
                                                                                                        
The Ronald O. Perelman Center for 
Political Science and Economics (PCPSE)                                                            
133 South 36th Street                                                                                                                                               
Philadelphia, PA 19104-6297 

pier@econ.upenn.edu                                            
http://economics.sas.upenn.edu/pier 

 

 
PIER Working Paper   

18-020 
 

 

 

Stochastic Impatience and the Separation of Time 
and Risk Preferences 

 
 
  DAVID DILLENBERGER        DANIEL GOTTLIEB          PIETRO ORTOLEVA 

University of Pennsylvania       Washington University              Princeton University 

 

 

 

 

September 8, 2018 

 

https://ssrn.com/abstract=3252503 

mailto:pier@econ.upenn.edu
http://economics.sas.upenn.edu/pier
https://ssrn.com/abstract=3252503


Stochastic Impatience and the
Separation of Time and Risk
Preferences∗

David Dillenberger†, Daniel Gottlieb‡, Pietro Ortoleva§

First version: October 2017
This version: September 8, 2018
Latest version available here

Abstract

We study how the separation between time and risk preferences relates to a new behavioral
property that generalizes impatience to stochastic environments: Stochastic Impatience.
We show that Stochastic Impatience holds if and only if risk aversion is “not too high”
relative to the inverse elasticity of intertemporal substitution. This result has implications
for many known models. For example, in the models of Epstein and Zin (1989) and Hansen
and Sargent (1995), Stochastic Impatience is violated for all commonly used parameters. If
Stochastic Impatience is taken normatively, this suggests a limit on the amount of separation
between time and risk preference; otherwise, it provides a simple one-question test for it.
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1 Introduction

In the standard Expected Discounted Utility model, the inverse of the elasticity of
intertemporal substitution (EIS) is equal to the coefficient of relative risk aversion.
However, an enormous literature in macroeconomics, finance, and behavioral eco-
nomics has pointed out to the need for separating these two coefficients both on
empirical and on conceptual grounds. Empirically, observations from lab experi-
ments, longitudinal micro-data, and the desire to fit macroeconomic and financial
data require a higher coefficient of risk aversion than the inverse of EIS.1 Conceptu-
ally, attitudes towards risk and towards intertemporal smoothing belong to different
domains, and there is no compelling reason why they should be equal to each other.
These observations have led to the development of models that separate risk atti-
tudes from EIS, with Epstein and Zin (1989) (henceforth EZ) and the Risk-Sensitive
preferences of Hansen and Sargent (1995) (henceforth HS) being the most prominent
examples. Given the fundamental role of risk aversion and EIS in economics, evalu-
ating these models qualitatively and quantitatively is an issue of primary relevance
in the discipline.

In this paper, we show that a novel behavioral postulate that we call Stochastic
Impatience imposes a bound on how high risk aversion can be relative to EIS. Consider
the choice between the following two options:

A. With equal probability, permanently increase consumption by either 20% starting
today, or by 10% starting next year;

B. With equal probability, permanently increase consumption by either 10% starting
today, or by 20% starting next year.

Both options involve identical benefits, odds, and dates. However, in option A the
highest increase (20%) is paired with the earlier date, whereas in B it is paired with
the later date. What would, or should, an individual choose?

To the extent that an individual prefers higher payments sooner, it is plausible
that she picks option A. One way to see this is by decomposing each alternative into
two parts. Both A and B offer a basic lottery in which the individual receives an
increase of 10% either today or next year, as well as a 50-50 chance of an additional
increase of 10%. The only difference between them is when this additional payment
is made: today in option A, next year in option B. Insofar as the individual prefers
obtaining a payment sooner, option A should be preferred. Since this property is a
version of Impatience (a preference for earlier payments) for risky environments, we
call it Stochastic Impatience. Impatience and Stochastic Impatience are equivalent
under Expected Discounted Utility, but when time and risk preferences are separate,

1For example, Barsky et al. (1997) study a large cross section of American households and find
that risk aversion and EIS are uncorrelated. See also Bansal and Yaron (2004); Hansen et al. (2007);
Barro (2009); Andreoni and Sprenger (2012); Nakamura et al. (2017) and references therein.
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this is no longer true. Our main result shows that under very general conditions,
Stochastic Impatience is violated whenever risk aversion is high enough for a fixed
EIS.

We begin our analysis by considering the widely used CRRA-CES version of EZ
preferences. We show that Stochastic Impatience fails if the coefficient of risk aversion
is both above the inverse of EIS and above one. All applications of EZ that we are
aware of use parameters in this range: assuming that risk aversion is above the
inverse of EIS is the primary reason to use EZ in the first place. For example, with
the parameters used by most well-known papers in this literature (e.g., Bansal and
Yaron 2004), in the example above the agent would strictly prefer option B. We then
turn to HS preferences and show that Stochastic Impatience always fails as long as
the range of utilities of consumption is large enough (e.g., when the utility function is
unbounded either above or below). For example, using this model with the parameters
of Tallarini Jr (2000), again option B would be chosen in the example above. More
generally, Stochastic Impatience is violated for all common parametrizations of the
two leading models that separate time and risk preferences.

We then establish a more general result, going beyond EZ and HS. We consider
a preference relation on lotteries over streams of consumption,2 and assume that
1) without risk, the preference relation coincides with discounted utility, so that it
admits a representation

∑
D(t)u(x(t)) for a decreasing D and an increasing u; and

that 2) it satisfies the Expected Utility postulates. These assumptions hold in most
models, including EZ and HS; note that little is assumed on the discounting function
D.

First, we show that any preference relation that satisfies these two assumptions
admits, in our space, a representation of the form E

[
φ
(∑

D(t)u(x(t))
)]

. The aggre-
gator applied to discounted utilities φ introduces an additional curvature that permits
a separation between time and risk. We refer to this as a Kihlstrom-Mirman (KM)
representation, as it is an application to the context of time of the multi-attribute
function of Kihlstrom and Mirman (1974).

Next, we introduce a behavioral definition of Residual Risk Aversion: the amount
of risk aversion beyond what is captured by EIS. In a KM representation, Resid-
ual Risk Aversion is captured by the curvature of φ: a concave (resp. convex) φ is
equivalent to Residual Risk Averse (resp. Seeking) behavior.

Our general result then shows that Stochastic Impatience imposes an upper bound
on Residual Risk Aversion. In the language of the KM representation, we show that
one can always construct a violation of Stochastic Impatience if φ is more concave
than the log function. Conversely, Stochastic Impatience holds if φ is less concave
than the log. This result unifies the findings from EZ and HS, showing that the bound

2For our purposes, it suffices to consider this simple space instead of the larger and more complex
space of temporal lotteries (Kreps and Porteus, 1978; Epstein and Zin, 1989). One can either take
our preferences as the primitive, or assume that preferences are defined over temporal lotteries and
look at their restriction to our subdomain.
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on Residual Risk Aversion holds more generally, in any model that satisfies our two
basic assumptions.3

Overall, there are two implications of our results. If Stochastic Impatience is
taken as an appealing property – normatively or behaviorally –, our results highlight
an issue with the modeling of the separation of time and risk preferences, including all
common parametrizations of all leading approaches. In Section 5 we discuss possible
solutions to maintain Stochastic Impatience without sacrificing the fit of empirical
data. Recall that large coefficients of risk aversion are assumed because typically risk
aversion is the only aspect governing the agent’s caution with respect to financial or
similar choices. But in reality other aspects may matter. For example, the agent may
exhibit ambiguity aversion or have robustness concerns (for models in macro/finance
Epstein and Schneider (2010); Hansen and Sargent (2014)). Including these aspects
may allow for risk aversion to be maintained at more realistic lower levels, while at the
same time allowing Stochastic Impatience to hold (as it is unaffected by ambiguity
aversion). Thus, one may see our results as pointing to the need to incorporate these
aspects instead of relying on risk aversion only – for it may have unintended and
unappealing consequences.

If, instead, Stochastic Impatience is viewed as a behavioral property that may
or not hold, our results provide an easy test of whether risk aversion is significantly
above the inverse of EIS: this can be established by documenting a single violation
of Stochastic Impatience. It is a much simpler test than those used in the litera-
ture, where the two parameters are estimated indirectly using multiple questions and
assuming specific functional forms.

This paper is not the first to point out potentially problematic implications of
how separation between time and risk is typically modeled. Epstein et al. (2014) note
that common parameterizations of EZ imply an unrealistically strong preference for
early resolution of uncertainty. We show that with the same parameters, we also have
a violation of Stochastic Impatience – a property that is distinct from preference for
early or late resolution of uncertainty. Bommier et al. (2017) show that many known
models that separate time and risk preferences, including common specifications of
EZ, violate a property of Monotonicity that may be seen as normatively appealing.
Stochastic Impatience is distinct from their Monotonicity: for example, EZ with both
risk aversion and the inverse of EIS less than 1 satisfies Stochastic Impatience but not
Monotonicity; conversely, HS always satisfies Monotonicity but violates Stochastic
Impatience when the utility range of prizes is large enough. Lastly, a companion
paper, Dejarnette et al. (2018), studies Risk Aversion over Time Lotteries and shows
how that property is incompatible with Stochastic Impatience within a broad class
of models, although in a different formal setup.

3In Appendix A we provide two extensions. First, to continuous time, showing that equivalent
results hold. Second, to the case of non-Expected Utility, where we show that exhibiting First Order
Risk Aversion implies violations of Stochastic Impatience.
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2 Framework

We study a preference relation on lotteries over consumption streams. Consider an
interval of per-period consumption C ⊂ R+ and a set of dates T = {1, . . . , t̄}, where
t̄ is either finite or infinite.4 A consumption program x = (x(1), x(2), . . . , x(t̄)) yields
consumption x(t) ∈ C in period t ∈ T . Let X = CT be the set of consumption
programs and let ∆ be the set of all simple probability measures over it. Let < be a
complete and transitive preference relation over ∆.

