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Abstract

“Crowds” are often regarded as “wiser” than individuals, and pre-
diction markets are often regarded as effective methods for harnessing
this wisdom. If the agents in prediction markets are Bayesians who
share a common model and prior belief, then the no-trade theorem
implies that we should see no trade in the market. But if the agents
in the market are not Bayesians who share a common model and prior
belief, then it is no longer obvious that the market outcome aggre-
gates or conveys information. In this paper, we examine a stylized
prediction market comprised of Bayesian agents whose inferences are
based on different models of the underlying environment. We explore
a basic tension—the differences in models that give rise to the possi-
bility of trade generally preclude the possibility of perfect information
aggregation.
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The Wisdom of a Confused Crowd: Model-Based Inference

“For the many, of whom each individual is but an ordinary
person, when they meet together may very likely be better than
the few good, if regarded not individually but collectively, .... For
each individual among the many has a share of excellence and
practical wisdom.”

Aristotle, Politics, part 3.1

1 Introduction

The idea that groups of people may make better decisions than individuals
is an old one. More recently, interest in the “wisdom of the crowd” was
catalyzed by Francis Galton (Galton, 1907), who observed a contest calling
on participants to guess the dressed weight of a live ox. Examining the
nearly 800 entries, Galton wrote that “the middlemost estimate expresses
the vox populi” and reported this value (the median) as 1207 pounds, within
about 0.8% of the actual weight of 1198 pounds.

The fairgoers had the advantage of having Galton himself to aggregate
their information, turning the exercise into an arguably straightforward il-
lustration of the law of large numbers. More recently, interest in the wisdom
of the crowd has focussed on the ability of markets to aggregate informa-
tion (e.g., Surowiecki, 2004), reflected in the efficient market hypothesis of
finance (Fama, 1970, 1991), auction-based models of rational expectations
(Wilson, 1977, Milgrom, 1979), and the design of prediction markets tailored
specifically to aggregate information (Wolfers and Zitzewitz, 2004, and Berg,
Forsythe, Nelson, and Rietz, 2008). Here, the market price takes Galton’s
place as information aggregator.

The seemingly compelling intuition that prediction markets should ag-
gregate information runs squarely into the no-trade theorem (Milgrom and
Stokey, 1982): If the participants are Bayesians who share a common model
and common prior belief, then there should be no trade in a prediction
market.2 Nonetheless, trade does occur (Wolfers and Zitzewitz, 2004), and
hence the participants are not Bayesians who share a common model and
prior belief. Can we then expect information aggregation?

1We thank Rann Smorodinsky for calling this discussion to our attention.
2Reflecting this difficulty, Ottaviani and Sørensen (2010) examine bettors who de-

rive a recreational utility from betting in a parimutuel market. Koessler, Noussair, and
Ziegelmeyer (2008) examine bettors who are required to bet a fixed amount in a parimutuel
market.
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Given the implausibility of the common prior assumption, a natural re-
sponse to the observations of the previous paragraph is to allow agents to
hold different prior beliefs.3 Our response is different: We view different
priors as a symptom of more basic underlying differences, namely different
models. The important advantage of working directly with different models
is that we can then reasonably insist that agents have a common prior on
the common elements of their models. This restores much of the discipline
whose absence typically pushes research away from models with heteroge-
neous priors. Appendix A.1 illustrates the lack of discipline that arises with
heterogeneous priors.

We find a basic tension. In Section 4, we establish a pair of negative
results. Unless the differences in agents’ models are trivial, market inter-
actions will not lead agents to common beliefs. More problematically, any
conventional aggregate of the agents’ beliefs will often be off the mark, in
the sense that the correct-model belief will lie outside the convex hull of the
agents’ beliefs. In general, crowds are not wiser than their constituents.

And yet at times prediction markets seem to work. Section 5 shows
that if the agents’ models have enough in common, then interacting will
lead agents to similar beliefs, even if their models also exhibit some bizarre
idiosyncracies. Perhaps more importantly, if the agents collectively have
sufficient information, then the average belief in the crowd will be close
to the correct-model belief, even if their information is widely dispersed.
The key to the wisdom of the crowd is not that its members have common
information or a common model, but that the different models the agents
use imply a sufficiently common interpretation of whatever information they
have.

While our original motivation came from prediction markets, our interest
is not in modeling prediction markets per se. We believe that the principles
uncovered in the course of this analysis are applicable to a broad range of
belief aggregation problems, and so deliberately work with a stylized model
of belief exchange that abstracts from market microstructure details.

3Morris (1994) is a good point of entry for work in this area. There are many vari-
ations on this idea. For example, Geanakoplos (1989) and Brandenburger, Dekel, and
Geanakoplos (1992) explore the extent to which trade can arise between agents who have
common priors but nonpartitional information structures, and explore the extent to which
reasoning based on different priors is equivalent to reasoning based on common priors but
nonpartitional information structures.
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2 The Setting

2.1 The Environment

The logical structure of our model is best revealed by working with a general
model: States of the world are given by a complete, separable metric space
Ω, and the associated collection of events is the Borel σ-algebra, denoted
by F . However, the model is more readily interpreted, and the statement
of some of the results is significantly simplified, by considering the product
case: Ω = XN , where X ⊆ R and N ⊆ N is possibly infinite, and where F
is the usual σ-algebra.4

We present the model for the general case, but freely appeal to the
product case when developing intuition or presenting results. For illustration
and intuition, we often further assume that X is finite (typically {0, 1}) and
N is finite.

Nature draws a state ω from Ω according to the probability measure
ρ on Ω. Agents form beliefs about the occurrence of a measurable event
F ∈ F . It is convenient to describe this event in terms of its indicator
function f : Ω → {0, 1}, where f(ω) = 1 if and only if ω ∈ F .

2.2 Model-Based Reasoning

It is standard in economic analyses to equip agent i with the state space Ω,
prior belief ρ, and description f of an event, at which point the agent would
use Bayes’ rule to process her information. We refer to such a reasoner as
an agent-i oracle or simply an agent oracle.

In contrast, we are concerned with model-based reasoners. A model-
based reasoner is a faithful adherent of Savage’s (1972) Foundations of
Statistics. Savage explains that it is a hopeless undertaking to work with a
state space that specifies “[t]he exact and entire past, present, and future
history of the universe, understood in any sense, however wide” (Savage,
1972, p. 9).5 Savage argues on the same page that “the use of modest little
worlds, tailored to particular contexts, is often a simplification, the advan-
tage of which is justified”. A model-based reasoner’s “modest little world”
will partition the state space into equivalence classes that he or she believes

4The usual σ-algebra is the σ-algebra generated by the open sets of the product topol-
ogy, which is the one generated by sets of the form {ω ∈ Ω : ωk = ω̃k∀k ∈ K} for ω̃k ∈ X,
k ∈ K, and some finite set K ⊆ N .

5Savage (1972, p. 16) describes this logical extreme of “look before you leap” as “utterly
ridiculous”.
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capture relevant information about F while ignoring irrelevant information.
These equivalence classes then become “states” in the reasoner’s model.

We capture this reliance on models by assuming that agent i explains
the connection between the states in Ω and the occurrence of the event F by
a function (her theory) f i : Ω → [0, 1] that is measurable with respect to a
sub-σ-algebra Mi (her model) of F . If F ∈ Mi, then agent i’s theory is the
indicator function f , and i correctly understands the events determining F .
We are most interested in cases in which agent i simplifies her problem by
working with a strict subset Mi ( F for which F 6∈ Mi. The assumption
that i’s theory f i is measurable with respect to her model Mi means that i
believes that only the events in Mi are relevant to the determination of F .
Agent i realizes that such a model cannot be expected to perfectly explain
the event F , reflected in the fact that f i maps into [0, 1] (rather than {0, 1}),
giving the probability that the event F has occurred.

In the product case of Ω = XN , agent i’s assessment of the event F
depends only on the realizations in the dimensions contained in the subset
M i ⊆ N . Hence, Mi is the σ-algebra generated by sets of the form {ωM i}×
XN\M i

=: {ωM i}×X−M i
, and we also use “model” to refer to M i. In terms

of Savage’s procedure for creating a “modest little world”, the equivalence
classes for agent i are of the form {ωM i}×X−M i

. Since agent i is concerned
only with ωM i , we can use f i(ωM i) to denote the (constant) value of f i on
the set {ωM i} × X−M i

.
For example, suppose a collection of agents is called upon to predict the

price movements of a financial asset, so that the event F corresponds to
an increase in the price of that asset. Even upon restricting attention to
professionals, we encounter a variety of approaches. A fundamentalist will
typically seek information on the cash reserves, debt load, volume of sales,
profit margin (and so on) of the underlying firm; these are the variables that
would appear in her model M i. A chartist will inquire about (and include
in his M i variables corresponding to) recent sales volumes, price trends,
reversals in price movements, the existence of apparent price ceilings, and so
on. An efficient marketer will respond by asking for a coin to flip. And even
among professionals, there are forecasters whose models focus on astrological
data. The fundamentalist is likely to exclude much of the asset-price history
from her model, while the chartist may neglect various aspects of the firm’s
current financial position. Both will typically exclude information about
zodiac signs. All of the agents are likely to miss factors whose relevance has
not yet been imagined, as well as factors they are convinced are irrelevant,
while possibly including irrelevant factors.
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Remark 1 (unimagined or unappreciated events?) We are agnostic
about choosing between two formally-equivalent interpretations of our model
of model-based reasoning. We can think of agent i as recognizing all of the
information contained in a state ω ∈ Ω, but adopting a simple theory f i

that depends on only some of this information. The fundamentalist may
recognize the events specifying the signs of the zodiac, but will ignore them
when reasoning about stock prices. Alternatively, we can view agent i as rec-
ognizing the events in Mi, but as having no idea what other events appear
in other agents’ models. �

The only potential glitch in agent i’s reasoning arises from her reliance
on the model Mi. In particular, conditional on using such a model, her
theory f i must be consistent with F ’s indicator function f . In the product
case with finite N , this is the requirement that for every positive probability
ωM i , we have

f i(ωM i) =
∑

ω∈Ω

f(ω)ρ(ω|ωM i).

Intuitively, the probability agent i attaches to the event F upon observing
ωM i matches the probability attached to the event F by the measure ρ
conditional on ωM i .

The general case requires nothing more conceptually, but does involve
more abstract notation. We require

f i(ω) = E[f |Mi](ω). (1)

This is again the statement that the probability agent i attaches to event F
upon having observed any event in Mi (which are the only events i thinks
are relevant) is the probability attached to the event F by the measure ρ,
conditional on that event.6

A motivation for (1) is that agent i builds her view of the world from her
model Mi and her access to a historical record of an unlimited number of in-
dependent draws from the prior distribution ρ. Focusing for convenience on
the finite product case, the agent calculates the frequency of the realizations
of ωM i in these observations. While the agent could infer the probability
ρ(ω) for any state ω, all the agent requires to calculate the implication of
her theory f i are the probabilities of the realizations of ωM i (i.e., of sets of
the form {ωM i} × X−M i

). Agent i can also observe which realizations of
ωM i in the record of past draws correspond to the occurrence of the event

6Because Ω is complete, separable, and metric (i.e., Polish), we can assume that con-
ditional beliefs exist for all ω (Stroock, 2011, Theorem 9.2.1).
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F . Hence, for each value of ωM i , she can calculate the probability f i(ωM i)
given by (1).

We do not expect agent i to literally have access to an infinite number of
draws. In practice, the agent estimates f i on the basis of a finite number of
observations. Hence, even while motivating (1) in terms of an infinite record,
we still feel free to appeal to the case of finite data when developing intuition
for our analysis. Our goal in imposing (1) is to isolate the implications of
agent i’s model-based inference from the estimation problems that invariably
arise with finite sets of data, much as econometricians prefer to separate
questions of estimation and identification, thus removing every obstacle from
information processing other than agent i’s reliance on the model Mi. In
particular, (1) imposes a basic consistency requirement across agents.

Remark 2 (choosing models) People go to great lengths to advocate for
their models. Einstein is reputed to have argued that “God does not play
dice with the universe”, and Dirac to have argued that “God used beauti-
ful mathematics in creating the world”. Both are (in our view) examples
of advocating particular (types of) model. We do not examine the process
by which agent i comes to focus on Mi. One point worth emphasizing,
however, is that we should not expect the model selection process to elimi-
nate differences in models, since different agents may follow different model
selection processes.

Section 2.3.3 discusses our assumption that agents do not infer an ap-
propriate model Mi ⊆ F from the data. �

Our agents are certain about their models. For the product case, this can
be viewed as a form of correlation neglect. Agent i believes that conditional
on ωM i , the event F and ω−M i are uncorrelated. Agent i’s model can be
viewed as a simple Bayesian network (see Pearl (2009) for an exposition,
and Spiegler (2016), who also assumes agents have access to infinite data,
for an application to misspecified models). That work focuses on agents
interpreting correlations as causation, while our focus is on aggregation.

2.3 Beliefs

2.3.1 Prior and Full-Information Beliefs

A model-based reasoner with no information about the state attaches to the
event F the probability

E[f i(ω)] = E[E[f |Mi]] = E[f(ω)],
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where the first equality is from (1) and the second is the first of many
applications of the law of iterated expectations. This indicates that agent
i’s prior belief matches that of an agent-i oracle.

If agent i observed all of the information she deemed relevant, i.e., if
agent i observed the realization of the events in Mi, then she would regard
herself as having full information,7 and would attach to the event F the
probability

f i(ω),

whose value is given by (1). We refer to this as a full information be-
lief. Agent i ignores any empirical evidence of events outside of Mi, but
she correctly uses empirical frequencies in assessing the implications of the
information she does think relevant, namely events in Mi. It follows imme-
diately from (1) that the full-information beliefs of a model-based reasoner
agree with those of an agent oracle.

