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Abstract

We study dynamic moral hazard when the principal can only com-
mit to spot contracts. Principal and agent are ex ante symmetrically
uncertain about the difficulty of the job, and update their beliefs on
observing output. Since the agent’s effort is private, he has an ad-
ditional incentive to shirk when the principal induces effort: shirking
results in the principal having incorrect beliefs, giving rise to future
informational rents. We show that the effort inducing contract must
provide increasingly high powered incentives as the length of the rela-
tionship increases. Thus it is never optimal to always induce effort in
very long relationships.
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1 Introduction

We analyze the long-run implications of the ratchet effect, arising from the
introduction of new technology, in a context where both firm and worker
are learning about its efficacy. Milgrom and Roberts (1992, pages 232-
236) provide a lucid statement of the problem: when a firm installs new
equipment, firms and workers must learn the appropriate work standard.
It is efficient to use information to adjust the standard, but this reduces
work incentives today.1 The ratchet effect arises from the combination of
learning, moral hazard and lack of long term commitment by the employer.

Earlier work on the ratchet effect usually assumes ex ante differential in-
formation. The agent has private information on the nature of the job, and
the principal is unable to make long term commitments. The problem is for-
mulated as one of dynamic mechanism design without commitment in which
the principal aims to induce the agent to reveal her private information.

We differ from this literature in formulating the ratchet effect as aris-
ing from a learning problem under symmetric incomplete information and
moral hazard (since worker effort is not observed by the principal). The
principal and the agent are symmetrically uncertain about the difficulty of
the worker’s job. We assume the principal cannot commit to long term
contracts, and has all the bargaining power when choosing optimal spot
(short-term) contracts. We also assume there is no limited liability, so the
agent is indifferent between accepting the principal’s optimal spot contract
and taking her outside option. Furthermore, since uncertainty pertains to
the nature of the job, the outside option does not depend too heavily upon
what is learned. Finally, the principal cannot separately learn about job
difficulty and agent behavior (in the sense that a signal that the state is
good is also a signal of high effort, and conversely). Our assumption on
the structure of the signals is natural, being satisfied by most parametric
models.

The ratchet effect arises from the agent’s possible manipulation of the
principal’s beliefs by shirking. In a pure strategy equilibrium in which high
effort is chosen, the principal correctly anticipates the agent’s effort choices,
and the beliefs of the two parties about the nature of the job agree. However,
when the agent deviates and shirks, the beliefs of the two parties differ, at
least temporarily. Our analysis begins with a simple observation: In a two
period world, such a deviation increases the expected continuation value of

1In the sociology literature, Mathewson (1931), Roy (1952), and Edwards (1979) are
workplace studies that document the importance of output restriction in order to influence
the firm’s beliefs.

3



the agent. In consequence, any incentive compatible contract inducing high
effort must be sufficiently high powered to offset this deviation gain. The
ratchet effect gives rise to a dynamic incentive cost (which we term the future
information rent from shirking, or FIRS ), since the agent must be exposed
to additional risk in order to overcome the incentive problem (Proposition
1). Since the principal must compensate the agent for increased risk, his
wage costs increase. This finding generalizes Milgrom and Roberts’s (1992)
earlier demonstration of the need for high powered incentives in a two period
model with linear technology and normal signals.

The bulk of our analysis concerns the behavior of dynamic incentive
costs as the time horizon T increases. For most of the paper we focus
is on the principal’s cost minimization problem when she induces effort in
every period—this is a prerequisite for analyzing overall profit maximization.
Specifically, we consider sequentially incentive efficient contracts. These are
contracts which induce high effort in every period at minimum cost. While
it is intuitive that the future information rents from shirking in any period
should increase with the time horizon, there is a subtlety. The dynamic
incentive cost is essentially the opportunity cost of not shirking, and little
is known about the comparative statics of the optimal effort contract with
respect to costs (or benefits) of shirking. Nonetheless, it turns out that
the intuitive increase with the time horizon does occur if either the agent
has a specific form of CRRA preferences (Proposition A.1) or if the signal
distribution satisfies one additional collinearity restriction (the collinearity
assumption is always satisfied with binary signals).

However, a plausible conjecture is that this effect, when present, tapers
off: since both the principal and agent learn the state of the world, there is
very little uncertainty remaining towards the end of a long relationship. Our
main result is that this conjecture is false. Under the collinearity restriction
on the signal distribution the future information rents from shirking in any
period are bounded below by a linear function of the remaining duration of
the relationship (Proposition 3). The key insight is the following. Compare
the problem of inducing effort in the initial period in two cases: a) a three-
period relationship, and b) a two-period relationship. In both cases, the
agent receives second period rents by shirking in the first period. However,
these rents are larger in the three-period setting than in the two-period
setting, because the principal has to provide more high-powered incentives in
the penultimate period of the three-period relationship, as we have already
seen from the analysis of the two-period model. We provide an example
showing that in the absence of this positive feedback from one period’s
future information rents from shirking to earlier periods, the value from
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having different beliefs in all future periods is bounded (Proposition 4). We
also derive a lower bound on the future information rents from shirking when
the horizon is infinite and the agent discounts (Proposition C.1).2

Since the future information rents from shirking are bounded below by
a linear function of remaining duration, t, the expected wage costs are sim-
ilarly bounded below. Consequently, it is never optimal for the principal to
always induce effort when t is sufficiently large. While characterizing the
optimal optimal pattern of elicited effort is complex and beyond the scope
of the current analysis, we do report some suggestive numerical calculations.

1.1 Related Literature

This paper is related to a growing literature on dynamic moral hazard with
learning/experimentation. Holmström’s (1982) career concerns model is a
pioneering example.3 Like us, Holmström (1982) assumes there is symmet-
ric incomplete information, but critically, in that paper, the agent does not
receive an incentive wage contract from a principal. Rather, the agent re-
ceives his market wage which is determined by the market beliefs about
the unknown state (there interpreted as the the talent of the agent, and
not the nature of the job). Our substantive conclusions are the opposite of
Holmström’s—dynamic incentives make shirking more attractive, whereas
in Holmström, they provide incentives to work. To delineate the differences,
we allow the agent’s outside option to depend on the public belief about the
difficulty of the job. If the outside option is not too sensitive to the public
beiief, then our results apply, and incentivizing effort becomes more difficult
in long term relationships. Conversely, if the outside option is sufficinently
sensitive, then dynamic considerations provide an incentive for the agent to
work.

Much of the work on the ratchet effect focuses on the asymmetric infor-
mation case, where the principal wishes to elicit the private information of
the agent. Lazear (1986) argues that high powered incentives are able to
overcome the ratchet effect, without any efficiency loss, assuming that the
worker is risk neutral. Gibbons (1987) shows that Lazear’s result depends
upon an implicit assumption of long term commitment; in its absence, one
cannot induce efficient effort provision by the more productive type.4 Laffont
and Tirole (1988) prove that in general one cannot induce full separation

2The lower bound in this case goes to infinity as the discount factor goes to one.
3Gibbons and Murphy (1992) extend Holmström (1982) by having the market wage be

a linear function of output.
4See also Freixas, Guesnerie, and Tirole (1985) and Carmichael and MacLeod (2000).
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of a continuum of types.5 Laffont and Tirole (1993) have a comprehensive
discussion, and consider both the case of binary and a continuum of types.
Gerardi and Maestri (2015) analyze an infinite horizon model with binary
types.

More recently, there is an increased interest in agency models with learn-
ing, where the uncertainty also pertains to the nature of the project. Berge-
mann and Hege (1998, 2005), Manso (2011), Hörner and Samuelson (2015),
and Kwon (2011) analyze agency models with binary effort, binary signals,
and limited liability. Bhaskar (2014) studies a two-period model that makes
the same informational and contracting assumptions as in the present pa-
per, but allows for continuum effort choices (rather than binary). The main
finding is that the principal cannot implement interior effort choices in the
first period. Since the agent can increase his continuation value by shirking,
this must be dissuaded by high powered incentives. However, this implies
that the agent can deviate upwards, and increase his current payoff, without
any loss in continuation value since he can always quit the job tomorrow.

There is also recent work on learning in agency models with private ac-
tions in continuous time and continuum action spaces including DeMarzo
and Sannikov (2011), Cisternas (2018), and Prat and Jovanovic (2014), that
examines the agent’s incentives for belief manipulation. More generally, de-
viations can lead to persistent divergences in belief between the principal and
agent in a variety of contexts. In Sannikov (2014), the agent’s actions have
persistent effect upon output, while Williams (2011) studies a model where
the agent’s type is persistent. All these papers have continuous choices, and
employ a “first-order” approach to compute the agent’s informational rent
from a deviation. In our setting, choices are discrete, and we use the payoffs
from a single deviation to provide a lower bound on informational rents. We
discuss the connection further at the end of Section 5.

2 The model

A risk neutral principal (whom we treat as female) repeatedly hires a risk
averse agent (whom we treat as male) to undertake some task. In each
period, the principal offers a spot contract to the agent, who accepts or
rejects. If the agent rejects the contract, the relationship is dissolved and
the game ends. If the agent accepts the contract, the agent then decides

5Malcomson (2016) shows that the no full-separation result also obtains in a relational
contracting setting, where the principal need not have all the bargaining power, as long
as continuation play following full separation is efficient.
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whether to exert effort e (incurring a disutility of c > 0) or shirk s (which is
costless). As usual, there is moral hazard, with this choice not observed by
the principal. Moreover, there is uncertainty about the “difficulty” of the
task. Specifically, there are two states of the world ω ∈ {B,G}, with the
task being easy in G, and hard in B. The uncertainty concerns how difficult
it is to succeed on this job.

The choice a ∈ {e, s} by the agent determines, with the state of the
world, the probability distribution over signals y ∈ Y , where Y := {y1, y2,
. . . , yK} is a finite set of signals. The spot contract specifies the wage pay-
ment as a function of the realized signal.

The agent updates his beliefs about the state knowing his own effort
choice and the realized public signal. The principal updates her beliefs
knowing only the signal, since the agent’s effort is not public (i.e., it is not
observed by the principal).

The agent’s flow utility from a wage payment w ∈ R is u(w), where u is
strictly increasing and concave. To guarantee individual rationality binds,
we assume unlimited liability, so that there are no constraints on the size
and sign of utility payments.

