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Abstract

I study how a monopolist data broker (seller), who wants to maximize profits,

should present and sell consumer data to a firm (buyer). The buyer has an interest

in forecasting a particular consumer characteristic, but the seller is uncertain about

which characteristic the buyer wants to forecast and how much the buyer values in-

formation. I assume that the joint distribution of both the unknown characteristics

and the data is elliptical. This information environment reduces to a multidimen-

sional, multi-product mechanism design problem in which the buyer’s payoffs are

nonlinear. Hence, I cannot use the common differential approach to solve for the

optimal mechanism. I obtain two main results. First, I show that the seller should

optimally offer statistics that are linear combinations of the data and independent

noise. Second, by using a direct approach, I show that in the optimal mechanism

the seller might want to offer a continuum of different statistics, and these statistics,

without containing independent noise, are less correlated than they would be if the

seller could perfectly price discriminate. Thus this distortion affects the mimicking

type more than the mimicked type.
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1 Introduction

Consumer data is valuable to economic agents that want to forecast an unobservable

consumer characteristic. Consider a firm that plans to introduce a new product to the

market. The firm can either send advertisements to all consumers or target those who

are more likely to buy the new product. A targeted marketing campaign is effective only

if the firm can identify accurately which consumers will react positively to its marketing

efforts. As another example, consider a politician who wants to win an election. Send-

ing personalized messages to undecided voters, in which the candidate explains how

his/her promises can fulfill the voters’ expectations, might be effective. To implement

this strategy, the politician needs to identify the undecided voters and their expectations.

Due to the ease of gathering information from electronic commerce and online surf-

ing, a new industry that specializes in collecting consumer data has emerged. This is a

billion dollar and growing business, controlled by a small number of large data brokers.1

These data brokers have collected a large amount of information about millions of con-

sumers, and according to the Federal Trade Commission (2014), most of these brokers do

not directly sell the data they have collected; instead, they either sell internally produced

analyses or provide buyers with consumer ”scores.” These scores can refer, for example,

to how likely a consumer is to make a purchase.

I study how monopolist data brokers (sellers) with access to consumer data can max-

imize profits by presenting and selling that data in an environment in which they lack

information about buyers’ motives to buy the data. The key novel issue in this environ-

ment is that different presentations of the data, which I called statistics, act as imperfect

substitutes. Consider the problem of selling data to a coffee shop and a restaurant, each

of which wants to advertise only to those consumers with high willingness to pay for

a coffee or a lunch, respectively. Some observable characteristics might be useful for

forecasting unknown variables that are relevant to both businesses. For instance, a con-

sumer with a higher income might be willing to pay more for both coffee and a lunch.

In that case, the forecast of a consumer’s willingness to pay for a lunch might help

1According to Marr (2017), the main data brokers are Acxiom, Nielsen, Experian, Equifax and Corel-
ogic.
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the coffee shop owner to make an informed decision by using that same information to

draw inferences about the consumer’s willingness to pay for a coffee. I study how sellers

(data brokers) should optimally produce adequate statistics for each product and charge

prices for each statistic such that buyers purchase the statistics targeted to the products

they want to advertise.

In my model, a random vector θ represents the set of consumer characteristics the

buyer might want to forecast. The buyers are different in two dimensions: the unknown

consumer characteristic they want to forecast and the value that they place on informa-

tion. Each buyer wants to forecast only one of the components of θ and faces a quadratic

loss function that is weighted by how valuable this information is for her. There is a

seller, who does not know the buyer type, but who can access data about some other

observable consumer characteristics. I assume that the seller can commit to a mecha-

nism before observing the realization of the data.2 While the data is observed only by

the seller, the seller and the buyer share a common prior about the joint distribution of

all consumer characteristics, observable or not. I assume that this joint distribution is

elliptical, following the usual practice in applied work. I show that the seller should op-

timally offer only mechanisms in which the statistics are linear combinations of the data

and independent noise. The argument, which I believe is novel in economics, depends

crucially on the existence of conflict between the seller and the buyers in the designing

environment.3

My model leads to a mechanism design problem in which the buyer’s preferences

are multidimensional, the seller needs to design multiple products, and the ranking of

the buyer’s payoffs is nonlinear. In the literature there is no general solution for this

class of problem. I study a novel example where all of the properties just indicated are

inherent to the economic environment, and I characterize the main properties satisfied

by the optimal mechanism.

To better understand the problem, in Section 4.1 I characterize the optimal mecha-

2The commitment assumption is satisfied if, for example, the seller can publish menus only in discrete
periods of time, but new consumer data arrives continuously.

3As some examples in the literature show (see, for example, Witsenhausen (1968)), using only linear
statistics is not always optimal in the absence of conflict between players, even when the joint distribution
of all variables is normal.

2



nism for when there are only two information types who share a common valuation

type. The main property of the optimal mechanism is that the offered statistics are less

correlated than they would be if the seller could perfectly price discriminate. Without

introducing independent noise, the seller degrades the statistic targeted to the mimicked

type by relatively decreasing the weights assigned to the variables that are more infor-

mative for the mimicking type, affecting the mimicking type more than the mimicked

type. Although these coefficients are reduced, they are generically different from zero;

that is, the seller does not create differentiation by selling a set of variables to one type

and a different set of variables to another type. Furthermore, the mimicked type always

receives a statistic that is informative for her.4,5

In section 4.2, I consider the more general problem in which there are two informa-

tion types, and for each of them there is a continuum of valuation types. When fixing an

information type, the problem that the seller faces is the problem studied by Myerson

(1981). But the difficulty in my environment comes from the extra IC constraints across

information types. Since the buyer’s payoffs are nonlinear, I cannot use Myerson’s differ-

ential approach to deal with them, and instead I use a direct method to find the optimal

mechanism.

The solution to the relaxed problem without the IC constraints across-information

types is simple. It consists of two take-it-or-leave-it offers for a statistic that for each

information type is equivalent to receiving all the data. In the general problem, the solu-

tion is more involved. The seller offers to the type paying the highest price in the relaxed

problem two statistics: a statistic that is equivalent to receiving all data targeted to high

valuation types and another less informative statistic targeted to an intermediate range

of valuation types. The novelty is that this less informative statistic can be produced by

either introducing independent noise or by reducing the coefficients in the variables that

are more informative for the other information type. To the information type paying

the lowest price in the relaxed problem, the seller offers either a unique statistic or a

4This contrasts with the results of the literature in quality degradation, where it is always possible
to find parameters such that a type is excluded from the mechanism. The reason for this is that in my
environment the ranking of payoffs is product dependent.

5I use masculine pronouns for the seller (data broker) and feminine pronouns for the buyer (firm).
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continuum of degraded statistics. In both cases, the statistics are degraded by reducing

the coefficients in the variables that are more informative for the first information type.

When considering many information types, I cannot solve completely for the optimal

mechanism since I cannot identify ex-ante which IC constraints are relevant. There are

two reasons for this. First, reducing the price of the statistic targeted to one information

type might provoke an incentive problem in which another type will want to mimic the

first one. Second, changing the coefficients of the statistic targeted to an information type

might make the modified statistic too informative for another type. I provide examples

that show these complications and how they affect the optimal mechanism.

In spite of these issues, I partially characterize the optimal mechanism and show

that the properties that I have highlighted are still satisfied with a caveat: even when

there is only one valuation type, there might be some types that are excluded from the

mechanism and do not receive any useful information. Furthermore, I show that at least

one type will receive a statistic that for her is equivalent to receiving all of the data. But

this type does not necessarily coincide with the type with the highest willingness to pay

for all the data, as would be the case if there were only two information types. This

generalizes the nondistortion at the top condition that appears in environments where

the payoffs are linear.6

1.1 Literature Review

My paper contributes to a growing body of literature that studies the optimal ways in

which a monopolist can sell information. The work that comes closest to my approach is

Bergemann, Bonatti, and Smolin (2018). They study an environment in which the seller

knows perfectly the realization of a random variable that can take a finite number of

values, and in which all buyer types want to match the realization of the same unknown

random variable. The types differ in their prior, so that each type willingness to pay

for a signal depends on how informative the signal is for different realizations of the

state. In contrast, I consider the problem in which the monopolist has multidimensional

6For the unidimensional case, see for example, Mussa and Rosen (1978), while Rochet and Choné
(1998) shows that a similar condition is satisfied in the multidimensional case.
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data that is informative, though not necessarily perfectly revealing, about a random

vector. In my model, the types share the same prior, but each type wants to reduce

the variance associated with only one of the random variables, and therefore they are

interested in different features of the data. This new approach addresses some novel

questions. I am able to study the optimal way to degrade the quality of the information

in each of the dimensions of the data and consider whether or not the monopolist is

better off giving only a subset of the data to certain buyers. To answer these questions,

I analyze a simplified environment. Instead of studying any discrete distribution and

payoff function for the buyer, I restrict the focus to cases in which the joint distribution

of the data and states is elliptical and the buyer weights the goodness-of-fit of its forecast

according to a quadratic loss function.7

There are a few other papers that have studied similar problems in which one agent

buys information from another one. In an environment without private information,

Bergemann and Bonatti (2015) have studied the problem of selling information when the

market for it is competitive and the seller of information can only sell signals that reveal

perfectly one of the states. Yang (2018) considers an environment in which the data

broker reveals information to the consumers about their valuations for a good. However,

the data broker charges the sellers of goods for this information. In this environment the

data brokers’ optimal strategy is to reveal perfectly the consumers’ willingness to pay

when the consumers have low valuations and pool all the high valuation consumers.

This way the sellers of goods can sell to all of their best clients. Babaioff, Kleinberg, and

Paes Leme (2012) consider a problem where both the seller and the buyer have private

information about one distinct state, but the buyer’s payoff function depends on both of

them. Assuming that the outcome of the mechanism can depend on the signal observed

by the seller, they study the conditions under which the revelation principle holds, and

they find algorithms that approximate the optimal mechanism.

The problem I study is technically related to the literature on multidimensional mech-

anism design (see, for example, Armstrong (1996); Thanassoulis (2004); Manelli and Vin-

7In Appendix A, I show that when the monopolist is interested in forecasting the intercept of a linear
demand function, the implied loss is quadratic.

5



cent (2006); Daskalakis, Deckelbaum, and Tzamos (2017)). While this literature normally

assumes that a buyer may want to buy multiple products, and the products are fixed, in

my environment each type strictly prefers a unique product, and I allow the monopolist

to design the products he will offer. By designing the products, the data broker makes

sure that out of the many partially substitutable products, the buyer buys the product

specifically targeted to her.

In this sense, my paper is related to the literature that considers the problem of selling

substitutable goods. The problem I study reduces to a problem analogous to a discrete

version (see Vohra (2011)) of a problem solved by Wilson (1993)—except that the payoff

is nonlinear in my environment, while in his is linear— with a completely different

solution. In a linear two-goods environment, Pavlov (2011) has shown that the optimal

mechanism involves lotteries that either assign one of the two goods with probability 1

or assign none of the goods to the buyer. Balestrieri, Izmalkov, and Leao (2015) show in a

Hotelling-type model, in which there are two goods located on the extremes of a line and

the consumers face a transportation cost, that even in a unidimensional environment the

optimal mechanism may involve lotteries depending on the shape of the transportation

cost function.

Finally, when the data broker designs the statistics he wants to offer, he chooses

the quality of each type’s inference. A similar problem has been studied before in the

literature on quality degradation (see, for example, Mussa and Rosen (1978); Maskin and

Riley (1984)) and product design (see, for example, Anderson and Celik (2015)). In these

branches of literature, it is normally assumed that the preferences are unidimensional

and that the ranking of buyer types, in terms of their willingness to pay, is product

independent. In my multidimensional environment, the ranking of types according to

their valuations is statistic dependent, in the sense that statistics that are considered to

be of high quality by some types are considered to be of bad quality by others.
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2 Model

Data brokers sell consumer data to firms. I study how a monopolist data broker, who

wants to maximize profits, should present and sell the consumer data he can access

when he is uncertain about the buyer’s motives for purchasing the data. By assuming

that each consumer’s characteristics come from the same distribution, I focus on the

problem of selling data about a representative consumer.

The data broker has access to some observable variables about a consumer x =

(x1, . . . , xk) ∈ Rk that are potentially relevant for the firm to estimate an unknown con-

sumer’s characteristic in the set θ = (θ1, θ2, . . . , θn). I represent the firm’s preferences

by a two-dimensional type. The first component is one of n possible information types:

t1, . . . , tn; the second component is a valuation type v that can take any value in an in-

terval [
¯
vi, v̄i]. This interval might depend on the first component. Type (ti, v)’s forecast

loss is equal to

−vE[(θi − a)2];

that is, type (ti, v) is interested in making an accurate forecast of the consumer’s charac-

teristic θi and faces a quadratic loss function that is weighted, according to how valuable

the estimation is for her, by v.8 Since acquiring information allows the firm to make a

better forecast, the firm is willing to buy all, a part of, or a summary of the data available

to the data broker. I assume that the firm’s global payoff is quasilinear in money; it is

equal to the forecast loss minus the price she pays for the information.

The data broker faces the issue that he does not know the firm’s type, so he cannot

first order price discriminate. The data broker assigns probability αi to the firm being

information type ti and believes that the valuation type is distributed, conditional on the

information type being ti, according to an absolutely continuous distribution G(v | ti)

that admits a density g(v | ti). I assume that the data broker, before knowing the data

realization, can commit to a selling mechanism and look for the incentive-compatible

and ex-ante individually rational direct mechanism that maximizes the broker’s profit.

8In Appendix A, I prove that when a monopolist is uncertain about the intercept of a linear demand,
his optimal decisions lead to a profit loss that is quadratic with respect to the forecast of the intercept that
the monopolist uses in his decision-making process.
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I endow the data broker with a zero-mean random variable ε that is independent of X

and θ and that allows him to flexibly lessen the informativeness of the data statistics he

offers. In this environment, a direct mechanism is a pair (ψ, p), such that if the firm

reports type (ti, v), she receives a statistic of the data and noise ψ(ti, v) : Rk+1 → Rm and

pays a price p(ti, v) ∈ R.

The firm has a prior over θ, denoted by Fθ, and believes that the random variable

X is distributed, conditional on θ, according to FX|θ. This information environment is

common knowledge to both the data broker and the firm.

In Figure 1 I summarize the timing in the model. The data broker commits to a

direct mechanism before knowing the realization of the data. After this, nature draws

the random vector θ and the data X according to the distribution F(X,θ). When the firm

reports her type, the data broker provides her with the data transformation he promised

at the price he committed to in the mechanism. Once the firm has observed this extra

information, she makes a forecast.

