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Abstract

This paper studies infinite-horizon stochastic games in which players ob-
serve actions and noisy public information about a hidden state each period.
We find a general condition under which the feasible and individually ratio-
nal payoff set is invariant to the initial prior about the state, when players are
patient. This result ensures that players can punish or reward the opponents
via continuation payoffs in a flexible way. Then we prove the folk theorem,
assuming that public randomization is available. The proof is constructive,
and uses the idea of random blocks to design an effective punishment mech-
anism.

Journal of Economic Literature Classification Numbers: C72, C73.

Keywords: stochastic game, hidden state, uniform connectedness, robust
connectedness, random blocks, folk theorem.

1 Introduction

When agents have a long-run relationship, underlying economic conditions may
change over time. A leading example is a repeated Bertrand competition with

∗The author thanks Naoki Aizawa, Drew Fudenberg, Johannes Hörner, Atsushi Iwasaki, Michi-
hiro Kandori, George Mailath, Takuo Sugaya, Takeaki Sunada, Masatoshi Tsumagari, and Juan
Pablo Xandri for helpful conversations, and seminar participants at various places.

†Department of Economics, University of Pennsylvania. Email: yyam@sas.upenn.edu
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stochastic demand shocks. Rotemberg and Saloner (1986) explore optimal col-
lusive pricing when random demand shocks are i.i.d. each period. Haltiwanger
and Harrington (1991), Kandori (1991), and Bagwell and Staiger (1997) further
extend the analysis to the case in which demand fluctuations are cyclic or persis-
tent. A common assumption of these papers is that demand shocks are publicly
observable before firms make their decisions in each period. This means that in
their model, firms can perfectly adjust their price contingent on the true demand
today. However, in the real world, firms often face uncertainty about the market
demand when they make decisions. Firms may be able to learn the current de-
mand shock through their sales after they make decisions; but then in the next
period, a new demand shock arrives, and hence they still face uncertainty about
the true demand. When such uncertainty exists, equilibrium strategies considered
in the existing work are no longer equilibria, and players may want to “experi-
ment” to obtain better information about the hidden state. The goal of this paper
is to develop some tools which are useful to analyze such a situation.

Specifically, we consider a new class of stochastic games in which the state
of the world is hidden information. At the beginning of each period t, a hidden
state ω t (booms or slumps in the Bertrand model) is given, and players have some
posterior belief µ t about the state. Players simultaneously choose actions, and
then a public signal y and the next hidden state ω t+1 are randomly drawn. After
observing the signal y, players updates their posterior belief using Bayes’ rule,
and then go to the next period. The signal y can be informative about both the
current and next states, which ensures that our formulation accommodates a wide
range of economic applications, including games with delayed observations and a
combination of observed and unobserved states.

Since we assume that actions are perfectly observable, players have no private
information, and hence after every history, all players have the same posterior be-
lief µ t about the current state ω t . Hence this posterior belief µ t can be regarded
as a common state variable, and our model reduces to a stochastic game with
observable states µ t . This is a great simplification, but still the model is not as
tractable as one would like: Since there are infinitely many possible posterior be-
liefs, we need to consider a stochastic game with infinite states. This is in a sharp
contrast with past work which assumes finite states (Dutta (1995), Fudenberg and
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Yamamoto (2011b), and Hörner, Sugaya, Takahashi, and Vieille (2011)).1

In general, the analysis of stochastic games is different from that of repeated
games, because the action today influences the distribution of the future states,
which in turn influences the stage-game payoffs in the future. To avoid this
complication, various papers in the literature (e.g., Dutta (1995), Fudenberg and
Yamamoto (2011b), Hörner, Sugaya, Takahashi, and Vieille (2011)) consider a
model which satisfies the payoff invariance condition, in the sense that when play-
ers are patient, the feasible and individually rational payoff set is invariant to the
initial state. In such a model, even if someone deviates today and influences the
distribution of the state tomorrow, it does not change the feasible payoff set in
the continuation game from tomorrow; so continuation payoff can be chosen in a
flexible way, just as in the standard repeated game. This property helps to disci-
pline players’ intertemporal incentives, and the folk theorem can be obtained in
general.

We first show that the same result holds even in the infinite-state stochastic
game. That is, we prove that the folk theorem holds as long as the payoff in-
variance condition holds so that the feasible and individually rational payoff set
is invariant to the initial prior µ for patient players. The proof is similar to the
one in Dutta (1995), but we use the idea of random blocks in order to avoid some
technical complication coming from infinite states.2

So the remaining question is when this payoff invariance condition holds. For
the finite-state case, Dutta (1995) shows that the limit feasible payoff set is indeed
invariant if states are communicating in that players can move the state from any
state to any other state. To see how this condition works, pick an extreme point of
the feasible payoff set (say, the welfare-maximizing point). This payoff must be
attained by a Markov strategy, so call it the optimal Markov strategy. The com-
municating states assumption ensures that regardless of the current state, players

1For the infinite-state case, the existence of Markov perfect equilibria is extensively studied.
See recent work by Duggan (2012) and Levy (2013), and an excellent survey by Dutta and Sun-
daram (1998). In contrast to this literature, we consider general non-Markovian equilibria. Hörner,
Takahashi, and Vieille (2011) consider non-Markovian equilibria, but they assume that the limit
equilibrium payoff set is invariant to the initial state. That is, they directly assume a sort of ergod-
icity and do not investigate when it is the case.

2Interestingly, some papers on macroeconomics (such as Arellano (2008)) assume that punish-
ment occurs in a random block; we thank Juan Pablo Xandri for pointing this out. Our analysis is
different from theirs because random blocks endogenously arise in equilibrium.
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can move the state to the one in which they obtain a high payoff; so in the opti-
mal Markov strategy, patient players always attempt to move the state to the one
which yields the highest payoff. Using this property, one can show that the state
transition induced by the optimal Markov strategy is ergodic so that the initial
state cannot influence the state in a distant future. This immediately implies that
the welfare-maximizing payoff is invariant to the initial state, since patient players
care only about payoffs in a distant future.

On the other hand, when states are infinite, the communicating states assump-
tion are never satisfied. Indeed, given an initial state, only finitely many states
can be reached in finite time, so almost all states are not reachable. So in general
players may not be able to move the state to the one which yields a high payoff,
and this makes our analysis quite different from the finite-state case. More tech-
nically, while there are some sufficient conditions for ergodicity of infinite-state
Markov chains (e.g. Doeblin condition, see Doob (1953)), these conditions are
not satisfied in our setup.3

Despite such complications, we find that under the full support assumption,
the belief evolution process has a sort of ergodicity, and accordingly the payoff
invariance condition holds. The full support assumption requires that regardless
of the current state and the current action profile, any signal can be observed and
any state can occur tomorrow, with positive probability. Under this assumption,
the support of the posterior belief is always the whole state space, i.e., the posterior
belief assigns positive probability to every state ω . It turns out that this property
is useful to obtain the invariance result.

The proof of invariance of the feasible payoffs is not new, and it directly fol-
lows from the theory of partially observable Markov decision process (POMDP).
In our model, the feasible payoffs can be computed by solving a Bellman equa-
tion in which the state variable is a belief. Such a Bellman equation is known as
a POMDP problem, and Platzman (1980) shows that under the full support as-
sumption, a solution to a POMDP problem is invariant to the initial belief. This
immediately implies invariance of the feasible payoff set.

On the other hand, we need a new proof technique to obtain invariance of the

3This is essentially because our model is a multi-player version of the partially observable
Markov decision process (POMDP). The introduction of Rosenberg, Solan, and Vieille (2002)
explains why the POMDP model is intractable.
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minimax payoff. The minimax payoff is not a solution to a Bellman equation
(and hence it is not a POMDP solution), because there is a player who maximizes
her own payoff while the others minimize it. The interaction of these two forces
complicates the belief evolution, which makes our analysis more difficult than the
POMDP problem. To prove invariance of the minimax payoff, we begin with the
observation that the minimax payoff (as a function of the initial belief) is the lower
envelope of a series of convex curves. Using this convexity, we derive a bound on
the variability of the minimax payoffs over beliefs, and then show that this bound
is close to zero.

So in sum, under the full support assumption, the payoff invariance condition
holds and hence the folk theorem obtains. But the full support assumption is a bit
restrictive, and leaves out some economic applications. For example, consider the
following natural resource management problem: The state is the number of fish
living in the gulf. The state may increase or decrease over time, due to natural
increase or overfishing. Since the fishermen (players) cannot directly count the
number of fish in the gulf, this is one of the examples in which the belief about
the hidden state plays an important role in applications. This example does not
satisfy the full support assumption, because the state cannot be the highest one if
the fishermen catch too much fish today. Also, games with delayed observations,
and even the standard stochastic games (with observable states) do not satisfy the
full support assumption.

To address this concern, in Section 5, we show that the payoff invariance con-
dition (and hence the folk theorem) still holds even if the full support assumption
is replaced with a weaker condition. Specifically, we show that if the game satis-
fies a new property called uniform connectedness, then the feasible payoff set is
invariant to the initial belief for patient players. This result strengthens the exist-
ing results in the POMDP literature; uniform connectedness is more general than
various assumptions proposed in the literature.4 We also show that the minimax
payoff for patient players is invariant to the initial belief under a similar assump-

4Such assumptions include renewability of Ross (1968), reachability-detectability of Platzman
(1980), and Assumption 4 of Hsu, Chuang, and Arapostathis (2006). (There is a minor error in
Hsu, Chuang, and Arapostathis (2006); see Appendix E for more details.) The natural resource
management problem in this paper is an example which satisfies uniform connectedness but not the
assumptions in the literature. Similarly, Examples A1 and A2 in Appendix A satisfies asymptotic
uniform connectedness but not the assumptions in the literature.

5



tion called robust connectedness.
Our first assumption, uniform connectedness, is a condition about how the

support of the belief evolves over time. Roughly, it requires that players can
jointly drive the support of the belief from any set Ω∗ to any other set Ω̃∗, except
the case in which the set Ω̃∗ is “transient” in the sense that the support cannot
stay at Ω̃∗ forever. (Here, Ω∗ and Ω̃∗ denote subsets of the whole state space Ω.)
This assumption can be regarded as an analogue of communicating states of Dutta
(1995), which requires that players can move the state from any ω to any other
ω̃; but note that uniform connectedness is not a condition on the evolution of the
belief itself, so it need not imply ergodicity of the belief. Nonetheless we find that
this condition implies invariance of the feasible payoff set. A key step in the proof
is to find a uniform bound on the variability of feasible payoffs over beliefs with
the same support. In turns out that this bound is close to zero, and thus the feasible
payoff set is almost determined by the support of the belief. So what matters is
how the support changes over time, which suggests that uniform connectedness is
useful to obtain the invariance result. Our second assumption, robust connected-
ness, is also a condition on the support evolution, and has a similar flavor.

Uniform connectedness and robust connectedness are more general than the
full support assumption, and satisfied in many economic examples, including the
ones discussed earlier. Our folk theorem applies as long as both uniform connect-
edness and robust connectedness are satisfied.

Shapley (1953) proposes the framework of stochastic games. Dutta (1995)
characterizes the feasible and individually rational payoffs for patient players,
and proves the folk theorem for the case of observable actions. Fudenberg and
Yamamoto (2011b) and Hörner, Sugaya, Takahashi, and Vieille (2011) extend his
result to games with public monitoring. All these papers assume that the state of
the world is publicly observable at the beginning of each period.5

Athey and Bagwell (2008), Escobar and Toikka (2013), and Hörner, Taka-
hashi, and Vieille (2015) consider repeated Bayesian games in which the state
changes as time goes and players have private information about the current state
each period. They look at equilibria in which players report their private informa-
tion truthfully, which means that the state is perfectly revealed before they choose

5Independently of this paper, Renault and Ziliotto (2014) also study stochastic games with
hidden states, but they focus only on an example in which multiple states are absorbing.
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actions each period.6 In contrast, in this paper, players have only limited informa-
tion about the true state and the state is not perfectly revealed.

Wiseman (2005), Fudenberg and Yamamoto (2010), Fudenberg and Yamamoto
(2011a), and Wiseman (2012) study repeated games with unknown states. They
all assume that the state of the world is fixed at the beginning of the game and does
not change over time. Since the state influences the distribution of a public signal
each period, players can (almost) perfectly learn the true state by aggregating all
the past public signals. In contrast, in our model, the state changes as time goes
and thus players never learn the true state perfectly.

2 Setup

2.1 Stochastic Games with Hidden States

Let I = {1, · · · ,N} be the set of players. At the beginning of the game, Nature
chooses the state of the world ω1 from a finite set Ω. The state may change as
time passes, and the state in period t = 1,2, · · · is denoted by ω t ∈ Ω. The state
ω t is not observable to players, and let µ ∈△Ω be the common prior about ω1.

In each period t, players move simultaneously, with player i ∈ I choosing an
action ai from a finite set Ai. Let A ≡ ×i∈IAi be the set of action profiles a =

(ai)i∈I . Actions are perfectly observable, and in addition players observe a public
signal y from a finite set Y . Then players go to the next period t + 1, with a
(hidden) state ω t+1. The distribution of y and ω t+1 depends on the current state
ω t and the current action profile a ∈ A; let πω(y, ω̃|a) denote the probability that
players observe a signal y and the next state becomes ω t+1 = ω̃ , given ω t = ω
and a. In this setup, a public signal y can be informative about the current state ω
and the next state ω̃ , because the distribution of y may depend on ω and y may be
correlated with ω̃ . Let πω

Y (y|a) denote the marginal probability of y.
Player i’s payoff in period t is a function of the current action profile a and

the current public signal y, and is denoted by ui(a,y). Then her expected stage-
game payoff conditional on the current state ω and the current action profile a is

6An exception is Sections 4 and 5 of Hörner, Takahashi, and Vieille (2015); they consider
equilibria in which some players do not reveal information and the public belief is used as a state
variable. But their analysis relies on the independent private value assumption.
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gω
i (a) = ∑y∈Y πω

Y (y|a)ui(a,y). Here the hidden state ω influences a player’s ex-
pected payoff through the distribution of y.7 Let gω(a) = (gω

i (a))i∈I be the vector
of expected payoffs. Let gi = maxω,a |gω

i (a)|, and let g = ∑i∈I gi. Also let π be
the minimum of πω(y, ω̃|a) over all (ω, ω̃,a,y) such that πω(y, ω̃|a)> 0.

Our formulation encompasses the following examples:

• Stochastic games with observable states. Let Y = Ω×Ω and suppose that
πω(y, ω̃|a) = 0 for y = (y1,y2) such that y1 , ω or y2 , ω̃ . That is, the first
component of the signal y reveals the current state and the second compo-
nent reveals the next state. Suppose also that ui(a,y) does not depend on the
second component y2, so that stage-game payoffs are influenced by the cur-
rent state only. Since the signal in the previous period perfectly reveals the
current state, players know the state ω t before they move. This is exactly
the standard stochastic games studied in the literature.

• Stochastic games with delayed observations. Let Y = Ω and assume that
πω

Y (y|a) = 1 for y = ω . That is, assume that the current signal yt reveals the
current state ω t . So players observe the state after they move.

• Observable and unobservable states. Assume that ω consists of two com-
ponents, ωO and ωU , and that the signal yt perfectly reveals the first com-
ponent of the next state, ω t+1

O . Then we can interpret ωO as an observable
state and ωU as an unobservable state. One of the examples which fits this
formulation is a duopoly market in which firms face uncertainty about the
demand, and their cost function depends on their knowledge, know-how, or
experience. The firms’ experience can be described as an observable state
variable as in Besanko, Doraszelski, Kryukov, and Satterthwaite (2010), and
the uncertainty about the market demand as an unobservable state.

In the infinite-horizon stochastic game, players have a common discount factor
δ ∈ (0,1). Let (ωτ ,aτ ,yτ) be the state, the action profile, and the public signal in

7 Alternatively, we may assume that gω
i (a) is player i’s actual payoff (so the state ω directly

influences the payoff) and she does not observe this payoff (so the payoff does not provide extra
information about the state). All our results extend to this setup, with no difficulty. Assuming
unobservable payoffs is common in the POMDP literature. This assumption is satisfied if we
consider a situation in which the game ends with probability 1−δ after each period, and player i
receives all the payoffs after the game ends.
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period τ . Then the history up to period t ≥ 1 is denoted by ht = (aτ ,yτ)t
τ=1. Let

Ht denote the set of all ht for t ≥ 1, and let H0 = { /0}. Let H =
∪∞

t=0 Ht be the set
of all possible histories. A strategy for player i is a mapping si : H →△Ai Let Si

be the set of all strategies for player i, and let S =×i∈ISi. Given a strategy si and
history ht , let si|ht be the continuation strategy induced by si after history ht .

Let vω
i (δ ,s) denote player i’s average payoff in the stochastic game when

the initial prior puts probability one on ω , the discount factor is δ , and players
play strategy profile s. That is, let vω

i (δ ,s) = E[(1− δ )∑∞
t=1 δ t−1gωt

i (at)|ω,s].
Similarly, let vµ

i (δ ,s) denote player i’s average payoff when the initial prior is
µ . Note that for each initial prior µ , discount factor δ , and s−i, player i’s best
reply si exists; see Appendix D for the proof. Let vω(δ ,s) = (vω

i (δ ,s))i∈I and
vµ(δ ,s) = (vµ

i (δ ,s))i∈I .

2.2 Alternative Interpretation: Belief as a State Variable

In each period t, each player forms a belief µ t about the current hidden state ω t .
Since players have the same initial prior µ and the same information ht−1, they
have the same posterior belief µ t . Then we can regard this belief µ t as a common
state variable, and so our model reduces to a stochastic game with observable
states µ t .

With this interpretation, the model can be re-written as follows. In period one,
the belief is simply the initial prior; µ1 = µ . In period t ≥ 2, players use Bayes’
rule to update the belief. Specifically, given µ t−1, at−1, and yt−1, the posterior
belief µ t in period t is computed as

µ t(ω̃) =
∑ω∈Ω µ t−1(ω)πω(yt−1, ω̃|at−1)

∑ω∈Ω µ t−1(ω)πω
Y (yt−1|at−1)

for each ω̃ . Given this belief µ t , players choose actions at , and then observe a
signal yt according to the distribution πµt

Y (yt |at) = ∑ω∈Ω µ t(ω)πω
Y (yt |at). Player

i’s expected stage-game payoff given µ t and at is gµt

i (at) = ∑ω∈Ω µ t(ω)gω
i (a

t).
Our solution concept is a sequential equilibrium. Let ζ : H →△Ω be a belief

system; i.e., ζ (ht) is the posterior about ω t+1 after history ht . A belief system ζ is
consistent with the initial prior µ if there is a completely mixed strategy profile s
such that ζ (ht) is derived by Bayes’ rule in all on-path histories of s. Since actions
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are observable, given the initial prior µ , a consistent belief is unique at each infor-
mation set which is reachable by some strategy. (So essentially there is a unique
belief system ζ consistent with µ .) A strategy profile s is a sequential equilibrium
in the stochastic game with the initial prior µ if s is sequentially rational given the
belief system ζ consistent with µ .

3 Folk Theorem under Payoff Invariance

3.1 Payoff Invariance Condition

In our model, feasible payoffs are not merely the convex hull of the stage-game
payoffs. For example, to maximize the social welfare, an action which yields a
low payoff today may be preferred to one which yields a high payoff, if it leads to
a better state tomorrow and/or if it gives better signals about the state tomorrow.
To capture these effects, we compute the payoff in the infinite-horizon game for
each strategy profile s, and define the feasible set as the set of all such payoffs.
That is, given the initial prior µ and the discount factor δ , the feasible payoff set
is defined as

V µ(δ ) = co{vµ(δ ,s)|s ∈ S},

where coB denote the convex hull of a set B. Here, δ and µ influence the feasible
payoff set, as they influence the payoff vµ(δ ,s) for a given strategy profile s.

Similarly, given the initial prior µ and the discount factor δ , player i’s minimax
payoff in the stochastic game is defined to be

vµ
i (δ ) = min

s−i∈S−i
max
si∈Si

vµ
i (δ ,s).

Note that player i’s sequential equilibrium payoff is at least this minimax pay-
off, as players do not have private information. The proof is standard and hence
omitted. Note also that the minimizer s−i indeed exists; see Appendix D for more
details.

In this section, we will prove the folk theorem under the following, payoff
invariance assumption. Let d(A,B) denote the Hausdorff distance between two
sets A,B ⊂ RN .

Assumption 1.
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(a) The limit of the feasible payoff set limδ→1V µ(δ ) exists and is independent
of the initial prior µ; that is, there is a set V ⊂ RN such that limδ→1 d(V,V µ(δ ))=
0 for all µ .

(b) For each i, the limit of the minimax payoff limδ→1 vµ
i (δ ) exists and is inde-

pendent of the initial prior µ .

This assumption requires that the feasible payoff set and the minimax payoff
be invariant to the initial prior µ , when players are patient. As explained in the
introduction, it ensures that even if someone deviates today and manipulates the
belief tomorrow, it does not change the feasible payoffs in the continuation game
so that we can still discipline players’ dynamic incentives effectively. Various
papers in the literature on stochastic games (e.g., Dutta (1995), Fudenberg and
Yamamoto (2011b), and Hörner, Sugaya, Takahashi, and Vieille (2011)) make a
similar assumption.

Take V as in the assumption above. This set V is the limit feasible payoff
set; the feasible payoff set V µ(δ ) is approximately V for all initial priors µ , when
players are patient. Also, let vi denote the limit of the individually rational payoff,
that is, let vi = limδ→1 vµ

i (δ ). Let V ∗ denote the limit of the feasible and individ-
ually rational payoff set, i.e., V ∗ is the set of all feasible payoffs v ∈ V such that
vi ≥ vi for all i.

Assumption 1 above is not stated in terms of primitives, and in general it is
hard to check. In later sections, we will provide sufficient conditions for this
assumption.

3.2 Punishment over Random Blocks

In the standard repeated-game model, Fudenberg and Maskin (1986) consider a
simple equilibrium in which a deviator will be minimaxed for T periods and then
those who minimaxed will be rewarded. Promising a reward after the minimax
play is important, because the minimax profile itself is not an equilibrium and
players would be reluctant to minimax without such a reward. As they argue, the
parameter T must be carefully chosen; specifically, they pick a large T first and
then take δ → 1, so the minimax phase is not too long relative to the discount
factor δ . This ensures that players are indeed willing to minimax a deviator, ex-
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pecting a reward after the minimax play. (If we take δ first and then take T large,
this punishment mechanism does not work. Indeed, in this case, δ T approaches
zero, which implies that players do not care about payoffs after the minimax play.
So even if we promise a reward after the minimax play, players may not want to
play the minimax strategy.)

In stochastic games, the minimax strategy is a strategy for the infinite-horizon
game, so we need to carefully think about when players should stop the minimax
play and move to the reward phase. When states are finite and observable, Dutta
(1995) and Hörner, Sugaya, Takahashi, and Vieille (2011) show that the idea of
the T -period punishment mechanism above still works well. A point is that when
states are finite, the minimax strategy induces an ergodic state evolution. Thus
when δ → 1, the average payoff during these T periods approximates the minimax
payoff, i.e., even though players play the minimax strategy only for T periods
(not infinite periods), the payoff during these punishment periods is as low as the
minimax payoff for the infinite-horizon game. Hence a player’s deviation can be
deterred using this punishment mechanism.

On the other hand, in our model, it is not clear if such a T -period punishment
mechanism works effectively. A problem here is that due to infinite states, the
belief evolution induced by the minimax strategy may not be ergodic (although
invariance of the minimax payoff suggests a sort of ergodicity). Accordingly,
given any large number T , if we take δ → 1, the average payoff for the T -period
block can be quite different from (in particular, substantially greater than) the
minimax payoff in the infinite-horizon game.8

To fix this problem, we consider an equilibrium with random blocks. Unlike
the T -period block, the length of the random block is not fixed and is determined
by public randomization z ∈ [0,1]. Specifically, at the end of each period t, play-
ers determine whether to continue the current block or not in the following way:
Given some parameter p ∈ (0,1), if zt ≤ p, the current block continues so that

8 In the POMDP literature, it is well-known that the payoff in the discounted infinite-horizon
problem and the (time-average) payoff in the T -period problem are asymptotically the same if a
solution to the discounted problem is invariant to the initial prior in the limit as δ → 1, and if the
rate of convergence is at most of order O(1−δ ). (See Hsu, Chuang, and Arapostathis (2006) and
the references therein.) Unfortunately, in out setup, the rate of convergence of the feasible payoffs
and the minimax payoffs is slower than this bound for some cases, as can be seen in the proof of
Proposition A2.
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period t + 1 is still included in the current random block. Otherwise, the current
block terminates. So the random block terminates with probability 1− p each
period.

This random block is useful, because it is payoff-equivalent to the infinite-
horizon game with the discount factor pδ , due to the random termination prob-
ability 1− p. So given the current belief µ , if the opponents use the minimax
strategy for the initial prior µ and the discount factor pδ (rather than δ ) during
the block, then player i’s average payoff during the block never exceeds the mini-
max payoff vµ

i (pδ ). This payoff approximates the limit minimax payoff vi when
both p and δ are close to one. (Note that taking p close to one implies that the ex-
pected duration of the block is long.) In this sense, the opponents can effectively
punish player i by playing the minimax strategy in the random block.

In the proof of the folk theorem, we pick p close to one, and then take δ → 1.
This implies that although the random block is long in expectation, players puts
a higher weight on the continuation payoff after the block than the payoff during
the current block. Hence a small variation in continuation payoffs is enough to
discipline players’ play during the random block. In particular, a small amount
of reward after the block is enough to provide incentives to play the minimax
strategy.

The idea of random blocks is useful in other parts of the proof of the folk
theorem, too. For example, it ensures that the payoff on the equilibrium path does
not change much after any history. See the proof in Section 3.4 for more details.

Hörner, Takahashi, and Vieille (2015) also use the idea of random blocks (they
call it “random switching”). However, their model and motivation are quite dif-
ferent from ours. They study repeated adverse-selection games in which players
report their private information every period. In their model, a player’s incentive
to disclose her information depends on the impact of her report on her flow pay-
offs until the effect of the initial state vanishes. Measuring this impact is difficult
in general, but it becomes tractable when the equilibrium strategy has the random
switching property. That is, they use random blocks in order to measure payoffs
by misreporting. In contrast, in this paper, the random blocks ensure that playing
the minimax strategy over the block indeed approximate the minimax payoff. An-
other difference between the two papers is the order of limits. They take the limits
of p and δ simultaneously, while we fix p first and then take δ large enough.
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3.3 Result

Now we show that if the payoff invariance condition (Assumption 1) holds, the
folk theorem obtains. This result encompasses the folk theorem of Dutta (1995)
as a special case.

Proposition 1. Suppose that Assumption 1 holds, and that the limit payoff set V ∗

is full dimensional (i.e., dimV ∗ = N). Assume also that public randomization is
available. Then for any interior point v ∈V ∗, there is δ ∈ (0,1) such that for any
δ ∈ (δ ,1) and for any initial prior µ , there is a sequential equilibrium with the
payoff v.

