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Abstract. We consider a principal who allocates an indivisible object among a finite number
of agents who arrive on-line, each of whom prefers to have the object than not. Each agent has
access to private information about the principal’s payoff if he receives the object. The decision
to allocate the object to an agent must be made upon arrival of an agent and is irreversible.
There are no monetary transfers but he principal can inspect agents’ reports at a cost and punish
them. A novelty of this paper is a reformulation of this dynamic problem as a compact linear
program. Using the formulation we characterize the form of the optimal mechanism and reduce
the dynamic version of the inspection problem with identical distributions to an instance of the
secretary problem with one fewer secretary and a modified value distribution. This reduction
also allows us to derive a prophet inequality for the dynamic version of the inspection problem.

1 Introduction

In many large organizations scarce resources must be allocated internally without the benefit
of prices. Examples include, the headquarters of a firm that must choose between multiple
investment proposals from each of its division managers and funding agencies allocating a
grant among researchers. In these settings the private information needed to determine the
right allocation resides with the agents and the principal must rely on verification of agents’
claims, which can be costly. We interpret verification as acquiring information (e.g., requesting
documentation, interviewing an agent, or monitoring an agent at work), which can be costly.
The headquarters of the diversified firm can hire an external firm to conduct an assessment
of any division manager’s claims, for example. The funding agency must allocate time to
evaluate the claims of the researcher applying for a grant. Furthermore, in these settings,
the principal can punish an agent if his claim is found to be false. For example, the head of
personnel can reject an applicant, fire an employee or deny a promotion. Funding agencies
can cut off funding.

Prior work considered the static version of this problem only. Ben-Porath et al. [2014],
which introduced the question, assumes punishment is unlimited in the sense that an agent
can be rejected and not receive the resource. Punishment can be limited because verification is
imperfect or information arrives only after an agent has been hired for a while. In Mylovanov
and Zapechelnyuk [2017], verification is free, but punishment is limited. Li [2017] generalizes
both papers by incorporating costly verification and limited punishment.

This paper introduces and analyzes a dynamic version of this problem. Specifically, there
is a principal who has to allocate one indivisible object among a finite number of agents. The
value to the principal of assigning the object to a particular agent is the private information
of the agent. Each agent prefers to possess the object than not. The principal would like to
give the object to the agent who has the highest value to her.

The agents arrive and depart one at a time, and the decision to allocate the object to an
agent must be made upon arrival of an agent. If the principal declines to allocate the object
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to an agent, the agent departs and cannot be recalled. If the principal allocates the object to
an agent, the decision is irreversible.

If each agent were to truthfully report the value to the principal, the principal faces a
cardinal version of the secretary problem Krengel and Sucheston [1977, 1978]: one must select
online an element (a ‘secretary’) with maximum value from a randomly ordered sequence. An
element has to be selected or discarded upon its arrival, and this decision is irrevocable. If the
principal knows the value distribution associated with each agent, she solves a straightforward
stopping problem to determine which agent should receive the object. The solution would
involve a sequence of thresholds, indexed by the agent, and the principal allocates the object
to the first agent whose reported value exceeds their corresponding threshold.

If the principal were to adopt such a policy in our setting it would encourage all agents to
exaggerate their values. To discourage agents from exaggerating, the principal can ration at
the top of the distribution of values or the principal can verify an agent’s claim and punish him
if his claim is found to be false. The first reduces allocative efficiency while the second is costly.
The goal of this paper is to find the optimal way to provide incentives via these two devices
in a dynamic setting. A novelty of this paper is a reformulation of this dynamic problem as a
compact linear program that may be useful in other applications. Using the formulation we
can elaborate on the form of the optimal mechanism and reduce the dynamic version of the
inspection problem with identical distributions to an instance of the secretary problem with
one fewer secretary and a modified value distribution. This reduction also allows us to derive
a prophet inequality (Samuel-Cahn [1984]) for the dynamic version of the inspection problem.

Our work is related to the extensive literature on versions of the secretary problem where
the principal can rely on prices that was initiated in Hajiaghayi et al. [2007], Chawla et al.
[2010]. This was subsequently extended to include additional constraints such as cardinality
constraints Hajiaghayi et al. [2007], Alaei [2011], matroids Kleinberg and Weinberg [2012],
matchings Alaei et al. [2012], and knapsack constraints Feldman et al. [2015], Duetting et al.
[2017]. The absence of money in our setting means that the results from this paper do not
apply. However, linear programming approach may be useful in analyzing problems when the
principal has access to prices.