Broker commits to
mechanism (ψ, p)

Nature
draws (θ, X)

Firm reveals
type (ti, v)

Broker delivers data
transformation ψ(ti, v)(X)

and charges p(ti, v)
Firm chooses

forecast a

Figure 1: Timing in the model.

2.1 Distribution Restriction

The model that I have specified is too general to generate meaningful conclusions. I

restrict the model by assuming that the joint distribution of (X, θ, ε) is elliptical and has

finite second moments; the covariance matrix of the vector X, Var(X), is positive definite;

and Var(ε) = σ2 > 0.

Assumption 1 The joint distribution of (X, θ, ε) is elliptical with finite second moments.

Some multivariate elliptical distributions with finite second moments are the multi-

variate normal distribution, the multivariate t-student distribution, the multivariate sym-
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metric Laplace distribution, the multivariate logistic distribution, and the multivariate

symmetric hyperbolic distribution. While this assumption restricts the set of distribu-

tions that I consider, it is general enough to include distributions that are skewed or

leptokurtic, and distributions for which zero covariance is different from independence.

The distinct characteristic of an elliptical distribution is that the iso-density plot for

a two-dimensional random vector is an ellipse (and a generalization of an ellipse for

higher dimensions). An example is presented in Figure 2.

Figure 2: General shape of probability density function for an Elliptical distribution.

This family of distributions satisfies two properties that are important for my pur-

poses. First, for any elliptical distribution, the conditional expectation is linear; second,

the linear combination of elliptical distributions is an elliptical distribution. The proof of

the following claim can be found in Fang, Kotz, and Ng (1990).

Claim 1 Suppose the joint distribution of (X, Y) is jointly elliptical. Then

1. E[Y | X] is linear in X, and

2. any linear transformation of (X, Y), A(X, Y), is elliptical.

These properties of the elliptical distributions are important for my analysis since

they imply that when the seller offers a linear statistic of the data, the buyer’s conditional

expectation after observing such a statistic is linear. I show in Theorem 1 that under this

restriction, it is optimal for the seller to only offer linear statistics. This result helps to

simplify my analysis.
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3 Value of Information

I start the analysis by calculating the maximum price that type (ti, v) is willing to pay

for any statistic ψ. Since the firm utility is quadratic, the optimal forecast for type (ti, v)

is the conditional expectation of θi given ψ. With this forecast, type (ti, v) suffers an

expected loss equal to the negative of the expected conditional variance of θi given ψ

times v.9

Claim 2 Given that the data broker provides the firm with a statistic ψ(x), type (ti, v)’s optimal

forecast is a∗ = E(θi | ψ(x)), and type (ti, v) suffers an ex-ante expected loss equal to

−vEX[Var(θi | ψ(x))].

I can use this result to formally define what incentive compatibility and individual

rationality mean in my environment. Because types are two-dimensional, I need to

consider the possibility that a buyer lies about her information and/or valuation type. I

say that the mechanism (ψ, p) is incentive compatible (IC) if

−vEX[Var(θi | ψ(ti, v))]− p(ti, v) ≥ −v′EX[Var(θi | ψ(tj, v′))]− p(tj, v′) ∀(ti, v), (tj, v′),

and it is individually rational (IR) if

−vEX[Var(θi | ψ(ti, v))]− p(ti, v) ≥ −vVarFθ
(θi) ∀(ti, v).

These constraints have two distinct properties that make them slightly different from

those in the problems previously studied in the literature. First, in the IC constraint two

possible deviations are embedded: The first deviation is the usual one that the buyer

can misreport her type. Furthermore, when the buyer does this, she can use the statistic

received to make a forecast about the variable she is interested in, which might not

coincide with the variable that the statistic was targeted to. The second property is that

the right-hand side of the IR constraint is not the same across types, since when the

buyer does not buy any information, her best forecast is her prior expectation, resulting

in an expected loss equal to the negative of her prior variance times her valuation type.

9The proof of Claim 2 and all others that are not in the main text can be found in Appendix B.
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By reordering the IR constraint, it is possible to conclude that the maximum that type

(ti, v) is willing to pay is v times the reduction in the variance that type (ti, v) can achieve

by buying the statistic that is targeted to her. Therefore, in this environment, the buyer’s

only interest is to reduce her forecast variance.

With this in mind I can show in Theorem 1 that in this environment it is optimal for

the seller to only sell linear statistics. When none of the IC constraints bind, the argument

is trivial since the seller will want to target to each type the conditional expectation of the

variable the firm is interested in, and by Claim 1 this conditional expectation is linear.

The significant part of the result, and to some extent a surprising one, is that even when

some IC constraints bind, the seller is still better off only offering linear statistics, even

though they do not necessarily coincide with the conditional expectation.

The proof of the theorem, which was inspired by the argument in one of the examples

in Basar (2008), consists of two steps. In the first step, by an argument similar to the

one in Kamenica and Gentzkow (2011), I show that no loss results from considering

mechanisms in which the seller offers forecasts that are followed by the buyer. In the

second step, I consider a simultaneous zero-sum game between the seller and a fictitious

player. In this game the payoff function is equal to the seller’s profits in a mechanism,

and the conflict arises from the seller choosing statistics to maximize his profits while

the fictitious player chooses updating rules to minimize any type’s posterior variance

when observing the statistic targeted to another type. I show that in the unique saddle-

point of this zero-sum game the seller offers linear statistics and the fictitious player

uses linear updating rules. The optimal mechanism corresponds to the seller’s saddle-

point strategy, which completes the argument. The existence of conflict between the two

players is crucial for this argument: Witsenhausen (1968) introduced an example without

conflict between two players in which linear statistics and updating rules are not always

optimal.

Theorem 1 In the optimal mechanism, the seller only offers statistics that are linear combina-

tions of the data and independent noise; that is, the seller targets to each type a statistic of the

form ψ(ti, v) = L(ti, v)Tx + `(ti, v)ε ∈ R, where L(ti, v) ∈ Rk and `(ti, v) ∈ R.

11



Since Theorem 1 implies that it is optimal for the seller to offer a mechanism in

which all statistics are linear combinations of the data and independent noise, I start the

analysis in Lemma 1 by calculating the reduction of θi’s forecast error variance when

type (ti, v) receives a linear statistic.

Lemma 1 θi’s forecast error variance reduction when observing a non-null linear combination

of the data and noise, LTX + `ε, corresponds to

(LTCov(θi, X))2

LTVar(X)L + `2σ2 .

Furthermore, Claim 2 implies that type (ti, v)’s willingness to pay for a statistic is

maximized when she observes the conditional expectation of θi given X. If the data

broker were not facing any feasibility constraints, he would sell these statistics to the

firm. The following lemma shows the conditional expectation of θi given X and the

maximum reduction of θi’s forecast error variance for any data set.

Lemma 2 The conditional expectation of θi given X is

E(θi | X) = E(θi) + Cov(θi, X)TVar(X)−1(X− E[X]),

and the maximum θi’s forecast error variance reduction that can be achieved with data X equals

Cov(θi, X)TVar(X)−1Cov(θi, X).

Therefore, type (ti, v)’s maximum willingness to pay is vCov(θi, X)TVar(X)−1Cov(θi, X).

This formula is not very helpful for understanding how much type (ti, v) is willing to

pay for a statistic that is not sufficient to learn the conditional expectation of θi given X. I

therefore introduce new terminology that is easier to work with and to interpret. I define

the vector γi ≡ Var(X)−1/2Cov(θi, X), which measures how valuable any linear statistic

is for forecasting θi.10 Consider a linear statistic LTX + `ε and let λ = Var(X)1/2L denote

the transformed vector of coefficients that lives in the same space as γi. Type (ti, v) is

10This vector is well defined since I assumed that Var(X) is positive definite. Formally, I define
Var(x)−1/2 as Var(X)−1/2 = SX1/2ST where X1/2 is the diagonal matrix whose entries are the positive
roots of the eigenvalues of Var(X)−1 and S is an orthogonal matrix whose columns are the eigenvectors of
Var(X)−1. All the results that follow are true as long as I choose a square root of Var(X) that is invertible.
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willing to pay for this statistic the amount v (γT
i λ)2

λTλ+`2σ2 . Since γT
i γi = Var(E[θi | X]), and

γT
i λ is the covariance between E[θi | X] and LTX + `ε, type (ti, v)’s willingness to pay

for this statistic is proportional to the square of the correlation between E[θi | X] and

the signal. In other words, type (ti, v) is willing to pay more for statistics that are more

correlated with the forecast that she would implement if she could observe all the data.

An important special case is the one in which the statistic does not include any

independent noise. In this case the correlation between this statistic and the conditional

expectation is completely determined by the angle between γi and λ. Figure 3 represents

type (ti, v)’s willingness to pay for the transformed vector of coefficients λ when her

preferred vector is γi. The distance between the origin and the blue locus represents

type (ti, v)’s willingness to pay for a noiseless linear combination that generates a vector

pointing in any particular direction—for example, in the same direction as λ0. As the

angle between these two vectors increases from 0 to π/2, type (ti, v)’s willingness to pay

changes continuously from vCov(θi, X)TVar(X)−1Cov(θi, X) to 0.

Figure 3: The distance between the origin and the blue locus represents the willingness
to pay, by type with optimal vector γi, when it receives a noiseless linear combination
with coefficients pointing in that direction.

A similar comparison holds if the linear statistic contains independent noise. How-

ever, adding independent noise reduces proportionally the willingness to pay for any

13



linear statistic, and the slope with respect to the angle becomes flatter.

Overall, type (ti, v) prefers statistics that have a higher correlation with E[θi | X]

and statistics for which uncorrelated noise accounts for a smaller portion of the statistic

variance. The objective of the rest of the paper is to understand how the data broker

designs these linear statistics to maximize profits when the mechanism must satisfy the

IC and IR constraints.

To rule out cases in which two information types want to use the data in exactly the

same way, I assume that no two types have more preferred statistics that are parallel.

Technically, I assume that no two information types have γ vectors pointing in the same

(or opposite) direction.

Assumption 2 For each i, j ∈ {1, . . . , n}, i 6= j, and for any k 6= 0, γi 6= kγj.

4 Optimal Mechanism with Two Information Types

In this section I provide a complete characterization of the optimal mechanism when

there are only two information types. The general intuition from the previous section is

that in the optimal mechanism the data broker needs to reduce the correlation between

the statistic targeted to any mimicked type and the mimicking type’s preferred statistic.

I present the optimal way in which the seller modifies the statistics he sells to reach this

objective for two distinct cases: a unique common valuation type and a continuum of

valuation types for each of the information types.

4.1 A Unique Common Valuation Type

In this subsection I provide a complete characterization of the simplest case in which for

each information type there is a unique valuation type that is common across informa-

tion types, and I normalize it to one. This analysis provides insights about the forces that

affect the design of the optimal mechanism in the general case. The main result is that

in the optimal mechanism the data broker, without introducing independent noise, will

deteriorate the quality of the statistic targeted to the mimicked type by distorting the
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coefficients assigned to each of the variables in the data in the direction opposite to the

one the mimicking type prefers the most. Though this quality degradation affects both

types, it is designed in a way that affects the mimicking type more than the mimicked

type.

Without loss, I assume that
∥∥γ1

∥∥ >
∥∥γ2

∥∥;11 that is, type t1 is willing to pay more for

all the data than type t2 is, and that γT
1 γ2 > 0.12

First, I introduce some of the properties that the optimal mechanism must satisfy and

that simultaneously simplify the problem. Proposition 1 shows that type t1 will receive

a statistic that from the perspective of that firm type is equivalent to observing all the

data, and type t2 will receive zero information rent. These properties are a result of type

t1 being willing to pay more for all the data than what type t2 is willing to pay for it,

so that the data broker can choose a price high enough for all the data such that type t2

never wants to report type t1.

The same proposition presents an easy to check condition that characterizes when

the IC constraint for type t1 reporting type t2 binds and when it does not. Intuitively,

this constraint binds only if type t1 can make an accurate guess about E[θ1 | X] from

observing E[θ2 | X]. As was pointed out in the previous section, this depends on the

correlation between the two conditional expectations or, equivalently, on the angle be-

tween γ1 and γ2. If they are perfectly correlated, type t1 can learn the same amount

from observing either of the two and will buy the cheapest one. If they are conditionally

independent, the IC constraint will never bind since type t1 cannot learn anything about

E[θ1 | X] from observing E[θ2 | X]. Proposition 1 shows that the IC constraint for type

t1 reporting type t2 binds if and only if the vectors γ1 and γ2 point in a similar direc-

tion, while γ1’s magnitude is large relative to γ2’s magnitude. This means that the IC

constraint for type t1 reporting type t2 binds if and only if both types are interested in

similar features of the data, but one type is willing to pay substantially more for all the

data than the other one.
11I use the symbol ‖‖ to denote the Euclidean norm of a vector.
12If γT

1 γ2 < 0, I can always convert the problem to the one in which type t1 measure of information is
given by −γ1. Lemma 1 shows that these problems are equivalent since a rational agent learns exactly the
same when receiving the linear combination LTX and when receiving −LTX.
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Finally, Proposition 1 states that in the optimal mechanism the data broker offers

statistics that do not contain any independent noise. Modifying the direction of the

statistic targeted to type t2 is more efficient than adding independent noise to it; adding

independent noise reduces proportionally the willingness to pay of both types, while

modifying the direction of the signal targeted to type t2 in the direction opposite to type

t1’s preferred direction affects type t1 more than type t2.13

Proposition 1 In the optimal mechanism, when there are two information types and a unique

common valuation type, it must be the case that

1. type t1 receives a statistic that reduces the variance of θ1 the same amount as observing

data x;

2. type t2 receives zero information rent;

3. the IC constraint for type t1 reporting type t2 binds if and only if

cos(β) >
‖γ2‖
‖γ1‖

, or equivalently, ‖γ1 − γ2‖2 < ‖γ1‖2 − ‖γ2‖2 ,

where β is the angle between the vectors γ1 and γ2; and

4. the data broker never adds independent noise to any of the statistics.