In addition to the payoff invariance, the proposition requires the full dimen-
sional assumption, dimV ∗ = N. This assumption allows us to use player-specific
punishments; that is, it ensures that we can punish player i (decrease player i’s pay-
off) while not doing so to all other players. Note that this assumption is common
in the literature, for example, Fudenberg and Maskin (1986) use this assumption
to obtain the folk theorem for repeated games with observable actions.

Fudenberg and Maskin (1986) also show that the full dimensional assumption
is dispensable if there are only two players and the minimax strategies are pure
actions. The reason is that player-specific punishments are not necessary in such a
case; they consider an equilibrium in which players mutually minimax each other
over T periods after any deviation. Unfortunately, this result does not extend to
our setup, since a player’s incentive to deviate from the mutual minimax play can
be quite large in stochastic games; this is so especially because the payoff by the
mutual minimax play is not necessarily invariant to the initial prior. To avoid this
problem, we consider player-specific punishments even for the two-player case,
which requires the full dimensional assumption.

The proof of the proposition is very similar to that of Dutta (1995), except that
we use random blocks (rather than T -period blocks). In the next subsection, we
prove this proposition assuming that the minimax strategies are pure strategies.
Then we briefly discuss how to extend the proof to the case with mixed mini-
max strategies. The formal proof for mixed minimax strategies will be given in
Appendix B.
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3.4 Equilibrium with Pure Minimax Strategies

Take an interior point v ∈V ∗. We will construct a sequential equilibrium with the
payoff v when δ is close to one. To simplify the notation, we assume that there are
only two players. This assumption is not essential, and the proof easily extends to
the case with more than two players.

Pick payoff vectors w(1) and w(2) from the interior of the limit payoff set V ∗

such that the following two conditions hold:

(i) w(i) is Pareto-dominated by the target payoff v, i.e., wi(i)≪ vi for each i.

(ii) Each player i prefers w( j) over w(i), i.e., wi(i)< wi( j) for each i and j , i.

The full dimensional condition ensures that such w(1) and w(2) exist. See Figure
1 to see how to choose these payoffs w(i). In this figure, the payoffs are normal-
ized so that the limit minimax payoff vector is v = (v1,v2) = (0,0).

w(2)

w(1) v

v

V ∗

Figure 1: Payoffs w(1) and w(2)

Looking ahead, the payoffs w(1) and w(2) can be interpreted as “punishment
payoffs.” That is, if player i deviates and players start to punish her, the payoff in
the continuation game will be approximately w(i) in our equilibrium. Note that
we use player-specific punishments, so the payoff depends on the identity of the
deviator. Property (i) above implies that each player i prefers the cooperative pay-
off v over the punishment payoff, so no one wants to stop cooperation. Property
(ii) implies that each player i prefers the payoff wi( j) when she punishes the op-
ponent j to the payoff wi(i) when she is punished. This ensures that player i is
indeed willing to punish the opponent j after j’s deviation; if she does not, then
player i will be punished instead of j, and it lowers player i’s payoff.
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Pick p ∈ (0,1) close to one so that the following conditions hold:

• The payoff vectors v, w(1), and w(2) are in the interior of the feasible payoff
set V µ(p) for each µ .

• supµ∈△Ω vµ
i (p)< wi(i) for each i.

By the continuity, if the discount factor δ is close to one, then the payoff vectors
v, w(1), and w(2) are all included in the interior of the feasible payoff set V µ(pδ )
with the discount factor pδ .

Our equilibrium consists of three phases: regular (cooperative) phase, pun-
ishment phase for player 1, and punishment phase for player 2. In the regular
phase, the infinite horizon is regarded as a series of random blocks. In each ran-
dom block, players play a pure strategy profile which exactly achieves the target
payoff v as the average payoff during the block. To be precise, pick some random
block, and let µ be the belief and the beginning of the block. If there is a pure
strategy profile s which achieves the payoff v given the discount factor pδ and the
belief µ , (that is, vµ(pδ ,s) = v), then use this strategy during the block. If such a
pure strategy profile does not exist, use public randomization to generate v. That
is, players choose one of the extreme points of V µ(pδ ) via public randomization
at the beginning of the block, and then play the corresponding pure strategy until
the block ends. After the block, a new block starts and players will behave as
above again.

It is important that during the regular phase, after each period t, players’ con-
tinuation payoffs are always close to the target payoff v. To see why, note first
that the average payoff in the current block can be very different from v once the
public randomization (which chooses one of the extreme points) realizes. How-
ever, when δ is close to one, players do not care much about the payoffs in the
current block, and what matters is the payoffs in later blocks, which are exactly
v. Hence even after public randomization realizes, the total payoff is still close to
v. This property is due to the random block structure, and will play an important
role when we check incentive conditions.

As long as no one deviates from the prescribed strategy above, players stay
at the regular phase. However, once someone (say, player i) deviates, they will
switch to the punishment phase for player i immediately. In the punishment phase
for player i, the infinite horizon is regarded as a sequence of random blocks, just as
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in the regular phase. In the first K blocks, the opponent (player j , i) minimaxes
player i. Specifically, in each block, letting µ be the belief at the beginning of the
block, the opponent plays the minimax strategy for the belief µ and the discount
factor pδ . On the other hand, player i maximizes her payoff during these K blocks.
After the K blocks, players switch their play in order to achieve the post-minimax
payoff w(i); that is, in each random block, players play a pure strategy profile s
which exactly achieves w(i) as the average payoff in the block (i.e., vµ(pδ ,s) =
w(i) where µ is the current belief). If such s does not exist, players use public
randomization to generate w(i). The parameter K will be specified later.

If no one deviates from the above play, players stay at this punishment phase
forever. Also, even if player i deviates in the first K random blocks, it is ignored
and players continue the play. If player i deviates after the first K blocks (i.e.,
if she deviates from the post-minimax play) then players restart the punishment
phase for player i immediately; from the next period, the opponent starts to min-
imax player i. If the opponent (player j , i) deviates, then players switch to the
punishment phase for player j, in order to punish player j. See Figure 2.

Payoff v

K blocks
Minimax 1

K blocks
Minimax 2

Payoff w(1)

Payoff w(2)

If 1 deviates

If 1 deviates

If 2 deviates

If 2 deviates

If 1 deviates

If 2 deviates

Figure 2: Equilibrium strategy
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Now, choose K such that

−g− 1
1− p

g+
K −1
1− p

wi(i)> g+
K

1− p
sup

µ∈△Ω
vµ

i (p) (1)

for each i. Note that (1) indeed holds for sufficiently large K, as supµ∈△Ω vµ
i (p)<

wi(i). To interpret (1), suppose that we are now in the punishment phase for player
i, in particular a period in which players play the strategy profile with the post-
minimax payoff w(i). (1) ensures that player i’s deviation today is not profitable
for δ close to one. To see why, suppose that player i deviates today. Then her
stage-game payoff today is at most g, and then she will be minimaxed for the next
K random blocks. Since the expected length of each block is 1

1−p , the (unnormal-
ized) expected payoff during the minimax phase is at most K

1−p supµ∈△Ω vµ
i (p)

when δ → 1. So the right-hand side of (1) is an upper bound on player i’s unnor-
malized payoff until the minimax play ends, when she deviates.

On the other hand, if she does not deviate, her payoff today is at least −g.
Also, for the next K periods, she can earn at least − 1

1−pg+ K−1
1−p wi(i), because we

consider the post-minimax play. (Here the payoff during the first block can be
lower than wi(i), as tomorrow may not be the first period of the block. So we use
− g

1−p as a lower bound on the payoff during this block.) In sum, by not deviating,
player i can obtain at least the left-hand side of (1), which is indeed greater than
the payoff by deviating.

With this choice of K, by inspection, we can show that the strategy profile
above is indeed an equilibrium for sufficiently large δ . The argument is very
similar to the one by Dutta (1995) and hence omitted.

When the minimax strategies are mixed strategies, we need to modify the
above equilibrium construction and make player i indifferent over all actions when
she minimaxes player j , i. As shown by Fudenberg and Maskin (1986), we can
indeed satisfy this indifference condition by perturbing the post-minimax payoff
wi( j) appropriately. See Appendix B for the formal proof.

4 Full Support Assumption

In the previous section, we have shown that the folk theorem holds under the
payoff invariance condition. But unfortunately, this assumption is not stated in
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terms of primitives, and it is important to better understand when this assumption
is satisfied. In this section, we show that the following full support assumption is
sufficient for the payoff invariance condition:

Definition 1. The state transition function has a full support if πω(y, ω̃|a)> 0 for
all ω , ω̃ , a, and y.

In words, the full support assumption requires that any signal y and any state
ω̃ can happen tomorrow with positive probability, regardless of the current state
ω and the current action profile a. Under this assumption, the posterior belief is
always in the interior of △Ω, that is, after every history, the posterior belief µ t

assigns positive probability to each state ω . It turns out that this property is very
useful in order to obtain the payoff invariance.

The full support assumption is easy to check, but unfortunately, it is demand-
ing and leaves out many potential economic applications. For example, this as-
sumption is never satisfied if the action and/or the signal today has a huge impact
on the state evolution so that some state ω̃ cannot happen tomorrow conditional on
some (a,y). One of such examples is the natural resource management problem
in Section 5.3. Also, it rules out even the standard stochastic games (in which the
state is observable to players) and the games with delayed observations. To fix this
problem, in Section 5, we will explain how to relax the full support assumption.

4.1 Invariance of the Feasible Payoff Set

Let Λ be the set of directions λ ∈ RN with |λ | = 1. For each direction λ , we
compute the “score” using the following formula:9

max
v∈V µ (δ )

λ · v.

Roughly speaking, this score characterizes the boundary of the feasible payoff set
V µ(δ ) toward direction λ . For example, when λ is the coordinate vector with
λi = 1 and λ j = 0 for all j , i, we have maxv∈V µ (δ )λ · v = maxv∈V µ (δ ) vi, so the
score is simply the highest possible payoff for player i within the feasible payoff
set. When λ = ( 1√

2
, 1√

2
), the score is the (normalized) maximal social welfare

within the feasible payoff set.
9Note that this maximization problem indeed has a solution; see Appendix D for the proof.
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For each given discount factor δ , the score can be computed using dynamic
programming. Fix a direction λ , and let f (µ) denote the score given the initial
prior µ . Let µ̃(y|µ,a) denote the posterior belief in period two given that the
initial prior is µ and players play a and observe y in period one. Then the score
function f must solve the following Bellman equation:

f (µ) = max
a∈A

[
(1−δ )λ ·gµ(a)+δ ∑

y∈Y
πµ

Y (y|a) f (µ̃(y|µ,a))

]
. (2)

To interpret this equation, suppose that there are only two players. Let λ =

( 1√
2
, 1√

2
), so that the score f (µ) represents the maximal social welfare. (2)

asserts that the maximal welfare f (µ) is a sum of the (normalized) welfare to-
day λ · gµ(a) = 1√

2
(gω

1 (a) + gω
2 (a)) and the welfare in the continuation game,

f (µ̃(y|µ,a)). The action a is chosen in such a way that this sum is maximized.
(2) is known as a “POMDP problem,” in the sense that it is a Bellman equa-

tion in which the state variable µ is a belief about a hidden state. In the POMDP
theory, it is well-known that a solution f is convex with respect to the state vari-
able µ , and that this convexity leads to various useful theorems. For example,
Platzman (1980) shows that under the full support assumption, a solution f (µ) is
invariant to the initial belief µ , when the discount factor is close to one. In our
context, this implies that when players are patient, the score is invariant to the
initial prior µ , and so is the feasible payoff set V µ(δ ). Formally, we have the
following proposition.

Proposition 2. Under the full support assumption, for each ε > 0, there is δ ∈
(0,1) such that for any λ ∈ Λ, δ ∈ (δ ,1), µ , and µ̃ ,∣∣∣∣ max

v∈V µ (δ )
λ · v− max

ṽ∈V µ̃ (δ )
λ · ṽ

∣∣∣∣< ε.

In particular, this implies that for each direction λ , the limit limδ→1 maxv∈V µ (δ )λ ·
v of the score is independent of µ; hence Assumption 1(a) follows.

Note that the limit limδ→1 maxv∈V µ (δ )λ ·v of the score indeed exists, thanks to
Theorem 2 of Rosenberg, Solan, and Vieille (2002). Platzman (1980) also shows
that the score converges at the rate of 1− δ . So we can replace ε in the above
proposition with O(1−δ ).
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4.2 Invariance of the Minimax Payoffs

The following proposition shows that under the full support assumption, even the
minimax payoff is invariant to the initial prior:

Proposition 3. If the full support assumption holds, then Assumption 1(b) holds.

This result may look similar to Proposition 2, but its proof is substantially dif-
ferent. As noted earlier, Proposition 2 directly follows from the fact that the score
function f is a solution to the POMDP problem (2). Unfortunately, the minimax
payoff vµ

i (δ ) is not a solution to a POMDP problem; this is so because in the def-
inition of the minimax payoff, player i maximizes her payoff while the opponents
minimize it. Accordingly, POMDP techniques are not applicable. The proof tech-
niques for the observable-state case does not apply either, as they heavily rely on
the assumption that the state space is finite so that one can drive the state to any
other state with positive probability in finite time. In the next subsection, we will
briefly explain how to prove the result above. The formal proof can be found in
Appendix B.

4.3 Outline of the Proof of Proposition 3

Fix a discount factor δ , and let sµ
−i denote the minimax strategy for the initial prior

µ . Suppose that the initial prior is µ̃ but the opponents use the minimax strategy
sµ
−i for a different initial prior µ , µ̃ . Let vµ̃

i (s
µ
−i) denote player i’s payoff when

she takes a best reply in such a situation; that is, let vµ̃
i (s

µ
−i) = maxsi∈Si vµ̃

i (si,s
µ
−i).

When µ̃ = µ , this payoff vµ̃
i (s

µ
−i) is simply the minimax payoff for the belief µ .

That is, vµ̃
i (s

µ̃
−i) = vµ̃

i (δ ). But when µ̃ , µ , the opponents’ strategy sµ
−i is different

from the minimax strategy sµ̃
−i for the actual initial prior, and the payoff vµ̃

i (s
µ
−i)

is greater than the minimax payoff vµ̃
i (δ ). Define the maximal value vi as the

maximum of these payoffs vµ̃
i (s

µ
−i) over all (µ, µ̃).

It turns out that these payoffs vµ̃
i (s

µ
−i) have a nice tractable structure, which

allows us to obtain the following result; to make our exposition as simple as pos-
sible, here we give only an informal statement. (See Section B.2.3 in the appendix
for a more formal version.) Recall that π is the minimum of πω(y, ω̃|a).

Key Result: Fix δ . Suppose that |vi−vµ
i (δ )| ≈ 0 for some interior belief µ such

that µ(ω)≥ π for all ω . Then |vi − vµ̃
i (δ )| ≈ 0 for all beliefs µ̃ .
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This result asserts that if the minimax payoff vµ
i (δ ) approximates the maximal

value for some interior belief µ , then the minimax payoffs for for all other beliefs
µ̃ also approximate the maximal value. So in order to prove Proposition 3, we do
not need to evaluate the minimax payoffs for each initial prior µ; we only need to
find one interior belief whose minimax payoff approximates the maximal value.

Proof Sketch of Key Result. Pick µ as stated, so that the minimax payoff vµ
i (δ )

approximates the maximal value. Pick an arbitrary belief µ̃ , µ . Our goal is to
show that the minimax payoff for this belief µ̃ approximates the maximal value.

Consider player i’s payoff vµ
i (s

µ̃
−i) when the opponents use the minimax strat-

egy for the belief µ̃ but the actual initial prior is µ . Since the opponents’ strategy
sµ̃
−i is different from the minimax strategy for the actual belief µ , this payoff is

greater than the minimax payoff vµ
i (δ ). On the other hand, by the definition, this

payoff must be smaller than the maximal value. Hence we have

vµ
i (δ )≤ vµ

i (s
µ̃
−i)≤ vi.

Since the minimax payoff vµ
i (δ ) approximates the maximal value vi, this inequal-

ity implies that the payoff vµ
i (s

µ̃
−i) also approximates the maximal value. This in

turn implies that the minimax payoff vµ̃
i (δ ) = vµ̃

i (s
µ̃
−i) indeed approximates the

maximal value; this last step follows from Lemma B1 in the proof, which as-
serts that given the opponents’ strategy sµ̃

−i, if the payoff vµ
i (s

µ̃
−i) approximates the

maximal value for some interior belief µ , then for all other beliefs µ̂ , the pay-
off vµ̂

i (s
µ̃
−i) approximates the maximal value. The proof of this lemma relies on

the observation that (given the opponent’s strategy sµ̃
−i) player i can obtain better

payoffs when she has better information about the initial state. Q.E.D.

As one can see from the proof sketch above, to obtain the result we want, we
relate two minimax payoffs vµ

i (δ ) and vµ̃
i (δ ) through the payoff vµ

i (s
µ̃
−i). This is

the value of considering the payoff vµ
i (s

µ̃
−i).

Given the result above, what remains is to find one interior belief whose min-
imax payoff approximates the maximal value. This can be done by a careful
inspection of the maximal value, and the full support assumption is used in this
part. See Section B.2.2 in the appendix for more details.
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5 Relaxing the Full Support Assumption

We have shown that if the state transition function has full support, Assumption 1
holds so that the folk theorem obtains. However, as noted earlier, the full support
assumption is demanding, and rules out many possible applications. To address
this concern, in this section, we show that Assumption 1 still holds even if the full
support assumption is replaced with a new, weaker condition. Specifically, we
show that the feasible payoff set is invariant if the game is uniformly connected,
and the minimax payoff is invariant if the game is robustly connected. Both uni-
form connectedness and robust connectedness are about how the support of the
posterior belief evolves over time, and they are satisfied in many economic appli-
cations.

5.1 Uniform Connectedness and Feasible Payoffs

5.1.1 Weakly Communicating States

Before we consider the hidden-state model, it is useful to understand when the
feasible payoffs are invariant to the initial state in the observable-state case. A
key condition is weakly communicating states, which requires that there be a path
from any state to any other state, except temporary ones. As will be seen, uniform
connectedness, which will play a central role in our hidden-state model, is an
analogue of this condition.

Let Pr(ωT+1 = ω|ω̃,a1, · · · ,aT ) denote the probability of the state in period
T + 1 being ω given the initial state ω̃ and the action sequence (a1, · · · ,aT ). A
state ω is globally accessible if for any initial state ω̃ , there is a natural number T
and an action sequence (a1, · · · ,aT ) such that

Pr(ωT+1 = ω|ω̃,a1, · · · ,aT )> 0. (3)

That is, ω is globally accessible if players can move the state to ω from any other
state ω̃ .

A state ω is uniformly transient if it is not globally accessible and for any
pure strategy profile s, there is a natural number T and a globally accessible state
ω̃ so that Pr(ωT+1 = ω̃|ω,s) > 0. Intuitively, uniform transience of ω implies
that the state ω is temporary. Indeed, regardless of players play, the state cannot
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stay there forever and must reach a globally accessible state eventually. As will
be explained, this property ensures that the score for a uniformly transient state
cannot be too different from the ones for globally accessible states.

States are weakly communicating if each state ω is globally accessible or uni-
formly transient. Figure 3 is an example of weakly communicating states. The
state moves along the arrows; for example, there is an action profile which moves
the state from ω1 to ω2 with positive probability. Each thick arrow is a move
which must happen with positive probability regardless of the action profile. It
is easy to check that the states ω1, ω2, and ω3 are globally accessible, while the
states ω4 and ω5 are uniformly transient. Note that the uniformly transient states
are indeed temporary; once the state reaches a globally accessible state, it never
comes back to a uniformly transient state. As can be seen, when states are weakly
communicating, the state can go back and forth over all states, except these tem-
porary ones. This condition is a generalization of communicating states of Dutta
(1995), which requires that all states be globally accessible.

ω1 ω2 ω3

ω4 ω5

Figure 3: Weakly Communicating States

ω3

ω1

ω2

Figure 4: Two Absorbing States

If states are weakly communicating, the feasible payoff set is invariant to the
initial state for patient players. This result is a corollary of Propositions 5 and 7,
but a rough idea is as follows. Consider the score toward some direction λ . Let ω
be the state which gives the highest score over all initial states, and call this score
the maximal score. There are two cases to be considered:

Case 1: ω is globally accessible. In this case, given any initial state, play-
ers can move the state to ω in finite time with probability one, and can earn the
maximal score thereafter. Since payoffs before the state reaches ω are almost
negligible for patient players, this implies that regardless of the initial state, the
score must be almost as good as the maximal score, and hence the score is indeed
invariant to the initial state.
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Case 2: ω is not globally accessible. Since states are weakly communicating,
ω must be uniformly transient. This means that ω is a temporary state, i.e., if
the initial state is ω , the state must eventually reach globally accessible states in
finite time, with probability one. Since payoffs before the state reaches globally
accessible ones are almost negligible, this implies that there is at least one globally
accessible state ω∗ whose score is approximately as good as the maximal score.
Now, since ω∗ is globally accessible, given any initial state, players can move
the state to ω∗ in finite time with probability one. Hence as in Case 1, we can
conclude that regardless of the initial state, the score is almost as good as the
maximal score.

On the other hand, if states are not weakly communicating, the feasible payoff
set may depend on the initial state, even for patient players. Figure 4 is an example
in which states are not weakly communicating; it is easy to check that no states
are globally accessible, and hence no states are uniformly transient. A key in this
example is that we have multiple absorbing states, ω2 and ω3. Obviously, if these
two states yield different stage-game payoffs, then the feasible payoff set must
depend on the initial state.

5.1.2 Definition of Uniform Connectedness

Since the state variable in our model is a belief µ , a natural extension of weakly
communicating states is to assume that there be a path from any belief to any
other belief, except temporary ones. But unfortunately, this approach does not
work, because such a condition is too demanding and not satisfied in general. A
problem is that given an initial prior µ , only finitely many beliefs are reachable in
finite time; so almost all beliefs are not reachable from µ , and hence a “globally
accessible” belief does not exist in general.

To avoid this problem, we will focus on the evolution of the support of the
belief, rather than the evolution of the belief itself. Now we do not need to worry
about the technical problem above, since there are only finitely many supports.
Of course, the support of the belief is only coarse information about the belief,
so imposing a condition on the evolution of the support is much weaker than
imposing a condition on the evolution of the belief. However, it turns out that this
is precisely what we need for invariance of the feasible payoff set.
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Let Pr(µT+1 = µ̃|µ,s) denote the probability of the posterior belief in period
T +1 being µ̃ given that the initial prior is µ and players play the strategy profile s.
Similarly, let Pr(µT+1 = µ̃|µ,a1, · · · ,aT ) denote the probability given that players
play the action sequence (a1, · · · ,aT ) in the first T periods. Global accessibility
of Ω∗ requires that given any current belief µ , players can move the support of
the posterior belief to Ω∗ (or its subset), by choosing some appropriate action
sequence which may depend on µ .10 This definition can be viewed as an analogue
of the global accessibility of the state ω in the observable-state case.

Definition 2. A non-empty subset Ω∗ ⊆ Ω is globally accessible if there is π∗ > 0
such that for any initial prior µ , there is a natural number T , an action sequence
(a1, · · · ,aT ), and a belief µ̃ whose support is included in Ω∗ such that11

Pr(µT+1 = µ̃|µ,a1, · · · ,aT )≥ π∗.

Global accessibility does not require the support of the posterior to be exactly
equal to Ω∗; it requires only that the support of the posterior to be a subset of Ω∗.
Thanks to this property, the whole state space Ω∗ = Ω is globally accessible for
any game. Also if a set Ω∗ is globally accessible, then so is any superset Ω̃∗ ⊇ Ω∗.

Global accessibility requires that there be a lower bound π∗ > 0 on the proba-
bility, while (3) does not. But this difference is not essential; indeed, although it
is not explicitly stated in (3), we can always find such a lower bound π∗ > 0 when
states are finite. In contrast, we have to explicitly assume the existence of π∗ in
Definition 2, since there are infinitely many beliefs.12

Next, we give the definition of uniform transience of Ω∗. It requires that if
the support of the current belief is Ω∗, then regardless of players’ play in the

10Here, we define global accessibility and uniform transience using the posterior belief µ t .
In Appendix C, we show that there are equivalent definitions based on primitives. Using these
definitions, one can check if a given game is uniformly connected in finitely many steps.

11Replacing the action sequence (a1, · · · ,aT ) in this definition with a strategy profile s does not
weaken the condition; that is, as long as there is a strategy profile which satisfies the condition
stated in the definition, we can find an action sequence which satisfies the same condition. Also,
while the definition above does not provide an upper bound on the number T (so the action se-
quence can be arbitrarily long), when we check whether a given set Ω∗ is globally accessible or
not, we can restrict attention to an action sequence with length T ≤ 4|Ω|. Indeed, whenever there
is an action sequence (a1, · · · ,aT ) which satisfies the property stated here, we can always find an
action sequence (ã1, · · · , ãT̃ ) with T̃ ≤ 4|Ω| which satisfies the same property. See Appendix C for
more details.

12Since there are only finitely many supports, there is a bound π∗ which works for all globally
accessible sets Ω∗.
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continuation game, the support of the posterior belief must reach some globally
accessible set with positive probability at some point. Again, this definition can
be viewed as an analogue of the uniform transience in the observable-state case.

Definition 3. A subset Ω∗⊆Ω is uniformly transient if it is not globally accessible
and for any pure strategy profile s and for any µ whose support is Ω∗, there is a
natural number T and a belief µ̃ whose support is globally accessible such that
Pr(µT+1 = µ̃|µ,s)> 0.13

As noted earlier, a superset of a globally accessible set is globally accessible.
Similarly, as the following proposition shows, a superset of a uniformly transient
set is globally accessible or uniformly transient. The proof of the proposition is
given in Appendix B.

Proposition 4. A superset of a globally accessible set is globally accessible. Also,
a superset of a uniformly transient set is globally accessible or uniformly tran-
sient.

This result implies that if each singleton set {ω} is globally accessible or uni-
formly transient, then any subset Ω∗ ⊆ Ω is globally accessible or uniformly tran-
sient. Accordingly, we have two equivalent definitions of uniform connectedness;
the second definition is simpler, and hence more useful in applications.

Definition 4. A stochastic game is uniformly connected if each subset Ω∗ ⊆ Ω
is globally accessible or uniformly transient. Equivalently, a stochastic game is
uniformly connected if each singleton set {ω} is globally accessible or uniformly
transient.

Uniform connectedness is more general than the full support assumption. In-
deed, if the full support assumption holds, then regardless of the initial prior, the
support of the belief in period two is the whole state space Ω; hence any proper
subset Ω∗ ⊂ Ω is transient, and the game is uniformly connected.

13Again, although the definition here does not provide an upper bound on T , when we check
whether a given set Ω∗ is uniformly transient or not, we can restrict attention to T ≤ 2|Ω|. See
Appendix C for more details. The strategy profile s in this definition cannot be replaced with an
action sequence (a1, · · · ,aT ).
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5.1.3 Interpretation of Uniform Connectedness: Two-State Case

To better understand the economic meaning of uniform connectedness, we will
focus on the two-state case and investigate when the game is uniformly connected
and when it is not. It turns out that this question is deeply related to whether or
not the state can be revealed by some signals.