In section 2 we introduce our setting and the linear programming formulation. In section 3
we characterize the form of the optimal mechanism and provide a corresponding prophet
inequality. In section 4 we study the variation of the problem with limited punishment.

2 Model

There is a single indivisible good to allocate among a set of of agents denoted by I =
{1,...,n}. The type of agent ¢ € I is ¢; which is the value to the principal of allocating
the object to agent . We assume that the agents’ types are independently distributed. The
distribution of agent’s i type has strictly positive density f; over the interval T; = [t;,t;]. The
preferences of the agents are simple: each prefers to possess the object to not. The actual
private benefit enjoyed by an agent from receiving the object does not need to be specified.
The agents arrive one by one and report their type, not necessarily truthfully. The principal
can inspect the reported type of agent i at cost ¢ > 0 and determine perfectly if the agent
has lied. In the event an agent is discovered to have lied, we withhold the object from them.
This is the case of unlimited punishment. The case of limited punishment is considered later.
By the revelation principle we can restrict attention to direct mechanisms. Denote by t;
the profile of reported types made by all agents upto and including agent i. We write {; to



denote the profile of reported types made by all agents upto but not including 7. A directed
mechanism specifies for each profile of type reports, two probabilities for each agent i: the
actual probability ¢;(¢;) he is assigned the good conditional on the event that the good is
not already allocated. Specifically, ¢;(t;) = Pr[choose t;|1,...,7 — 1 not allocated]. This fully
captures the set of online strategies, since independence means there is no need to condition
the decision to allocate the good to agent i upon t;. Similarly, let a;(¢;) be the probability
agent ¢ is assigned the good and inspected conditional on the event that the good is not
already allocated.
These variables must satisfy the following conditions:

0<a;(t;) <qi(t;) <1 Viel Vi eT; (1)
The incentive compatibility constraints are as follows:
qi(t:) > qi(t)) —ai(t;) Viel Vit eT, (2)
The principal would like to choose the allocation probabilities ¢ and a to maximize:

S BT - a5t [rigs(t)]

icl j<i

2.1 Reduced Form Representation

We work with a reduced form representation of the allocation and inspection rules (see for

example C Border [1991], Vohra [2012], Li [2017]. Given a mechanism (g, a), let Q;(t;) =

¢i(t)Ee_ [T1 (1 —q;(t5))] and Ai(ts) = a;(ti)Ee, [T (1 — g;(t;))] be the interim allocation and
j<i j<i

inspection probabilities respectively. The interim allocation and inspection probabilities are

related to the ex-post allocation and inspection probabilities as follows:

Lemma 1. Qilti)
ai(ti) = - S B, [Q5(5) (3)
1<t
B Ai(t;)
1= Y Ey,Q4(ty)]

j<t

a; (tl)

(4)

Proof. We prove (3). The proof of (4) is similar. Now, Q;(t;) = ¢i(t:))Ee_,[IT(1 — ¢;(t5))]

1<t
Thus,

(e — Qi(ts)
) = &, T = a0

j<i

It suffices to prove the following:

Eoo, [[T0 = a5 = 1= DBy [Q5(85)]

i<i i<i
We do so by induction. For ¢ = 1, the equality reduces to

Ey[1—aq(t)] =1—Ey[Q1(t1)]



which holds since Q1(t1) = q1(¢1). Let’s now prove the equality for i. This holds since

Eoo ([ J(1 = a5 ()] = Ee,[(1 = qs(t)IEe [T T (1 = 45 (8)))]

=(1-E, [Qi(ti)])Eki[H(l —q;(t;))]
= Et<i[H(1 —q;j(t;))]
— B[ (t)Ee, ([ ] = ¢5(¢))]

7<t

1—1
= 1= Ey[Q;(t)] — Ex[Qi(t:)]
j=1

=1-) E;[Q;(t))]
j=1

where the first equality follows from independence, the second equality follows from linearity
of expectations, and the fourth equality follows from the inductive step and the definition of
the interim allocation.

It follows from lemma 1 that the set of constraints (1) can be reduced to

Qi(t) + > B [Qi(t)] <1 Viel V4 eT,
7<i
0<Ai(ti) <Qi(t;) Viel Vi eT;
Using the reduced form representation we can formulate the principal’s problem as the fol-
lowing linear program (denoted LP):

mas ; By, [tiQi(ti) — cAi(t;)]

st Qi(t) + > En[Qi(t)] <1 Vi VL eT,
j<i
> Qi(ty) — Ai(t}) Viel V€T

Qi(t:)
SAi(t) <Qi(ts) Viel Vi eT;

0

3 The Optimal Mechanism

In this section we examine the optimal inspection and allocation rules. Let ¢; be the minimum
possible share that agent ¢ can receive, i.e.,

¢; = inf Q;(t:). (5)

t, €T;

Then, in any optimal solution to the above LP, each agent getting more than the minimum
possible must be inspected for this extra winning probability, i.e.