Proposition 1 implies that the data broker’s problem can be simplified to:

max
p1,L2

α1p1 + (1− α1)
(LT

2 Cov(θ2,X))2

LT
2 Var(X)L2

s.t. γT
1 γ1 − p1 ≥

(LT
2 Cov(θ1,X))2

LT
2 Var(X)L2

− (LT
2 Cov(θ2,X))2

LT
2 Var(X)L2

γT
1 γ1 − p1 ≥ 0

If the IC constraint for type t1 reporting type t2 does not bind, the optimal mechanism

for the data broker is to offer to each type a distinct statistic that allows them to recover

the conditional expectation they are interested in and charge them the most they are

13The analysis in Section 4.2 present an instance in which adding independent noise is one of the ways,
though not the only one, in which the optimal mechanism can be implemented.
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willing to pay for all the data.14 When the IC constraint for type t1 reporting type

t2 binds, the data broker cannot simultaneously offer all available information to both

types while setting monopolist prices. Since, by Proposition 1, adding independent noise

is never optimal, the data broker is left with two possibilities. He can either reduce the

price targeted to type t1 or he can deteriorate the quality of the signal targeted to type t2

by modifying the coefficients that are used to create the statistic targeted to type t2. The

data broker will optimally weight each of these two possibilities.

If I assume that the IR constraint for type t1 does not bind and that the IC constraint

for type t1 reporting type t2 binds, I can plug in for the value of p1 and obtain a maxi-

mization problem that depends only on the coefficients L2:

max
L2

α1

(
γT

1 γ1 −
(LT

2 Cov(θ1, X))2

LT
2 Var(X)L2

)
+

(LT
2 Cov(θ2, X))2

LT
2 Var(X)L2

Taking the first order condition and solving, I obtain the following equation for the

optimal coefficient vector:

L̃2 = Var(X)−1 (Cov(θ2, X)− cCov(θ1, X)) ,

where c = α1
L̃T

2 Cov(θ1,X)

L̃T
2 Cov(θ2,X)

> 0. This is an implicit equation in both L̃2 and c. Since c is

the solution to a single variable fixed-point problem, I am able to solve for it in closed

form, which allows me to obtain a closed-form solution for L̃2.15 The proof presents the

details. In the optimal mechanism, the data broker deteriorates the informativeness of

the statistic targeted to type t2 by obfuscating it in the direction opposite to type t1’s

preferred direction. This distortion reduces the correlation between type t1’s preferred

statistic and the statistic targeted to type t2, affecting type t1 more than type t2.

So far I have assumed that type t1’s IR constraint does not bind. This assumption

is satisfied as long as (L̃T
2 Cov(θ1,X))2

L̃T
2 Var(X)L̃2

>
(L̃T

2 Cov(θ2,X))2

L̃T
2 Var(X)L̃2

. In the proof of Theorem 2 I show

that this inequality holds if and only if α < α̃ =
γT

2 (γ1−γ2)

γT
1 (γ1−γ2)

∈ (0, 1). When type t1’s IR

14Offering only the rough data is never optimal since it allows both types to calculate the conditional
expectation, resulting in each type reporting the type that pays the lowest price.

15The objective function is not globally concave. One of the main steps in the proof shows that there
is a solution to the fixed-point problem for the constant c that is actually a solution to the maximization
problem.
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constraint binds, the data broker does not have an incentive to distort further the statistic

targeted to type t2, since he cannot increase the price targeted to type t1. This implies

that the quality of the statistic targeted to type t2 is never degraded until the point at

which type t2 is willing to pay nothing for it. This contrasts with the literature in quality

degradation, where there is always a distribution over types such that type t2 is offered

a quality that gives him a null payoff (see, for example, Mussa and Rosen (1978)). This

difference comes from the fact that in my environment the ranking of types according

to their valuations is statistic-dependent, while in the previous literature, it has been

normally assumed that the ranking of types according to their valuations is product-

independent. This also implies that the data broker can extract all the surplus created by

the mechanism even when some of the IC constraints bind, although the surplus created

by the mechanism is smaller than the maximum social surplus.

Theorem 2 provides a closed-form solution for the optimal mechanism.

Theorem 2 In the case of two information types, the data broker maximizes profits by offering

the mechanism with coefficients L(t1) = Var(X)−1Cov(θ1, X) and coefficients

1. L(t2) = Var(X)−1Cov(θ2, X) if ‖γ1 − γ2‖2 ≥ ‖γ1‖2 − ‖γ2‖2; and

2. L(t2) = Var(X)−1 (Cov(θ2, X)− cCov(θ1, X)) if ‖γ1 − γ2‖2 < ‖γ1‖2 − ‖γ2‖2;

where c =
‖γ2‖2+α1‖γ1‖2−

√
(‖γ2‖2+α1‖γ1‖2)

2−4α1(γT
1 γ2)

2

2α1γT
1 γ2

, if α < α̃ =
γT

2 (γ1−γ2)

γT
1 (γ1−γ2)

, and c = α̃

otherwise. Furthermore, p(t1) = γT
1 γ1 in case 1, and it is the value that makes the IC constraint

for type t1 reporting type t2 to hold with equality in case 2, while p(t2) is the value that makes

the IR constraint for type t2 to hold with equality.16

The amount of distortion of the statistic targeted to type t2 depends on the value of

α1. As the probability of facing firm type t1 increases, the data broker wants to reduce

the information rent given to type t1, and to reach this objective the data broker degrades

the quality of the statistic targeted to type t2. In terms of the notation in Theorem 2, this

means that c is nondecreasing with respect to α1.

16Explicit closed-form solutions for these prices can be found in the proof of the theorem.
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Corollary 1 Suppose that the IC constraint for type t1 reporting type t2 binds. Then the optimal

mechanism satisfies the following properties:

1. the degradation of quality is increasing in α1; that is, c is nondecreasing in α1, and as

α1 tends to 0 the data broker almost offers the undistorted statistic to type t2; that is,

limα1→0 c = 0; and

2. the information rent given to type t1 is nonincreasing in α1, and as α1 tends to 0 the

information rent tends to (γT
1 γ2)

2

γT
2 γ2
− γT

2 γ2.

Using the characterization of the optimal mechanism in Theorem 2, I can study which

data sets the data broker would like to acquire. . If two data sets are offered to the data

broker at the same cost, he would choose the data set that allows vectors γ1 and γ2 to

be as nearly orthogonal as possible; that is, he would like to acquire data that generates

the smallest correlation between the conditional expectations of θ1 and θ2 given all the

data. The following corollary states precisely the conditions under which the profits of

the data broker are increasing in the angle between the vectors γ1 and γ2.

Corollary 2 Let π be the optimal profits for some α, γ1, and γ2 and let 0 < β < π/2 be

the angle between γ1 and γ2. For any data set that generates γ′1 and γ′2 with ‖γ1‖ = ‖γ′1‖,

‖γ2‖ = ‖γ′2‖ and β < β′ ≤ π/2, where β′ is the angle between γ′1 and γ′2, the optimal profits

are larger than or equal to π.

Unfortunately, I cannot directly translate the results in the corollary to a direct com-

parison between the covariance vectors. First, an uncountable number of statistical mod-

els (covariance matrices of unknown and know consumer characteristics) generate ex-

actly the same vectors γ1 and γ2.17 Second, even if I fixed a covariance matrix Var(X),

it is not true that when two vectors γi and γj are closer to being orthogonal, the corre-

sponding vectors Cov(θi, X) and Cov(θj, X) are also closer to being orthogonal. Figure 4

presents such an example where the vectors γ1 and γ2 are orthogonal (cos2(β) = 0) only

when the angle between Cov(θi, X) and Cov(θj, X) is strictly smaller than π/2.

17Fix any positive definite matrix A of dimension 2× 2 and say that this is the variance of the data X.
Then, by picking Cov(θi, X) = A1/2γi, we guarantee that the statistical model exactly generates the vector
γi.
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Figure 4: Value of cos2(β), with β being the angle between γ1 and γ2, for different

values of ω, the angle between Cov(θ1, X) and Cov(θ2, X), when Var(X) =

1 0

0 2

 and

Cov(θ1, X)T = (0.866, 0.5).

4.2 A Continuum of Valuation Types

I now proceed to a more general environment in which the buyer has both vertical and

horizontal private information. I still assume there are two information types {t1, t2},

but for each information type there is a continuum of valuation types that are distributed

according to absolutely continuous distributions G(v | t1) and G(v | t2), with densities

g(v | t1) and g(v | t2) and supports [
¯
v1, v̄1] and [

¯
v2, v̄2], respectively.

Since I do not assume any special property relating to the support of these distri-

butions, the analysis in Section 3 implies that it is without loss to assume that ‖γ1‖ =

‖γ2‖ = 1. This assumption means that for i ∈ {1, 2} the maximum reduction of θi’s

forecast error variance is equal to 1.

To facilitate comparison with the classical paradigm, I impose the Regularity Condi-

tion that has normally been assumed in the mechanism design literature.

Assumption 3 I assume that for each ti, i ∈ {1, 2}, the conditional distribution of valuation

types, satisfies that

v− 1− G(v | ti)

g(v | ti)

20



is nondecreasing in v.

To simplify the notation, I introduce two new notions. I let qiv be the reduction

of information type ti’s forecast error variance when observing the linear combination

targeted to type (ti, v); that is, qiv =
(LT

ivCov(θi,X))2

LT
ivVar(X)Liv+`2

ivσ2 , and I let δjiv be the reduction

of information type tj’s forecast error variance when observing the linear combination

targeted to type (ti, v); that is, δjiv =
(LT

ivCov(θj,X))2

LT
ivVar(X)Liv+`2

ivσ2 .18 The problem that the seller faces

can be rewritten as

max
{Liv},{`iv},{piv}

α1
∫ v̄1

¯
v1

p1v f (v | t1)dv + α2
∫ v̄1

¯
v1

p2v f (v | t2)dv

st. vqiv − piv ≥ vqiv′ − piv′ for i ∈ {1, 2}, ∀v, v′ ∈ [
¯
vi, v̄i] (IC iv-iv’)

vqiv − piv ≥ vδijv′ − pjv′ for i 6= j, ∀v ∈ [
¯
vi, v̄i], v′ ∈ [

¯
vj, v̄j] (IC iv-jv’)

vqiv − piv ≥ 0 for i ∈ {1, 2}, ∀v ∈ [
¯
vi, v̄i] (IR iv).

Except for the constraints IC iv-jv’, the problem looks like two copies of the one

studied by Myerson (1981). This allows me to draw two conclusions that follow almost

directly from his analysis. First, for each i ∈ {1, 2} the constraints IC iv-iv’ and IR iv can

be summarized by an integral condition and a monotonicity condition that are easier to

work with. Lemma 3 presents the formal statement.19

Lemma 3 The constraints IC 1v-1v’, IC 2v-2v’, IR 1v and IR 2v are equivalent to:

1. vqiv − piv =
¯
viqi

¯
vi − pi

¯
vi +

∫ v

¯
vi

qiw dw for i ∈ {1, 2}.

2. qiv is nondecreasing for i ∈ {1, 2}.

3.
¯
viqi

¯
vi − pi

¯
vi ≥ 0 for i ∈ {1, 2}.

Second, if none of the constraints IC iv-jv’ bind, the problem has a simple solution.

The seller will offer a menu with two packages. Each package is targeted to a specific

18Remember that type (ti, v) wants to forecast the stochastic variable θi. Therefore, I can use qiv as a
measure of the quality of the statistic that is targeted to type (ti, v).

19I omit the proof of Lemma 3 and Proposition 2 since they follow directly from standard arguments
used in Myersonian environments.
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information type and contains a take-it-or-leave-it offer for a distinct signal that allows

this firm type to recover the conditional expectation in which she is interested.20 Without

loss I assume that the take-it-or-leave-it price for information type t1, which I denote by

v∗1 , is larger than the take-it-or-leave-it price for information type t2, which I denote by

v∗2 . Proposition 2 formally presents the optimal mechanism for this case and introduces

a condition that establishes when none of the constraints IC iv-jv’ binds, a generalization

of the condition in Proposition 1.

Proposition 2 Suppose that none of the constraints IC iv-jv’ bind. There exist values v∗1 > v∗2
such that in the optimal mechanism

qiv =


1 if v ≥ v∗i

0 if v < v∗i ,

and piv = 1qiv=1v∗i . Furthermore, none of the constraints IC iv-jv’ bind if and only if v∗1cos2(β) ≤

v∗2 , where β is the angle between γ1 and γ2.

From now on I consider the interesting case in which at least some of the constraints

IC iv-jv’ bind. The challenge is that a priori I do not know which of them actually bind.

Furthermore, since the payoffs are nonlinear I cannot apply the results in the literature

that deliver necessary and sufficient conditions that summarize the IC constraints.21

Proceeding constructively, I characterize the optimal mechanism for the relaxed problem

without the constraints IC 2v-1v’ and argue that its solution is actually the solution to

the original problem.

The next lemma generalizes part of Proposition 1. It states that, in the relaxed prob-

lem, as long as the seller wants to sell an informative signal to type (t2, v), the signal

targeted to this type cannot contain any independent noise. The reason is similar to

what we saw in the previous case: by modifying the coefficients in the right direction,

20As pointed out before in footnote 14, offering all rough data to each information type will not be
optimal even in this case, since the seller, in general, wants to offer different take-it-or-leave-it prices to
each information type.

21In particular the characterization of optimality in Rochet and Choné (1998) does not apply in my
environment since the payoffs are nonlinear.
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the seller can create a larger difference effect in the types’ willingness to pay than he can

by adding independent noise.

Lemma 4 In the relaxed problem without the constraints IC 2v-1v’, if q2v 6= 0, `2v = 0.

This lemma allows me to rewrite the relaxed problem as a problem in which the

seller chooses the angles between the statistic targeted to type t2 and the vectors γ1

and γ2 that represent the preferred statistics of type t1 and type t2, respectively. Let

β2v be the angle between Var(X)1/2L2v and γ2 and β be the angle between γ1 and γ2.

Then q2v = cos2(β2v) and δ12v = cos2(β + β2v), so that δ12v = g(q2v) with g(q2v) =

cos2(β + cos−1(
√

q2v)).22 Furthermore, in the relaxed problem the seller and the buyer

are indifferent between any pair (L1v, `1v) that produces the same quality q1v.23

Plugging in the prices that are implied by Lemma 3, using integration by parts in

the traditional fashion, and denoting U(
¯
vi, ti) = ¯

viqi
¯
vi − pi

¯
vi , the relaxed problem can be

written as

(RP) max
{qiv},{U(

¯
vi,ti)}

∫ v̄1

¯
v1

q1v

(
v− 1−F(v|t1)

f (v|t1)

)
f (v | t1)dv f (t1)−U(

¯
v1, t1) f (t1)

+
∫ v̄2

¯
v2

q2v

(
v− 1−F(v|t2)

f (v|t2)

)
f (v | t2)dv f (t2)−U(

¯
v2, t2) f (t2)

st. U(
¯
v1, t1) +

∫ v

¯
v q1w dw ≥ vg(q2v′)− v′q2v′ + U(

¯
v2, t2) +

∫ v′

¯
v q2w dw ∀v ∈ [

¯
v1, v̄1], v′ ∈ [

¯
v2, v̄2]

qiv non-decreasing for i ∈ {1, 2}

U(
¯
vi, ti) ≥ 0 for i ∈ {1, 2}.