We abuse notation and refer to x ∈ X both as the consumption program and
as the lottery that gives this consumption program with certainty (i.e., the Dirac
measure on x). To further simplify notation, we denote by (c, t, x) ∈ C × T × C the
stream that gives c in every period until t− 1 and x from t onwards:

(c, c, ..., c︸︷︷︸
t−1

, x︸︷︷︸
t

, x, ..., x︸︷︷︸
t̄

).

We focus on the space of lotteries over streams because it either coincides with, or
is embedded within, the environment studied by many related papers in the literature.
For example, < may be derived from preferences defined on larger spaces: one may
start with preferences over temporal lotteries, as in Kreps and Porteus (1978) or EZ,
and derive from them the induced preferences over ∆.5

We now introduce the main property studied in this paper:

Definition 1 (Stochastic Impatience). The relation < satisfies Stochastic Impatience
if for any t1, t2 ∈ T with t1 < t2, and any c, x1, x2 ∈ C with x1 > x2 > c,

1

2
(c, t1, x1) +

1

2
(c, t2, x2) <

1

2
(c, t2, x1) +

1

2
(c, t1, x2). (1)

Stochastic Impatience states that the individual prefers the lottery in which she
either starts receiving higher payments earlier or lower payments later. It can be
seen as a stochastic counterpart of the standard impatience property – the individual
prefers higher payments sooner – to a stochastic environment. As mentioned in the
introduction, a related argument for its appeal can be made by decomposing each
alternative into two parts. Note that both options offer the same basic lottery that

4We focus on real-valued consumption to simplify exposition and notation and on discrete time
to facilitate the connection with applications. It is immediate to extend our results to arbitrary
consumption spaces. Appendix A presents the extension to continuous time, where analogous results
hold. We start from date one (and not zero) to allow the introduction of additional consumption at
time zero that is not subject to uncertainty. As discussed below, this feature allows us to incorporate
some commonly used models, such as EZ.

5EZ assumes that consumption at time zero is deterministic. Holding the time-zero consumption
fixed and assuming that uncertainty is resolved between periods zero and one, one obtains a pref-
erences over lotteries over streams. Thus, for each consumption at time zero, the model uniquely
identifies a preference relation over ∆. This suffices for our purposes.
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pays x2 starting at either t1 or t2 along with an increment of x1 − x2. The difference
between the two options is when the increment is paid: for the option on the left, it
is paired with the earlier date t1, while the option on the right pairs it with the later
date t2. Insofar as the agent prefers to obtain it sooner, the option on the left may
be preferred.

To our knowledge, Stochastic Impatience is a new property – with the exception
that a version of it appears, in a different setting, in a companion paper (Dejarnette
et al., 2018).6 We say that Stochastic Impatience fails if the condition in Definition
1 does not hold, i.e., if there exist t1 < t2 and x1 > x2 > c such that (1) fails.

In Expected Discounted Utility (henceforth EDU), impatience – a preferences for
earlier rewards – and Stochastic Impatience are equivalent:

Observation 1 (EDU satisfies Stochastic Impatience). Consider a preference relation
< that admits a representation E

[∑
T D(t)u(x(t))] for some strictly increasing u.

Then, < satisfies Stochastic Impatience if and only if D is weakly decreasing.

We conclude by noting that different versions of Stochastic Impatience may also
be considered. For example, the increase in consumption may last a fixed number of
periods, even only one, instead of being permanent — a condition that is easier to
test. In Appendix A we show that, under general conditions, this is equivalent to the
version above.7

3 Stochastic Impatience in EZ and HS

3.1 Epstein-Zin preferences

We begin our formal analysis by considering the most widely used model that sep-
arates time and risk preferences: the standard CRRA-CES version of EZ. Let the
consumption space be C = R++ and let t̄ = +∞. This model admits the following
recursive representation:

Vt =

{
(1− β)x(t)1− 1

ψ + β
[
Et
(
V 1−α
t+1

)] 1− 1
ψ

1−α

} 1

1− 1
ψ

(2)

where α ∈ R+\{1} is the coefficient of relative risk aversion and ψ ∈ R+\{1} is the
EIS. When α = 1

ψ
, the model coincides with EDU.

6That paper considers a different formal setup of prize-date pairs, instead of streams. It thus
considers a version of stochastic impatience in which the payment is given at one specific period
instead of constituting a constant change in the stream.

7Specifically, in Appendix A we show that under the conditions of Proposition 4 below, these
properties are equivalent in continuous time (and in discrete time with arbitrary small time periods).
In discrete time, they are not equivalent for issues pertaining to the discreteness: however, qualitative
conclusions remain identical.
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The following result fully characterizes Stochastic Impatience in this model (all
proofs appear in Appendix C):

Proposition 1. Let < be a preference relation that admits a representation as in (2).
Then, it satisfies Stochastic Impatience if and only if either (i) α ≤ 1

ψ
, or (ii) α < 1.

Stochastic Impatience holds in the CRRA-CES version of EZ either when the
coefficient of risk aversion is below one or when risk aversion is less than the inverse
of EIS. Conversely, Stochastic Impatience is violated – in the sense that there are
instances in which the ordering in (1) fails – when risk aversion α is above the inverse
of EIS, 1

ψ
, as well as above one.

To understand the intuition for this result, consider again the decision problem
given in the introduction: a choice between a lottery that gives either a 20% increase
starting today or a 10% increase starting next year and a lottery that gives either a
10% increase starting today or a 20% increase starting next year. Of the four possible
outcomes, the best is 20% starting today, the worst is 10% next year, while the other
two are intermediate. The first lottery therefore involves the best and the worst
outcomes, while the second one features the two ‘intermediate’ ones. Thus, the first
lottery has more spread in discounted utility but also has a higher expected discounted
utility – since the higher discounting is applied to the smaller amount. When α = 1

ψ
,

i.e., with EDU, the agent cares only about the expected discounted utility, and thus
strictly prefers the first option. But when risk aversion is increased fixing EIS, the
individual starts disliking the spread in discounted utilities – which favors the second
option. When risk aversion is high enough, this second effect prevails, leading the
individual to prefer the second option and violate Stochastic Impatience. Proposition
1 provides the exact condition for when this is the case: α > max{ 1

ψ
, 1}.

The result above should be understood in light of the parameters used in the
wide literature that adopts EZ. All applications that we are aware of assume α >
max{ 1

ψ
, 1}. Indeed, the possibility of incorporating a risk aversion greater than the

inverse of EIS is a primary reason for adopting this model; and assuming a relative
risk aversion above one is also typically assumed to fit finance data. For example,
Bansal et al. (2016) study annual data from 1930 to 2015 and estimate a coefficient
of risk aversion of α = 9.67 and EIS of ψ = 2.18 (see Example 1 below for other
references). Proposition 1 shows that Stochastic Impatience fails in this range.

A different strand of the literature (that typically does not adopt EZ) has instead
argued for an EIS less than one.8 Still, in this case, one cannot allow for a coefficient
of risk aversion α greater than 1

ψ
while avoiding violations of Stochastic Impatience.

We now provide an example of violations of Stochastic Impatience.

Example 1. Recall lotteries A and B described in the introduction:

8A discussion of this vast empirical and theoretical debate is outside the scope of this paper. See
the discussions in Campbell (1999), Attanasio and Weber (2010), Campbell (2003) and, for more
recent contributions, Gruber (2013), Ortu et al. (2013), Crump et al. (2015), and Best et al. (2017).
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A. With equal probability, permanently increase consumption by either 20% starting
today, or by 10% starting next year;

B. With equal probability, permanently increase consumption by either 10% starting
today, or by 20% starting next year.

Stochastic Impatience implies that A is preferred to B. However, B is preferred adopt-
ing the EZ model with the parameters of many known papers: Bansal and Yaron
(2004) (α = 10, β = 0.998, ψ = 1.5), Bansal et al. (2016) (α = 9.67, β = .999,
ψ = 2.18), Nakamura et al. (2017) (α = 9, β = 0.99, ψ = 1.5), and Colacito et al.
(2018) (α = 10, β = 0.97, ψ = 1.1).9

Within EZ, Stochastic Impatience puts restrictions on the attitude towards the
timing of resolution of uncertainty. The agent prefers early (late) resolution of uncer-
tainty whenever α is higher (smaller) than 1

ψ
(Epstein and Zin, 1989). Proposition 1

shows that when α > 1, preference for early resolution of uncertainty coincides with
violations of Stochastic Impatience; or, put differently, Stochastic Impatience implies
a weak preference for late resolution of uncertainty. This observation links our results
to those in Epstein et al. (2014), which argue that the parameters used in much of the
literature imply levels of preference for early resolution of uncertainty that may be
considered implausible. Here we show that these same parameters imply a violation
of Stochastic Impatience. We emphasize that this implication is derived even though
Stochastic Impatience is conceptually independent of preferences over the timing of
resolution of uncertainty. The reason is that in the context of EZ, the two notions
solely depend on the parameters α and ψ.

The results in this section show that with the parameters commonly used to fit
macroeconomic and financial data, the CRRA-CES specification of EZ is bound to
violate Stochastic Impatience. In Section 5 we discuss potential implications and
solutions.

3.2 Risk-Sensitive Preferences

We now show that an analogous result holds for the Risk Sensitive preferences of HS
(see also Strzalecki 2013 and Bommier et al. 2017). Let t̄ = +∞. HS preferences

9Even if one takes EIS< 1, option B is still preferred to A if risk aversion is high enough.
For example, with α = 10 and β = 0.998, option B is preferred for any ψ > 0.2576. With less risk
aversion, violations of Stochastic Impatience require higher prizes. For example, with the parameters
of Nakamura et al. (2013) (α = 6.4, β = 0.967, ψ = 2), a violation is observed with a low prize
of 20% and a high prize of 30% of per-period consumption. With the parameters of Barro (2009)
(α = 4, β = 0.948, and ψ = 2), it is observed with a low prize of 35% and a high prize of 40%. With
even less risk aversion, closer to one, violations of Stochastic Impatience require higher and higher
prizes: with α = 2, β = 0.99, and ψ = 2, one needs a low prize of 120% and a high prize of 140%.
Reducing α to 1.2, we obtain a violation of Stochastic Impatience with prizes of 1100% and 1200%.
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admit the recursive representation:

Vt = u(x(t))− β · 1

k
· ln
(
E
[
e−kVt+1

])
. (3)

Proposition 2. Suppose < admits a representation as in (3). Stochastic impatience

holds if and only if supx∈C{u(x)} − infx∈C{u(x)} ≤ − ln(β)
kβ(1−β)

.

