
The Ronald O. Perelman Center for 
Political Science and Economics (PCPSE)
133 South 36th Street        
Philadelphia, PA 19104-6297 

pier@econ.upenn.edu      
http://economics.sas.upenn.edu/pier 

PIER Working Paper 
18-017

Social Learning with Model Misspeciification: 
A Framework and a Characterization 

J. AISLINN BOHREN DANIEL N. HAUSER 

University of Pennsylvania  Aalto University  
& Carnegie Mellon University 

July 1, 2018
Revised November 7, 2019 

https://ssrn.com/abstract=3236842 

mailto:pier@econ.upenn.edu
http://economics.sas.upenn.edu/pier
https://ssrn.com/abstract=3236842


Social Learning with Model Misspecification: A

Framework and a Characterization∗

J. Aislinn Bohren† Daniel N. Hauser‡

This paper develops a general framework to study how misinterpreting in-
formation impacts learning. We consider sequential social learning and passive
individual learning settings in which individuals observe signals and the actions
of predecessors. Individuals have incorrect, or misspecified models of how to in-
terpret these sources – such as overreaction to signals or misperception of others’
preferences. Our main result is a simple criterion to characterize long-run beliefs
and behavior based on the underlying form of misspecification. This provides a
unified way to compare different forms of misspecification that have been previ-
ously studied, as well as generates new insights about forms of misspecification
that have not been theoretically explored. It allows for a deeper understanding of
how misspecification impacts learning, including exploring whether a given form
of misspecification is conceptually robust, in that it is not sensitive to parametric
specification, whether misspecification has a similar impact in individual and so-
cial learning settings, and how model heterogeneity impacts learning. Lastly, it
establishes that the correctly specified model is analytically robust, in that nearby
misspecified models generate similar long-run beliefs.
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1 Introduction

How do individuals learn when they misinterpret information? The literature on mis-

specified learning typically takes the following approach: fix an incorrect, or misspecified,

model – such as overreaction to signals or a failure to account for correlated information

– and explore how it impacts the long-run beliefs about the state. We know from this

literature that asymptotic learning may be incorrect, where beliefs converge to the wrong

state,1 cyclical, where beliefs do not converge,2 or path-dependent, where multiple learn-

ing outcomes arise with positive probability – for example, whether learning is correct

or incorrect depends on initial signals.3

These insights are usually developed by choosing a parameterized misspecified model

that captures a conceptual learning error and assuming that all agents have the same

model. But often, there may be multiple parameterizations that capture a given concep-

tual phenomenon, and these different parameterizations may yield different predictions

about asymptotic learning. Alternatively, there may be model heterogeneity, either be-

cause agents exhibit varying levels of one form of misspecification or because different

agents have conceptually distinct forms of misspecification. Such heterogeneity raises the

question of whether the representative agent approach is valid. Finally, the same form

of misspecification may have different implications for learning depending on whether

the source of information is private, public or social.

This paper develops a general framework to study how misinterpreting information

impacts learning. We consider a setting in which individuals learn from signals and the

actions of predecessors. Signals can be private, such as past experiences in similar situa-

tions, or public, such as the announcements of a government or health agency. Critically,

individuals have misspecified models of how to interpret these sources. We develop a

simple criterion to characterize long-run beliefs and behavior based on the underlying

form of misspecification. This characterization allows for a deeper understanding of how

different forms of misspecification impact learning. Specifically, it can be used to explore

whether a given form of misspecification is conceptually robust, in that its implications

are not sensitive to parametric specification, and to determine whether the misspecifi-

cation has a similar impact in individual and social learning settings. It can also be

used to show that misspecification in the settings we consider is analytically robust, in

that nearby models (in a measure-theoretic sense) generate similar learning outcomes.

Therefore, the predictions of a correctly-specified model are a good approximation for

1Rabin and Schrag (1999); Epstein, Noor, and Sandroni (2010); Gagnon-Bartsch and Rabin (2017);
Frick, Iijima, and Ishii (2019)

2Nyarko (1991); Bohren (2016); Fudenberg, Romanyuk, and Strack (2017); Gagnon-Bartsch (2017);
Frick, Iijima, and Ishii (2018); Heidhues, Koszegi, and Strack (2018)

3Guarino and Jehiel (2013); Eyster and Rabin (2010); Bohren (2016)
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settings with small levels of misspecification. In the case of heterogeneity, the character-

ization can be used to determine how agents with different models influence each others’

learning and to evaluate whether a representative agent model is a good approximation.

When agents’ models are sufficiently distinct, we show that heterogeneity can lead to

perpetual disagreement, with the beliefs of agents converging to different states despite

observing each others’ actions. Finally, we demonstrate how our framework can be

used to connect conceptually distinct forms of model misspecification that have similar

implications for learning.

Our framework captures a rich array of settings in which individuals are systemat-

ically biased when processing information and interpreting others’ choices. Depending

on the context, the empirical literature in psychology and economics documents that

individuals overreact or underreact to new information (e.g. overconfidence), slant in-

formation towards a preferred state (e.g. motivated reasoning, partisan bias), differen-

tially weight information based on their prior beliefs (e.g. confirmation bias), incorrectly

aggregate correlated information (e.g. redundancy neglect), misunderstand strategic in-

teraction (e.g. level-k, cognitive hierarchy), and misperceive others’ preferences (e.g.

false consensus effect, pluralistic ignorance).4,5 Our framework can represent these cog-

nitive biases as forms of model misspecification where individuals have incorrect models

of the informational environment and how others make decisions. Importantly, the

framework is not specific to a given set of biases and can be used to model broad classes

of systematic deviations from Bayesian learning with a correctly specified model. For

example, it can be used to represent non-Bayesian learning rules, such as the counting

heuristic (Ungeheuer and Weber 2017). This representation provides substantial added

structure and tractability for analysis.

Our framework encompasses sequential social learning and passive individual learn-

4Overconfidence: Edward (1982); Griffin and Tversky (1992); Moore and Healy (2008); Ortoleva and
Snowberg (2015); Underconfidence (in social information): Angrisani, Guarino, Jehiel, and Kitagawa
(2018); Motivated reasoning / partisan bias: Kunda (1990); Bartels (2002); Brunnermeier and Parker
(2005); Köszegi (2006); Bénabou and Tirole (2011); Jerit and Barabas (2012); Confirmation bias: Lord,
Ross, and Lepper (1979); Darley and Gross (1983); Plous (1991); Correlation neglect: Kallir and Sonsino
(2009); Eyster and Weizsacker (2011); Eyster, Rabin, and Weizsäcker (2018); Enke and Zimmermann
(2019); Level-k / cognitive hierarchy: Kübler and Weizsäcker (2004, 2005); Penczynski (2017) Social
perception bias: Ross, Greene, and House (1977); Marks and Miller (1987); Miller and McFarland
(1987); Gilovich (1990); Miller and McFarland (1991); Grebe, Schmid, and Stiehler (2008). Theories
of cognitive limitations provide a foundation for such biases. For example, bounded memory leads to
behavior consistent with many documented behavioral biases, including belief polarization, confirmation
bias and stickiness (Wilson 2014), while selective awareness leads to confirmation bias and conservatism
bias (Gottlieb 2015).

5The context of the learning setting will determine which biases are of first order relevance. For
example, pluralistic ignorance often arises in contexts where agents believe that a negative trait affects
their own behavior, while the false consensus effect arises for non-normative behaviors such as sexual
promiscuity or smoking.
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ing settings. Each agent is faced with a decision problem in which she selects an action;

her payoff depends on this action and an unknown state of the world. Prior to choosing

an action, she learns about the state from the actions of her predecessors, a private

signal and/or a sequence of public signals. The agent’s type specifies her preferences as

well as how she interprets signals and prior actions, captured by her subjective beliefs

about the signal distribution, others’ preferences, and how others interpret signals and

prior actions. Model misspecification refers to the case where these subjective distri-

butions differ from the true distributions. To maintain structure, we focus on aligned

environments in which types have a common interpretation of which signals are stronger

evidence for each state and the same ordinal, but not necessarily cardinal, preferences

over undominated actions. This framework captures all of the information-processing

biases cited above and nests several previously developed behavioral models of learning.6

Our first main result (Theorem 1) characterizes how asymptotic learning outcomes

depend on the form of misspecification. We show that the set of asymptotic learning

outcomes that arise with positive probability is determined by two expressions that are

straightforward to derive from the primitives of the misspecification: (i) the expected

change in the log likelihood ratio for each type at each candidate learning outcome; and

(ii) an ordering over the type space at an agreement outcome, which we refer to as maxi-

mal accessibility. The first condition is used to determine whether a learning outcome is

locally stable, in that beliefs converge to this limit belief with positive probability from

a neighborhood of the limit belief. Building on techniques used in Smith and Sorensen

(2000); Bohren (2016), we show that a learning outcome is locally stable if and only

if the the log likelihood ratio moves toward this learning outcome in expectation from

nearby beliefs.7 The second condition determines when, starting from a common prior,

it is possible to separate the beliefs of different types and push them to the neighborhood

of a disagreement outcome (this step follows immediately from the first condition for

agreement outcomes, where all types have the same limit beliefs).