Ai(t;) = Qi(t;) — . (6)



We can use this to eliminate the inspection variables from LP:
max Z Er, [Qi(t:)(ti — )] + Y _ ic
Q i iel
s.t. QZ DY By [Qit)] <1 Viel VheT,
1<t

Qi(t;) > ¢ Viel Vel
Given the vector ¢, denote this program by LP(¢) and let V(¢) be the optimal objective
value. This program has a feasible solution for all ¢ such that >  ¢; < 1. Thus, the initial
i

online mechanism with verification can be reduced to

We will characterize the optimal allocation and inspection rules given ¢.
Lemma 2. The optimal solution of LP(¢) is monotonic, i.e.
Ql(tz) < Ql(t;) Viel Vit < t;

Proof. Suppose not. Then, there is an ¢ and pair (¢;,t}) such that Q;(t;) > Qi(t;). We pick an
€ > 0 such that

Ql(tl) - fzetl) 2 Ql(tz)7

— Qut) + 7 < Qilt)
If we reduce Q;(t;) by Gy and increase Qi(t;) by ﬁt;) feasibility is preserved. The objective
function value increases by €(t; — ;) > 0, which is a contradiction.
Hence, there exists a threshold #; for all i such that Q;(t;) = ¢; for t; < £; and Q;(t;) > ¢
otherwise. In the optimal solution to LP(¢*) it will hold Q;(#;) = ;.

We further identify the optimal strategy as a threshold strategy in each round. A trans-
formation of variables will prove convenient:

Qi(t:) = ¢i + xi(t;) (7)

Given ¢, we can find the optimal strategy by indentifying the solution to the following linear
program:

m;xx ZE“ [sz(tl)(tl - C)]
el
stoai(t) + Y By lj(t)] <1-> ¢, Viel Vel
j<t 1<t
1‘Z(tz> >0 Viel Vit eT;

Lemma 3. Suppose that Q is the optimal solution to LP(¢). Then for each agent i, there
exists a threshold t;, such that

1<t (8)

oi otherwise

Qi(t;) = {1 = L EylQi(t)] it > L



Proof. Suppose we are interested in the allocation and inspection rules when we reach agent .
Fix all other variables to be optimal. We are interested in solving the following linear program

n&zix Ey, [zi(t:)(t; — ¢)]

stoai(ti) S1=Y ¢;— Y BEylw(t))] Viel V4 eT
§<i j<i
Epfwi(t)] 1= ¢ —apl(te) = > Bylajty)] Vk>i Vi €Ty
i<k j<k,j#i
(E,(tl) >0 Viel Vt el
Now, it is clear that the optimal solution can actually be characterized by a threshold.

All high types will be assigned their upper limit till the constraint of the aggregate allocation
binds. Thus, the optimal solution z is given by

1= ¢ — > By [ws(ty)] if t; > 1
zi(t;) = j<i j<i
0 otherwise

Returning back to @) variables completes the proof.

Now that we can characterize the optimal interim allocation in terms of parameters ¢, t,
we provide a form for the ex post allocations.

Corollary 1. For each agent i there exists a threshold t; and constant oy, such that the
optimal ex post allocation can be written as follows:

1 ift; > 1 1—ayift; > 1

«; otherwise 0 otherwise

Proof. We use lemma 1 to get the form of the ex post allocation:

1=37 B, [Q5(t5)]

71<t . . A' R
ity — — Qi) ) TEEmm izt _{1 if 4, > 4,
i ’i - — 1< — .
1-— %Etj Qj(t;)] % otherwise a; otherwise
Ay RN

7<i

- bi
where @ = =55 1o
i<z
The form for the ex post verification rule follows by (6).