The result above shows that Stochastic Impatience is violated if the utility range
of prizes is large enough. This is necessarily the case if the utility function u :
C → R is unbounded above or below (such as with a CARA utility function and
an unbounded consumption space). Otherwise, Stochastic Impatience requires the
amount of additional risk aversion (k) and the maximum gap in per-period utility
(supu(x)− inf u(x)) to be small enough.

Like in the case of EZ, Proposition 2 only shows that violations can be constructed,
but does not specify which ones. We now give an example of such violation using an
influential parameterization:

Example 2. Tallarini Jr (2000) considers the specification in (3) with C = R++,
u(x) = ln(x), and k = (1−β)(ξ−1), where ξ is the coefficient of relative risk aversion
with respect to atemporal wealth gambles. First note that, since u is unbounded,
Stochastic Impatience fails for any parameter values. Tallarini Jr (2000) shows that
the model is able to match some key moments in asset pricing for some (ξ, β) ∈
[46, 180] × [.991, .999]. Consider again options A and B described in Example 1,
where Stochastic Impatience posits that option A is preferred. Within HS, adopting
any of the parameters of Tallarini Jr (2000), option B is preferred instead.10

4 A general result

The previous results show how stochastic impatience imposes a bound of the separa-
tion of time and risk preferences in two well-known models in the literature. In this
section we explore the extent to which similar results hold more generally. To avoid
continuity issues, in the remainder we assume that the space of per-period consump-
tion is a compact interval: C = [x, x] ⊂ R+. We focus on preferences that satisfy the
following two assumptions.

Assumption 1 (Discounted Utility without risk). There exist a strictly increasing
and continuous function u : [x, x] → R+ and a strictly decreasing function D : T →
[0, 1] such that for all x, y ∈ X

x < y ⇔
∑
t∈T

D(t)u(x(t)) ≥
∑
t∈T

D(t)u(y(t)).

10Specifically, whenever both prizes exceed a proportion β
1

(1−ξ)(1−β)−1 of background consumption,
we have a violation of Stochastic Impatience. For example, with β = .998 and ξ > 11.5, we have

β
1

(1−ξ)(1−β) − 1 < 10%, so option B is preferred to option A.
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Assumption 2 (Expected Utility). The following hold:

1. For all p, q, r ∈ ∆ and λ ∈ (0, 1),

p < q ⇔ λp+ (1− λ)r < λq + (1− λ)r;

2. For all p, q, r ∈ ∆ with p � q � r, there exist α, β ∈ (0, 1) such that αp + (1−
α)r � q � βp+ (1− β)r.

Assumption 1 posits that in the absence of risk, preferences can be modeled using
Discounted Utility with generic discount function D. This is true for the vast majority
of models used to study time and risk preferences, including EZ and HS, and allows
for many types of discounting (e.g., exponential, hyperbolic, and quasi-hyperbolic).
Assumption 2 posits the postulates of Expected Utility under risk. Again, these
requirements are satisfied by most models in the literature, including EZ and HS. In
Appendix B we show that similar results to those presented below hold even allowing
for non-Expected Utility.

For our analysis, it will be useful to note that Assumptions 1 and 2 yield the
following representation:

Lemma 1. < satisfies Assumptions 1 and 2 if and only if there exist a strictly increas-
ing and continuous u : [x, x]→ R+ with u(x) = 0, a strictly decreasing D : T → [0, 1],
and a strictly increasing φ : [0, u(x)]→ R such that < is represented by

V (p) = Ep
[
φ
( 1∑

T D(t)

∑
T

D(t)u(x(t))
)]
.

Conditional on u and D, φ is unique up to a positive affine transformation.

We call this representation a Kihlstrom-Mirman (KM) representation, as it can
be seen as an application of the multi-attribute function of Kihlstrom and Mirman
(1974) to the context of time.11 Fixing D, the curvature of u captures EIS in the KM
model, whereas risk aversion is captured by the curvature of φ ◦ u, so that φ is an
additional curvature used only in the case of risk. Therefore, the KM representation
will be useful to discuss the separation between time and risk preferences in ∆.

While the model itself is known, the content of Lemma 1 is to show that it is
axiomatically characterized by Assumptions 1 and 2. In itself a simple result that
follows trivially from standard arguments,12 it implies that most models used in the

11This application to time preferences is discussed, for example, in EZ. The functional form has
been derived, in a different setup, by Dejarnette et al. (2018). A similar functional form was used,
but not derived, by Andersen et al. (2017), to study intertemporal utility and correlation aversion,
by Abdellaoui et al. (2017), to study different questions on time and risk, as well as by Edmans and
Gabaix (2011) and Garrett and Pavan (2011) in applied contexts.

12Assumption 1 guarantees a Discounted Utility representation without risk; Assumption 2 guaran-
tees an Expected Utility representation with a given Bernoulli utility V . Since V and the Discounted
Utility representation must be ordinally equivalent, there exists a strictly increasing function φ that
makes them equal.
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literature also admit a KM representation within ∆. Below, we describe how both
the standard CRRA-CES version of EZ and HS, when restricted to ∆, also admit a
KM representation.13 Indeed these correspond to the cases in which φ is CRRA and
CARA, respectively.

Example 3 (Expected Discounted Utility). If φ is affine, < can be represented by
E
[∑

T D(t)u(x(t))], the standard case of EDU.

Example 4 (EZ with CRRA-CES). Fix a consumption for time zero at c ∈ [x, x],
and consider a preference < over ∆ represented by (2). Then, < also admits a KM

representation, with u(x) = x
1− 1

ψ

1− 1
ψ

, D(t) = βt, and

φ (z) =



z
1−α
1− 1

ψ if α < 1 < ψ

− (−z)
1−α
1− 1

ψ if α > 1 > ψ

−z
1−α
1− 1

ψ if 1 < α, 1 < ψ

(−z)
1−α
1− 1

ψ if α < 1, ψ < 1

. (4)

Example 5 (HS). Fix a consumption for time zero at c ∈ [x, x], and consider a prefer-
ence relation < over ∆ represented by (3). Then, < also admits a KM representation
with D(t) = βt and φ(x) = − exp (−kx).

4.1 Residual Risk Aversion

We now introduce a behavioral notion that we call Residual Risk Aversion, which
aims to capture the individual’s additional risk aversion relative to the curvature
already implied by EIS.14

Definition 2. Let < be a preference relation over ∆. We say that < displays Residual
Risk Aversion if for any a, b, c, d, x ∈ [x, x] such that

(a, d, x, x, . . . ) ∼ (b, b, x, x, . . . ) and (d, a, x, x, . . . ) ∼ (c, c, x, x, . . . )

13We emphasize that this does not imply that the KM model includes EZ and HS as special cases
– this is not true. Lemma 1 shows that this holds within ∆; but in the larger space of temporal
lotteries with different current-period consumption the models are not nested. One easy way to see
this is to note, as EZ already point out, that KM may lead to dynamically inconsistent choices if
applied recursively, while the model in EZ is dynamically consistent and recursive. Indeed, one can
view the model of EZ as being composed by a collection of KM representations, where φ varies with
the timing of resolution of uncertainty and with the current consumption – where the utility of the
latter, which is deterministic, is added outside the curvature of φ; this allows the EZ model to be
dynamically consistent and to offer a recursive representation.

14A similar concept is Traeger (2014)’s notion of Intertemporal Risk Aversion, which coincides with
Residual Risk Aversion on the space we study. Similar to Proposition 3 and Observation 4 below,
Traeger also gave a functional characterization of attitudes towards intertemporal risk aversion and
a related comparative notion.

10



we have
1

2
(b, b, . . . ) +

1

2
(c, c, . . . ) <

1

2
(a, a, . . . ) +

1

2
(d, d, . . . ).

We say that < displays Residual Risk Seeking/Neutrality if the above is instead 4/∼.

To understand this definition, suppose < satisfies Assumption 1 with utility u
and discount function D. If (a, d, x, x, . . . ) ∼ (b, b, x, x, . . . ) and (d, a, x, x, . . . ) ∼
(c, c, x, x, . . . ) it must be the case that

D(1)u(a)+D(2)u(d) = [D(1)+D(2)]u(b) andD(1)u(d)+D(2)u(a) = [D(1)+D(2)]u(c).

Thus, u(a) + u(d) = u(b) + u(c). Notice also that we must have a > b > c > d,
and that these depends only on how < ranks streams without risk. Now suppose
that we take a lottery that returns with equal chances the constant streams a or d;
and a lottery that returns with equal chances the constant streams b or c. If all risk
aversion is included in the curvature of u, these two lotteries must be indifferent to
one other, as u(a) + u(d) = u(b) + u(c). But if the individual displays additional risk
aversion not captured by the curvature of u, then a > b > c > d implies that she
should prefer the lottery between the constant streams b and c, in which the utility
spread is smaller.

We first link Residual Risk Aversion to the properties of the KM representation,
showing that the curvature of φ is related to Residual Risk Aversion in a similar way
to how the curvature of the Bernoulli utility function is related to risk aversion in
standard Expected Utility theory:

Proposition 3 (Residual Risk Attitudes and the curvature of φ). Suppose < admits
a KM representation (φ,D, u). Then, < displays Residual Risk Aversion if and only
if φ is concave. Moreover, < displays Residual Risk Seeking/Neutrality if and only if
φ is convex/affine.

It follows from Proposition 3 that Residual Risk Neutrality characterizes EDU
given Assumptions 1 and 2, and that EZ allows one to introduce Residual Risk Aver-
sion:

Observation 2 (EDU is characterized by Residual Risk Neutrality). Suppose <
satisfies Assumptions 1 and 2. Then, it admits an EDU representation if and only if
it displays Residual Risk Neutrality.