We find it more convenient to work with utility schedules, so we write a
spot contract as a utility schedule u := (u1, . . . , uK), where uk is the utility
the agent will receive after signal yk. The wage cost of providing utility level
uk is written w(uk) := u−1(uk).

We do not specify how output signals translate into revenues for the
principal. While solving for the equilibrium of the game does require speci-
fying the principal’s trade-off between revenues and wage costs, that is not
our focus. Our focus, rather, is on the important preliminary step of charac-
terizing the expected cost minimizing sequence of spot contracts that induce
effort in every period. This step is independent of the revenue consequences
of effort.6

The probability of signal yk at action a ∈ {s, e} and state ω ∈ {B,G}
is denoted by pk

aω. Our interest is in settings where a signal that the
state is good is also a signal of high effort (and conversely), so that it is
impossible to disentangle the two. Most parametric models in the learn-
ing/experimentation literature satisfy this assumption. For example, it is
satisfied when the signal is the number of Poisson distributed successes, with
an arrival rate increasing in both the ease of the job and effort. We capture

6This analysis also does not depend upon the principal’s time preference. Also, it is
possible to generalize the results to the case where the principal is risk-averse, as long as
the agent’s incentive constraint binds in the static contract.
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this by the following assumption.

Assumption 1.

1. There exists an informative signal, i.e., there exists yk ∈ Y such that
either pk

eG 6= pk
sG or pk

eB 6= pk
sB.

2. For any informative signal yk ∈ Y ,

min
{

pk
sB , pk

eG

}
< pk

sG, pk
eB < max

{
pk

sB , pk
eG

}
.

3. Signals have full support: pk
aω > 0 for all k, a, ω.

We partition the set of signals into a set of “high” signals Y H , a set of
“low” signals Y L, and a set of neutral signals Y \ (Y H ∪ Y L) by setting

yk ∈ Y H if pk
eG > pk

sG

and
yk ∈ Y L if pk

eG < pk
sG.

A signal is high if it is indicative of effort in state G. Assumption 1
implies that a high signal is indicative of effort also in state B. Also, it is
indicative of the state being G under either effort or shirking.

A player with belief μ that the task is easy (ω = G) assigns a probability
to signal yk of pk

aμ := μpk
aG +(1−μ)pk

aB . Assumption 1 immediately implies

yk ∈ Y H ⇐⇒ pk
eG > pk

eB , pk
sG > pk

sB ⇐⇒ pk
eμ > pk

sμ

and
yk ∈ Y L ⇐⇒ pk

eG < pk
eB , pk

sG < pk
sB ⇐⇒ pk

eμ < pk
sμ.

In other words, high signals arise with higher probability when either
the agent exerts effort or the state is good.

We now derive two important implications of Assumption 1 that are
key for the rest of the paper. First, if the principal believes that the agent
is exerting effort, but the agent is in fact shirking, then on average, the
principal will become more pessimistic than the agent after observing the
signal realization. Second, if the agent is more optimistic than the principal,
and the one-period contract induces effort, the agent earns an informational
rent.

Let ψk
a(μ) denote the Bayesian update on the initial belief μ after ob-

serving signal yk, given that action a has been taken. Suppose that the
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principal believes that the agent has taken action a, when the agent in fact
takes action ã. The average belief of the principal, under the distribution
over signals induced by ã is

E(ψk
a(μ))|ã) =

∑

k
ψk

a(μ)pk
μã.

The martingale property of beliefs ensures that E(ψk
a(μ))|a) = μ. The

following lemma states that under Assumption 1, the average belief of the
principal is always lower than that of the agent, when the agent shirks and
the principal believes that she has exerted effort.

Lemma 1. If the signals satisfy Assumption 1, then

E(ψk
e(μ))|s) < E(ψk

s(μ))|s) = μ.

Proof. Assumption 1 implies

yk ∈ Y H ⇐⇒ pk
eμ > pk

sμ ⇐⇒ pk
eG > pk

eμ

and
yk ∈ Y L ⇐⇒ pk

eμ < pk
sμ ⇐⇒ pk

eG < pk
eμ.

Thus,

μ −
∑

k
pk

sμ

μpk
eG

pk
eμ

= μ
∑

k
(pk

eμ − pk
sμ)

pk
eG

pk
eμ

> μ
∑

k
(pk

eμ − pk
sμ) = 0.

Suppose the principal and agent both assign probability μ to the task
being easy. We allow for some state dependence in the value of the out-
side option. We normalize the value of the outside option to zero when
the state is B and denote the value by Λ ≥ 0 when the state is G. When
the state is unknown, we assume the outside option depends on the public
belief μ, and equals μΛ. This assumption is consistent with the interpre-
tation that the outside option is provided by the competition from other
potential employers, and the uncertainty pertains to the agent’s ability, as
in Holmström (1999). However, our analysis differs from Holmström: the
agent’s productivity in the current job is assumed to be significantly greater
than his productivity at other employers. Consequently, the employer has
monopoly power, and can extract all the surplus from the relationship.
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Our analysis applies also to the case where the outside option depends
on the agent’s private belief π regarding his ability, and equals πΛ. In this
case, the outside option comes from self-employment. Since the contract
offered by the principal only depends on the public belief, the analysis that
follows also applies in this case.7

A statically optimal spot contract offered by the principal is a contract
u ∈ RK minimizing its expected cost of provision

peμ ∙ w(u),

where paμ := (p1
aμ, . . . , pK

aμ), subject to incentive compatibility

peμ ∙ u − c ≥ psμ ∙ u (IC)

and individual rationality

peμ ∙ u − c ≥ μΛ. (IR)

Since the principal is risk neutral and the agent is risk averse, both (IC) and
(IR) bind at the statically optimal contract, which is unique and denoted
ûμ.

Suppose the principal assigns probability μ to G and offers a static con-
tract ûμ at which the (IR) binds (given peμ). If the agent has belief π and
exerts effort, the agent’s payoff from exerting effort is

V †(π, μ) : = peπ ∙ ûμ − c

= peμ ∙ ûμ − c + (π − μ)(peG − peB) ∙ ûμ

= (π − μ)(peG − peB) ∙ ûμ + μΛ. (1)

We now show that (peG − peB) ∙ ûμ is strictly positive. From (IC), we have

(peμ − psμ) ∙ ûμ > 0.

Observe that ûk
μ ≥ ûk′

μ if pk
eμ > pk

sμ and pk′

eμ ≤ pk′

sμ. [If not, there exists k and

k′ such that ûk
μ < ûk′

μ with pk
eμ > pk

sμ and pk′

eμ ≤ pk′

sμ. The contract that equals

the old contract except at signals yk and yk′
, where the utility promises are

replaced by the constant value (pk
eμûk

μ+pk′

eμûk′

μ )/(pk
eμ+pk′

eμ), satisfies (IC) and

(IR), at lower cost.] Assumption 1 then implies that ûk
μ ≥ ûk′

μ for yk ∈ Y H

and yk′
∈ Y L. Since the agent’s payoff is at least the payoff from exerting

effort, we have therefore proved the following lemma.
7The difference between the two specifications of the outside option only matters for

the agent’s quitting decision when π < μ. Since our bounds on informational rents are
derived assuming that the agent does not quit, they apply equally to both cases
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Lemma 2. Suppose the signals satisfy Assumption 1 and Λ = 0. If the
principal has belief μ and offers the statically optimal contract ûμ, then the
informational rent of the agent when her belief π exceeds μ is no less than

(π − μ)(peG − peB) ∙ ûμ > 0.

To summarize: When Λ = 0, Assumption 1 ensures that the agent
always has a dynamic incentive to shirk, since by doing so, she induces the
principal to be more pessimistic than the agent, and this divergence in beliefs
translates to an informational rent in a one-period contract. While this
phenomenon has been noted before for specific informational assumptions,
Assumption 1 suffices.

When Λ is strictly positive, as we will see in the next section, the outside
option moderates the future information rent from shirking.

3 Two Time Periods

We begin with the two period case. The principal minimizes total wage
costs and the agent maximizes total expected payoff. To minimize notation,
we assume the agent does not discount in the finite horizon setting. Our
results also hold under discounting, with obvious modifications; we discuss
discounting in more detail in Remark 2 and when we analyze the infinite
horizon setting in Appendix C.

The principal cannot commit in period 1 to period 2 wages, while the
agent cannot commit to participate, and so each period’s spot contract must
satisfy incentive compatibility (IC) and individual rationality (IR) in that
period.

We are interested in the most efficient sequence of spot contracts inducing
e in every period. Since there is incomplete information, we require that
both the principal and the agent’s behavior be sequentially rational after
every history, and that both update using Bayes’ rule whenever possible.
The common prior probability on G is denoted μ†. Let μk

a := ψk
a(μ

†) be the
posterior probability on G after yk under action a. Though the principal
does not observe effort, under the sequence of incentive efficient contracts,
she assigns probability one to the agent choosing e.

Denote the first period spot contract by u(∅) := (u1(∅), . . . , uK(∅)),
and the second period spot contract offered by the principal after signal yk by
u(yk) := (u1(yk), . . . , uK(yk)). Since the only intertemporal linkage between
the periods is the posterior belief update and the first period contract induces
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e deterministically, the most efficient first period spot contract minimizes
first period expected wage cost.

Definition 1. A two period sequence of contracts (u(∅), (u(yk))yk∈Y ) is
sequentially effort incentive efficient if

1. for every first period signal realization yk ∈ Y , u(yk) minimizes

peμk
e
∙ w(u) =

∑

k′

pk′

eμk
e

w(uk′
)

subject to the agent finding it optimal to participate and exert effort in
the second period after exerting effort in the first period, and

2. u(∅) minimizes
∑

pk
eμ†w(uk) subject to the agent finding it optimal to

participate and exert effort in the first period.