2.3.2 Interim Beliefs

We allow agent i to observe information about some (but perhaps not all)
of the events in Mi, and to possibly have information about some events
not in Mi. Let Ii ⊆ F denote the information (σ-algebra) agent i observes.

In the product case, agent i observes information about some (but per-
haps not all) of the dimensions of M i, and possibly some additional dimen-
sions; we denote by I i the dimensions i observes.8

Given her information at ω, agent i assigns to F an interim probability,
which we denote by βi(ω), given by

βi(ω) = E[f i | Ii](ω).

We can again think of agent i as observing her information and then con-
sulting the record of past observations. Agent i considers those realizations
consistent with the events she observes and takes the expectation of her
full-information beliefs f i(ω) on this set of realizations.

Agent i’s updating takes place in two steps. To fix ideas, consider the
product case. The agent first estimates the full-information beliefs f i(ωM i).
Then, upon observing a realization ωIi of the dimensions in Ii, the agent
restricts her attention to the set of states matching this realization and

7Recall the agent understands her model may be incomplete, and so full information
refers to the information needed for her model.

8In this case, Ii = GIi

, where for any subset K ⊆ N , we denote by GK the σ-algebra
generated by the cylinder sets {ωK} × X−K .
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Ω
︷ ︸︸ ︷

ω1 ω2 ρ(ω) f(ω) ω1 f i(ω1)
0 0 1/4 0
0 1 1/4 0

}
0 0

1 0 1/4 0
1 1 1/4 1

}
1 1/2

.

Figure 1: The structure for Example 1. The first four columns present the
environment, (Ω, ρ, f), and the last three columns present agent i’s model,
which has only two states, and full information beliefs.

takes the expected value of f i(ωM i) over this set. This two-step feature is
the essence of model-based reasoning. In contrast, agent i’s oracle substi-
tutes the true indicator function f for the first step and, after observing the
information ωIi , takes the expected value of f(ω) over this set.

If Ii ⊆ Mi, so that agent i observes only information she deems relevant
(which for the product case, is equivalent to I i ⊆ M i), then the two updating
procedures are equivalent. In this case, we have

βi(ω) = E[f i | Ii](ω)

= E[E[f |Mi] | Ii](ω)

= E[f | Ii](ω),

where the first equality repeats our definition of the interim belief βi, the
next line follows by inserting the definition of the full-information belief from
(1), and the final line follows from the law of iterated expectations. This
equivalence between model-based and oracular reasoning breaks down if Ii

is not a subset of Mi. Formally, we can no longer apply the law of iterated
expectations that capped the previous argument. A product case example
illustrates.

Example 1 Suppose Ω = {0, 1}2, with each state equally likely. The event
F consists of the state (1, 1). We summarize this information in the left
array in Figure 1.

Let M i = {1} and I i = {2}. Agent i views dimension 1 as the only
relevant dimension, and ωM i = ω1 takes on two values, 0 and 1. Agent i’s
full-information beliefs f i(ω1) are given by

f i(0) = 0 and f i(1) = 1/2.
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We summarize agent i’s model and full-information beliefs in the right array
in Figure 1.

Agent i observes dimension 2, or I i = {2}. An agent-i oracle who ob-
served ω2 would form the posteriors ρ(ω|ω2) given by (economizing on no-
tation by shortening ρ((0, 0) | 0) to ρ(0, 0 | 0))

ρ(0, 0 | 0) = 1/2, ρ(1, 0 | 0) = 1/2,

ρ(0, 1 | 1) = 1/2, and ρ(1, 1 | 1) = 1/2,

with all other conditional probabilities equaling 0, and hence would have
beliefs

E[f(ω1, ω2) | 0] = ρ(0, 0 | 0)f(0, 0) + ρ(1, 0 | 0)f(1, 0) = 0

and E[f(ω1, ω2) | 1] = ρ(0, 1 | 1)f(0, 1) + ρ(1, 1 | 1)f(1, 1) = 1/2.

The model-based reasoner forms an identical posterior over states, but then
takes the expectation of her full-information belief to obtain

βi(0) = E[f i(ω1) | 0] = ρ(0, 0 | 0)f i(0) + ρ(1, 0 | 0)f i(1) = 1/4

and βi(1) = E[f i(ω1) | 1] = ρ(0, 1 | 1)f i(0) + ρ(1, 1 | 1)f i(1) = 1/4. �

2.3.3 Why Don’t Agents Choose the Right Model?

In a setting as simple as Example 1, how can the agent fail to simply calculate
the empirical frequency of F given either ω2 = 0 or ω2 = 1? More generally,
given an unlimited record of previous draws from the distribution ρ, why
not simply use the historical record to identify the correct model?

In practice, agents are confronted with finite data and a state space of
potentially infinite complexity, and an agent will never encounter data that
unambiguously contradicts whatever model she holds. Instead, anomalous
observations can always be explained away by unobserved factors. Indeed,
for every event and every set of data, there will an infinite collection of mod-
els that explain the data perfectly, making it impossible to use the data to
find the “right” model. And for every event, there will be an infinite list of
variables about which the agent could collect information, making it impos-
sible to be a pure empiricist. Al-Najjar (2009) and Gilboa and Samuelson
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(2012) elaborate on the futility of interpreting data without models.9 If she
is to make any meaningful use of the data, agent i must then appeal to some
model Mi. In order to focus on how and whether agents can “learn” from
each other, we have then made the extreme assumption (as does Spiegler,
2016) that the restriction captured in (1) holds with equality rather than
approximately, so that the agent makes perfect use of whatever model she
has.

Giacomini, Skreta, and Turén (2007) examine the behavior of 75 pro-
fessional forecasters. The object of each participant was to predict the US
inflation rate, for each of the years 2007–2014. Forecasting typically began
at the beginning of July of the preceding year (with slightly later initial
forecasts for 2007 and 2008), with individual forecasters updating their pre-
dictions at any time until the end of the year in question. Giacomini, Skreta,
and Turén (2007) argue that the forecasters in their sample appear to be
Bayesians (albeit much more so in non-crisis years), but with different mod-
els that lead them to different forecasts. In response to this disagreement,
the agents persevere in their belief in their models (again, more so in non-
crisis years) and in their disagreement. Such agents would find themselves
well at home in our setting.

3 Learning from Others

We now examine how agents update their beliefs in response to information
about others’ beliefs. There are K agents. Each agent i has a model Mi ex-
hibiting the properties outlined in Section 2.2, and has access to information
Ii. We refer to such a collection as a crowd.

In Section 2.3.2, we saw that model-based and oracular updating are
equivalent when Ii ⊆ Mi. To focus on the implications for model-based in-
ference that arise from the interaction between agents, we henceforth assume
Ii ⊆ Mi for each agent i.

Remark 3 (different models or different events?) We interpret our anal-
ysis as that of agents forming beliefs about a single event F , but with differ-

9Other papers examining interactions between agents who persist in holding different
models include Acemoglu, Chernozhukov, and Yildiz (2016) and Eyster and Piccione
(2013). Hong, Stein, and Yu (2007) examine a model in which agents restrict attention
to a class of models simpler than that of an (in our terms) agent oracle, but update their
beliefs about which model in the simple class is appropriate. The extension of our model
to such a setting would involve agents who restrict attention to different classes of models,
or follow different model-updating rules. The difficulties agents face in learning from other
agents would only be exacerbated in such a setting.
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ent models. The challenge is then to examine how agents infer information
relevant to their own models from other agents who have different models.
Returning to our example, the fundamentalist may recognize that there is
information to be gleaned about fundamentals from another agent who is
primarily concerned with charts.

Much of the analysis of this section could be recast as one in which every
agent is an oracle, but the agents are forming beliefs about different events.
The challenge is then to examine how agents infer information about their
own events from other agents who are concerned with other events. One
fundamentalist may be concerned with industrial stocks, while recognizing
that there is useful information to be gleaned from the beliefs of an analyst
who specializes in agricultural futures. For the purposes of much of this sec-
tion, it is a taste question which interpretation is most congenial. However,
our positive results on the various forms of agreement are most consistent
with our preferred interpretation.

�

3.1 Updating

We are interested in how agents update their beliefs in response to informa-
tion about others’ beliefs. There are three intertwined questions here. First,
how does agent i update her beliefs upon receiving information from agent
j, even while being convinced that j is confused in her model of the world
and hence that some of j’s information is irrelevant? Second, what if agent
i does not know player j’s model Mj , and hence does not know the extent
of j’s confusion? Third, how does player j transmit information to player
i? For example, is the price that agent i observes in a prediction market
enough for i to identify j’s beliefs?

We focus on the first question—how agent i updates her beliefs upon
receiving information from agent j. Agent i may find j’s information relevant
for two reasons. First, j may observe an event (or a dimension in the product
case) that appears in i’s model but i does not observe. A fundamentalist
may be convinced that the outcome of a firm’s recent drug trial is important,
but may not be privy to that outcome, and so may glean inferences from the
beliefs of an insider. Second, there may be correlations between the events,
so that knowledge of an event in j’s model but not in i’s model may be
useful to i. We allow for both.

We take an agnostic position on the second question. Our model is
consistent with two formally-equivalent assumptions of what agents know
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about each others’ models. On the one hand, each agent may know the
model of each other agent. Agent i will in general think that agent j is
confused in her choice of model, but can infer from j’s beliefs information
that i considers relevant. On the other hand, agents may know nothing
about others’ models. In this case, we assume that agent i can again appeal
to the historical record to infer, from any belief announced by j, information
that is relevant to i’s model.

Turning to the third question, the transmission of information between
agents depends on potentially fine institutional details. We might be inter-
ested in a centralized market, a decentralized market, or some other interac-
tion. The agents in a market may be able to observe the entire order book of
a market, or only the marginal offers, or only successful trades, or no offers
at all. We abstract from these and a host of other details by studying a pro-
cess of flawless belief exchange. We follow Geanakoplos and Polemarchakis
(1982) in examining the following protocol:

(a) First, each agent i observes their information in Ii (i.e., which events
in Ii realized or, in the product case, the realization ωIi) and forms
her interim belief.

(b) The agents (by assumption truthfully) simultaneously announce their
interim beliefs, and revise their beliefs in response to these announce-
ments.

(c) The agents announce their revised beliefs, and then again revise, and
again announce, and so on.

Formally, we assume this process continues indefinitely; we will say that the
process terminates if a stage is reached at which beliefs are not subsequently
revised.10

To make this process precise, fix ω and suppose that agent i has ob-
served her information while the other agents have announced the vector
b−i = (b1, . . . , bi−1, bi+1, . . . , bK), where the jth-element of the vector b−i

corresponds to agent j’s announced posterior probability bj of the event

10Geanakoplos and Polemarchakis (1982) assume the agents have finite information par-
titions, ensuring that the belief revision process terminates in a finite number of steps.
Sethi and Yildiz (2012) apply Geanakoplos and Polemarchakis (1982) to a model of de-
liberation with different priors. While the signals are normally distributed (and so agents
have infinite information partitions), there is no belief updating in their model after the
first round because the first round signals are a sufficient statistic of the relevant private
information.
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F (determined by j’s observation of his information). Letting B−i be the
σ-algebra on Ω generated by the announcement b−i, agent i forms her model-
based belief about the event F as

βi(ω, b−i) = E[f i|Ii,B−i](ω). (2)

For the product case, this can be written as (recalling footnote 8)

βi(ωIi , b−i) = E[f i|GIi
,B−i](ω). (3)

We see here again the nature of model-based updating. An agent-i oracle,
having collected the information (wIi , b−i), would form the belief

E[f |Ii,B−i](ω).

Intuitively, we can think of the agent-i oracle as collecting from the empiri-
cal record all those observations characterized by (wIi , b−i), and taking the
frequency of the event F in these observations as the posterior probability
of F . In calculating βi(ωIi , b−i), a model-based agent i similarly begins by
collecting all of the information available, consisting of (wIi , b−i), but then
first uses this information to revise her distribution over the elements ωM i ,
and then given this revised distribution, takes an expectation of her full-
information beliefs, yielding (3). Example 2 below shows how this leads to
differences in model-based and oracular beliefs.

Denote the first posterior announced by agent i by bi
0, the second poste-

rior by bi
1, and so on; the vector of announced posteriors is similarly denoted

by b0 = (bi
0, b

−i
0 ), b1 = (bi

1, b
−i
1 ), and so on. The beliefs we have examined to

this point are
bi
0 = βi(ω) and bi

1 = βi(ω, b−i
0 ).

Let B−i
1 denote the σ-algebra induced by the announcements (b−i

0 , b−i
1 ). Then

given the beliefs bi
0 = βi(ω) and bi

1 = βi(ω, b−i
0 ), an announcement by the

remaining agents of their updated posteriors bj
1 = βj(ω, b−j

0 ) results in agent
i updating her beliefs to

bi
2 = βi(ω, b−i

0 , b−i
1 ) = E[f i|Ii,B−i

1 ](ω).

Letting Bn denote the σ-algebra induced by (b0, . . . , bn), we have, for all
n,

bi
n+1 = βi(ω, b−i

0 , . . . , b−i
n ) = E[f i|Ii,B−i

n ](ω) = E[f i|Ii,Bn](ω),

where the last equality follows from σ(Ii,B−i
n ) = σ(Ii,Bn) (and σ(A,B) is

the σ-algebra generated by the σ-algebras A and B). Let b := (b0, b1, . . . )

13



denote the infinite collection of announcements and B∞ the σ-algebra in-
duced by b. It will also be useful to keep track of the beliefs of the public
oracle,

E[f |Bn] and E[f |B∞].

Intuitively, a public oracle is an agent whose theory is given by f , model
by F , and who observes the announcements of all players, but no other
information.