Observation 3 (EZ preferences). Suppose < admits a representation as in (2). Then
< displays Residual Risk Aversion/Neutrality/Seeking if and only if α ≥ / = / ≤ 1

ψ
.

Recall that the CRRA-CES version of EZ displays a preference for early (a pref-
erence for late/neutrality towards) resolution of uncertainty if α > (< / =) 1

ψ
. There-

fore, in this model, < displays Residual Risk Aversion (Seeking/Neutrality) if and
only if, in the space of temporal lotteries, there is a preference for early (a preference
for late/neutrality towards) resolution of uncertainty.

We can also introduce standard comparative notions.

11



Definition 3. Consider two preference relations <1 and <2 over ∆. We say that <1

has more Residual Risk Aversion than <2 if they coincide on degenerate lotteries and
if, for all a > b > c > d,

1

2
(b, b, . . . ) +

1

2
(c, c, . . . ) <2

1

2
(a, a, . . . ) +

1

2
(d, d, . . . )

implies
1

2
(b, b, . . . ) +

1

2
(c, c, . . . ) <1

1

2
(a, a, . . . ) +

1

2
(d, d, . . . ).

The comparative notion above parallels standard ones for risk and ambiguity
aversion (Ghirardato and Marinacci 2002): it only compares preferences that have
the same ranking on risk-free streams; for any two such preferences, it defines one as
more Residual Risk Averse than the other if it prefers the smallest “utility spread”
at least as much as the other.

Since, as shown in Proposition 3, the curvature of φ determines Residual Risk
Aversion in KM representations, we can obtain a comparative notion analogous to
risk aversion in standard Expected Utility theory:

Observation 4. Let<1 and<2 be two preferences with KM representations (φ1, u,D)
and (φ2, u,D), respectively. Then, <1 has more Residual Risk Aversion than <2 if
and only if there exist a strictly increasing and concave function f : R→ R such that
φ1 = f ◦ φ2.

4.2 Stochastic Impatience limits Residual Risk Aversion

We are now ready to state our main general result: Stochastic Impatience imposes
bounds on Residual Risk Aversion. In the proposition below, we say that a function
φ is more concave/convex than the log if φ = f ◦ ln for some concave/convex f .

Proposition 4. Let C = [x, x]. Let < be a preference relation over ∆ that satisfies
Assumptions 1 and 2 and let (φ, u,D) be a KM representation of <.

(i) If φ is weakly less concave than the log, then < satisfies Stochastic Impatience;

(ii) If φ is strictly more concave than the log, then < violates Stochastic Impatience;

(iii) There exists some preference relation <′ such that <′ has more Residual Risk
Aversion than < and violates Stochastic Impatience;

(iv) Let <′ be another preference relation over ∆ that satisfies Assumptions 1 and
2 and has more Residual Risk Aversion than <. Then:

(a) if < violates Stochastic Impatience, so does <′;

(b) if <′ satisfies Stochastic Impatience, so does <.

12



All these results have the same interpretation: no matter what are the prefer-
ences without risk – that is, no matter what EIS is –, adding enough Residual Risk
Aversion must lead to a violation of Stochastic Impatience. In turn, this means that
Stochastic Impatience imposes a bound on Residual Risk Aversion. One way to iden-
tify this bound is through the curvature of φ in the KM representation. This is the
content of parts (i) and (ii): whenever φ is more concave than the log, Stochastic
Impatience must be violated; and less concavity than the log means that Stochastic
Impatience holds. Alternatively, the result can be stated in terms of comparative
Residual Risk Aversion, the content of parts (iii) and (iv): if we increase Residual
Risk Aversion, Stochastic Impatience must eventually be violated; and comparative
notions or Residual Risk Aversion are fully reflected in whether Stochastic Impatience
holds.

The proof of Proposition 4 follows the same intuition outlined in Section 3.1 for
the special case of EZ: Stochastic Impatience implies that the agent should prefer
the lottery with a higher average but also higher spread in discounted utilities; under
EDU such spread does not matter, but Residual Risk Aversion induces the agent to
be averse to it.

We note that parts (i) and (ii) of Proposition 4 together do not constitute an if
and only if statement: when φ is neither more concave nor more convex than the log,
the proposition is silent as to whether Stochastic Impatience holds. This is an issue
that pertains to the discreteness of time intervals: in Appendix A we consider the
model with continuous time and show that, in that case, Stochastic Impatience holds
if and only if φ is less concave than the log.

5 Discussion

In this paper we show that under discounted and Expected Utility (Assumptions 1
and 2), Stochastic Impatience puts an upper bound on Residual Risk Aversion. This
bound rules out the parameters used in most applications of EZ and HS. Thus, to
maintain Stochastic Impatience, one must either relax these assumptions or lower
Residual Risk Aversion.

In terms of relaxing our assumptions, in Appendix B we extend our analysis
beyond Expected Utility, by considering a very broad class of models which in-
cludes probability weighting (Rank-Dependent Utility, Quiggin 1982, and Cumulative
Prospect Theory, Tversky and Kahneman 1992) and Disappointment Aversion (Gul,
1991). Indeed, many applications of such models to our context have already been
suggested in the literature, starting in the original paper of Epstein and Zin (1989).15

We show that models in this class always violate Stochastic Impatience whenever they
exhibit First Order Risk Aversion – as is the case in almost all specifications that use

15See Backus et al. (2004) and references therein.
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them.16 One may instead want to relax our other assumption of discounted utility
without risk. This is done by dropping additive separability, such as in models with
habit formation or memorable consumption. Qualitatively, our results extend beyond
separable preferences, in the sense that for any such model there is still a bound on
how high risk aversion can be for a fixed EIS.17 However, since there are many forms
of non-separable preferences, a unified result with a clear-cut bound on risk aversion
for a fixed EIS cannot be obtained without additional assumptions.

An alternative route is instead to incorporate other features into the model that
do not require high Residual Risk Aversion. Large coefficients of risk aversion – far
above 1 and in many cases as high as 10 or much more – are often needed because in
typical models an investor’s unwillingness to take financial or similar risks is solely due
to risk aversion. In practice, investors may also be affected by other aspects, such as
ambiguity aversion/robustness concerns, pessimism, rational inattention, or concerns
about rarely observed disasters. If these aspects are relevant but omitted from the
model, risk aversion may be overestimated, possibly to unrealistic parameters. For
example, if some of the equity premium is due to ambiguity aversion, incorporating it
into the model may allow for much lower coefficients of risk aversion (Barillas et al.,
2009). This would reduce the preference for early resolution of uncertainty to more
realistic levels (Epstein et al., 2014) and, more to the point, allow for Stochastic
Impatience to hold: since the latter is based on objective lotteries, it is unaffected by
ambiguity aversion. In general, any feature that reduces the individual’s willingness
to undertake financial risk without modifying her attitude towards objective lotteries,
as discussed in the surveys of Backus et al. (2004), Epstein and Schneider (2010), and
Hansen and Sargent (2014), could provide a way to reconcile the empirical fit of the
model with Stochastic Impatience. Thus, one possible message of our paper is that
it highlights the importance of including other relevant behavioral aspects instead
of simply increasing risk aversion fixing EIS — because this may have unappealing
implications.

16This includes, for example, pessimistic weighting functions (underweighting the probabilities of
good outcomes) in Rank-Dependent Utility, or a positive coefficient of disappointment aversion in
Gul (1991). See Segal and Spivak (1990) for a definition and general discussion of First Order Risk
Aversion. The key intuition is that First Order Risk Aversion implies extreme risk aversion with
respect to discounted utilities in a small neighborhood of certainty, which, by the same intuition as
above, leads to violations of Stochastic Impatience.

17Intuitively, even if we weaken Assumption 1 while maintaining Assumption 2, a concave enough
φ makes the value of any lottery be arbitrarily close to the value of its worst outcome, thus generating
a violation of Stochastic Impatience.
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Appendix

A Continuous Time and Additional Results

In this appendix, we consider a continuous time formulation of the model from Sec-
tion 4. As with discrete time, let C = [x, x] ⊂ R+ denote the space of per-period
consumption. The set of dates is now T = [0, t̄], where t̄ > 0 may be +∞.

For each δ ∈ R++ ∪ {+∞}, let (c, t, x, δ) denote the consumption stream that
returns c ∈ C for each time t̃ /∈ [t, t+ δ) and returns x ∈ C for t̃ ∈ [t, t+ δ)∩T . Note
that (c, t, x,+∞) denotes the consumption stream that returns c until date t and x
from t onwards.

We consider preferences < that can be represented by

V (p) = Ep
[
φ
(∫ t̄

0
D(t)u(x(t))dt∫ t̄

0
D(t)dt

)]
,

for lotteries such that the integrals are well defined, where u : C → R+ is continuous,
strictly increasing, and satisfies u(x) = 0, D : T → [0, 1] is continuous and strictly
decreasing, and φ : [0, u(x)]→ R is strictly increasing.

Recall that Stochastic Impatience states that it is preferred to associate higher
prizes to earlier dates. The analogous notion of Stochastic Impatience to continuous
time is as follows:

Definition 4 (Stochastic Impatience’). < satisfies Stochastic Impatience’ if for any
t1, t2 ∈ R+ with t1 < t2, and any c, x1, x2 ∈ C with x1 > x2 > c

1

2
(c, t1, x1,+∞) +

1

2
(c, t2, x2,+∞) <

1

2
(c, t2, x1,+∞) +

1

2
(c, t1, x2,+∞). (5)

Note that in the definition above, any increase in consumption is always perma-
nent. In the example from the introduction, the options involved either a permanent
increase of 20% starting at some future date or a permanent increase of 10% starting
at some future date. What would happen if, instead, we also allowed the increases to
be paid only for a finite period of time? Consider the following stronger version.