Under a sequentially effort incentive efficient sequence of contracts, the
agent exerts effort in every period, and the second period beliefs of the agent
and principal agree. In particular, after yk, the second period effort incentive
efficient contract solves the static problem with public beliefs μk

e .
The first period is more complicated, since the agent’s deviation to shirk-

ing in the first period results in the principal and agent having different
beliefs. After signal yk, the agent has update μk

s , which differs from the
principal’s update of μk

e . In addition, the principal is mistaken in her con-
viction that the agent also has the belief μk

e .
We saw at the end of the previous section that if μk

s > μk
e , then the

agent receives a strictly positive payoff from the contract ûμk
e
. If Λ = 0, the

agent’s second period expected payoff from the contract strictly increases
from shirking in the first period:

1. Lemma 1 implies there is a signal yk such that μk
s > μk

e , with a resulting
second period gain from deviation.

2. For any signal yk satisfying μk
s < μk

e , the IR constraint is violated, and
the agent walks away, obtaining his reservation utility.

When Λ > 0, the effect is ambiguous. The agent’s second period payoff
equals his outside option μk

eΛ after signal k, the expectation of which equals
μ†Λ when he exerts effort. However, when the agent shirks, he reduces his
outside option, since E(ψk

e(μ
†)|s) < μ†. Thus, by shirking, the agent induces

two effects:
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1. For any second-period outside option μΛ, the agent gets an informa-
tional rent whenever his private belief π exceeds μ.

2. The average second-period outside option is lower.

The future information rents from shirking are positive, as long as Λ is not
too large. We need to do a little bookkeeping before we can bound Λ.

The first period incentive compatibility constraint is

peμ† ∙ u(∅) − c +
∑

k

pk
eμ†Λμk

e ≥ psμ† ∙ u(∅) + W̃ (μ†),

where W̃ (μ†) is the second period value to the agent from shirking in the
first period (while the principal expected effort in the first period). This can
be rewritten as

peμ† ∙ u(∅) − c ≥ psμ† ∙ u(∅) + W (μ†), (2)

where
W (μ†) := W̃ (μ†) − μ†Λ.

The expression W (μ†) is the one period (normalized) future information rent
from shirking. Bounding W̃ (μ†) from below by assuming the agent exerts
effort in the second period if he does not take the outside option,

W (μ†) ≥
∑

k

pk
sμ† max{V †(μk

s , μ
k
e), μk

eΛ} − μ†Λ

=
∑

k

pk
sμ† max{V †(μk

s , μ
k
e) − μk

sΛ, (μk
e − μk

s)Λ}

=
∑

k

pk
sμ† max{V ∗(μk

s , μ
k
e), (μk

e − μk
s)Λ},

where

V ∗(π, μ) : = V †(π, μ) − πΛ

= (π − μ)
(
(peG − peB) ∙ ûμ − Λ

)
. (3)

Observe that that V ∗ is strictly positive as long as π > μ and Λ < Λ :=
infμ(peG − peB) ∙ ûμ > 0. Moreover, if Λ < Λ, W (μ†) > 0 and the statically
optimal contract ûμ† does not satisfy (2). The first period spot contract
must be more high powered than the statically optimally contract in order
to deter shirking.

We summarize this discussion in the following proposition.
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Proposition 1. Suppose Assumption 1 holds and the two period sequence of
contracts (u(∅), (u(yk))yk∈Y ) is sequentially effort incentive efficient. Then,
for Λ < Λ, the first period contract u(∅) is more high powered than the
statically optimal contract ûμ† :

(peμ† − psμ†) ∙ u(∅) > c = (peμ† − psμ†) ∙ ûμ†

and
peμ† ∙ u(∅) = peμ† ∙ ûμ† = c + Λμ†.

If Λ is large, then even a constant first period wage may be enough to
induce effort. With a constant wage, the cost of shirking in the first period
is a loss of second period outside option of

Λ
∑

k

pk
eμ†μ

k
e − Λ

∑

k

pk
sμ†μ

k
e = Λμ† − Λ

∑

k

pk
sμ†μ

k
e > 0,

and for Λ large enough, this will exceed c, the cost of effort.

4 Finite Horizon

We consider next the finite horizon setting, with T periods in the relation-
ship. We index periods backwards, so in period t, there are t − 1 periods
remaining after the current one. In period τ = T, . . . , 1, the principal has
observed the history hτ ∈ Y T−τ , and offers a spot contract u(hτ ) ∈ RK . In
the following definition, ĥt is the common T − t initial segment of each hτ .

Definition 2. A sequence of contracts ((u(hτ ))hτ∈Y T−τ )τ=1,...,T is sequen-
tially effort incentive efficient (SEIE) if for every t ∈ {T, . . . , 2, 1} and every
ĥt ∈ Y T−t, the spot contract u(ĥt) minimizes, over ũ ∈ RK ,

E[w(ũk) | ĥt, at = e, aT = ∙ ∙ ∙ = at+1 = e]

+
t−1∑

τ=1

E[w(uk(hτ )) | ĥt, aτ = e, aT = ∙ ∙ ∙ = aτ+1 = e]

subject to the agent finding it optimal to participate and exert effort in period
t and in every subsequent period after every public history, conditional on
the agent having exerted effort in every previous period.

Since the behavior of the principal in any period is completely determined
by her beliefs about the state updated from the public history, we can solve
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for SEIE contracts recursively, beginning in the last period (period 1; recall
we index periods backwards).

We need to consider situations in which the agent and principal have
different beliefs. Let Ṽ (π, μ, t) denote the agent’s value function in period t
when his belief is π and the principal’s belief is μ (for our purposes, these
beliefs are the result of updating using ht ∈ Y T−t, the period t public his-
tory). Denote the effort incentive efficient contract offered by the principal
in period t by uμ(t).

In the last period, period 1, the principal, given his updated beliefs μ,
offers the contract uμ(1) := ûμ. The agent’s value from this contract is

Ṽ (π, μ, 1) = max
{
peπ ∙ uμ(1) − c, psπ ∙ uμ(1), Λμ

}
.

If beliefs agree the value is the outside option, i.e., Ṽ (μ, μ, 1) = Λμ.
Proceeding recursively, in period t,

Ṽ (π, μ, t) = max
{
peπ ∙ uμ(t) − c +

∑
k pk

eπṼ (ψk
e(π), ψk

e(μ), t − 1),

psπ ∙ uμ(t) +
∑

k pk
sπṼ (ψk

s(π), ψk
e(μ), t − 1), tΛμ

}
,

where ψk
a(β) is the posterior probability on G after yk under action a, given

a prior β. We assume the agent receives Λμ in each period after he takes
his outside option.

On the equilibrium path, the agent always exerts effort, so that in period
t, at belief μ, the contract uμ(t) satisfies the incentive constraint

peμ ∙ uμ(t) − c +
∑

k pk
eμṼ (ψk

e(μ), ψk
e(μ), t − 1)

≥ psμ ∙ uμ(t) +
∑

k pk
sμṼ (ψk

s(μ), ψk
e(μ), t − 1)

and the participation constraint binds, so that

Ṽ (μ, μ, t) = tΛμ.

As we saw in the previous section, it is more convenient to work with
the surplus net of the outside option prevailing if the principal has the same
beliefs as the agent. So we define

V (π, μ, t) := Ṽ (π, μ, t) − Λπt. (4)

Defining
W (μ, t) :=

∑
k pk

sμV (ψk
s(μ), ψk

e(μ), t − 1) (5)
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as the future information rent from shirking (FIRS) in period t, the period-t
incentive constraint can then be written as

peμ ∙ uμ(t) − c ≥ psμ ∙ uμ(t) + W (μ, t).

Summarizing this discussion, we have:

Proposition 2. A sequence of contracts ((u(hτ ))hτ∈Y T−τ )τ=1,...,T is sequen-
tially effort incentive efficient if and only if u = u(hτ ) ∈ RK minimizes

∑

k
pk

eμ(hτ )w(uk)

subject to

1. peμ(hτ ) ∙ u − c ≥ psμ(hτ ) ∙ u + W (μ(hτ ), t) and

2. peμ(hτ ) ∙ u − c ≥ μ(hτ )Λ,

where μ(hτ ) = Pr[G | hτ , aT = ∙ ∙ ∙ aτ−1 = e]. Furthermore, the two inequal-
ities hold as equalities in every SEIE contract.

From Section 3, we know for Λ close to zero, W (μ, 2) > 0. Is W (μ, t)
increasing in t, and if it is increasing, does it increase without bound?

Intuitively, W (μ, 3) should be larger than W (μ, 2), because the latter
reflects the value of different beliefs induced by shirking under a statically
optimal contract for a less demanding incentive compatibility constraint.
This is essentially a question of comparative statics on static contracts with
respect to the opportunity cost of shirking, which turns out to be a lot
harder than comparative statics with respect to the disutility of effort. The
next section outlines the problem and a resolution.

5 Comparative Statics of Optimal Contracts

The contract uμ(t) described in Proposition 2 solves the static incentive
problem:

min
{uk}

∑

k
pk

eμw(uk)

subject to
∑

k
pk

eμuk − c ≥
∑

k
pk

sμuk + W (IC∗)

and
∑

k
pk

eμuk − c ≥ Λμ†. (IR∗)
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Suppose W ′ and W ′′ are two distinct future informational rents from
shirking in period t, with W ′ > W ′′. We would like to show that in the
preceding period, t + 1, the informational rent from shirking is greater un-
der W ′ than under W ′′. Let u′ and u′′ denote the vectors of utilities in
the corresponding optimal period t contracts. Since incentive compatibility
holds with equality we have

(peμ − psμ) ∙ u′ = c + W ′

and
(peμ − psμ) ∙ u′′ = c + W ′′.

The informational rent from shirking in t + 1 is directly related to the
properties of the vector u′′ − u′. In particular, recalling (1), if

W ′ > W ′′ =⇒ (peG − peB) ∙ (u′ − u′′) > 0, (6)

then the informational rent is larger under W ′ than under W ′′.
While we know

(peμ − psμ) ∙ (u′ − u′′) = W ′ − W ′′, (7)

without further assumptions, this does not imply (6).
If the agent has specific CRRA preferences, then it turns out that, even

with general probabilities, the implication in (6) holds, and so W (μ, t) is
monotonic in t (see Appendix A). But we do not know if there is a useful
lower bound on W (μ, t)) in this case.

We now pursue a direct path to link (6) and (7) by assuming the vectors
(peG − peB) and (peμ − psμ) are collinear.