Since each agent and the public oracle follow Bayesian updating on the
sequence of increasingly informative announcements (filtrations) (B−i

n ) and
(Bn), the resulting sequence of updates are martingales and so converge
(with probability one under ρ) to limits which are measurable with respect
to the limit σ-algebras. Summarizing this discussion, we have the following.

Lemma 1 The updated beliefs

(E[f i|Ii,B−i
n ])∞n=1 and (E[f |Bn])∞n=1

are martingales, with ρ-almost-sure limits

E[f i|Ii,B−i
∞ ] and E[f |B∞].

Example 2 Suppose the state space is given by Ω = {0, 1}4. The pair
(ω1, ω2) is drawn from the distribution Pr{(ω1, ω2) = (0, 0)} = Pr{(ω1, ω2) =
(1, 1)} = 3

8 , Pr{(ω1, ω2) = (0, 1)} = Pr{(ω1, ω2) = (1, 0)} = 1
8 , and the

pair (ω3, ω4) is independently drawn from a distribution with an identical
correlation structure. The event is

F =
{

ω :
∑4

k=1
ωk ≥ 2

}
.

There are two agents. Agent 1’s model and information are given by

M1 = {1, 2, 3, 4} and I1 = {2, 3}

while agent 2’s are given by

M2 = {3, 4} and I2 = {4}.

This information is summarized in Figure 2, together with the interim beliefs
β1(ωI1) and β2(ωI2).

Now we turn to updating in response to others’ beliefs. First, consider
agent 1. Agent 2 observes only one piece of information, namely ω4, and
agent 2’s belief b2 reveals the value of ω4. Agent 1’s model-based belief,

14



State Prior 2’s theory Interim beliefs First-round updates Second round
(ω1, ω2, ω3, ω4) ρ f(ω) f2(ωM2) β1(wI1) β2(wI2) β1(ωI1 , b2

0) β2(ωI2 , b1
0) β2(ωI2 , b1

0, b
1
1, b

2
0)

(0, 0, 0, 0) 9/64 0 3/8 1/16 14/32 0 3/8 3/8
(0, 0, 0, 1) 3/64 0 5/8 1/16 29/32 1/4 5/8 5/8
(0, 0, 1, 0) 3/64 0 5/8 13/16 14/32 1/4 14/32 5/8
(0, 1, 0, 0) 3/64 0 3/8 13/16 14/32 3/4 14/32 3/8
(1, 0, 0, 0) 3/64 0 3/8 1/16 14/32 0 3/8 3/8
(0, 0, 1, 1) 9/64 1 1 13/16 29/32 1 29/32 29/32
(0, 1, 0, 1) 1/64 1 5/8 13/16 29/32 1 29/32 29/32
(1, 0, 0, 1) 1/64 1 5/8 1/16 29/32 1/4 5/8 5/8
(0, 1, 1, 0) 1/64 1 5/8 1 14/32 1 5/8 5/8
(1, 0, 1, 0) 1/64 1 5/8 13/16 14/32 1/4 14/32 5/8
(1, 1, 0, 0) 9/64 1 3/8 13/16 14/32 3/4 14/32 3/8
(1, 1, 1, 0) 3/64 1 5/8 1 14/32 1 5/8 5/8
(1, 1, 0, 1) 3/64 1 5/8 13/16 29/32 1 29/32 29/32
(1, 0, 1, 1) 3/64 1 1 13/16 29/32 1 29/32 29/32
(0, 1, 1, 1) 3/64 1 1 1 29/32 1 1 1
(1, 1, 1, 1) 9/64 1 1 1 29/32 1 1 1

M1 = {1, 2, 3, 4}, M2 = {3, 4},
I1 = {2, 3}, I2 = {4}.

Figure 2: The beliefs for Example 2. Agent 1’s theory agrees with the
indicator f and so is not listed separately.

given by (2), is then identical to the interim belief agent 1 would have if 1
observed {ω2, ω3, ω4}, and is identical to the belief of an agent-1 oracle. We
report these beliefs in Figure 2, in the column labeled β1(ωI1 , b2

0).
We now turn to agent 2. Suppose, first, b1

0 = 1. Agent 2 observes ω4,
and infers that agent 1 has observed ω3 = 1, leading agent 2’s posteriors
ρ(ωM2 | ωI2 , b1

0) to take on the values

ρ(1, 0 | 0, 1) = ρ(1, 1 | 1, 1) = 1.

Any information about ω2 in agent 1’s belief agent 2 considers irrelevant.
Agent 2’s updated beliefs β2(ωI2 , b1

0) about the event F are then given by

β2(0, 1) = f2(1, 0) = 5/8

and β2(1, 1) = f2(1, 1) = 1.
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We see here the difference between model-based and oracular updating.
An agent-2 oracle who observed ω4 = 0 and b1

0 = 1 would infer that the
state is (0, 1, 1, 0) with probability 1/2 and (1, 1, 1, 0) with probability 1/2,
thus limiting attention to the relevant lines of Figure 2 (just as an oracular
reasoner observing ω2 = 0 limits attention to the first and third lines of
Figure 1 in Example 1). Both states give rise to the event F , and so the
agent-2 oracle would attach posterior probability 1 to the event. In contrast,
the model-based updater who has observed ω4 = 0 and b1

0 = 1 draws the
inference that (ω3, ω4) = (1, 0). The agent then calculates her full informa-
tion probability of F , given only (ω3, ω4) = (1, 0), or equivalently calculates
the empirical frequency of the event F in all observations in the record in
which (ω3, ω4) = (1, 0), which is 5/8. Notice that these observations include
(0, 0, 1, 0), (0, 1, 1, 0), (1, 0, 1, 0), and (1, 1, 1, 0). The agent-2 oracle ignores
the first and third of these, on the grounds that agent 1’s announcement of
b1
0 = 1 precludes these two states. However, the model-based reasoner views

ω1 and ω2 as irrelevant—indeed, may not even recognize the existence of
these dimensions—and hence ignores this information, making use only of
the information that (ω3, ω4) = (1, 0).

The case of b1
0 = 1/16 is similar.

Finally, suppose b1
0 = 13

16 . Unlike the previous two cases, this observation
does not unambiguously identify player 1’s observation, pooling (0, 1) and
(1, 0). Instead, player 2’s updated distribution ρ2(ωM2 |ωI2 , b1

0) takes on the
values

ρ(0, 0 | 0, 13/16) = 3/4,

ρ(1, 0 | 0, 13/16) = 1/4,

ρ(0, 1 | 1, 13/16) = 1/4,

and ρ(1, 1 | 1, 13/16) = 3/4.

Agent 2’s updated beliefs β2(ωI2 , b1
0) about the event F are then given by

β2(0, 13/16) = ρ(0, 0 | 0, 13/16)f2(0, 0) + ρ(1, 0 | 0, 13/16)f2(1, 0) = 14/32

and

β2(1, 13/16) = ρ(0, 1 | 0, 13/16)f2(0, 1) + ρ(1, 1 | 0, 13/16)f2(1, 1) = 29/32.

Again, these beliefs differ from those of an agent-2 oracle, who attaches
probabilities 5/8 (after observing (ω4, b

1
0) = (0, 13/16)) and 1 (after observ-

ing (ω4, b
1
0) = (1, 13/16)) to event F . The results of agent 2’s updating
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are reported in the column β2(ωI2 , b1
0). This concludes the first round of

updating.
The next step calls for the agents to announce their updated beliefs

to one another. Agent 1 learns nothing new from this new announcement.
Agent 2’s original announcement revealed all of 2’s information to 1, namely
the value of ω4, and so agent 1 draws no further inferences (and the table
contains no further column for agent 1).

Agent 2 does update in response to agent 1’s announcement, giving rise
to the column β2(ωI2 , b1

0, b
1
1, b

2
0). First, suppose agent 1 announces the belief

1/16 on the first round. This announcement reveals to agent 2 that ω3 = 0
(and also that ω2 = 0, though 2 considers this information irrelevant), and
there is nothing more for 2 to learn from 1’s subsequent announcement of
either 0 or 1/4. Agent 2’s beliefs are unchanged in this case. A similar
argument applies if agent 1 announces a belief of 1.

Suppose that 1’s initial announcement was 13/16, and 2’s observation
is ω4 = 1 (and hence 2’s report was 29/32). Agent 1’s updated belief is
always 1 in this case, and hence there is no new information for agent 2
to process on the second round. In this case, 2’s beliefs remain unchanged.
Suppose, however, that 2’s initial observation was ω4 = 0 (and hence 2’s
report was 14/32). Now suppose 2 observes that 1 has revised her belief to
1/4. This reveals to 2 that ω3 = 1. (It also potentially reveals that ω2 = 0,
but 2 considers this information irrelevant and ignores it.) Agent 2 then
notes that when (ω3, ω4) = (1, 0), the full-information belief of the event F
is 5/8, and this becomes 2’s new belief. Analogously, suppose that 2’s initial
observation was ω4 = 0 (and hence 2’s report was 14/32). Now 2 observes
that 1 has revised her belief to 3/4. This reveals to 2 that ω3 = 0. Agent
2 then notes that when (ω3, ω4) = (0, 1), the full information belief of the
event F is 3/8, and this becomes 2’s new belief. We report these beliefs in
column β2(ωI2 , b1

0, b
1
1, b

2
0).

It is straightforward to check that subsequent rounds of announcements
have no further effect on beliefs. �

3.2 How Revealing are Beliefs?

We might go further in our quest to give our agents the best chance at ag-
gregating information, by simply having them announce their information
rather than their beliefs to one another. However, while we are comfortable
in abstracting from the details of market microstructure by using the ex-
change of beliefs as a convenient proxy for the workings of a market, we are
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not comfortable simply assuming the market will reveal all of the agents’
information.

This difference matters. As illustrated by Geanakoplos and Polemar-
chakis (1982, Proposition 3) in the product case, an agent oracle need not
hold the same beliefs as someone who can observe the information contained
in ∪K

k=1I
k.11 Instead, some player k’s belief announcements may pool to-

gether some of the information contained in Ik.
Constructing such product case examples is straightforward, and does

not exploit misspecification in the agents’ models. Suppose each of K oracu-
lar agents observes an independent, equiprobable draw from {0, 1}, and that
the event F occurs if and only if these draws agree. Then the agents’ be-
liefs are uninformative, and the agents will not revise their beliefs no matter
how many announcements they make, even though a single announcement
of their information would be instantly informative.

One might object that this example is special, both because it would take
only a single agent whose information set includes more than one dimension
to ensure that some information is transmitted, and because the probability
of the event F is small if K is large. Appendix A.2 describes an example
that addresses these concerns.

One might then counter that the pooling encountered in these examples
is nongeneric (Geanakoplos and Polemarchakis, 1982, Proposition 4). In-
deed, one might argue that for a generic specification of prior beliefs, each
agent’s first announcement reveals that agent’s information, and hence we
need not worry about the difference between beliefs and information, and
certainly need not worry about multiple rounds of announced beliefs.

We first note that if the state space is a (multi-dimensional) continuum
with agents receiving continuously distributed signals, and if an agent ob-
served several signals, then a one-dimensional announcement will typically
(and generically) not reveal all the agent’s information. We find it conve-
nient in the examples to strip away complications by working with discrete
signals, but are then unwilling to appeal to genericity arguments. Second,
even within a discrete framework, the space of prior beliefs may not be the
appropriate space to seek genericity. For example, the factors determining
which state has occurred may be summarized by a tree, with random moves
at decision nodes and terminal nodes corresponding to states. We would
then apply genericity arguments to the mixtures appearing in the tree. If
this tree has a nontrivial structure, then generic specifications of the proba-

11The limit beliefs held by an agent oracle are Geanakoplos and Polemarchakis’s (1982)
indirect communication equilibrium beliefs.
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bilities appearing in the tree will induce probability distributions over states
that appear nongeneric, but that we nonetheless view as robust.

We believe that the repeated announcement of beliefs gives us infor-
mation transmission similar to that allowed by (for example) the common
knowledge that agents are willing to trade, sufficiently so that we are will-
ing to avoid modeling the fine details of the market interaction by working
directly with sequences of belief announcements. However, we are not con-
vinced that market or other interactions will necessarily reveal every detail
of every agent’s information, and so would be skeptical of a model that
precluded pooling.

We have noted that pooling can prevent the complete learning of agents’
information, even with correctly specified models. Our next example illus-
trates a phenomenon that can only arise with agents having different models:
increasing the information of one agent (even when another agent thinks the
information is valuable) can result in a deterioration of inferences.

Example 3 We jump immediately to the tabular presentation of this prod-
uct case example, which includes all the relevant information, presented in
Figure 3. In contrast to the presentation of our earlier examples, we re-
place the column specifying the indicator function, f , with f∗, its expected
value conditional on all the agents’ model dimensions, i.e., f∗(ω) := E[f(ω) |
ω1, ω2, ω2]. In Example 2, N = ∪iM

i, which is to say that the dimensions
contained in {0, 1}∪iM

i
suffice to determine the value of f . In the current

example, there are additional dimensions in the state space that we have
not presented. These dimensions lie outside all agents’ models, and play a
role in the analysis only to the extent that they shape the values of f∗ and
so we omit them from the table.

Since ω1 is independent of (ω2, ω3), agent 2 learns nothing from agent 1
and does no updating. Agent 1’s learns the realization of ω2 from agent 2,
and so does one round of updating. In four of the states, agent 1 learns the
probability of F , namely 0. Agent 1 overestimates the value of F in two of
the remaining four states and underestimates it in the remaining two states.