A challenge in social learning settings is that the informational content of actions

depends on the current belief for each type. Therefore, in principle, the asymptotic

properties of beliefs could depend on the behavior of beliefs across the infinite belief

space. An important feature of our characterization is that the conditions we outline

6The applications in Section 5 demonstrate how our framework nests Rabin and Schrag (1999);
Epstein et al. (2010); Bohren (2016). More generally, we nest heuristics that reduce to Markovian
updating rules. Our framework cannot nest heuristics that reduce to non-Markovian updating rules or
are calibrated based on equilibrium objects (e.g. the analogy-based expectation equilibria in Guarino
and Jehiel (2013)).

7This condition relates to the relative entropy of a type’s model in each state. Intuitively, a type’s
beliefs move towards the state that is more likely to generate the observed pattern of actions and signals.
As discussed below, limit beliefs are a Berk-Nash equilibrium (Esponda and Pouzo 2016).
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only need to be verified at a finite set of beliefs: that is, the set of beliefs in which

all types have degenerate beliefs on one of the states. This significantly simplifies the

calculations required to use the characterization in specific settings.

Our characterization also establishes a robustness property (Theorem 2): regardless

of the form of misspecification, agents almost surely learn the correct state when they

have approximately correct models.8 This shows that agents do not need to know

exactly how their peers behave in order to learn from their choices. Complete learning

obtains even in the presence of model heterogeneity, as long as all models are suffi-

ciently close to the correct model. This may not seem surprising, since Bayes rule is

continuous. But in an infinite horizon setting, a small mistake in each period could sum

to a large aggregate mistake. If biases aggregate in this manner, then even arbitrarily

small misspecification could interfere with learning, which would in principle limit the

applicability of rational learning models. Our results establish when this does not occur.

We close with several applications to illustrate the value of a general framework for

studying learning with model misspecification. In the first two applications, we explore

whether two forms of signal misspecification – over- and underreaction and confirmation

bias – are sensitive to the parametric specifications used to model how agents misinter-

pret information. We demonstrate a fundamental difference in robustness: confirmation

bias is conceptually robust, while over- and underreaction are not. We then demonstrate

that the same parameterization of over- and underreaction has a qualitatively different

impact in individual and social learning settings. Learning from others’ actions interacts

with the signal misspecification to lead to cyclical learning in the case of sufficiently se-

vere overreaction and incorrect learning in the case of sufficiently severe underreaction.

In contrast, when individuals learn solely from signals, correct learning obtains almost

surely for both cases.

In the third application, we examine whether a representative agent model is a good

approximation for a setting with model heterogeneity in which agents vary in the degree

to which they fail to account for redundant information. When heterogeneity is small,

the representative agent model is a good approximation. In contrast, when heterogeneity

is large, differing levels of bias actually facilitate learning, in that correct learning obtains

for a strictly larger set of parameters compared to the corresponding representative agent

model.

In the fourth application, we derive an equivalence in terms of asymptotic learning

8The robustness result in Bohren (2016) is a special case of this result. In contrast, Frick et al.
(2019) show that robustness can fail in a social learning model with an infinite state space, in that
arbitrarily small amounts of misspecification can lead to asymptotic beliefs that are very far from the
true state. Madarász and Prat (2016) also find a lack of robustness in a mechanism design setting where
a principal’s model of an agent’s preferences is misspecified.
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outcomes between two conceptually distinct forms of misspecification – naive temptation,

a form preference misspecification, and partisan bias, a form of signal misspecification.

We show that for each level of temptation, there exists a level of partisan bias that yields

the same set of asymptotic learning outcomes.

Finally, we study a level-k model of reasoning. This form of model misspecification

is prominent in the empirical literature on social learning but relatively unexplored in

the theoretical literature, which typically focuses on learning for a single type. It is

straightforward to apply our characterization to this setting with multiple types. We

show that entrenched disagreement emerges as a robust feature of social learning in a

level-k model.

Related Literature. A rich literature explores when model misspecification interferes

with learning in both individual and social learning settings. The results are mixed:

in some cases, misspecification impedes learning about the state or leads to inefficient

behavior, while in other cases, misspecified agents still learn the correct state asymptoti-

cally. For example, in a passive learning setting, where information arrives independently

of past action choices, overweighting information (Epstein et al. 2010; Rabin and Schrag

1999) can lead to incorrect learning while underweighting information (Epstein et al.

2010) does not impede correct learning. In a social learning setting, where agents learn

from their peers, failing to account for redundant information (Eyster and Rabin 2010;

Bohren 2016; Gagnon-Bartsch and Rabin 2017) can lead to incorrect learning, while

overestimating redundant information (Bohren 2016) or overestimating the similarity of

others’ preferences (Gagnon-Bartsch 2017) can lead to non-convergence. In contrast, us-

ing coarse reasoning (Guarino and Jehiel 2013) or using a linear updating heuristic that

puts sufficient weight on agents’ own signals (Jadbabaie, Molavi, Sandroni, and Tahbaz-

Salehi 2012) leads to correct learning almost surely. In an active learning setting, where

future signals depend on past action choices, selective attention (Schwartzstein 2014)

can lead to incorrect learning, misspecified prior beliefs (Fudenberg et al. 2017; Nyarko

1991) can lead to non-convergence, and overconfidence can lead to inefficiently low ef-

fort (Heidhues et al. 2018). In other settings, correlation neglect can lead to inefficient

risk-taking (Levy and Razin 2015) and ideological extremeness (Ortoleva and Snowberg

2015).

Our paper is the first to explore a general model of misspecification in social learn-

ing settings. By characterizing when misspecification interferes with learning and when

it does not, our framework unifies insights about the impact of different forms of mis-

specification in social and passive learning settings (our characterization does not apply

to active learning settings). Molavi, Tahbaz-Salehi, and Jadbabaie (2018) engage in a

similar exercise when agents share their beliefs on a network and have imperfect recall.
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They nest common learning rules that agents use to aggregate beliefs (as opposed to

actions), including the canonical Degroot model, and show how this impacts long-run

information aggregation. Heidhues, Koszegi, and Strack (2019) develop tools to study

convergence in a general class of active learning models with misspecification.

Esponda and Pouzo (2016, 2017) explore the implications of model misspecification

for solution concepts. In a Berk-Nash equilibrium, agents have a set of (possibly mis-

specified) models of the world and play optimally with respect to the model that is the

best fit, i.e. the model that minimizes relative entropy with respect to the distribution

of outcomes under the equilibrium strategy profile. In our paper, each state corresponds

to a model of the world in the Esponda and Pouzo (2016) framework. We show that

if beliefs about the state converge, then they converge to a limit belief such that each

type’s model at that limit belief is the best fit. This set of limit beliefs in our learning

characterization is analogous to pure strategy Berk-Nash equilibria. However, there may

also be pure strategy Berk-Nash equilibria which are almost surely not limit beliefs in

our setting. Further, there may be mixed strategy Berk-Nash equilibria; these equilibria

have no analogue in our dynamic setting. In particular, when beliefs do not converge in

our setting, the empirical frequency of actions does not correspond to the probability of

each action in a mixed strategy Berk-Nash equilibrium.

A related class of papers explore the foundations of non-Bayesian updating and model

misspecification. Ortoleva (2012) axiomatizes a non-Bayesian updating rule in which

agents switch models when they observe a sufficiently low probability event. Cripps

(2018) axiomatizes a class of non-Bayesian updating processes that are independent of

how individuals partition information. Frick et al. (2018) show that the false consen-

sus effect can arise when agents’ beliefs are derived only from local interactions in an

assortative society.

An older statistics literature on model misspecification complements recent work.

