find a vector PK that satisfies two properties.

First, the correlation matrix between any k < K signals that is generated by the corre-

lation structure with vector PK is invertible. Second, PK is close enough to P̂K such that

the posterior variance after observing any k signals, with k < K, is greater than or equal

to 1
τ+τθ
− ε. I only need to show that I can pick a vector PK as close as I want to P̂K that

satisfies the first property and such that P′KΣk−1PK = 1 and P′KΣk−11K−1 6= 1.

When considering the Cholesky decomposition with P̂K it has to be that ĉnn = 0 and
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∃i ∈ {1, . . . , n} such that âni = 1 and ânj = 0 for j 6= i. Build a new signal such that

cnn = 0 and ani = 1− δ and anj = γ for j 6= i. Since none of the correlations between

the first K − 1 signals is 1, it has to be that δ 6= (K − 2)γ. Then under the new signal

with correlation vector PK, P′KΣk−1PK = 1 and P′KΣk−11K−1 6= 1 , that is, the state would

be perfectly learned. When δ and γ are small, P̂K and PK are close and the correlation

matrix between any k < K signals that is generated by the correlation structure with

vector PK is invertible.

Proof Lemma 3

Let µ1 and µ2 to denote the expected value of the forecast. From Lemma 1, for any

vector of signals x, the team forecast is given by, µi =
τθµθ+τ1′Σ−1

i x
τθ+τ1′Σ−1

i 1
. Therefore, E[µi | θ] =

τθµθ+τ1′Σ−1
i 1θ

τθ+τ1′Σ−1
i 1

= (δiτθµθ + θ(1− δiτθ)), and Var(µi | θ) =
τ1′Σ−1

i 1
(τθ+τ1′Σ−1

i 1)2 = δi(1− δiτθ).

As the signals across the two cliques are independent

z | θ = µ1 − µ2 | θ ∼ N(τθ(µθ − θ)(δ1 − δ2), δ1(1− δ1τθ) + δ2(1− δ2τθ)) = N(µz, σ2
z ).

Therefore,

E[z2] = E[E[z2 | θ]] = E[σ2
z + µ2

z]

= E[τ2
θ (µθ − θ)2(δ1 − δ2)

2 + δ1(1− δ1τθ) + δ2(1− δ2τθ)]

= −2δ1δ2τθ + δ1 + δ2,

where in the third line we use that E[(θ − µθ)
2] = τ−1

θ . E[z2] value is always positive

since δi < τ−1
θ .

If δ2 = kδ1 then ∂E[z2]
∂δ1

= 1 + k− 4kδiτθ, so it increases with respect to δ1 iff δ1 ≤ 1+k
4kτθ

.

Proof Theorem 4

Fix δ < 4τ
(τθ+2τ)2 and let v = 1−

√
1−2τθδ
2τθ

. Notice that v is one of the solutions to the

equation δ = 2v− 2vτθ. Therefore, by Lemma 1 if we can find a strongly stable network

with two cliques in which the posterior variance is equal to v we are done. Further,
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v < 1
τθ+2τ . This is true since

1−
√

1−2τθδ
2τθ

< 1
τθ+2τ

⇔ 2τ − τθ < (τθ + 2τ)
√

1− 2τθδ.

If the expression in the left is negative we are done. Suppose it is positive then the

inequality is equivalent to

4τ2 − 4ττθ + τ2
θ < (4τ2 − 4ττθ + τ2

θ )(1− 2τθδ)

⇔ δ < 4τ
(τθ+2τ)2 .

Let γ = c(m− 1) + v. Find ρ̃ to be the minimum correlation that satisfies simultane-

ously that γ ≤ 1
τθ+

4
1+ρ τ

, v ≤ 1
τθ+

2
1+ρ τ

and v2τ

vτ+
1+ρ

2
≤ c(n+ 1)− c(n− 1). I can find always a

correlation smaller than 1 that satisfies all the inequalities since v < 1
τθ+2τ , condition one

in the 1. in the theorem implies that γ < 1
τθ+2τ , and as c is strictly increasing, condition

2. implies that c(n + 1)− c(n− 1) > v2τ
vτ+1 .