Now suppose we give agent 2 more information, as displayed in Figure 4.
Agent 2 again does not update, while agent 1 does one round of updating.
As a result of the additional information, agent 2 now pools her states.
Agent 1 does not estimate the probability of F correctly in any state. �
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State Prior Interim beliefs First-round update
(ω1, ω2, ω3) ρ f∗(ω) β1(ωI1) β2(ωI2) β1(ωI1 , b2

0)
(0, 0, 0) 1/10 0 (2x + y)/5 (x + y)/4 0
(1, 0, 0) 1/10 x (x + y)/5 (x + y)/4 (x + y)/2
(0, 0, 1) 1/10 0 (2x + y)/5 (x + y)/4 0
(1, 0, 1) 1/10 y (x + y)/5 (x + y)/4 (x + y)/2
(0, 1, 0) 2/10 x (2x + y)/5 (2x + y)/6 (2x + y)/2
(1, 1, 0) 2/10 0 (x + y)/5 (2x + y)/6 0
(0, 1, 1) 1/10 y (2x + y)/5 (2x + y)/6 (2x + y)/2
(1, 1, 1) 1/10 0 (x + y)/5 (2x + y)/6 0

Ω = {0, 1}3, M1 = {1, 2, 3}, M2 = {2, 3},
I1 = {1}, I2 = {2}.

Figure 3: The beliefs for Example 3.

State Prior Interim beliefs First-round update
(ω1, ω2, ω3) ρ f∗(ω) β1(ωI1) β2(ωI2) β1(ωI1 , b2

0)
(0, 0, 0) 1/10 0 (2x + y)/5 x/2 2x/3
(1, 0, 0) 1/10 x (x + y)/5 x/2 x/3
(0, 0, 1) 1/10 0 (2x + y)/5 y/2 y/2
(1, 0, 1) 1/10 y (x + y)/5 y/2 y/2
(0, 1, 0) 2/10 x (2x + y)/5 x/2 2x/3
(1, 1, 0) 2/10 0 (x + y)/5 x/2 x/3
(0, 1, 1) 1/10 y (2x + y)/5 y/2 y/2
(1, 1, 1) 1/10 0 (x + y)/5 y/2 y/2

Ω = {0, 1}3, M1 = {1, 2, 3}, M2 = {2, 3},
I1 = {1}, I2 = {2, 3}.

Figure 4: The result of giving agent 2 in Figure 3 increased information.
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3.3 Properties of the Belief Updating Process

The following proposition gathers some information about the belief-updating
process. Recall that throughout, we maintain the assumption that Ii ⊆ Mi

for all i, and that b = (b0, b1, . . . ) denotes the complete sequence of publicly
announced beliefs with associated σ-algebra B∞. We introduce the omni-
scient oracle, who (in addition to having the model F , or N in the product
case) knows the realization of the state.

Proposition 1

1. If Mj is finite for all j ∈ {1, . . . ,K}, then b is eventually constant,
i.e., the updating process terminates. Upon termination, posterior be-
liefs need not be equal.

2. If Mj is infinite for at least two j ∈ {1, . . . ,K}, then while the updat-
ing process may not terminate, the beliefs do converge to limits that
need not be equal.

3. Once an agent’s belief equals 0 or 1, that agent’s belief agrees with those
of the omniscient oracle, and so are never subsequently revised.12

4. Two agents cannot simultaneously assign a belief of 0 and 1 to the
event F .

5. Agent i’s private information is only pooled in the limit if it doesn’t
make any difference to agent i. Formally,

E[f i | Ii,B∞] = E[f i | B∞].

6. If f is measurable with respect to Mi, then f i = f and agent i’s limit
belief equals the agent-i oracular and public oracular belief, that is,

E[f | Ii,B∞] = E[f i | Ii,B∞]

= E[f i | B∞]

= E[f | B∞].

12So model-based reasoners cannot match the common description of being “often wrong
but never in doubt.”
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7. If ∪K
j=iI

j ⊆ Mi, then agent i’s limit belief equals the agent-i oracular
and public oracular belief,

E[f | Ii,B∞] = E[f i | Ii,B∞]

= E[f i | B∞]

= E[f | B∞].

Proof.

1. At each round n of the updating process, agent i’s belief about the
event F is the expectation of i’s full-information belief conditioning
on the σ-algebra reflecting information revealed by the collective an-
nouncements of the agents and i’s information, σ(Ii,Bn). The se-
quence (σ(Ii,Bn))∞n=0 is a filtration, with each σ-algebra being coarser
than σ(I1, . . . , IK).

If all Mj are finite, then each σ(Ii,Bn) and σ(I1, . . . , IK) are gen-
erated by finite partitions, and so the filtration must eventually be
constant, ensuring that the updating process terminates. Example 2
shows that the limit beliefs need not agree.

2. The convergence of agent i’s beliefs is an implication of the observation
that beliefs are a martingale (Lemma 1). Appendix A.3 describes a
product case example with infinite M1 and M2 in which updating
proceeds for an infinite number of rounds, with beliefs converging to
limits that (with positive probability) are not equal.

3. A belief bi
n for agent i can equal an extreme value (0 or 1) at some

round n if and only if the full-information belief f i(ω) takes the same
extreme value on a full ρ-measure event in σ(Ii,Bn), which implies
the omniscient oracle has the same beliefs on a full ρ-measure event in
σ(Ii,Bn), and so on every subsequent subevent in the sequence.

4. This is immediate since the omniscient oracle cannot have two distinct
beliefs.

5. Proof is by contradiction. Suppose that

E[f i | Ii,B∞] 6= E[f i | B∞].

Then, B∞ must pool together some states that agent i does not pool
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together, and on which f i is not constant.13 But if this were the case,
then there would be an announcement from agent i not contained in
B∞, a contradiction.14

6. Immediately follows from the definitions and item 5.

7. We verify the first equality. Since σ(Ii,B∞) ⊆ σ(∪jIj), if ∪jIj ⊆ Mi,
then σ(Ii,B∞) ⊆ σ(Mi), and so

E[f i | Ii,B∞] = E[E[f | Mi] | Ii,B∞]

= E[f | Ii,B∞],

where the first equality is just (1) and the second applies the law of
iterated expectations.

The second equality is just item 5 above, while the third equality is
established by an identical argument to that which verified the first
equality.

Agent 2’s limit model-based beliefs in Example 2 are equal to those of
an omniscient oracle for the states reported in the final two lines of Figure 2,
in keeping with Proposition 1.3. In every other case, agent 2’s limit model-
based beliefs differ from her agent oracular beliefs (which equal the column
β1(ωI1 , b2

0) in Figure 2, since agent 1 is an agent oracle).

3.4 Common Knowledge

We now explore the sense in which, once beliefs in the belief revision process
have converged, the resulting beliefs, though different, are common knowl-
edge. Here, we find it most natural to adopt the interpretation that the
agents understand each others’ models.

Suppose each agent’s model Mi is finite. We can think of agent i’s
model as described by a finite partition of Ω and, since Ii ⊆ Mi, agent
i’s information as a coarser partition of Ω. The announcement of a belief
bi implies that the event that led agent i to having that belief is common
knowledge, and so all agent’s information partitions are refined. After round

13More precisely, there exist two positive probability events E and E′ in σ(Ii,B∞) not
separated by B∞ (i.e., for all events B ∈ B∞, we have either E, E′ ⊆ B or (E∪E′)∩B = ∅)
for which E[f i | E] 6= E[f i | E′].

14Appendix A.4 shows that Proposition 1.5 does not hold for agent oracles.
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n announcements, all agents have new partitions, and the intersection of the
events leading to the round n announcements is common knowledge (though
beliefs conditional on the intersection need not be common knowledge).

We say that a vector of beliefs (b1, . . . , bK) is common knowledge at state
ω if these beliefs prevail at every state in that element of the meet of the
agents’ partitions containing ω, and their announcement does not lead to
further revision of the partitions.

Intuitively, if the true state was not contained in a common knowledge
event containing the final posteriors to be announced, then there would be
further revision. This leads to:

Proposition 2 If Mi is finite for all i, then once the updating process
terminates, the resulting beliefs are common knowledge.

Proof. Each agent’s interim belief, and each subsequent announcement by
that agent, must be measurable with respect to the agent’s partition. Each
announcement thus gives rise to a common knowledge event. Moreover, for
each player, these common knowledge events are descending, and hence form
a sequence that is eventually constant. By Proposition 1.5, the limit beliefs
are constant on this limit set, and so their announcement does not change
agents’ partitions. Moreover, since the Mi are finite, all players know the
finite time by which the updating process terminates, and so at that time
the beliefs are common knowledge.

Remark 4 (common knowledge with infinite models) When the mod-
els are infinite, as in Example A.3, the belief revision process may continue
without end. At no stage during the belief-revision process in Appendix A.3
are the beliefs common knowledge. Despite this difficulty, there is an ap-
propriate notion of common knowledge when the models are infinite (due to
Brandenburger and Dekel, 1987) that we apply in Appendix A.5 and show
that the limit beliefs are again common knowledge. �

The common knowledge of limit beliefs implies an agreement theorem.

Proposition 3 If all agents have the same (finite) model M, then all agents
have the same limit beliefs, for all possible information structures.

Proof. In each round, all agents are updating their beliefs on the same
partition M, and since beliefs are common knowledge, they must agree
(Aumann, 1976).
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We restrict attention in the statement of this result to finite models in order
to apply Aumann’s theorem. This result is immediately intuitive, since
the coincidence of agents’ models removes the friction that leads agents to
different beliefs. Technical complications, arising out of the potential need
to condition on zero-probability events, appear in extending the result to
infinite models. Green (2012) presents an agreeing-to-disagree result for
infinite models that would allow such an extension. Section 4.1 shows that
there is little hope short of common models for agents’ beliefs to coincide.

4 When Are Crowds Confused?

This section establishes a pair of negative results. We focus throughout this
section on the product case. More general results hold that are similar in
spirit, but considerably more cumbersome to state and interpret.

First, if realizations are drawn independently across dimensions and
agents’ models and information exhibit nontrivial differences, then the pro-
cess of belief exchange will not lead agents to the same beliefs. This first
result is expected. Crowds are expected to be wise not because they lead
people to the same belief, but because they allow diverse beliefs to be ag-
gregated in an informative way. Our second result is that in general, the
process of belief exchange will not ensure that some aggregate measure of
their beliefs will be close to the belief of an agent who held the correct model.

4.1 Do Crowds Agree?

In one sense, it is obvious (and our earlier examples confirm) that when
agents have substantively different models, their limit beliefs may not agree.
In this section, we show that this failure is unavoidable—people who have
different models are bound to disagree.

To ease notation, we consider the product case and suppose there are
two agents. We say that limit beliefs necessarily agree if, for all ω ∈ Ω, the
limit beliefs of agents 1 and 2 are equal, i.e.,

E[f1|GI1
,B∞] = E[f2|GI2

,B∞]. (4)

The left side is agent 1’s model-based belief, giving 1’s observation of ωI1

and the announced sequence of beliefs, and the right side is agent 2’s corre-
sponding belief.

We say that the subset Ĩ i is redundant in agent i’s model if f i is mea-
surable with respect GM i\Ĩi

.
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Proposition 4 Suppose in the product case, the values ωk are drawn inde-
pendently, and K = 2. If for some i ∈ {1, 2}, I i \ M j is not redundant for
agent i, then the limit beliefs of agents 1 and 2 do not necessarily agree.

Proof Suppose I1 \M2 is not redundant for agent 1. Since the dimensions
are independent, the announcements of agent 2 only convey information
about the dimensions in M2, and since agent 1’s theory f1 is not mea-
surable with respect to GM1\(I1\M2), agent 1’s limit beliefs will vary over
GI1\M2

. Agent 2’s limit beliefs, however, must ignore any information about
dimensions outside M2 (again because of independence), and so limit beliefs
cannot necessarily agree.

This result indicates that agents’ limit beliefs always agree only if agents
have no useful information about the sources of disagreement between their
models.

The argument in Proposition 4 leaves open the possibility that if there is
correlation between these values, then it may well be that agent 1 observes
information that is useful to agent 2, not because it appears in 2’s model
but because it is correlated with the values of other dimensions in 2’s model
(that 2 does not observe), all while beliefs necessarily agree. The example
in Appendix A.6 illustrates that this can indeed occur. Moreover, Section 5
shows that strong correlation implies limit beliefs will be close,

4.2 Are Crowds Wise?

The point behind the “wisdom of the crowd” is not that the crowd makes
individuals wise, but that the crowd itself is wise. We can thus reasonably
assert that information is aggregated, even though various agents disagree,
as long as the crowd forms beliefs that are “correct on average.”

We have introduced agent oracles, the public oracle and the omniscient
oracle. We now introduce the universal oracle, who has access to all of the
agents’ information and hence has beliefs E[f | I1, . . . , IK ].

All oracular beliefs are based on the true indicator function f . The dif-
ference between the different oracles is the information on which the oracles
condition. In order of increasing information, the public oracle has the least
information (namely, B∞), followed by an agent’s oracle (who has both B∞

and that agent’s information Ii), then the universal oracle, and finally the
omniscient oracle.

The least demanding standard for beliefs being correct on average is that
the universal oracular belief lies in the convex hull of the agents’ updated
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State Prior Theories
(ω1, ω2) ρ f∗(ω) f1(ωM1) f2(ωM1)
(0, 0) 1/4 7/8 1/2 9/16
(0, 1) 1/4 1/8 1/2 1/2
(1, 0) 1/4 2/8 9/16 9/16
(1, 1) 1/4 7/8 9/16 1/2

X = {0, 1}, M1 = {1}, M2 = {2},
I1 = {1}, I2 = {2}.

Figure 5: The universal oracular beliefs are not in the convex hull of agent
beliefs.

beliefs. Unfortunately, even this mild requirement is not guaranteed.