Berk (1966) and Kleijn and van der Vaart (2006) show that when an agent with a mis-

specified model is learning from i.i.d. draws of a signal, her beliefs will converge to

the distribution that minimizes relative entropy with respect to the true model. Shal-

izi (2009) extends these result to a class of non-i.i.d. signal processes. Our social

learning setting does not fall into this class of processes. In particular, the asymptotic-

equipartition property, which describes the long-run behavior of the sample entropy, is

generally not satisfied in social learning environments with model misspecification.

The paper proceeds as follows. Section 2 sets up the model. Section 3 outlines the

agent’s decision problem and evolution of beliefs. Section 4 presents the asymptotic

learning characterization and robustness results. Section 5 demonstrates applications of

the model, while Section 6 concludes. The Appendix contains the proofs of the main

6



results in the paper, while the Online Appendix takes up extensions and related technical

issues.

2 The Common Framework

2.1 The Model

States and Actions. There are two payoff-relevant states of the world, ω ∈ {L,
R}. Nature selects one of these states at the beginning of the game according to prior

p0 ≡ Pr(ω = R). A countably infinite set of agents t = 1, 2, ... act sequentially and

choose an action from a finite set A with M ≡ |A| ≥ 2 actions. Let ãt denote agent t’s

chosen action.9

Signals and Histories. Agents learn from private information, public information,

and the actions of other agents. Agent t observes a private signal s̃t ∈ (0, 1) governed

by conditional c.d.f. F ω in state ω, the ordered history of past actions (ã1, ..., ãt−1),

and the ordered history of public signals (σ̃1, ..., σ̃t−1), where σ̃τ ∈ (0, 1) is governed by

conditional c.d.f. Gω in state ω.10 Let ht ≡ (ã1, ..., ãt−1, σ̃1, ..., σ̃t−1) denote the public

history.

Signals 〈s̃t〉 and 〈σ̃t〉 are i.i.d. across time, conditional on the state and jointly in-

dependent. No private or public signal perfectly reveals the state: FL, FR and GL, GR

are mutually absolutely continuous with common supports, denoted by S and Σ, re-

spectively. Therefore, there exist positive finite Radon-Nikodym derivatives dFR/dFL

and dGR/dGL. Assume that some signals are informative, which rules out the trivial

case where dFR/dFL = 1 almost surely and dGR/dGL = 1 almost surely, and assume

that the public signal space Σ is finite. As is standard convention, normalize each signal

realization to be the posterior probability that the state is R following a neutral prior,

i.e. s = 1/(1 + dFL/dFR(s)) for all s ∈ S and σ = 1/(1 + dGL/dGR(σ)) for all σ ∈ Σ.

Private beliefs are bounded if inf S > 0 and supS < 1 and unbounded if the closure of

the convex hull of S is [0, 1]. Let σR ≡ supΣ denote the public signal that corresponds

to the strongest evidence for state R, which we refer to as the maximal public signal in

state R. Analogously, let σL ≡ inf Σ denote the maximal public signal in state L.

Types. Each agent has a privately observed type θ̃t ∈ Θ drawn from distribution

π ∈ ∆(Θ), where Θ ≡ (θ1, ..., θn) is a non-empty finite set. An agent’s type specifies

her model of inference and preferences. A model of inference determines how a type

interprets information from signals and actions. Preferences determine which action

this type chooses, given its belief about the state. The type space Θ captures both types

9We maintain the convention that xi or x corresponds to an arbitrary element of an ordered set X
and x̃t corresponds to a random variable with support X .

10Similarly, we maintain the convention that s̃t and σ̃t correspond to the random variable and s and
σ denote an arbitrary element A.
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that occur with positive probability and types that an agent may mistakenly attribute

to other agents; therefore, π may assign probability zero to some types in Θ. Types 〈θ̃t〉
are i.i.d. across time and independent of both signals.

Models of Inference. For each type θi, a model of inference includes (i) a subjective

private signal distribution F̂ ω
i in each state, (ii) a subjective public signal distribution

Ĝω
i in each state, and (iii) a subjective distribution of types π̂i ∈ ∆(Θ). Assume that

each type θi believes that no private or public signal perfectly reveals the state and

does not observe a signal that is inconsistent with its model of inference: (F̂L
i , F̂

R
i )

and (ĜL
i , Ĝ

R
i ) are mutually absolutely continuous and have full support on S and Σ,

respectively. Given private signal s and a flat prior, type θi’s subjective private belief

that the state is R is ŝi(s) ≡ 1/(1 +dF̂L
i /dF̂

R
i (s)).11 Similarly, given public signal σ and

a flat prior, type θi’s subjective belief that the state is R is σ̂i(σ) ≡ 1/(1+dĜL
i /dĜ

R
i (σ)).

All types share common prior p0 that the state is R.12

We focus on forms of misspecification in which agents have a partial common un-

derstanding of how to interpret signals. We assume that each type’s subjective private

and public signal distributions are aligned with the true private and public signal distri-

butions, in that they ordinally rank signals in the same way, in terms of which signals

are more or less indicative of state R. In other words, for any two signals s and s′, if s

is stronger evidence for state R than s′ under the true measure, then s is also stronger

evidence for state R than s′ under the subjective measure. We allow one exception for

the possibility that a type believes signals are completely uninformative.

Assumption 1 (Aligned Subjective Signals). For all θi ∈ Θ, the subjective private

signal distributions are either aligned with the true private signal distributions, i.e. for

any s, s′ ∈ S such that s > s′, then ŝi(s) > ŝi(s
′) or uninformative, i.e. ŝi(s) = 1/2 for

all s ∈ S. Analogously, the subjective public signal distributions are either aligned with

the true public signal distributions or uninformative.

This assumption allows types to differ in the degree to which a signal influences their

belief about the state – both relative to other types and relative to the true distribution.

11This set-up implicitly restricts attention to forms of misspecification in which two signals that map
into the same true posterior also map into the same subjective posterior. In Online Appendix D, we
show that under this restriction, it is without loss of generality to define subjective signal distributions
with respect to the private belief space S ⊂ [0, 1] rather than an arbitrary signal space. We can also
define misspecification relative to the relationship between the subjective and true private beliefs, ŝ
and s. In Online Appendix D, we show that for any strictly increasing function ŝ : S → [0, 1] with
ŝ(inf S) < 1/2 and ŝ(supS) > 1/2, there exists a pair of mutually absolutely continuous probability
measures with full support on the signal space that are represented by ŝ.

12It is straightforward to extend the types framework to allow for heterogenous prior beliefs about
the state, i.e. type θi has a prior belief pi,0.
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Note that when public signals are aligned, the maximal public signals σL and σR are

also maximal with respect to each agent’s subjective public signal distribution.

Preferences. Type θi earns payoff ui(a, ω) from choosing action a in state ω, where

ui : A × {L,R} → R. Given a belief p ∈ [0, 1] that the state is R, the expected payoff

from choosing action a is (1− p)ui(a, L) + pui(a,R). An agent chooses the action that

maximizes her expected payoff. For each type, assume that at least two actions are not

weakly dominated, no two actions yield the same payoff in both states, and no action is

optimal at a single belief. Without loss of generality, assume that no action is dominated

for all types.

We focus on settings in which agents generate information in a common way, in terms

of their action choices, by restricting how preferences vary across types. A set of utility

functions are aligned if, under complete information, each utility function has the same

ordinal ranking over undominated actions.

Assumption 2 (Aligned Preferences). The set of types Θ have aligned preferences, in

that there exists a complete order � on A such that if a � a′, then for all i = 1, ..., n,

either ui(a,R) > ui(a
′, R) or a is dominated.13

Assumption 2 implies common knowledge that preferences are aligned, since all agents

believe that other agents have a type in Θ, and so on. This assumption places no

restrictions on how to order actions that are optimal for a single type or how a type

ranks its dominated actions. Smith and Sorensen (2000) establish that confounded

learning can arise when types have preferences that are not aligned, such as u1 = 1a=ω

and u2 = 1a6=ω. The same is true with misspecification. Therefore, we restrict attention

to settings in which confounded learning does not arise in the correctly specified model.

Given Assumption 2, we maintain a complete order over the action space A by

relative preference in state R. Fixing an order � that satisfies Assumption 2, index

actions to correspond to this order, i.e. A ≡ (a1, ..., aM), where am � al iff m > l.14

Under this order, aM denotes the maximal action in state R, and a1 denotes the maximal

action in state L.