So suppose that there are only two states, ω1 and ω2. For simplicity, assume
that both states are globally accessible, that is, there is an action profile which
moves the state from ω1 to ω2 with positive probability, and vice versa. The
state ω1 can be revealed if there is a signal sequence which reveals that the state
tomorrow is ω1 for sure. Specifically, we need one of the following conditions: (i)
there is ω , a, and y such that πω(y,ω1|a)> 0 and π ω̃(y,ω2|a) = 0 for all ω̃; or (ii)
there is ω , a1, a2, y1, and y2 such that πω(y1,ω2|a1) > 0, π ω̃(y1,ω1|a1) = 0 for
all ω̃ , πω2(y2,ω1|a2)> 0, and πω2(y2,ω2|a2) = 0. The first condition implies that
(starting from an interior initial belief µ) if players play a and observe y today,
then the state tomorrow will be ω1 for sure and the posterior puts probability one
on it. The second condition allows the possibility that (again, starting from an
interior initial belief µ) players cannot directly move the belief to the one which
puts probability one on ω1, but they can move the belief to the one which puts
probability one on ω2, and then to the one which puts probability one on ω1. The
state ω2 can be revealed if a similar condition holds. We consider the following
three cases.

Case 1: Both states can be revealed. This case can be view as a generalization
of the observable-state case. Here the state need not be observed each period, but
it is occasionally observed if players choose right actions. In this case, it is not
difficult to show that both {ω1} and {ω2} are globally accessible. (Given any
initial prior, if players choose right actions, then the state ω is revealed and the
support of the posterior indeed reaches {ω}.) So uniform connectedness is always
satisfied in this case.

Case 2: Only one state can be revealed. Without loss of generality, assume that
ω1 can be revealed. As in the previous case, the set {ω1} is globally accessible.
On the other hand, the set {ω2} is not globally accessible. This is so because if
the initial prior is an interior belief, then regardless of players play, the state ω2 is
never revealed and the support of the posterior cannot reach {ω2}. Hence, for the
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game to be uniformly connected, the set {ω2} must be uniformly transient, which
requires us to make an extra assumption. Specifically, in this case, the set {ω2} is
uniformly transient (and hence the game is uniformly connected) if and only if the
state ω2 is not absorbing regardless of players’ play, i.e., for each action profile a,
we have ∑y∈Y πω2(y,ω1|a)> 0 so that the state moves from ω2 to ω1 with positive
probability.14

Case 3: No states can be revealed. In this case, the sets {ω1} and {ω2} are not
globally accessible. So for the game to be uniformly connected, both these sets
must be uniformly transient, which requires an extra assumption. Specifically,
the sets {ω1} and {ω2} are uniformly transient (and hence the game is uniformly
connected) if and only if the scrambling condition holds in the sense that for
any initial state ω and for any strategy profile s, there is a signal sequence (y1,y2)

such that Pr(ω3 = ω̃|ω1 = ω,s,y1,y2)> 0 for each ω̃ .15 Intuitively, this condition
implies that players cannot retain perfect information about the state, in the sense
that even if they know the initial state, the posterior belief must become an interior
belief in finite time. This scrambling condition can be viewed as a generalization
of the full support assumption. Under the full support assumption, the posterior
belief becomes an interior belief immediately, after any realization of the signal y.
Here we need that the posterior becomes an interior belief after some realization
of the signal sequence.

14To prove the if part, pick an arbitrary action profile a and let y be such that πω2(y,ω1|a)> 0.
If the initial state is ω2 and players play a, then with positive probability, this signal y is observed
and the posterior puts positive probability on ω1, which means that the support of the posterior
indeed moves to a globally accessible set (i.e., {ω1} or Ω). To prove the only if part, suppose not
so that there is an action profile a such that ∑y∈Y πω2(y,ω1|a) = 0. If the initial state is ω2 and
players choose a each period, the posterior belief always puts probability one on ω2, so the support
stays at {ω2} forever. Hence the set {ω2} cannot be uniformly transient.

15This condition is deeply related to the notion of scrambling matrices in ergodic theory. To
see this, pick an arbitrary initial state and arbitrary strategy profile, and pick a signal sequence
(y1,y2) as stated. Let M = (Mi j) be a two-by-two stochastic matrix which maps the initial prior
to the posterior belief in period three, conditional on this signal sequence (y1,y2). Specifically, let

Mi j =
Pr(y1,y2,ω3=ω j |ωi,s)

Pr(y1,y2|ωi,s)
for each (i, j) with Pr(y1,y2|ωi,s)> 0. For (i, j) with Pr(y1,y2|ωi,s) = 0,

we let Mi j = Mĩ j, where ĩ , i. Then given any initial prior µ , the posterior belief in period three
after observing (y1,y2) is indeed represented by µM. It is not difficult to see that our scrambling
condition holds if and only if this stochastic matrix M is scrambling, in the sense that there is j
such that Mi j > 0 for all i. (The proof of the only if part is straightforward. The if part follows
from the fact that no states can be revealed and Mi jMĩ j < 1 for each j.)
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To summarize, uniform connected games are comprised of three different class
of games.

• Games in which both states can be revealed. These games can be interpreted
as a generalization of the standard stochastic games.

• Games in which only one state can be revealed, and the other state is not
absorbing regardless of players’ play.

• Games in which both states cannot be revealed, and the scrambling condi-
tion holds so that players cannot keep perfect information about the state.

In particular, if no states can be revealed, uniform connectedness reduces to the
scrambling condition. Note that the scrambling condition is likely to be satisfied
when the state changes stochastically conditional on the signal realization. For
example, the natural resource management problem in Section 5.3 satisfies the
scrambling condition, (and hence uniform connectedness) because the birth rate
of fish is random regardless of how much fish was caught today.

On the other hand, when the state transition is deterministic, the scrambling
condition is never satisfied. This in particular implies that if no states can be
revealed and the state transition is deterministic, uniform connectedness is never
satisfied and the payoff invariance condition may not hold. Consider the following
example:

Example 1. Suppose that there is only one player, and she has two possible ac-
tions, A and B. There are two states, ωA and ωB, and the state transition is a
deterministic cycle. That is, if the current state is ωA, the next state is ωB for sure,
and vice versa. The stage-game payoff is 1 if the action matches the state (i.e.,
gωA(A) = 1 and gωB(B) = 1), but is −1 otherwise. There is only one signal y0, so
the signal provides no information about the state.16 In this game, the scrambling
condition is not satisfied, and no states can be revealed. So the singleton set {ω}
is neither globally accessible nor uniformly transient, and the game is not uni-
formly connected. We can also show that the payoff invariance condition does not
hold. To see this, note that if the player knows the initial state, then she can earn a

16Here we implicitly assume that payoffs are not observable until the game ends. See footnote
7 for more discussions about this assumption.
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payoff of 1 each period, because she always knows the state. On the other hand, if
the player does not know the state (say, the initial prior is 1

2 -1
2 ), then her expected

payoff is 0 each period, because her posterior is always 1
2 -1

2 . Accordingly, even if
the player is patient, the best payoff in the infinite-horizon game depends on the
initial prior.

A point in this example is that even though states are weakly communicating,
the initial belief has a non-negligible impact on the posterior belief in a distant
future; if the player knows the initial state, she can retain perfect information
about the state even after a long time. The scrambling condition rules out such a
possibility, and hence ensures the payoff invariance.

The same intuition carries over even when there are more than two states. If
each state ω can be revealed, then the game is always uniformly connected. On
the other extreme, if signals do not reveal any information (i.e., starting from an
interior belief, the posterior is always an interior belief) then uniform connect-
edness requires the scrambling condition. There are many “intermediate” cases,
depending on what information can be revealed. In general, when less states can
be revealed, uniform connectedness requires a more restrictive assumption.

5.1.4 Invariance of the Feasible Payoff Set

The following proposition shows that the limit feasible payoff set is invariant, even
if the full support assumption in Proposition 2 is replaced with uniform connect-
edness.

Proposition 5. Under uniform connectedness, for each ε > 0, there is δ ∈ (0,1)
such that for any λ ∈ Λ, δ ∈ (δ ,1), µ , and µ̃ ,∣∣∣∣ max

v∈V µ (δ )
λ · v− max

ṽ∈V µ̃ (δ )
λ · ṽ

∣∣∣∣< ε.

Hence Assumption 1(a) holds.

The proof of the proposition can be found in Appendix B. To describe a rough
idea, pick a direction λ , and consider the score toward this direction λ . When
players have better information about the initial state, they obtain higher scores.
Hence the score is maximized by an initial prior which puts probability one on
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some state. Pick such a state ω , call this score the maximal score. There are two
cases to be considered:

Case 1: {ω} is globally accessible. In this case, given any initial belief µ ,
players can move the belief to the one which puts probability one on ω in finite
time, and can earn the maximal score thereafter. This implies that the score for
any initial prior µ is almost as good as the maximal score.

Case 2: {ω} is not globally accessible. Since the game is uniformly con-
nected, {ω} must be uniformly transient. This means that {ω} is a temporary
support. That is, starting from the belief which puts probability one on ω , the be-
lief must eventually reach the ones whose supports are globally accessible, with
probability one. Since payoffs before reaching these beliefs are almost negligible,
this implies that there is at least one belief µ∗ whose support (say Ω∗) is globally
accessible and whose score is approximately as good as the maximal score. Then
Lemma B3 in the proof implies that the same result holds for all beliefs with the
same support, that is, given any belief µ ∈ △Ω∗, the score is approximately as
good as the maximal score. Since Ω∗ is globally accessible, this immediately im-
plies invariance of the score; indeed, given any initial prior, players can move the
belief to some µ̃ ∈△Ω∗ and can approximate the maximal score thereafter.

So the key step in the argument above is Lemma B3, which asserts that if the
score for one belief µ∗ is approximately as good as the maximal score, the same is
true for any belief µ with the same support. This result follows from the fact that
players can attain better scores when they have better information about the state.
To illustrate the idea, suppose for now that the score for the belief µ∗ is exactly
(not approximately) equal to the maximal score. Pick an arbitrary belief µ ∈△Ω∗.
Then we can find a belief µ̃ such that the belief µ∗ is a convex combination of µ
and µ̃ , that is, µ∗ = αµ +(1−α)µ̃ for some α ∈ (0,1). Let v and ṽ denote the
scores given the beliefs µ and µ̃ , respectively. Then the weighted average of the
scores, αv+ (1−α)ṽ, must be at least the score for the “muddled” belief µ∗.
But since the score for this belief µ∗ is exactly equal to the maximal score, the
weighted average αv+(1−α)ṽ must be also equal to the maximal score. Hence
both v and ṽ must be equal to the maximal score; i.e., the score for the belief µ is
indeed equal to the maximal score.
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5.1.5 Uniform Connectedness and Weakly Communicating States

Uniform connectedness is an analogue of weakly communicating states, and these
two conditions are deeply related. The following proposition shows that weakly
communicating states are necessary for uniform connectedness. The proof can be
found in Appendix B.

Proposition 6. The game is uniformly connected only if states are weakly com-
municating.

This proposition implies that if the state transition rule does not satisfy the
standard assumption for the standard stochastic game, then the game is never uni-
formly connected. For example, as noted earlier, if there are multiple absorb-
ing states, then states are not weakly communicating. So the above proposition
implies that such a game is never uniformly connected, regardless of the signal
structure. Indeed, it is easy to see that if there are multiple absorbing states and if
these absorbing states give different stage-game payoffs, then the feasible payoff
set must depend on the initial prior, even in the hidden-state model.

For some class of games, the necessary condition above is “tight,” in the sense
that it is necessary and sufficient for uniform connectedness. Specifically, we have
the following proposition:

Proposition 7. In stochastic games with observable states, the game is uniformly
connected if and only if states are weakly communicating. Similarly, in stochastic
games with delayed observations, the game is uniformly connected if and only if
states are weakly communicating.

So in these class of games, if states are weakly communicating, then the feasi-
ble payoff set is invariant to the initial prior. This result generalizes the invariance
result of Dutta (1995), who assumes communicating states (rather than weakly
communicating states).

Note that uniform connectedness is a sufficient condition for invariance of the
feasible payoffs, but not necessary. So there are many cases in which uniform
connectedness is not satisfied but nonetheless the feasible payoffs are invariant to
the initial prior. To cover such cases, in Appendix A, we show that the invariance
result holds even if uniform connectedness is replaced with a weaker condition
called asymptotic uniform connectedness. Asymptotic uniform connectedness is
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satisfied in a broad class of games; for example, as shown in Proposition A1, it is
satisfied if states are weakly communicating and if states can be statistically dis-
tinguished by signals, in that for each fixed action profile a, the signal distributions
{(πω

Y (y|a))y∈Y |ω ∈ Ω} are linearly independent. This result ensures that weakly
communicating states “almost always” imply invariance of the feasible payoffs,
even in the hidden-state model. Indeed, if states are weakly communicating (here
we allow a deterministic state transition) and if the signal space is large enough
that |Y | ≥ |Ω|, then asymptotic uniform connectedness holds for generic signal
distributions.

5.2 Robust Connectedness and Minimax Payoffs

5.2.1 Weak Irreducibility

Again, before studying the hidden-state model, we consider the observable-state
case and show that weak irreducibility is sufficient for invariance of the minimax
payoff. It is useful to understand this weak irreducibility condition, because robust
connectedness, which will play a central role in this subsection, is an analogue of
this condition for the hidden-state model.

A state ω is robustly accessible despite i if for each initial state ω̃ , there is a
(possibly mixed) action sequence (α1

−i, · · · ,α
|Ω|
−i ) such that for any player i’s strat-

egy si, there is a natural number T ≤ |Ω| such that Pr(ωT+1 =ω|ω̃,si,α1
−i, · · · ,αT

−i)>

0. In words, robust accessibility requires that the opponents can move the state
to ω regardless of player i’s play. Clearly, this condition is more demanding than
global accessibility introduced in the previous subsection.

A state ω is avoidable for player i if it is not robustly accessible despite i
and there is player i’s action sequence (α1

i , · · · ,α
|Ω|
i ) such that for any strategy

s−i of the opponent, there is T ≤ |Ω| and a state ω̃ which is robustly accessible
despite i such that Pr(ωT+1 = ω̃|ω,α1

i , · · · ,αT
i ,s−i) > 0. So player i can avoid

the state to stay at ω forever; if she chooses a particular action sequence, the state
must move to some robustly accessible state with positive probability, regardless
of the opponents’ play. This condition is somewhat similar to uniform transience
of the state, but note that we fix player i’s action sequence in the definition of
avoidability. So if player i chooses other actions, the state may stay at ω forever.
In contrast, uniform transience requires that the state cannot stay at ω regardless
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of players’ play. So avoidability of ω does not imply uniform transience of ω .
States are weakly irreducible for player i if each state ω is either robustly

accessible despite i or avoidable for i. States are weakly irreducible if they are
weakly irreducible for all players. This condition is somewhat similar to weakly
communicating states in the previous subsection, but neither implies the other.
Indeed, weakly communicating states need not imply weakly irreducible states,
because global accessibility of ω does not imply robust accessibility of ω . Simi-
larly, weakly irreducible states need not imply weakly communicating states, be-
cause as mentioned above, avoidability of ω does not imply uniform transience
of ω . Note that weak irreducibility here is a generalization of irreducibility of
of Fudenberg and Yamamoto (2011b), which requires that all states be robustly
accessible.

If states are weakly irreducible for player i, then the limit minimax payoff for
player i is invariant to the initial state ω . This result follows from Propositions 8
and 9 below, but a rough idea is as follows. Let ω be the initial state which gives
the lowest minimax payoff for player i. There are two cases to be considered:

Case 1: ω is robustly accessible. In this case, given any initial state, the
opponent can move the state to ω in finite time with probability one, and give the
lowest minimax payoff to player i after that. When player i is patient, payoffs
before the state reaching ω is almost negligible. Hence for any initial state, player
i’s minimax payoff is approximately as low as the lowest one.

Case 2: ω is not robustly accessible. In this case, the state ω is avoidable for
player i, so she can “escape” from this worst state. That is, even if the initial state
is ω and the opponent plays the minimax strategy, with probability one, player i
can move the state to some robustly accessible states in finite time, and after that
she earn at least the minimax payoffs for these states. Accordingly, there must be
at least one robustly accessible state ω∗ whose minimax payoff is approximately
as low as the lowest minimax payoff. Then as in the previous case, we can show
that for any initial state, the minimax payoff is approximately as low as the lowest
one.
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5.2.2 Invariance of the Minimax Payoff

Now we consider the hidden-state model, and introduce the notion of robust con-
nectedness as an analogue of weak irreducibility. This condition is weaker than
the full support assumption but still ensures invariance of the limit minimax pay-
offs. We first define robust accessibility of the support, which is an analogue of
robust accessibility of the state.

Definition 5. A non-empty subset Ω∗ ⊆ Ω is robustly accessible despite player i
if there is π∗ > 0 such that for any initial prior µ , there is a natural number T and
an action sequence (α1

−i, · · · ,αT
−i) such that for any strategy si, there is a natural

number t ≤ T and a belief µ̃ with support Ω∗ such that17

Pr(µ t+1 = µ̃|µ,si,α1
−i, · · · ,α t

−i)≥ π∗.

In the definition above, the support of the resulting belief µ̃ must be precisely
equal to Ω∗. This is more demanding than global accessibility, which allows the
support to be a subset of Ω∗. Clearly, robust accessibility of Ω∗ implies globally
accessibility in the previous subsection.

Next, we define avoidability of the support, which is again an analogue of
avoidability of the state ω .

Definition 6. A subset Ω∗ ⊆ Ω is avoidable for player i if it is not robustly ac-
cessible despite i and there is π∗ > 0 such that for any µ whose support is Ω∗,
there is player i’s action sequence (α1

i , · · · ,αT
i ) such that for any strategy s−i of

the opponents, there is a natural number t ≤ T and a belief µ̃ whose support is
robustly accessible despite i such that18

Pr(µ t+1 = µ̃|µ,α1
i , · · · ,α t

i ,s−i)≥ π∗.

In order to state robust connectedness, we need one more definition:

Definition 7. Supports are merging if for each state ω and for each pure strat-
egy profile s, there is a natural number T ≤ 4|Ω| and a history hT such that

17As shown in Appendix C, when we check if a given set is robustly accessible, we can restrict
attention to T ≤ 4|Ω|, without loss of generality. Note also that replacing the action sequence
(α1

−i, · · · ,α4|Ω|
−i ) in this definition with a strategy s−i does not relax the condition at all.

18As shown in Appendix C, when we check if a given set is avoidable, we can restrict attention
to T ≤ 4|Ω|, without loss of generality.
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Pr(hT |ω,s) > 0 and such that after the history hT , the support of the posterior
belief induced by the initial state ω is the same as the one induced by the initial
prior µ = ( 1

|Ω| , · · · ,
1
|Ω|).

The merging support condition ensures that regardless of players’ play, two
different initial priors ω and µ = ( 1

|Ω| , · · · ,
1
|Ω|) induce posteriors with the same

support, after some history. This condition is trivially satisfied in many examples;
for example, under the full support assumption, the support of the posterior belief
is Ω regardless of the initial belief, and hence the merging support condition holds.

To understand why we need this merging support condition, recall that in the
proof of Proposition 3, we consider player i’s payoff vµ̃

i (s
µ
−i) when the opponents

play the minimax strategy for some belief µ but the actual initial prior is µ̃ , µ .
The full support assumption ensures that after one period, these two beliefs µ and
µ̃ induce posterior beliefs with the same support (the whole state space), and this
property plays an important role when we evaluate this payoff. In order to use a
similar proof technique, we need a similar property here, and the merging support
condition is precisely what we need.

Definition 8. The game is robustly connected for player i if supports are merging
and each non-empty subset Ω∗ ⊆ Ω is robustly accessible despite i or avoidable
for i. The game is robustly connected if it is robustly connected for all players.

Robust connectedness and uniform connectedness may look somewhat simi-
lar, but neither implies the other. Indeed, uniform connectedness does not imply
robust connectedness because global accessibility of Ω∗ does not imply robust
accessibility of Ω∗, Also, robust connectedness does not imply uniform connect-
edness, because avoidability of Ω∗ does not imply uniform transience of Ω∗. This
is analogous to the fact that in the observable-state case, weakly communicated
states does not imply weakly irreducible states, and vice versa.

Robust connectedness is a complicated condition, because it requires the merg-
ing support condition, in addition to robust accessibility and avoidability. Accord-
ingly, even when there are only two states, the description of robust connected-
ness is not as simple as one may wish. However, if we focus on the special case
in which no states can be revealed, we can show that the scrambling condition is
necessary and sufficient for robust connectedness.19 As explained in the previ-

19If there are only two states and none of them can be revealed, the scrambling condition and
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ous subsection, the scrambling condition is likely to be satisfied when the state
changes stochastically conditional on the signal realization. Note that the scram-
bling condition is sufficient for uniform connectedness as well, so it is sufficient
for both robust connectedness and uniform connectedness.

The following proposition shows that robust connectedness implies invariance
of the minimax payoffs. The proof is given in Appendix B.

Proposition 8. Suppose that the game is robustly connected for player i. Then
Assumption 1(b) holds.

From Propositions 5 and 8, for any games which satisfies both uniform con-
nectedness and robust connectedness, the payoff invariance assumption (Assump-
tion 1) holds, and hence the folk theorem obtains.

5.2.3 Robust Connectedness and Weakly Irreducible States

Robust connectedness is an analogue of weak irreducibility, and these two condi-
tions are closely related. The following proposition shows that weak irreducibility
is necessary for robust connectedness. Also, it shows that weak irreducibility is
necessary and sufficient for robust connectedness in the standard stochastic games.
The proof is very similar to that of Proposition 6 and hence omitted.

Proposition 9. The game is robustly connected only if the game is weakly irre-
ducible. In particular, for stochastic games with observable states, the game is
robustly connected if and only if the game is weakly irreducible.

Unfortunately, the second result in Proposition 7 does not extend, that is, for
stochastic games with delayed observations, weak irreducibility is not sufficient
for robust connectedness. For example, suppose that there are two players, and
there are three states, ωA, ωB, and ωC. Each player has three actions, A, B, and
C. Assume that the state is observed with delay, so Y = Ω and the signal today is
equal to the current state with probability one. Suppose that the state tomorrow is
determined by the action profile today, specifically, one of the player is randomly
selected and her action determines the state tomorrow. For example, if one player

the merging support condition are equivalent. Hence the scrambling condition is necessary for
robust connectedness. It is also sufficient for robust connectedness, because under the scrambling
condition, each singleton set {ω} is avoidable and the whole state space Ω is robustly accessible.
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chooses A and the opponent chooses B, then ωA and ωB are equally likely. So
regardless of the opponents’ play, if a player chooses A, then ωA will appear with
probability at least 1

2 . This implies that each state is robustly accessible despite
i for each i. Unfortunately, robust connectedness is not satisfied in this example.
Indeed, any set Ω∗ is neither robustly accessible nor avoidable. For example, any
set Ω∗ which does not include some state ω is not robustly accessible despite 1,
because if player 1 always chooses the action corresponding to ω each period, the
posterior must put probability at least 1

2 on ω . Also the whole set Ω is not robustly
accessible, because in any period, the posterior puts probability zero on some state
ω . Since there is no robustly accessible set, any set cannot be avoidable either.

Note, however, that robust connectedness is just a sufficient condition for in-
variance of the limit minimax payoff. The following proposition shows that, for
stochastic games with delayed observations, weak irreducibility implies invari-
ance of the limit minimax payoff. The proof relies on the fact that there are only
finitely many possible posterior beliefs for games with observation delays; see
Appendix B.

Proposition 10. Consider stochastic games with delayed observations, and sup-
pose that the game is weakly irreducible. Then Assumption 1(b) holds.

5.3 Example: Natural Resource Management

Now we will present an example of natural resource management. This is an ex-
ample which satisfies uniform connectedness and robust connectedness, but does
not satisfy the full support assumption.

Suppose that two fishermen live near a gulf. The state of the world is the num-
ber of fish in the gulf, and is denoted by ω ∈ {0, · · · ,K} where K is the maximal
capacity. The fishermen cannot directly observe the number of fish, ω , so they
have a belief about ω .

Each period, each fisherman decides whether to “Fish” (F) or “Do Not Fish”
(N); so fisherman i’s action set is Ai = {F,N}. Let yi ∈ Yi = {0,1,2} denote the
amount of fish caught by fisherman i, and let πω

Y (y|a) denote the probability of
the outcome y = (y1,y2) given the current state ω and the current action profile
a. We assume that if fisherman i chooses N, then he cannot catch anything and
hence yi = 0. That is, πω

Y (y|a) = 0 if there is i with ai = N and yi > 0. We also
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assume that the fishermen cannot catch more than the number of fish in the gulf,
so πω

Y (y|a) = 0 for ω , a, and y such that ω < y1+y2. We assume πω
Y (y|a)> 0 for

all other cases, so the signal y does not reveal the hidden state ω .
Fisherman i’s utility in each stage game is 0 if he chooses N, and is yi−c if he

chooses F . Here c > 0 denotes the cost of choosing F , which involves effort cost,
fuel cost for a fishing vessel, and so on. We assume that c < ∑y∈Y πω

Y (y|F,a−i)yi

for some ω and a−i, that is, the cost is not too high and the fishermen can earn
positive profits by choosing F , at least for some state ω and the opponents’ action
a−i. If this assumption does not hold, no one fishes in any equilibrium.

Over time, the number of fish may increase or decrease due to natural increase
or overfishing. Specifically, we assume that the number of fish in period t + 1 is
determined by the following formula:

ω t+1 = ω t − (yt
1 + yt

2)+ ε t . (4)

In words, the number of fish tomorrow is equal to the number of fish in the gulf to-
day minus the amount of fish caught today, plus a random variable ε t ∈ {−1,0,1},
which captures natural increase or decrease of fish. Intuitively, ε = 1 implies that
some fish had an offspring or new fish came to the gulf from the open sea. Sim-
ilarly, ε = −1 implies that some fish died out or left the gulf. Let Pr(·|ω,a,y)
denote the probability distribution of ε given the current ω , a, and y. We assume
that the state ω t+1 is always in the state space Ω = {0, · · · ,K}, that is, Pr(ε =

−1|ω,a,y) = 0 if ω − y1 − y2 = 0 and Pr(ε = 1|ω,a,y) = 0 if ω − y1 − y2 = K.
We assume Pr(ε|ω,a,y)> 0 for all other cases.

This model can be interpreted as a dynamic version of “tragedy of commons.”
The fish in the gulf is public good, and overfishing may result in resource deple-
tion. Competition for natural resources like this is quite common in the real world,
due to growing populations, economic integration, and resource-intensive patterns
of consumption. For example, each year Russian and Japanese officials discuss
salmon fishing within 200 nautical miles of the Russian coast, and set Japan’s
salmon catch quota. Often times, it is argued that community-based institutions
are helpful to manage local environmental resource competition. Our goal here is
to provide its theoretical foundation.

This example does not satisfy the full support assumption, because the proba-
bility of ω t+1 = K is zero if y1 + y2 > 1. However, as will be explained, uniform
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connectedness and robust connectedness are satisfied, so that the payoff invariance
condition (and hence the folk theorem) obtains.