Definition 5 (Strong Stochastic Impatience). < satisfies Strong Stochastic Impa-
tience if for any t1, t2 ∈ R+ with t1 < t2, any δ ∈ R++ ∪ {+∞} and any c, x1, x2 ∈ C
with x1 > x2 > c

1

2
(c, t1, x1, δ) +

1

2
(c, t2, x2, δ) <

1

2
(c, t2, x1, δ) +

1

2
(c, t1, x2, δ). (6)

We now show that, with continuous time, both versions of Stochastic Impatience
are equivalent to each other and correspond to φ being less concave than the log.

15



Proposition 5. Suppose time is continuous and let (φ, u,D) be a KM representation
of <. The following statements are equivalent:

1. < satisfies Strong Stochastic Impatience;

2. < satisfies Stochastic Impatience’;

3. φ is weakly less concave than the log.

The results above show that not only Stochastic Impatience’ and Strong Stochastic
Impatience are equivalent in continuous time, but also that both are equivalent to
φ being less concave than the log. Note that this is a stronger result than the one
obtained in discrete time, where the concavity conditions were sufficient but not
necessary.18 Therefore, in continuous time, when φ is locally more concave than the
log at some points and locally less concave than the log in some other points, a
violation of Stochastic Impatience can be constructed.

The proof of Proposition 5 will be presented though two lemmas. We first show
that items 1 and 3 are equivalent to each other:

Lemma 2. Stochastic Impatience’ holds if and only if φ is less concave than the log.

Proof. The fact that Stochastic Impatience’ holds if φ is less concave than the log
follows by the same exact argument as in the discrete time case (see proof of part
(i) of Proposition 4). We now show that Stochastic Impatience’ fails if φ is not less
concave than the log.

Let φ = g◦ ln for some increasing function g : u(C)→ R. Suppose g is not convex.
Then, there exist H > L and ε > 0 such that

g (H + ε)− g (H) < g (L+ ε)− g (L) (7)

where L ∈ u (C) , H ∈ u (C) , (L+ ε) ∈ u (C) , (H + ε) ∈ u (C).
Take the following x, y, and α:

y ≡ u−1 (exp (H))− x ∴ H = ln (u (x+ y))

x ≡ u−1 (exp (ε+H))− x ∴ ε = ln (u (x+ x))− ln (u (x+ y)) ,

α = 1− exp (L−H) ∈ (0, 1) ∴ L = ln ((1− α)u (x+ y)) .

Then, we have

g (H + ε)− g (H) = g (ln (u (x+ x)))− g (ln (u (x+ y))) .

18In discrete time, Stochastic Impatience also does not imply Strong Stochastic Impatience. That
is, in discrete time, φ weakly less concave than the log implies Stochastic Impatience, which implies
Strong Stochastic Impatience, and these inclusions are strict.
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Moreover,
g (L+ ε)− g (L)

= g (ln ((1− α)u (x+ y)) + ln (u (x+ x))− ln (u (x+ y)))− g (ln ((1− α)u (x+ y)))

= g (ln ((1− α)u (x+ x)))− g (ln ((1− α)u (x+ y))) .

Substituting in (7), yields

g (ln (u (x+ x)))−g (ln (u (x+ y))) < g (ln ((1− α)u (x+ x)))+g (ln ((1− α)u (x+ y))) ,

showing that Stochastic Impatience’ fails if we take c = x.

Taking δ = +∞, we find that Strong Stochastic Impatience implies Stochastic
Impatience’, so that 1 =⇒ 2. By Lemma 2, 2 ⇐⇒ 3. It remains to be shown that
3 =⇒ 1.

Lemma 3. Suppose φ is less concave than the log. Then, preferences satisfy Strong
Stochastic Impatience.

Proof. Use the representation to obtain the value of 1
2
(c, t1, x, δ) + 1

2
(c, t2, y, δ):

φ
(
αδt1ux +

(
1− αδt1

)
uc
)

+ φ
(
γδt2uy +

(
1− γδt2

)
uc
)

2
,

where αδt1 ≡
∫
t∈[t1,t1+δ]∪T

D(t)dt∫∞
0 D(t)dt

> γδt2 ≡
∫
t∈[t2,t2+δ]∪T

D(t̃)dt̃∫∞
0 D(t̃)dt

, and ux ≡ u(c + x) > uy ≡
u(c+ y) > uc ≡ u(c) ≥ 0.

It suffices to show that if φ is less concave than the log, then

φ (αux + (1− α)uc) + φ (γuy + (1− γ)uc)

≥ φ (αuy + (1− α)uc) + φ (γux + (1− γ)uc) (8)

for all 0 < γ < α < 1, 0 < uc < uy < ux. Let φ = g ◦ ln for some increasing and
weakly convex g, so equation (8) becomes:

g (ln (αux + (1− α)uc)) + g (ln (γuy + (1− γ)uc))

≥ g (ln (αuy + (1− α)uc)) + g (ln (γux + (1− γ)uc)) . (9)

We now show that the points on the LHS of (9) have both a higher mean and a
higher spread that the points on the LHS. It will then follow from the fact that g is
increasing and weakly convex that the inequality holds. To see that the points on the
LHS have a higher mean, note that

ln (αux + (1− α)uc) + ln (γuy + (1− γ)uc)
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≥ ln (αuy + (1− α)uc) + ln (γux + (1− γ)uc)

⇐⇒ [α (1− γ)− (1− α) γ]ucux ≥ [(1− γ)α− (1− α) γ]ucuy

⇐⇒ (α− γ)uc (ux − uy) ≥ 0,

which is true since α > γ, ux > uy, and uc ≥ 0. To see that the points on the LHS
have a higher spread, note that

ln (αux + (1− α)uc) > max {ln (αuy + (1− α)uc) , ln (γux + (1− γ)uc)}
> ln (γuy + (1− γ)uc) .

Thus, condition (9) holds.

B Beyond Expected Utility

In this section we show that the tension between Stochastic Impatience and the
separation of time and risk preferences does not rely on Expected Utility.

We extend beyond Expected Utility by assuming that preferences are at least
locally bi-linear at 1

2
. This generalization includes as special cases popular models

such as those of probability weighting (Rank-Dependent Utility, Quiggin 1982, and
Cumulative Prospect Theory, Tversky and Kahneman 1992) and Disappointment
Aversion (Gul, 1991).19 In general, bilinearity holds if there is an increasing onto
function π : [0, 1] → [0, 1] , and a function f that evaluates (arbitrary) prizes, such
that the prospect that yields x with probability α and y otherwise, with f(x) > f(y),
is evaluated by π (α) f (x) + [1− π (α)] f (y). Since our goal is to be as general as
possible, we only require preferences to be bilinear for equally likely binary lotteries
(α = 1

2
) – the local bilinear model (Dean and Ortoleva, 2017).20Applying it to our

setting, we obtain the following generalization of the KM model using the continuous
time setup of Appendix A.

Definition 6. We say that < admits a local bilinear KM representation if there are
exist strictly increasing and continuous u : [x, x] → R+ with u(x) = 0, a strictly
decreasing D : T → [0, 1], a strictly increasing and differentiable φ : u([x, x]) → R,

and π(1
2
) ∈ (0, 1), such that for all x, y ∈ X , p = 1

2
x + 1

2
y with

∫ t̄
0
D(t)u(x(t))dt ≥∫ t̄

0
D(t)u(y(t))dt is evaluated according to:

V (p) = π
(1

2

)
φ
(∫ t̄

0
D(t)u(x(t))dt∫ t̄

0
D(t)dt

)
+
[
1− π

(1

2

)]
φ
(∫ t̄

0
D(t)u(y(t))dt∫ t̄

0
D(t)dt

)
.

19It also allows for generalizations of Rank-Dependent Expected Utility, e.g., the minimum from a
set of probability distortions (Dean and Ortoleva, 2017). On the other hand, it does not encompass
all known models of risk preferences (e.g., it does not encompass Cautious Expected Utility, Cerreia-
Vioglio et al. 2015).

20This is a local specification of the bilinear (or biseparable) model of Ghirardato and Marinacci
(2001) for objective risk. Here, preferences are not restricted to be Bilinear in general, but only that
there is some bilinear representation for 50/50 lotteries.
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It is easy to see that in a local bilinear KM representation Residual Risk Aversion
can be achieved either by adding curvature to φ, as in the standard KM representation,
or by adding non-Expected Utility and First Order Risk Aversion (Segal and Spivak,
1990) by positing that π(1

2
) < 1

2
– underweighting the best outcome.

Proposition 6. Let < be a preference relation over ∆ that admits a local bilinear
KM representation (u,D, φ, π). If π(1

2
) < 1

2
, then < violates Stochastic Impatience’.

The result above shows that in a continuous time setting, even if we go beyond
Expected Utility by looking at the broad class of local bilinear models, displaying
First Order Risk Aversion always leads to violations of Stochastic Impatience, inde-
pendently of the shape of φ. Intuitively, this derives from the fact that First Order
Risk Aversion implies extreme amounts of risk aversion in a neighborhood around
certainty, and we have already seen how Stochastic Impatience is violated once risk
aversion towards discounted utilities is high enough.

Proof. Take c = x (so that u(x) = 0), t1 = 0, and let x1 ∈ int (C) be such that
φ′(u(x1)) > 0 (which exists because φ is differentiable and strictly increasing). Fix
t2 > 0 and let x2 be such that:

u (x2) = u (x1)

∫ t
t2
D(t)dt∫ t

0
D(t)dt

. (10)

Note that x2 ∈ int (C) because 0 < u (x2) < u (x1). Thus, by construction, (c, t2, x1) ∼
(c, t1, x2) .