Consider the vectors (peG − psB), (peB − psB) and (psG − psB). Un-
der Assumption 1, each component in (peB − psB) has the same sign as
the corresponding component in (peG − psB), but its absolute magnitude is
smaller; the same is true for each component in (psG − psB). The following
assumption strengthens this, by requiring that these vectors are collinear.

Assumption 2. There exists scalars α ∈ (0, 1) and β ∈ (0, 1) such that

psG = αpeG + (1 − α)psB and

peB = βpeG + (1 − β)psB .

Under Assumption 1, the combination eG corresponds to the “best”
state-action pair, while sB corresponds to the worst. The collinearity as-
sumption states that the intermediate state-action pairs – eB and sG – each
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induce a distribution that is a convex combination of those arising from the
best and the worst. This assumption is reminiscent of one made by Hart
and Holmström (1987) in order to ensure the validity of the first-order ap-
proach to the moral hazard problem. They consider a model where effort
must be chosen from the unit interval, and assume that the distribution on
output signals induced by any interior effort level a is a convex combina-
tion of the distributions from the extremal efforts, with the weight on the
distribution induced by effort 1 being an increasing concave function of a.
Our assumption pertains to state-action pairs, rather than just effort, and
essentially states that a better state is equivalent to a higher level of effort.
Thus eG and sB are the highest and lowest, with sG and eB inducing a con-
vex combination of the two extremes. Observe that Assumption 2 implies
Assumption 1.

Assumption 2 does not require that productivity of effort is state inde-
pendent, as in Holmström (1999). The parameter 1 − α is a measure of the
productivity of effort in the good state, while β measures the productivity
of effort in the bad state. Our formulation allows one of these parameters
to be arbitrarily close to one, with the other being arbitrarily close to zero,
so that effort would essentially affect the distribution of output only in one
state.

Remark 1. With binary signals, the collinearity assumption is automat-
ically satisfied: the space of probabilities is one-dimensional and α and β
must belong to (0, 1), due to Assumption 1.

Assumption 3. The outside option Λ satisfies

K := min
μ

(1 − β)c
[μ(1 − α) + (1 − μ)β]

− Λ > 0.

When Λ = 0, so that the outside option does not vary with project qual-
ity, Assumption 2 implies K > 0, since β < 1. Consequently, Assumption 3
is satisfied for Λ small.

Our goal is to bound W (μ, t) as a function of t, since larger information
rents require more high powered incentives. We bound W (μ, t) from below
by bounding V (π, μ, t). Obtaining tight bounds for the value function is in
general difficult. However, under the Collinearity Assumption 2, we are able
to obtain useful bounds by considering a particular specification of contin-
uation play of the agent, namely always exert effort. Denote by V ∗(π, μ, t)
the agent’s value function in period t when his belief is π and the principal’s
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belief is μ, and the agent always chooses effort. Since

V (π, μ, t) ≥ V ∗(π, μ, t), (8)

it is enough to bound V ∗(π, μ, t). The value recursion for V ∗ is

V ∗(π, μ, t) =
(
peπ ∙ uμ(t) − c − Λπ

)
+
∑

k

pk
eπV ∗(ψk

e(π), ψk
e(μ), t − 1). (9)

As we saw from (1), if π > μ, the first flow term is positive for small Λ,
with subsequent flows reflecting additional rents from updated differences in
beliefs. However, beliefs merge (Blackwell and Dubins, 1962): the difference
between the agent’s and the principal’s posteriors vanishes. Consequently,
in a long relationship, the impact of a difference in beliefs after a deviation
in the initial period on the expected information rent in the last period is
small.

Nonetheless, in the last period, any small information rent leads to an
increase (albeit small) in the power of the required incentives in the penulti-
mate period. This implies that the information rents in period 2 generated
from a difference in beliefs are greater than they would have been in the last
period. This in turn requires more high powered incentives in period 3, and
so on. This cascading effect implies that the effect of an additional period
upon period 1 incentives are non-negligible, no matter how long the time
horizon T is.

Proposition 3. Suppose that Assumptions 2 and 3 are satisfied. For any
integer t,

π ≥ μ =⇒ V (π, μ, t) ≥ V ∗(π, μ, t) ≥ (π − μ)Kt. (10)

The future information rent from shirking is bounded below by a linear func-
tion of time: For all μ ∈ (0, 1), there is a constant ξ∗(μ) ∈ (0, 1) for which

W (μ, t) ≥ ξ∗(μ)(t − 1). (11)

Proof. We first state some implications of the assumed structure on signals.
Under the collinarity assumption,

peμ − psμ = [μ(1 − α) + (1 − μ)β][peG − psB ].

The optimal spot contract in period t satisfies

c+W (μ, t) = (peμ−psμ)∙uμ(t) = [μ(1−α)+(1−μ)β][peG−psB ]∙uμ(t), (12)
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where W (μ, 1) = 0, and so, since (IR) binds on uμ(t) at belief μ and recalling
(1),

peπ ∙ uμ(t) − c − Λπ = (π − μ)[(peG − peB) ∙ uμ(t) − Λ],

= (π − μ)

(
(1 − β)

μ(1 − α) + (1 − μ)

(
c + W (μ, t)

)
− Λ

)

.

(13)

The first inequality in (10) is simply (8).
From the value recursion for V ∗ given in (9), we have

V ∗(π, μ, t) = peπ ∙ uμ(t) − c − Λπ +
∑

k
pk

eπV ∗(ψk
e(π), ψk

e(μ), t − 1)

= (π − μ)

(
(1 − β)

μ(1 − α) + (1 − μ)β

(
c + W (μ, t)

)
− Λ

)

+
∑

k
pk

eπV ∗(ψk
e(π), ψk

e(μ), t − 1). (14)

A natural way to proceed is by induction. Suppose t = 1. Using (12),

V (π, μ, 1) ≥ V ∗(π, μ, 1)

= (π − μ)
(
(peG − peB) ∙ uμ(1) − Λ

)

= (π − μ)
(
(1 − β)((peG − psB) ∙ uμ(1) − Λ

)

≥ (π − μ)K.

The inductive hypothesis is

π ≥ μ =⇒ V ∗(π, μ, t − 1) ≥ (π − μ)K(t − 1).

If this implied
∑

k
pk

eπV ∗(ψk
e(π), ψk

e(μ), t − 1) ≥ (π − μ)K(t − 1), (15)

then we would be done, since W (μ, t) ≥ 0 and so

(π − μ)

(

K +
(1 − β)

μ(1 − α) + (1 − μ)β
W (μ, t)

)

≥ (π − μ)K.

Note that π ≥ μ implies ψk
e(π) ≥ ψk

e(μ). However, (15) fails because
beliefs merge. From the inductive hypothesis we have

∑

k
pk

eπV ∗(ψk
e(π), ψk

e(μ), t − 1) ≥ K(t − 1)
∑

k
pk

eπ(ψk
e(π) − ψk

e(μ)).
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Using the equality pk
eπ = pk

eμ + (π − μ)(pk
eG − pk

eB), we have

∑

k
pk

eπ(ψk
e(π) − ψk

e(μ)) = π −
∑

k
pk

eπ

μpk
eG

pk
eμ

= π − μ − (π − μ)μ
∑

k
(pk

eG − pk
eB)

pk
eG

pk
eμ

= (π − μ)(1 − ξ(μ)), (16)

where

ξ(μ) := μ
∑

k
(pk

eG − pk
eB)

pk
eG

pk
eμ

> 0

is the merging deficit.8 Therefore, all we can conclude from the inductive
hypothesis with respect to the second term of (14) is

∑

k
pk

eπV ∗(ψk
e(π), ψk

e(μ), t − 1) ≥ (π − μ)K(t − 1)(1 − ξ(μ)). (17)

For future reference, a straightforward calculation shows that under the
collinear parameterization,

ξ(μ) = μ(1 − β)
∑

k
(pk

eG − pk
sB)

pk
eG

pk
eμ

. (18)

But the inductive hypothesis also bounds the future information rents
from shirking,

W (μ, t) =
∑

k
pk

sμV (ψk
s(μ), ψk

e(μ), t − 1)

≥
∑

{k:ψk
s (μ)≥ψk

e (μ)}
pk

sμV (ψk
s(μ), ψk

e(μ), t − 1)

≥ K(t − 1)
∑

{k:ψk
s (μ)≥ψk

e (μ)}
pk

sμ(ψk
s(μ) − ψk

e(μ))

≥ K(t − 1)
∑

k
pk

sμ(ψk
s(μ) − ψk

e(μ)).

8The strict positivity of ξ(μ) for μ /∈ {0, 1} is an immediate implication of Assumption
1. Consistent with the interpretation of ξ as a measure of the merging deficit, ξ(μ) → 0
as μ → 0 or 1 (the summation equals 0 when μ = 1, i.e.,when pk

eG = pk
eμ = 1).
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Now,

∑

k
pk

sμ(ψk
s(μ) − ψk

e(μ)) = μ −
∑

k
pk

sμ

μpk
eG

pk
eμ

= μ
∑

k

{
pk

eμ − pk
sμ

} pk
eG

pk
eμ

= μ
∑

k
[μ(1 − α) + (1 − μ)β](pk

eG − pk
sB)

pk
eG

pk
eμ

=
[μ(1 − α) + (1 − μ)β]

(1 − β)
ξ(μ). (19)

Hence,
(1 − β)

[μ(1 − α) + (1 − μ)β]
W (μ, t) ≥ K(t − 1)ξ(μ). (20)

Substituting (17) and (20) into (14) yields

V ∗(π, μ, t) ≥ (π − μ)K[1 + (t − 1)ξ(μ) + (t − 1)(1 − ξ(μ))] = (π − μ)Kt,

completing the proof of (10). The inequality (11) is a rearrangement of (20),
with

ξ∗(μ) =
[μ(1 − α) + (1 − μ)β]

(1 − β)
Kξ(μ). (21)

Remark 2. Suppose that the agent discounts the future at a rate δ < 1. De-
fine S(t) =

∑t−1
τ=0 δτ , i.e., S(t) is the discounted length of time corresponding

to a horizon t. The above results hold without modification provided that
we replace t by S(t). In particular, W (μ, S(t)) is bounded below a linear
function of S(t). Thus if δ → 1 and t → ∞, S(t) → ∞, and the future
informational rent from shirking grows linearly in S(t).