To see that this game is indeed uniformly connected, note that this example
satisfies the scrambling condition; due to the possibility of natural increase and
decrease, given any initial belief µ and given any fishermen’s play s, the posterior
belief becomes an interior belief (i.e., the support of the posterior becomes the
whole state space Ω) if the signal y = (0,0) is observed for the first K periods.
As noted earlier, if the scrambling condition holds, then any singleton set {ω} is
uniformly transient, and hence uniform connectedness holds. For the same reason,
robust connectedness also holds.

So far we have assumed that Pr(ε|ω,a,y) > 0, except the case in which the
state does not stay in the space {0, · · · ,K}. Now, modify the model and suppose
that Pr(ε = 1|ω,a,y) = 0 if ω −y1−y2 = 0 and a, (N,N). That is, if the resource
is exhausted (ω − y1 − y2 = 0) and at least one player tries to catch (a , (N,N)),
there will be no natural increase. This captures the idea that there is a critical
biomass level below which the growth rate drops rapidly; so the fishermen need to
“wait” until the fish grows and the state exceeds this critical level. We still assume
that Pr(ε|ω,a,y)> 0 for all other cases.

In this new example, players’ actions have a significant impact on the state
transition, that is, the state never increases if the current state is ω = 0 and some-
one chooses F . This complicates the belief evolution process, and the scrambling
condition does not hold anymore. Indeed, if the initial state is ω = 0 and the fish-
ermen choose (F,F), the belief does not change forever and and never become an
interior belief.

Nonetheless, the payoff invariance condition (and hence the folk theorem) still
holds in this setup. Specifically, we can show that uniform connectedness holds,
and thus the feasible payoff set is invariant to the initial prior. Also, while robust
connectedness does not hold (indeed, the merging support condition does not hold
here), we can compute the minimax payoff for each initial prior and can prove its
invariance.

To prove uniform connectedness, note first that each singleton set {ω} is uni-
formly transient, except {0}. The reason is exactly the same as in the previous
case: Suppose that the initial belief puts probability one on some ω ≥ 1. Due to
the possibility of natural increase and decrease, if y = (0,0) is observed for the
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first K periods (note that this happens with positive probability regardless of the
strategy profile), then the posterior belief becomes an interior belief, and the sup-
port reaches the globally accessible set Ω. Hence the set {ω} is indeed uniformly
transient.

How about the set {0}? This set is not uniformly connected, because if the
initial prior puts probability one on ω = 0 and someone fishes every period, the
posterior belief never changes and the support stays at {0} forever. However, we
can show that {0} is globally accessible. A point is that regardless of the initial
prior, the state ω = 0 can be revealed if

• The fishermen do not fish in the first K periods, and then

• Both of them fish and observe y = (1,1) in the next K −1 periods.

Given any initial prior, after waiting for the first K periods, the posterior belief
µK+1 assigns at least probability πK on the highest state ω = K (i.e., µK+1(K)≥
πK). Then if y = (1,1) is observed in the next period, the posterior belief µK+2

puts probability zero on the highest state ω = K; this is so because the fishermen
caught fish more than the natural increase. For the same reason, after observing
y = (1,1) for K −1 periods, the posterior belief puts probability zero on all states
but ω = 0, so the state ω = 0 is indeed revealed. Note that the probability of
observing y = (1,1) for K − 1 periods is µK+1(K)πK−1 ≥ π2K−1, so there is a
lower bound on the probability of the support reaching {0}. Hence {0} is indeed
globally accessible, and thus the game is uniformly connected. This implies that
feasible payoffs are invariant to the initial prior.

As noted earlier, we can also show that the minimax payoff is invariant to the
initial prior. To see this, note first that a fisherman can obtain at least a payoff of
0 by choosing “Always N.” Hence the limit minimax payoff is at least 0. On the
other hand, if the opponent always chooses F , the state eventually reaches ω = 0
with probability one, and thus fisherman i’s payoff is at most 0 in the limit as
δ → 1. Thus the limit minimax payoff is 0 regardless of the initial prior.

6 Concluding Remarks

This paper considers a new class of stochastic games in which the state is hidden
information. We find that the folk theorem holds when the feasible and individ-
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ually rational payoffs are invariant to the initial prior. Then we find sufficient
conditions for this payoff invariance condition.

Throughout this paper, we assume that actions are perfectly observable. In an
ongoing project, we consider how the equilibrium structure changes when actions
are not observable; in this new setup, each player has private information about
her actions, and thus different players may have different beliefs. This implies that
a player’s belief is not public information and cannot be regarded as a common
state variable. Accordingly, the analysis of the imperfect-monitoring case is very
different from that for the perfect-monitoring case.
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Appendix A: Extension of Uniform Connectedness

Proposition 5 shows that uniform connectedness ensures invariance of the feasible
payoff set. Here we show that the same result holds under a weaker condition,
called asymptotic uniform connectedness.

Before we describe the idea of asymptotic uniform connectedness, it is use-
ful to understand when uniform connectedness is not satisfied and why we want to
relax it. We present two examples in which states are communicating but nonethe-
less uniform connectedness does not hold. These examples show that Proposition
7 does not extend to the hidden-state case; the game may not be uniformly con-
nected even if states are communicating.

Example A1. Suppose that there are only two states, Ω = {ω1,ω2}, and that the
state evolution is a deterministic cycle, as in Example 1. That is, the state goes
to ω2 for sure if the current state is ω1, and vice versa. Assume that there are at
least two signals, and that the signal distribution is different at different states and
does not depend on the action profile, that is, πω1

Y (·|a) = π1 and πω2
Y (·|a) = π2 for

all a, where π1 , π2. Assume also that the signal does not reveal the state ω , that
is, πω

Y (y|a) > 0 for all ω , a, and y. As in Example 1, this game does not satisfy
the scrambling condition, and no states can be revealed. Hence the game is not
uniformly connected.

In the next example, the state evolution is not deterministic.

Example A2. Consider a machine with two states, ω1 and ω2. ω1 is a “normal”
state and ω2 is a “bad” state. Suppose that there is only one player and that she has
two actions, “operate” and “replace.” If the machine is operated and the current
state is normal, the next state will be normal with probability p1 and will be bad
with probability 1− p1, where p1 ∈ (0,1). If the machine is operated and the
current state is bad, the next state will be bad for sure. If the machine is replaced,
regardless of the current state, the next state will be normal with probability p2 and
will be bad with probability 1− p2, where p2 ∈ (0,1]. There are three signals, y1,
y2, and y3. When the machine is operated, both the “success” y1 and the “failure”
y2 can happen with positive probability; we assume that its distribution depends on
the current hidden state and is not correlated with the distribution of the next state.
When the machine is replaced, the “null signal” y3 is observed regardless of the
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hidden state. Uniform connectedness is not satisfied in this example, since {ω2}
is neither globally accessible nor uniformly transient. Indeed, when the support
of the current belief is Ω, it is impossible to reach the belief µ with µ(ω2) = 1,
which shows that {ω2} is not globally accessible. Also {ω2} is not uniformly
transient, because if the current belief puts probability one on ω2 and “operate” is
chosen forever, the support of the posterior belief is always {ω2}.

While uniform connectedness does not hold in these examples, the feasible
payoffs are still invariant to the initial prior. To describe the idea, consider Exam-
ple A1. In this example, if the initial state is ω1, then the true state must be ω1 in
all odd periods, so the empirical distribution of the signals in odd periods should
approximate π1 with probability close to one. Similarly, if the initial state is ω2,
the empirical distribution of the public signals in odd periods should approximate
π2. This suggests that players can eventually learn the current state by aggregating
the past public signals, regardless of the initial prior µ . Hence for δ close to one,
the feasible payoff set must be invariant to the initial prior.

The point in this example is that, while the singleton set {ω1} is not glob-
ally accessible, it is asymptotically accessible in the sense that at some point in
the future, the posterior belief puts a probability arbitrarily close to one on ω1,
regardless of the initial prior. As will be explained, this property is enough to
establish invariance of the feasible payoff set. Formally, asymptotic accessibility
is defined as follows:

Definition A1. A non-empty subset Ω∗ ⊆ Ω is asymptotically accessible if for
any ε > 0, there is a natural number T and π∗ > 0 such that for any initial prior µ ,
there is a natural number T ∗ ≤ T and an action sequence (a1, · · · ,aT ∗

) such that
Pr(µT ∗+1 = µ̃|µ,a1, · · · ,aT ∗

)≥ π∗ for some µ̃ with ∑ω∈Ω∗ µ̃(ω)≥ 1− ε .

Asymptotic accessibility of Ω∗ requires that given any initial prior µ , there
is an action sequence (a1, · · · ,aT ∗

) so that the posterior belief can approximate a
belief whose support is Ω∗. Here the length T ∗ of the action sequence may depend
on the initial prior, but it must be uniformly bounded by some natural number T .

As argued above, each singleton set {ω} is asymptotically accessible in Ex-
ample A1. In this example, the state changes over time, and thus if the initial prior
puts probability close to zero on ω , then the posterior belief in the second period
will put probability close to one on ω . This ensures that there is a uniform bound
T on the length T ∗ of the action sequence.
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Similarly, the set {ω2} in Example A2 is asymptotically accessible. To see
this, suppose that the machine is operated every period. Then ω2 is the unique
absorbing state, and hence there is some T such that the posterior belief after
period T attaches a very high probability on ω2 regardless of the initial prior (at
least after some signal realizations). This is precisely asymptotic accessibility of
{ω2}.

Next, we give the definition of asymptotic uniform transience, which extends
uniform transience.

Definition A2. A singleton set {ω} is asymptotically uniformly transient if it is
not asymptotically accessible and there is π̃∗ > 0 such that for any ε > 0, there is
a natural number T such that for each pure strategy profile s, there is an asymp-
totically accessible set Ω∗, a natural number T ∗ ≤ T , and a belief µ̃ such that
Pr(µT ∗+1 = µ̃|ω,s)> 0, ∑ω̃∈Ω∗ µ̃(ω̃)≥ 1− ε , and µ̃(ω̃)≥ π̃∗ for all ω̃ ∈ Ω∗.

In words, asymptotic uniform transience of {ω} requires that if the support of
the current belief is {ω}, then regardless of the future play, with positive prob-
ability, the posterior belief µT ∗+1 = µ̃ approximates a belief whose support Ω∗

is globally accessible. Asymptotic uniform transience is weaker than uniform
transience in two respects. First, a global accessible set Ω∗ in the definition of
uniform transience is replaced with an asymptotically accessible set Ω∗. Second,
the support of the posterior µ̃ is not necessarily identical with Ω∗; it is enough if
µ̃ assigns probability at least 1− ε on Ω∗.20

Definition A3. A stochastic game is asymptotically uniformly connected if each
singleton set {ω} is asymptotically accessible or asymptotically uniformly tran-
sient.

Asymptotic uniform connectedness is weaker than uniform connectedness. In-
deed, Examples A1 and A2 satisfy asymptotic uniform connectedness but do not
satisfy uniform connectedness.

Unfortunately, checking asymptotic uniform connectedness in a given exam-
ple is often a daunting task, because we need to compute the posterior belief in

20Asymptotic uniform transience requires µ̃(ω̃)≥ π̃∗, that is, the posterior belief µ̃ is not close
to the boundary of △Ω∗. We can show that this condition is automatically satisfied in the definition
of uniform transience, if {ω} is uniformly transient; so uniform transience implies asymptotic
uniform transience.
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a distant future. However, the following proposition provides a simple sufficient
condition for asymptotic uniform connectedness:

Proposition A1. The game is asymptotically uniformly connected if states are
weakly communicating, and for each action profile a and each proper subset Ω∗ ⊂
Ω,

co{πω
Y (a)|ω ∈ Ω∗}∩ co{πω

Y (a)|ω <Ω∗}= /0.

In words, the game is asymptotically uniformly connected if states are weakly
communicating and and if players can statistically distinguish whether the current
state ω is in the set Ω∗ or not through the public signal y. Loosely, the latter
condition ensures that players can eventually learn the current support after a long
time at least for some history, which implies asymptotic accessibility of some sets
Ω∗. See Appendix B for the formal proof.

Note that the second condition in the above proposition is satisfied if the signal
distributions {πω

Y (a)|ω ∈ Ω} are linearly independent for each a. Note also that
linear independence is satisfied for generic signal structures as long as the signal
space is large enough so that |Y | ≥ |Ω|. So asymptotic uniform connectedness
generically holds as long as states are weakly communicating and the signal space
is large enough.

The following proposition shows that the feasible payoff set is indeed invariant
to the initial prior if the game is asymptotically uniformly connected.21 The proof
can be found in Appendix B.

Proposition A2. If the game is asymptotically uniformly connected, then for each
ε > 0, there is δ ∈ (0,1) such that for any λ ∈ Λ, δ ∈ (δ ,1), µ , and µ̃ ,∣∣∣∣ max

v∈V µ (δ )
λ · v− max

ṽ∈V µ̃ (δ )
λ · ṽ

∣∣∣∣< ε.

In the same spirit, we can show that the minimax payoff is invariant to the
initial prior under a condition weaker than robust connectedness. The idea is quite
similar to the one discussed above; we can relax robust accessibility, avoidability,
and the merging support condition, just as we did for global accessibility and
uniform transience. Details are omitted.

21However, unlike Proposition 5, we do not know the rate of convergence, and in particular, we
do not know if we can replace ε in the proposition with O(1−δ ).
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Appendix B: Proofs

B.1 Proof of Proposition 1 with Mixed Minimax Strategies

Here we explain how to extend the proof provided in Section 3.4 to the case in
which the minimax strategies are mixed strategies. As explained, the only thing
we need to do is to perturb the continuation payoff wi( j) so that player i is indif-
ferent over all actions in each period during the minimax play.

We first explain how to perturb the payoff, and then explain why it makes
player i indifferent. For each µ and a, take a real number Ri(µ,a) such that
gµ

i (a)+Ri(µ,a) = 0. Intuitively, in the one-shot game with the belief µ , if player
i receives the bonus payment Ri(µ,a) in addition to the stage-game payoff, she
will be indifferent over all action profiles and her payoff will be zero. Suppose
that we are now in the punishment phase for player j , i, and that the minimax
play over K blocks is done. For each k ∈ {1, · · · ,K}, let (µ(k),a(k)) denote the
belief and the action profile in the last period of the kth block of the minimax play.
Then the perturbed continuation payoff is defined as

wi( j)+(1−δ )
K

∑
k=1

(1− pδ )K−k

{δ (1− p)}K−k+1 Ri(µ(k),a(k)).

That is, the continuation payoff is now the original value wi( j) plus the K pertur-
bation terms Ri(µ(1),a(1)), · · · , Ri(µ(K),a(K)), each of which is multiplied by the
coefficient (1−δ ) (1−pδ )K−k

{δ (1−p)}K−k+1 .
We now verify that player i is indifferent over all actions during the minimax

play. First, consider player i’s incentive in the last block of the minimax play.
We will ignore the term Ri(µ(k),a(k)) for k < K, as it does not influence player
i’s incentive in this block. If we are now in the τth period of the block, player i’s
unnormalized payoff in the continuation game from now on is

∞

∑
t=1

(pδ )t−1E[gµt

i (at)]+
∞

∑
t=1

(1− p)pt−1δ t 1
1−δ

(
wi( j)+

(1−δ )E[Ri(µ t ,at)]

δ (1− p)

)
.

Here, (µ t ,at) denote the belief and the action in the tth period of the continuation
game, so the first term of the above display is the expected payoff until the current
block ends. The second term is the continuation payoff from the next block; (1−
p)pt−1 is the probability of period t being the last period of the block, in which
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case player i’s continuation payoff is wi( j)+ (1−δ )E[Ri(µt ,at)]
δ (1−p) where the expectation

is taken with respect to µ t and at , conditional on that the block does not terminate
until period t. We have the term δ t due to discounting, and we have 1

1−δ in order
to convert the average payoff to the unnormalized payoff. The above payoff can
be rewritten as

∞

∑
t=1

(pδ )t−1E[gµt

i (at)+Ri(µ t ,at)]+
δ (1− p)

(1−δ )(1− pδ )
wi( j).

Since gµ
i (a)+Ri(µ,a) = 0, the actions and the beliefs during the current block

cannot influence this payoff at all. Hence player i is indifferent over all actions in
each period during the block.

A similar argument applies to other minimax blocks. The only difference is
that if the current block is the kth block with k < K, the corresponding perturba-
tion payoff Ri(µ(k),a(k)) will not be paid at the end of the current block; it will
be paid after the Kth block ends. To offset discounting, we have the coefficient

(1−pδ )K−k

{δ (1−p)}K−k+1 on Ri(µ(k),a(k)). To see how it works, suppose that we are now in
the second to the last block (i.e., k = K −1). The “expected discount factor” due
to the next random block is

δ (1− p)+δ 2 p(1− p)+δ 3 p2(1− p)+ · · ·= δ (1− p)
1− pδ

.

Here the first term on the left-hand side comes from the fact that the length of the
next block is one with probability 1− p, in which case discounting due to the next
block is δ . Similarly, the second term comes from the fact that the length of the
next block is two with probability p(1− p), in which case discounting due to the
next block is δ 2. This discount factor δ (1−p)

1−pδ cancels out, thanks to the coefficient
(1−pδ )

{δ (1−p)}2 on Ri(µ(K−1),a(K−1)). Hence player i is indifferent in all periods during
the this block.

So far we have explained that player i is indifferent in all periods during the
minimax play. Note also that the perturbed payoff approximates the original pay-
off wi( j) for δ close to one, because the perturbation terms are of order 1− δ .
Hence for sufficiently large δ , the perturbed payoff vector is in the feasible payoff
set, and all other incentive constraints are still satisfied.
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B.2 Proof of Proposition 3: Invariance of the Minimax Payoffs

We will first prove that the minimax payoffs are invariant to the initial prior for
high discount factors. That is, we will show that for any ε > 0, there is δ such that∣∣∣vµ

i (δ )− vµ̃
i (δ )

∣∣∣< ε (5)

for any δ ∈ (δ ,1), µ , and µ̃ . After that, we will show that the limit of the minimax
payoff exists.

Fix δ , and let sµ denote the minimax strategy profile given the initial prior µ .
As in Section 4.3, let vµ̃

i (s
µ
−i) = maxsi∈Si vµ̃

i (δ ,si,s
µ
−i). That is, vµ̃

i (s
µ
−i) denotes

player i’s maximal payoff when the opponents use the minimax strategy for the
belief µ while the actual initial prior is µ̃ . Note that this payoff vµ̃

i (s
µ
−i) is convex

with respect to the initial prior µ̃ , as it is the upper envelope of the linear functions
vµ̃

i (δ ,si,s
µ
−i) over all si.

In Section 4.3, we have defined the maximal value as the maximum of these
payoffs vµ̃

i (s
µ
−i) over all (µ, µ̃). But this definition is informal, because the max-

imum with respect to µ may not exist. To fix this problem, given the opponents’
strategy sµ

−i, define
vi(s

µ
−i) = max

µ̃∈△Ω
vµ̃

i (s
µ
−i),

as the maximum of player i’s payoff with respect to the initial prior µ̃ . Then
choose µ∗ so that ∣∣∣∣∣ sup

µ∈△Ω
vi(s

µ
−i)− vi(s

µ∗

−i)

∣∣∣∣∣< 1−δ ,

and call vi(s
µ∗

−i) the maximal value. When δ is close to one, this maximal value
indeed approximates the supremum of the payoff vµ̃

i (s
µ
−i) over all (µ, µ̃). Since

vµ̃
i (s

µ∗

−i) is convex with respect to µ̃ , it is maximized when µ̃ puts probability one
on some state. Let ω denote this state, so that vω

i (s
µ∗

−i)≥ vµ̃
i (s

µ∗

−i) for all µ̃ .

B.2.1 Step 0: Preliminary Lemma

The following lemma follows from the convexity of the payoffs vµ̃
i (s

µ
−i). We will

use this lemma repeatedly throughout the proof.
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Lemma B1. Take an arbitrary belief µ , and an arbitrary interior belief µ̃ . Let
p = minω̃∈Ω µ̃(ω̃), which measures the distance from µ̃ to the boundary of △Ω.
Then for each µ̂ ∈△Ω,∣∣∣vi(s

µ∗

−i)+(1−δ )− vµ̂
i (s

µ
−i)
∣∣∣≤

∣∣∣vi(s
µ∗

−i)+(1−δ )− vµ̃
i (s

µ
−i)
∣∣∣

p
.

Roughly, this lemma asserts that given the opponents’ strategy sµ
−i, if player

i’s payoff vµ̃
i (s

µ
−i) approximates the maximal value vi(s

µ∗

−i) for some interior initial
prior µ̃ , then the same is true for all other initial priors µ̂ .

More formally, given the opponents’ strategy sµ
−i, suppose that player i’s pay-

off vµ̃
i (s

µ
−i) approximates the maximal value vi(s

µ∗

−i) for some interior belief µ̃ such
that µ̃(ω̃)≥ π for all ω̃ . The condition µ̃(ω̃)≥ π implies that this belief µ̃ is not
too close to the boundary of the belief space △Ω. Then the right-hand side of
the inequality in the lemma is approximately zero, as p ≥ π . Hence the left-hand
side must be approximately zero, which indeed implies that the payoff vµ̂

i (s
µ
−i)

approximates the maximal value for all µ̂ .
In the interpretation above, it is important that the belief µ̃ is not too close to

the boundary of △Ω. If µ̃ approaches the boundary of △Ω, then p approaches
zero so that the right-hand side of the inequality in the lemma becomes arbitrarily
large.

Proof. Pick µ , µ̃ , and p as stated. Let si be player i’s best reply against sµ
−i given

the initial prior µ̃ . Pick an arbitrary ω̃ ∈ Ω. Note that

vµ̃
i (s

µ
−i) = ∑

ω̂∈Ω
µ̃(ω̂)vω̂

i (δ ,si,s
µ
−i).

Then using vω̂
i (δ ,si,s

µ
−i)≤ vi(s

µ∗

−i)+(1−δ ) for each ω̂ , ω̃ , we obtain

vµ̃
i (s

µ
−i)≤ µ̃(ω̃)vω̃

i (δ ,si,s
µ
−i)+(1− µ̃(ω̃)){vi(s

µ∗

−i)+(1−δ )}.

Arranging,

µ̃(ω̃)
{

vi(s
µ∗

−i)+(1−δ )− vω̃
i (δ ,si,s

µ
−i)
}
≤ vi(s

µ∗

−i)+(1−δ )− vµ̃
i (s

µ
−i).

Since the left-hand side is non-negative, taking the absolute values of both sides
and dividing them by µ̃(ω̃),

∣∣∣vi(s
µ∗

−i)+(1−δ )− vω̃
i (δ ,si,s

µ
−i)
∣∣∣≤

∣∣∣vi(s
µ∗

−i)+(1−δ )− vµ̃
i (s

µ
−i)
∣∣∣

µ̃(ω̃)
.
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Since µ̃(ω̃)≥ p, we have

∣∣∣vi(s
µ∗

−i)+(1−δ )− vω̃
i (δ ,si,s

µ
−i)
∣∣∣≤

∣∣∣vi(s
µ∗

−i)+(1−δ )− vµ̃
i (s

µ
−i)
∣∣∣

p
. (6)

Now, pick an arbitrary µ̂ ∈ △Ω. Note that (6) holds for each ω̃ ∈ Ω. So
multiplying both sides of (6) by µ̂(ω̃) and summing over all ω̃ ∈ Ω,

∑
ω̃∈Ω

µ̂(ω̃)
∣∣∣vi(s

µ∗

−i)+(1−δ )− vω̃
i (δ ,si,s

µ
−i)
∣∣∣≤

∣∣∣vi(s
µ∗

−i)+(1−δ )− vµ̃
i (s

µ
−i)
∣∣∣

p
.

(7)

Then we have∣∣∣vi(s
µ∗

−i)+(1−δ )− vµ̂
i (s

µ
−i)
∣∣∣≤ ∣∣∣vi(s

µ∗

−i)+(1−δ )− vµ̂
i (δ ,si,s

µ
−i)
∣∣∣

=

∣∣∣∣∣ ∑ω̃∈Ω
µ̂(ω̃)

{
vi(s

µ∗

−i)+(1−δ )− vω̃
i (δ ,si,s

µ
−i)
}∣∣∣∣∣

= ∑
ω̃∈Ω

µ̂(ω̃)
∣∣∣vi(s

µ∗

−i)+(1−δ )− vω̃
i (δ ,si,s

µ
−i)
∣∣∣

≤

∣∣∣vi(s
µ∗

−i)+(1−δ )− vµ̃
i (s

µ
−i)
∣∣∣

p
.

Here the first inequality follows from the fact that si is not a best reply given µ̂ ,
and the last inequality follows from (7). Q.E.D.

B.2.2 Step 1: Minimax Payoff for Some Belief µ∗∗

In this step, we will show that there is an interior belief µ∗∗ whose minimax payoff
approximates the maximal value and such that µ∗∗(ω̃)≥ 0 for all ω̃ .

To do so, we carefully inspect the maximal value. Suppose that the initial state
is ω and the opponents play sµ∗

−i . Suppose that player i takes a best reply, which
is denoted by si, so that she achieves the maximal value vω

i (s
µ∗

−i). As usual, this
payoff can be decomposed into the payoff today and the expected continuation
payoff:

vω
i (s

µ∗

−i) = (1−δ )gω
i (α∗)+δ ∑

a∈A
α∗(a) ∑

y∈Y
πω

Y (y|a)vµ(y|ω,a)
i (sµ(y|µ∗,a)

−i ).
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Here, α∗ denotes the action profile in period one induced by (si,s
µ∗

−i). µ(y|ω,a)
denotes the posterior belief in period two when the initial belief is µ̃∗ = ω and
players play a and observe y in period one. µ(y|µ∗) denotes the posterior be-
lief when the initial belief is µ∗. Given an outcome (a,y) in period one, player
i’s continuation payoff is vµ(y|ω,a)

i (sµ(y|µ∗,a)
−i ), because her posterior is µ(y|ω,a)

while the opponents’ continuation strategy is sµ(y|µ∗,a)
−i . (Note that the minimax

strategy is Markov.)
The following lemma shows that there is some outcome (a,y) such that player

i’s continuation payoff vµ(y|ω,a)
i (sµ(y|µ∗,a)

−i ) approximates the maximal value.

Lemma B2. There is (a,y) such that α∗(a)> 0 and such that∣∣∣vω
i (s

µ∗

−i)+(1−δ )− vµ(y|ω,a)
i (sµ(y|µ∗,a)

−i )
∣∣∣≤ (1−δ )(2g+1)

δ
.

Proof. Pick (a,y) which maximizes the continuation payoff vµ(y|ω,a)
i (sµ(y|µ∗,a)

−i )

over all y and a with α∗(a) > 0. This highest continuation payoff is at least the
expected continuation payoff, so we have

vω
i (s

µ∗

−i)≤ (1−δ )gω
i (α∗)+δvµ(y|ω,a)

i (sµ(y|µ∗,a)
−i ).

Arranging,∣∣∣vω
i (s

µ∗

−i)− vµ(y|ω,a)
i (sµ(y|µ∗,a)

−i )
∣∣∣≤ 1−δ

δ
(gω

i (α∗)− vω
i (s

µ∗

−i)).

This implies∣∣∣vω
i (s

µ∗

−i)+(1−δ )− vµ(y|ω,a)
i (sµ(y|µ∗,a)

−i )
∣∣∣≤ (1−δ )(gω

i (α∗)− vω
i (s

µ∗

−i)+1)
δ

.