Lemma 5 presents two properties that the optimal solution to the relaxed problem

must satisfy. First, the seller must target to types (t1, v) with v ≥ v∗1 a statistic that

for them is equivalent to observing all the data: the seller has no reason to distort the

information targeted to them since I have ignored the constraints IC 2v-1v’. Second, the

22In principle I need to make sure that the angle inside the cos is smaller than π/2. However, it is
straightforward to conclude that as long as q2v is positive, the seller does not want to distort the statistic
targeted to type (t2, v) beyond the point at which type (t1, v) does not obtain any information from
observing this statistic, which happens when the angle is exactly π/2.

23When I interpret the final solution to the relaxed problem, I will discuss again the multiple mecha-
nisms that implement the solution.
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problem of implementing the mechanism presented in Proposition 2 is that type v∗1 has

an incentive to mimic type v∗2 . To reduce this incentive, the seller has an extra tool that he

did not have in the simplest version of the problem: he can choose the lowest valuation

type of information type t2, to whom he sells a statistic. Lemma 5 shows that the seller

always increases the minimum valuation type of information type t2, to whom he sells

above v∗2 , but this adjustment is bounded by v∗1 since type (t1, v∗1) places less value on

the statistic targeted to information type t2 than type (t2, v∗1) does.

Lemma 5 In the solution to the relaxed problem, it must be the case that

1. q1v = 1 for all v ≥ v∗1 , and

2. v̂2 ∈ (v∗2 , v∗1), with v̂2 = inf{v : q2v > 0}.

Lemma 6 completely characterizes the solution for the allocation targeted to type t1,

q1v. It shows that the seller will sell a homogeneous statistic to some valuation types

below v∗1 , and the quality of this statistic is only a function of q2v̂2 . The reason for this is

that all of the types below v∗1 want to mimic type v̂2, and since all of them have the same

incentives and a negative virtual value, the seller should treat them equally.

Lemma 6 In the solution to problem RP, there is a threshold v̂2 < v̂1 =
v̂2q2v̂2
g(q2v̂2 )

< v∗1 such that

q1v = 0 for v < v̂1 and q1v = g(q2v̂2) for all v ∈ [v̂1, v∗1).

To conclude, I must indicate the optimal allocation targeted to information type t2,

q2v. The next lemma shows that the only constraints that really matter, once I have fixed

an optimal allocation q1v, are the constraints IC 1v∗1-2v’ for v′ larger than v̂2. The reason

for this is that for all types above v∗1 , the incentives to report some type (t2, v′) are smaller

than v∗1’s incentives. Given that the constraints IC 1v∗1-2v’ bind, the lemma shows that

the optimal allocation q2v has at most two distinct sections: it is at first constant and may

increase for high valuation types.

Lemma 7 Any allocation (q1, q2) with q1 and q2 nondecreasing, such that q1v = 1 for all

v ≥ v∗1 , q1v = g(q2v) for all v ∈ [v̂1, v∗1 ]—and q1v = 0 otherwise; and such that the constraints
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IC 1v∗1 − 2v′ for all v′ ≥ v̂2 are satisfied—is a feasible allocation for problem P. In the solution to

the relaxed problem, all the constraints IC 1v∗1-2v’ for v′ ∈ [v̂2, v̄2] bind.

Furthermore, there exists ṽ2 ∈ (v̂2, v̄2] such that the optimal solution to problem P is given

by q2v′ = q2v̂2 for v′ ∈ (v̂2, ṽ2], and for v′ > ṽ2, q2v′ is equal to the solution to g′(q2v′) =
v′
v∗1

.

Theorem 3 summarizes the characterization of the optimal mechanism that I have

described throughout the lemmas. Figure 5 presents an instance in which the optimal

mechanism exhibits all the properties discussed above. Buyers that want to forecast θ2

are affected in two ways by the presence of the other information type. First, some ex-

tra types will be excluded from the mechanism. Second, none of the valuation types

that buy a statistic receive a statistic that is equivalent to observing all of the data for

them: intermediate valuation types receive the same degraded statistic and large valua-

tion types receive a more informative statistic, but it is never fully informative. Buyers

that want to forecast θ1 are benefited in two ways. First, types in [v̂1, v∗1 ] will buy an

informative signal due to the presence of the other information type, and second, types

with high valuations will receive a statistic that for them is equivalent to receiving all

data for a price strictly below their willingness to pay.

Theorem 3 There exist cutoffs v̂1, v̂2, and ṽ2 with v̂2 > v∗2 , v̂2 < v̂1 =
v̂2q2v̂2
g(qv̂2 )

< v∗1 , and

ṽ2 the value that solves g′(q2v̂) = ṽ2
v∗1

, such that in the optimal mechanism the seller targets to

types (t1, v) with v > v∗1 a statistic that reduces θ1’s forecast variance by 1, to types (t1, v)

with v ∈ [v̂1, v∗1 ] a statistic that reduces θ1’s forecast variance by g(q2v̂2), to types (t2, v) with

v ∈ [v̂2, ṽ2] a statistic that reduces θ2’s forecast variance by q2v̂2 , and to types (t2, v) with v > ṽ2

a statistic that reduces θ2’s forecast variance by q2v, where q2v solves g′(q2v) =
v
v∗1

.

The theorem deserves two comments. First, if ṽ2 < v̄2, the seller will offer a con-

tinuum of statistics as in Figure 5. There are other examples in which the seller only

targets one statistic to information type t2. Second, the proposition describes the maxi-

mum variance reduction that is targeted to each type, but it does not specify the actual

statistics that are offered. As in Section 4.1, to types (t1, v) with v > v∗1 the data broker

provides all the data, or a sufficient statistic for it, and to types (t2, v) with v > v̂2 the

seller targets, without adding independent noise, a linear combination that distorts the
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(a) Optimal q1v. (b) Optimal q2v.

Figure 5: Optimal Mechanism when the angle between γ1 and γ2 is equal to 0.14◦ and
α1 = 0.85, and the distributions of valuation types satisfy that v1 = v2 = 0, v̄1 = 1 and
v̄2 = 2.4 with g(v | t1) = 15v14 and g(v | t2) = 0.83̄ for v < 0.8 and g(v | t2) ∝ 4(2.4− v)3.

coefficients on the data away from information type t1’s preferred direction. There is

a new class of statistics that needs to be offered when dealing with multiple valuation

types since types (t1, v) with v ∈ [v̂1, v∗1 ] are targeted with an only partially informa-

tive statistic. This can be implemented in multiple ways. The data broker can do one

of the following: modify the coefficients on the data in the opposite direction of infor-

mation type t2’s preferred direction, include independent noise to information type t1’s

preferred linear combination, or offer a statistic that contains both distortions.

5 Many Information Types

In this section I present the main difficulties that impede me from obtaining a com-

plete characterization of the optimal mechanism in the general environment. In spite

of these difficulties, I show that the main properties of the optimal mechanism that I

have highlighted previously are still true. To simplify the analysis, I assume that there

is a unique common valuation type that I normalize to 1. I define, as before, the vector

γi = Var(X)−
1
2 Cov(θi, X), and without loss assume that γT

1 γ1 ≥ γT
2 γ2 ≥ . . . ≥ γT

n γn,

with at least one strict inequality.24 This means that type t1 is willing to pay more for all

24If all the inequalities are actually equalities, the data broker can reveal all the information to all types
and charge a uniform price equal to γT

1 γ1.
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available data than type t2 is, and by analogy the same is true for all the other compar-

isons.

Finding a condition such that none of the IC constraints bind is not a hard task.

I need only ensure that all the players want features of the data that are sufficiently

distinct. The next proposition presents a sufficient and necessary condition for none of

the IC constraints to bind. In such a case, the data broker can target to each type a

statistic that for her is equivalent to receiving all the data and then charge all of them

them according to their willingness to pay without worrying that some types will mimic

others.

Proposition 3 Let βij be the angle between the vectors γi and γj. None of the IC constraints

bind if and only if for all i < j,

cos2(βij) <

∥∥γj
∥∥2

‖γi‖2 .

The issue that prevents me from characterizing the optimal mechanism is that when

some IC constraints bind, it is not possible to identify a priori the relevant IC constraints.

The difficulty arises from two different sources. First, the seller may want to charge to

one type a price that is below the firm’s willingness to pay for the statistic that is targeted

to her. This might provoke an incentive problem since another type’s willingness to

pay for this statistic could now be larger than its price. Second, if the seller changes

the coefficients of the linear statistic targeted to one type, the modified statistic might

become very informative to a third type. I will use some examples to make these sources

more explicit.

The first two examples demonstrate that a priori I cannot identify which downward

IC constraints bind.25 The examples show that the condition in Proposition 1 is nei-

ther necessary nor sufficient. The first example presents a case in which ‖γ1 − γ2‖2 >

‖γ1‖2 − ‖γ2‖2 but the IC constraint for type t1 reporting type t2 binds. The reason is

that the IC constraint from type t2 to type t3 binds, and the seller wants to reduce the

price of the statistic targeted to type t2. But if this price is severely reduced, the type t1

25I designate an IC constraint as downward if it is one in which type ti considers reporting type tj with
i < j. Otherwise it is upward.
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firm will receive a positive surplus when buying the statistic targeted to type t2.

Example 1 Suppose that γ1 = (6, 3), γ2 = (2, 5) and γ3 = (0, 4). It can be checked that

‖γ1 − γ2‖2 > ‖γ1‖2 − ‖γ2‖2, ‖γ1 − γ3‖2 > ‖γ1‖2 − ‖γ3‖2, and ‖γ2 − γ3‖2 < ‖γ2‖2 −

‖γ3‖2. Following the analysis in Section 4.1, in a naive first attempt I assume that only IC 2-3

binds. Under this assumption, the seller’s optimal strategy is to target to types t1 and t2 an

undistorted statistic and target to type t3 a statistic that is distorted in the direction opposite to

type t2’s preferred statistic. When α2 is small enough relative to α3, according to Corollary 1, type

t2 receives an information rent close to (γT
2 γ3)

2

γT
3 γ3
− γT

3 γ3 = 9, or equivalently a price close to 20.

At this price, type t1 can report type t2 and obtain a surplus of (γT
1 γ2)

2

γT
2 γ2
− 20 = 5.24, so that the

constraint IC 1-2 is not satisfied.26 It can be shown that in the optimal mechanism the constraints

IC 1-2 and IC 2-3 bind. In the optimal mechanism, as α2 is too small, to satisfy the constraint

IC 1-2, the data broker offers some information rent to type t2 and modifies the recommendation

targeted to type t2 in the opposite direction of type t1’s preferred statistic, so that type t1 does not

receive any information rent.27

Example 2 presents a case in which ‖γ1 − γ2‖2 < ‖γ1‖ − ‖γ2‖, but the IC constraint

for type t1 reporting type t2 does not bind. This demonstrates that the condition in

Proposition 1 is not sufficient in this general environment. In the example, type t1

can get a larger surplus by reporting type t3 than by reporting type t2. To eliminate

the incentive for type t1 of reporting type t3, the data broker will want to give a large

information rent to type t1, and this rent may be larger than the surplus type t1 can

obtain by reporting type t2, so that the solution to the relaxed problem satisfies IC12.

Example 2 Suppose that γ1 = (6, 2), γ2 = (3.5, 4) and γ3 = (5, 0.5). It can be checked

that ‖γ1 − γ2‖2 < ‖γ1‖2 − ‖γ2‖2 and ‖γ1 − γ3‖2 < ‖γ1‖2 − ‖γ3‖2. However, 12.81 =
(γT

1 γ3)
2

‖γ3‖2 − ‖γ3‖2 > 1.52 =
(γT

1 γ2)
2

‖γ2‖2 − ‖γ2‖2. That is, without any reduction in quality and

when charging them their willingness to pay, type t1 can obtain a higher rent by reporting type

t3 than by reporting type t2. Consider the relaxed problem with only the constraint IC 1-3. In

26The surplus is positive as long as α2
α2+α3

< 0.279.
27The complete results of the numerical solution for this example and those following are available

upon request.
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this problem the seller targets to types t1 and t2 the undistorted statistics and charges type t2

according to her willingness to pay. Therefore, by mimicking type t2, type t1 can obtain a rent

of 1.52 =
(γT

1 γ2)
2

γT
2 γ2
− γT

2 γ2. At the same time, when α1 is small relative to α3, by Corollary 1,

the information rent given to type t1 is close to 12.81 =
(γT

1 γ3)
2

γT
3 γ3
− γT

3 γ3. Then, for α1 small, the

constraint IC 1-2 is satisfied.28

The problem with two information types was simplified significantly when I show

that the upward IC constraint never binds. The next two examples present instances in

which some upward constraints do bind.

Example 3 presents a case in which the solution to the two-type problem involves

modifying the direction of the statistic targeted to one type away from the mimicking

type’s most preferred statistic. While this avoids a situation one type mimics the other,

it also makes the distorted statistic more valuable for a third type. If this distortion is

large enough it gives the third type an incentive to report the originally mimicked type.

Example 3 Suppose that γ1 = (6, 2), γ2 = (5, 1.8), and γ3 = (0, 5). If none of the IC

constraints involving type t3 bind, the data broker will offer to this type a statistic that she

considers equivalent to receiving all the data at a price equal to her willingness to pay. In the

solution to the relaxed problem with only the constraint IC 1-2, the data broker distorts the

statistic targeted to type t2 in the opposite direction of type t1’s preferred statistic—that is, by

rotating it towards type t3’s preferred direction.

Figure 6 presents the optimal recommendations in this relaxed problem for types t1 and t2

when α1
α1+α2

= 0.8, where the length of the recommendation vectors represents the optimal price.

The statistic λ2 that is targeted to type t2 is almost in the same direction as γ3, and it is offered

at a low price relative to type t3’s willingness to pay. Therefore, the constraint IC 3-2 is not

satisfied.29

It can be shown that constraints IC 1-2 and IC 3-2 are the ones that bind. More interestingly,

in the optimal mechanism the data broker only targets to types t1 and t3 a statistic that for them

is equivalent to observing all the data, and he charges them a price equal to their willingness to

28In this example, this happens whenever α1
α1+α3

< 0.58.
29This is true as long as α1

α1+α2
> 0.7.
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γ2
γ1

λ3 = γ3

λ2

λ1

Figure 6: Optimal solution of the relaxed problem in Example 3 when α1
α1+α2

= 0.8. The
length of the blue vectors represents the optimal price.

pay. The data broker does not offer any valuable statistic to type t2, even though type t2 is not the

one with the lowest willingness to pay.