I build a correlation matrix inside the first clique such that the posterior variance

inside the clique is equal to v and all intra-clique correlations are larger than ρ̃. First,

pick the correlation between the first two individuals such that ρ1
12 > ρ̃. Then by the

definition of ρ̃, it satisfies 1
τθ+

2
1+ρ1

12
τ
> v, that is, the first two individuals have a posterior

variance that is larger than the objective. Now for the individuals 3 to n− 1, I can pick

sequentially correlation vectors, as described in Theorem 2, such that after observing the

first n− 1 signals they have learned the same as if they had observed only the first two,

and all the correlations in these vectors are larger than ρ̃. Let ε1 =

1
τθ+

4
1+ρ1

12
τ
−γ

2 , which is

larger than 0 since ρ1
12 > ρ̃. A small variation of Lemma 2 shows that I can add the n-th

individual such that with the n signals the variance reduces to v and for any smaller

subgroup the integrated variance is at least 1
τθ+

2
1+ρ1

12
τ
− ε1.

I want to show that forming the two cliques is the only strongly stable network. The

utility for each individual of forming clique 1 is −v− c(n− 1). The utility of forming

33



any subgroup of individuals in 1 is at most

− 1
τθ +

2
1+ρ1

12
τ
+ ε1 < −

1
τθ+

2
1+ρ1

12
τ
+ γ

2
< −γ ≤ −v− c(n− 1),

where the first inequality follows from the definition of ε1 and the second one follows

from the inequality ρ1
12 > ρ̃ and the definition of ρ̃. Then deviations to smaller groups

inside 1 are not profitable. An analogous argument holds for smaller groups inside 2.

Now consider a joint deviation for a proper subset S1 of individuals in 1 and a proper

subset S2 of individuals in 2. The correlation matrix between the signals of this individu-

als is a block matrix. Then the posterior variance in this case is 1

τθ+τ

(
1′|S1|

Σ−1
S1

1|S1|+1′|S2|
Σ−1

S2
1|S2|

) .

Since after observing the signals in Si the variance is at least 1
τθ+

2
1+ρi

12
τ
− εi > γ > v, we

can find ρ̂I > ρ̃ such that 1′|Si|Σ
−1
Si

1|Si| =
2

1+ρ̂i . Therefore, the utility of such deviation is

at most

− 1

τθ + τ
(

1′|S1|
Σ−1

S1
1|S1| + 1′|S2|Σ

−1
S2

1|S2|

) = − 1
τθ + τ 2

1+ρ̂1 + τ 2
1+ρ̂2

< − 1
τθ + τ 4

1+ρ̃

= −γ,

so this deviation is not profitable for any of the individuals.

Now consider the deviation where all individuals in group 1 and a proper subset S2

of individuals in 2 are together. Since v = 1
τθ+τ1′nΣ−1

n 1|n|
, 1′nΣ−1

n 1n = 1−vτθ
vτ . If in S2 there is

only one individual, every deviator’s utility is

− 1
τθ + τ + τ1′nΣ−1

n 1n
− c(n) = − v

vτ + 1
− c(n) < − v

vτ + 1
− v2τ

vτ + 1
− c(n+ 1) = −v− c(n− 1),

so this deviation is not profitable. Now, if there are more than one individual in S2, I can

find ρ̂2 > ρ̃ as before and the utility is at most

− 1
τθ+τ 2

1+ρ̂2 +
1−vτθ

v

− c(n− 1 + |S2|) < − v
2vτ
1+ρ̃+1

− c(n− 1 + |S2|)

= v2τ

vτ+
1+ρ̃

2
− v− c(n− 1 + |S2|)

< c(n + 1)− c(n− 1)− v− c(n + 1) = −c(n− 1)− v,
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and this deviation is not profitable. A similar argument holds for the deviation where

all individuals in clique 2 and some individuals in group 1 are together.

The last possible deviation is to create the grand coalition. Individuals in group 2,

since this is the largest group, are the ones that can gain the most. The utility of any

individual, when in the grand coalition, is

− 1
τθ+τ

2(1−vτθ )
vτ

− c(n + m− 1) = − v
2−vτθ

− c(n + m− 1)

< v
2 − v− c(n + m− 1)

< c(n + m− 1)− c(m− 1)− v− c(n + m− 1) = −c(m− 1)− v,

and forming the grand coalition is not optimal.

In an analogous way we can build the correlation matrix inside the second clique

such that the posterior variance in the second clique is equal to v as well and all the

intra-clique correlations are larger than ρ̃.

Proof Corollary 1

From the definition of ρ̃ in the proof of Theorem 4 it is immediate that higher poste-

rior variance inside each clique requires a higher threshold ρ̃. By Lemma 1 this means

that higher levels of beliefs’ disagreement requires larges correlations inside each clique.

35


	Cover Page 19-007
	Information Complementarities and Polarization (1)
	Introduction
	Related Literature

	Model
	Optimal Action and Endogenous Networks
	Higher Order Information Complementarities
	Economic Implications
	Reversion of Preferences
	Which is the optimal size of a clique?
	Homophily and Belief Polarization

	Discussion
	Proofs