Categories of Types. We can broadly group types into four categories based on their

models of inference: noise, autarkic, sociable and correct. A noise type does not use

13For any undominated actions a and a′, if ui(a,R) > ui(a
′, R), then ui(a, L) < ui(a

′, L). Therefore,
this assumption implies that utility functions also have the same ordinal ranking over undominated
actions in state L, i.e. if a � a′, then for all i = 1, ..., n, either ui(a

′, L) > ui(a, L) or a′ is dominated.
14This order is not necessarily unique. Assumption 2 places no restriction on how actions that are

optimal for a single type are ordered. For example, if one type chooses action R1 when p ≥ 1/2, and
otherwise chooses L1, and a second type chooses action R2 when p ≥ 1/2, and otherwise chooses L2,
then both the orders R1 � R2 � L1 � L2 and R2 � R1 � L1 � L2 satisfy Assumption 2.
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its private signal or the history to learn about the state. We can model this using the

types framework by defining a noise type to believe that private and public signals are

uninformative, F̂L
i = F̂R

i and ĜL
i = ĜR

i . Noise types also believe that actions reflect

no information about the state, which is modeled as the belief that all agents are noise

types, π̂i(ΘN) = 1, where ΘN denotes the set of noise types. An autarkic type learns from

its private signal, but not the history. It believes that its private signal is informative,

F̂L
i 6= F̂R

i , the public signal is uninformative, ĜL
i = ĜR

i , and all agents are noise types,

π̂i(ΘN) = 1. To avoid the trivial case in which an autarkic type is observationally

equivalent to a noise type, we assume that an autarkic type has preferences such that

it has at least two undominated actions on the set of posterior beliefs that arise from

its subjective private signal distribution. A type is sociable if it uses the history to

learn about the state. These types believe that either actions or the public signal are

informative. Finally, a correct type has a correct model of inference, F̂ ω
i = F ω, Ĝω

i = Gω

and π̂i = π.

Let Θ be ordered such that the first k types are sociable and the remaining n− k types

are noise and autarkic types. Let ΘS = (θ1, ..., θk) denote the set of sociable types, ΘA

denote the set of autarkic types and ΘN denote the set of noise types.

Adequate Consistent Information. We focus on settings in which adequate infor-

mation arrives for agents to learn the state in a correctly specified model, and study

whether and how misspecification interferes with such learning. We know from Smith

and Sorensen (2000) that incomplete learning arises in correctly specified models when

there are no public signals, no autarkic types, and private signals are uniformly bounded

in strength. The same is true for misspecified models: if actions and public signals cease

to reveal information and all types are aware of this, then learning will be incomplete.

Assumption 3 rules out such settings by assuming that either public signals are infor-

mative or autarkic types occur with positive probability. Since autarkic types do not

observe the history, their actions are always informative.

Assumption 3 (Adequate Information). Either (i) public signals are informative,

dGR/dGL 6= 1, and all sociable types θi ∈ ΘS believe that public signals are informative,

dĜR
i /dĜ

L
i 6= 1, or (ii) there exists an autarkic type θj ∈ ΘA with π(θj) > 0 that plays

actions a1 and aM with positive probability, and each sociable type θi ∈ ΘS believes this

autarkic type exists, π̂i(θj) > 0.

This assumption ensures that actions or public signals are informative, and sociable

types believe that actions or public signals are informative.15

15While a setting with unbounded private signals would also guarantee complete learning in a cor-
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We also focus on settings in which the observed history is consistent with each type’s

model of inference, in that types do not observe what they believe to be zero-probability

histories. Trivially, if there is a single type, |Θ| = 1, then this type has a correct model

of the type distribution and consistency is not an issue.16 With multiple types, a type

may have a model of inference that places probability zero on an action that occurs with

positive probability. To rule out this possibility, we assume that sociable types believe

that there is an autarkic or noise type that plays each action with positive probability

(this probability can be arbitrarily small).

Assumption 4 (Consistent Information). When there are multiple types, |Θ| ≥ 2, then

for each a ∈ A and for each sociable type θi ∈ ΘS, there exists an autarkic or noise type

θj ∈ ΘA ∪ΘN with π̂i(θj) > 0 that plays a with positive probability.

This ensures that each sociable type believes that all histories are on the equilibrium

path, and we do not need to model how a type reacts to zero probability events.

Any misspecified model can be slightly perturbed so that it satisfies Assumption 3

and 4 by either (i) perturbing an uninformative public signal distribution so that it is

slightly informative, or (ii) perturbing the type distribution to add an autarkic or noise

type that occurs with arbitrarily small probability.

Timing. At time t, agent t realizes its type θ̃t and observes the history ht and private

signal s̃t, then chooses action ãt. Then public signal σ̃t is realized and the history is

updated to ht+1 to include (ãt, σ̃t).
17

2.2 Examples

This framework can capture many information-processing biases, social misperceptions

and other models of inference that have been studied theoretically and empirically. The

following examples demonstrate how our types framework captures various forms of

model misspecification.

Partisan Bias. This captures an information-processing bias that systematically slants

signals towards one state (Bartels 2002; Jerit and Barabas 2012). For example, an R-

rectly specified model, our learning characterization requires a stronger notion of adequate information,
where the minimum and maximum update to beliefs are uniformly bounded away from zero across
the belief space. The presence of even a weakly informative public signal or small share of autarkic
types guarantees that there is adequate information, whereas unbounded private signals do not. When
actions are uninformative at certainty, as is the case with unbounded private signals, and there is no
additional source of information (i.e. public signals or autarkic types), learning outcomes will depend
on the tail properties of the private signal distribution.

16When |Θ| = 1, it must be that π̂1(θ1) = π(θ1) = 1, and all observed actions will be consistent.
Note that even if only one type actually exists, π(θ1) = 1, if this type believes that there is another
type θ2, i.e. π̂1(θ2) > 0, then Θ = (θ1, θ2) and we are in the case with more than one type.

17Allowing agent t to observe σ̃t before choosing an action does not affect the analysis, but complicates
the notation.
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partisan type θi interprets all signals as being stronger evidence for state R than is

actually the case, ŝi(s) > s. A parameterization that captures this is F̂ ω
i (s) = F ω(sν)

for ν ∈ (0, 1) and F ω(s) with support S = (0, 1). This leads to private belief ŝi(s) = sν

– after observing signal s, the partisan type has the same belief as a correctly specified

type who observes signal sν .

Under- and Overreaction. Agents underreact or overreact to signals. For example,
ŝ(s)

1−ŝ(s) = ( s
1−s)

ν , where ν ∈ [0, 1) corresponds to underreaction and ν ∈ (1,∞) corre-

sponds to overreaction (Moore and Healy 2008; Epstein et al. 2010; Angrisani et al.

2018).

Correlation Neglect/Naive Learning. Agents underestimate the correlation in the actions

of prior agents: the true share of autarkic types is π(ΘA), but sociable types believe that

the share of autarkic types is π̂(ΘA) > π(ΘA) (Eyster and Rabin 2010; Bohren 2016;

Eyster et al. 2018; Enke and Zimmermann 2019).

Level-k/Cognitive Hierarchy. Level-1 believes all agents are noise types and behaves as

an autarkic type. Level-2 believes all agents are level-1 and interprets each prior action

as reflecting an independent private signal. Level-3 believes all agents are level-2, and

so on. The cognitive hierarchy model is similar, but allows agents to have a richer belief

structure over the types of other agents: a level-k type places positive probability on

levels 0 through k-1 (Penczynski 2017).

False Consensus Effect. Agents overweight the likelihood that others have similar prefer-

ences or models of inference. For example, there are two types with preferences u1 6= u2.

Both types believe that others have the same preferences as their own, π̂1(θ1) = 1 and

π̂2(θ2) = 1 (Ross et al. 1977; Marks and Miller 1987; Gagnon-Bartsch 2017; Frick et al.

2018).

Pluralistic Ignorance. Agents underweight the likelihood that others have similar pref-

erences or models of inference. For example, all agents have preferences u1, but believe

that others have preferences u2, π(θ1) = 1 and π̂1(θ2) = 1. Alternatively, all agents

correctly interpret private signals, but believe that others are overconfident (Miller and

McFarland 1987, 1991).

Limited Recall. An alternative interpretation of the social learning setting is that there

is a single long-run agent with limited memory: she can recall past actions but not past

signals. The agent may also be misspecified in how she recalls these actions (for example,

she has selective recall due to motivated reasoning).