Example 4 We examine a product case in which M1∪M2 = Ω = I1∪I2 =
Ω, so every dimension appears in the model of at least one agent and is also
observed by at least one agent. This presents conditions most favorable
to information aggregation. Consider the environment in Figure 5. Both
agents observe the information they deem relevant, neither updates, and
their beliefs are given by their theories. In every state, the universal oracular
belief (given by f∗(ω)) lies outside the convex hull of the agents’ limit beliefs.

�

Our next proposition shows it is a more general result that the universal
oracular belief lies outside the convex hull of the model-based beliefs. We
say a model G̃ is sufficient if f is measurable with respect to the completion
of G̃, i.e., if the events in G̃ suffice to determine whether the event F has oc-
curred.15 In the product case, a subset Ñ ⊂ N is sufficient if the dimensions
in Ñ suffice to determine whether F has occurred. Obviously N is always
a sufficient set. If there are smaller sufficient sets, then there will be many
smaller sufficient sets. There is always at least one minimal sufficient set,
and there may be multiple minimal sufficient sets (e.g., if the realizations
on some dimensions are perfectly correlated).

Proposition 5 In the product case, let ∪K
k=1M

k = ∪K
k=1I

k = Ñ for some
minimal sufficient set Ñ , with the Mk mutually disjoint and Mk ( Ñ for

15The completion of a σ-algebra G is the σ-algebra generated by G and all the zero
measure subsets.

27



each k. Then there exist states for which the universal oracular belief lies
outside the convex hull of the model-based beliefs.

Proof Suppose first that beliefs reveal the agent’s information, i.e., B∞ =
σ(GI1

, . . . , GIK
). Then the agents’ limit model-based beliefs will be their

full-information beliefs. However, because f is not measurable with respect
to the completion of any GMj

, for every agent there is a state at which her
beliefs do not equal 0 or 1.

We now argue that there is a state at which no agent’s beliefs equal 0
or 1. Suppose not. Then (up to sets of ρ-measure zero), from which (along
with the fact that f is not constant) it cannot be the case that for every
state, there is at least one agent whose belief is either 0 or 1.16 Because Ñ
is sufficient, the universal oracular belief will always be 0 or 1, and hence
must sometimes lie outside the convex hull of the agents beliefs. If beliefs
are not revealing, then the agents have less information, and so again there
cannot be an agent whose beliefs are always either 0 or 1.

The principle behind this result is reminiscent of Roux and Sobel’s (2015)
argument that groups will typically have more precise information than any
individual in the group, and hence will react more strongly to that infor-
mation.17 Notice that our result holds in the absence of pooling announce-
ments, and so is not simply a statement that the universal oracle has more
information than does any single agent—in the limit they will often have
identical information. However, the universal oracle has a more encompass-
ing model than any of the individuals in the crowd, and hence makes use of
more information, leading to more extreme beliefs.

16Recall that a full-information belief f i(ωMi) can equal 1 only if f(ωMi , ω−Mi) = 1 for
almost all ω−Mi . We couple this with the product structure of the agent’s disjoint models
to conclude that if there is in every state an agent whose full-information belief is either
0 or 1, then these beliefs must either be almost all 0 or almost all 1, which is to say that
f must be almost surely constant.

17Roux and Sobel (2015) examine Bayesian agents with common preferences and holding
a common view of a monotonic decision problem (so that only the magnitude, and not the
direction, of the optimal decision is in question). They identify conditions under which the
optimal action of the group is more variable than the distribution of actions taken by the
members of the group. The underlying idea is that the group has more precise information
than any individual, and hence will respond to this information more vigorously than will
an individual. As a result, in those circumstances in which an extreme decision is optimal,
individuals will move only slightly toward that extreme, even if they have extreme signals,
because their individual signals are noisy. The group, facing a collection of extreme signals,
essentially has a very precise extreme signal, and hence will move far in that direction.
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State Prior Interim beliefs
(ω1, ω2, ω3) ρ f(ω) β1(ωI1) β2(ωI2)

(0, 0, 0) 1/8 1 1 1/2
(0, 0, 1) 1/8 1 1 1/2
(0, 1, 0) 1/8 1 1/2 1
(0, 1, 1) 1/8 0 1/2 0
(1, 0, 0) 1/8 0 0 1/2
(1, 0, 1) 1/8 0 0 1/2
(1, 1, 0) 1/8 1 1/2 1
(1, 1, 1) 1/8 0 1/2 0

Ω = {0, 1}3, M1 = {1, 2}, M2 = {2, 3},
I1 = {1, 2}, I2 = {2, 3}.

Figure 6: The beliefs for Example 5. The updating process terminates with
the interim beliefs.

Proposition 5 shows that if the agents have distinct views of the world,
in the sense that their models do not intersect, then the universal oracular
belief will invariably sometimes lie outside the convex hull of the agents’
beliefs. Example 5 shows that if the agents have more similar models, in
the sense of sharing some common dimensions, then it is possible (though
not guaranteed) that the convex hull of the agents’ beliefs may contain
the universal oracular belief. This provides the first hint of a theme we
develop in the next section: crowds can effectively aggregate information if
the agents’ models have enough in common, even though information may
be widely dispersed and the agents’ models may yet exhibit significant (even
pervasive) differences.

Example 5 Consider the crowd presented in Figure 6. The models of
agents 1 and 2 share one dimension in common. In each state ω, one agent
has a belief matching the universal oracular belief f(ω), and hence the latter
lies in the convex hull of the agents’ beliefs. �

5 What Makes A Crowd Wiser?

Section 4 makes it clear that for an arbitrarily fixed crowd, we cannot in
general expect limiting model-based beliefs to reflect universal oracular be-
liefs. Nonetheless, Surowiecki (2004) argues that appropriately configured
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crowds are wise, emphasizing that crowds should have diverse points of view,
independent reasoning, and a decentralized structure.

This section presents three variations on the result that crowds will ef-
fectively aggregate information if their members have a sufficiently common
understanding. The agents need not have similar information, and indeed
each individual agent may have very little information. The market will
aggregate their information, as long as their models by which they inter-
pret this information are not too different. We develop these results for the
general case, with the exception that the attendant notational complexities
force as to seek refuge in the product case when presenting Proposition 8.

5.1 Correlated Model Predictions

If the realizations in the agents’ different models are sufficiently correlated
across models, then their limit beliefs will be close. We view this correlation
as an indication that the agents’ models are, for practical purposes, nearly
the same. The extreme case involves agents whose models are disjoint, but
whose realizations are perfectly correlated, so that the agents effectively
have the same model described in different languages.

Proposition 6 Fix agent i’s theory f i. For any ε > 0, there is an η < 1
such that if the coefficient of correlation between agent i’s theory f i and
agent j’s theory f j is at least 1 − η, then agents i’s and j’s limiting beliefs
are within ε of one another with probability 1 − ε.

This proposition imposes the correlation requirement on f i and f j , rather
than, in the product case, imposing a (stronger) requirement on the corre-
lation between ωM i and ωMj , because correlation is relevant only for those
dimensions that play a role in affecting beliefs about F .

The proof first shows that if two agents’ theories are perfectly correlated
ex ante, then their updated beliefs must be identical. In this case, the
agents effectively have identical models with different descriptions. We then
show that if two agents’ theories are close ex ante, then their limit beliefs
must, with high probability, be close. The delicateness in establishing this
seemingly intuitive result arises in showing that it holds irrespective of the
nature of the updating. The following lemma (proved in Appendix A.7),
which will also be useful later, provides a key technical result.

Lemma 2 Suppose (fn)n is a sequence of F-measurable functions converg-
ing almost surely to the F-measurable function f †. For all δ > 0, there exists
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a set Ωδ with ρ(Ωδ) > 1− δ and an integer Nδ such that for all n > Nδ and
for all σ-algebras H ⊆ F ,

∣
∣
∣E[f †|H](ω) − E[fn|H](ω)

∣
∣
∣ < δ ∀ω ∈ Ωδ.

Proof of Proposition 6. Suppose first that the coefficient of correlation
between f i and f j equals 1. Then f j −Ef = α(f i −Ef) ρ-almost surely for
some constant α > 0. Suppose f i is not constant (if it were, the result is
trivial), so that for some x > 0, Ef + x is in the support of f i.

We now argue that α = 1. En route to a contradiction, suppose α > 1
(a similar argument rules out α < 1). Fix ε > 0 so that α(x − ε) > x and
set B(x) := {ω : x − ε ≤ f i(ω) − Ef ≤ x}. We may assume ρ(B(x)) > 0
(if not, marginally increasing the value of x yields a positive measure set).
Then, for y = αx and B′(y) := {ω : y − αε ≤ f j(ω) − Ef ≤ y}, we have
ρ(B(x)ΔB′(y)) = 0. From (1), we then have

xρ(B(x)) ≥
∫

B(x)
(f i(ω) − Ef) dρ

=
∫

B(x)
(f(ω) − Ef)dρ

=
∫

B′(y)
(f(ω) − Ef)dρ

=
∫

B′(y)
(f j(ω) − Ef)dρ ≥ (y − αε)ρ(B′(y)),

and so x ≥ α(x − ε), a contradiction.
From Proposition 1.5, we have that agent i’s limiting belief E[f i|Ii,B∞]

equals E[f i|B∞] which equals E[f j |B∞], and so agent i and j’s limiting
beliefs agree on any sequence of announced posteriors.

Turning to the approximation, it is enough to prove that we can make
E|f i − f j | arbitrarily small by choosing η sufficiently small. We prove the
latter by contradiction. If not, then there exists ε > 0 such that for all
n > 0 there exists f j

n such that the correlation between f i and f j
n is at least

1 − 1/n and yet E|f i − f j
n| > ε.

Define X := f i − Ef and Yn := f j
n − Ef . Then,

E[YnE(X2) − XE(XYn)]2 = E(X2)[E(X2)E(Y 2
n ) − E(XYn)2]

≤ E(X2)[E(X2)E(Y 2
n ) − (1 − 1/n)2EX2EY 2

n ]

= (EX2)2EY 2
n [1 − 1 + 2/n − 1/n2],
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and so YnE(X2) − XE(XYn) converges in mean square to 0 (since EY 2
n is

bounded above by 1
4). If (Yn) (or any subsequence) has a limit in mean

square (and so a limit in mean), then that limit must equal X (for the
reasons above). We will show that every subsequence has a convergent
subsubsequence, which implies that the original sequence converges to X.

We use n to index an arbitrary subsequence and let αn := EXYn/E(X2),
so that Yn − αnX converges to 0 in mean square. We claim that (αn)
has a convergent subsequence. For, if not, then |αn| → ∞, which implies
EY 2

n → ∞, which is impossible.
Suppose (αnk

) converges to some α. Then,

0 ≤ E(Ynk
− αX)2 ≤ E(Ynk

− αnk
X)2 + E(α − αnk

)2X2 → 0,

and so Yn converges in mean square to αX, and so α = 1.
It remans to argue that for n sufficiently large, with probability at least

1 − ε, ∣
∣E[Yn|I

j ,B∞] − E[X|Ii,B∞]
∣
∣ < ε.

By Proposition 1.5, this inequality can be rewritten as

|E[Yn|B∞] − E[X|B∞]| < ε.

Since every subsequence of (Yn)n has a sub-subsequence almost surely con-
verging to X, the desired result is implied by Lemma 2.

5.2 Models with a Common Component

The following result shows that if the agents’ models share a large enough
common component, then their beliefs cannot be too different from one
another. We maintain our assumption that for each agent i, we have Ii

n ⊆
Mi

n.

Proposition 7 Consider a sequence of crowds with models (M1
n, . . . ,MK

n )∞n=1,
where each (Mi

n)n is a filtration. Suppose that for all i and j, σ(Mi
1,M

i
2, . . . ) =

σ(Mj
1,M

j
2, . . . ). Then, for all (ρ, f) and for every δ > 0, there exists Nδ

such that for any accompanying sequence of information (I1
n, . . . , IK

n )∞n=1,
for all n > Nδ, with probability at least 1 − δ, the limit beliefs of any agent
i is within δ of the public oracular belief, and so with probability at least
1 − 2δ, within 2δ of the limit beliefs of any other agent j.

32



The second sentence of the proposition ensures that as n grows, if agents’
models also grow, the agents’ models have more and more in common (and
if the models are constant, then they agree). Notice that we do allow
σ(Mi

1,M
i
2, . . . ) ( F), so that no agent i ever acquires a complete un-

derstanding of the event F , and at the the extreme the hypotheses of the
proposition are also consistent with all agents having a common fixed model.

In the product case, the the proposition requires that as the agents’
models grow, they have more dimensions in common. A simple but more
demanding assumption in the product case is that any dimension that ap-
pears in an agent’s model eventually appears in every agent’s model. Notice
that this requirement is consistent with the agents having an arbitrarily
small, even zero, proportion of their models in common, for every term in
the sequence of crowds.18

As agents’ models share an increasing common component, the agents
come to share common beliefs, and these beliefs will be close to the public
oracular belief. If the agents have access to little information, their beliefs
will be rather uninformative, while agents with access to ample information
will have beliefs close to those of an omniscient oracle.

The idea behind the proof is that as the models become increasingly
sophisticated, differences in the explanatory power of the excluded events
disappear.

Proof. Fix a value δ > 0. Define

M∞ := σ(Mi
1,M

i
2, . . . )

(which is, by assumption, independent of i) and set f̂ := E[f | M∞].
Agent i’s theory under her nth model is given by

f i
n = E[f | Mi

n] = E[f̂ | Mi
n]

(where the second equality follows from Mi
n being coarser than M∞ and

the law of iterated expectations). Since (Mi
n)n is a filtration, with limit

σ-algebra M∞,
f i

n → f̂ ρ-a.s.