Finally, Example 4 presents a case in which the reduction in the price charged to one

type makes the upward constraint IC 2-1 bind. This means that in this environment there

could be distortions at the top—that is, the type with the highest willingness to pay for

all the data may receive a distorted statistic.30

Example 4 Suppose that γ1 = (4.8, 2), γ2 = (5, 0), and γ3 = (4, 2). It is easy to check that

‖γ1 − γ3‖2 < ‖γ1‖2−‖γ3‖2 and that the other two analogous conditions hold with the opposite

sign. Consider the relaxed problem with only constraint IC 1-3. Under such an assumption,

neither type t2 nor t3 receives any surplus under the optimal mechanism, and by Corollary 1,

when α1 is small enough relative to α3, type t1 receives an information rent close to (γT
1 γ3)

2

γT
3 γ3
−

γT
3 γ3 = 6.91. Since in this relaxed problem the seller targets an undistorted statistic to type t1,

he charges type t1 a price equal to γT
1 γ1− 6.91 = 20.12. Given this price for the statistic targeted

to type t1, type t2 has an incentive to report type t1 since (γT
1 γ2)

2

γT
1 γ1
− 20.12 = 1.17.31

It can be shown that the constraints IC 1-3 and IC 2-1 are the ones that bind. In the optimal

30In Theorem 4, I show that there is always a type that receives an undistorted statistic. In this example,
it is type t2.

31The same is true as long as α1
α1+α3

< 0.5910.
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mechanism the data broker distorts the statistic targeted to type t1 in the opposite direction of

type t2’s preferred statistic and targets to type t2 an undistorted statistic. This reduces type t1’s

willingness to pay for the information targeted to her, but it does not change type t1’s incentive

to report type t3.

The examples show that it is difficult to know a priori the relevant IC constraints to

consider when solving for the optimal mechanism in this general environment. Despite

this difficulty, I am able to show that the optimal mechanism satisfies two important

properties. First, at least one type receives zero information rent. If this were not the

case, the data broker could easily increase profits by increasing all prices uniformly with-

out affecting incentives. Second, there is at least one type that receives an undistorted

statistic, in the sense that receiving this statistic is for that type equivalent to receiving

all data. But this type is not necessarily the one with the highest willingness to pay

for all the data. Example 4 presented one such a case, where the type with the second

highest willingness to pay for all the data is the only one that receives an undistorted

statistic. This is a generalization of the ”nondistortion at the top” property that holds in

unidimensional mechanism design problems with payoffs that satisfy the single crossing

condition.32 The reasoning behind this result is subtler. I show that if there is no type

that receives an undistorted statistic, the data broker can offer a new package with all

the data at a price high enough such that only one type is willing to pay for it, thus

satisfying all constraints.

Theorem 4 The optimal mechanism satisfies the following properties:

1. at least one type receives zero information rent; and

2. there is at least one type ti that receives a nondistorted statistic; that is, from the statistic

she can learn E[θi | X].

Although I cannot explicitly find the solution to the seller’s problem, I am able to

characterize how the statistics that are offered in the optimal mechanism look. These

32Rochet and Choné (1998) show that in a multidimensional environment with linear payoffs, a similar
property holds. In their environment there is at least one boundary type that receives the optimal quality.
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statistics are built to satisfy the main property I found in the case of two information

types: when an IC constraint binds, the data broker should ideally modify the statistic

given to the mimicked type in the opposite direction of the information preferred by the

mimicking type(s). There are two differences. First, there could be multiple types that

want to report one single type, so the data broker must weight the direction in which

to distort the information. Second, it might be optimal for the data broker not to sell a

valuable statistic to certain types. It is worth noting that in this environment, as occurred

in Example 3, it is not always true that the types who are willing to pay less for all the

data are the ones that are left out of the mechanism. Instead the seller wants to leave out

those types that other types have a higher incentive to report.

Theorem 5 In the optimal mechanism, the vector of coefficients of the statistic targeted to type

ti, to whom the data broker wants to sell, is one of the solutions to the fixed-point problem

Li = Var(X)−1

(
Cov(θi, X)− ∑

j∈I,j 6=i

λjicji

∑j∈I,j 6=i λij + µi
Cov(θj, X)

)

where I ⊆ {1, . . . , n} is the set of types to whom the data broker wants to sell, λk` is the

Lagrange multiplier associated with the constraint IC k-`, µi is the Lagrange multiplier associated

with constraint IR i, and ck` =
LT

k Cov(θk,X)

LT
` Cov(θ`,X)

.
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A A Micro Foundation for Quadratic Loss

Suppose there is a monopolist that faces a linear demand q(p) = ā− bp and the monop-

olist knows b but he is uncertain about the value of ā.

If the monopolist knows that the value of the intercept is ā he would choose to

produce a quantity q̄ = ā
2 and he would receive a profit of π̄ = ā2

4b .

Since the monopolist is not certain about ā he would choose some quantity q. Let a =

2q, that is, the monopolist chooses the quantity q as if he thinks that ā = a. By choosing

this quantity the monopolist obtains profits π = q
( ā

b −
q
b
)
= a

2

( ā
b −

a
2b
)
= aā

2b −
a2

4b .
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Then by choosing q the monopolist is leaving on the table the quantity

π̄ − π =
ā2

4b
− aā

2b
+

a2

4b
=

(a− ā)2

4b
,

that is, the monopolist weights the losses of its uncertainty about the parameter ā

according to a quadratic loss function.

B Proofs

Proof Claim 2

For any function g : ψ(X) → R, where ψ(X) is the set of possible realizations of

statistics,

−Ex,θ
[
(g(ψ(x))− θ)2 | ψ(x)

]
≤ −EX,θ

[
(E(θ | ψ(x))− θ)2 | ψ(x)

]
= −EX

[
Eθ

[
(E(θ | ψ(x))− θ)2 | ψ(x)

]]
= −EX[Var(θ | ψ(x))].

The inequality follows because E
[
(b− θ)2|ψ(x)

]
is minimized by setting b = E[θ|ψ(x)].

The first equality follows from the Law of Iterated Expectations, and the second equality

follows from the definition of conditional variance.

Proof Theorem 1

First, I present a detailed argument of why selling linear mechanisms is optimal

when there are only two information types that share a common valuation type, and

then argue why this argument still applies to the general model.

Suppose there are two information types with a unique common valuation type.

Since by Proposition 1 the IC constraint for type t2 mimicking type t1 does not bind, the

problem that the Data Broker faces when the IC constraint for type t1 mimicking type t2

binds, can be rewritten as

max
ψ(t2)

α1
(
γT

1 γ1 −Var(θ1) + E[Var(θ1 | ψ(t2))]
)
+ Var(θ2)−E[Var(θ2 | ψ(t2))]

s.t Var(θ1)−E[Var(θ1 | ψ(t2))] ≥ Var(θ2)−E[Var(θ2 | ψ(t2))],

where the remaining constraint represents the IR constraint for type t1.

35



First, suppose that the remaining constraint does not bind. By an argument similar

to the one in Kamenica and Gentzkow (2011), it is without loss to assume that the

Data Broker gives to type t2 a recommendation that this type will follow, that is, E(θ2 |

ψ(t2)) = ψ(t2) ∈ R. This is true because, by Claim 2, type t2 learns the same by

observing the statistic ψ(t2) or by observing an a statistic the expected value of θ2 given

the original statistic, while type t1 cannot learn more about θ2 by observing the modified,

probably aggregate, statistic than by observing the original one. Claim 2 implies that

E[Var(θ1 | ψ(t2))] is the smallest variance that type t1 can reached by optimally choosing

the updating rule he uses to forecast θ1 when buying the statistic targeted to type t2,

a1(ψ(t2)). By allowing type t1 to choose a1, I can define the functional

G(a1, ψ(t2)) = α1E(θ1 − a1(ψ(t2)(x)))2 −E(θ2 − ψ(t2)(x) | x)2.

Then the solution to the original problem has to be an equilibrium of the stochastic zero-

sum game in which type t1 wants to minimize G, where type t1 chooses a1 to minimize

G and the Data Broker chooses ψ(t2) to maximize G.

First, suppose that ψ(t2) is a linear combination of x. Claim 1 implies that the random

vector (θ1, ψ(t2)(x)) is jointly elliptical. By Claim 2, type t1 chooses a∗1 = E(θ1 | ψ(t2)(x)),

a linear function of ψ(t2) since (θ1, ψ(t2)(x)) is elliptical.

Second, suppose that a1 is linear, that is, a1 = c1ψ(t2)(x) + c0. In such a case the

seller wants to maximize

E
(

α1(θ1 − c1ψ(t2)(x)− c0)2 − (θ2 − ψ(t2)(x))2 | x
)

.

The First Order Condition implies that the optimal solution for the seller has to satisfy

ψ∗(t2)(x) =
E[θ2 | x]− α1c1E[θ1 | x]− α1c0

1− α1c2
1

,

a linear mapping since the conditional expectations are linear. Furthermore, the seller’s

problem is strictly concave as long as 1 > α1c2
1, and I show in Theorem 2 that there is a

unique fixed point of this linear mapping that satisfies this condition.

Therefore, the pair (a∗1 , ψ∗(t2)) is a linear saddle-point strategy, that is, for any other

a1 and ψ(t2) I have G(a∗1 , ψ(t2)) ≤ G(a∗1 , ψ∗(t2)) ≤ G(a1, ψ∗(t2)). To finish the argument
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I use a well-known property of zero-sum games called ordered interchangeability property

(see for example Basar and Olsder (1999)). For completeness I present a general proof of

this property.

Property 1 In a simultaneous two-player zero-sum game, let (a∗1 , a∗2) and (ã1, ãa) be two saddle-

point strategies. Then (a∗1 , ã2) and (ã1, a∗2) are also saddle-point strategies.

Proof Let u be the payoff function of the zero-sum game, and suppose that player 1

wants to minimize u, while player 2 wants to maximize it. Let (a∗1 , a∗2) and (ã1, ãa) be

two saddle-point strategies, that is, for any a1 and a2, u(a1, a∗2) ≥ u(a∗1 , a∗2) ≥ u(a∗1 , a2),

and analogously for and (ã1, ã2).

Then maxa2 u(a∗1 , a2) ≤ u(a∗1 , a∗2) ≤ u(a1, a∗2) ≤ maxa2 u(a1, a2) ∀a1, that is, a∗1 ∈

arg mina1 maxa2 u(a1, a2). This means that a∗1 is a security strategy for player 1. Similarly,

it can be argued that a∗2 is a security point for player 2, and conclude that mina1 maxa2 u(a1, a2) =

maxa2 mina1 u(a1, a2) = v = u(a∗1 , a∗2) = u(ã1, ã2), where the last inequality follows from

an analogous argument.

Then v = mina1u(a1, ã2) ≤ u(a∗1 , ã2) ≤ maxa2u(a∗1 , a2) = v, implying that v =

u(a∗1 , ã2). This means that (a∗1 , ã2) is a saddle-point strategy, since by the definition of

v for any a1 and a2, u(a1, ã2) ≥ u(a∗1 , ã2) ≥ u(a∗1 , a2). By an analogous argument, (ã∗1 , a∗2)

is also a saddle-point strategy.

The ordered interchangeability property implies that the linear addle-point strategy

(a∗1 , ψ∗(t2)) is the unique saddle point of the zero-sum game between the data broker and

type t1; if (â1, ψ̂(t2)) were another saddle-point strategy then the pair (a∗1 , ψ̂(t2)) is also

a saddle-point strategy. If this is the case, by Claim 2 it has to be that E(θ1 | ψ̃(t2)(x)) is

a linear mapping with the same coefficients as E(θ1 | ψ∗(t2)(x)), meaning that ψ̃(t2)(x)

and ψ∗(t2)(x) generate the same conditioning σ-algebras, that is, they are equal almost

everywhere.

If the constraint does bind, the argument has to be slightly modified. Let a∗1 be type

t1’s optimal updating rule as a function of the statistic that is offered by the seller. The

constraint can be rewritten as Var(θ1) − E[(θ1 − a∗1(ψ
∗(t2)))

2] = Var(θ2) − E[Var(θ2 −

ψ∗(t2))
2]. Define ΨF = {ψ(t2) : (ψ(t2), a∗1(ψ(t2))) satisfies the constraint}. The modi-
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fied zero-sum game where the seller’s available strategies are given by the set ΨF has

a unique linear saddle-point. The argument is analogous to the previous one. In par-

ticular, the seller’s best response is linear when type t1’s updating rule is linear since

the constraint is quadratic in such a case. The proof of Theorem 2 shows that the map-

ping created by this linear responses has at least one fixed point and one of them is the

solution to the seller’s problem.

Now I extend the argument to consider the general case with many information

types and many valuation types. I assume that I know which are the constraints that

bind. This is without loss since I argue that for any set of binding constraints the optimal

mechanism is linear.

It is always possible to either write p(ti, v) = v(Var(θi) − E[(θi − ψ(ti))
2], if there

is not IC constraint for type (ti, v) reporting another type (tj, v′) that binds, or p(ti) =

−vE[(θi − ψ(ti))
2] + vE[(θi − aiv,j(ψ(θj)))

2] + p(tj), if there is an IC constraint for type

(ti, v) reporting another type (tj, v′) that binds, where aiv,j represents how type (ti, v) up-

dates his forecast when observing the signal targeted to type (tj, v′). Plugging in one of

these prices in the seller’s objective generates a functional analogous to functional G. The

critical property of the functional G is that, for any i, j, E[(θi − ψ(ti))
2] always appears

with a negative sign and E[(θi − aiv,j(ψ(ti)))
2] always appears with a positive sign. This

keeps the conflict that the seller wants to maximize E[(θi − aiv,j(ψ(ti)))
2] and type (ti, v)

wants to minimize it, and the property that the seller wants to minimize E[(θi− ψ(ti))
2].

If there are multiples ways to write the price for some type (ti, v), some extra constraints

have to be satisfied. Let ΨF = {ψ : (ψ, a∗(ψ)) satisfies all the constraints}, where a∗

denotes the buyers’ optimal decisions when they buy a statistic in ψ that is not targeted

to them.