The following example contains a complete specification of our framework. We use

this example throughout the paper to illustrate our main results.
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Example 1 (Partisan Bias). There are two types of agents: θ1 is a sociable type and

θ2 is an autarkic type. Both types seek to choose the action that matches the state,

A = {L,R} and ui(a, ω) = 1a=ω, and have an identical level of partisan bias ν ∈
(0, 1), where F̂ ω

i (s) = F ω(sν) as introduced above. To close the model, assume that

the public signal is uninformative, the private signal distribution is informative and

symmetric, FR(s) = 1 − FL(1 − s), there is a positive share π(θ2) ∈ (0, 1) of autarkic

types, type θ1 has a correctly specified type distribution, π̂1 = π, and the prior p0 = 1/2.

Trivially, signals and preferences are aligned (Assumption 1 and 2) since both types

have the same subjective signal distributions and preferences. We show in Appendix B

that Assumption 3.ii holds and Assumption 4 is redundant in a binary action decision

problem that satisfies Assumption 3.ii.

2.3 Discussion of Model

We briefly comment on notable features of the model and possible extensions.

The Type Framework. An agent’s type captures her model of the world, which she

uses to learn about the environment. We can divide type θi’s model into a model of

the world in state L, which consists of the signal and type distributions in state L,

(F̂L
i , Ĝ

L
i , π̂i), and analogously, a model of the world in state R, (F̂R

i , Ĝ
R
i , π̂i).

18 We take

these models as fixed and explore learning about features of the environment that are

directly payoff-relevant, i.e. the state.

We focus on aligned type spaces in which all agents generate and interpret infor-

mation in a common way. Aligned signals (Assumption 1) guarantee that agents have

a common interpretation of the relative order of signals as evidence for state R, and

aligned preferences (Assumption 2) guarantee that the action choices of agents are or-

dered in a way that reflects the same relative strength of evidence for state R. For

example, suppose it is common knowledge that lung cancer is stronger evidence that

smoking has a negative impact on the lungs, relative to shortness of breath, but agents

differ in their beliefs about the strength of these two signals. Or suppose that agents

have the same preferences between a risky and a safe asset when they are certain about

the state (whether the risky asset has a high or low expected return), but differ in their

risk preferences, and therefore, the threshold belief at which they are willing to start in-

vesting in the risky asset. Note that these assumptions do not require all types to choose

the same actions at certainty. For example, one type may be systematically more risk

averse than another type and prefer less risky actions across all beliefs about the state.

A natural economic setting that aligned environments do rule out is some versions of

18We implicitly assume that the type distribution is the same in both states. It is a straightforward
extension to allow the true and/or subjective type distributions to depend on ω.
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horizontally differentiated environments (e.g. the horizontally differentiated preferences

studied in Gagnon-Bartsch (2017) in relation to the false consensus effect).

When there are multiple types, agents have heterogenous models and may be mis-

specified about how other agents learn. This can lead to complicated higher-order beliefs.

For example, when an agent believes that other agents have partisan bias, we also need

to model what this agent believes that these partisan bias agents believe about others.

In our framework, these higher-order beliefs are fully captured by the subjective type

distributions. If type θi believes that all agents are type θj, then type θj’s subjective

distribution π̂j captures θi’s second order beliefs, the subjective type distributions of

the types in the support of π̂j capture third order beliefs, and so on. Therefore, the

type space Θ fully determines the hierarchies of beliefs. The assumption that Θ is finite

limits the number of models that each type can attribute to other agents. It also rules

out infinite chains of models of the form: type θi believes all agents are type θi+1, type

θi+1 believes all agents are θi+2, etc. for i = 1, 2, ....

Individual Learning. Our framework nests an individual learning model in which

a long-run agent learns from a sequence of exogenous signals. This is captured by a

specification with an informative public signal, an uninformative private signal, and a

single type who believes that the public signal is informative and the private signal is

uninformative. In this set-up, actions contain no private information and there is no

social learning. Therefore, it is isomorphic to a model in which a single long-run agent

observes a sequence of signals or multiple long-run agents observe the same sequence of

signals.

Extensions. It is straightforward to allow types to receive private signals from different

distributions or to believe that other types receive signals from different distributions.

To capture this, augment the definition of a type to include both the type’s true signal

distribution, i.e. type θi has private signals drawn from F ω
i , as well as type’s subjective

belief about its signal distribution. This extension allows us to model biases that involve

interpersonal comparisons related to the quality of information. For instance, a natural

way to model an overconfident agent is with a type that believes it draws signals from a

more informative distribution than everyone else, i.e. all types observe signals from the

same distribution and correctly interpret them, but the overconfident type believes that

other agents observe signals from a less informative distribution. The analysis carries

through unchanged, albeit with more burdensome notation.

It is also straightforward to allow a type’s model of inference to depend on its current

belief about the state. This extension allows us to analyze several additional classes of

model misspecification, including confirmation bias (nesting (Rabin and Schrag 1999))

and forms of under- and overreaction that vary with the current belief (nesting Epstein
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et al. (2010)). We explore this extension further in the applications in Section 5 and

present the formal set-up in Online Appendix E.4.

In many situations, agents learn from observing the outcomes of others’ choices,

rather than directly observing their actions. Our learning characterization extends to

a setting in which agents learn from outcomes that stochastically depend on actions

(see Bohren and Hauser (2019)). A special case of this extension is a setting in which

stochastic outcomes are the only source of information (i.e. signals are uninformative)

and there is a single sociable type. This case is equivalent to an active individual

learning model in which a single myopic long-run agent chooses actions that influence

the distribution of information.

For technical convenience, we assume that the action and public signal spaces are

finite. Allowing for a continuous action and public signal space would not qualitatively

change the analysis. Similar techniques to those we use can be used to analyze a fi-

nite state space with more than two states, with the caveats that the definition of an

aligned environment is more complicated and the notation is more cumbersome. We use

results pertaining to stochastic difference equations in our analysis, which means that

generalizing to an infinite state space requires different techniques.

3 Beliefs and Action Choices

Consider an agent of type θi who observes history h and private signal s. Assumption 4

ensures that θi believes that h occurs with positive probability, and therefore, Bayes

rule can be used to update beliefs. The agent uses her model of inference to compute

the probability of h in each state, P̂i(h|ω), and applies Bayes rule to form the likelihood

ratio

λi(h) ≡ P̂i(R|h)

P̂i(L|h)
=

(
p0

1− p0

)
P̂i(h|R)

P̂i(h|L)
(1)

that the state is R versus L. The agent then uses her subjective signal distribution ŝi(s)

to update to
pi(λi(h), s)

1− pi(λi(h), s)
≡ P̂i(R|h, s)
P̂i(L|h, s)

= λi(h)

(
ŝi(s)

1− ŝi(s)

)
. (2)

She chooses the action that maximizes her expected payoff with respect to pi(λi(h), s).

Let λ(h) ≡ (λ1(h), ..., λk(h)) denote the vector of likelihood ratios for sociable types

(θ1, ..., θk) following history h. For autarkic or noise types, λi(h) = p0/(1 − p0) for all

h, since these types believe that the history is uninformative. To construct λ(h), first

consider an agent of type θi’s decision rule at belief pi(λ, s). Recall that actions (a1, ...aM)

are ordered by relative preference in state R. Since no two actions yield the same

payoff in both states, no action is optimal at a single belief, and preferences are aligned

(Assumption 2), there exist belief thresholds 0 = pi,0 ≤ pi,1 ≤ ... ≤ pi,M = 1 such that we
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can partition the belief space into a finite set of closed intervals, with action am optimal at

pi(λ, s) if pi(λ, s) ∈ [pi,m−1, pi,m] and pi,m−1 6= pi,m, and am never optimal iff pi,m−1 = pi,m.

Without loss of generality, assume the tie-breaking rule is to choose the optimal action

with the lower index at each interior cut-off pi,m ∈ (0, 1), i.e. if pi,m−1 6= pi,m, choose am

at belief pi,m. Since there are at least two undominated actions, there are at least two

intervals with a non-empty interior. Since signals are aligned (Assumption 1), pi(λ, s) is

strictly increasing in s for all λ ∈ (0,∞). Therefore, for each λ ∈ (0,∞), we can define

the decision rule with respect to signal cut-offs 0 = si,0(λ) ≤ si,1(λ) ≤ ... ≤ si,M(λ) = 1

such that the agent chooses action am at likelihood ratio λ iff she observes private signal

s ∈ (si,m−1(λ), si,m(λ)] and si,m−1(λ) 6= si,m(λ).