Our goal is to show that with probability at least 1 − δ, we have
∣
∣
∣E[f i

n | GIi
n ,B∞(n)] − E[f | B∞(n)]

∣
∣
∣ < δ,

18For example, in the product case, agent 1’s nth model may be {1, 2, 3, . . . , n} ∪
{1, 3, 5, 7, . . . } and agent 2’s nth model may be {1, 2, 3, . . . , n} ∪ {2, 4, 6, 8, . . . }.
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where B∞(n) is the σ-algebra induced by the sequence of publicly announced
beliefs for the nth crowd.

By Lemma 2, with probability at least 1 − δ, we have
∣
∣
∣E[f i

n | B∞(n)] − E[f̂ | B∞(n)]
∣
∣
∣ < δ.

By Proposition 1.5,

E[f i
n | Ii

n,B∞(n)] = E[f i
n | B∞(n)],

and so with probability at least 1 − δ, we have
∣
∣
∣E[f i

n | Ii
n,B∞(n)] − E[f̂ | B∞(n)]

∣
∣
∣ < δ.

Finally, since B∞(n) is coarser than M∞ (since ∪jI
j
n ⊆ ∪jM

j
n ⊆ M∞)

and f̂ := E[f | M∞], we have that with probability at least 1 − δ,
∣
∣E[f i

n | Ii
n,B∞(n)] − E[f | B∞(n)]

∣
∣ < δ.

Proposition 7 gives sufficient conditions for agents’ limiting beliefs to
converge (as their models become more similar) to the public oracular belief.
This establishes a relationship between the beliefs of different agents, but
says little about how this belief relates to the event F . Strengthening the
result to involve the universal or omniscient oracular belief would require
placing conditions on the agents’ information sets as well as models. We
turn to one such result.

5.3 Crowds with Enough (Dispersed) Information

It is more in keeping with the wisdom-of-the-crowd spirit to seek conditions
under which some measure of the central belief converges to the omniscient
belief as the crowd grows large. This section present such a result simplifying
the exposition by restricting attention to the product case.

It is clear that this will require some conditions. Section 3.2 presents
examples in which agents’ announcements convey no information, despite
the fact that all agents are agent oracles. We cannot expect model-based
reasoners to come closer to omniscient beliefs than do agent oracles. Our
goal is to identify conditions under which crowds of model-based reasoners
will aggregate information, given that a crowd of agent oracular reasoners
would do so.
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Toward this end, we say that f is discernible if, for any sets I1, I2 ⊆ N ,
we have

E[f |GI1∪I2
] = E[f |σ(E[f |GI1

],E[f |GI2
])],

where σ(E[f |GI1
],E[f |GI2

]) is the σ-algebra induced by the announcements
of the beliefs E[f |GI1

] and E[f |GI2
]. Discernibility requires that the an-

nouncements E[f |GI1
] and E[f |GI2

] allow an agent oracle to infer the infor-
mation contained in I1 ∪ I2 that is relevant for determining f (but may not
allow the agent oracle to identify ωI1∪I2 , and hence allows the pooling of
information that is irrelevant for determining F ). For any f , discernibility
will approximately hold if I1 and I2 are sufficiently large. Discernibility fails
in the pooling examples of Section 3.2.

The proof of the following Lemma is in Appendix A.8.

Lemma 3 For all ε > 0, there exists a finite set Kε ⊆ N such for all
σ-algebras H,

ρ
{∣∣E[f |GKε ,H](ω) − f(ω)

∣
∣ < ε

}
≥ 1 − ε.

Remark 5 (interpreting Lemma 3) Lemma 3 implies that if an agent’s
model includes the dimensions Kε, not only is the agent’s theory close to
the true description, but adding further dimensions to the model cannot
change the agent’s theory significantly. The first implication is relatively
straightforward, while establishing the second requires somewhat more care.
Notice that this lemma allows a variation on Proposition 7. Any sequence
of crowds whose agents’ models eventually include Kε must eventually have
beliefs that are close to those of an public oracle (and hence each other).
Lemma 3 plays the role of Lemma 2 in the proof of Proposition 7, with
attendant straightforward changes. �

We assume that as the crowd grows, it becomes increasingly likely that
the models (though not necessarily the information) of most agents become
sufficiently sophisticated. Let λ be a full support measure on the space of
all finite models. Let Γ ∈ N. For each finite model M ⊆ N, let μM be
a probability distribution with full support over the subsets of M with at
most min{|M |, Γ} elements.

Proposition 8 Suppose f is discernible. Consider a crowd of n agents, with
each agent i’s model M i independently drawn according to λ and information
set I i then drawn independently according to μM . For all ε > 0,
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[8.1] there exists an Nε such that for all finite models M containing Kε

and all n > Nε, the probability that every agent with the model M has a
belief within ε of a hypothetical agent with the same model M and observing
data I = Kε is at least 1 − ε, and

[8.2] there exists N∗
ε such that for all n > N∗

ε , the probability the average
of beliefs is within 2ε+(1−η) of the omniscient belief is at least 1−ε, where
η is the probability under λ that a randomly drawn model does not include
Kε.

Proof. We first note that discernibility extends to finite numbers of sets.
We have

E[f |GI1∪I2∪I3
] = E[f |σ(E[f |GI1∪I2 ],E[f |GI3

])]

= E[f |σ(E[f |GI1 ],E[f |GI2 ],E[f |GI3
])],

where the first equality is the statement of discernibility, and the second
again applies discernibility (since σ(E[f |GI1∪I2 ]) = σ(E[f |GI1 ],E[f |GI2 ])).

For [8.1], fix a model M containing Kε, and denote by K a collection
of subsets of N satisfying Kε ⊆ ∪K such that no set in K has more than
Γ elements. We can choose Nε sufficiently large that for N > Nε with
probability at least 1 − ε, for every set I i ∈ K, there is an agent in the
crowd whose model and information set consist precisely of that set. This
agent’s first-round belief will be E[f |GIi

]. Applying discernibility, on the
second and each subsequent round, every agent in the crowd whose model
contains Kε will have a belief E[f |GKε ,H] for some σ-algebra H. Lemma 3
then implies the result. For [8.2], we note that we can choose N∗

ε ≥ Nε so
that for all n > N∗

ε , with probability at least 1 − ε the proportion of agents
whose models include Kε will be at least η − ε. The difference between the
average belief and the belief of an omniscient oracle is then at most

(η − ε)ε + (1 − η + ε) ≤ 2ε + 1 − η.

The substantive work in Proposition 8 is done by Lemma 3, which guar-
antees that any agent with a model containing Kε and full information has
beliefs that must be close to the omniscient oracle with high probability.
It is not surprising that if we give an agent enough information, then their
belief will be close to the omniscient oracular belief. The somewhat more
delicate part of Lemma 3 lies in showing that nothing else that the agent
could possibly observe can drive the agent outside the ε margin of error.
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Proposition 8.1 establishes that as the crowd grows large, agents whose
models include Kε will have beliefs close to those of an omniscient oracle,
no matter what they observe. Here, the exchange of information between
agents obviates the need for each agent to have copious information. It may
be that each individual agent has very little information—our requirement
is only that some agents have at least Γ dimensions in their information,
where Γ may be quite small.

It is clear that model-based reasoners have no hope of reaching omni-
scient beliefs if the announcements of oracles pool information. The discerni-
bility requirement in Proposition 8 addresses pooling in a particularly brutal
way, ensuring that for any information set I, the first announcement by an
agent i with M i = I i = I reveals all the relevant information contained in I.
It would suffice that limiting beliefs reveal such information. We could ac-
cordingly introduce less demanding versions of discernibility, at the costs of
greater complexity and pushing the assumption further away from the fun-
damentals of the problem. We view discernibility as being more demanding
when applied to small information sets. We could work with versions of
discernibility that apply only to larger sets, but then would need to place
stronger requirements on the presence of agents with larger information sets.

Proposition 8.2 establishes that if enough agents have large enough (i.e.,
containing Kε) models, then it is very likely that the average belief in the
crowd will be very close to that of an omniscient oracle. This may appear to
be nothing more than the statement that if enough people get it right, then
the average will be about right. Again, the more delicate part of the argu-
ment is handled by Lemma 3, ensuring that the beliefs of those who would
otherwise “get it right” are not disrupted by the presence of some agents
with bizarre models. The average belief is then driven toward the omni-
scient belief, not by having those who get it right convincing or converting
those who are confused, but by having the former swamp the latter. Notice,
however, that for this to happen there must be sufficiently many agents with
sufficiently large and common models. There is no similar requirement on
the commonality of information. Prediction markets can indeed effectively
aggregate dispersed information, if the agents have a sufficiently common
understanding of the meaning of that information.

6 Related Literature and Discussion

The wisdom of the crowd has attracted considerable attention (the introduc-
tion mentions some points of entry into the literature). Arieli, Babichenko,
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and Smorodinsky (2018) examine a model in which the members of a crowd
receive a signal, update their beliefs, and then report their beliefs. The
question is when an observer can infer the identity of the underlying state,
despite knowing nothing about the agents’ signal structures. The (rough)
answer is that even if the crowd is arbitrarily large, no inferences can be
drawn unless a signal drives a posterior belief to either 0 or 1. The flavor of
this result is reminiscent of our observation (Proposition 1) that beliefs of 0
or 1 must match those of an omniscient oracle and that (from Appendix A.1)
when beliefs are interior, Bayes rule places very little discipline on models
in the absence of a common prior. The spirit of this exercise differs from
our attempt to give the agents as good a chance as possible of aggregat-
ing information by effectively assuming that they understand each others’
models.

There is a growing literature on misspecified models. The most closely
related work is Spiegler (2016, 2018). Bohren (2016) and Bohren and Hauser
(2018) study a model in which agents have difficulties extracting informa-
tion from the actions of previous agents because they are unsure as to how
much of the information contained in previous actions is new and how much
is redundant. In contrast, our agents never have difficulties extracting infor-
mation from others, but have different views as to which of this information
is relevant.

Economists are sometimes criticized for pursing ideas that work in theory
but not in practice. In contrast, prediction markets work in practice but not
theory. Wolfers and Zitzewitz (2004) describe the growing use of prediction
markets and describe their effectiveness.19 On the one hand, our positive
results hold only under strong assumptions. Proposition 4 indicates that
under precisely the conditions in which prediction markets are thought to
be valuable, namely dispersed information, we cannot expect agents to come
to agreement. Proposition 5 indicates that we cannot in general expect the
more reasonable goal of extracting useful information from the collection of
market beliefs.

On the other hand, Propositions 6, 7 and 8 point to some circumstances
under which we might reasonably expect prediction markets to work well.
The basic requirement of these positive results is that the agents’ models are
sufficiently similar. Information may well be seemingly hopelessly dispersed,
and yet will be effectively aggregated by the market, if enough agents have

19In a similar vein, various versions of double auctions with small numbers of agents
do a remarkable job of producing competitive prices (Friedman and Rust (1993)), despite
the lack of an underlying theory.
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enough of a common view as to the meaning of such information.
Proposition 7 indicates that crowds can be effective in aggregating infor-

mation, no matter how dispersed the information, if the participants have a
sufficiently common understanding of what information is important. Gal-
ton’s (1907) ox tale is one case where it seems reasonable to posit that
the participants, presumably having had significant experience, would have
similar understandings of oxen, even if their brief impressions lead them
to different initial estimates of the ox standing before them. Similarly, the
sales force of a firm may have a reasonably common understanding of which
factors portend brisk sales, even if they extract different information from
their experiences with their idiosyncratic client lists.

Predicting one-off political events appears to be qualitatively different.
Nonetheless, Proposition 6 points to the forces that could lead to effective
prediction markets. Suppose F is the event that some candidate, Mr. Smith,
goes to Washington. Agent 1 is an economist who believes that Mr. Smith’s
election is determined by factors such as the current rates of employment,
inflation, and economic growth. Agent 2 is a political scientist who believes
the election hinges on social factors such as the electorate’s belief that the
country is “on the right track” and that “politicians are sensitive to my
problems.” The models of the two agents might well be disjoint, but as long
as there is sufficient correlation between the relevant realizations, then the
agents will come to similar views.

An appealing intuition is that large crowds are more effective in aggre-
gating information than smaller crowds. Proposition 8 makes this intuition
precise. The important implication here is that the advantage of a large
crowd arises not because agents who have effective models “correct” the
reasoning of those who do not, but because the former swamp the latter.

A Appendices

A.1 What’s Wrong with Different Priors?

Perhaps the most common response to the no-trade theorem is to allow
agents to hold different prior beliefs. Could it be that our analysis of model-
based reasoning is simply a repackaged version of allowing agents to hold
different priors?

The starkest difference is that models with different prior beliefs impose
virtually no discipline on the relationship of the beliefs of different agents,
and hence on the “collective” beliefs of the agents. In contrast, model-based
reasoning insures that agents’ beliefs about the events they deem relevant
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are firmly anchored to the data. This imposes restrictions on the beliefs of
individual agents as well as restrictions on how the beliefs of various agents
can differ.

It is a common characterization of Bayesian updating that at least even-
tually “the data swamps the prior.” This suggests that the discordance
allowed by differing priors should be only temporary, with the data even-
tually imposing as much discipline on a crowd with different priors as it
does on crowd of model-based reasoners.20 To investigate this, we consider
the product case and examine a sequence of crowds that receive increasing
amounts of information. In order to focus clearly in the discipline imposed
on beliefs by this information, we assume the agents have common informa-
tion. In particular, let (In)∞n=0 be an increasing sequence of subsets of N.
We consider a sequence of crowds, with every agent’s information set I i

n in
crowd n given by In.

We begin with a model of different priors, holding fixed the other aspects
of agents’ models. Suppose each agent has the correct state space and
description f , but we place no restrictions on the priors ρi, and in particular
no restrictions on how these priors may differ across agents.