We analyze the infinite horizon case with discounting in Appendix C
and show that a similar phenomenon arises in this case as well (Proposition
C.1).

�

The assumption on the structure of signals plays two roles in the analysis.
The first is to provide a relationship between peπ ∙uμ(t)−c and W (μ, t). The
second is connect the merging deficit with the bound on W (μ, t). While it is
possible to provide a relationship between peπ ∙ uμ(t)− c and W (μ, t) under
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weaker assumptions, the connection of the merging deficit with the bound
on W (μ, t) is more subtle, and we have not found a more general condition.

We now relate our analysis to previous work on dynamic moral haz-
ard and information rents, such as DeMarzo and Sannikov (2011), Sannikov
(2014), Williams (2011) and Cisternas (2018), which use a “first-order ap-
proach” to study informational rents. The informational rents of the agent
are computed using one-shot deviations, where the agent deviates from her
equilibrium effort level incrementally.9 Similarly, in order to bound informa-
tional rents, we have used a one-time deviation by the agent. Nonetheless,
the foundations of the two analyses are quite different. When the agent’s
choice variable (effort) can be varied continuously, and has no discrete com-
ponents, the envelope theorem implies that the agent’s value function can
be computed by using incremental one-time deviations. However, since our
model has the agent making discrete choices, on effort as well as participa-
tion, one-time deviations only provide a lower bound on the agent’s contin-
uation value. Even with continuous effort choices, the first order approach
does not apply, since the agent’s participation decision may well be discrete
(see Bhaskar, 2014).

Finally, actual future information rents from shirking need not be linear
in t, since the lower bound may underestimate rents. In numerical examples,
we are able to compute the agent’s exact rents under his optimal continu-
ation strategy following a deviation. This may involve leaving the job or
shirking after some histories. We find that the lower bound can substan-
tially underestimate the actual information rents from shirking.

6 Merging with Binary Signals

We have already seen in the two period case that the initial period contract
must be more high powered than the one period contract in order to com-
pensate for the one period FIRS. But this means that in the three period
contract, the FIRS reflects the increased value of different beliefs in period
2 from the more high powered period 2 contract, in addition to the value of
different beliefs in period 1.

How much of the lower bound on future information rents from shirking
is due to the value from having different beliefs in all future periods, and
how much is due to the positive feedback from one period’s increase in the
required power of the incentives to the previous period?

9In discrete time models, the increment is on the effort dimension and for one period,
while in continuous time models, it pertains to both effort and time dimensions.
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pH
aω a = e a = s

ω = G r q + (2r − 1)
ω = B 1 − r q

Figure 1: The probability of the high signal yH as a function of the state ω
and action a, with 0 < q < r < 1 and 2r − 1 > 0 and q + r < 1.

To shed light on this issue, we consider a symmetric environment with
two signals yH and yL, the probability of yH given in Figure 1, and Λ = 0.

By construction, beginning from a common prior, if the principal ex-
pects effort, but the agent shirks, then the agents is more optimistic than
the principal after both yH and yL. We are interested in the value to the
agent of shirking in the initial period (and so being more optimistic in ev-
ery future period), when there are no expected information rents after the
initial period.

Suppose that in each period (after the initial period), the principal of-
fers the statically optimal contract ûμ(t), where μ is the posterior update
assuming the agent has exerted effort previously. The principal has belief
ψe(μ, hτ ) =: μτ . This contract solves

uH − uL =
c

pH
eμτ − pH

sμτ

and
pH

eμτ uH + pL
eμτ uL = 0.

The flow benefit to the agent from exerting effort is then, from (1),

[ψe(π, hτ ) − μτ ](pH
eG − pH

eB)(uH − uL) = [ψe(π, hτ ) − μτ ]
(2r − 1)c

pH
eμτ − pH

sμτ

.

The value to the agent of having belief π > μ at the end of the initial period
with t periods remaining is

V †(π, μ, t) = Eeπ

t∑

τ=1

[ψe(π, hτ ) − μτ ]
(2r − 1)c

pH
eμτ − pH

sμτ

,

where, as before, hτ ∈ Y t−τ . At the risk of emphasizing the obvious, observe
that because π > μ, for all hτ we have that ψe(π, hτ ) − μτ = ψe(π, hτ ) −
ψe(μ, hτ ) > 0.

We have the following proposition, proved in Appendix B.

24



Proposition 4. Suppose there are two signals with distributions given in
Figure 1, 16r3(1 − r) < 1, and Λ = 0. There exists V̄ ∈ R such that for all
t, and π > μ,

V †(π, μ, t) < V̄.

While we have not been able to bound V † for other parameterizations
(in particular, r must be close to one and q close to zero10), we conjecture
the result holds more generally. This result supports our intuition that the
incentive costs are unbounded in t due to the positive feedback from the
power of the incentives.

7 The Cost of Inducing Effort

We have shown that the agent’s opportunity cost of effort increases at least
linearly in the length of the relationship under Assumption 2. We now exam-
ine how this translates to the principal’s expected wage cost in any period,
as a function of the length of the remaining relationship. The analysis of
this section is based on the comparative statics of the optimal static contract
when the agent’s opportunity cost of shirking changes. As the time horizon
t increases, W (μ, t) increases at least linearly. Let w(μ, t) denote the ex-
pected wage cost of inducing effort in period t and belief μ, given that the
principal induces effort in every period s < t. Our focus is on the behavior
of w(μ, t), as a function of t for a fixed μ.

It is an immediate consequence of Proposition A.1 that if the utility of
the agent is CRRA with coefficient of relative risk aversion 2, then the wage
cost is quadratic and increasing in W (μ, t), and therefore quadratic and
increasing in t. We will prove that this generalizes: if the second derivative
of w(u) (the inverse of the worker’s utility function) is bounded away from
zero, then the wage cost is at least quadratic in the length of the relationship.
Moreover, for any strictly concave utility function, the expected wage cost
is at least linear in the length of the relationship.

Before we prove the above claims, we note that the wage cost is expo-
nential in the length of the relationship when the agent’s utility function is

10More precisely, the bound 16r3(1 − r) < 1 requires approximately r > 0.92 and so
q < .08.
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log:

w(μ, t) = peμ ∙ w(uμ(t))

=
∑

k
(pk

eB + μ(1 − β)(peG − psB)k) exp(uk
μ(t))

≥ μ(1 − β)
∑

k
(peG − psB)k exp(uk

μ(t))

=
μ(1 − β)

μ(1 − α) + (1 − μ)β

∑

k
(peμ − psμ)k exp(uk

μ(t))

≥
μ(1 − β)

μ(1 − α) + (1 − μ)β
exp((peμ − psμ) ∙ uμ(t))

≥
μ(1 − β)

μ(1 − α) + (1 − μ)β
exp(c + W (μ, t)).

Turning to more general agent utility functions, we first argue that we
can restrict attention to binary signals without loss of generality.

Lemma 3. Fix a general signal structure (Y, p). There exists a binary signal
structure ({yL, yH}, pH

a ), such that the expected wage cost of inducing effort
under (Y, p) is at least as large as the expected wage cost of inducing effort
under the binary signal structure.

Proof. Let yK denote the signal with maximum likelihood ratio (pk
e/pk

s) and
y1 the signal with minimum likelihood ratio. Construct a new information
structure from the original information structure by replacing each signal
yk, k 6= 1,K, with two signals ȳk and yk having probabilities θk

ap
k
aμ and

(1 − θk
a)p

k
aμ, respectively, under the action a ∈ {s, e}. The numbers θk

a are
chosen to satisfy

θk
ep

k
eμ

θk
sp

k
sμ

=
pK

eμ

pK
sμ

and
(1 − θk

e)p
k
eμ

(1 − θk
s)pk

sμ

=
p1

eμ

p1
sμ

,

so that the likelihood ratio of ȳk equals that of yK , while the likelihood ratio
of yk equals that of y1.

Since the optimal spot contract under the original information struc-
ture is feasible under the new information structure (by treating the pooled
{yk, ȳk} as yk), the expected wage cost of inducing effort under the original
information structure is at least as large as that from the optimal contract
inducing effort under the new structure.
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But since there are only two likelihood ratios under the new information
structure, there are only two wages offered in the optimal spot contract.
That is, the optimal spot contract partitions the signal space into two, {y1}∪
{yk : k = 2, . . . ,K − 1} and {yK} ∪ {ȳk : k = 2, . . . ,K − 1}. The desired
binary signal structure treats each element of the partition as a signal.

Consider now an arbitrary strictly concave and twice differentiable u.
Under binary signals, the optimal contract in period t, uμ(t) = (uL

μ(t), uH
μ (t)),

satisfies

Δuμ(t) := uH
μ (t) − uL

μ(t) =
c + W (μ, t)
pH

eμ − pH
sμ

.

The optimal contract is the pair (uL
μ(t), uH

μ (t)) solving

uH
μ (t) = uL

μ(t) + Δuμ(t) and

c = pH
eμuH

μ (t) + (1 − pH
eμ)uL

μ(t),

so that

uL
μ(t) = c − pH

eμΔuμ(t) and uH
μ (t) = c + (1 − pH

eμ)Δuμ(t). (22)

Expected wages under the optimal contract are

w(μ, t) = (1 − pH
eμ)w(uL

μ(t)) + pH
eμw(uH

μ (t)).