The signal cut-offs for each type determines how sociable types interpret past action

choices. Fix a vector of likelihood ratios λ ∈ (0,∞)k. An agent of type θj chooses action

am when she observes a private signal in the interval (sj,m−1(λj), sj,m(λj)]. An agent of

type θi believes this occurs with probability F̂ ω
i (sj,m(λj))−F̂ ω

i (sj,m−1(λj)) in state ω and

believes that type θj occurs with probability π̂i(θj). Therefore, she believes that action

am occurs with probability
∑n

j=1 π̂i(θj)(F̂
ω
i (sj,m(λj))− F̂ ω

i (sj,m−1(λj))) in state ω. Let

ψ̂i(am, σ|ω,λ) ≡ dĜω
i (σ)

n∑
j=1

π̂i(θj)(F̂
ω
i (sj,m(λj))− F̂ ω

i (sj,m−1(λj))) (3)

denote her belief about the joint probability of action am and public signal σ in state ω

when the likelihood ratio is λ, where Ĝω
i denotes θi’s subjective public signal distribution.

From these expressions, we can construct λ(h). Each sociable type θi initially has

likelihood ratio λi(h1) = p0/(1− p0) at history h1. At any history ht with t > 1,

λi(ht) =

(
p0

1− p0

) t−1∏
τ=1

ψ̂i(ãτ , σ̃τ |R,λ(hτ ))

ψ̂i(ãτ , σ̃τ |L,λ(hτ ))
. (4)

The process is recursive: given λ(ht) and (ãt, σ̃t),

λi(ht+1) = λi(ht)

(
ψ̂i(ãt, σ̃t|R,λt)
ψ̂i(ãt, σ̃t|L,λt)

)
. (5)

Therefore, λt ≡ λ(ht) is sufficient for the history and we suppress the dependence on ht

going forward.

The behavior of 〈λt〉∞t=1 determines the learning dynamics for each type. While each

type’s model of inference determines the value of the update to the likelihood ratio
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following action am and signal σ, the true probability

ψ(am, σ|ω,λ) ≡ dGω(σ)
n∑
i=1

π(θi)(F
ω(si,m(λi))− F ω(si,m−1(λi))). (6)

of (am, σ) at a vector of likelihood ratios λ ∈ (0,∞)k determines the probability that

the likelihood ration transitions to this value in state ω. In correctly specified models,

ψ̂i(a, σ|ω,λ) = ψ(a, σ|ω,λ), and the likelihood ratio is a martingale in state L. But

misspecification introduces a wedge between the subjective and true probability of ob-

serving each action and signal, ψ̂i(a, σ|ω,λ) 6= ψ(a, σ|ω,λ). This makes characterizing

the behavior of 〈λt〉∞t=1 challenging, as it is an equilibrium object with nonlinear transi-

tion probabilities that depend on the current value of the process: due to the dependence

of equilibrium actions on the current value of λ, the transition probabilities ψ(a, σ|ω,λ)

and transition values ψ̂i(a,σ|R,λ)
ψ̂i(a,σ|L,λ)

also depend on λ. This presents a technical challenge,

as the process fails to satisfy standard conditions from the existing literature on Markov

chains.

Example 1 (Partisan Bias, cont.). Return to the example introduced in Section 2.2.

An agent of type θi who has likelihood ratio λ and observes private signal s updates to

belief pi(λ,s)
1−pi(λ,s) = λ

(
sν

1−sν
)
. It chooses action L if this belief is less than one, which is

equivalent to s < (1/(1 + λ))1/ν = si,1(λ). At likelihood ratio λ1, type θ1 chooses L

with probability F ω((1/(1 + λ1))
1/ν). However, it believes that it chooses action L with

probability F̂ ω
1 ((1/(1 + λ1))

1/ν) = F ω(1/(1 + λ1)). Type θ2 is autarkic. Therefore, its

likelihood ratio is constant at λ2 = 1 and it chooses action L with probability F ω(.51/ν).

But θ1 believes it chooses L with probability F̂ ω
1 (.51/ν) = F ω(.5). This implies that θ1

overestimates the frequency of action L, since F ω(x) > F ω(x1/ν).

4 Asymptotic Learning

We study the asymptotic learning outcomes – the long-run beliefs about the state – for

sociable types. Autarkic and noise types do not learn from the history; therefore, their

beliefs following the history are constant across time and their behavior is stationary.

4.1 Asymptotic Learning Outcomes

Without loss of generality, we define asymptotic learning outcomes relative to state L.

Let correct learning (for type θi) denote the event where λt → 0k (λi,t → 0), incorrect

learning (for type θi) denote the event where λt →∞k (λi,t →∞), and cyclical learning

(for type θi) denote the event where λt (λi,t) does not converge. Learning is complete

if correct learning occurs almost surely. Agents asymptotically agree when all sociable

types have the same limit beliefs, λt → {0k,∞k}, and agents disagree when some sociable
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types have incorrect learning and others have correct learning, λt → {0,∞}k \{0k,∞k}.
Learning is mixed if some sociable types have correct or incorrect learning and others

have cyclical learning, while learning is stationary if beliefs converge for all sociable

types.19

4.2 Asymptotic Learning Characterization.

Our main result characterizes how the limiting behavior of the likelihood ratio depends

on two expressions that are straightforward to derive from the primitives of the model,

i.e. the type space and the signal distributions. This characterization utilizes results on

the stability of nonlinear dynamic systems.20 First, we characterize the set of stationary

beliefs, where the likelihood ratio remains constant. Next, we characterize the behavior

of the likelihood ratio when it is in a neighborhood of a stationary belief. Building on

techniques developed in Smith and Sorensen (2000), we establish necessary and suffi-

cient conditions for the likelihood ratio to converge to this stationary belief with positive

probability, which we refer to as local stability. Third, we determine when the likeli-

hood ratio converges to a locally stable belief with positive probability from any initial

belief, which we refer to as global stability. This ensures that our characterization holds

independent of the prior belief. Finally, we use these results to determine when the

likelihood ratio almost surely converges.

This approach builds on techniques used in Bohren (2016) to characterize asymptotic

learning outcomes when there is a single type with a misspecified model of the share

of autarkic types. Our key technical innovations are to allow for multiple types, which

leads to a vector of likelihood ratios, and to characterize conditions for disagreement.

Relative to Bohren (2016), establishing the global stability of disagreement outcomes

and belief convergence with multiple types requires novel and different techniques.

It what follows, we summarize the four main steps to derive the characterization

formally stated in Theorem 1. See Appendix A.1.1 for a detailed outline of the key

lemmas in the proof. To simplify notation, in this section we assume that there are

k ≤ 2 sociable types; we present an analogous derivation for k > 2 sociable types in

Online Appendix E.2.

19We use the term disagreement to refer to the case in which beliefs converge to different limit beliefs.
Agents’ beliefs will also differ when beliefs do not converge or converge for some types but not others.
We do not define incomplete learning, where λt → λ for any λ /∈ {0,∞}k, as this does not occur in our
framework (we show in Lemmas 1 and 2 that Assumption 3 rules out incomplete learning).

20In correctly specified models, the likelihood ratio is a martingale, and the Martingale Convergence
Theorem can be used to rule out cyclical and incorrect learning. This is not the case in a misspecified
model. With even the slightest misspecification, the likelihood ratio is no longer a martingale, as any
perturbation of a correctly specified model breaks the equality condition. Therefore, an alternative
approach is necessary.
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Stationary Beliefs. At a stationary belief, the likelihood ratio remains constant for

any action and signal pair that occurs with positive probability.

Definition 1 (Stationary). λ∗ ∈ [0,∞]k is stationary if for all (a, σ) ∈ A × Σ, either

(i) ψ(a, σ|ω,λ∗) = 0 or (ii) λ∗ = λ∗
(
ψ̂i(a,σ|R,λ∗)
ψ̂i(a,σ|L,λ∗)

)
for all θi ∈ ΘS.

Aligned signals and preferences (Assumption 1 and 2) rule out confounded learning,

while autarkic types or public signals (Assumption 3) rule out informational herds.21

These assumptions ensure that actions and/or public signals are informative at any

interior belief. Therefore, the set of stationary beliefs correspond to each type placing

probability one on either state L (λ = 0) or stateR (λ =∞) (Lemma 1 in Appendix A.1).