We will show that, if t2 is close enough to 0, then

π

(
1

2

)
φ (u(x1)) + (1− π

(
1

2

)
)φ

u(x2)

∫ t
t2
D(t)dt∫ t̄

0
D(t)dt


= π

(
1

2

)
φ (u(x1)) + (1− π

(
1

2

)
)φ

u (x1)

∫ tt2 D(t)dt∫ t
0
D(t)dt

2
< φ

u(x1)

∫ t
t2
D(t)dt∫ t̄

0
D(t)dt


where the equality above uses (10). First note that both sides equal φ(u(x1)) for
t2 = 0. We now show that the LHS falls faster than RHS when we increase t2 slightly,
generating a violation of Stochastic Impatience. By Leibniz’s rule we have

∂

∂t2
φ

u(x1)

∫ t
t2
D(t)dt∫ t̄

0
D(t)dt


|t2=0

= −φ′ (u(x1))
D(0)∫ t̄

0
D(t)dt
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whereas

∂

∂t2

π(1

2

)
φ (u(x1)) + (1− π

(
1

2

)
)φ

u (x1)

∫ tt2 D(t)dt∫ t
0
D(t)dt

2
|t2=0

= −(1− π
(

1

2

)
)φ′ (u (x1))

2D(0)∫ t
0
D(t)dt

So we want to show that

−φ′ (u(x1))D(0)∫ t̄
0
D(t)dt

> −
[
1− π

(
1

2

)]
φ′ (u (x1))

2D(0)∫ t
0
D(t)dt

Since φ′(u(x1))D(0)∫ t
0 D(t)dt

> 0, this is true if and only if π(1
2
) < 1

2
.

C Proofs of the results in the text

C.1 Proof of Observation 1

Using the representation, Stochastic Impatience holds if and only if

D(t1)u(x1) +D(t2)u(x2)

2
+
∑

t/∈{t1,t2}

D(t)u(c) ≥ D(t1)u(x2) +D(t2)u(x1)

2
+
∑

t/∈{t1,t2}

D(t)u(c)

for all all t1 < t2, c, and x1 > x2. Rearrange this expression to obtain:

[D(t1)−D(t2)] [u(x1)− u(x2)] ≥ 0.

Since u is strictly increasing, this inequality holds if and only if D(t1) ≥ D(t2). �

C.2 Proof of Proposition 1

Let ρ ≡ 1
ψ

denote the inverse of EIS. For notational simplicity, we will work with ρ
instead of ψ.

Since preferences are dynamically consistent, it suffices to look at lotteries in
which the earliest payment is made in period 1. Consider a lottery that, with equal
probability, either starts paying an increment of x in period 1 or starts paying an
increment of y in period t: 1

2
(c, 1, c+ x) + 1

2
(c, t, c+ y).

Note that < satisfies Stochastic Impatience (SI) if:

1

2
(c, 1, c+ x) +

1

2
(c, t, c+ y) <

1

2
(c, 1, c+ y) +

1

2
(c, t, c+ x)

for any c > 0, any x > y, and any t ∈ {2, 3, ...}. The proof will be given through a
series of lemmas.

20



Lemma 4. The value of lottery 1
2
(c, 1, c+ x) + 1

2
(c, t, c+ y) is(1− β) c1−ρ + β

(c+ x)1−α +
{
c1−ρ + βt−1

[
(c+ y)1−ρ − c1−ρ]} 1−α

1−ρ

2


1−ρ
1−α


1
1−ρ

.

Proof. Recall that in EZ, lotteries are evaluated using the recursion:

Vt =
{

(1− β)x(t)1−ρ + β
[
Et
(
V 1−α
t+1

)] 1−ρ
1−α
} 1

1−ρ
. (11)

With 50% chance, the individual gets c+x in all future periods, giving a continuation
value of V1 = c+x. With 50% chance, consumption equals c up to period t− 1, after
which the individual gets c + y. Therefore, Vt = c + y. Proceeding backwards, we
obtain:

Vt−n =
{

(1− β) c1−ρ (1 + β + ...+ βn−1
)

+ βn (c+ y)1−ρ} 1
1−ρ ,

for any n = 1, ..., t− 1. In particular,

V1 =
{

(1− β) c1−ρ (1 + β + ...+ βt−2) + βt−1 (c+ y)1−ρ} 1
1−ρ

=
{
c1−ρ + βt−1

[
(c+ y)1−ρ − c1−ρ]} 1

1−ρ
,

where the second line uses the fact that 1 + β + ...+ βt−2 = 1−βt−1

1−β .
Moving to period 0, we obtain:

V0 =

(1− β) c1−ρ + β

(c+ x)1−α +
{
c1−ρ + βt−1

[
(c+ y)1−ρ − c1−ρ]} 1−α

1−ρ

2


1−ρ
1−α


1
1−ρ

.

By the homotheticity of EZ preferences, we can, without loss of generality, take
a background consumption of c = 1. Therefore, Stochastic Impatience holds if and
only if, for all zH > zL > 1 and all t ∈ {2, 3, ...}, we have1− β + β

[
z1−αH +[1+βt−1(z1−ρL −1)]

1−α
1−ρ

2

] 1−ρ
1−α


1
1−ρ

≥

1− β + β

[
z1−αL +[1+βt−1(z1−ρH −1)]

1−α
1−ρ

2

] 1−ρ
1−α


1
1−ρ

. (12)
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Lemma 5. Stochastic Impatience holds if and only if

zρ−α ≥
[
1 + βt−1

(
z1−ρ − 1

)] ρ−α
1−ρ βt−1 (13)

for all z ≥ 1 and all t = {2, 3, ...}.

Proof. Let Φ : [1,+∞)→ R be given by

Φ(z) ≡ z1−α −
[
1 + βt−1

(
z1−ρ − 1

)] 1−α
1−ρ .

The proof has two parts. In the first part, we show that Stochastic Impatience holds
if and only if:

• Φ′(z) ≥ 0 for all z > 1 if α < 1.

• Φ′(z) ≤ 0 for all z > 1 if α > 1.

To establish this result, we rearrange inequality (12) in each of 4 possible cases.
Case 1: α, ρ < 1.

z1−α
H +

[
1 + βt−1

(
z1−ρ
L − 1

)] 1−α
1−ρ ≥ z1−α

L +
[
1 + βt−1

(
z1−ρ
H − 1

)] 1−α
1−ρ

⇐⇒ z1−α
H −

[
1 + βt−1

(
z1−ρ
H − 1

)] 1−α
1−ρ ≥ z1−α

L −
[
1 + βt−1

(
z1−ρ
L − 1

)] 1−α
1−ρ .

Case 2: α, ρ > 1.

z1−α
H +

[
1 + βt−1

(
z1−ρ
L − 1

)] 1−α
1−ρ ≤ z1−α

L +
[
1 + βt−1

(
z1−ρ
H − 1

)] 1−α
1−ρ

⇐⇒ z1−α
H −

[
1 + βt−1

(
z1−ρ
H − 1

)] 1−α
1−ρ ≤ z1−α

L −
[
1 + βt−1

(
z1−ρ
L − 1

)] 1−α
1−ρ .

Case 3: α > 1 > ρ.

z1−α
H −

[
1 + βt−1

(
z1−ρ
H − 1

)] 1−α
1−ρ ≤ z1−α

L −
[
1 + βt−1

(
z1−ρ
L − 1

)] 1−α
1−ρ .

Case 4: ρ > 1 > α.

z1−α
H −

[
1 + βt−1

(
z1−ρ
H − 1

)] 1−α
1−ρ ≥ z1−α

L −
[
1 + βt−1

(
z1−ρ
L − 1

)] 1−α
1−ρ .

In the second part, we differentiate Φ to obtain:

Φ′(z) = (1− α)
{
z−α −

[
1 + βt−1

(
z1−ρ − 1

)] ρ−α
1−ρ βt−1z−ρ

}
.

Since, by the previous result, Stochastic Impatience holds if Φ′(z) ≥ 0 when α < 1
and Φ′(z) ≤ 0 if α > 1, it follows that the term inside brackets must be weakly
positive for all z ≥ 1:

z−α ≥
[
1 + βt−1

(
z1−ρ − 1

)] ρ−α
1−ρ βt−1z−ρ.

Multiplying both sides by zρ > 0, we obtain (13).
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We now use Lemma 5 to determine when Stochastic Impatience holds.

Lemma 6. Stochastic Impatience if and only if either (i) α ≤ 1
ψ

, or (ii) α < 1.

Proof. The proof considers each of the six possible cases. We start with the two cases
under which Stochastic Impatience fails:

Case 1. α > 1 > ρ. To show that Stochastic Impatience fails in this case, note
that after some algebraic manipulations, we can rewrite (13) as:

1− βt−1

z1−ρ ≥ β(t−1) 1−ρ
α−ρ − βt−1

for all z ≥ 1. Note that the LHS converges to zero as z ↗ +∞. Moreover, the LHS
is bounded away from zero since

β(t−1) 1−ρ
α−ρ > βt−1 ⇐⇒ (t− 1)

1− ρ
α− ρ

< t− 1 ⇐⇒ 1 < α.

Therefore, there exists z̄ such that (13) fails for all z > z̄, showing that Stochastic
Impatience fails.

Case 2. α > ρ > 1. To show that Stochastic Impatience fails, rearrange (13) as

β
(t−1)(ρ−1)

α−ρ ≥
(
1− βt−1

)
zρ−1 + βt−1.

Note that, as z ↘ 1, the RHS converges to 1, whereas the LHS is always strictly less
than 1 (since (t−1)(ρ−1)

α−ρ > 0). Therefore, this inequality fails for z close to 1, showing
that Stochastic Impatience fails.

We now turn to the cases where Stochastic Impatience holds:
Case 3. 1 > α > ρ. Rearranging (13), we find that Stochastic Impatience holds

if and only if [
1 + βt−1

(
z1−ρ − 1

)]α−ρ
1−ρ ≥ zα−ρβt−1

for all z > 1. Rearrange this inequality as

1− βt−1

z1−ρ + βt−1 ≥ β
(t−1)(1−ρ)

α−ρ .

Because LHS is decreasing in z and converges to βt−1 as z ↗ +∞, this condition
holds for all z > 1 if and only if

βt−1 ≥ β(t−1)( 1−ρ
α−ρ),

which is true since ρ < α ≤ 1. Thus, Stochastic Impatience holds in this case.
Case 4. 1 < α < ρ. Rewrite (13) as

zρ−1 ·
(
1− βt−1

)
+ βt−1 ≥ β

(t−1)(ρ−1)
ρ−α .
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Since the LHS is increasing in z, this inequality holds for all z > 1 if and only if it
holds for z = 1:

1 ≥ β
(t−1)(ρ−1)

ρ−α ,

which is true because (t−1)(ρ−1)
ρ−α > 0. Thus, Stochastic Impatience also holds in this

case.
Case 5. α < ρ < 1. Rewrite (13) as

1

β
(t−1)(1−ρ)

ρ−α

≥ 1− βt−1

z1−ρ + βt−1.