A second order Taylor-expansion of w(u) around u = 0 yields

w(μ, t) = w(0) +
1
2
(1 − pH

eμ)w′′(ûL)(uL
μ(t))2 +

1
2
pH

eμw′′(ûH)(uH
μ (t))2,

where ûL ∈ (uL
μ(t)), 0) and ûH ∈ (0, (uH

μ (t)). If w′′ is bounded below by
ρ > 0, then the expected wage cost is a quadratic function of uL

μ(t) and
uH

μ (t), and thus an increasing quadratic function of W , and so t.
Finally, we show that the expected wage cost increases at least linearly in

t even if w′′(.) is not bounded away from zero. Let uH
μ (1) and uL

μ(1) denote
the optimal contract in the static case, i.e., when t = 1, and let wH

μ (1)
and wL

μ (1) denote the corresponding wages. Since uH
μ (1)−uL

μ(1) = c
(pH

eμ−pH
sμ)

(due to the incentive constraint), and since u is strictly concave u′(wH
μ (1)) <

u′(wL
μ (1)). Let a := u′(wH

μ (1)), and b := u′(wL
μ (1)). We approximate the

function u by the piece-wise linear function ũ,

ũ(w) =

{
ũ0 + a(w − w̃), w ≥ w̃,

ũ0 − b(w̃ − w) , w < w̃,
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Figure 2: The original utility function u, the approximating piecewise lin-
ear utility function ũ, and the statically optimal contract uμ(1) for binary
signals. The contract uμ(1) is determined by Δuμ(1) and the requirement
that expected utility (under peμ) is zero. The expected cost of the contract
is then the corresponding value on the w-axis.

where (w̃, ũ0) is defined so that ũ is a continuous function, by the condition

ũ0 := uL
μ(1) + b

(
w̃ − wL

μ (1)
)

= uH
μ (1) − a

(
wH

μ (1) − w̃
)

as depicted in Figure 2.
As before, the optimal contract satisfies (22). It is straightforward to

verify that the expected cost of this contract is of the same order as W (μ, t),
and so linear in t – see Figure 2. It is also straightforward to verify that the
expected wage cost under the true utility function u is strictly greater than
that under ũ. Thus the expected wage costs under the true utility function
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are bounded below by a linear function.11

To summarize: for any binary signal structure, we have established that
wage costs are are bounded below by an increasing linear or quadratic func-
tion of t. Since Lemma 3 establishes that wage costs under an arbitrary
information structure are greater than those under some binary signal struc-
ture, we have the following proposition.

Proposition 5. Under the collinearity Assumption 2, w(μ, t) is bounded
below by a strictly increasing linear function of t. If additionally, there is a
strictly positive lower bound on w′′, then the bound on w(μ, t) is increasing
and quadratic in t. If agent utility is logarithmic, the bound is exponential
in t.

8 Endogenous Effort

We conclude with a few comments on endogenous effort. We maintain the
assumptions of Proposition 3, and consider the case of finite horizons only.

First, we need to specify the effects of the the agent’s action choices upon
the principal’s revenue. Suppose the signal is the level of revenue accruing
to the principal, so that the expected revenue under action a and belief μ
is Eaμy. Let w0 := w−1(0) denote the constant wage that meets the agent’s
IR constraint when the agent shirks. We assume Eaμy−w0 > 0 for all a and
μ so that employing the agent is always optimal in the one-period problem.
This implies that employment is also efficient in the dynamic case, since the
principal can always hire the worker for a constant wage of w0 (inducing
shirking in every period). Let

R(μ) := Eeμy − Esμy

denote the principal’s incremental revenue from effort over shirk at belief μ.
Denote the expected wage cost of the contract uμ(t) by wμ(t).

In the one-period problem, the principal’s optimal policy is to induce
effort if

R(μ) > wμ(1) − w0,

and to induce shirking otherwise.12 We assume inducing effort is optimal in
the static setting for all beliefs μ.

11Since we can find a sequence of strictly concave utility functions that converge to ũ,
one cannot in general do better than a linear bound, if we do not assume a bound on the
second derivative.

12We assume that the principal induces shirking when she is indifferent, thereby focusing
attention on the principal optimal equilibrium, since such a policy minimizes the deviation
gain of the agent. Such an indifference does not arise generically.
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Suppose first that, like the agent, the principal does not discount future
payoffs. In addition to increasing expected revenues, effort may generate
more informative signals than shirking. If effort is more informative, then
the principal may find it profitable to induce effort even if the flow returns are
negative. Nonetheless, we do have two straightforward observations about
the profitability of always inducing effort. Since the value of information is
less than linear in the horizon (because of merging), for a fixed prior, for
a sufficiently long horizon, it cannot be optimal for the principal to induce
effort in every period. On the other hand, for a fixed horizon, if the prior is
sufficiently close the boundary, then always inducing effort can be optimal.

Proposition 6. Suppose for all μ ∈ [0, 1],

R(μ) > wμ(1) − w0.

1. For all μ0 ∈ (0, 1), there exists T0 such that if T ≥ T0, then it is not
optimal for the principal to induce effort in every period.

2. For all T0, there exists ε > 0 such that if μ0 ∈ (0, ε) ∪ (1 − ε, 1),
then it is optimal for the principal to induce effort in every period of
a T -period relationship if T ≤ T0.

Proof.

1. We prove this by contradiction. Suppose the principal induces effort in
every period. Let vτ be the τ -period expected benefit of e rather than
s in period 1, assuming e is chosen in every subsequent period (vτ will
be negative if e generates less informative signals than s). Merging
implies vτ → 0 as τ → 0. We claim that the value of information is
therefore less than linear in the horizon. More precisely, we claim that
for all ε > 0, there exists Tε > 0 such that for all t ≥ Tε,

t∑

τ=1

vτ < tε.

To prove this, fix ε > 0 and choose T ′ so that for all t ≥ T ′, we have
vτ < ε/2. Define v̄ := max{vτ : 1 ≤ τ ≤ T ′}. Then,

T ′∑

τ=1

vτ +
t∑

τ=T ′+1

vτ ≤ T ′v̄ + (t − T ′ − 1)ε/2.
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The last expression is less than tε (as required) if

t ≥ Tε :=
2T ′v̄

ε
− (T ′ + 1).

It is now immediate from Proposition 5 that not inducing effort in
the initial period (and then inducing effort in every period) is more
profitable than inducing effort in the initial period as well, when the
time horizon is sufficiently long.

2. Fix T0. Define

B(μ, μ′) := max
t≤T0

|wμ(t) − wμ′(t)|.

Observe that B(μ, μ′) is continuous in μ and μ′, and equals 0 when
μ = μ′.

By assumption, inducing effort is statically strictly optimal, so that
η := maxμ R(μ)−(wμ(1)−w0) > 0. Since the domain of B is compact,
B is uniformly continuous, and so there exists ε′ > 0 such that if the
posterior belief μ after any history of signals and agent action choices
is within ε′ of the prior μ0, then B(μ0.μ) < η.

The proof is completed by observing that if the prior μ0 is sufficiently
close to the boundary (either 0 or 1) then every potential posterior
must be within ε′ of μ0.

8.1 The Time Path of Optimally Induced Efforts

In general, determining the principal’s optimal sequence of induced actions is
complicated, not least because it will also involve elements of active learning
(experimentation) and possibly randomization over effort.

Consider first random effort. The principal will not induce randomized
effort if the information structure is such that ψk

s(μ) ≥ ψk
e(μ) for every

k, so that the agent never quits after shirking. Under this informational
assumption, it is always optimal for the principal to induce a deterministic
level of effort, i.e., it is strictly dominated for the principal to induce the
agent to randomize between effort and shirking. If the principal induces
random effort at date t, then at t − 1, then after any signal realization
yk, the principal faces a screening problem, where the types of the agent
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correspond to the beliefs associated with the two different effort choices. If
ψk

s(μ) ≥ ψk
e(μ) for every k, the agent never gets any informational rent after

working, while he gets a rent from shirking, just as in the case the principal
induces working for sure. This implies that the incentive constraint and
participation constraint at date t for inducing random effort are identical
to the constraints for inducing work for sure, thus ensuring that inducing
random effort is dominated by one of the two pure effort levels. If the
informational structure is such that there is a signal realization for which
the agent is more pessimistic after shirking than after working, then inducing
random effort allows the principal to commit to pay future rents to the agent
who exerted effort. This relaxes both incentive and participation constraints,
and in this case, inducing random effort can be optimal.

To illustrate how complicated the optimal sequence could be, we now
focus on the case of a sequence of short-lived principals contracting with the
long-lived agent. A short-lived principal will not induce effort for purposes
of experimentation/learning. She will only induce effort if the expected wage
cost of doing so is less than R(μ).

As for a long-lived principal and log utility agent, it is obviously never
optimal for a short-lived principal to induce effort when all future principals
induce effort and the horizon is long. A short run principal may induce
random effort. As discussed above, a sufficient condition for not inducing
random effort is that ψk

s(μ) ≥ ψk
e(μ) for every k.

A plausible conjecture is that for a sufficiently long lived agent, initially
the short-lived principals induce shirking, followed by a second and final
phase where they induce work. Intuitively, the initial phase reduces the time
horizon and uncertainty regarding the state, both of which reduce the future
informational rents from shirking, thereby permitting the principal to induce
effort in the second phase. This conjecture is incorrect, due the following
critical feature of our model: even if the agent is more optimistic than the
principal, he only gets informational rents in a period if the principal induces
effort in that period. As the time horizon T increases, the initial phase of
shirking must also increase. But once the shirking phase becomes sufficiently
long, and T increases further, it becomes profitable to induce effort in the
first period of the relationship. In any subsequent period, the agent only
receives an information rent if effort is induced in that period. Thus the
future information rent from shirking in the first period is small when it
is followed by a long phase of shirking, where not only does the agent not
receive any rents, but her informational advantage is also eroded due to the
merging of beliefs.

The above considerations suggest that even for the case of short-lived
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Figure 3: The expected wage cost of inducing effort in the initial period, as
a function of the prior μ and length of the horizon. There are two signals,
with pH

eG = 3
4 , pH

eB = pH
sG = 1

2 , and pH
sB = 1

4 . The cost of effort is c = 2 and
the agent’s utility functions if u(w) = 10 log w. Finally, yH − yL = 1.292,
so that R(μ) + w0 = 1.323. The horizontal line is R(μ) + w0, the vertical
line is μ = 0.65. The cyan solid line is for T = 1, the red dotted line is for
T = 2, and the purple dashed line is for T = 3.

principals, the optimal sequence of induced agent behavior is complicated.
This is illustrated in Figures 3 and 4, which report the expected wage cost
of inducing effort given optimal future effort inducement (that is, effort in
a period is only induced if that period’s principal finds it optimal to do
so). For example, for T = 2, the initial period principal does not induce
effort for μ ∈ (.1, .2). Consequently, for T = 3, there is a discontinuity in
the expected wage cost of inducing effort in the initial period at μ = 4

7 :
For μ > 4

7 , effort is induced in the second periods after all signals, and so
the FIRS is high. For μ just below 4

7 , the low signal leads to a posterior
in (.1, .2) and so a constant wage (no effort induced) in the second period,
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Figure 4: The expected wage cost of inducing effort in the initial period, as
a function of the prior μ for T = 4 and T = 5. The green dashed line is for
T = 4, and the blue dotted line is for T = 5. The parameter values are the
same as in Figure 3.

with a consequently lower FIRS. Moreover, if slightly larger yH −yL, we see
it is possible for some priors to induce effort in the initial period for T = 3
but not for T = 2. Finally, we see that is there is no monotonicity of the
expected wage cost in either T or μ. At μ = .65, for example, this results
in effort being induced in the initial period for T = 1, 2, and 4 but not for
T = 3 and 5.