Further, the likelihood ratio almost surely does not converge to non-stationary beliefs

(Lemma 2 in Appendix A.1). Therefore, the set of stationary beliefs are the candidate

limit points of the likelihood ratio.

Local Stability. A learning outcome is locally stable if the likelihood ratio converges

to this limit belief with positive probability, from a neighborhood of the belief.

Definition 2 (Local Stability). λ∗ is locally stable if there exists an ε > 0 and neigh-

borhood Bε(λ
∗) such that Pr(λt → λ∗|λ1 ∈ Bε(λ

∗)) > 0.

The first expression for the characterization, the expected change in the log likelihood

ratio, determines whether a learning outcome is locally stable. For type θi, the expected

change in the log likelihood ratio at belief λ depends on the subjective and true proba-

bility of each action,

γi(λ, ω) ≡
∑

(a,σ)∈A×Σ

ψ(a, σ|ω,λ) log

(
ψ̂i(a, σ|R,λ)

ψ̂i(a, σ|L,λ)

)
. (7)

Equation (7) has a natural interpretation. Suppose the true state is L and fix a belief

λ. Then γi(λ, L) is the difference between (i) the Kullback-Leibler divergence from type

θi’s subjective model in state L, ψ̂i(·|L,λ) to the true model in state L, ψ(·|L,λ) and

(ii) the Kullback-Leibler divergence from θi’s subjective model in state R, ψ̂i(·|R,λ), to

the true model in state L, ψ(·|L,λ). At a given belief λ, if θi’s subjective model in state

R is closer to the true model than θi’s subjective model in state L, then this difference

is positive, γi(λ, L) > 0, and log λi moves towards state R in expectation. Otherwise,

log λi moves towards state L in expectation.

21Confounded learning corresponds to convergence to an interior belief at which actions are unin-
formative even though each type acts based on private information, while informational herding corre-
sponds to convergence to an interior belief at which all types cease to incorporate private information
into their action choices (Smith and Sorensen 2000).
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The sign of each component of γ(λ, ω) ≡ (γi(λ, ω))ki=1 determines local stability. Let

Λi(ω) ≡ {λ ∈ {0,∞}k|γi(λ, ω) < 0 if λi = 0 and γi(λ, ω) > 0 if λi =∞} (8)

denote the set of learning outcomes in which the expected change in the log likelihood

ratio decreases if λi = 0 and increases if λi =∞, and let

Λ(ω) ≡ ∩ki=1Λi(ω) (9)

denote the set that satisfies this property for both sociable types. We restrict attention to

misspecified models in which γi(λ, ω) 6= 0 for all θi ∈ ΘS, λ ∈ {0,∞}k and ω ∈ {L,R}.
This set of misspecified models is generic in the set of models that satisfy Assumption 1

- 4.22

Building on the results on the local stability of nonlinear stochastic difference equa-

tions developed in Appendix C of Smith and Sorensen (2000), we show that a learning

outcome λ∗ in a generic misspecified model is locally stable in state ω if and only if

λ∗ ∈ Λ(ω) (Lemma 3 in Appendix A.1). In other words, if 〈λt〉∞t=1 converges for all

sociable types, then it must converge to a limit random variable whose support lies

in Λ(ω). Intuitively, in order for the likelihood ratio to converge to a given learning

outcome with positive probability, in expectation, the log likelihood ratio must move

towards this learning outcome from nearby beliefs. This also implies that if Λ(ω) is

empty in a generic misspecified model, then almost surely at least one type has cycli-

cal learning. This result significantly simplifies the set of possible limit beliefs. It is

straightforward to compute Λ(ω) from the primitives of the model.

Example 1 (Partisan Bias, cont.). From the characterization of action choices in Sec-

tion 3,

γ1(0, L) = (π(θ1) + π(θ2)F
L(.51/ν)) log

π(θ1) + π(θ2)F
R(.5)

π(θ1) + π(θ2)FL(.5)︸ ︷︷ ︸
L−action

+π(θ2)(1− FL(.51/ν)) log
1− FR(.5)

1− FL(.5)︸ ︷︷ ︸
R−action

22If γi(λ, ω) = 0 for λ ∈ {0,∞}k, the stability of λ also depends on γi(·, ω) in a neighborhood of
λ. We do not consider these non-generic cases, as they significantly complicate the analysis without
adding much economic insight.
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and

γ1(∞, L) = π(θ2)F
L(.51/ν) log

FR(.5)

FL(.5)︸ ︷︷ ︸
L−action

+ (π(θ1) + π(θ2)(1− FL(.51/ν))) log
π(θ1) + π(θ2)(1− FR(.5))

π(θ1) + π(θ2)(1− FL(.5))︸ ︷︷ ︸
R−action

in state L. When there is no bias, ν = 1, both expressions are negative and Λ(L) = {0}.
As ν decreases, R actions occur more frequently and both expressions increase. When

ν is sufficiently small, both expressions are positive and Λ(L) = {∞}. For intermediate

values of ν, γ1(0, L) > 0 and γ1(∞, L) < 0, and therefore, Λ(L) = ∅. See Appendix B.1

for this derivation.

Global Stability. We are interested in a characterization of asymptotic learning that

is independent of the initial belief. Therefore, we need a stronger notion of stability

than local stability. We say a learning outcome is globally stable if the likelihood ratio

converges to this outcome with positive probability, from any initial belief.

Definition 3 (Global Stability). λ∗ is globally stable if for any initial belief λ1 ∈
(0,∞)k, Pr(λt → λ∗) > 0.

For an agreement outcome, local stability is necessary and sufficient for global stability

(Lemma 4 in Appendix A.1). Aligned signals and preferences (Assumption 1 and 2)

guarantee that there exist signal and action pairs that move the beliefs of all types in the

same direction. Therefore, we can construct sequences of actions and signals that occur

with positive probability and move the beliefs of all sociable types to a neighborhood

of an agreement outcome. Given this, computing Λ(ω) is the only calculation necessary

to determine whether correct or incorrect learning occurs with positive probability in

state ω. In a generic misspecified model, these learning outcomes occur with positive

probability if and only if the corresponding limit beliefs are in Λ(ω). Note that all

stationary learning outcomes are agreement outcomes for the case of k = 1.

Global stability does not immediately follow from local stability for disagreement

outcomes, as it is not always possible to construct a sequence of action and public

signal realizations that push the likelihood ratio arbitrarily close to the disagreement

outcome. For example, if two types are sufficiently similar, then disagreement may

not be possible starting from a common prior, even if it arises when the types’ beliefs

are far apart. Therefore, while a failure of local stability is sufficient to ensure that a

disagreement outcome almost surely does not occur, local stability does not guarantee

that the outcome occurs with positive probability.
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For a disagreement outcome to be globally stable, it must be possible to separate the

beliefs for the type converging to λi = 0 and the type converging to λi = ∞, starting

from any initial belief. The second part of our learning characterization is a sufficient

condition to separate beliefs using the maximal action and public signal in each state,

(a1, σL) and (aM , σR). We first define a partial order on how types update their beliefs

following maximal actions and signals. Note that (a1, σL) decrease the likelihood ratio,

while (aM , σR) increase the likelihood ratio.

Definition 4 (Maximal R-Order). The maximal R-order �λ over Θ at likelihood ratio

λ is defined by θi �λ θj iff θi interprets both maximal action and public signal pairs as

stronger evidence of state R than θj,

ψ̂j(a, σ|R,λ)

ψ̂j(a, σ|L,λ)
≤ ψ̂i(a, σ|R,λ)

ψ̂i(a, σ|L,λ)
(10)

for (a, σ) ∈ {(a1, σL), (aM , σR)}. Define the corresponding strict order �λ if (10) holds

with strict inequality for either (a1, σL) or (aM , σR).

We use the maximal R-order to establish conditions under which a neighborhood of

a disagreement outcome is reached with positive probability from a neighborhood of an

agreement outcome. Suppose θ2 �(0,0) θ1. Then in a neighborhood of (0, 0), we can

construct a finite sequence of maximal actions and signals that decrease θ1’s beliefs and

increase θ2’s beliefs. Such a sequence occurs with positive probability, since it is finite.