Given the sequence of crowds, let (βi
n)K ∞

i=1,n=0 be the sequence of induced
limiting beliefs, for each agent in each crowd, about the event F . We now
argue that once we allow priors to differ, there are few restrictions placed
on the sequence of limit posteriors (βi

n)K, ∞
i=1,n=1, even though the agents are

oracles in that their theories match the description f .
Of course, the agents’ limit posteriors are not completely arbitrary, as the

mere fact that they are derived from Bayes’ rule imposes some restrictions.
Say that the sequence (βi

n)K ∞
i=1,n=0 has the martingale property if, for any

agent i and ωIn , there exists ωIn+1 consistent with ωIn with

βi
n+1(ωIn+1) < βi

n(ωIn), (5)

if and only if there also exists ω′
In+1

consistent with ωIn with

βi
n+1(ω

′
In+1

) > βi
n(ωIn). (6)

Intuitively, an agent can receive encouraging news if and only if it is also
possible for the agent to receive discouraging news. Note that this implies
that zero and unitary beliefs are absorbing.

We also impose minimal consistency with f . The consistency require-
ment is the following, where the antecedents should be interpreted as the

20This implicitly assumes the truth is in the support of the prior (technically, that the
true distribution is absolutely continuous with respect to the prior).
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joint hypothesis that the limit exists and has the indicated sign, and [ωIn ]
is the cylinder set given by {ωIn , ω−In},

lim
n

βi
n(ωIn) > 0 =⇒ ∃ω ∈ [ω∪nIn ] s.t. f(ω) = 1 (7)

and lim
n

βi
n(ωIn) < 1 =⇒ ∃ω ∈ [ω∪nIn ] s.t. f(ω) = 0. (8)

Requirements (7) and (8) are the only ones that connect the event F
with agent beliefs. Without them, there is nothing precluding an agent
from, for example, assigning positive probability to F on the basis of some
information ω∪nIn when F is inconsistent with that information. If that
were to happen, there is clearly no hope for βi

n(ωIn) = Eρi [f | ωIn ].

Proposition 9 Consider a sequence of crowds indexed by n = 0, . . ., with
each agent i’s information set I i

n in crowd n given by In, where the se-
quence (In)∞n=0 is increasing. Suppose the sequences (βi

n)K, ∞
i=1,n=0 satisfy the

martingale property and (7) and (8). Then there exists a vector of prior
beliefs (ρ1, . . . , ρK) generating the limiting posterior beliefs (βi

n)K, ∞
i=1,n=0, i.e.,

βi
n(ωIn) = Eρi [f | ωIn ].

Before proving this result, we make three observations. First, if ∪∞
n=0In =

Ω, then since beliefs are a martingale, βi
n → f ρi-almost surely. For states

that positive probability under ρi and ρ, the data then swamps the prior—
agent i attaches probability one to the event that her beliefs about F con-
verge to those of an omniscient oracle. However, the convergence in the
previous observation is pointwise, not uniform. That is, for any finite se-
quence (βi

n) satisfying the martingale property given in (5)–(6), there is a
prior rationalizing (βi

n). Notice that there need be no connection between
such a sequence and the event F . Hence, Bayesian updating from different
priors places no restrictions on finite sequences of agents’ beliefs, no matter
how long. Moreover, if ∪∞

n=0In ( Ω, the beliefs over states conditional on
∪∞

n=0In are essentially arbitrary, needing only to satisfy the property that
the conditional probability of F equals the limit of βi

n. Hence, unless we are
dealing with a case in which the agents will eventually resolve every vestige
of uncertainty, updating places few restrictions on beliefs. If agents with dif-
ferent priors are also sufficiently romantic as to think the world will always
contain some mystery, then we cannot expect their beliefs to be coherent.

Proof. We fix an agent i and construct the prior belief ρi, proceeding by
induction. Note that βi

0 is the agent’s prior probability of F . If this prior
is either 0 or 1, then so must be all subsequent updates, and then any prior
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belief with support contained either on the event F c or on the event F
(respectively, with the requisite set nonempty, by the martingale property)
suffices.

Suppose βi
0 ∈ (0, 1). By assumption, the measure βi

1 attaches conditional
probabilities to a collection of cylinder sets of the form [ωI1 ], with some of
these values larger than βi

0 and some smaller. Assign probabilities ρi([ωI1 ])
to these sets so that the average of the conditional probabilities is βi

0. Con-
tinuing in this fashion, we attach a probability to every cylinder set [ωIn ].
It follows from Kolmogorov’s theorem (Billingsley, 2012, p. 517) that this
measure extends to a probability measure ψi over X∪∞

n=0In . By construction,
(βi

n) is a martingale with respect to ψi, and so converges almost surely [ψi]
to some βi

∞ (which is measurable with respect to ∪∞
n=0In).

Suppose f is measurable with respect to ∪∞
n=0In. Then (7) and (8)

imply that βi
∞ = f almost surely: If ∪∞

n=0In = N , set ρi = ψi and we have
βi

n(ωIn) = Eρi(∙|ωIn )[f(ω)]. If ∪∞
n=0In is a strict subset of N , then let ρi be

any probability measure whose marginal on X∪nIn agrees with ψi and we
again have βi

n(ωIn) = Eρi(∙|ωIn )[f(ω)].
Suppose f is not measurable with respect to ∪∞

n=0In. This implies that
∪∞

n=0In is a strict subset of N . Requirements (7) and (8) imply that we
can choose ρi ∈ Δ(Ω) so that its marginal on X∪In agrees with ψi and
βi
∞(ω∪In) = Eρi(∙|ω∪In )[f(ω)]. This then implies βi

n(ωIn) = Eρi(∙|ωIn )[f(ω)].

We now contrast this result with a crowd of different models. We again
consider a sequence of crowds that receive increasing amounts of informa-
tion (In) and assume the agents have common information. We maintain
our running assumption that agents observe information contained in their
models.

Proposition 1 immediately implies the following.

Remark 6 (comparison of model-based updating and different priors)
Consider a sequence n = 1, . . . , of crowds, with agent i’s model given by
M i, and each agent i’s information set I i

n in crowd n given by In. For each
n and each agent i, In ⊆ M i. Then every agent’s limit belief equals the
public oracular belief. �

Model-based updating thus places considerably more structure on agents’
beliefs. Even when removing all other obstacles to disagreement, including
making information common, agents with different priors face virtually un-
limited possibilities for disagreement. In contrast to the case of different
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State Prior Interim beliefs
(ω1, ω2, ω3) ρ f∗(ω) β1(ωI1) β2(ωI2) β3(ωI3) β4(ωI4) β5(ωI5) β6(ωI6)

(0, 0, 0) 1/8 α (α + β)/2 (α + β)/2 (α + β)/2 (α + β)/2 (α + β)/2 (α + β)/2
(0, 0, 1) 1/8 β (α + β)/2 (α + β)/2 (α + β)/2 (α + β)/2 (α + β)/2 (α + β)/2
(0, 1, 0) 1/8 β (α + β)/2 (α + β)/2 (α + β)/2 (α + β)/2 (α + β)/2 (α + β)/2
(0, 1, 1) 1/8 α (α + β)/2 (α + β)/2 (α + β)/2 (α + β)/2 (α + β)/2 (α + β)/2
(1, 0, 0) 1/8 β (α + β)/2 (α + β)/2 (α + β)/2 (α + β)/2 (α + β)/2 (α + β)/2
(1, 0, 1) 1/8 α (α + β)/2 (α + β)/2 (α + β)/2 (α + β)/2 (α + β)/2 (α + β)/2
(1, 1, 0) 1/8 α (α + β)/2 (α + β)/2 (α + β)/2 (α + β)/2 (α + β)/2 (α + β)/2
(1, 1, 1) 1/8 β (α + β)/2 (α + β)/2 (α + β)/2 (α + β)/2 (α + β)/2 (α + β)/2

M1 = M2 = M3 = M4 = M5 = M6 = {1, 2, 3}

I1 = {1}, I2 = {2}, I3 = {3}, I4 = {1, 1}, I5 = {1, 3}, I6 = {2, 3}.

Figure 7: The beliefs for Appendix A.2. The function f∗ is the expected
value of f conditional on all agents’ model dimensions.

priors, the only sources of disagreement among agents with different mod-
els arise out of the different ways agents interpret information they think
irrelevant.

A.2 An Example with Pooling

The model and information are presented in Figure 7. See Example 3 for
the explanation of f∗, the expected value of fconditional on all the agents’
model dimensions, i.e., f∗(ω) := E[f(ω) | ω1, ω2, ω2].

The six agents have a common model M = {1, 2, 3}. Their beliefs would
remain unchanged if we made them agent oracles. For every possible in-
formation set I ( M , there exists an agent who observes the information
contained in I.21 Nonetheless, no information is revealed in this example,
no matter how often agents exchange beliefs.

The distribution of realizations in Figure 7 is independent across di-
mensions, but the construction of such an example does not depend on such
independence. Each of the interim beliefs in the first three columns of beliefs

21It is immediate that information will be conveyed if there is an agent who observes
every dimension the agents think relevant, i.e., I = M .

43



in Figure 7 reflects of calculation of the form

ρ(ωk)f(ωk) + ρ(ω`)f(ω`) + ρ(ωm)f(ωm) + ρ(ωn)f(ωn)
ρ(ωk) + ρ(ω`) + ρ(ωm) + ρ(ωn)

=
α + β

2
,

while each belief in the last three columns reflects a calculation of the form

ρ(ωk)f(ωk) + ρ(ω`)f(ω`)
ρ(ωk) + ρ(ω`)

=
α + β

2
.

We can rearrange these as

ρ(ωk)f(ωk) + ρ(ω`)f(ω`) + ρ(ωm)f(ωm) + ρ(ωn)f(ωn)

= [ρ(ωk) + ρ(ω`) + ρ(ωm) + ρ(ωn)]
α + β

2

and

ρ(ωk)f(ωk) + ρ(ω`)f(ω`) = [ρ(ωk) + ρ(ω`)]
α + β

2
.

Replacing (ρ, f) in Figure 7 with any alternative (ρ′, f ′) satisfying

ρ(ωk)

[

f(ωk) −
α + β

2

]

= ρ′(ωk)

[

f ′(ωk) −
α + β

2

]

for all states ωk gives an alternative formulation, potentially including cor-
relation across dimensions, generating identical interim beliefs. Indeed, this
gives a recipe for constructing many such examples.

A.3 An Example with Infinite Iterations

Let N = N and Ω = {0, 1}∞. There are two agents, with M1 = N \ {1} and
M2 = N \ {2}. The data generating process ρ independently chooses each
dimension to be 0 or 1 with probability 1/2. Agents 1 and 2 observe

I1 = {1, 3, 4, 6, 8, 10, . . .} and I2 = {2, 3, 5, 7, 9, 11, . . .}.

We first define two events, G and H, which are constituents of the event
F .

The event G occurs if and only if (ω1, ω2) = (1, 0).
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The event H occurs if at least one of the following statements holds:

ω3 = ω4 = ω5,

(ω3 + ω5)mod 2 = ω6 = (ω8 + ω9)mod 2 = (ω10 + ω11)mod 2,

(ω3 + ω4)mod 2 = ω7 = (ω8 + ω9)mod 2 = (ω10 + ω11)mod 2,

(ω3 + ω7)mod 2 = ω8 = (ω10 + ω11)mod 2 = (ω12 + ω13)mod 2

= (ω14 + ω15)mod 2,

(ω3 + ω6)mod 2 = ω9 = (ω10 + ω11)mod 2 = (ω12 + ω13)mod 2

= (ω14 + ω15)mod 2,

(ω3 + ω9)mod 2 = ω10 = (ω12 + ω13)mod 2 = (ω14 + ω15)mod 2

= (ω16 + ω17)mod 2 = (ω18 + ω17)mod 2,

(ω3 + ω8)mod 2 = ω11 = (ω12 + ω13)mod 2 = (ω14 + ω15)mod 2

= (ω16 + ω17)mod 2 = (ω18 + ω19)mod 2,

...

The probability of event H lies between 1/4 (the probability that ω3 = ω4 =
ω5) and 3/4 (the sum of the probabilities of each of the statements on the
list).

Now consider beliefs about the event F := G ∪ H.
Upon observing ωI1 , agent 1’s posterior belief about every statement in

the definition of H other than the first is unchanged. However, 1 updates
positively the posterior probability that H holds if ω3 = ω4, and updates
negatively if this equality fails. Agent 1’s first announcement of the prob-
ability of F thus reveals the realization of ω4 to agent 2, but reveals no
additional information. Similarly, agent 2’s first announcement of the prob-
ability of F reveals the realization of ω5 (but no additional information) to
agent 1.

The first round of announcements may reveal that the event H occurs,
but with positive probability this is not the case. In the latter case, the
agents now update their posteriors about the second and third statements
in the definition of H (and no others), depending on their realizations of ω6

and ω7, and their next announcements of the probability of F reveal these
values. This in turn allows them to update their beliefs about the fourth
and fifth statements (and no others), and so on.

With positive probability, the event H has indeed occurred, in which
case the belief updating about the event H terminates after a finite number
of iterations, with probability 1 attached to H. However, with positive
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probability H has not occurred, in which case beliefs about H are revised
forever.

We then have the following possibilities concerning the event F = G∪H
(in all cases, after the initial exchange, subsequent exchanges of beliefs have
no effect on the probability they attach to event G, and cause them to
update the probability that H as described above):

• (ω1, ω2) = (0, 1). Both agents attach interim probability 0 to event G,
and each agent attaches the same probability to event F as they do to
event H. Beliefs about H converge to a common limit.

• (ω1, ω2) = (1, 0). Both agents attach interim probability 1/2 to the
event that G has occurred. Beliefs about F converge to either 1/2 (if
H has not occurred) or 1 (if H has occurred). In either case, beliefs
converge to a common limit.