Since gω
i (α∗)− vω

i (s
µ∗

−i)≤ 2g, we obtain the desired inequality. Q.E.D.

Pick (a,y) as in the lemma above, and let µ∗∗ = µ(y|µ∗,a). Then the above
lemma implies that∣∣∣vω

i (s
µ∗

−i)+(1−δ )− vµ(y|ω,a)
i (sµ∗∗

−i )
∣∣∣≤ (1−δ )(2g+1)

δ
.

That is, given the opponents’ strategy sµ∗∗

−i , player i’s payoff vµ̃
i (s

µ∗∗

−i ) approximates
the maximal value for some belief µ̃ = µ(y|ω,a). Note that under the full support
assumption, µ(y|ω,a)[ω̃]≥ π for all ω̃ . Hence Lemma B1 ensures that∣∣∣vω

i (s
µ∗

−i)+(1−δ )− vµ̂
i (s

µ∗∗

−i )
∣∣∣≤ (1−δ )(2g+1)

πδ
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for all µ̂ . That is, player i’s payoff vµ̂
i (s

µ∗∗

−i ) approximates the maximal score for
all initial priors µ̂ . In particular, by letting µ̂ = µ∗∗, we can conclude that the
minimax payoff for the belief µ∗∗ approximates the maximal value. That is,∣∣∣vω

i (s
µ∗

−i)+(1−δ )− vµ∗∗

i (sµ∗∗

−i )
∣∣∣≤ (1−δ )(2g+1)

πδ
.

B.2.3 Step 2: Minimax Payoffs for Other Beliefs

Now we will show that the minimax payoff approximates the maximal value for
any belief µ , which implies invariance of the minimax payoff.

Pick an arbitrary belief µ . Suppose that the opponents play the minimax
strategy sµ for this belief µ but the actual initial prior is µ∗∗. Then player i’s
payoff vµ∗∗

i (sµ
−i) is at least the minimax payoff for µ∗∗, by the definition of the

minimax payoff. At the same time, her payoff cannot exceed the maximal value
vω

i (s
µ∗

−i)+(1−δ ). So we have

vµ∗∗

i (s∗∗−i)≤ vµ∗∗

i (sµ
−i)≤ vω

i (s
µ∗

−i)+(1−δ ).

Then from the last inequality in the previous step, we have∣∣∣vω
i (s

µ∗

−i)+(1−δ )− vµ∗∗

i (sµ
−i)
∣∣∣≤ (1−δ )(2g+1)

πδ
.

That is, the payoff vµ̃
i (s

µ
−i) approximates the maximal value for some belief µ̃ =

µ∗∗. Then from Lemma B1,∣∣∣vω
i (s

µ∗

−i)+(1−δ )− vµ̂
i (s

µ
−i)
∣∣∣≤ (1−δ )(2g+1)

π2δ

for all beliefs µ̂ . This implies that the minimax payoff for µ approximates the
maximal value, as desired. Hence (5) follows.

B.2.4 Step 3: Existence of the Limit Minimax Payoff

Now we will verify that the limit of the minimax payoff exists. Take i, µ , and
ε > 0 arbitrarily. Let δ ∈ (0,1) be such that∣∣∣∣vµ

i (δ )− liminf
δ→1

vµ
i (δ )

∣∣∣∣< ε
2

(8)
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and such that ∣∣∣vµ
i (δ )− vµ̃

i (δ )
∣∣∣< ε

2
(9)

for each µ̃ . Note that the result in Step 2 guarantees that such δ exists.
For each µ̃ , let sµ̃

−i be the minimax strategy given µ̃ and δ . In what follows,
we show that

max
si∈Si

vµ
i (δ ,si,s

µ
−i)< liminf

δ→1
vµ

i (δ )+ ε (10)

for each δ ∈ (δ ,1). That is, we show that when the true discount factor is δ , player
i’s best payoff against the minimax strategy for the discount factor δ is worse than
the limit inferior of the minimax payoff. Since the minimax strategy for the dis-
count factor δ is not necessarily the minimax strategy for δ , the minimax payoff
for δ is less than maxsi∈Si vµ

i (δ ,si,s
µ
−i). Hence (10) ensures that the minimax pay-

off for δ is worse than the limit inferior of the minimax payoff. Since this is true
for all δ ∈ (δ ,1), the limit inferior is the limit, as desired.

So pick an arbitrary δ ∈ (δ ,1), and compute maxsi∈Si vµ
i (δ ,si,s

µ
−i), player i’s

best payoff against the minimax strategy for the discount factor δ . To evaluate
this payoff, we regard the infinite horizon as a series of random blocks, as in
Section 3. The termination probability is 1− p, where p = δ

δ . Then, since sµ
−i

is Markov, playing sµ
−i in the infinite-horizon game is the same as playing the

following strategy profile:

• During the first random block, play sµ
−i.

• During the kth random block, play sµk

−i where µk is the belief in the initial
period of the kth block.

Then the payoff maxsi∈Si vµ
i (δ ,si,s

µ
−i) is represented as the sum of the random

block payoffs, that is,

max
si∈Si

vµ
i (δ ,si,s

µ
−i) = (1−δ )

∞

∑
k=1

(
δ (1− p)
1− pδ

)k−1

E

 vµk

i (pδ ,sµk

i ,sµk

−i)

1− pδ

∣∣∣∣∣∣µ,sµ1

i ,sµ
−i


where sµk

i is the optimal (Markov) strategy in the continuation game from the kth

block with belief µk. Note that sµk

i may not maximize the payoff during the kth
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block, because player i needs to take into account the fact that her action during
the kth block influences µk+1 and hence the payoffs after the kth block. But in
any case, we have vµk

i (pδ ,sµk

i ,sµk

−i)≤ vµk

i (δ ) because sµk

−i is the minimax strategy
with discount factor pδ = δ . Hence

max
si∈Si

vµ
i (δ ,si,s

µ
−i)≤ (1−δ )

∞

∑
k=1

(
δ (1− p)
1− pδ

)k−1

E

[
vµk

i (δ )
1− pδ

∣∣∣∣∣µ,sµ1

i ,sµ
−i

]

Using (9),

max
si∈Si

vµ
i (δ ,si,s

µ
−i)< (1−δ )

∞

∑
k=1

(
δ (1− p)
1− pδ

)k−1
(

vµ
i (δ )

1− pδ
+

ε
2(1− pδ )

)
= vµ

i (δ )+
ε
2

Then using (8), we obtain (10).
Note that this proof does not assume public randomization. Indeed, random

blocks are useful for computing the payoff by the strategy sµ
−i, but the strategy sµ

−i

itself does not use public randomization.

B.3 Proof of Proposition 4: Properties of Supersets

It is obvious that any superset of a globally accessible set is globally accessible.
So it is sufficient to show that any superset of a uniformly transient set is globally
accessible or uniformly transient.

Let Ω∗ be a uniformly transient set, and take a superset Ω̃∗. Suppose that Ω̃∗

is not globally accessible. In what follows, we show that it is uniformly transient.
Take a strategy profile s arbitrarily. Since Ω∗ is uniformly transient, there is T and
(y1, · · · ,yT ) such that if the support of the initial prior is Ω∗ and players play s,
the signal sequence (y1, · · · ,yT ) appears with positive probability and the support
of the posterior belief µT+1 is globally accessible. Pick such T and (y1, · · · ,yT ).
Now, suppose that the support of the initial prior is Ω̃∗ and players play s. Then
since Ω̃∗ is a superset of Ω∗, the signal sequence (y1, · · · ,yT ) realizes with positive
probability and the support of the posterior belief µ̃T+1 is a superset of the support
of µT+1. Since the support of µT+1 is globally accessible, so is the superset. This
shows that Ω̃∗ is uniformly transient, as s can be arbitrary.
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B.4 Proof of Proposition 5: Score and Uniform Connectedness

We will show that the score is invariant to the initial prior if the game is uniformly
connected. Fix δ and the direction λ . For each µ , let sµ be a pure-strategy profile
which solves maxs∈S λ · v(δ ,s). That is, sµ is the profile which achieves the score
given the initial prior µ . For each initial prior µ , the score is denoted by λ ·
vµ(δ ,sµ). Given δ and λ , the score λ ·vµ(δ ,sµ) is convex with respect to µ , as it
is the upper envelope of the linear functions λ · vµ(δ ,s) over all s.

Since the score λ · vµ(δ ,sµ) is convex, it is maximized by some boundary
belief. That is, there is ω such that

λ · vω(δ ,sω)≥ λ · vµ(δ ,sµ) (11)

for all µ . Pick such ω . In what follows, the score for this ω is called the maximal
score.

B.4.1 Step 0: Preliminary Lemmas

We begin with providing two preliminary lemmas. The first lemma is very similar
to Lemma B1; it shows that if there is a belief µ whose score approximates the
maximal score, then the score for all other belief µ̃ with the same support as µ
approximates the maximal score.

Lemma B3. Pick an arbitrary belief µ . Let Ω∗ denote its support, and let p =

minω̃∈Ω∗ µ(ω̃), which measures the distance from µ to the boundary of △Ω∗.
Then for each µ̃ ∈△Ω∗,∣∣∣λ · vω(δ ,sω)−λ · vµ̃(δ ,sµ̃)

∣∣∣≤ |λ · vω(δ ,sω)−λ · vµ(δ ,sµ)|
p

.

To interpret this lemma, pick some Ω∗ ⊆ Ω, and pick a relative interior belief
µ ∈ △Ω∗ such that µ(ω̃) ≥ π for all ω̃ ∈ Ω∗. Then p ≥ π , and thus the lemma
above implies∣∣∣λ · vω(δ ,sω)−λ · vµ̃(δ ,sµ̃)

∣∣∣≤ |λ · vω(δ ,sω)−λ · vµ(δ ,sµ)|
π

.

for all µ̃ ∈ △Ω∗. So if the score λ · vµ(δ ,sµ) for the belief µ approximates the
maximal score, then for all beliefs µ̃ with support Ω∗, the score approximates the
maximal score.
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The above lemma relies on the convexity of the score, and the proof idea is
essentially the same as the one presented in Section 4.3. For completeness, we
provide the formal proof below.

Proof. Pick an arbitrary belief µ , and let Ω∗ be the support of µ . Pick ω̃ ∈ Ω∗

arbitrarily. Then we have

λ · vµ(δ ,sµ) = ∑
ω̂∈Ω∗

µ[ω̂]λ · vω̂(δ ,sµ)

≤ µ(ω̃)λ · vω̃(δ ,sµ)+ ∑
ω̂,ω̃

µ(ω̂)λ · vω̂(δ ,sω̂).

Applying (11) to the above inequality, we obtain

λ · vµ(δ ,sµ)≤ µ(ω̃)λ · vω̃(δ ,sµ)+(1−µ(ω̃))λ · vω(δ ,sω).

Arranging,

µ(ω̃)(λ · vω(δ ,sω)−λ · vω̃(δ ,sµ))≤ λ · vω(δ ,sω)−λ · vµ(δ ,sµ).

Dividing both sides by µ(ω̃),

λ · vω(δ ,sω)−λ · vω̃(δ ,sµ)≤ λ · vω(δ ,sω)−λ · vµ(δ ,sµ)

µ(ω̃)
.

Since λ ·vω(δ ,sω)−λ ·vµ(δ ,sµ)> 0 and µ(ω̃)≥ p = minω̃∈Ω∗ µ(ω̃), we obtain

λ · vω(δ ,sω)−λ · vω̃(δ ,sµ)≤ λ · vω(δ ,sω)−λ · vµ(δ ,sµ)

p
. (12)

Pick an arbitrary belief µ̃ ∈ △Ω∗. Recall that (12) holds for each ω̃ ∈ Ω∗.
Multiplying both sides of (12) by µ̃(ω̃) and summing over all ω̃ ∈ Ω∗,

λ · vω(δ ,sω)−λ · vµ̃(δ ,sµ)≤ λ · vω(δ ,sω)−λ · vµ(δ ,sµ)

p
.

Since λ · vω(δ ,sω)≥ λ · vµ̃(δ ,sµ̃)≥ λ · vµ̃(δ ,sµ),

λ · vω(δ ,sω)−λ · vµ̃(δ ,sµ̃)≤ λ · vω(δ ,sω)−λ · vµ(δ ,sµ)

p
.

Taking the absolute values of both sides, we obtain the result. Q.E.D.
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The next lemma shows that under global accessibility. players can move the
support to a globally accessible set Ω∗ by simply mixing all actions each period.
Note that π∗ in the lemma can be different from the one in the definition of global
accessibility.

Lemma B4. Let Ω∗ be a globally accessible set. Suppose that players randomize
all actions equally each period. Then there is π∗ > 0 such that given any initial
prior µ , there is a natural number T ≤ 4|Ω| such that the support of the posterior
belief at the beginning of period T + 1 is a subset of Ω∗ with probability at least
π∗.

Proof. Take π∗ > 0 as stated in the definition of global accessibility of Ω∗. Take
an arbitrary initial prior µ , and take an action sequence (a1, · · · ,aT ) as stated in
the definition of global accessibility of Ω∗.

Suppose that players mix all actions each period. Then the action sequence
(a1, · · · ,aT ) realizes with probability 1

|A|T , and it moves the support of the posterior
to a subset of Ω∗ with probability at least π∗. Hence, in sum, playing mixed
actions each period moves the support to a subset of Ω∗ with probability at least

1
|A|T ·π∗. This probability is bounded from zero for all µ , and hence the proof is
completed. Q.E.D.

B.4.2 Step 1: Scores for Beliefs with Support Ω∗

As a first step of the proof, we will show that there is a globally accessible set
Ω∗ such that the score for any belief µ ∈ △Ω∗ approximates the maximal score.
More precisely, we prove the following lemma:

Lemma B5. There is a globally accessible set Ω∗ ⊆ Ω such that for all µ ∈△Ω∗,

|λ · vω(δ ,sω)−λ · vµ(δ ,sµ)| ≤ (1−δ 2|Ω|
)2g

δ 2|Ω|π4|Ω| .

The proof idea is as follows. Since the game is uniformly connected, {ω} is
globally accessible or uniformly transient. If it is globally accessible, let Ω∗ =

{ω}. This set Ω∗ satisfies the desired property, because the set △Ω∗ contains
only the belief µ = ω , and the score for this belief is exactly equal to the maximal
score.
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Now, consider the case in which {ω} is uniformly transient. Suppose that
the initial state is ω and the optimal policy sω is played. Since {ω} is uniformly
transient, there is a natural number T ≤ 2|Ω| and a history hT such that the history
hT appears with positive probability and the support of the posterior belief after the
history hT is globally accessible. Take such T and hT . Let µ∗ denote the posterior
belief after this history hT and let Ω∗ denote its support. By the definition, Ω∗ is
globally accessible. Using a technique similar to the one in the proof of Lemma
B2, we can show that the continuation payoff after this history hT approximates
the maximal score. This implies that the score for the belief µ∗ approximates the
maximal score. Then Lemma B3 ensures that the score for any belief µ ∈ △Ω∗

approximates the maximal score, as desired.

Proof. First, consider the case in which {ω} is globally accessible. Let Ω∗= {ω}.
Then this set Ω∗ satisfies the desired property, because △Ω∗ contains only the
belief µ = ω , and the score for this belief is exactly equal to the maximal score.

Next, consider the case in which {ω} is uniformly transient. Take T , hT , µ∗,
and Ω∗ as stated above. By the definition, the support of µ∗ is Ω∗. Also, µ∗

assigns at least πT to each state ω̃ ∈ Ω∗, i.e., µ∗(ω̃)≥ πT for each ω̃ ∈ Ω∗. This
is so because

µ∗(ω̃) =
Pr(ωT+1 = ω̃|ω,hT )

∑ω̂∈Ω Pr(ωT+1 = ω̂|ω,hT )
≥ Pr(ωT+1 = ω̃|ω,hT )≥ πT

where the last inequality follows from the fact that π is the minimum of the func-
tion π .

For each history h̃T , let µ(h̃T ) denote the posterior belief given the initial state
ω and the history h̃T . We decompose the score into the payoffs in the first T
periods and the continuation payoff after that:

λ · vω(δ ,sω) =(1−δ )
T

∑
t=1

δ t−1E[λ ·gωt
(at)|ω1 = ω,sω ]

+δ T ∑
h̃T∈HT

Pr(h̃T |ω,sω)λ · vµ(h̃T )(δ ,sµ(h̃T )).

Using (11), µ(hT ) = µ∗, and (1− δ )∑T
t=1 δ t−1E[λ · gωt

(at)|ω1 = ω,sω ] ≤ (1−
δ T )g, we obtain

λ · vω(δ ,sω)≤(1−δ T )g+δ T Pr(hT |ω,sω)λ · vµ∗
(δ ,sµ∗

)

+δ T (1−Pr(hT |ω,sω))λ · vω(δ ,sω).
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Arranging, we have

λ · vω(δ ,sω)−λ · vµ∗
(δ ,sµ∗

)≤ (1−δ T )(g−λ · vω(δ ,sω))

δ T Pr(hT |ω,sω)
.

Note that Pr(hT |ω,sω)≥ πT , because sω is a pure strategy. Hence we have

λ · vω(δ ,sω)−λ · vµ∗
(δ ,sµ∗

)≤ (1−δ T )(g−λ · vω(δ ,sω))

δ T πT .

Since (11) ensures that the left-hand side is non-negative, taking the absolute val-
ues of both sides and using λ · vω(δ ,sω)≥−g,∣∣∣λ · vω(δ ,sω)−λ · vµ∗

(δ ,sµ∗
)
∣∣∣≤ (1−δ T )2g

δ T πT .

That is, the score for the belief µ∗ approximates the maximal score if δ is close to
one. As noted, we have µ∗(ω̃)≥ πT for each ω̃ ∈ Ω∗. Then applying Lemma B3
to the inequality above, we obtain

|λ · vω(δ ,sω)−λ · vµ(δ ,sµ)| ≤ (1−δ T )2g
δ T π2T

for each µ ∈△Ω∗. This implies the desired inequality, since T ≤ 2|Ω|. Q.E.D.

B.4.3 Step 2: Scores for All Beliefs µ

In the previous step, we have shown that the score approximates the maximal
score for any belief µ with the support Ω∗. Now we will show that the score
approximates the maximal score for all beliefs µ .

Pick Ω∗ as in the previous step, so that it is globally accessible. Then pick
π∗ > 0 as stated in Lemma B4. So if players mix all actions each period, the
support will move to Ω∗ (or its subset) within 4|Ω| periods with probability at least
π∗, regardless of the initial prior.

Pick an initial prior µ , and suppose that players play the following strategy
profile s̃µ :

• Players randomize all actions equally likely, until the support of the poste-
rior belief becomes a subset of Ω∗.
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• Once the support of the posterior belief becomes a subset of Ω∗ in some
period t, players play sµt

in the rest of the game. (They do not change the
play after that.)

That is, players wait until the support of the belief reaches Ω∗, and once it happens,
they switch the play to the optimal policy sµt

in the continuation game. Lemma
B5 guarantees that the continuation play after the switch to sµt

approximates the
maximal score λ · vω(δ ,sω). Also, Lemma B4 ensures that this switch occurs
with probability one in finite time and waiting time is almost negligible for patient
players. Hence the payoff by this strategy profile s̃µ approximates the maximal
score. Formally, we have the following lemma.

Lemma B6. For each µ ,

|λ · vω(δ ,sω)−λ · vµ(δ , s̃µ)| ≤ (1−δ 2|Ω|
)2g

δ 2|Ω|π4|Ω| +
(1−δ 4|Ω|

)3g
π∗ .

Proof. Pick an arbitrary belief µ . If (1−δ 2|Ω|
)2g

δ 2|Ω|π4|Ω| ≥ g, then the result obviously

holds because we have |λ · vω(δ ,sω)−λ · vµ(δ , s̃µ)| ≤ g. So in what follows, we

assume that (1−δ 2|Ω|
)2g

δ 2|Ω|π4|Ω| < g.

Suppose that the initial prior is µ and players play the strategy profile s̃µ .
Let Pr(ht |µ, s̃µ) be the probability of ht given the initial prior µ and the strategy
profile s̃µ , and let µ t+1(ht |µ, s̃µ) denote the posterior belief in period t +1 given
this history ht . Let H∗t be the set of histories ht such that t +1 is the first period at
which the support of the posterior belief µ t+1 is in the set Ω∗. Intuitively, H∗t is
the set of histories ht such that players will switch their play to sµt+1

from period
t +1 on, according to s̃µ .

Note that the payoff vµ(δ , s̃µ) by the strategy profile s̃µ can be represented as
the sum of the two terms: The expected payoffs before the switch to sµt

occurs,
and the payoffs after the switch. That is, we have

λ · vµ(δ , s̃µ) =
∞

∑
t=1

(
1−

t−1

∑̃
t=0

∑
ht̃∈H∗t̃

Pr(ht̃ |µ, s̃µ)

)
(1−δ )δ t−1E

[
λ ·gωt

(at)|µ, s̃µ
]

+
∞

∑
t=0

∑
ht∈H∗t

Pr(ht |µ, s̃µ)δ tλ · vµt+1(ht |µ,s̃µ )(δ ,sµt+1(ht |µ,s̃µ ))
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where the expectation operator is taken conditional on that the switch has not hap-
pened yet. Note that the term 1−∑t−1

t̃=0 ∑ht̃∈H∗t̃ Pr(ht̃ |µ, s̃µ) is the probability that
players still randomize all actions in period t because the switch has not happened
by then. To simplify the notation, let ρ t denote this probability. From Lemma B5,
we know that

λ · vµt+1(ht |µ,s̃µ )(δ ,sµt+1(ht |µ,s̃µ ))≥ v∗

for each ht ∈ H∗t , where v∗ = λ · vω(δ ,sω)− (1−δ 2|Ω|
)2g

δ 2|Ω|π4|Ω| . Applying this and λ ·

gωt
(at)≥−2g to the above equation, we obtain

λ · vµ(δ , s̃µ)≥
∞

∑
t=1

ρ t(1−δ )δ t−1(−2g)+
∞

∑
t=0

∑
ht∈H∗t

Pr(ht |µ, s̃µ)δ tv∗.

Using ∑∞
t=0 ∑ht∈H∗t Pr(ht |µ, s̃µ)δ t = ∑∞

t=1(1− δ )δ t−1 ∑t−1
t̃=0 ∑ht̃∈H∗t̃ Pr(ht̃ |µ, s̃µ) =

∑∞
t=1(1−δ )δ t−1(1−ρ t), we obtain

λ · vµ(δ , s̃µ)≥ (1−δ )
∞

∑
t=1

δ t−1{ρ t(−2g)+(1−ρ t)v∗
}
. (13)

According to Lemma B4, the probability that the support reaches Ω∗ within
4|Ω| periods is at least π∗. This implies that the probability that players still ran-
domize all actions in period 4|Ω|+1 is at most 1−π∗. Similarly, for each natural
number n, the probability that players still randomize all actions in period n4|Ω|+1
is at most (1−π∗)n, that is, ρn4|Ω|+1 ≤ (1−π∗)n. Then since ρ t is weakly decreas-
ing in t, we obtain

ρn4|Ω|+k ≤ (1−π∗)n

for each n = 0,1, · · · and k ∈ {1, · · · ,4|Ω|}. This inequality, together with −2g ≤
v∗, implies that

ρn4|Ω|+k(−2g)+(1−ρn4|Ω|+k)v∗ ≥ (1−π∗)n(−2g)+{1− (1−π∗)n}v∗

for each n = 0,1, · · · and k ∈ {1, · · · ,4|Ω|}. Plugging this inequality into (13), we
obtain

λ · vµ(δ , s̃µ)≥ (1−δ )
∞

∑
n=1

4|Ω|

∑
k=1

δ (n−1)4|Ω|+k−1

[
−(1−π∗)n−12g
+{1− (1−π∗)n−1}v∗

]
.
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Since ∑4|Ω|
k=1 δ (n−1)4|Ω|+k−1 = δ (n−1)4|Ω|

(1−δ 4|Ω|
)

1−δ ,

λ · vµ(δ , s̃µ)≥(1−δ 4|Ω|
)

∞

∑
n=1

δ (n−1)4|Ω|

[
−(1−π∗)n−12g
+{1− (1−π∗)n−1}v∗

]

=− (1−δ 4|Ω|
)

∞

∑
n=1

{(1−π∗)δ 4|Ω|
}n−12g

+(1−δ 4|Ω|
)

∞

∑
n=1

[(δ 4|Ω|
)n−1 −{(1−π∗)δ 4|Ω|

}n−1]v∗.

Plugging ∑∞
n=1{(1−π∗)δ 4|Ω|}n−1 = 1

1−(1−π∗)δ 4|Ω| and ∑∞
n=1(δ 4|Ω|

)n−1 = 1
1−δ 4|Ω| ,

λ · vµ(δ , s̃µ)≥− (1−δ 4|Ω|
)2g

1− (1−π∗)δ 4|Ω| +
δ 4|Ω|π∗

1− (1−π∗)δ 4|Ω| v
∗.

Subtracting both sides from λ · vω(δ ,sω), we have

λ · vω(δ ,sω)−λ · vµ(δ , s̃µ)

≤ (1−δ 4|Ω|
)2g

1− (1−π∗)δ 4|Ω| +
δ 4|Ω|π∗(1−δ 2|Ω|

)2g

{1− (1−π∗)δ 4|Ω|}δ 2|Ω|π4|Ω| −
(1−δ 4|Ω|

)λ · vω(δ ,sω)

1− (1−π∗)δ 4|Ω|

Since λ · vω(δ ,sω)≥−g,

λ · vω(δ ,sω)−λ · vµ(δ , s̃µ)

≤ (1−δ 4|Ω|
)2g

1− (1−π∗)δ 4|Ω| +
δ 4|Ω|π∗(1−δ 2|Ω|

)2g

{1− (1−π∗)δ 4|Ω|}δ 2|Ω|π4|Ω| +
(1−δ 4|Ω|

)g

1− (1−π∗)δ 4|Ω|

≤ (1−δ 4|Ω|
)3g

1− (1−π∗)
+

π∗(1−δ 2|Ω|
)2g

{1− (1−π∗)}δ 2|Ω|π4|Ω|

=
(1−δ 4|Ω|

)3g
π∗ +

(1−δ 2|Ω|
)2g

δ 2|Ω|π4|Ω|

Hence the result follows. Q.E.D.

Note that

λ · vω(δ ,sω)≥ λ · vµ(δ ,sµ)≥ λ · vµ(δ , s̃µ),
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that is, the score for µ is at least λ ·vµ(δ , s̃µ) (this is because s̃µ is not the optimal
policy) and is at most the maximal score. Then from Lemma B6, we have

|λ · vω(δ ,sω)−λ · vµ(δ ,sµ)| ≤ |λ · vω(δ ,sω)−λ · vµ(δ , s̃µ)|

≤ (1−δ 2|Ω|
)2g

δ 2|Ω|π4|Ω| +
(1−δ 4|Ω|

)3g
π∗ ,

as desired.