Since the RHS is decreasing in z, this condition holds for all z > 1 if and only if it
holds for z = 1:

1

β
(t−1)(1−ρ)

ρ−α

≥ 1− βt−1 + βt−1 ⇐⇒ 1 ≥ β
(t−1)(1−ρ)

ρ−α ,

which is true since (t−1)(1−ρ)
ρ−α ≥ 0 under the parameters above.

Case 6. α < 1 < ρ. Notice that (13) can be simplified as

zρ−1
(
1− βt−1

)
+ βt−1 ≥ β(t−1)( ρ−1

ρ−α).

Since the LHS is increasing in z, this condition holds for all z > 1 if and only if it
holds for z = 1:

1 ≥ β(t−1)( ρ−1
ρ−α),

which is true since (t− 1)
(
ρ−1
ρ−α

)
> 0.

C.3 Proof of Proposition 2

The utility of the lottery 1
2
(c, 1, c+ x) + 1

2
(c, t, c+ y) is

−
exp

(
−k β

1−βu (c+ x)
)

+ exp
(
−k ·

(
β−βt
1−β u (c) + βt

1−βu (c+ y)
))

2
.

Therefore, Stochastic Impatience fails if and only if there exist x > y > c and t ∈
{2, 3, ...} such that

−
exp

(
−k β

1−βu (c+ y)
)

+ exp
(
−k ·

(
u (c) β−βt

1−β + u (c+ x) βt

1−β

))
2

> −
exp

(
−k β

1−βu (c+ x)
)

+ exp
(
−k ·

(
u (c) β−βt

1−β + u (c+ y) βt

1−β

))
2
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Rearrange this inequality as:

exp

(
−k β

1− β
u (c+ y)

)
− exp

(
−k ·

(
u (c)

β − βt

1− β
+ u (c+ y)

βt

1− β

))
< exp

(
−k β

1− β
u (c+ x)

)
− exp

(
−k ·

(
u (c)

β − βt

1− β
+ u (c+ x)

βt

1− β

))
.

For simplicity, we will assume that u is a differentiable function, although it is im-
mediate to generalize the argument for when it is not. Then, Stochastic Impatience
fails if and only if there exist x > c and t ∈ {2, 3, ...} such that

d

dx

[
exp

(
−k β

1− β
u (c+ x)

)
− exp

(
−k ·

(
u (c)

β − βt

1− β
+ u (c+ x)

βt

1− β

))]
> 0

Evaluating the derivative, the previous inequality becomes

exp

(
−k β

1− β
u (c+ x)

)
< βt−1 exp

(
−k ·

(
u (c)

β − βt

1− β
+ u (c+ x)

βt

1− β

))
.

Since both sides are positive, we can take logs to obtain:

−k β

1− β
u (c+ x) < (t− 1) ln β − k ·

(
u (c)

β − βt

1− β
+ u (c+ x)

βt

1− β

)
,

which can be rearranged as:

u (c+ x)− u (c) >
(t− 1) (1− β)

β − βt
· − ln β

k
. (14)

Therefore, Stochastic Impatience fails if and only if there exist x > c and t = {2, 3, ...}
such that (14) holds. For t = 2, condition (14) becomes

u (c+ x)− u (c) >
− ln β

β · k
.

To complete the proof, we verify that this inequality holds for some t if and only if it
holds for t = 2, that is:

− ln β

β · k
≤ (t− 1) (1− β)

β − βt
· − ln β

k

for all t > 2. To see this, rearrange the inequality above as

(t− 1) (1− β)− 1 + βt−1 ≥ 0. (15)

At β = 1, both sides equal zero. The derivative of the expression on the RHS with
respect to β is:

− (t− 1) + (t− 1) βt−2 = − (t− 1)
(
1− βt−2

)
,

which is strictly negative for all β ∈ [0, 1) and all t > 2. Thus, (15) holds for all
β ∈ [0, 1], concluding the proof. �
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C.4 Proof of Lemma 1

For necessity, note that, when restricted to degenerate streams, the representation is a
monotone transformation of

∑
T D(t)u(x(t)), so preferences must satisfy Assumption

1. Moreover, since risky lotteries as evaluated by taking expectations, preferences
satisfy Assumption 2 as in Expected Utility Theory.

For sufficiency, first note that by Assumption 1, there exist a strictly increasing
and continuous ũ : [x, x] → R+ and a strictly decreasing D : T → [0, 1] such that <
restricted to X are represented by

F ∗(x) :=
∑
t∈T

D(t)ũ(x(t)).

Applying a positive transformation, it follows that the same preference must also be
represented by

F (x) :=
1∑

T D(t)

∑
T

D(t)[ũ(x(t))− ũ(x)] =
1∑

T D(t)

∑
T

D(t)u(x(t)),

where u(x(t)) ≡ ũ(x(t)) − ũ(x), so that u(x) = ũ(x) − ũ(x) = 0. Note that F (X ) =
[0, u(x)].

By Assumption 2, there exists U : X → R such that < is represented by

V (p) := Ep
[
U
]
.

It follows that U and F represent the same preferences over X , i.e., for all x, y ∈ X ,

U(x) ≥ U(y)⇔ x < y⇔ F (x) ≥ F (y). (16)

Therefore, there must exist an increasing φ : [0, u(x)]→ R such that U = φ ◦ F .
We claim that φ must be strictly increasing. Suppose not. Then, there are a, b ∈

[0, u(x)] with a > b and φ(a) = φ(b). Consider the streams x and y that return u−1(a)
and u−1(b) each period, respectively. Since a > b we must have F (x) = a > b = F (y).
At the same time, since φ(a) = φ(b), we have U(x) = φ(F (x)) = φ(a) = φ(b) =
φ(F (y)) = U(y), violating (16).

The uniqueness claims follow from the same arguments as in the Expected Utility
Theorem. �

C.5 Proof of Proposition 3

The proof will be presented in three lemmas.

Lemma 7. Preferences are Residual Risk Averse (Seeking) if for all x, y ∈ [0, u(x)],

φ (γx+ (1− γ) y) + φ (γy + (1− γ)x) ≥ (≤)φ (x) + φ (y) (17)

where γ ≡ D(1)
D(1)+D(2)

∈ (1
2
, 1).
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Proof. Note that by Definition 2 and the KM representation, preferences display
Residual Risk Aversion whenever:

φ

(
D(1)u(a) +D(2)u(d) +

∑
t/∈{1,2}D(t)u(x)∑

T D(t)

)
= φ

(
[D(1) +D(2)]u(b) +

∑
t/∈{1,2}D(t)u(x)∑

T D(t)

)
and

φ

(
D(1)u(d) +D(2)u(a) +

∑
t/∈{1,2}D(t)u(x)∑

T D(t)

)
= φ

(
[D(1) +D(2)]u(c) +

∑
t/∈{1,2}D(t)u(x)∑

T D(t)

)
imply

φ (u(b)) + φ (u(c))

2
≥ φ (u(a)) + φ (u(d))

2
.

Since φ is strictly increasing, the first two equations can be simplified as:

u(b) =
D(1)u(a) +D(2)u(d)

D(1) +D(2)
and u(c) =

D(1)u(d) +D(2)u(a)

D(1) +D(2)
.

Therefore, Residual Risk Aversion holds if and only if, for all a and all d,

φ

(
D(1)u(a) +D(2)u(d)

D(1) +D(2)

)
+φ

(
D(1)u(d) +D(2)u(a)

D(1) +D(2)

)
≥ φ (u(a))+φ (u(d)) . (18)

Letting γ ≡ D(1)
D(1)+D(2)

, x ≡ u(a), and y ≡ u(d) concludes the proof.

Lemma 8. Let (φ, u,D) be a KM representation of <.

• If φ is discontinuous at any point x 6= 0, then < is not Residual Risk Averse.

• If φ is discontinuous at any point x 6= u (x), then < is not Residual Risk Seeking.

Proof. Suppose φ is discontinuous at x > 0. Let {ht} ↘ x be a decreasing sequence
that converges to x, let {lt} ↗ x be a non-decreasing sequence that converges to x.
Since {φ(ht)} and {φ(lt)} are monotone and bounded, they converge. Let

φ+ := lim
t→∞

φ(ht) > lim
t→∞

φ(lt) = φ−.

For each t, let uat := ht and udt := lt−γht
1−γ . Note that

udt < γudt + (1− γ)uat < γuat + (1− γ)udt = lt < x < ht = uat .

Since φ is bounded (by φ(0) and φ(u(x)), we can assume that the sequences {φ (γuat + (1− γ)udt)},
{φ (γudt + (1− γ)uat)}, {φ (uat)}, and {φ (udt)} are convergent (taking a subsequence
if necessary). Therefore,

lim
t→∞

φ(udt) = lim
t→∞

φ (γudt + (1− γ)uat) = lim
t→∞

φ (γuat + (1− γ)udt) = φ−,
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and
lim
t→∞

φ(uat) = φ+ > φ−.

Therefore, there exists t̄ such that for all t > t̄,

φ (γuat + (1− γ)udt) + φ (γudt + (1− γ)uat) < φ (uat) + φ (udt) ,

which, by (17), shows that preferences are not Residual Risk Averse.
Next, suppose φ is discontinuous at x < u (x). Let {ht} ↘ x be a non-increasing

sequence that converges to x, let {lt} ↗ x be an increasing sequence that converges
to x. As before, let

φ+ := lim
t→∞

φ(ht) > lim
t→∞

φ(lt) = φ−,

where the limits exist by the Monotone Convergence Theorem.
For each t, take udt := lt and take uat = ht−γlt

1−γ . Note that

uat > γuat + (1− γ)udt > γudt + (1− γ)uat = ht > x > lt = udt .