Consider the zero-sum game between the seller that wants to maximize G by choos-

ing any ψ in ΨF and a fictitious player that wants to minimize G by choosing the updat-

ing rules a, representing the buyers’ interests in the mechanism. By the assumption that

the joint distribution is elliptical and Claim 2, if the seller offers linear statistics, the fic-

titious player wants to choose linear forecasting rules. At the same time, if the fictitious

player announces linear forecasting rules, the seller’s best response is to choose linear

38



statistics. This is a result of the problem being analogous to the one before with some

extra constraints that are linear combinations of quadratic terms. Theorem 5 shows that

this linear best response mapping has at least one fixed point, and that one of them is a

solution to the seller’s problem when the buyer uses linear forecasting rules. Therefore,

by the same argument as in the two type case, there is a unique saddle-point strategy

in which the seller offers linear statistics and the fictitious player uses linear forecasting

rules.

Proof Lemma 1

Consider the family of functions g(L, `, k) = Eθi [θi] + k(LTX + `ε − EX[LTX]) for

k ∈ R. The conditional expectation belongs to this family of functions since the joint

distribution of (θ, X) is elliptical. When the buyer uses g(L, `, k) as her estimator when

observing LTX + `ε, the variance of θi’s forecasting error is equal to

EX,ε[Eθi [(θi − g(L, `, k))2 | LTX + `ε]] = EX,ε[Eθi [((θi −Eθi [θi]− kLT(X−EX[X])− k`ε)2) | LTX + `ε]]

= Eθi [(θi − E(θi))
2]− 2kLTEX,ε(Eθi((θi −Eθi [θi])(X−EX[X)]) | LTX + `ε))

+k2LTEX,ε[Eθi [(X− E(X))(X− E(X))T | LTX + `ε]]L + k2`2Eε[ε2]

= Eθi [(θi −Eθi(θi))
2]− 2kLTEX,θi [(θi − Eθi [θi])(X−EX[X])]

+k2LTEX[(X−EX[X])(X−EX[X])T]L + k2`2σ2

= Var(θi)− 2kLTCov(θi, X) + k2LTVar(X)L + k2`2σ2

where the the second equality follows from linearity of the expectation and from

ε being independent of X and θ, the third one from the Law of Iterated Expectations

and the last one from the definition of variance and covariance. Claim 2 implies that

the conditional expectation has to minimized this forecasting error. The First Order

Condition with respect to k is

−2LTCov(θi, X) + 2kLTVar(X)L + 2k`2σ2 = 0,

that is, k̂ = LTCov(θi,X)
LTVar(X)L+`2σ2 . Plugging in this value of k gives the conditional variance,
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which is equal to

Var(θi)−
(LTCov(θi, X))2

LTVar(X)L + `2σ2 .

Proof Lemma 2

Lemma 1 presented the value of the conditional variance when the buyer observes

any linear combination of the data. Since the conditional expectation minimizes the con-

ditional variance, it is enough to find the set of coefficients that minimize the expression

in Lemma 1. Immediately it can be seen that ` = 0. The first order condition for L gives

−2LTCov(θi, X)Cov(θi, X)LTVar(X)L + 2(LTCov(θi, X))2LTVar(X)

(LTVar(X)L)2 = 0,

from which we obtain that L̂ = Var(X)−1Cov(θi, X). Therefore, the conditional variance

of θi given X is equal to

Var(θi)− Cov(θi, X)TVar(X)−1Cov(θi, X).

Proof Proposition 1

To prove parts 1. and 2. I only need to argue that the IC constraint for type t2 report-

ing type t1 never binds. Suppose that in the optimal mechanism that targets statistics

ψ(t1) and ψ(t2) to types t1 and t2, respectively, this constraint binds. Then it holds with

equality, and by Claim 2 it can be expressed as

VarFθ
(θ2)−EX[Var(θ2 | ψ(t1))]− p(t1) = VarFθ

(θ2)−EX[Var(θ2 | ψ(t2))]− p(t2). (1)

Lemma 2 implies that γT
2 γ2 ≥ VarFθ

(θ2)− Ex[Var(θ2 | ψ(t1))]. Therefore, p(t1) ≤ γT
2 γ2−

VarFθ
(θ2) + Ex[Var(θ2 | ψ(t2))] + p(t2). Since the IR constraint for type t2 implies that

VarFθ
(θ2)− Ex[Var(θ2 | ψ(t2))] ≥ p(t2), it has to be that p(t1) ≤ γT

2 γ2. Similarly, p(t2) ≤

γT
2 γ2.

If one of these constraints is strict, the monopolist can do better by selling all the data

to both types, and charging to them the price γT
2 γ2, satisfying trivially all the constraints.

Now suppose that p(t1) = p(t2) = γT
2 γ2. In such a case to satisfy the IR con-

straint for type t2 it has to be that ψ(t2)(x) = E(θ2 | x). Consider the alternative

mechanism that targets to type t1 the statistic ψ′(t1) and charge him the price p′(t1) =
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γT
1 γ1 − VarFθ

(θ2) + Ex[Var(θ1 | ψ(t2))] + p(t2) > p(t1), since by Claim 2 and assump-

tion 2, γT
1 γ1 > VarFθ

(θ2)− Ex[Var(θ1 | ψ(t2))]. Clearly this mechanism satisfies all the

constraints and gives to the monopolist higher profits than the original mechanism, con-

tradicting the assumption that the original mechanism was optimal.

Now I proceed to prove part 3. According to Lemma 2, when the data broker offers

to type t2 the statistic ψ(t2) = E[θ2 | X], the maximum price type t2 is willing to pay for

it is γT
2 γ2 = ‖γ2‖2, and the maximum price that type t1 is willing to pay for the same

statistic is
(Cov(θ2, X)TVar(X)−1Cov(θ1, X))2

Cov(θ2, X)TVar(X)−1Cov(θ2, X)
=

(γT
1 γ2)

2

‖γ2‖2 .

Therefore, when the data broker targets to type t2 the statistic ψ(t2) = E[θ2 | X] and

charges him price p(t2) = ‖γ2‖2, type t1 will report type t2 if and only if

(Cov(θ2, X)TVar(X)−1Cov(θ1, X))2 > (Cov(θ2, X)TVar(X)−1Cov(θ2, X))2

⇔ (γT
1 γ2)

2 > (γT
2 γ2)

2

⇔ cos2(β)γT
2 γ2γT

1 γ1 > (γT
2 γ2)

2

⇔ cos(β) > ‖γ2‖
‖γ1‖

,

where β is the angle between γ1 and γ2, and the second equivalence follows from the

fact that the angle between vectors γ1 and γ2 satisfies the equality cos(β) =
γT

1 γ2
‖γ1‖‖γ2‖ ,

while the last equivalence from the assumption that γT
1 γ2 > 0. This provides the first

equivalence in the theorem. Since γT
2 γ1 > 0, the expression after the first equivalence

can be rewritten as γT
1 γ2 − γT

2 γ2 > 0, that is, the dot product between the vectors γ2

and γ1 − γ2 has to be positive. Figure 7 helps to understand how to derive the second

condition.

The dot product between two vectors is positive if and only if the angle between them

is less than 90◦. Therefore, γT
2 (γ1 − γ2) > 0 if and only if the angle between this two

vectors is smaller than 90◦. In the figure this implies that α + β < 90◦. By the properties

of the measures of angles between parallel lines, α = α′. Therefore, the IC constraints

will bind if and only if ω > 90◦. By Pythagoras theorem it has to be that the squared of
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Figure 7: Graphic representation of covariance adjusted vectors.

the magnitude of the vector γ1 is larger than the sum of the square of the magnitudes of

vectors γ2 and γ1 − γ2, that is, ‖γ1‖2 > ‖γ2‖2 + ‖γ1 − γ2‖2, which implies the second

condition.

Finally, I proceed to prove part 4. If the IC constraint for type t1 reporting type t1

does not bind the seller can give the optimal statistics to each type, so it does not include

any noise. Now suppose it binds. Since the IR constraint for type t2 binds and type t1

receives the optimal amount of information the prices are given by

p(t1) = p(t2) + γT
1 γ1 −

(LT
2 Cov(θ1,X))2

LT
2 Var(X)L2+`2

2σ2 , and

p(t2) =
(LT

2 Cov(θ2,X))2

LT
2 Var(X)L2+`2

2σ2 .

Therefore, the objective of the seller is to solve the problem

π = max
L2,`2

α1

(
γT

1 γ1 −
(LT

2 Cov(θ1, X))2

LT
2 Var(X)L2 + `2

2σ2

)
+

(LT
2 Cov(θ2, X))2

LT
2 Var(X)L2 + `2

2σ2

Suppose that in the solution of this problem `∗2 > 0. If we reduce `2 by an small

amount, the change in the seller’s profits is equal to

2σ2 (LT
2 Cov(θ2, X))2

(LT
2 Var(X)L2 + `∗2

2σ2)2
− 2σ2α1

(LT
2 Cov(θ1, X))2

(LT
2 Var(X)L2 + `∗2

2σ2)2
.

Suppose that α1(LT
2 Cov(θ1, X))2 ≥ (LT

2 Cov(θ2, X))2. Then π ≤ α1γT
1 γ1. Consider
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the alternative mechanism with coefficients L̃2, such that L̃2 is orthogonal to Cov(θ2)−

Cov(θ1), that is, L̃T
2 Cov(θ1, X) = L̃T

2 Cov(θ1, X), and prices p̃(t1) = γT
1 γ1 and p̃(t2) =

(L̃T
2 Cov(θ2,X))2

L̃T
2 Var(X)L̃2

. p̃(t2) is strictly positive since L̃2 is not orthogonal to Cov(θ2) by assumption

2. The new contract satisfies all IC and IR constraints and give a profit π̃ = α1γT
1 γ1 +

p̃(t2) > π. Therefore, α1(LT
2 Cov(θ1, X))2 < (LT

2 Cov(θ2, X))2, and the net benefit of

decreasing `∗ is positive. Therefore, `∗ > 0 cannot be the optimal solution, that is,

the data broker will never include independent noise into the statistic.

Proof of Theorem 2

Part 1. follows directly from part 3. in Proposition 1 and Lemma 1.

To solve for the optimal mechanism design when the IC constraint for type 1 report-

ing type 2 binds, I first assume that the IR constraint for type t1 does not bind. From the

analysis in the main text, the seller’s maximization problem is:

π = max
L

α1

(
γT

1 γ1 −
(LTCov(θ1, X))2

LTVar(X)L

)
+

(LTCov(θ2, X))2

LTVar(X)L

Letting a1 = LTCov(θ1,X)
LTVar(X)L and a2 = LTCov(θ2,X)

LTVar(X)L , the First Order Condition is:

−2α1(a1Cov(θ1, X)− a2
1α1Var(X)L) + 2a2Cov(θ2, X)− 2a2

2Var(X)L = 0,

from which

L =
Var(X)−1

(
Cov(θ2, X)− a1

a2
α1Cov(θ1, X)

)
a2 − α1

a2
1

a2

.

Rename c = a1
a2

= LTCov(θ1,X)
LTCov(θ2,X)

and normalize the denominator to 1. Lemma 1 implies

that this normalization is without loss. Therefore, if the IR constraint of type t1 does not

bind the result is true. The IR constraint for type t1 does not bind if and only if

(γT
2 γ1−cα1γT

1 γ1)
2

‖γ2−α1cγ1‖2 >
(γT

2 γ2−cα1γT
1 γ2)

2

‖γ2−α1cγ1‖2

⇔ (γT
2 γ1−cα1γT

1 γ1)
2

(γT
2 γ2−cα1γT

1 γ2)2 > 1

⇔ c2 > 1.

Furthermore, from the proof of Theorem 1, the problem is strictly convex if and only if
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1 > α1c2. Therefore, I need to check that there is a solution of the fixed-point problem

with c2 < 1/α1.

We have

c =
γT

2 γ1 − cα1γT
1 γ1

γT
2 γ2 − cα1γT

1 γ2
,

which generates the quadratic equation c2α1γT
1 γ2 − c(γT

2 γ2 + α1γT
1 γ1) + γT

1 γ2 = 0. This

equation has two solutions given by

‖γ2‖2 + α1 ‖γ1‖2 ±
√
(‖γ2‖2 + α1 ‖γ1‖2)2 − 4α1(γ

T
1 γ2)2

2α1γT
1 γ2

.

In both solutions the denominator is positive, so that the two solutions have the same

sign and the sign coincide with the sign of γT
1 γ2.

To make the notation easier let c be the negative solution and d the positive solution.

The following lemma shows that only the negative solution of the equation is a solution

of the original problem and that the IR constraint binds only when α1 > α̃ with α̃ ∈ (0, 1).

Lemma 8 For all α1, d2 > 1/α1, that is, d is never a solution of the problem, and c2 < 1/α1,

that is, c is always a solution of the problem. Furthermore, c2 > 1 iff α1 < α̃ =
γT

2 (γ1−γ2)

γT
1 (γ1−γ2)

, that

is, the IR constraint binds only if α1 > α̃.

Proof Since by assumption γT
1 γ2 > 0, both c and d are positive. I first prove that d > 1/α1

independently of the parameters. This is true if

d2 > 1/α1 ⇔ ‖γ2‖2 + α1 ‖γ1‖2 +
√
(‖γ2‖2 + α1 ‖γ1‖2)2 − 4α1(γ

T
1 γ2)2 > 2

√
α1γT

1 γ2

⇔ ‖γ2‖2 + α1 ‖γ1‖2 − 2
√

α1γT
1 γ2 > −

√
(‖γ2‖2 + α1 ‖γ1‖2)2 − 4α1(γ

T
1 γ2)2.

The RHS is always negative and the LHS is always positive since ‖γ2‖2− 2
√

α1γT
1 γ2 +

α1 ‖γ1‖2 ≥ (‖γ2‖ −
√

α1 ‖γ1‖)2 ≥ 0.
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Now I prove that for any α1, c2 < 1/α1. From the definition of c

c2 > 1/α1 ⇔ ‖γ2‖2 + α1 ‖γ1‖2 −
√
(‖γ2‖2 + α1 ‖γ1‖2)2 − 4α1(γ

T
1 γ2)2 > 2

√
α1γT

1 γ2

⇔ ‖γ2‖2 + α1 ‖γ1‖2 − 2
√

α1γT
1 γ2 >

√
(‖γ2‖2 + α1 ‖γ1‖2)2 − 4α1(γ

T
1 γ2)2

⇔ 8α(γT
1 γ2)

2 ≤ 4
√

α1(γ
T
1 γ2)(γ

T
2 γ2 + α1γT

1 γ1)

⇔ 0 ≤ ‖γ2‖2 − 2
√

α1γT
1 γ2

1 + α1 ‖γ1‖2 ,

and it was argued before that this inequality is always true.