B.5 Proof of Proposition 6: Necessary Condition for Uniform
Connectedness

For each state ω , let Ω(ω) denote the set of all states reachable from the state
ω . That is, Ω(ω) is the set of all states ω̃ such that there is a natural number
T ≥ 1 and an action sequence (a1, · · · ,aT ) such that the probability of the state in
period T +1 being ω̃ is positive given the initial state ω and the action sequence
(a1, · · · ,aT ).

The proof consists of three steps. In the first step, we show that the game is
uniformly connected only if Ω(ω)∩Ω(ω̃) , /0 for all ω and ω̃ . In the second step,
we show that the condition considered in the first step (i.e., Ω(ω)∩Ω(ω̃) , /0 for
all ω and ω̃) holds if and only if there is a globally accessible state ω . This and
the result in the first step imply that the game is uniformly connected only if there
is a globally accessible state ω . Then in the last step, we show that the game is
uniformly connected only if states are weakly communicating.

B.5.1 Step 1: Uniformly Connected Only If Ω(ω)∩Ω(ω̃) , /0

Here we show that the game is uniformly connected only if Ω(ω)∩Ω(ω̃) , /0 for
all ω and ω̃ . It is equivalent to show that if Ω(ω)∩Ω(ω̃) = /0 for some ω and ω̃ ,
then the game is not uniformly connected.

So suppose that Ω(ω)∩Ω(ω̃) = /0 for ω and ω̃ . Take an arbitrary state ω̂ ∈
Ω(ω). To prove that the game is not uniformly connected, it is sufficient to show
that the singleton set {ω̂} is not globally accessible or uniformly transient.

We first show that the set {ω̂} is not globally accessible. More generally,
we show that any set Ω∗ ⊆ Ω(ω) is not globally accessible. Pick Ω∗ ⊆ Ω(ω)

arbitrarily. Then Ω∗ ∩Ω(ω̃) = /0, and hence there is no action sequence which
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moves the state from ω̃ to some state in the set Ω∗ with positive probability. This
means that if the initial prior puts probability one on ω̃ , then regardless of the past
history, the posterior belief never puts positive probability on any state in the set
Ω∗, and thus the support of the posterior belief is never included in the set Ω∗.
Hence the set Ω∗ is not globally accessible, as desired.

Next, we show that the set {ω̂} is not uniformly transient. Note first that
ω̂ ∈ Ω(ω) implies Ω(ω̂) ⊆ Ω(ω). That is, if ω̂ is accessible from ω , then any
state accessible from ω̂ is accessible from ω . So if the initial state is ω̂ , then in
any future period, the state must be included in the set Ω(ω) regardless of players’
play. This implies that if the initial prior puts probability one on ω̂ , then regardless
of the players’ play, the support of the posterior belief is always included in the
set Ω(ω); this implies that the support never reaches a globally accessible set,
because we have seen in the previous paragraph that any set Ω∗ ⊆ Ω(ω) is not
globally accessible. Hence {ω} is not uniformly transient, as desired.

B.5.2 Step 2: Uniformly Connected Only If There is Globally Accessible ω

Here we show that Ω(ω)∩Ω(ω̃) , /0 for all ω and ω̃ if and only if there is a
globally accessible state ω . This and the result in the previous step implies that
the game is uniformly connected only if there is a globally accessible state ω .

The if part simply follows from the fact that if ω is globally accessible, then
ω ∈ Ω(ω̃) for all ω̃ . So we prove the only if part. That is, we show that if
Ω(ω)∩Ω(ω̃) , /0 for all ω and ω̃ , then there is a globally accessible state ω . So
assume that Ω(ω)∩Ω(ω̃) , /0 for all ω and ω̃ .

Since the state space is finite, the states can be labeled as ω1, ω2, · · · , ωK . Pick
ω∗ ∈ Ω(ω1)∩Ω(ω2) arbitrarily; possibly we have ω∗ = ω1 or ω∗ = ω2. By the
definition, ω∗ is accessible from ω1 and ω2.

Now pick ω∗∗ ∈ Ω(ω∗)∩Ω(ω3). By the definition, this state ω∗∗ is accessible
from ω3. Also, since ω∗∗ is accessible from ω∗ which is accessible from ω1 and
ω2, ω∗∗ is accessible from ω1 and ω2. So this state ω∗∗ is accessible from ω1, ω2,
and ω3. Repeating this process, we can eventually find a state which is accessible
from all states ω . This state is globally accessible, as desired.
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B.5.3 Step 3: Uniformly Connected Only If States Are Weakly Communi-
cating

Now we prove that the game is uniformly connected only if states are weakly com-
municating. It is equivalent to show that if there is a state ω which is not globally
accessible or uniformly transient, then the game is not uniformly connected.

We prove this by contradiction, so suppose that the state ω∗ is not globally
accessible or uniformly transient, and that the game is uniformly connected. Since
ω∗ is not globally accessible or uniformly transient, there is a strategy profile s
such that if the initial state is ω∗, the state never reaches a globally accessible
state. Pick such a strategy profile s, and let Ω∗ be the set of states accessible from
ω∗ with positive probability given the strategy profile s. That is, Ω∗ is the set of
states which can happen with positive probability in some period t ≥ 2 if the initial
state is ω and the strategy profile is s. (Note that Ω∗ is different from Ω(ω∗), as
the strategy profile s is given here.) By the definition of s, any state in Ω∗ is not
globally accessible.

Since the game is uniformly connected, the singleton set {ω∗} must be either
globally accessible or uniformly transient. It cannot be globally accessible, be-
cause ω∗ is not globally accessible and hence there is some state ω such that ω∗

is not accessible from ω; if the initial prior puts probability one on such ω , then
regardless of the play, the posterior never puts positive probability on ω∗. So the
singleton set {ω∗} must be uniformly transient. This requires that if the initial
prior puts probability one on ω∗ and players play the profile s, then the support of
the posterior must eventually reach some globally accessible set. By the definition
of Ω∗, given the initial prior ω∗ and the profile s, the support of the posterior must
be included in Ω∗. This implies that there is a globally accessible set Ω̃∗ ⊆ Ω∗.

However, this is a contradiction, because any set Ω̃∗ ⊆ Ω∗ cannot be globally
accessible. To see this, recall that the game is uniformly connected, and then
as shown in Step 2, there must be a globally accessible state, say ω∗∗. Then
Ω∗ ∩Ω(ω∗∗) = /0, that is, any state in Ω∗ is not accessible from ω∗∗. Indeed if
not and some state ω ∈ Ω∗ is accessible from ω∗∗, then the state ω is globally
accessible, which contradicts with the fact that any state in Ω∗ is not globally
accessible. Now, if the initial prior puts probability one on ω∗∗, then regardless
of the play, the posterior belief never puts positive probability on any state in the
set Ω∗, and hence the support of the posterior belief is never included in the set
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Ω∗. This shows that any subset Ω̃∗ ⊆ Ω∗ is not globally accessible, which is a
contradiction.

B.6 Proof of Proposition 7

Consider stochastic games with observable states. For the if part, it is obvious that
a singleton set {ω} with globally accessible ω is globally accessible, and other
singleton sets are uniformly transient. The only if part follows from Proposition
6.

Next, consider stochastic games with delayed observations. Again the only if
part follows from Lemma 6, so we focus on the if part. We first prove that if ω
is uniformly transient, then the set {ω} is uniformly transient. To prove this, take
a uniformly transient state ω , and take an arbitrary pure strategy profile s. Since
ω is uniformly transient, there must be a history ht−1 such that if the initial state
is ω and players play s, the history ht−1 realizes with positive probability and the
posterior puts positive probability on some globally accessible state ω∗ Pick such
ht−1 and ω∗. Let ht be the history such that the history until period t −1 is ht−1,
and then players played s(ht−1) and observed y=ω∗ in period t. By the definition,
this history ht happens with positive probability given the initial state ω and the
strategy profile s. Now, let Ω∗ be the support of the posterior belief after ht . To
prove that {ω} is uniformly transient, it is sufficient to show that this set Ω∗ is
globally accessible, because it ensures that the support must move from {ω} to
a globally accessible set regardless of players’ play s. (For {ω} to be uniformly
transient, we also need to show that {ω} is not globally accessible, but it follows
from the fact that ω is not globally accessible.)

To prove that Ω∗ is globally accessible. pick an arbitrary prior µ , and pick ω̃
such that µ(ω̃)≥ 1

|Ω| . Since ω∗ is globally accessible, there is an action sequence
(a1, · · · ,aT ) which moves the state from ω̃ to ω∗ with positive probability. Pick
such an action sequence, and pick a signal sequence (y1, · · · ,yT ) which happens
when the state moves from ω̃ to ω∗. Now, suppose that the initial prior is µ and
players play (a1, · · · ,aT ,s(ht−1)). Then by the definition, with positive probabil-
ity, players observe the signal sequence (y1, · · · ,yT ) during the first T periods and
then the signal yT+1 = ω∗ in period T +1. Obviously the support of the posterior
after such a history is Ω∗, so this shows that the support can move to Ω∗ from any
initial prior. Also the probability of this move is at least µ(ω̃)πT+1 ≥ πT+1

|Ω| for all
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initial prior µ . Hence Ω∗ is globally accessible, as desired.
So far we have shown that {ω} is uniformly transient if ω is uniformly tran-

sient. To complete the proof of the if part, we show that when ω is globally
accessible, {ω} is globally accessible or uniformly transient. So fix an arbitrary
{ω} such that ω is globally accessible yet {ω} is not globally accessible. It is
sufficient to show that {ω} is uniformly transient. To do so, fix arbitrary a∗ and y∗

such that πω
Y (y∗|a∗)> 0, and let Ω∗ be the set of all ω̃ such that πω(y∗, ω̃|a∗)> 0.

Then just as in the previous previous paragraph, we can show that Ω∗ is globally
accessible, which implies that {ω} is uniformly transient.

B.7 Proof of Proposition 8: Minimax and Robust Connected-
ness

We will prove only (5). The existence of the limit minimax payoff can be proved
just as in Step 3 of the proof of Proposition 3.

Fix δ and i. In what follows, “robustly accessible” means “robustly accessible
despite i,” and “avoidable” means “avoidable for i.”

Let sµ denote the minimax strategy profile given the initial prior µ . As in
the proof of Proposition 3, let vµ̃

i (s
µ
−i) = maxsi∈Si vµ̃

i (δ ,si,s
µ
−i), that is, let vµ̃

i (s
µ
−i)

denote player i’s payoff when the opponents play the minimax strategy sµ
−i for

some belief µ but the actual initial prior is µ̃ . Given the opponents’ strategy sµ
−i,

let
vi(s

µ
−i) = max

µ̃∈△(suppµ)
vµ̃

i (s
µ
−i),

that is, vi(s
µ
−i) is player i’s payoff when the initial prior µ̃ is the most favorable

one, subject to the constraint that µ̃ and µ have the same support. Then choose
µ∗ such that ∣∣∣∣∣vi(s

µ∗

−i)− sup
µ∈△Ω

vi(s
µ
−i)

∣∣∣∣∣< 1−δ .

We call vi(s
µ∗

−i) the maximal value, The definition of the maximal value here is very
similar to that in the proof of Proposition 3, but it is not exactly the same because
when we define vi(s

µ
−i), the initial prior µ̃ is chosen from the set △(suppµ).

Since vµ̃
i (s

µ∗

−i) is convex with respect to the initial prior µ̃ , there is a state
ω ∈ suppµ∗ such that vω

i (s
µ∗

−i)≥ vµ̃
i (s

µ∗

−i) for all µ̃ ∈△(suppµ∗). Pick such ω .
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B.7.1 Step 0: Preliminary Lemmas

We begin with presenting three preliminary lemmas. The first lemma is a gen-
eralization of Lemma B1. The statement is more complicated than Lemma B1,
because we focus on a pair of beliefs (µ, µ̃) which have the same support. But the
implication of the lemma is the same; given the opponents’ strategy sµ

−i, if player
i’s payoff vµ̃

i (s
µ
−i) approximates the maximal value for some relative interior belief

µ̃ ∈ △Ω∗, then it approximates the maximal value for all beliefs µ̂ ∈ △Ω∗. The
proof of the lemma is very similar to that of Lemma B1, and hence omitted.

Lemma B7. Pick an arbitrary belief µ , and let Ω∗ denote its support. Let µ̃ ∈
△Ω∗ be an relative interior belief (i.e., µ̃(ω̃)> 0 for all ω̃), and let p=minω̃∈Ω∗ µ̃ω̃),
which measures the distance from µ̃ to the boundary of △Ω∗. Then for each
µ̂ ∈△Ω∗,

∣∣∣vi(s
µ∗

−i)+(1−δ )− vµ̂
i (s

µ
−i)
∣∣∣≤

∣∣∣vi(s
µ∗

−i)+(1−δ )− vµ̃
i (s

µ
−i)
∣∣∣

p
.

The next lemma shows that under the merging support condition, given any
pure strategy profile s, two posterior beliefs induced by different initial priors ω
and µ with µ(ω)> 0 will have the same support after some history. Also it gives
a minimum bound on the probability of such a history.

Lemma B8. Suppose that the merging support condition holds. Then for each ω ,
for each µ with µ(ω) > 0, and for each (possibly mixed) strategy profile s, there
is a natural number T ≤ 4|Ω| and a history hT such that Pr(hT |ω,s)> ( |π||A|)

T and
such that the support of the posterior belief induced by the initial state ω and the
history hT is identical with the one induced by the initial prior µ and the history
hT .

Proof. Take ω , µ , and s as stated. Take a pure strategy profile s̃ such that for each
t and ht , s̃(ht) chooses a pure action profile which is chosen with probability at
least 1

|A| by s(ht).

Since the merging support condition holds, there is a natural number T ≤ 4|Ω|

and a history hT such that Pr(hT |ω, s̃)> 0 and such that the support of the posterior
belief induced by the initial state ω and the history hT is identical with the one
induced by the initial prior µ̃ = ( 1

|Ω| , · · · ,
1
|Ω|) and the history hT . We show that T

and hT here satisfies the desired properties.
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Note that Pr(hT |ω, s̃)≥ πT , as π is a pure strategy. This implies that Pr(hT |ω,s)≥
( π
|A|)

4|Ω|
, since each period the action profile by s coincides with the one by s̃ with

probability at least 1
|A| . Also, since µ(ω) > 0, the support of the belief induced

by (ω,hT ) must be included in the support induced by (µ,hT ), which must be in-
cluded in the support induced by (µ̃,hT ). Since the first and last supports are the
same, all three must be the same, implying that the support of the belief induced
by (ω,hT ) is identical with the support induced by (µ,hT ), as desired. Q.E.D.

The last preliminary lemma is a counterpart to Lemma B4. It shows that the
opponents can move the support of the belief to a robustly accessible set Ω∗, by
simply mixing all actions each period. It also shows that the resulting posterior
beief is not too close to the boundary of the belief space △Ω∗.

Lemma B9. Suppose that Ω∗ is robustly accessible despite i. Then there is π∗ > 0
such that if the opponents mix all actions equally likely each period, then for any
initial prior µ and for any strategy si, there is a natural number T ≤ 4|Ω| and a
belief µ̃ ∈ △Ω∗ such that the posterior belief µT+1 equals µ̃ with probability at
least π∗ and such that µ̃(ω)≥ 1

|Ω|π
4|Ω|

for all ω ∈ Ω∗.

Proof. We first show that Ω∗ is robustly accessible only if the following condition
holds:22 For each state ω ∈ Ω and for any si, there is a natural number T ≤ 4|Ω|

and a pure action sequence (a1
−i, · · · ,aT

−i), and a signal sequence (y1, · · · ,yT ) such
that the following properties are satisfied:

(i) If the initial state is ω , player i plays si, and the opponents play (a1
−i, · · · ,aT

−i),
then the sequence (y1, · · · ,yT ) realizes with positive probability.

(ii) If player i plays si, the opponents play (a1
−i, · · · ,aT

−i), and the signal se-
quence (y1, · · · ,yT ) realizes, then the state in period T +1 must be in the set
Ω∗, regardless of the initial state ω̂ (possibly ω̂ , ω).

(iii) If the initial state is ω , player i plays si, the opponents play (a1
−i, · · · ,aT

−i),
and the signal sequence (y1, · · · ,yT ) realizes, then the support of the belief
in period T +1 is the set Ω∗.

22We can also show that the converse is true, so that Ω∗ is robustly accessible if and only if the
condition stated here is satisfied. Indeed, if the condition here is satisfied, then the condition stated
in the definition of robust accessibility is satisfied by the action sequence (α1

−i, · · · ,α4|Ω|
−i ) which

mix all pure actions equally each period.
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To see this, suppose not so that there is ω and si such that any action sequence
and any signal sequence cannot satisfy (i) through (iii) simultaneously. Pick such
ω and si. We will show that Ω∗ is not robustly accessible.

Pick a small ε > 0 and let µ be such that µ(ω)> 1− ε and and µ(ω̃)> 0 for
all ω̃ . That is, consider µ which puts probability at least 1− ε on ω . Then by the
definition of ω and si, the probability that the support reaches Ω∗ given the initial
prior µ and the strategy si is less than ε . Since this is true for any small ε > 0, the
probability of the support reaching Ω∗ must approach zero as ε → 0, and hence
Ω∗ cannot be robustly accessible, as desired.

Now we prove the lemma. Fix an arbitrary prior µ , and pick ω such that
µ(ω)≥ 1

|Ω| . Then for each si, choose T , (a1
−i, · · · ,aT

−i), and (y1, · · · ,yT ) as stated
in the above condition. (i) ensures that if the initial prior is µ , player i plays si, and
the opponents mix all actions equally, the action sequence (a1

−i, · · · ,aT
−i) and the

signal sequence (a1
−i, · · · ,aT

−i) are observed with probability at least µ(ω)( π
|A|T )

T ≥
1
|Ω|(

π
|A|T )

4|Ω|
. Let µ̃ be the posterior belief in period T +1 in this case. From (iii),

µ̃(ω)≥ 1
|Ω|π

4|Ω|
for all ω ∈ Ω∗. From (ii), µ̃(ω) = 0 for other ω . Q.E.D.

B.7.2 Step 1: Minimax Payoff for µ∗∗

As a first step, we will show that there is some belief µ∗∗ whose minimax payoff
approximates the maximal value. The proof idea is similar to Step 1 in the proof
of Proposition 3, but the argument is more complicated because now some signals
and states do not occur, due to the lack of the full support assumption. As will be
seen, we use the merging support condition in this step.

Recall that the maximal value is achieved when the opponents play the min-
imax strategy sµ∗

−i for the belief µ∗ but the actual initial state is ω . Let s∗i denote
player i’s best reply. Then the maximal value is decomposed into payoffs in the
first T periods and the continuation payoff:

vω
i (s

µ∗

−i) =(1−δ )
T

∑
t=1

δ t−1E[gωt

i (at)|ω,s∗i ,s
µ∗

−i ]

+δ T ∑
h̃T∈HT

Pr(h̃T |ω,s∗i ,s
µ∗

−i)v
µ(h̃T |ω)
i (sµ(h̃T |µ∗)

−i ). (14)

Here, µ(hT |ω) denotes the posterior in period T +1 when the initial state was ω
and the past history was hT . and µ(hT |µ∗) denotes the posterior when the initial
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prior was µ∗ rather than ω . The following lemma is a counterpart to Lemma B2: It
shows that the continuation payoff vµ(hT |ω)

i (sµ(hT |µ∗)
−i ) approximates the maximal

value after some history hT .

Lemma B10. There is T ≤ 4|Ω| and hT such that the two posteriors µ(hT |ω) and
µ(hT |µ∗) have the same support and such that

∣∣∣vω
i (s

µ∗

−i)+(1−δ )− vµ(hT |ω)
i (sµ(hT |µ∗)

−i )
∣∣∣≤ (1−δ 4|Ω|

)2g|A|4|Ω|

δ 4|Ω|π4|Ω| +
(1−δ )|A|4|Ω|

π4|Ω| .

Proof. Since µ∗(ω) > 0, Lemma B8 ensures that there is a natural number T ≤
4|Ω| and a history hT such that Pr(hT |ω,s∗i ,s

µ
−i) > ( π

|A|)
T and such that the two

posterior beliefs µ(hT |ω) and µ(hT |µ∗) have the same support. Pick such T and
hT .

By the definition of g, we have (1−δ )∑T
t=1 δ t−1E[gωt

i (at)|ω,s]≤ (1−δ T )g.
Also, since µ∗(ω)> 0, for each h̃T , the support of µ(h̃T |ω) is a subset of the one
of µ(h̃T |µ∗), which implies vµ(h̃T |ω)

i (sµ(h̃T |µ∗)
−i ) ≤ vω

i (s
µ∗

−i) + (1− δ ). Plugging
them and Pr(hT |ω,s∗i ,s

µ∗

−i)≥ ( π
|A|)

T into (14), we have

vω
i (s

µ∗

−i)≤(1−δ T )g+δ T
(

π
|A|

)T

vµ(hT |ω)
i (sµ(hT |µ∗)

−i )

+δ T

{
1−
(

π
|A|

)T
}{

vω
i (s

µ∗

−i)+(1−δ )
}
.

Subtracting {1−δ T ( π
|A|)

T}vω
i (s

µ∗

−i)−δ T ( π
|A|)

T (1−δ )+δ T ( π
|A|)

T vµ(hT |ω)
i (sµ(hT |µ∗)

−i )

from both sides,

δ T
(

π
|A|

)T {
vω

i (s
µ∗

−i)+(1−δ )− vµ(hT |ω)
i (sµ(hT |µ∗)

−i )
}

≤ (1−δ T )(g− vω
i (s

µ∗

−i))+δ T (1−δ ).

Dividing both sides by δ T ( π
|A|)

T ,

vω
i (s

µ∗

−i)+(1−δ )− vµ(hT |ω)
i (sµ(hT |µ∗)

−i )

≤
|A|T (1−δ T )(g− vω

i (s
µ∗

−i))

δ T πT +(1−δ )
(
|A|
π

)T

.
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Since the left-hand side is positive, taking the absolute value of the left-hand side
and using vω

i (s
µ∗

−i)≥−g. we obtain

∣∣∣vω
i (s

µ∗

−i)+(1−δ )− vµ(hT |ω)
i (sµ(hT |µ∗)

−i )
∣∣∣≤ |A|T (1−δ T )2g

δ T πT +(1−δ )
(
|A|
π

)T

.

Then the result follows because T ≤ 4|Ω|. Q.E.D.

Let µ∗∗ = µ(hT |µ∗). Then the above lemma implies that

∣∣∣vω
i (s

µ∗

−i)+(1−δ )− vµ(hT |ω)
i (sµ∗∗

−i )
∣∣∣≤ (1−δ 4|Ω|

)2g|A|4|Ω|

δ 4|Ω|π4|Ω| +
(1−δ )|A|4|Ω|

π4|Ω| .

That is, given the opponents’ strategy sµ∗∗

−i , player i’s payoff vµ̃
i (s

µ∗∗

−i ) approximates
the maximal score for some belief µ̃ = µ(hT |ω).

From Lemma B10, the support of this belief µ(hT |ω) is the same as the one
of µ∗∗. Also, this belief µ(hT |ω) assigns at least probability π4|Ω|

on each state ω
included in its support. Indeed, for such state ω , we have

µ(hT |ω)[ω̃] =
Pr(ωT+1 = ω̃|ω,a1, · · · ,aT )

∑ω̂∈Ω Pr(ωT+1 = ω̂|ω,a1, · · · ,aT )

≥ Pr(ωT+1 = ω̃|ω,a1, · · · ,aT )≥ πT ≥ π4|Ω|
.

Accordingly, the distance from µ̃ = µ(hT |ω) to the boundary of △(suppµ∗∗) is
at least π4|Ω|

, and thus Lemma B7 ensures that∣∣∣vω
i (s

µ∗

−i)+(1−δ )− vµ̂
i (s

µ∗∗

−i )
∣∣∣≤ (1−δ 4|Ω|

)2g|A|4|Ω|

δ 4|Ω|π(4|Ω|+4|Ω|)
+

(1−δ )|A|4|Ω|

π(4|Ω|+4|Ω|)

for all µ̂ ∈ △(suppµ∗∗). That is, the payoff vµ̂
i (s

µ∗∗

−i ) approximates the maximal
score for all beliefs µ̂ ∈△(suppµ∗∗). In particular, by letting µ̂ = µ∗∗, we have

∣∣∣vω
i (s

µ∗

−i)+(1−δ )− vµ∗∗

i (sµ∗∗

−i )
∣∣∣≤ (1−δ 4|Ω|

)2g|A|4|Ω|

δ 4|Ω|π(4|Ω|+4|Ω|)
+

(1−δ )|A|4|Ω|

π(4|Ω|+4|Ω|)
, (15)

that is, the minimax payoff for the belief µ∗∗ approximates the maximal value.
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B.7.3 Step 2: Minimax Payoffs when the Support is Robustly Accessible

In this step, we show that the minimax payoff for µ approximates the maximal
value for any belief µ whose support is robustly accessible. Again, the proof idea
is somewhat similar to Step 2 in the proof of Proposition 3. But the proof here is
more involved, because the support of the belief µ∗∗ in Step 1 may be different
from the one of µ , and thus the payoff vµ∗∗

i (sµ
−i) can be greater than the maximal

value.
For a given belief µ , let ∆µ denote the set of beliefs µ̃ ∈△(suppµ) such that

µ̃(ω̃) ≥ 1
|Ω|π

4|Ω|
for all ω̃ ∈ suppµ . Intuitively, ∆µ is the set of all beliefs µ̃ with

the same support as µ , except the ones which are too close to the boundary of
△(suppµ).

Now, assume that the initial prior is µ∗∗. Pick a belief µ whose support is
robustly accessible, and suppose that the opponents play the following strategy
s̃µ
−i:

• The opponents mix all actions equally likely each period, until the posterior
belief becomes an element of ∆µ .

• If the posterior belief becomes an element of ∆µ in some period, then they
play the minimax strategy sµ

−i in the rest of the game. (They do not change
the play after that.)

Intuitively, the opponents wait until the belief reaches ∆µ , and once it happens,
they switch the play to the minimax strategy sµ

−i for the fixed belief µ . From
Lemma B9, this switch happens in finite time with probability one regardless
of player i’s play. So for δ close to one, payoffs before the switch is almost
negligible, that is, player i’s payoff against the above strategy is approximated by
the expected continuation payoff after the switch. Since the belief µ̃ at the time of
the switch is always in the set ∆µ , this continuation payoff is at most

Kµ
i = max

µ̃∈∆µ
vµ̃

i (s
µ
−i).

Hence player i’s payoff against the above strategy s̃µ
−i cannot exceed Kµ

i by much.
Formally, we have the following lemma. Take π∗ > 0 such that it satisfies the
condition stated in Lemma B9 for all robustly accessible sets Ω∗. (Such π∗ exists,
as there are only finitely many sets Ω∗.)
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Lemma B11. For each belief µ whose support is robustly accessible,

vµ∗∗

i (s̃µ
−i)≤ Kµ

i +
(1−δ 4|Ω|

)2g
π∗ .

Proof. The proof is very similar to that of Lemma B6. Pick a belief µ whose
support is robustly accessible. Suppose that the initial prior is µ∗∗, the opponents
play s̃µ

−i, and player i plays a best reply. Let ρ t denote the probability that players
−i still randomize actions in period t. Then as in the proof of Lemma B6, we have

vµ∗∗

i (s̃µ
−i)≤

∞

∑
t=1

δ t−1{ρ tg+(1−ρ t)Kµ
i
}
,

because the stage-game payoff before the switch to sµ
−i is bounded from above by

g, and the continuation payoff after the switch is bounded from above by Kµ
i =

maxµ̃∈∆µ vµ̃
i (s

µ
−i).