• (ω1, ω2) = (0, 0). Agent 1 attaches interim probability 0 and agent 2
attaches interim probability 1/2 to event G. If H has occurred, the
beliefs of both agents will eventually place probability 1 on event F .
However, if H has not occurred, it will take an infinite number of
exchanges for beliefs about event F to converge to 0 for agent 1 and
1/2 for agent 2.

• (ω1, ω2) = (1, 1). This duplicates the previous case, with the roles of
agents 1 and 2 reversed.

Remark 7 A simplification of this example shows that Geanakoplos and
Polemarchakis’s (1982) protocol on an infinite space with a common prior
and model also need not terminate in a finite number of steps. Take the
event to be H, the common model to be N \ {1, 2}, and let agent 1 observe
{3, 4, 6, 8, . . . }, and agent 2 observe {3, 5, 7, 9, . . . }. �

A.4 Proposition 1.5 and Oracles

Proposition 1.5 does not extend to agent oracles: Figure 8 presents an ex-
ample in which

E[f | GIi
,B∞] 6= E[f | B∞].

There is no nontrivial updating since both agents believe they know all they
need to know. Moreover, the public oracle’s beliefs coincide with that of
agent 2, which differ from the last column.
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State Prior Interim beliefs Ef |GI1
,B∞]

(ω1, ω2, ω3) ρ f(ω) β1(ωI1) β2(ωI2)
(0, 0, 0) a + b 0 b(x + y)/(2a + 2b) 0 0
(0, 0, 1) b/2 2x b(x + y)/(2a + 2b) 2(x + y)/3 (x + y)
(0, 1, 0) b/2 2y b(x + y)/(2a + 2b) 2(x + y)/3 (x + y)
(1, 0, 0) a + b 0 b(x + y)/(2a + 2b) 0 0
(0, 1, 1) a 0 b(x + y)/(2a + 2b) 0 0
(1, 0, 1) b y b(x + y)/(2a + 2b) 2(x + y)/3 (x + y)/2
(1, 1, 0) b x b(x + y)/(2a + 2b) 2(x + y)/3 (x + y)/2
(1, 1, 1) a − b 0 b(x + y)/(2a + 2b) 0 0

X = {0, 1},M1 = I1 = {1} and M2 = I2 = {2, 3}.

Figure 8: Beliefs for Appendix A.4.

A.5 Common Knowledge when Models are Infinite

Since we now must deal with conditioning on potentially zero probability
events, we follow Brandenburger and Dekel (1987) in defining knowledge as
probability one belief, and requiring conditional probabilities to be regular
and proper.22 Recall that the state space has prior ρ, and suppose that each
player’s information is described by a σ–algebra Gi. For each agent i, there
is a mapping ρi : F × Ω → [0, 1], where ρi(∙ | ω) is a probability measure
on F for all ω ∈ Ω; for each G ∈ F , ρi(G | ∙) is a version of ρ(G | Gi); and
ρi(G | ω) = χG(ω) for all G ∈ Gi (in other words, ρi is a regular and proper
conditional probability). These are the beliefs used to define what it means
for agent i to know (assign probability 1 to) an event. By Brandenburger
and Dekel (1987, Lemma 2.1), an event G is common knowledge at some
ω (in the sense that every agent assigns probability one to the event, every
agent assigns probability one to every agent assigning probability one to the
event, and so on) if there is a set G′ in the meet ∧Gi such that ω ∈ G′ and
ρi({ω′ ∈ G′ : ω′ 6∈ G} | ω′′) = 0 for all ω′′ ∈ Ω.23 The last requirement is
simply that G′ is a subset of G, up to a zero measure set, under each agent’s

22Bogachev (2007, Corollary 10.4.10) ensures the existence of such conditional proba-
bilities.

23This is a sufficient condition for common knowledge. The characterization requires a
little more (Brandenburger and Dekel, 1987, Lemma 2.3 and Proposition 2.1), which we
do not need.
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State Prior Theories Interim beliefs First-round update
(ω1, ω2) ρ f∗(ω) f1(ωM1) f2(ωM2) β1(ωI1) β2(ωI2) β2(ωI2 , b1

0)
(0, 0) a x ax+by

a+b
ax+cz
a+c

ax+by
a+b ax+by+cz+dw a

a+b
ax+cz
a+c + b

a+b
by+dw

b+d

(0, 1) b y ax+by
a+b

by+dw
b+d

ax+by
a+b ax+by+cz+dw a

a+b
ax+cz
a+c + b

a+b
by+dw

b+d

(1, 0) c z cz+dw
c+d

ax+cz
a+c

cz+dw
c+d ax+by+cz+dw c

c+d
ax+cz
a+c + d

c+d
by+dw

b+d

(1, 1) d w cz+dw
c+d

by+dw
b+d

cz+dw
c+d ax+by+cz+dw c

c+d
ax+cz
a+c + d

c+d
by+dw

b+d

X = {0, 1}, M1 = {1}, M2 = {2},
I1 = {1}, I2 = ∅.

Figure 9: Agreement need not imply redundancy in the presence of correla-
tion. The details for Appendix A.6.

beliefs ρj .
We will say that limit beliefs are common knowledge if they are common

knowledge given the information provided to the agents by the entire infinite
sequence of belief announcements.

Proposition 10 Limit beliefs are common knowledge.

Proof. Recall that Bn denotes the round n σ-algebra generated by the
announcements from the first n rounds. For each ω ∈ Ω, all events G
satisfying ω ∈ G ∈ Bn are common knowledge at ω. Recall also that (Bn)n

is a filtration with limit B∞, so that the beliefs βi
n+1 = E[f | Ii,Bn] are a

martingale and converge almost surely to E[f | Ii,B∞] =: βi
∞. Moreover,

βi
∞ =

∫
fdρi

∞.
Fix bi in the range of βi

∞ and let A := (βi
∞)−1(bi). We now prove

that for all ω ∈ A there is a subset A′ in the meet ∧σ(Ii,B∞) containing
ω. Fix ω ∈ A, and define An := ∩j(β

j
n)−1(bj) where bj = βj

n(ω). Since
An ∈ ∧σ(Ii,B∞), we have ∩nAn ∈ ∧σ(Ii,B∞). Suppose ∩nAn 6⊆ A, so that
there exists ω̃ ∈ ∩nAn \ A. But then βi

n(ω) = βi
n(ω̃) for all n, and since the

beliefs converge,24 βi
∞(ω̃) = bi, a contradiction.

A.6 An Example Illustrating Redundancy and Correlation

We start with the general specification given in Figure 9. Agent 1 observes
every dimension of 1’s model, and so never does any updating past the

24The sentence previously footnoted implies we can assume beliefs converge on ∩nAn.
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interim belief. Agent 2, who observes nothing, ceases updating after the
first round. If the values of ω1 and ω2 are independently drawn, then it
follows immediately from Proposition 4 that beliefs can necessarily agree
only if ω1 is redundant for agent 1.

We now seek values of the parameters for which ω1 is not redundant for
player 1, i.e.,

ax + by

a + b
6=

cz + dw

c + d
(9)

and for which there is necessary agreement, i.e. (after simplification),

(a + c)by = ac(z − x) + b
a + c

b + d
(by + dw) (10)

and

(b + d)cz = bd(y − w) + c
b + d

a + c
(ax + cz). (11)

Setting b = c = 0 gives the case where the two dimensions are perfectly
correlated (ω2 is simply a relabeling of ω1), and we trivially have necessary
agreement without redundancy.

It is straightforward that there are many parameters with the desired
characteristics. If we set z = x and y = w, then any specification of a, b, c, d
satisfies these equations, including values that also satisfy (9). In this case,
ω1 plays no role in the determination of F , and agent 1’s observation of ω1

is informative only to the extent that it is correlated with ω2. In addition,
agent 2 receives no information of her own, and so must similarly rely on
gleaning information from the correlation of ω1 with ω2, leading the two
agents to agree. In the case of independence, or a = b = c = d, agent 1
learns nothing about the state, and the two agents necessarily agree on the
uninformative posterior of 1/2.

When at least one of z = x and y = w fails, then ω1 plays a role in
determining the event F . There then there exist particular values of a, b, c,
d satisfying the equations (10)–(11) for necessary agreement.

A.7 Proof of Lemma 2

Fix a value δ > 0. Choose λ and ε such that

λ > 1/δ

ε + ελ < δ.
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By Egorov’s theorem, the convergence of fn to f † is uniform on a set of
large measure. In particular, there exists a value Nδ and a set Ωδ of measure
at least 1− ε (which is at least 1− δ) with the property that for all n > Nδ,
we have

|fn(ω) − f †(ω)| < ε ∀ω ∈ Ωδ.

We now argue that with probability at least 1 − δ, we have
∣
∣
∣E[fn | H] − E[f † | H]

∣
∣
∣ < δ.

Let

h(ω) =

{
ε, ω ∈ Ωδ,

1, ω 6∈ Ωδ.

Then,
|fn(ω) − f †(ω)| ≤ hi(ω),

and

E[h | H] = ε Pr(Ωδ | H) + Pr(Ω \ Ωδ | H)

≤ ε + Pr(Ω \ Ωδ | H).

Let A := {Pr(Ω \ Ωδ | H) > λε}. Then A ∈ H and so

λε Pr A <

∫

A
E[χΩ\Ωδ

| H]dρ

=
∫

A
χΩ\Ωδ

dρ

≤ ε,

and so
Pr[Pr(χΩ\Ωδ

| H) > λε] ≤ 1/λ,

and hence we have

Pr[ε + Pr(Ω \ Ωδ | H) < (1 + λ)ε] > 1 − 1/λ.

Invoking our conditions on λ and ε yields

Pr[E[h | H] < δ] > 1 − δ,

and since ∣
∣
∣E[fn | H] − E[f † | H]

∣
∣
∣ ≤ E[

∣
∣
∣fn − f †

∣
∣
∣ | H],

we have the desired inequality.
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A.8 Proof of Lemma 3

Recall that Gt is the σ-algebra generated by the t coordinate of Ω = {0, 1}N ,
and set F t := σ(G1, . . . , Gt). Since f is measurable with respect to σ(G1,G2, . . . ),
we have

E[f | F t] → f a.s.[ρ].

Egorov’s theorem implies that for all ε > 0, there exists Tε such that on an
event Ωε, with ρ(Ωε) ≥ 1 − ε/4,

∣
∣E[f | F t](ω) − f(ω)

∣
∣ < ε2/4 ∀t ≥ T ∗

ε , ∀ω ∈ Ωε. (12)

Set Kε := {1, . . . , Tε}, so that GKε = FTε .

Claim 1 On a full probability subset of Ωε ∩ F ,

Pr{E[f | GKε ,H] ≤ 1 − ε | GKε} < ε/4 (13)

and on a full probability subset of Ωε \ F ,

Pr{E[f | GKε ,H] ≥ ε | GKε} < ε/4. (14)

Proof. We prove (13); the proof of (14) follows similar lines. Define
g†(ω) := E[f | GKε ,H](ω), and g(ω) := Pr{g† ≤ 1 − ε | GKε}(ω).
Note that g is only measurable with respect to GKε (so in particular,
the inequality in (13) is measurable with respect to GK∗

ε ), while g† is
measurable with respect to the finer σ(GKε ,H).

Recalling that f is the indicator function of the event F , for ω ∈ Ω∗∩F ,
(12) is

1 − ε2/4 < E[f | GKε ](ω),

and so (13) is implied by for ρ-almost all ω ∈ Ω∗ ∩ F ,

E[f | GKε ](ω)] ≤ 1 − εg(ω).

Since the left and right sides of the above inequality are measurable
with respect to GKε , if the inequality does not hold, there is a positive
ρ-probability event B ∈ GKε such that,

E[f | GKε ](ω) > 1 − εg(ω) ∀ω ∈ B. (15)
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Since B ∈ GKε , where χA is the indicator function of the event A, and
the first and last (respectively, third) equalities hold because the inte-
grating events are measurable with respect to GKε (resp., σ(GKε ,H)),
∫

B
E[f | GKε ]dρ =

∫

B
fdρ

=
∫

B∩{g†≤1−ε}
fdρ +

∫

B∩{g†>1−ε}
fdρ

=
∫

B∩{g†≤1−ε}
g†dρ +

∫

B∩{g†>1−ε}
g†dρ

≤ (1 − ε)
∫

B
χ{g†≤1−ε}dρ +

∫

B
1 − χ{g†≤1−ε}dρ

=
∫

B
1 − εχ{g†≤1−ε}dρ

=
∫

B
1 − εgdρ,

contradicting (15). �

Defining
B′ :=

{
ω :
∣
∣E[f |GKε ,H](ω) − f(ω)

∣
∣ ≥ ε

}

and

F ′ := {ω : Pr{E[f | GKε ,H] ≤ 1 − ε | GKε}(ω) < ε/4}

we have (since, up to a zero probability event, Ωε ∩ F ⊆ F ′ and F ′ ∈ GKε)

Pr(B′ ∩ F ) = Pr
{
{E[f |GKε ,H](ω) ≤ 1 − ε} ∩ F

}

≤ Pr
{
{E[f |GKε ,H](ω) ≤ 1 − ε} ∩ F ′}

= E
[
E[χ{E[f |GKε ,H](ω)≤1−ε}∩F ′ | GKε ]

]

= E
[
E[χ{E[f |GKε ,H](ω)≤1−ε} | G

Kε ]χF ′

]

≤
∫

Ω∗
Pr{E[f |GKε ,H](ω) ≤ 1 − ε} | GKε ]χF ′dρ + ρ(Ω \ Ωε)

≤ ε/4 + ε/4.

Applying a similar argument to B′ \ F , we obtain

Pr(B′ \ F ) ≤ ε/2,

so that ρ(B′) ≤ ε.
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