3.1 Identical Distributions

We examine the case of identical distributions, i.e., T; = T and f;(t) = f(t) foralli € I,t; € T.
In this case, we can give a neat representation of the optimal strategy.
Let p = E;[t]. Now, LP(¢) can be written as

max Y Efei(t)(t - )] + 1) 6
i€l %
stoai(t)+ ) Eylz;(t)] <1-) ¢; Viel VteT
Jj<i J<i
zi(t) >0 Viel VteT



Let ¢* be the vector ¢ that maximizes V(¢). A simple perturbation argument shows that
there exists ¢* such that ¢} = 0 for all i < n. Furthermore, by equation (5), x,(t) = 0 for all
t € T,, in an optimal solution. We can now reduce LP(¢*) to the following linear program for
identifying the strategies for the first n — 1 agents:

max > Eyfai(t)(t —c)]
iel\{n}
stoai(t)+ Y Eylz;(t)] <1—¢; VieI\{n} VteT

zi(t) >0 VielI\{n} VteT

By normalizing the resource variables this linear program can be interpreted as arising from
a secretary problem with n — 1 secretaries, where the value of each ‘secretary’ is t — ¢ drawn
according to a density function f. In case the object is still available in the last round it is
given to the last agent.

3.2 Prophet Inequality

We derive a prophet inequality for the setting with inspection using the reduced form. It
scales the optimal offline solution so as to make it a feasible solution for the online setting.
This technique can also be used in the standard setting.

Theorem 1. The optimal online algorithm achieves at least 1/2 of the performance of the
optimal offline algorithm on expectation.

Proof. Let QF(t;) the interim expected probability with which agent ¢ with type t; receives
the item in the optimal off-line solution. Let ¢} = i]tqf Q}(t;) as proposed in Ben-Porath et al.

[2014]. The expected total value to the principal is given by

D [Be [Q5 (t) (8 — )] + ).

el

Pick online values Q;(t;) = Q7 (t;) and ¢; = 1¢F. It is clear that the objective function
with respect to the reduced form for both problems is linear and coincides. Thus, a simple
scaling approximates the optimal objective:

D By, [Qi(t) (t: — )] + ¢ic] = % D (B, [Qf (t)(ti — o) + ¢ic]

icl il
It suffices to prove that the proposed solution is feasible for the online problem.

— Qilti) + 2 E, [Q;(¢))] = $Qr(ti) + 3 > B, [QF(¢)] < 1: This holds since Q;(t;) < 1 and
J<u j<i
the expected offline allocation for the first ¢ — 1 agents is also less than 1.
— Q;(t) > ¢;: The constraint coincides with the offline constraint. Nothing changes by scaling

both sides of the inequality.



4 Limited Punishment

We further illustrate the applicability of our technique under a slight change of the verification
process. We say that punishment is limited if the principal cannot reduce an agent’s payoff to
his outside option by punishing him. If we interpret verification as acquiring information, then
punishment can be limited because information is imperfect.> We assume that punishment
is proportional to the private benefit enjoyed by the agent from receiving the object. If v;
is the private benefit enjoyed by agent i, punishment is k;v;, where each k; € [0,1]. These
are the same assumptions as in Li [2017]. As we show below, limited punishment will cause
the principal to ‘ration at the top’ as well. All types above some threshold face the same
probability of receiving the good.

By the Revelation Principle we can focus on direct mechanisms. In this case, if an agent
is inspected, it is optimal to penalize him if and only if he is found to have lied. After the
allocation is made, the planner will observe the agent’s type and destroy a fraction k; of the
agent’s payoff. A direct mechanism specifies for each profile of type reports the probability
qi(t;) that the good is assigned to agent i conditional on the event that it is not already
assigned. These variables must satisfy the following feasibility conditions:

0< qi(ti) <1 Viel VteT; (9)
The incentive compatibility constraints are as follows:
gi(ti) > (1 —ki)qi(t;) Viel Vit €T (10)

The principal would like to choose the allocation probabilities ¢ to maximize:

DB (T — a5 ()E [tiait)-

j<t

As before we work with a reduced form representation. This allows us to formulate the
optimal mechanism as the following linear program :

max Y By, [tiQi(t:)]
Q il
s.t. Qi(t:) + ZEti [Qi(t)] <1 Vi V€T,
Jj<i
Qz(tl) > (1 — kZ)Ql(t;) Vi Vt; €T; Vt; eT;
Ql(tz) >0 Vi Vt; eT;

4.1 The Optimal Mechanism

We simplify the incentive constraint, as in Mylovanov and Zapechelnyuk [2017]. We include
the proof for completeness.

3 We take verification cost and punishment level as exogenous but it is possible that the principal can get
more precise information by incurring a higher information acquisition cost, which, in turn, leads to a severer
expected punishment. The results in this paper readily extend to the case where the principal can jointly
optimize over verification cost and punishment level.