As in the proof of Lemma B6, we have

ρn4|Ω|+k ≤ (1−π∗)n

for each n = 0,1, · · · and k ∈ {1, · · · ,4|Ω|}. This inequality, together with g ≥ Kµ
i ,

implies that

ρn4|Ω|+kg+(1−ρn4|Ω|+k)v∗i ≤ (1−π∗)ng+{1− (1−π∗)n}Kµ
i

for each n = 0,1, · · · and k ∈ {1, · · · ,4|Ω|}. Plugging this inequality into the first
one, we obtain

vµ∗∗

i (s̃µ
−i)≤ (1−δ )

∞

∑
n=1

4|Ω|

∑
k=1

δ (n−1)4|Ω|+k−1

[
(1−π∗)n−1g
+{1− (1−π∗)n−1}Kµ

i

]
.

Then as in the proof of Lemma B6, the standard algebra shows

vµ∗∗

i (s̃µ
−i)≤

(1−δ 4|Ω|
)g

1− (1−π∗)δ 4|Ω| +
δ 4|Ω|π∗Kµ

i

1− (1−π∗)δ 4|Ω| .

Since δ 4|Ω|π∗

1−(1−π∗)δ 4|Ω| = 1− 1−δ 4|Ω|

1−(1−π∗)δ 4|Ω| , we have

vµ∗∗

i (s̃µ
−i)≤ Kµ

i +
(1−δ 4|Ω|

)(g−Kµ
i )

1− (1−π∗)δ 4|Ω| .

Since 1− (1− π∗)δ 4|Ω|
> 1− (1− π∗) = π∗ and Kµ

i ≥ −g, the result follows.
Q.E.D.
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Note that the payoff vµ∗∗

i (s̃µ
−i) is at least the minimax payoff vµ∗∗

i (sµ∗∗

−i ), as the
strategy s̃µ

−i is not the minimax strategy. So we have vµ∗∗

i (sµ∗∗

−i )≤ vµ∗∗

i (s̃µ
−i). This

inequality and the lemma above imply that

vµ∗∗

i (sµ∗∗

−i )−
(1−δ 4|Ω|

)2g
π∗ ≤ Kµ

i .

At the same time, by the definition of the maximal value, Kµ
i cannot exceed

vω
i (s

µ∗

−i)+(1−δ ). Hence

vµ∗∗

i (sµ∗∗

−i )−
(1−δ 4|Ω|

)2g
π∗ ≤ Kµ

i ≤ vω
i (s

µ∗

−i)+(1−δ ).

From (15), we know that vµ∗∗

i (sµ∗∗

−i ) approximates vω
i (s

µ∗

−i)+(1−δ ), so the above
inequality implies that Kµ

i approximates vω
i (s

µ∗

−i)+(1−δ ). Formally, we have

∣∣∣vω
i (s

µ∗

−i)+(1−δ )−Kµ
i

∣∣∣≤ (1−δ 4|Ω|
)2g|A|4|Ω|

δ 4|Ω|π(4|Ω|+4|Ω|)
+

(1−δ )|A|4|Ω|

π(4|Ω|+4|Ω|)
+

(1−δ 4|Ω|
)2g

π∗ .

Equivalently,∣∣∣vω
i (s

µ∗

−i)+(1−δ )− vµ̃
i (s

µ
−i)
∣∣∣≤ (1−δ 4|Ω|

)2g|A|4|Ω|

δ 4|Ω|π(4|Ω|+4|Ω|)
+
(1−δ )|A|4|Ω|

π(4|Ω|+4|Ω|)
+
(1−δ 4|Ω|

)2g
π∗

where µ̃ is the belief which achieves Kµ
i . This inequality implies that given the

opponents’ strategy sµ
−i, player i’s payoff vµ̃

i (s
µ
−i) approximates the maximal value

for some belief µ̃ . Since µ̃ ∈ ∆µ , Lemma B7 ensure that the same result holds for
all beliefs with the same support, that is,∣∣∣vi(s

µ∗

−i)+(1−δ )− vµ̂
i (s

µ
−i)
∣∣∣

≤ (1−δ 4|Ω|
)2g|Ω|

π∗π4|Ω| +
(1−δ 4|Ω|

)2g|A|4|Ω||Ω|
δ 4|Ω|π(4|Ω|+4|Ω|+4|Ω|)

+
(1−δ )|A|4|Ω||Ω|
π(4|Ω|+4|Ω|+4|Ω|)

.

for all µ̂ ∈ △(suppµ). This in particular implies that the minimax payoff for µ
approximates the maximal value.

B.7.4 Step 3: Minimax Payoffs when the Support is Avoidable

The previous step shows that the minimax payoff approximates the maximal value
for any belief µ whose support is robustly accessible. Now we show that the
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minimax payoff approximates the maximal value for any belief µ whose support
is avoidable.

So pick an arbitrary belief µ whose support is avoidable. Suppose that the
initial prior is µ and the opponents use the minimax strategy sµ

−i. Suppose that
player i plays the following strategy s̃µ

i :

• Player i mixes all actions equally likely each period, until the support of the
posterior belief becomes robustly accessible.

• If the support of the posterior belief becomes robustly accessible, then play
a best reply in the rest of the game.

Intuitively, player i waits until the support of the posterior belief becomes ro-
bustly accessible, and once it happens, she plays a best reply to the opponents’
continuation strategy sµt

−i, where µ t is the belief when the switch happens. (Here

the opponents’ continuation strategy is the minimax strategy sµt

−i, since the strat-
egy sµ

−i is Markov and induces the minimax strategy in every continuation game.)
Note that player i’s continuation payoff after the switch is exactly equal to the
minimax payoff vµt

i (sµt

−i). From the previous step, we know that this continuation
payoff approximates the maximal value, regardless of the belief µ t at the time of
the switch. Then since the switch must happen in finite time with probability one,
player i’s payoff by playing the above strategy s̃µ

i also approximates the maximal
value. Formally, we have the following lemma:

Lemma B12. For any µ whose support is avoidable,∣∣∣vi(s
µ∗

−i)+(1−δ )− vµ
i (δ , s̃

µ
i ,s

µ
−i)
∣∣∣

≤ (1−δ 4|Ω|
)4g|Ω|

π∗π4|Ω| +
(1−δ 4|Ω|

)2g|A|4|Ω||Ω|
δ 4|Ω|π(4|Ω|+4|Ω|+4|Ω|)

+
(1−δ )|A|4|Ω||Ω|
π(4|Ω|+4|Ω|+4|Ω|)

.

Proof. The proof is very similar to that of Lemma B11 and hence omitted. Q.E.D.

Note that the strategy s̃µ
i is not a best reply against sµ

−i, and hence we have∣∣∣vi(s
µ∗

−i)+(1−δ )− vµ
i (s

µ
−i)
∣∣∣≤ ∣∣∣vi(s

µ∗

−i)+(1−δ )− vµ
i (δ , s̃

µ
i ,s

µ
−i)
∣∣∣ .

Then from the lemma above, we can conclude that the minimax payoff for any
belief µ whose support is avoidable approximates the maximal payoff, as desired.
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B.8 Proof of Proposition 10

The proof technique is quite similar to that of Proposition 8, so here we present
only the outline of the proof. Fix δ and i. Let vµ

i (s−i) denote player i’s best payoff
against s−i conditional on the initial prior µ , just as in the proof of Proposition 8.
Let vi be the supremum of the minimax payoffs vµ

i (δ ) over all µ . In what follows,
we call it the maximal value and show that the minimax payoff for any belief µ
approximates the maximal value. Pick µ∗ so that the minimax payoff vµ∗

i (δ ) for
this belief µ∗ approximates the maximal value.

Let µ(ω,a) denote the posterior belief given that in the last period, the hid-
den state was ω and players chose a. Pick an arbitrary robustly accessible state
ω . Suppose that the initial prior is µ∗ and that the opponents use the following
strategy s̃ω

−i:

• Mix all actions a−i equally, until they observe y = ω .

• Once it happens (say in period t), then from the next period t +1, they play
the minimax strategy sµt+1

−i = sµ(ω,at)
−i .

That is, the opponents wait until the signal y reveals that the state today was ω ,
and once it happens, play the minimax strategy in the rest of the game. Suppose
that player i takes a best reply. Since ω is robustly accessible, the switch happens
in finite time with probability one, and thus player i’s payoff is approximately her
expected continuation payoff after the switch. Since the opponents mix all actions
until the switch occurs, her expected continuation payoff is at most

Kω
i = max

ai∈Ai
∑

a−i∈A−i

1
|A−i|

vµ(ω,a)
i (δ ).

Hence her overall payoff vµ∗

i (s̃ω
−i) is approximately at most Kω

i ; the formal proof
is very similar to that of Lemma B11 and hence omitted.

Now, since s̃ω
−i is not the minimax strategy sµ∗

−i , player i’s payoff vµ∗

i (s̃ω
−i) must

be at least the minimax payoff vµ∗

i (δ ), which is approximated by vi. Hence the
above result ensures that Kω

i is approximately at least vi. On the other hand, by the
definition, we have Kω

i ≤ vi. Taken together, Kω
i must approximate the maximal

value vi.
Let aω

i be the maximizer which achieves Kω
i . Recall that in the definition of

Kω
i , we take the expected value with respect to a−i assuming that a−i is uniformly
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distributed over A−i. We have shown that this expected value Kω
i approximates

the maximal value vi. Now we claim that the same result holds even if we do not
take the expectation with respect to a−i, that is, vµ(ω,aω

i ,a−i)
i (δ ) approximates the

maximal value vi regardless of a−i. The proof technique is quite similar to Lemma
B5 and hence omitted. Note that the result so far is true for all robustly accessible
states ω . So vµ(ω,aω

i ,a−i)
i (δ ) approximates the maximal value vi for any a−i and

any globally accessible state ω .
Now we show that the minimax payoff for any belief µ approximates the max-

imal value. Pick an arbitrary belief µ , and suppose that the opponents play the
minimax strategy sµ

−i. Suppose that player i plays the following strategy si:

• Mix all actions ai equally, until there is some globally accessible state ω
and time t such that at

i = aω
i and yt = ω .

• Once it happens, then from the next period t +1, she plays a best reply.

Since states are weakly communicating, the switch happens in finite time with
probability one. Also, player i’s continuation payoff after the switch is vµ(ω,aω

i ,a−i)
i (δ )

for some a−i and some robustly accessible ω , which approximates the maximal
value. Hence player i’s overall payoff by si approximates the maximal value,
which ensures that the minimax payoff approximates the maximal value.

B.9 Proof of Proposition A1

We begin with a preliminary lemma: It shows that for each initial state ω and pure
strategy profile s, there is a pure strategy s∗ such that if the initial state is ω and
players play s∗, the support which arises at any on-path history is the one which
arises in the first 2|Ω|+1 periods when players played s. Let Ω(ω,ht) denote the
support of the posterior given the initial state ω and the history ht .

Lemma B13. For each state ω and each pure strategy profile s, there is a pure
strategy profile s∗ such that for any history ht with Pr(ht |ω,s∗) > 0, there is a
natural number t̃ ≤ 2|Ω| and h̃t̃ such that Pr(h̃t̃ |ω,s)> 0 and Ω(ω,ht) = Ω(ω, h̃t̃).

Proof. Pick ω and s as stated. We focus on s∗ such that players’ action today
depends only on the current support, that is, s∗(ht)= s∗(h̃t̃) if Ω(ω,ht)=Ω(ω, h̃t̃).
So we denote the action given the support Ω∗ by s∗(Ω∗). For each support Ω∗, let

82



ht be the earliest on-path history with Ω(ω,ht) = Ω∗ when players play s. That is,
choose ht such that Pr(ht |ω,s) > 0, Ω(ω,ht) = Ω∗, and Ω(ω, h̃t̃) , Ω∗ for all h̃t̃

with t̃ < t. (When such ht does not exist, let ht = h0.) Then set s∗(Ω∗) = s(ht). It
is easy to check that this strategy profile s∗ satisfies the desired property. Q.E.D.

Now we prove Proposition A1. Pick an arbitrary singleton set {ω} which is
not asymptotically accessible. It is sufficient to show that this set {ω} is asymp-
totically uniformly transient. (Like Proposition 4, we can show that a superset of
an asymptotically accessible set is asymptotically accessible, and a superset of an
asymptotically uniformly transient set is asymptotically accessible or asymptoti-
cally uniformly transient.) In particular, it is sufficient to show that if the initial
state is ω , given any pure strategy profile, the support reaches an asymptotically
accessible set within 2|Ω|+1 periods.

So pick an arbitrary pure strategy profile s. Choose s∗ as in the above lemma.
Let O be the set of supports Ω∗ which arise with positive probability when the
initial state is ω and players play s∗. In what follows, we show that there is an
asymptotically accessible support Ω∗ ∈O; this implies that {ω} is asymptotically
uniformly transient, because such a support Ω∗ realizes with positive probability
within 2|Ω|+1 periods when the initial state is ω and players play s.

If Ω ∈ O , then the result immediately holds by setting Ω∗ = Ω. So in what
follows, we assume Ω <O . We prove the existence of an asymptotically accessible
set Ω∗ ∈ O in two steps. In the first step, we show that there is q > 0 and Ω̃∗ ∈ O

such that given any initial prior µ , players can move the belief to the one which
puts probability at least q on the set Ω̃∗. Then in the second step, we show that
from such a belief (i.e., a belief which puts probability at least q on Ω∗), players
can move the belief to the one which puts probability at least 1− ε on some Ω∗ ∈
O . Taken together, it turns out that for any initial prior µ , players can move the
belief to the one which puts probability at least 1− ε on the set Ω∗ ∈ O , which
implies asymptotic accessibility of Ω∗.

The following lemma corresponds to the first step of the proof. It shows that
from any initial belief, players can move the belief to the one which puts proba-
bility at least q on the set Ω̃∗.

Lemma B14. There is q > 0 and a set Ω̃∗ ∈ O such that for each initial prior
µ , there is a natural number T ≤ |Ω|, an action sequence (a1, · · · ,aT ), and a
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history hT such that Pr(hT |µ,a1, · · · ,aT )≥ π |Ω|

|Ω| and ∑ω̃∈Ω∗ µ̃(ω̃)≥ q, where µ̃ is
the posterior given the initial prior µ and the history hT .

Proof. We first show that there is Ω̃∗ ∈ O which contains at least one globally
accessible state ω̃ . Suppose not so that all states in any set Ω∗ ∈ O are uniformly
transient. Suppose that the initial state is ω∗ and players play s∗. Then the support
of the posterior is always an element of O , and thus in each period t, regardless of
the past history ht , the posterior puts probability zero on any globally accessible
state ω . This is a contradiction, because the standard argument shows that the
probability of the state in period t being uniformly transient converges to zero as
t → ∞.

So there is Ω̃∗ ∈ O which contains at least one globally accessible state ω̃ .
Pick such Ω̃∗ and ω̃ . Global accessibility of ω̃ ensures that for each initial state
ω̂ ∈ Ω, there is a natural number T ≤ |Ω|, an action sequence (a1, · · · ,aT ), and a
signal sequence (y1, · · · ,yT ) such that

Pr(y1, · · · ,yT ,ωT+1 = ω̃|ω̂,a1, · · · ,aT )≥ πT .

That is, if the initial state is ω̂ and players play (a1, · · · ,aT ), then the state in
period T + 1 can be in the set Ω∗ with positive probability. For each ω̂ , choose
such (a1, · · · ,aT ) and (y1, · · · ,yT ), and let

q(ω̂) =
Pr(y1, · · · ,yT ,ωT+1 = ω̃|ω̂,a1, · · · ,aT )

∑ω1∈Ω Pr(y1, · · · ,yT |ω1,a1, · · · ,aT )
.

By the definition, q(ω̂)> 0 for each ω̂ . Let q = minω̂∈Ω q(ω̂)> 0.
In what follows, we show that this q and the set Ω̃∗ above satisfy the prop-

erty stated in the lemma. Pick µ arbitrarily, and then pick ω̂ with µ(ω̂) ≥ 1
|Ω|

arbitrarily. Choose T , (a1, · · · ,aT ), and (y1, · · · ,yT ) as stated above. Let µ̃ be the
posterior belief after (a1, · · · ,aT ) and (y1, · · · ,yT ) given the initial prior µ . Then

µ̃(ω̃) =
∑ω1∈Ω µ(ω1)Pr(y1, · · · ,yT ,ωT+1 = ω̃|ω1,a1, · · · ,aT )

∑ω1∈Ω µ(ω1)Pr(y1, · · · ,yT |ω1,a1, · · · ,aT )

≥ µ(ω̂)Pr(y1, · · · ,yT ,ωT+1 = ω̃|ω̂,a1, · · · ,aT )

∑ω1∈Ω Pr(y1, · · · ,yT |ω1,a1, · · · ,aT )
≥ q(ω)≥ q.

This implies that the posterior µ̃ puts probability at least q on Ω̃∗, since ω̃ ∈ Ω̃∗.
Also, the above belief µ̃ realizes with probability

Pr(y1, · · · ,yT |µ,a1, · · · ,aT )≥ µ(ω)Pr(y1, · · · ,yT |ω,a1, · · · ,aT )≥ πT

|Ω|
≥ π |Ω|

|Ω|
,

84



as desired. Q.E.D.

Choose Ω̃∗ ∈ O as in the above lemma. Let s̃∗ be the continuation strategy of
s∗ given that the current support is Ω̃∗, that is, let s̃∗ = s∗|ht where ht is chosen
such that Pr(ht |ω∗,s∗)> 0 and Ω(ω∗,ht) = Ω̃∗. (If such ht is not unique, pick one
arbitrarily.) By the definition, if the initial support is Ω̃∗ and players play s̃∗, the
posterior is an element of O after every history.

The following lemma corresponds to the second step of the proof. It shows
that if the initial prior puts probability at least q on the set Ω̃∗ and players play s̃∗,
then with some probability π∗∗, players learn the support from the realized signals
and the posterior puts 1− ε on some set Ω∗ ∈ O .

Lemma B15. For each ε > 0 and q> 0, there is a natural number T , a set Ω∗ ∈O ,
and π∗∗ > 0 such that for each initial prior µ with ∑ω̃∈Ω̃∗ µ(ω̃) ≥ q, there is a
history hT such that Pr(hT |µ, s̃∗)> π∗∗ and the posterior µ̃ given the initial prior
µ and the history hT satisfies ∑ω̃∈Ω∗ µ̃(ω̃)≥ 1− ε .

Proof. Recall that Ω <O , so any Ω∗ ∈ O is a proper subset of Ω. By the assump-
tion, given any Ω∗ ∈ O and a, the convex hull of {πω

Y (a)|ω ∈ Ω∗} and that of
{πω

Y (a)|ω <Ω∗} do not intersect. Let κ(Ω∗,a)> 0 be the distance between these
two convex hulls, i.e., ∥∥∥πµ

Y (a)−π
µ
Y (a)

∥∥∥≥ κ(Ω∗,a)

for each µ ∈ △Ω̃∗ and µ ∈ △(Ω \ Ω̃∗). (Here ∥ · ∥ denotes the sup norm.) Let
κ > 0 be the minimum of κ(Ω∗,a) over all Ω∗ ∈ O and a ∈ A.

Pick an initial prior µ as stated, that is, µ puts probability at least q on Ω̃∗. Let
Ω1 = Ω̃∗, and let µ be the marginal distribution on Ω1, that is, µ(ω̃) = µ(ω̃)

∑ω̂∈Ω1 µ(ω̂)

for each ω̃ ∈ Ω1 and µ(ω̃) = 0 for other ω̃ . Likewise, let µ be the marginal

distribution on Ω\Ω1, that is, µ(ω̃) = µ(ω̃)
∑ω̂<Ω1 µ(ω̂) for each ω̃ <Ω1 and µ(ω̃) = 0

for other ω̃ . Let a denote the action profile chosen in period one by s̃∗. Then by
the definition of κ , there is a signal y such that

πµ
Y (y|a)≥ π

µ
Y (y|a)+κ. (16)

Intuitively, (16) implies that the signal y is more likely if the initial state is in the
set Ω1. Hence the posterior belief must put higher weight on the event that the
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initial state was in Ω1. To be more precise, let µ2 be the posterior belief in period
two given the initial prior µ , the action profile a, and the signal y. Also, let Ω2

be the support of the posterior in period two given the same history but the initial
prior was µ rather than µ . Intuitively, the state in period two must be in Ω2 if the
initial state was in Ω1. Then we have ∑ω̃∈Ω2 µ2(ω̃) > ∑ω̃∈Ω1 µ(ω̃) because the
signal y indicates that the initial state was in Ω1.

Formally, this result can be verified as follows. By the definition, if the initial
state is in the set Ω̃∗ and players play a and observe y, then the state in period two
must be in the set Ω2. That is, we must have

π ω̃(y, ω̂|a) = 0 (17)

for all ω̃ ∈ Ω1 and ω̂ <Ω2. Then we have

∑ω̃∈Ω2 µ2(ω̃)

∑ω̃<Ω2 µ2(ω̃)
=

∑ω̃∈Ω ∑ω̂∈Ω2 µ(ω̃)π ω̃(y, ω̂|a)
∑ω̃∈Ω ∑ω̂<Ω2 µ(ω̃)π ω̃(y, ω̂|a)

=
∑ω̃∈Ω ∑ω̂∈Ω µ(ω̃)π ω̃(y, ω̂|a)
∑ω̃<Ω1 ∑ω̂<Ω2 µ(ω̃)π ω̃(y, ω̂|a)

≥ ∑ω̃∈Ω1 ∑ω̂∈Ω µ(ω̃)π ω̃(y, ω̂|a)
∑ω̃<Ω1 ∑ω̂∈Ω µ(ω̃)π ω̃(y, ω̂|a)

=
πµ

Y (y|a)∑ω̃∈Ω1 µ(ω̃)

π
µ
Y (y|a)∑ω̃<Ω1 µ(ω̃)

≥ 1
1−κ

· ∑ω̃∈Ω1 µ(ω̃)

∑ω̃<Ω1 µ(ω̃)
.

Here, the second equality comes from (17), and the last inequality from (16).
Since 1

1−κ > 1, this implies that the likelihood of Ω2 induced by the posterior
belief µ2 is greater than the likelihood of Ω1 induced by the initial prior µ , as
desired. Note also that such a posterior belief µ2 realizes with probability at least
qκ , since (16) implies

πµ
Y (y|a)≥ qπµ

Y (y|a)≥ qκ.

We apply a similar argument to the posterior belief in period three: Assume
that period one is over and the outcome is as above, so the belief in period two is
µ2. Let µ2 be the marginal distribution of µ2 on Ω2, and let µ2 be the marginal
distribution on Ω \Ω2. Let a2 be the action profile chosen in period two by s̃∗
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after the signal y in period one. Then choose a signal y2 so that πµ2

Y (y2|a2) ≥

π
µ2

Y (y2|a2)+κ , and let µ3 be the posterior belief in period three after observing
y2 in period two. Then as above, we can show that

∑ω̃∈Ω3 µ3(ω̃)

∑ω̃<Ω3 µ3(ω̃)
≥ 1

1−κ
· ∑ω̃∈Ω2 µ2(ω̃)

∑ω̃<Ω2 µ2(ω̃)
≥
(

1
1−κ

)2 ∑ω̃∈Ω µ(ω̃)

∑ω̃<Ω µ(ω̃)

where Ω3 is the support of the posterior if the initial support was Ω1 and players
play s̃∗ and observe the signal y and then y2. The probability of this signal is again
at least qκ .

Iterating this argument, we can prove that for any natural number T , there is
a signal sequence (y1, · · · ,yT ) and a set ΩT+1 such that if players play the profile
s̃∗, the signal sequence realizes with probability at least π∗∗ = (qκ)T , and the
posterior belief µT+1 satisfies

∑ω̃∈ΩT+1 µT+1(ω̃)

∑ω̃<ΩT+1 µT+1(ω̃)
≥
(

1
1−κ

)T

· ∑ω̃∈Ω1 µ(ω̃)

∑ω̃<Ω1 µ(ω̃)
≥
(

1
1−κ

)T q
1−q

.

Note that the set ΩT+1 is an element of O , by the construction.
Now, choose ε > 0 and q > 0 arbitrarily, and then pick T large enough that

( 1
1−κ )

T q
1−q ≥ 1−ε

ε . Then the above posterior belief µT+1 puts probability at least
1− ε on ΩT+1 ∈ O . So by letting Ω∗ = ΩT+1, the result holds. Q.E.D.

Fix ε > 0 arbitrarily. Choose q and Ω̃∗ as stated in Lemma B14, and then
choose Ω∗, T , and π∗∗ as stated in Lemma B15. Then the above two lemmas
ensure that given any initial prior µ , there is an action sequence with length T ∗ ≤
|Ω|+T such that with probability at least π∗ = π |Ω|π∗∗

|Ω| , the posterior belief puts
probability at least 1− ε on Ω∗. Since the bounds |Ω|+T and π∗∗ do not depend
on the initial prior µ , this shows that Ω∗ is asymptotically accessible. Then {ω}
is asymptotically uniformly transient, as Ω∗ ∈ O .

B.10 Proof of Proposition A2: Score and Asymptotic Connect-
edness

Fix δ and λ . Let sµ and ω be as in the proof of Proposition 5. We begin with two
preliminary lemmas. The first lemma shows that the score is Lipschitz continuous
with respect to µ .
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Lemma B16. For any ε ∈ (0, 1
|Ω|), µ , and µ̃ with |µ(ω̃)− µ̃(ω̃)| ≤ ε for each

ω̃ ∈ Ω, ∣∣∣λ · vµ(δ ,sµ)−λ · vµ̃(δ ,sµ̃)
∣∣∣≤ εg|Ω|.

Proof. Without loss of generality, assume that λ · vµ(δ ,sµ)≥ λ · vµ̃(δ ,sµ̃). Then∣∣∣λ · vµ(δ ,sµ)−λ · vµ̃(δ ,sµ̃)
∣∣∣≤ ∣∣∣λ · vµ(δ ,sµ)−λ · vµ̃(δ ,sµ)

∣∣∣
=

∣∣∣∣∣ ∑ω̃∈Ω
µ(ω̃)λ · vω̃(δ ,sµ)− ∑

ω̃∈Ω
µ̃(ω̃)λ · vω̃(δ ,sµ)

∣∣∣∣∣
≤ ∑

ω̃∈Ω
λ · vω̃(δ ,sω̃) |µ(ω̃)− µ̃(ω̃)| .

Since λ · vω̃(δ ,sω̃)≤ g and |µ(ω̃)− µ̃(ω̃)| ≤ ε , the result follows. Q.E.D.

The second preliminary lemma is a counterpart to Lemma B4; it shows that
the action sequence in the definition of asymptotic accessibility can be replaced
with fully mixed actions. The proof is similar to that of Lemma B4 and hence
omitted.