Finally, I prove that c > 1 only for small values of α1. From the definition of c

c > 1 ⇔ ‖γ2‖2 + α1 ‖γ1‖2 − 2α1γT
1 γ2 >

√
(‖γ2‖2 + α1 ‖γ1‖2)2 − 4α1(γ

T
1 γ2)2

⇔ −4α1γT
1 γ2(‖γ2‖2 + α1 ‖γ1‖2) + 4α2

1(γ
T
1 γ2)

2 > −4α1(γ
T
1 γ2)

2

⇔ 0 > γT
2 γ2 + α1γT

1 γ2
1 − α1γT

1 γ2 − γT
1 γ2

⇔ 0 > −γT
2 (γ1 − γ2) + α1γT

1 (γ1 − γ2) = (α1γ1 − γ2)
T(γ1 − γ2)

To complete the proof, notice that the vectors α1γ1 − γ2 and γ1 − γ2 form a triangle

x

y

γ2

γ1α1γ1 − γ2

α1γ1

γ1 − γ2
ω

Figure 8: Graphic representation for proof of Lemma 8.

where the third side is given by the vector (1− α1)γ1 (See figure 8). As α1 increases,

the length of the vector (1− α1)γ1 decreases and by the sinus law the angle ω becomes

smaller. As long as ω < 90◦, the condition in the last equation is satisfied, and when ω
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becomes larger than 90◦ the inequality is reversed. To find when the measure of angle

ω is exactly 90◦ notice that

−γT
2 (γ1 − γ2) + α1γT

1 (γ1 − γ2) = 0

⇔ α1 = α̃ =
γT

2 (γ1−γ2)

γT
1 (γ1−γ2)

,

which is positive by Proposition 1, and by the fact that γ1 is always between γ2 and

γ1 − γ2. Besides, α̃ < 1, since γT
1 γ1 − 2γT

1 γ2 + γT
2 γ2 = ‖γ1 − γ2‖2 > 0.

Then the statistics in optimal mechanism are

ψ(t1) = E[θ1] + Cov(θ1, X)TVar(X)−1(X−E[X]) and

ψ(t2) = E(θ2) + (Cov(θ2, X)− cα1Cov(θ1, X))T Var(X)−1(X−E[X])

with c(α1) =
‖γ2‖2+α1‖γ1‖2−

√
(‖γ2‖2+α1‖γ1‖2)2−4α1(γ

T
1 γ2)2

2α1γT
1 γ2

if α < α̃, and c(α) = α̃, otherwise.

When α1 < α̃, the optimal prices can be found by plugging in the IR constraint for type

t2 and the IC constraint for type t1 and are equal to p(t1) =
‖γ1‖2‖γ2‖2−(γT

1 γ2)
2

‖γ2−cα1γ1‖2 + t(θ2) and

p(t2) =
(‖γ2‖2−cα1γT

1 γ2)
2

‖γ2−cα1γ1‖2 . If α > α̃, the optimal prices can be found by plugging in the IR

constraints and they are equal to p(t1) = ‖γ1‖2 and p(t2) =
(‖γ2‖2−α̃γT

1 γ2)
2

‖γ2−α̃γ1‖2 .

Proof Corollary 1

I first prove 1. By the definition of the function c

∂c(α1)
∂α1

=
γT

1 γ1−1/2((γT
2 γ2+α1γT

1 γ1)
2−4α1(γ

T
1 γ2)

2)
−0.5

(2(γT
2 γ2+α1γT

1 γ1)γ
T
1 γ1−4(γT

1 γ2)
2)

2γT
1 γ2

It is enough to argue that the numerator is positive. The numerator is non-negative iff

γT
1 γ1

√
(γT

2 γ2 + α1γT
1 γ1)2 − 4α1(γ

T
1 γ2)2 ≥ (γT

2 γ2 + α1γT
1 γ1)γ

T
1 γ1 − 2(γT

1 γ2)
2

⇐ (γT
1 γ1)

2((γT
2 γ2 + α1γT

1 γ1)
2 − 4α1(γ

T
1 γ2)

2)

≥ 4(γT
1 γ2)

4 − 4γT
1 γ1(γ

T
1 γ2)

2(γT
2 γ2 + α1γT

1 γ1) + (γT
2 γ2 + α1γT

1 γ1)
2(γT

1 γ1)
2

⇔ 4(γT
1 γ2)

2γT
2 γ2γT

1 γ1 ≥ 4(γT
1 γ2)

4.
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The last inequality is always satisfied since (γT
1 γ1)

2 = ‖γ1‖2 ‖γ2‖2 cos2(β) < ‖γ1‖2 ‖γ2‖2,

where β is the angle between the vectors γ1 and γ2.

Further, see that

lim
α1→0

c(α1) = lim
α1→0

‖γ2‖2 + α1 ‖γ1‖2 −
√
(‖γ2‖2 + α1 ‖γ1‖2)2 − 4α1(γ

T
1 γ2)2

2γT
1 γ2

= 0.

For part 2., the information rent given to type t1 is equal to

Rent =
((γ2 − c(α1)γ1)

Tγ1)
2 − ((γ2 − c(α1)γ1)

Tγ2)
2

(γ2 − c(α1)γ1)T(γ2 − c(α1)γ1)
,

and by taking the derivative with respect to c(α1) I obtain

∂Rent
∂c(α1)

∝
(
−(γT

1 γ2γT
1 γ1 − γT

2 γ2γT
1 γ2) + c(α1)((γ

T
1 γ1)

2 − (γT
1 γ2)2)

) (
γT

2 γ2 − 2c(α1)γ
T
1 γ2 + c2(α1)γ

T
1 γ1

)
−
(
−γT

1 γ2 + c(α1)γ
T
1 γ1

) (
(γT

1 γ2)2 − (γT
2 γ2)2 − 2c(α1)(γ

T
1 γ2γT

1 γ1 − γT
2 γ2γT

1 γ2) + c2(α1)((γ
T
1 γ1)

2 − (γT
1 γ2)2)

)
= (−γT

1 γ2 + c(α1)(γ
T
1 γ1 + γT

2 γ2)− c2(α1)γ
T
1 γ2)(γT

1 γ1γT
2 γ2 − (γT

1 γ2)2)

∝ −γT
1 γ2 + c(α1)(γ

T
1 γ1 + γT

2 γ2)− c2(α1)γ
T
1 γ2

The last expression is increasing in c(α1) since γT
1 γ1 +γT

2 γ2− 2cα1γT
1 γ2 > γT

1 γ1 +γT
2 γ2−

2γT
1 γ2 = ‖γ1 − γ2‖2 > 0, where the first inequality follows from c(α̃) = α̃ and from c(α1)

being non-decreasing in α1. Therefore, I only need to prove that the last expression is

negative when evaluated at α̃. This expression becomes

−(1 + α̃2)γT
1 γ2 + α̃(γT

1 γ1 + γT
2 γ2)

∝ −
(
(γT

1 γ1 − γT
1 γ2)

2 + (γT
1 γ2 − γT

2 γ2)
2) γT

1 γ2 + (γT
1 γ2 − γT

2 γ2)(γ
T
1 γ1 + γT

2 γ2)(γ
T
1 γ1 − γT

1 γ2)

= (−γT
1 γ1 + 2γT

1 γ2 − γT
2 γ2)(γ

T
1 γ1γT

2 γ2 − (γT
1 γ2)

2) = −‖γ1 − γ2‖2 (γT
1 γ1γT

2 γ2 − (γT
1 γ2)

2) < 0

Therefore, ∂Rent
∂c(α1)

< 0. Since by the first part ∂c(α1)
α1

> 0, ∂Rent
∂α1

< 0 as stated. The limit

condition is a direct result the definition of rent and part 1.

Proof of Corollary 2

If the IC constraint does not bind when the vectors are γ′1 and γ′2, the data broker

charges the monopolist prices and obtains the highest profits he is able to.
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If the IC constraint binds when the vectors are γ′1 and γ′2, then it binds when the

vectors are γ1 and γ2. Since the angle between γ′1 and γ′2 is larger than the angle between

γ1 and γ2 and the measure of all angles is smaller than π/2, γT
1 γ2 > γ′T1 γ′2.

Remember that the profits are given by

π =
α1
(
γT

1 γ1γT
2 γ2 − (γT

1 γ2)
2)+ (γT

2 γ2 − c(α1)γ
T
1 γ2

)2

γT
2 γ2 − 2c(α1)γ

T
1 γ2 + c2(α1)γ

T
1 γ1

where c is defined in theorem 2. Then

∂π
∂γT

1 γ2
∝ (−α1γT

1 γ2 − c(α1)(γ
T
2 γ2 − c(α1)γ

T
1 γ2))(γ

T
2 γ2 − 2c(α1)γ

T
1 γ2 + c2(α1)γ

T
1 γ1)

+c(α1)
(

α1
(
γT

1 γ1γT
2 γ2 − (γT

1 γ2)
2)+ (γT

2 γ2 − c(α1)γ
T
1 γ2

)2
)

= (γT
1 γ2 − c(α1)γ

T
1 γ1)(γ

T
2 γ2 − c(α1)γ

T
1 γ2)(c2(α1)− α1)

Since c(α1) ≤ α̃ it is easy to check that the first two factors are non-negative. Lemma

8 shows that the third factor is negative. Therefore, the profits decrease when increasing

γT
1 γ2, which implies the result.

Proof Lemma 4

Suppose that q2v 6= 0 and `2v 6= 0. Let λ2v = Var(X)1/2L2v and ˆ̀2v = `2v
‖λ2v‖2 . I first

show that it is without loss to assume that the angle β2v between λ2v and γ2 is smaller

than the angle β12v between λ2v and γ1.

Suppose that β12v ≤ β2v. Let β be the angle between γ1 and γ2. Pick λ̃2v as the

vector with the same magnitude as λ2v such that the angle between λ̃2v and γ1 satisfies

βγ1,λ̃2v
= β2v + β and the angle between λ̃2v and γ2 satisfies βγ2,λ̃2v

= β2v. After this

change the willingness to pay by any type (v′, t1) for the statistic that is targeted to type

(v, t2) has decrease, while it keeps constant the willingness to pay by any type (v′, t2)

for this statistic. This uniformly relaxes all constraints IC 1v’-2v, while it keeps the rest

of constraints unchanged. This construction shows that it is without loss to assume that

β12v > β2v.

Remember that q2v = cos2(β2v)

1+ ˆ̀2vσ2 . I will show that there is another pair (β′2v, `′2v) with

`′2v = 0 such that type (v, t2) still obtains the same forecast’s variance reduction, but such

that δ12v > δ′12v, implying that all constraints IC 1v’-2v are relaxed. This completes the
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argument.

Let β′2v = cos−1
(√

cos2(β2v)

1+ ˆ̀2vσ2

)
and `′2v = 0. It is inmediate that q′2v = cos2(β′2v) = q2v.

Furthermore, √
δ′12v = cos(β′2v + β)

= cos(β′2v)cos(β)− sin(β′2v)sin(β)

= cos(β2v)√
1+ ˆ̀

2vσ2
cos(β)−

√
1− cos2(β2v)

1+ ˆ̀
2vσ2

sin(β)

< cos(β2v)√
1+ ˆ̀

2vσ2
cos(β)−

√
1−cos2(β2v)√

1+ ˆ̀
2vσ2

sin(β)

= cos(β2v)cos(β)−sin(β2v)sin(β)√
1+ ˆ̀

2vσ2

= cos(β2v+β)√
1+ ˆ̀

2vσ2
=
√

δ12v,

where in the third equality I use that sin(cos−1(x)) =
√

1− x2.

Proof Lemma 5

1. Suppose that in the solution to problem P, q1v < 1 for some v ∈ [v∗1 , v̂]. This cannot

be a solution since for v ∈ [v∗1 , v̂] the virtual value is positive and increasing q1v

relaxes all constraints IC 1v’-2w for v′ > v and any w.

2. Suppose that in the solution to problem P v̂2 < v∗2 , that is, q2v > 0 for some

v < v∗2 . Since the virtual value for information type t2 is negative for v < v∗2 ,

by taking q2v = 0 for v < v̂2 the objective function increases and all constraints

are still satisfied. Therefore, v̂2 ≥ v∗2 . Now, if v̂2 = v∗2 the seller can increase his

profits. Consider slightly increasing v̂2. This directly affects the profits coming

from information type t2 at a quadratic rate, but it reduces the information rent

given to types v > v∗1 in a linear way. Therefore, for a small increase of the threshold

the profits have to increase, and v̂2 > v∗2 .

Now suppose that v̂2 ≥ v∗1 . The allocation q1v = q2v = 1 for all v ≥ v∗1 and 0

otherwise, satisfies all the constraints. By continuity, the seller can pick q2v = 1 for

some neighborhood (v∗1 − ε, v∗1) and still satisfy the constraints. By picking q2v = 1
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for v > v∗1 − ε and q1v = 1 for v ≥ v∗1 , the seller can increases his profits. Therefore,

v̂2 < v∗1 .

Proof Lemma 6

I show a property that is stronger than the statement. I show that for any allocation

q2v for type t2 with q2v non-decreasing, and v̂2 < v∗1 such that the constraints IC 1v∗1 − 2v′

for all v′ ≥ v̂2 are satisfied, it has to be that in the constrained solution to problem P,

there is a threshold v̂1 =
v̂2q2v̂2
g(q2v̂2 )

such that q1v = 0 for v < v̂1 and q1v = g(q2v̂2) for all

v ∈ [v̂1, v∗1).

Let v̂1 =
v̂2q2v̂2
g(q2v̂2 )

. That v̂2 < v̂1 is obvious from the definition. I show that in the

optimal solution to problem P, v̂1 < v∗1 . First, v̂2 has to be such that v̂2
g(1) ≤ v∗1 . If not, the

seller could offer q2v′ = 1 to the type v′ > v∗2 that solves this equation, which satisfies

all the constraints and increases his profits because this type’s virtual value is positive.

Therefore, v̂1 ≤ v∗1 . Suppose that v̂1 = v∗1 . Then q2v̂2 = 1 and v̂2 = g(1)v∗1 . As in

Section 4.1 this cannot be a solution to the seller’s profits, reducing q2v̂2 slightly has a

negligible impact in type (t2, v̂2)’ willingness to pay for this statistic, but it significantly

reduces type (t1, v∗1)’ willingness to pay for it. Formally, the derivative of type (t2, v̂2)’

willingness to pay is zero when evaluated at q2v̂2 = 1 since this means that the angle

between type (t2, v̂2)’s preferred vector of coefficients and that statistic targeted to her

has zero magnitude, and the derivative of the function cos is zero when the angle is zero,

but it is non-zero for any angle in (0, π/2).