As before (taking a subsequence if necessary), we have

lim
t→∞

φ (uat) = lim
t→∞

φ (γuat + (1− γ)udt) = lim
t→∞

φ (γudt + (1− γ)uat) = φ+,

and
lim
t→∞

φ (udt) = φ− < φ+.

Thus, there exists t̄ such that for all t > t̄,

φ (γuat + (1− γ)udt) + φ (γudt + (1− γ)uat) > φ (uat) + φ (udt) ,

showing that preferences are not Residual Risk Seeking.

Lemma 9. Let (φ, u,D) be a KM representation of <.

• < is Residual Risk Averse if and only if φ is concave.

• < is Residual Risk Seeking if and only if φ is convex.

Proof. To establish sufficiency, suppose, without loss of generality, that x > y, so
that

x > γx+ (1− γ)y > γy + (1− γ)x > y.

It follows from the definition of concavity (convexity) and inequality (17) that
preferences are Residual Risk Averse (Seeking) if φ is concave (convex). We now
establish necessity.
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Suppose preferences are Residual Risk Averse. By the previous lemma, φ must be
continuous at any point x > 0. We need to show that φ is concave. Suppose not.
Then, there exist x, y ∈ [0, u(x)] with x > y and t ∈ (0, 1) such that

tφ(x) + (1− t)φ(y) > φ (tx+ (1− t) y) . (19)

Let F : [0, 1]→ R given by

F (t̃) ≡ φ
(
t̃x+

(
1− t̃

)
y
)
−
[
t̃φ(x) +

(
1− t̃

)
φ(y)

]
,

and note that F (t) < 0. Since φ can only be discontinuous at 0, F (t̃) is continuous
at all t̃ > 0. It is continuous at t̃ = 0 if either y > 0 or if φ is continuous at 0.

Let
L ≡

{
t̃ ∈ [0, t] : F (t̃) ≤ 0

}
and H ≡

{
t̃ ∈ [t, 1] : F (t̃) ≤ 0

}
.

Let
l ≡ supL and h ≡ inf H.

Because F (t̃) is continuous at t̃ > 0 and F (t) < 0, it follows that l < t < h. Moreover,
it follows from the definitions of the supremum and infimum that

F
(
t̃
)
< 0 ∀t̃ ∈ (l, h).

We claim that F (l) = 0. There are two cases to consider. If F is continuous at
0, then L is a compact and non-empty set (0 ∈ L), which implies that F (l) = 0.
Suppose, instead, that F is discontinuous at 0, which can only happen if y = 0 and φ
is discontinuous at 0. Because φ is increasing, the discontinuity must correspond to
an upwards jump: φ(0) < limz↘0 φ(z) =: φ(0+). Since

lim
t̃↘0

F (t̃) = lim
t̃↘0

{
φ
(
t̃x
)
−
[
t̃φ(x) +

(
1− t̃

)
φ(0)

]}
= φ (0+)− φ(0) > 0,

and F is continuous at t̃ > 0, there exists t̄ > 0 such that F (t̃) > 0 for all t̃ ∈ (0, t̄).
Hence, l ≥ t̄ by the definition of supremum. Therefore,

l ≡ supL = sup
{
t̃ ∈ [t̄, t] : F (t̃) ≥ 0

}
.

Because
{
t̃ ∈ [t̄, t] : F (t̃) ≥ 0

}
is compact (F (t̃) is continuous for all t̃ > 0) and non-

empty (t̄ belongs to it), it again follows that F (l) = 0.
Next, we show that F (h) = 0. Because F (t) < 0 and F (0) = 0, (19) implies

that t > 0. Therefore, F (t̃) is continuous at [t, 1], implying that H is a compact set.
Because it is also non-empty (1 ∈ H), we must have F (h) = 0.

Substituting the definition of F , we have shown:

lφ(x) + (1− l)φ(y) = φ (lx+ (1− l) y) , (20)

hφ(x) + (1− h)φ(y) = φ (hx+ (1− h) y) , (21)
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and
t̃φ(x) +

(
1− t̃

)
φ(y) > φ

(
t̃x+

(
1− t̃

)
y
)

(22)

for all t̃ ∈ (l, h).
Let y′ ≡ lx+ (1− l)y and x′ ≡ hx+ (1− h)y, so that y < y′ < x′ < x. Note that,

for all λ ∈ (0, 1), we have

λy′ + (1− λ)x′ = λ [lx+ (1− l)y] + (1− λ) [hx+ (1− h)y]
= [λl + (1− λ)h]x+ {1− [λl + (1− λ)h]} y . (23)

Since λl + (1− λ)h ∈ (l, h), we have

φ (λy′ + (1− λ)x′) = φ ([λl + (1− λ)h]x+ {1− [λl + (1− λ)h]} y)
< [λl + (1− λ)h]φ(x) + {1− [λl + (1− λ)h]}φ (y)
= λ [lφ(x) + (1− l)φ(y)] + (1− λ) [hφ(x) + (1− h)φ(y)]
= λφ (lx+ (1− l) y) + (1− λ)φ (hx+ (1− h) y)
= λφ (y′) + (1− λ)φ (x′)

for all λ ∈ (0, 1), where the first line uses (23), the second line uses equation (22), the
third line follows from algebraic manipulations, the fourth line uses (20) and (21),
and the last line substitutes the definitions of x′ and y′. Since this inequality holds
for all λ ∈ (0, 1), in particular, it must hold for γ and 1− γ:

φ (γy′ + (1− γ)x′) < γφ (y′) + (1− γ)φ (x′)

and
φ (γx′ + (1− γ) y′) < γφ (x′) + (1− γ)φ (y′) .

Combining these two inequalities, gives

φ (γy′ + (1− γ)x′) + φ (γx′ + (1− γ) y′) < φ (y′) + φ (x′) ,

showing that Residual Risk Aversion fails. The proof for Residual Risk Seeking is
analogous.

C.6 Proof of Observations 2, 3, and 4

Observation 2 is due to Proposition 3 and the fact that KM coincides with EDU if and
only if φ is affine. Observation 3 follows from Proposition 3 and the KM representation
of EZ given in Example 4. Observation 4 follows directly from Proposition 3.

�
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C.7 Proof of Proposition 4

Before presenting the proof, it is helpful to rewrite Stochastic Impatience in terms of
the KM model. Stochastic Impatience holds if and only if, for all x, y, c ∈ C with
x > y > c and all t1, t2 ∈ N with t1 < t2,

φ

(∑
t̃<t1

D(t̃)u(c) +
∑

t̃≥t1 D(t̃)u(x)∑∞
t̃=1D(t̃)

)
+ φ

(∑
t̃<t2

D(t̃)u(c) +
∑

t̃≥t2 D(t̃)u(y)∑∞
t̃=1 D(t̃)

)

≥ φ

(∑
t̃<t1

D(t̃)u(c) +
∑

t̃≥t1 D(t̃)u(y)∑∞
t̃=1 D(t̃)

)
+ φ

(∑
t̃<t2

D(t̃)u(c) +
∑

t̃≥t2 D(t̃)u(x)∑∞
t̃=1 D(t̃)

)
For notational simplicity, let ux ≡ u(x) > uy ≡ u(y) > uc ≡ u(c) ≥ 0, and let

dt ≡
∑
t̃≥tD(t̃)∑∞
t̃=1

D(t̃)
∈ (0, 1). Then, the previous condition becomes

φ (dt1ux + (1− dt1)uc) + φ (dt2uy + (1− dt2)uc)

≥ φ (dt1uy + (1− dt1)uc) + φ (dt2ux + (1− dt2)uc)

for all ux, uy, uc ∈ [0, u(x)] with ux > uy > uc and all dt1 , dt2 ∈
{∑∞

t̃≥tD(t̃)∑∞
t̃=1

D(t̃)

}
t∈N

with

dt1 > dt2 .

Proof of Part (i).

Let φ = g ◦ ln for some increasing and convex function g. It suffices to show that

g (ln (αux + (1− α)uc)) + g (ln (γuy + (1− γ)uc))
≥ g (ln (αuy + (1− α)uc)) + g (ln (γux + (1− γ)uc))

(24)

for all ux > uy > uc ≥ 0 and all 0 < γ < α ≤ 1. Let

z ≡ ln

[
(αuy + (1− α)uc) (γux + (1− γ)uc)

αux + (1− α)uc

]
.

Algebraic manipulations establish that:

z < min {ln (αuy + (1− α)uc) , ln (γux + (1− γ)uc)} ,

and

ln (αux + (1− α)uc) + z = ln (αuy + (1− α)uc) + ln (γux + (1− γ)uc) .

Therefore, by the convexity of g, we have

g (ln (αux + (1− α)uc))+g (z) ≥ g (ln (αuy + (1− α)uc))+g (ln (γux + (1− γ)uc)) .

With some algebra, it can also be shown that

z < ln (γuy + (1− γ)uc) .

Then, (24) follows from the fact that g is increasing.
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Proof of Part (ii).

Take uc = 0, t1 = 1, and let φ = g ◦ ln for some strictly concave function g. Then,
Stochastic Impatience implies:

g (lnux)− g (ln (1− dt) + lnux) ≥ g (lnuy)− g (ln (1− dt) + lnuy)

for t = 2, 3, ... . But note that

lnux − [ln (1− dt) + lnux] = lnuy − [ln (1− dt) + lnuy] = − ln (1− dt) .

Then, it follows from lnux > lnuy and the concavity of g that

g (lnux)− g (ln (1− dt) + lnux) < g (lnuy)− g (ln (1− dt) + lnuy) ,

which shows that Stochastic Impatience fails.

Proof of Parts (iii) and (iv).

The claims in parts (iii) and (iv) follow directly from (i) and (ii). In particular, any
preferences that admit a KM representation (φ, u, β) with φ(x) ≡ x1−σ

1−σ for σ > 1 (so
that φ is more concave than the log) violate Stochastic Impatience.

This concludes the proof of the Proposition. �
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