Lemma B17. Suppose that players randomize all actions equally each period.
Then for any ε > 0, there is a natural number T and π∗ > 0 such that given any
initial prior µ and any asymptotically accessible set Ω∗, there is a natural number
T ∗ ≤ T and µ̃ such that the probability of µT ∗+1 = µ̃ is at least π∗, and such that

∑ω∈Ω∗ µ̃(ω)≥ 1− ε .

Since there are only finitely many subsets Ω∗ ⊂Ω, there is π̃∗ > 0 such that for
each asymptotically uniformly transient Ω∗, π̃∗ satisfies the condition stated in the
definition of asymptotic uniform transience. Pick such π̃∗ > 0. Pick ε ∈ (0, 1

|Ω|)

arbitrarily. Then choose a natural number T and π∗ > 0 as in Lemma B17.
For each set Ω∗, let △Ω∗(ε) denote the set of beliefs µ such that ∑ω̃∈Ω∗ µ(ω̃)≥

1− ε .

B.10.1 Step 1: Scores for All Beliefs in Ω∗(ε)

In this step, we prove the following lemma, which shows that there is an asymp-
totically accessible set Ω∗ such that the score for any belief µ ∈△Ω∗(ε) approx-
imates the maximal score.
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Lemma B18. There is an asymptotically accessible set Ω∗ such that for any µ ∈
△Ω∗, ∣∣∣λ · vω(δ ,sω)−λ · vω̃(δ ,s∗)

∣∣∣≤ (1−δ T )2g
δ T πT π̃∗ +

εg|Ω|
π̃∗ .

Then from Lemma B16, there is an asymptotically accessible set Ω∗ such that for
any µ ∈△Ω∗(ε),

|λ · vω(δ ,sω)−λ · vµ(δ ,s∗)| ≤ (1−δ T )2g
δ T πT π̃∗ +

2εg|Ω|
π̃∗ .

Proof. Since the game is asymptotically uniformly connected, {ω} is either asymp-
totically accessible or asymptotically uniformly transient. We first consider the
case in which it is asymptotically accessible. Let Ω∗ = {ω}. Then this Ω∗ sat-
isfies the desired property, as it contains only the belief µ = ω , and the score for
this belief is exactly equal to the maximal score.

Next, consider the case in which {ω} is asymptotically uniformly transient. In
this case, there is an asymptotically accessible set Ω∗, a natural number T ∗ ≤ T ,
and a signal sequence (y1, · · · ,yT ∗

) such that if the initial state is ω and players
play sω , then the signal sequence (y1, · · · ,yT ∗

) appears with positive probability
and the resulting posterior belief µ∗ satisfies ∑ω̃∈Ω∗ µ∗[ω̃]≥ 1−ε and µ∗[ω̃]≥ π̃∗

for all ω̃ ∈ Ω∗. Take such Ω∗, T ∗, and (y1, · · · ,yT ∗
). Then as in the proof of

Lemma B5, we can prove that∣∣∣λ · vω(δ ,sω)−λ · vµ∗
(δ ,sµ∗

)
∣∣∣≤ (1−δ T )2g

δ T πT . (18)

That is, the score with the initial prior µ∗ is close to the maximal score. The only
difference from Lemma B5 is to replace 2|Ω| with T .

Since ∑ω̃∈Ω∗ µ∗[ω̃] ≥ 1− ε and µ∗[ω̃] ≥ π̃∗ for all ω̃ ∈ Ω∗, there is a belief
µ̃∗ whose support is Ω∗ such that µ̃∗[ω̃] ≥ π̃∗ for all ω̃ ∈ Ω∗, and such that µ̃∗

is ε-close to µ∗ in that maxω̃∈Ω |µ∗(ω̃)− µ̃∗(ω̃)| ≤ ε . Lemma B16 implies that
these two beliefs µ∗ and µ̃∗ induce similar scores, that is,∣∣∣λ · vµ∗

(δ ,sµ∗
)−λ · vµ̃∗

(δ ,sµ̃∗
)
∣∣∣≤ εg|Ω|.

Plugging this into (18), we obtain∣∣∣λ · vω(δ ,sω)−λ · vµ̃∗
(δ ,sµ̃∗

)
∣∣∣≤ (1−δ T )2g

δ T πT + εg|Ω|.

That is, the score for the belief µ̃∗ approximates the maximal score. Then using
Lemma B3, we can get the desired inequality. Q.E.D.
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B.10.2 Step 2: Score for All Beliefs

Here we show that for any belief µ , the score approximates the maximal score.
To do so, for each initial belief µ , consider the following strategy profile s̃µ :

• Players randomize all actions equally likely, until the posterior belief be-
comes an element of △Ω∗(ε).

• Once the posterior belief becomes an element of △Ω∗(ε) in some period t,
then players play sµt

in the rest of the game. They do not change the play
after that.

Intuitively, players randomize all actions and wait until the belief reaches △Ω∗(ε);
and once it happens, they switch the play to the optimal policy sµt

in the continu-
ation game. Lemma B18 guarantees that the continuation play after the switch to
sµt

approximates the maximal score λ ·vω(δ ,sω). Also, Lemma B17 ensures that
the waiting time until this switch occurs is finite with probability one. Hence for
δ close to one, the strategy profile s̃µ approximates the maximal score when the
initial prior is µ . Formally, we have the following lemma.

Lemma B19. For each µ ,

|λ · vω(δ ,sω)−λ · vµ(δ , s̃µ)| ≤ (1−δ T )2g
δ T πT π̃∗ +

(1−δ T )3g
π∗ +

2εg|Ω|
π̃∗ .

Proof. The proof is essentially the same as that of Lemma B6; we simply replace
4|Ω| in the proof of Lemma B6 with T , and use Lemma B18 instead of Lemma
B5. Q.E.D.

Note that

λ · vω(δ ,sω)≥ λ · vµ(δ ,sµ)≥ λ · vµ(δ , s̃µ),

that is, the score for µ is at least λ · vµ(δ , s̃µ) and is at most the maximal score.
Then from Lemma B19,

|λ · vω(δ ,sω)−λ · vµ(δ ,sµ)| ≤ |λ · vω(δ ,sω)−λ · vµ(δ , s̃µ)|

≤ (1−δ T )2g
δ T πT π̃∗ +

(1−δ T )3g
π∗ +

2εg|Ω|
π̃∗ .
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Recall that T and π∗ depend on ε but not on δ or λ . Note also that π̃∗ does not
depend on ε , δ , or λ . Hence the above inequality implies that the left-hand side
can be arbitrarily small for all λ , if we take ε close to zero and then take δ close
to one. This proves the lemma.

Appendix C: Uniform Connectedness in Terms of Primitives

In Section 5.1, we have provided the definition of uniform connectedness. We give
an alternative definition of uniform connectedness, and some technical results. We
begin with global accessibility.

Definition C1. A subset Ω∗ ⊆ Ω is globally accessible if for each state ω ∈ Ω,
there is a natural number T ≤ 4|Ω|, an action sequence (a1, · · · ,aT ), and a signal
sequence (y1, · · · ,yT ) such that the following properties are satisfied:23

(i) If the initial state is ω and players play (a1, · · · ,aT ), then the sequence
(y1, · · · ,yT ) realizes with positive probability. That is, there is a state se-
quence (ω1, · · · ,ωT+1) such that ω1 = ω and πωt

(yt ,ω t+1|at) > 0 for all
t ≤ T .

(ii) If players play (a1, · · · ,aT ) and observe (y1, · · · ,yT ), then the state in period
T +1 must be in the set Ω∗, regardless of the initial state ω̂ (possibly ω̂ ,ω).
That is, for each ω̂ ∈ Ω and ω̃ < Ω∗, there is no sequence (ω1, · · · ,ωT+1)

such that ω1 = ω̂ , ωT+1 = ω̃ , and πωt
(yt ,ω t+1|at)> 0 for all t ≤ T .

As the following proposition shows, the definition of globally accessibility
here is indeed equivalent to the one stated using beliefs.

Proposition C1. Definitions 2 and C1 are equivalent.
23 As argued, restricting attention to T ≤ 4|Ω| is without loss of generality. To see this, pick a

subset Ω∗ ⊆ Ω and ω arbitrarily. Assume that there is a natural number T > 4|Ω| so that we can
choose (a1, · · · ,aT ) and (y1, · · · ,yT ) which satisfy (i) and (ii) in Definition C1. For each t ≤ T
and ω̃ ∈ Ω, let Ωt(ω̃) be the support of the posterior belief given the initial state ω̃ , the action
sequence (a1, · · · ,at), and the signal sequence (y1, · · · ,yt). Since T > 4|Ω|, there are t and t̃ > t
such that Ωt(ω̃) = Ωt̃(ω̃) for all ω̃ . Now, consider the action sequence with length T − (t̃ − t),
which is constructed by deleting (at+1, · · · ,at̃) from the original sequence (a1, · · · ,aT ). Similarly,
construct the signal sequence with length T − (t̃ − t). Then these new sequences satisfy (i) and
(ii) in Definition C1. We can repeat this procedure to show the existence of sequences with length
T ≤ 4|Ω| which satisfy (i) and (ii).
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Proof. We first show that global accessibility in Definition C1 implies the one in
Definition 2. Take a set Ω∗ which is globally accessible in the sense of Definition
C1, and fix an arbitrarily initial prior µ . Note that there is at least one ω such that
µ(ω)≥ 1

|Ω| , so pick such ω , and then pick (a1, · · · ,aT ) and (y1, · · · ,yT ) as stated
in Definition C1. Suppose that the initial prior is µ and players play (a1, · · · ,aT ).
Then clause (i) of Definition C1 guarantees that the signal sequence (y1, · · · ,yT )

appears with positive probability. Also, clause (ii) ensures that the support of the
posterior belief µT+1 after observing this signal sequence is a subset of Ω∗, i.e.,
µT+1(ω̃) = 0 for all ω̃ < Ω∗.24 Note that the probability of this signal sequence
(y1, · · · ,yT ) is at least

µ(ω)Pr(y1, · · · ,yT |ω,a1, · · · ,aT )≥ 1
|Ω|

πT ≥ 1
|Ω|

π4|Ω|
> 0,

where Pr(y1, · · · ,yT |ω,a1, · · · ,aT ) denotes the probability of the signal sequence
(y1, · · · ,yT ) given the initial state ω and the action sequence (a1, · · · ,aT ). This
implies that global accessibility in Definition C1 implies the one in Definition 2,
by letting π∗ ∈ (0, 1

|Ω|π
4|Ω|

).
Next, we show that the converse is true. Let Ω∗ be a globally accessible set

in the sense of Definition 2. Pick π∗ > 0 as stated in Definition 2, and pick ω
arbitrarily. Let µ be such that µ(ω) = 1− π∗

2 and µ(ω̃) = π∗

2(|Ω|−1) for each ω̃ ,ω .
Since Ω∗ is globally accessible, we can choose an action sequence (a1, · · · ,aT )

and a belief µ̃ whose support is included in Ω∗ such that

Pr(µT+1 = µ̃|µ,a1, · · · ,aT )≥ π∗. (19)

Let (y1, · · · ,yT ) be the signal sequence which induces the posterior belief µ̃
given the initial prior µ and the action sequence (a1, · · · ,aT ). Such a signal se-
quence may not be unique, so let Ŷ t be the set of these signal sequences. Then
(19) implies that

∑
(y1,··· ,yT )∈Ŷ T

Pr(y1, · · · ,yT |µ,a1, · · · ,aT )≥ π∗.

24The reason is as follows. From Bayes’ rule, µT+1(ω̃) > 0 only if Pr(y1, · · · ,yT ,ωT+1 =
ω̃|ω̂,a1, · · · ,aT ) > 0 for some ω̂ with µ(ω̂) > 0. But clause (ii) asserts that the inequality does
not hold for all ω̂ ∈ Ω and ω̃ <Ω∗.
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Arranging,

∑
(y1,··· ,yT )∈Ŷ T

∑
ω̃∈Ω

µ(ω̃)Pr(y1, · · · ,yT |ω̃,a1, · · · ,aT )≥ π∗.

Plugging µ(ω̃) = π∗

2(|Ω|−1) and ∑(y1,··· ,yT )∈Ŷ T Pr(y1, · · · ,yT |ω̃,a1, · · · ,aT ) ≤ 1 into
this inequality,

∑
(y1,··· ,yT )∈Ŷ T

µ(ω)Pr(y1, · · · ,yT |ω,a1, · · · ,aT )+
π∗

2
≥ π∗

so that

∑
(y1,··· ,yT )∈Ŷ T

µ(ω)Pr(y1, · · · ,yT |ω,a1, · · · ,aT )≥ π∗

2
.

Hence there is some (y1, · · · ,yT )∈ Ŷ T which can happen with positive probability
given the initial state ω and the action sequence (a1, · · · ,aT ). Obviously this se-
quence (y1, · · · ,yT ) satisfies clause (i) in Definition C1. Also it satisfies clause (ii)
in Definition C1, since (y1, · · · ,yT ) induces the posterior belief µ̃ whose support
is Ω∗, given the initial prior µ whose support is the whole space Ω. Since ω can
be arbitrarily chosen, the proof is completed. Q.E.D.

Next, we give the definition of uniform transience in terms of primitives. With
an abuse of notation, for each pure strategy profile s, let s(y1, · · · ,yt−1) denote
the pure action profile induced by s in period t when the past signal sequence is
(y1, · · · ,yt−1).

Definition C2. A singleton set {ω} is uniformly transient if it is not globally
accessible and for any pure strategy profile s, there is a globally accessible set Ω∗,
a natural number T ≤ 2|Ω|, and a signal sequence (y1, · · · ,yT ) such that for each
ω̃ ∈ Ω∗, there is a state sequence (ω1, · · · ,ωT+1) such that ω1 = ω , ωT+1 = ω̃ ,
and πωt

(yt ,ω t+1|s(y1, · · · ,yt−1))> 0 for all t ≤ T .25

25Restricting attention to T ≤ 2|Ω| is without loss of generality. To see this, suppose that there
is a strategy profile s and an initial prior µ whose support is Ω∗ such that the probability that the
support of the posterior belief reaches some globally accessible set within period 2|Ω| is zero. Then
as in the proof of Lemma B13, we can construct a strategy profile s∗ such that if the initial prior is
µ and players play s∗, the support of the posterior belief never reaches a globally accessible set.
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In words, {ω} is uniformly transient if the support of the belief cannot stay
there forever given any strategy profile; that is, the support of the belief must reach
some globally accessible set Ω∗ at some point in the future.26 It is obvious that
the definition of uniform transience above is equivalent to Definition 3, except that
here we consider only singleton sets {ω}.

Now we are ready to give the definition of uniform connectedness:

Definition C3. A stochastic game is uniformly connected if each singleton set
{ω} is globally accessible or uniformly transient.

In this definition, we consider only singleton sets {ω}. However, as shown
by Proposition 4, if each singleton set {ω} is globally accessible or uniformly
transient, then any subset Ω∗ ⊆ Ω is globally accessible or uniformly transient.
Hence the above definition is equivalent to the one stated using beliefs.

Before we conclude this appendix, we present two propositions, which hope-
fully help our understanding of uniformly transient sets. The first proposition
shows that if the game is uniformly connected, then the probability of the sup-
port moving from a uniformly transient set to a globally accessible set is bounded
away from zero uniformly in the current belief. (The proposition considers a spe-
cial class of uniformly transient sets; it considers a uniformly transient set Ω∗

such that any non-empty subset of Ω∗ is also uniformly transient. However, this
is a mild restriction, and when the game is uniformly connected, any uniformly
transient set Ω∗ satisfies this condition. Indeed, uniform connectedness ensures
that any subset of a uniformly transient set Ω∗ is globally accessible or uniformly
transient, and Proposition 4 guarantees that they are all uniformly transient.)

Proposition C2. Let Ω∗ be a uniformly transient set such that any non-empty
subset of Ω∗ is also uniformly transient. Then there is π∗ > 0 such that for any
initial prior µ with support Ω∗ and for any pure strategy profile s, there is a
natural number T ≤ 2|Ω| and a belief µ̃ whose support is globally accessible such
that Pr(µT+1 = µ̃|µ,s)> π∗.

Proof. Pick Ω∗ and µ as stated. Pick an arbitrary pure strategy profile s. It is
sufficient to show that given the initial prior µ and the profile s, the support of

26While we consider an arbitrary strategy profile s in the definition of uniform transience, in
order to check whether a set {ω} is uniformly transient or not, what matters is the belief evolution
in the first 2|Ω| periods only, and thus we can restrict attention to 2|Ω|-period pure strategy profiles,
Hence the verification of uniform transience of each set {ω} can be done in finite steps.
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the posterior belief will reach a globally accessible set with probability at least

π∗ = π2|Ω|

|Ω| .
Take a state ω such that µ(ω)≥ 1

|Ω| . By the definition of Ω∗, the singleton set
{ω} is uniformly transient.

Consider the case in which the initial prior puts probability one on ω , and
players play s. Since {ω} is uniformly transient, there is a natural number T ≤ 2|Ω|

and a history hT such that the history hT appears with positive probability and the
support of the posterior belief after this history hT is globally accessible. Take
such a history hT , and let Ω̃∗ be the support of the posterior belief. Note that this
history appears with probability at least πT given the initial state ω and the profile
s.

Now, consider the case in which the initial prior is µ (rather than the known
state ω) and players play s. Still the history hT occurs with positive probability,
because µ puts positive probability on ω . Note that its probability is at least

µ(ω)πT ≥ π2|Ω|

|Ω| = π∗. Note also that the support after the history hT is globally
accessible, because it is a superset of the globally accessible set Ω̃∗. Hence if the
initial prior is µ and players play s, the support of the posterior belief will reach a
globally accessible set with probability at least π∗, as desired. Q.E.D.

The next proposition shows that if the support of the current belief is uniformly
transient, then the support cannot return to the current one forever with positive
probability.27 This in turn implies that the probability of the support being uni-
formly transient in period T is approximately zero when T is large enough. So
when we think about the long-run evolution of the support, the time during which
the support stays at uniformly transient sets is almost negligible. Let X(Ω∗|µ,s)
be the random variable X which represents the first time in which the support of
the posterior belief is Ω∗ given that the initial prior is µ and players play s. That

27Here is an example in which the support moves from a globally accessible set to a uniformly
transient set. Suppose that there are two states, ω1 and ω2, and that the state ω2 is absorbing.
Specifically, the next state is ω2 with probability 1

2 if the current state is ω1, while the state tomor-
row is ω2 for sure if the current state is ω1. There are three signals, y1, y2, and y3, and the signal
is correlated with the state tomorrow. If the state tomorrow is ω1, the signals y1 and y3 realize
with probability 1

2 each. Likewise, If the state tomorrow is ω2, the signals y2 and y3 realize with
probability 1

2 each. So y1 and y2 reveal the state tomorrow. It is easy to check that {ω2} and Ω are
globally accessible, and {ω1} is uniformly transient. If the current belief is µ = ( 1

2 ,
1
2 ), then with

positive probability, the current signal reveals that the state tomorrow is ω1, so the support of the
posterior belief moves to the uniformly transient set {ω1}.
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is, let
X(Ω∗|µ,s) = inf{T ≥ 2 with suppµT = Ω∗|µ,s}.

Let Pr(X(Ω∗|µ,s) < ∞) denote the probability that the random variable is finite;
i.e., it represents the probability that the support reaches Ω∗ in finite time.

Proposition C3. Let Ω∗ be a uniformly transient set such that any non-empty
subset of Ω∗ is also uniformly transient. Then there is π∗ > 0 such that for any
initial prior µ whose support is Ω∗, and any pure strategy profile s,

Pr(X(Ω∗|µ,s)< ∞)< 1−π∗.

Proof. Suppose not so that for any ε > 0, there is a pure strategy profile s and a
belief µ whose support is Ω∗ such that Pr(X(Ω∗|µ,s)< ∞)≥ 1− ε .

Pick ε > 0 small so that π2|Ω|
> ε|Ω|

π2|Ω| , and choose s and µ as stated above.

Choose ω ∈ Ω∗ such that µ(ω) ≥ 1
|Ω| . Suppose that the initial state is ω and

players play s. Let X∗(Ω∗|ω,s) be the random variable which represents the
first time in which the support of the posterior belief is Ω∗ or its subset. Since
Pr(X(Ω∗|µ,s)< ∞)≥ 1− ε , we must have

Pr(X∗(Ω∗|ω,s)< ∞)≥ 1− ε
µ(ω)

≥ 1− ε|Ω|.

That is, given the initial state ω and the strategy profile s, the support must reach
Ω∗ or its subset in finite time with probability close to one.

By the definition of Ω∗, the singleton set {ω} is uniformly transient. So
there is T ≤ 2|Ω| and µ̃ whose support is globally accessible such that Pr(µT+1 =

µ̃|ω,s) > 0. Pick such a posterior belief µ̃ and let s̃ be the continuation strategy
after that history. Let Ω̃∗ denote the support of µ̃ . Since µ̃ is the posterior induced
from the initial state ω , we have Pr(µT+1 = µ̃|ω,s)≥ π2|Ω|

and µ̃(ω̃)≥ π2|Ω|
for

all ω̃ ∈ Ω̃∗.
Since Pr(µT+1 = µ̃|ω,s) ≥ π2|Ω|

and Pr(X∗(Ω∗|ω,s) < ∞) ≥ 1− ε|Ω|, we
must have

Pr(X∗(Ω∗|µ̃, s̃)< ∞)≥ 1− ε|Ω|
π2|Ω| .

That is, given the initial belief µ̃ and the strategy profile s̃, the support must reach
Ω∗ or its subset in finite time with probability close to one. Then since µ̃(ω̃) ≥
π2|Ω|

> ε|Ω|
π2|Ω| for each ω̃ ∈ Ω̃∗, we can show that for each state ω̃ ∈ Ω̃∗, there is a
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natural number T ≤ 4|Ω|, an action sequence (a1, · · · ,aT ), and a signal sequence
(y1, · · · ,yT ) such that the following properties are satisfied:

(i) If the initial state is ω̃ and players play (a1, · · · ,aT ), then the sequence
(y1, · · · ,yT ) realizes with positive probability.

(ii) If players play (a1, · · · ,aT ) and observe (y1, · · · ,yT ), then the state in period
T +1 must be in the set Ω∗, for any initial state ω̂ ∈ Ω̃∗ (possibly ω̂ , ω̃).

This result implies that for any initial belief µ̂ ∈ △Ω̃∗ players can move the sup-
port to Ω∗ or its subset with positive probability, and this probability is bounded
away from zero uniformly in µ̂; the proof is very similar to that of Proposition C1
and hence omitted. This and global accessibility of Ω̃∗ imply that Ω∗ is globally
accessible, which is a contradiction. Q.E.D.

Appendix D: Existence of Maximizers

Lemma D1. For each initial prior µ , discount factor δ , and s−i, player i’s best
reply si exists.

Proof. The formal proof is as follows. Pick µ , δ , and s−i. Let l∞ be the set of all
functions (bounded sequences) f : H → R. For each function f ∈ l∞, let T f be a
function such that

(T f )(ht)=max
ai∈Ai

[
(1−δ )gµ̃(ht)

i (ai,s−i(ht))+δ ∑
a−i∈A−i

∑
y∈Y

s−i(ht)[a−i]π
µ̃(ht)
Y (y|a) f (ht ,a,y)

]

where µ̃(ht) is the posterior belief of ω t+1 given the initial prior µ and the history
ht . Note that T is a mapping from l∞ to itself, and that l∞ with the sup norm is a
complete metric space. Also T is monotonic, since (T f )(µ)≤ (T f̃ )(µ) for all µ
if f (µ)≤ f̃ (µ) for all µ . Moreover T is discounting, because letting ( f +c)(µ) =
f (µ)+ c, the standard argument shows that T ( f + c)(µ) ≤ (T f )(µ)+ δc for all
µ . Then from Blackwell’s theorem, the operator T is a contraction mapping and
thus has a unique fixed point f ∗. The corresponding action sequence is a best
reply to s−i. Q.E.D.

Lemma D2. maxv∈V µ (δ )λ · v has a solution.
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Proof. Identical with that of the previous lemma. Q.E.D.

Lemma D3. There is s−i which solves mins−i∈S−i maxsi∈Si vµ
i (δ ,s).

Proof. The formal proof is as follows. Pick µ and δ , and let ht and l∞ be as in the
proof of Lemma D1. For each function f ∈ l∞, let T f be a function such that

(T f )(ht)= min
α−i∈× j,i△A j

max
ai∈Ai

[
(1−δ )gµ̃(ht)

i (ai,α−i)+δ ∑
a−i∈A−i

∑
y∈Y

α−i(a−i)π
µ̃(ht)
Y (y|a) f (ht ,a,y)

]

where µ̃(ht) is the posterior belief of ω t+1 given the initial prior µ and the history
ht . Note that T is a mapping from l∞ to itself, and that l∞ with the sup norm is a
complete metric space. Also T is monotonic, because if f (ht) ≤ f̃ (ht) for all ht ,
then we have

(T f )(ht)≤ max
ai∈Ai

[
(1−δ )gµ̃(ht)

i (ai,α−i)+δ ∑
a−i∈A−i

∑
y∈Y

α−i(a−i)π
µ̃(ht)
Y (y|a) f (ht ,a,y)

]

≤ max
ai∈Ai

[
(1−δ )gµ̃(ht)

i (ai,α−i)+δ ∑
a−i∈A−i

∑
y∈Y

α−i(a−i)π
µ̃(ht)
Y (y|a) f̃ (ht ,a,y)

]

for all α−i and ht , which implies (T f )(ht) ≤ (T f̃ )(ht) for all ht . Moreover, T is
discounting as in the proof of Lemma D1. Then from Blackwell’s theorem, the
operator T is a contraction mapping and thus has a unique fixed point f ∗. The
corresponding action sequence is the minimizer s−i. Q.E.D.

Appendix E: Hsu, Chuang, and Arapostathis (2006)

Hsu, Chuang, and Arapostathis (2006) claims that their Assumption 4 implies
their Assumption 2. However it is incorrect, as the following example shows.

Suppose that there is one player, two states (ω1 and ω2), two actions (a and
ã), and three signals (y1, y2, and y3). If the current state is ω1 and a is chosen,
(y1,ω1) and (y2,ω2) occur with probability 1

2 -1
2 . The same thing happens if the

current state is ω2 and ã is chosen. Otherwise, (y3,ω1) and (y3,ω2) occur with
probability 1

2 -1
2 . Intuitively, y1 shows that the next state is ω1 and y2 shows that

the next state is ω2, while y3 is not informative about the next state. And as long
as the action matches the current state (i.e., a for ω1 and ã for ω2), the signal y3
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never happens so that the state is revealed each period. A stage-game payoff is 0
if the current signal is y1 or y2, and −1 if y3.

Suppose that the initial prior puts probability one on ω1. The optimal policy
asks to choose a in period one and any period t with yt−1 = y1, and asks to choose
ã in any period t with yt−1 = y2. If this optimal policy is used, then it is easy
to verify that the support of the posterior is always a singleton set and thus their
Assumption 2 fails. On the other hand, their Assumption 4 holds by letting k0 = 2.
This shows that Assumption 4 does not imply Assumption 2.

To fix this problem, the minimum with respect to an action sequence in As-
sumption 4 should be replaced with the minimum with respect to a strategy. The
modified version of Assumption 4 is more demanding than uniform connectedness
in this paper.
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