9 Conclusions

We model the ratchet effect that arises when principal and agent face sym-
metric uncertainty about job difficulty and the principal does not observe the
agent’s effort choice. In order to overcome the ratchet effect in any period
t but the last one, the principal needs to provide high-powered incentives
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in period t if she wants to induce effort. But such high powered incentives
increase informational rents, and thereby aggravate the ratchet effect in ev-
ery period prior to t. This makes always inducing effort unprofitable if the
relationship is long enough.

Appendix

A CRRA Preferences

We assume the agent’s utility function is unbounded below, but only to
ensure individual rationality is always binding. While CRRA utility func-
tions are not unbounded below, individual rationality will still be binding
if w(uk) > −A for all yk. In particular, it will be for many periods for the
utility function in Proposition A.1 for sufficiently large A.

Proposition A.1. Suppose the agent’s utility function is given by

u(w) =
√

A + w,

where A > 0. If w(uk) > −A for all yk under W and W̃ , then the implication
(6) holds. There exists T̃ such that for all time horizons T < T̃ , the agent’s
future informational rent from shirking, W (T ), is strictly increasing in T ,
and the principal’s wage cost in the intial period is quadratic in W (T ).

Proof. Since w′(uk) = 2uk, the first order conditions for the principal’s
problem can be written as

2uk = λ + ζ

(

1 −
pk

sμ

pk
eμ

)

, k = 1, . . . ,K, (A.1)

where λ is the multiplier on the IR constraint and ζ is the multiplier on the
IC constraint. The incentive constraint (peμ − psμ) ∙ u = c + W can then be
rewritten as

c + W =
∑

k
(pk

eμ − pk
sμ)

[
λ

2
+

ζ

2

(

1 −
pk

sμ

pk
eμ

)]

=
∑

k

ζ

2
(pk

eμ − pk
sμ)

(

1 −
pk

sμ

pk
eμ

)

=:
ζX(μ)

2
,
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where X(μ) > 0 since there exists an informative signal such that pk
eμ 6= pk

sμ.
This implies

ζ =
2(c + W )

X(μ)
,

and so

(peG − peB) ∙ (u − ũ) =
∑

k
(pk

eG − pk
eB)

(W − W̃ )
X(μ)

(

1 −
pk

sμ

pk
eμ

)

=: X∗(μ)(W − W̃ ),

where X∗(μ) > 0 from Assumption 1.
Further, from (A.1),

2E(u) = λ + ζ
∑

k
(pk

eμ − pk
sμ) = λ,

and since E(u) − c = 0 from the binding IR constraint, λ is independent of
W , the opportunity cost of shirking.

Turning to expected wage costs, from (A.1),

4E(w) = λ2 + ζ2
∑

k

(
pk

eμ − pk
sμ

)
(

1 −
pk

sμ

pk
eμ

)

= λ2 +
4(c + W )2

X(μ)
.

Since λ does not depend upon W , E(w) is quadratic in c + W .

B Proofs for Section 6

Lemma B.1. Suppose μ, π > 1
2 . Then, there exists σ ∈ (0, 1) such that for

all μ, π ≥ 1
2 and for all yk ∈ Y H ,

∣
∣
∣ψk

e(π) − ψk
e(μ)

∣
∣
∣ ≤ σ |π − μ| .

Proof. From some straightforward calculations, we have

ψk
e(π) − ψk

e(μ) =
πpk

eG

pk
eπ

−
μpk

eG

pk
eμ

=
(π − μ)pk

eGpk
eB

pk
eπpk

eμ

,
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and so it remains to bound the ratio of probabilities.
Now, consider

fk(π, μ) := pk
eπpk

eμ − pk
eGpk

eB

= πμ(pk
eG)2 + (1 − π)(1 − μ)(pk

eB)2

− [πμ + (1 − π)(1 − μ)]pk
eGpk

eB .

This function is increasing in π and μ (since yk ∈ Y H), and so is minimized
at π = μ = 1

2 over π, μ ≥ 1
2 . That is,

fk(π, μ) ≥
1
4
(pk

eG − pk
eB)2 ∀π, μ ≥

1
2
.

Define

X := min
yk∈Y H

(pk
eG − pk

eB)2

4pk
eGpk

eB

and set

σ =
1

1 + X
∈ (0, 1). (B.1)

Then,

pk
eπpk

eμ − pk
eGpk

eB = fk(π, μ)

≥ Xpk
eGpk

eB

=

(
1
σ
− 1

)

pk
eGpk

eB ,

and so
pk

eGpk
eB

pk
eπpk

eμ

≤ σ.

Proof of Proposition 4. For the purposes of this proof, it is more con-
venient to index periods forward rather than backward, so that hτ is the τ
length history leading to period τ , with T − τ periods remaining.

Given hτ , let n(hτ ) denote the difference between the number of yH and
yL realizations in hτ . Then, since pH

eB = pL
eG, histories of different lengths

lead to the same posterior as long as they agree in n(hτ ), i.e., for all hτ and
hτ ′

, with τ possibly different from τ ′,

n(hτ ) = n(ĥτ ′
) ⇒ ψe(μ, hτ ) = ψe(μ, ĥτ ′

).
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We proceed by conditioning on G (the unconditional expectation is then
the average of the conditioning on G and the symmetric term from B).
Moreover, for large t, conditional on G, the probability that n(ht) is negative
goes to zero sufficiently fast, that it is enough to show that

Pr {n(hτ ) ≥ 0 for τ = 0, . . . , t − 1}×

E

{
t−1∑

τ=0

[ψe(π, hτ ) − ψe(μ, hτ )]

∣
∣
∣
∣
∣
G, aτ = e, n(hτ ) ≥ 0

}

(B.2)

is bounded. Moreover, we can also assume μ > 1/2, since conditional on G,
the probability that n(hτ ) is small becomes arbitrarily small as t becomes
large.

From Lemma B.1 (using the value of σ from (B.1)), we have that for
σ := 4r(1 − r) ∈ (0, 1), if π, μ > 1

2 , then

ψe(π, n(hτ )) − ψe(μ, n(hτ )) < σn(hτ )(π − μ).

Then the expression in (B.2) is bounded above by

t−1∑

τ=0

τ∑

n=0

Pr(n(hτ ) = n)σn(π − μ)

= (π − μ)
t−1∑

n=0

σn
t−1∑

τ=n

Pr(n(hτ ) = n)

≤ (π − μ)
∞∑

n=0

σn
∞∑

τ=n

Pr(n(hτ ) = n). (B.3)

We first bound

Pr(n(hτ ) = n) = b((τ + n)/2; τ , p) =

(
τ

(τ + n)/2

)

r(τ+n)/2(1 − r)(τ−n)/2.

Using Stirling’s formula13

√
2π mm+1/2e−m ≤ m! ≤ e mm+1/2e−m for all positive integers m,

13See, for example, Abramowitz and Stegun (1972, 6.1.38).
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we bound the binomial coefficients as follows
(

τ
(τ + n)/2

)

=
τ !

(τ+n)
2 ! (τ−n)

2 !

≤
e τ τ+ 1

2 e−τ

2π
[

(τ+n)
2

] (τ+n)
2

+ 1
2
e−

(τ+n)
2

[
(τ−n)

2

] (τ−n)
2

+ 1
2
e−

(τ−n)
2

≤
τ τ+ 1

2

√
2
[

(τ+n)
2

] (τ+n)
2

+ 1
2
[

(τ−n)
2

] (τ−n)
2

+ 1
2

=
(2τ)τ+ 1

2

(τ2 − n2)
τ
2
+ 1

2

×

(
τ − n

τ + n

)n/2

≤
(2τ)τ+ 1

2

(τ2 − n2)
τ
2
+ 1

2

≤ 2τ+ 1
2

(
τ2

τ2 − n2

) τ
2
+ 1

4

.

We also need the following calculation. Setting k :=
√

(1 + σ)/(1 − σ),
gives for all τ > kn,

τ2

τ2 − n2
σ <

k2n2

k2n2 − n2
σ

=
k2

k2 − 1
σ

=
1 + σ

2σ
σ =

1 + σ

2
=: y < 1,

where the final inequality holds because σ < 1.
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We are now in a position to bound (B.3), since

∞∑

n=0

σn
∞∑

τ=n

Pr(n(hτ ) = n) =
∞∑

n=0

σn
kn∑

τ=n

Pr(n(hτ ) = n)

+
∞∑

n=0

(

σ2 r

1 − r

)n/2 ∞∑

τ=kn+1

(
τ

(τ + n)/2

)

[r(1 − r)]τ/2

≤
∞∑

n=0

σn(k − 1)n

+
√

2
∞∑

n=0

(

σ2 r

1 − r

)n/2 ∞∑

τ=kn+1

(
τ2

τ2 − n2

) τ
2
+ 1

4

[4r(1 − r)]τ/2

≤
∞∑

n=0

σn(k − 1)n

+
√

2
∞∑

n=0

(

σ2 r

1 − r

)n/2 ∞∑

τ=kn+1

(
τ2

τ2 − n2

) 1
4

yτ/2.

Since σ < 1 and y < 1, this expression is bounded if

1 > σ2 r

1 − r
= 16r2(1 − r)2

r

1 − r
= 16r3(1 − r).

C Infinite Horizon

In this section, we maintain the hypotheses on the probability distributions
of Proposition 3 and show that a similar phenomenon arises with an infinite
horizon. We assume both the principal and agent discount with possibly
different discount factors δA and δP < 1. We focus on stationary high effort
incentive efficient contracts.