Now I argue that picking the allocation q1v = 0 for v < v̂1 and q1v = g(q2v̂2) for

v ∈ [v̂2, v∗1) and the values U(
¯
v1, t1) = U(

¯
v2, t2) = 0 is feasible in problem P. With this

values the constraints IC 1v-2v’ with v < v∗1 and v′ ≥ v̂2 are satisfied since

∫ v

¯
v q1w dw =

∫ v∗1

¯
v q1w dw−

∫ v∗1
v q1w dw

≥ v∗1 g(q2v′)− v′q2v′ +
∫ v′

¯
v q2w dw− g(q2v̂2)(v

∗
1 − v)

≥ vg(q2v′)− v′q2v′ +
∫ v′

¯
v q2w dw,

where in the first inequality I use that the constraint IC 1v∗ − 2v′ is satisfied, and in the
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second inequality I use that v∗1 > v.

Choosing U(
¯
v1, t1) = U(

¯
v2, t2) = 0 is clearly optimal and picking q1v = 0 when

possible for v < v∗1 is optimal since the virtual value is negative in this case.

Now suppose that for an small interval to the right of v̂1 the constraints IC 1v-2v̂2 do

not bind. Since the virtual value for these types is negative, the solution would be to

pick q1v = 0 for all of them, but these types can report type (v̂2, t2) and obtain a positive

profit since for them vg(q2v̂2) > v̂1g(q2v̂2) = v̂2q2v̂2 . Then the constraints IC 1v-2v̂2 have

to bind for any v ∈ (v̂1, v∗1). Since virtual value is negative in this interval, the seller

wants to pick the lowest value of q1v that satisfies these constraints and this value is

q1v = g(q2v̂2).

Proof Lemma 7

I prove the lemma in many steps. First, I fix an allocation (q1, q2) with q1 and q2

non-decreasing with q1 satisfying the conditions in Lemma 6, and I show that if the

constraints IC 1v∗1 − 2v′ for all v′ > v̂2 are satisfied, then the allocation (q1, q2) is feasible

for problem P. Finally, I show that all these constraints have to bind, and, this implies,

that the optimal solution q2v satisfies the conditions in the statement.

Fix an allocation (q1, q2) with q1 and q2 non-decreasing, and q1 satisfying the con-

ditions in Lemma 6. I first show that if the constraints IC 1v∗1 − 2v′ for all v′ > v̂2 are

satisfied, then the allocation (q1, q2) is feasible for problem P. For v′ < v̂2 and any v,

the IC constraints IC 1v-2v’ are automatically satisfied since q2v′ = g(q2v′) = 0. In the

proof of Lemma 6 I showed that for all v < v∗1 and v′ ≥ v̂2 the constraints IC 1v-2v’

are satisfied. Now, I show that for all v ≥ v∗1 and v′ ≥ v̂2 the constraints IC 1v-2v’ are

satisfied since ∫ v

¯
v q1w dw =

∫ v∗1

¯
v q1w dw +

∫ v
v∗1

q1w dw

≥ v∗1 g(q2v′)− v′q2v′ +
∫ v′

¯
v q2w dw + (v− v∗1)

≥ vg(q2v′)− v′q2v′ +
∫ v′

¯
v q2w dw,

where the first inequality follows from the constraint IC 1v∗1-2v’ being satisfied and from

the fact that q1v = 1 for all v > v∗1 .
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Now, I show that all the constraints IC 1v∗1 − 2v′ for v′ ≥ v̂2 bind. First, suppose that

the constraint IC 1v∗1-2v̂2 does not bind. Since the virtual value is positive for v > v∗2 the

seller maximizes its revenue by setting v̂2 = v∗2 and q2v̂2 = 1 and v̂1 = v∗1 , but this is not

possible since in such a case, by assumption, type (ti, v∗1) has an incentive to report type

(t2, v∗2). Therefore, the constraint IC 1v∗1-2v̂2 binds. Furthermore, q2v̂2 < 1. If not, the

seller can reduce q2v̂2 by a small amount which almost does not decrease the revenue

of selling to type (t2, v̂2) but increases the profits coming from information type t1 since

the seller can reduce q1v̂1 and type (t1, v̂1)’s virtual value is negative.

By continuity of the RHS of the constraints IC 1v∗1-2v’, they have to bind in a neighbor-

hood to the right of v̂2; if not the firm should be able to pick q2v = 1 in this neighborhood

but this contradicts the continuity of the RHS. As these constraints bind, they hold with

equality and the derivative of the RHS with respect to v′ has to be zero, that is,

v∗1 g′(q2v′)
∂q2w

∂w
|w=v′−v′

∂q2w

∂w
|w=v′= 0.

Therefore, in this interval either ∂q2w
dw |w=v′= 0 or g′(q2v′) =

v′
v∗1

. As limx→1 g′(x) = ∞, q2v′

is bounded away from 1 for all v′ in this neighborhood to the right of v̂2.

Suppose that v̊ is the first value at which the constraint IC 1v∗1-2v’ does not bind, so

that the seller will pick q2v̊ = 1. Since limv→v̊− q2v < 1 and the RHS of the constraints IC

1v∗1-2v’ is continuous, it is not possible that q2v̊ = 1 is feasible; if not, for v close and to

the left of v̊ the seller should be able to pick q2v close to 1. Therefore, for all v′ > v̂2 the

constraint IC 1v∗1-2v’ binds.

Since all the constraints IC 1v∗1 − 2v′ for v′ ≥ v̂2 bind, either ∂q2w
dw |w=v′= 0 or g′(q2v′) =

v′
v∗1

for all v′ ≥ v̂2. I show that q2v satisfies the first condition for v′ close to v̂2 and that,

in some cases, it satisfies the second condition for large v′ values.

Since cos−1(q2v) + β ∈ [β, π/2] and it is decreasing in q2v, it can be shown that the

second derivative of g(q2v) is positive. Therefore, g′(q2v) is increasing. This means that

the solution of the equation g′(q2v′) = v′
v∗1

is increasing. Since, q2v has to be increasing,

and the virtual value for v > v̂2 is positive, there exists ṽ2 > v̂2 such that q2v = q2v̂2 for

v < ṽ2 and it is equal to the solution of the equation g′(q2v′) =
v′
v∗1

for all other values of

v. ṽ2 and v̂2 are equal only if g′(q2v̂2) =
g(q2v̂2 )

q2v̂2
. After some algebra this condition can
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be written as tan(cos−1(q2v̂2) + β)−
√

1−q2v̂2
q2v̂2

= 0 and the LHS is strictly decreasing with

lim
q2v̂2→1

LHS = tan(β). Therefore, there is not value of q2v̂2 that satisfies this condition, and

ṽ2 > v̂2. Finally, since ṽ2 does not necessarily belongs to the support of the valuations

for type t2, it might be that q2v is just a constant function.

Proof Theorem 3

I only need to check that the solution actually satisfies the constraints that I have not

imposed in the relaxed problem. It is straightforward to see that this is the case.

Proof Proposition 3

That none of the IC constraints bind is equivalent to the optimal mechanism being the

one that gives recommendations ψi = E[θi] + Cov(θi)Var(X)−1(X −E[X]) and charges

prices γT
i γi. For such mechanism the IC constraint for type ti reporting type tj with i < j

is satisfied iff
(γT

i γj)
2

γT
j γj

− γT
j γj < 0⇔ (γT

i γj)
2 > (γT

j γj)
2 ⇔ cos2(βij) ‖γi‖2 ∥∥γj

∥∥2
<
∥∥γj
∥∥4 .

Now, in such a mechanism the upward constraint for type tk reporting type tl with

k > l is satisfied iff

(γT
l γk)

2

γT
l γl

− γT
l γl < 0⇔ (γT

k γl)
2 < (γT

l γl)
2 ⇔ ‖γl‖2 ‖γk‖2 cos2(βlk) < ‖γl‖4 ,

where βlk is the angle between vectors γk and γl. The last inequality always holds since

cos(βlk) < 1 and by assumption ‖γl‖2 ≥ ‖γk‖2.

Since all IC constraints are satisfied by the proposed mechanism, it is feasible and

none of the IC constraints bind.

Proof Theorem 4

1. Suppose all types receive a positive surplus and let P = mini

{
(LT

i Cov(θi,X))2

LT
i Var(X)Li+`iσ2 − pi

}
>

0. Then the data broker can charge new prices p̃i = pi + P, so that all IC constraints

are unaffected and the IR constraints are satisfied. This modification of the mecha-

nism clearly increases the seller’s profits.

2. Suppose by contradiction that in the optimal mechanism (ψ, p), the statistic ψ(ti)

is not sufficient to learn the conditional expectation of θi given the data X, that is,
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there is not k 6= 0 such that Li = kVar(X)−1Cov(θi, X) or `i 6= 0.

Let Ri = Var(θi) − Var(θi | ψ(ti)) − p(ti) be the rent that type ti receives in this

mechanism, and let i∗ ∈ arg maxi γT
i γi − Ri be the type that in net terms is willing

to pay more for all the data.

Consider the alternative mechanism (ψ′, p′) with ψ′(ti∗) = E[θi∗ | X], p′(ti∗) =

γT
i∗γi∗ − Ri∗ , and for any ti 6= ti∗ , ψ′(ti) = ψ(ti) and p′(ti) = p(ti). First, type ti∗

does not have incentive to report any other type since in the modified mechanism

she obtains the same rent as in the original mechanism. Furthermore, any type

ti 6= ti∗ does not want to report type ti∗ since by Claim 2 and Lemma 1

Var(θi)−Var(θi | ψ′(ti∗))− p′(ti∗) < γT
i γi − (γT

i γi − Ri) = Ri.

Finally, p′(ti∗) = γT
i∗γi∗ − Ri∗ > Var(θi)−Var(θi | ψ(ti))− Ri = p(ti). Therefore the

mechanism (ψ′, p′) is feasible and gives higher profits to the seller than mechanism

(ψ, p), a contradiction.

Proof Theorem 5

Fix δ > 0 with δ < min{γT
i γi : i ∈ {1, . . . , n}}. For the subset of types I ⊆ {1, . . . , n},

consider the modified problem

V(I, δ) = max
{pi,Li,`i}i∈I

∑i∈I αi pi

s.t. (LT
i Cov(θi,X))2

LT
i Var(X)Li+`2

i σ2 − pi ≥
(LT

j Cov(θi,X))2

LT
j Var(X)Lj+`2

j σ2 − pj ∀i, j ∈ I

(LT
i Cov(θi,X))2

LT
i Var(X)Li+`2

i σ2 − pi ≥ 0 ∀i ∈ I

pi ≥ δ ∀i ∈ I

and let V(δ) = max
I⊆{1,...,n}

V(I, δ) and I∗(δ) = arg max
I⊆{1,...,n}

V(I, δ). This problem must

have a solution in which some Li are non-zero and some pi > δ since, by Lemma 1, the

vector of coefficients L̃i = Var(X)−1Cov(θi, X), the noise coefficient ˜̀ i = 0 and prices

p̃i = min{γT
i γi : i ∈ {1, . . . , n}} satisfy all the constraints. In other words, one of the

points that satisfy the Khun-Tucker conditions is the optimal solution.

In the optimal mechanism min{pi : pi > 0} > 0. Then as δ → 0, the sequences V(δ)
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and I∗(δ) are finally constant, and equal to the seller’s optimal profits and equal to the

set of types to which the seller sells in the optimal mechanism.

Let I∗ be the set of types to which the data broker sells in the optimal mechanism

and δ small enough such that the constraints pi ≥ δ do not bind. When considering the

modified problem with I∗ and such small δ, the solution is exactly equal to the optimal

mechanism for the data broker. For this problem let λij be the Lagrange multiplier cor-

responding to the IC constraint from type ti to type tj and µi be the Lagrange multiplier

corresponding to the IR constraint for type ti for i, j ∈ I∗. Defining aji ≡
LT

i Cov(θj,X)

LT
i Var(X)Li+`2

i σ2 ,

the First Order Condition with respect to Li can be written as(
∑j 6=i λij + µi

) (
aiiCov(θi, X)− a2

iiVar(X)Li
)
= ∑j 6=i λji

(
ajiCov(θj, X)− a2

jiVar(X)Li

)
⇔ Li =

Var(X)−1

aii
∑j 6=i(λij+µi)

−
∑j 6=i λji a2

ji
∑j 6=i(λij+µi)aii

(
Cov(θi, X)− ∑j 6=i λjiaji

∑j 6=i(λij+µi)aii
Cov(θj, X)

) .

Since the value of the objective function is scale invariant, Li can be normalized such

that aii
∑j 6=i(λij+µi)

− ∑j 6=i λjia2
ji

∑j 6=i(λji+µi)aii
= 1. Further, define cji ≡

aji
aii

, and since the problem is

bang-bang with respect to `i, it has to be that `i = 0 for all i ∈ I∗ and `i = ∞ for all

i 6∈ I∗. Therefore, I obtain the desired expression.

I still need to show that the mapping from the vector (cij)i,j ∈ R2n into itself has a

least one fixed point. The mapping is clearly continuous. I argue that each cij in the

codomain can be bounded, and that in such a case the image is bounded as well. Then

the domain and the codomain of the mapping can be restricted to be the same compact

convex subset of R2n and by Brouwer Fixed-Point theorem the mapping has at least one

fixed point.

Since pi ≥ δ > 0 and (LT
i Cov(θi, X))2 ≥ pi, (LT

i Cov(θi, X))2 > 0 for each i ∈ I∗. In

particular this implies that Li 6= 0, and since Var(X) is positive definite, LT
i Var(X)Li > 0.

Let ζ = mini∈I∗

{
(LT

i Cov(θi,X))2

LT
i Var(X)Li

}
> 0. By Lemma 1

(LT
i Cov(θj, X))2

LT
i Var(X)Li

≤ Cov(θj, X)TVar(X)−1Cov(θj, X).

Let M = maxi∈I∗
{

Cov(θi, X)TVar(X)−1Cov(θi, X)
}

. Then it has to be that for each i and
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j, c2
ij ≤

M
ζ . Then the mapping can be restricted to go from the domain

[
−
√

M
α ,
√

M
α

]2n

to itself. This restricted map satisfies all the hypothesis of Brouwer Fixed Point theorem,

so it has at least one fixed point. Since the problem is guaranteed to have a solution, its

solution needs to satisfy the Kuhn-Tucker conditions. Therefore, one of the fixed points

has to be the solution to the original problem.
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