Lemma 4. An allocation rule satisfies incentive compatibility if and only if for all i there
exists x; such that
(I=Fki)xi <Qi(ts)) <xi VL €T; (11)

Proof. 1f IC holds then (11) holds with x; = sup Q;(t;). Conversely, if (11) holds for some x;,
t;

then it also holds with X = sup Q;(t;), which implies incentive compatibility.
t;

We now write down a linear program which finds the optimal strategy. We know that for
optimal x this linear program is going to return the optimal strategy.

%axx ; Ey, [t:Qi(ts)]

s.t. Qi(ts) + ZEti [Q,(tz)} <1 Viel Vit el
1<t
(1 — ki)Xi < Qz(tz) < Xi Viel Vti S Ti
Ql(tl) >0 Viel Vit eT;

We now describe the optimal strategy.

Lemma 5. Suppose that Q is the optimal online solution. Let x; = sup Q;(t;). Then for each
t, €Ty
agent i, there exists a threshold t; such that

Qi(t;) = {Xi ift; > &

(1 — ki) x: otherwise (12)

Proof. Suppose we are interested in the allocation rule when we reach agent ¢. Fix all other
variables to be optimal. We are interested in solving the following linear program:

max Ey, [t:Qi(t:)]

st Qi(t) <1 Ey[Q(ty)] Viel Vel
7<t
B [Qi(t)] < 1—Qulte) — > EyQi(t))] Vk>i Vig € Ty
j<k.ji
(1 —Fk)xi <Qi(ty) <xu YVt eT;
Qi(ti) >0 Vt; €T,

Now, it is clear that the optimal solution can actually be characterized by a threshold.
All high types will be assigned their upper limit till a constraint for the aggregate allocation
binds. We can now say that the optimal online solution has the following form:

min{xi, 1 — ¥ By [Q ()]} if t; >
j<i (13)
(1 —ki)xi otherwise

ilty) =

The upper limit can be simplified. We prove that

Xi < 1= By [Q;(t;)] Viel

7<t



Suppose the contrary. We pick x’ =1 — > E[Q;(t;)]. This makes the constraints less strict
i<t

since the upper bound remains the same but the lower bound reduces. Thus we can reduce

the allocation for lower types and increase the allocation of higer types while holding the

aggregate allocation steady. This is a contradiction since such a change will increase the total

welfare.

In the limited penalties case the ex post allocation will have a slightly different form.

Corollary 2. For each agent i there exists a threshold t;, and constant f3;, such that the
optimal ex post allocation can be written as follows:

(B ifti > 1;
Qz(tz) = { (1 _ ki)ﬁi otherwise

Proof. We use lemma 1 to get the form of the ex post allocation:

__ Xi_if 4. )
( ) Qz(tz) 1_];.Etj [Qj(tj)] if tz Z tl 6 1> -E
qltl = == :’L[fki i . :{ ¢ ' . Z_"L
1- %Etj [Q;(t5)] 1_;(&7[)57(%)] otherwise (1 — k;)3; otherwise
1<t

where f; = m

3<i

4.2 Prophet Inequality

We use the same machinery as before to further illustrate that extra constraints that restrict
the optimal solution in both offline and online cases, do not have an effect on the prophet
inequality.

Theorem 2. The optimal online algorithm achieves at least 1/2 of the performance of the
optimal offline algorithm on expectation.

Proof. Let Q(t;) be the interim probability with which agent i with type ¢; receives the

item in the optimal off-line solution. Let x} = sup Q;(¢;) as proposed in Mylovanov and
t,€T;
Zapechelnyuk [2017]. The expected total value to the principal is given by

> By, Q5 ()]
iel
Pick online values Q;(t;) = 3Q7 (t;) and x; = 3x; for all i € I. It is clear that the objective

function with respect to the reduced form for both problems is linear and coincides. Thus, a
simple scaling approximates the optimal objective:

1 *
Z Ey[tiQit:)] = 5 Z By, [t:Q5 (t:)]
i€l i€l
it suffices to prove that the proposed solution is feasible for the online problem.
— Qilti) + Y By, [Q4(t))] = 3Q5 (1) + 5 - By, [Q3(¢;)] < 1: This holds since Q; (;) < 1 and
j <t 7<i

1<t
the expected offline allocation for the first ¢ — 1 agents is also less than 1.

— (1 —k)xi < Qi(t) < x4: The constraint coincides with the offline constraint. Nothing
changes by scaling both sides of the inequalities.

10
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