Proposition C.1. Suppose the probability distributions satisfy the condi-
tions in Proposition 3. Suppose a stationary high effort incentive efficient
contract exists and V (π, μ) is the agent’s value when his belief is π and the
principal’s belief is μ. Then,

π ≥ μ =⇒ V (π, μ) ≥
K(π − μ)
1 − δA

. (C.1)

The future information rent from shirking becomes unbounded as the agent
becomes arbitrarily patient (where ξ∗(μ) is given in (21)):

W (μ; V ) :=
∑

k
pk

sμV (ψk
s(μ), ψk

e(μ)) ≥
ξ∗(μ)

(1 − δA)
.
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The denominator 1 − δA replaces the horizon, and analogously to the
finite horizon, as the agent becomes patient, future information rents from
shirking become arbitrarily large.

We present the argument for Λ = 0; the case of Λ > 0 is handled mutatis
mutandis (by working with the surplus net of the outside option).

Let Y be the set of all functions mapping [0, 1]2 to R equalling zero on
the diagonal (i.e., V (μ, μ) = 0 for all μ ∈ [0, 1] and all V ∈ Y),14 and let
Ψ : Y → Y be the mapping defined by V ′ = Ψ(V ) given by

V ′(π, μ) := max
{

peπ ∙ uV
μ − c + δA

∑

k
pk

eπV (ψk
e(π), ψk

e(μ)),

psπ ∙ uV
μ + δA

∑

k
pk

sπV (ψk
s(π), ψk

e(μ)), 0
}

, (C.2)

where uV
μ is the unique cost minimizing vector of utilities satisfying

peμ ∙ uV
μ − c ≥ psμ ∙ uV

μ + δAW (μ; V ) (C.3)

and peμ ∙ uV
μ − c ≥ 0. (C.4)

For any stationary high effort incentive efficient contract, the value func-
tion V describing the agent’s value when his belief is π and the principal’s
belief is μ is a fixed point of Ψ.

We proceed as in the finite horizon case, bounding V by the value func-
tion when the agent exerts effort. Consequently, as for the finite horizon
case, we do not need to know the precise details of the spot contracts, here
uV

μ . It is enough to know that

peπ ∙ uV
μ − c = (π − μ)

(1 − β)
[μ(1 − α) + (1 − μ)β]

(c + δAW (μ; V )) ,

which follows from familiar arguments (see (12) and (13)).

Lemma C.1. Denote by V the subset of Y satisfying the inequality in (C.1).
The mapping Ψe : Y → Y defined by V ∗ = Ψe(V ), where

V ∗(π, μ) := peπ ∙ uV
μ − c + δA

∑

k
pk

eπV (ψk
e(π), ψk

e(μ)) (C.5)

is a self-map on V, i.e.,
Ψe : V → V .

14We have already seen in the finite horizon setting that this property holds, and it could
be deduced here as well. Assuming it directly is without loss of generality and simplifies
our analysis.
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Proof. For V ∈ V ,

W (μ; V ) =
∑

k
pk

sμV (ψk
s(μ), ψk

e(μ))

≥
∑

{k:ψk
s (μ)≥ψk

e (μ)}
pk

sμV (ψk
s(μ), ψk

e(μ))

≥
∑

{k:ψk
s (μ)≥ψk

e (μ)}
pk

sμ

K(ψk
s(μ) − ψk

e(μ))
1 − δA

≥
∑

k
pk

sμ

K(ψk
s(μ) − ψk

e(μ))
1 − δA

≥
[μ(1 − α) + (1 − μ)β]

(1 − β)
Kξ(μ)

(1 − δA)

(where the last inequality follows from (19)). This gives

V ∗(π, μ) ≥ (π − μ)K

{

1 + δA
ξ(μ)

(1 − δA)

}

+ δA

∑

k
pk

eπV (ψk
e(π), ψk

e(μ)).

Turning to the second term, supposing π ≥ μ, and applying (16) to obtain
the equality gives

∑

k
pk

eπV (ψk
e(π), ψk

e(μ)) ≥
K
∑

k pk
eπ(ψk

e(π) − ψk
e(μ))

1 − δA

= (π − μ)
K

(1 − δA)
(1 − ξ(μ)),

so that

V ∗(π, μ) ≥ (π − μ)
K

(1 − δA)
{1 − δA + δAξ(μ) + δA(1 − ξ(μ))}

= (π − μ)
K

(1 − δA)
,

and so V ∗ ∈ V .

Since
Ψ(V ) ≥ Ψe(V )

pointwise (i.e., for all (π, μ), Ψ(V )(π, μ) ≥ Ψe(V )(π, μ)) and Ψe : V → V ,
we have Ψ : V → V .

We now argue that any fixed point of Ψ must lie in V , which proves
Proposition C.1. Since Ψ need not be a contraction, we argue indirectly.

Let Y0 := {V ∈ Y | V (π, μ) ≥ 0 ∀(π, μ)}. Clearly, Ψ : Y → Y0. For all
V ∈ Y0,

π ≥ μ =⇒ Ψ(V )(π, μ) ≥ Ψe(V )(π, μ) ≥ (π − μ)Kc.
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Lemma C.2. Defining

Yκ := {V ∈ Yκ−1 | V (π, μ) ≥ (π − μ)K(1 − δκ
A)/(1 − δA), ∀π ≥ μ},

we have
Ψ : Yκ → Yκ+1, ∀κ ≥ 0.

Proof. For V ∈ Yκ, applying (19),

W (μ; V ) ≥
∑

{k:ψk
s (μ)≥ψk

e (μ)}
pk

sμV (ψk
s(μ), ψk

e(μ))

≥
∑

{k:ψk
s (μ)≥ψk

e (μ)}
pk

sμ

K(1 − δκ
A)(ψk

s(μ) − ψk
e(μ))

1 − δA

≥
∑

k
pk

sμ

K(1 − δκ
A)(ψk

s(μ) − ψk
e(μ))

(1 − δA)

≥
[μ(1 − α) + (1 − μ)β]

(1 − β)
K(1 − δκ

A)ξ(μ)
(1 − δA)

.

Then, as in the beginning of the proof of Lemma C.1,

Ψe(V )(π, μ) ≥ (π − μ)K

{

1 + δA
(1 − δκ

A)ξ(μ)
(1 − δA)

}

+ δA

∑

k
pk

eπV (ψk
e(π), ψk

e(μ)).

But, for π ≥ μ,

∑

k
pk

eπV (ψk
e(π), ψk

e(μ)) ≥
K(1 − δκ

A)
∑

k pk
eπ(ψk

e(π) − ψk
e(μ))

1 − δA

= (π − μ)
K(1 − δκ

A)
(1 − δA)

(1 − ξ(μ)),

so that

Ψ(V )(π, μ) ≥ Ψe(V )(π, μ)

≥ (π − μ)
K

(1 − δA)
{1 − δA + δA(1 − δκ

A)ξ(μ) + δA(1 − δκ
A)(1 − ξ(μ))}

= (π − μ)
K(1 − δκ+1

A )
(1 − δA)

,

and so V ∗ ∈ Yκ+1.

Since V =
⋂

Yκ, we have the desired result:
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Lemma C.3. Every fixed point of Ψ is in V.

Proof. Each fixed point of Ψ must be in every Yκ, so that

V (π, μ) ≥
(π − μ)K(1 − δκ

A)
(1 − δA)

, ∀π ≥ μ,

for all κ, implying V ∈ V .

C.1 Existence of stationary high effort incentive efficient con-
tracts

A natural approach to obtaining existence of a well-defined value function is
to find conditions under which Ψ is a contraction. Since Ψ is the point-wise
maximum of Ψe (defined in (C.5)), Ψs (the analogous operator in which
the agent shirks in the current period, corresponding to the second term in
(C.2)), and the zero function, Ψ will be a contraction (under the sup norm)
if Ψe and Ψs are (again, under the sup norm).

Suppose V, V̂ ∈ V . Then,

|Ψe(V )−Ψe(V̂ )|

≤ sup
π,μ

∣
∣
∣
∣

(π − μ)(1 − β)
μ(1 − α) + (1 − μ)β

∣
∣
∣
∣

× δA

∣
∣
∣
∑

k
pk

sπ[V (ψk
s(π), ψk

e(μ)) − V̂ (ψk
s(π), ψk

e(μ))]
∣
∣
∣

+ δA

∣
∣
∣
∑

k
pk

eπ[V (ψk
e(π), ψk

e(μ)) − V̂ (ψk
e(π), ψk

e(μ))]
∣
∣
∣

≤ |V − V̂ | ×

{

sup
π,μ

∣
∣
∣
∣

(π − μ)(1 − β)
μ(1 − α) + (1 − μ)β

∣
∣
∣
∣+ 1

}

δA.

This simple calculation shows that when Ψe is not a contraction, the failure
arises from the future information rent from shirking (which contributes the
sup term in the last expression. We also see that Ψe is a contraction if that
sup term is sufficiently small (relative to (1− δA)/δA). A similar calculation
shows that Ψs is also a contraction if a similar sup term is sufficiently small
(also relative to (1 − δA)/δA).15

A second approach to obtaining existence is to impose a parameter re-
striction that allows us to obtain a closed form expression for the value
functions.

15The sup in Ψe is being taken over |(pH
eπ − pH

eμ)/(pH
eπ − pH

sμ)|, while the sup in Ψs is
being taken over |(pH

sπ − pH
eμ)/(pH

eπ − pH
sμ)|.
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Lemma C.4. Suppose β = 1 − α. The mapping Ψ has as a fixed point the
function

V (π, μ) =
αc(π − μ)

(1 − α)(1 − δA)
, (C.6)

and the associated stationary high effort incentive efficient contract is the
unique cost minimizing vector of utilities satisfying (C.3) and (C.4).

Proof. We need only show that the function specified in (C.6) is a fixed
point of Ψ. It is straightforward to verify that (C.6)) is a fixed point of Ψe.
Some algebra verifies that Ψe(V )−Ψs(V ) = 0 for V given by (C.6), and so
(C.6) does indeed describe a fixed point of Ψ.16
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