Therefore, θ2 �(0,0) θ1 is sufficient to separate beliefs and move them to a neighborhood

of (0,∞). The intuition is analogous for θ2 �(∞,∞) θ1 to move beliefs to a neighborhood

of (0,∞), and similarly, θ1 �(0,0) θ2 or θ1 �(∞,∞) θ2 to move beliefs to a neighborhood

of (∞, 0). The following definition formalizes this notion of maximal accessibility.

Definition 5 (Maximal Accessibility (k = 2)). Disagreement outcome (0,∞) is max-

imally accessible if θ2 �(0,0) θ1 or θ2 �(∞,∞) θ1, and disagreement outcome (∞, 0) is

maximally accessible if θ1 �(0,0) θ2 or θ1 �(∞,∞) θ2.
23

As discussed above, the likelihood ratio enters a neighborhood of each agreement

outcome with positive probability. Maximal accessibility ensures that the likelihood

ratio reaches a neighborhood of the disagreement outcome with positive probability from

the neighborhood of an agreement outcome, and local stability establishes convergence

from the neighborhood of the disagreement outcome. Therefore, maximal accessibility

is a sufficient condition for the global stability of a locally stable disagreement outcome

23In Online Appendix E.2, we define an analogous notion of maximal accessibility for k > 2 sociable
types.
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(see Lemma 5 in Appendix A.1).24 It is straightforward to verify by evaluating (10) at

action and signal profiles (a1, σL) and (aM , σR) and either beliefs (0, 0) or (∞,∞). See

Section 5.5 for an application that uses maximal accessibility.

Mixed Learning. Next we consider the behavior of the likelihood ratio in the neigh-

borhood of a mixed learning outcome. Consider the outcome in which type θ1 has

correct learning, ω = L and λ∗1 = 0, and type θ2 has cyclical learning. This outcome

will almost surely not arise if at λ∗1 = 0, it is possible for the beliefs of θ2 to converge,

i.e. either (0, 0) or (0,∞) is locally stable for θ2. Intuitively, if 〈λ2,t〉 converges with

positive probability when λ∗1 = 0, then almost surely 〈λ2,t〉 cannot oscillate infinitely

often. Therefore, in order for this mixed outcome to arise with positive probability, it

must be that (0, 0) 6∈ Λ2(ω) and (0,∞) 6∈ Λ2(ω). This ensures that in a neighborhood

of (0, 0) or (0,∞), θ2’s beliefs drift away from this outcome.

Generalizing this intuition, let ΛM(ω) denote the set of mixed learning outcomes in

which there are no locally stable beliefs for the non-convergent type. When k = 2, this

corresponds to

ΛM(ω) ≡ {(λ∗i , θi)|λ∗i ∈ {0,∞},∀λ−i ∈ {0,∞}, (λ∗i , λ−i) 6∈ Λ−i(ω), i ∈ {1, 2}}. (11)

Trivially, ΛM(ω) = ∅ when k = 1. We establish that in a generic misspecified model, if a

mixed learning outcome is not in ΛM(ω), then almost surely it does not occur (Lemma 6

in Appendix A.1).25 Therefore, if ΛM(ω) is empty, mixed learning almost surely does

not arise. It is straightforward to compute ΛM(ω) from Λi(ω).26 In Section 5, we show

that ΛM(ω) is empty and mixed learning outcomes almost surely do not arise for three

commonly studied forms of model misspecification.

Belief Convergence. Finally, we establish that the likelihood ratio converges almost

surely for all sociable types when there is at least one globally stable outcome and no

locally stable mixed outcomes (Lemma 7 in Appendix A.1).

Theorem 1 combines these steps to characterize how the set of asymptotic learning

24An alternative sufficient condition for the global stability of (0,∞) is (0, 0) ∈ Λ1(ω) \ Λ2(ω) or
(∞,∞) ∈ Λ2(ω) \ Λ1(ω) (i.e. γ1(λ, ω) < 0 and γ2(λ, ω) > 0 for either agreement outcome λ ∈
{(0, 0), (∞,∞)}). This condition can be directly verified from the local stability construction, but it
will not be satisfied in applications in which both agreement outcomes are locally stable. An analogous
condition holds for (∞, 0).

25When k > 2, an analogous condition rules out mixed learning outcomes in which a single type
has cyclical learning. We also need to rule out mixed learning outcomes in which more than one type
has cyclical learning. This requires joint conditions on Λi(ω) for the non-convergent types. See Online
Appendix E.2.

26An easy sufficient (but not necessary) condition for ΛM (ω) to be empty is if both agreement
outcomes or both disagreement outcomes are locally stable.
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outcomes in each state depends on Λ(ω) and ΛM(ω). The proof follows directly from

Lemmas 1 to 7 described above, which are formally stated and proved in Appendix A.1.

Theorem 1. Consider a generic misspecified model with k ≤ 2 sociable types that sat-

isfies Assumption 1, 2, 3 and 4. When ω = L:

1. Agreement. Correct learning occurs with positive probability iff 0k ∈ Λ(L) and

incorrect learning occurs with positive probability iff ∞k ∈ Λ(L).

2. Disagreement. Sociable types disagree with positive probability if Λ(L) contains a

maximally accessible disagreement outcome, and sociable types almost surely do not

disagree if Λ(L) contains no disagreement outcomes. Each maximally accessible

disagreement outcome in Λ(L) occurs with positive probability.

3. Cyclical Learning. Cyclical learning occurs almost surely for all sociable types

if Λ(L) and ΛM(L) are empty, and cyclical learning occurs almost surely for at

least one sociable type if Λ(L) is empty. Cyclical learning almost surely does not

occur for any sociable type if Λ(L) contains an agreement outcome or maximally

accessible disagreement outcome and ΛM(L) is empty.

An analogous result holds for ω = R.27

The conditions for correct and incorrect learning are tight: these learning outcomes

arise if and only if the respective limit beliefs are in Λ(ω). For disagreement outcomes,

we establish a sufficient condition for the outcome to occur (maximal accessibility) and

a sufficient condition for outcome not to occur (Λ(ω) empty). In many applications, all

locally stable disagreement outcomes are maximally accessible (see Section 5.5 for an

illustration). Therefore, there is no wedge between the sufficient conditions for disagree-

ment to occur and not to occur – a disagreement outcome arises if and only if it is in

Λ(ω). However, this is not always the case. When a disagreement outcome is locally

stable but not maximally accessible, whether disagreement arises can depend on initial

beliefs.

An important feature of Theorem 1 is that the characterization requires calculations

at a finite set of beliefs. Since action choices depend on beliefs, ψ and ψ̂i vary with

λ ∈ [0,∞]k. Therefore, in principal, determining the asymptotic properties of the

likelihood ratio could require characterizing its behavior across the infinite belief space.

However, Theorem 1 establishes that this is not the case. Deriving Λ(ω) and ΛM(ω)

and verifying maximal accessibility only require calculations at the finite set of beliefs

27The characterization for more than two sociable types is identical, using the modified definitions
of maximal accessibility and ΛM (ω). See Online Appendix E.2.
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{0,∞}k. Thus, Theorem 1 significantly simplifies the characterization of asymptotic

beliefs.

Theorem 1 rules out mixed learning when ΛM(ω) is empty, but does not characterize

whether mixed learning arises when ΛM(ω) is not empty. Mixed learning presents a

challenge, as we need to consider the movement of the convergent type’s likelihood

ratio across all possible beliefs for the non-convergent type to determine whether mixed

learning arises with positive probability (in contrast to Theorem 1, where we can restrict

attention to stationary beliefs for both types). Theorem 4 in Online Appendix E.3

characterizes sufficient conditions for mixed learning to occur with positive probability.

Example 1 (Partisan Bias, cont.). Applying Theorem 1 to the characterization of Λ(L)

above establishes that correct learning occurs a.s. for mild partisan bias (ν high), beliefs

fail to converge for intermediate levels, and incorrect learning occurs a.s. for severe

partisan bias (ν low). Trivially, mixed learning and disagreement cannot arise when

there is a single sociable type. See Proposition 7 in Appendix B.1 for a formal statement

and proof of this result.

Example 2. To illustrate how Theorem 1 applies to a setting with two sociable types,

suppose that there is a partisan type, as in Example 1, and a non-partisan type that has

a correctly specified signal distribution. Neither type is aware of others’ biases, i.e. the

non-partisan type believes that others also have a correctly specified signal distribution

and the partisan type believes other have the same misspecified signal distribution. We

can use Theorem 1 to show that the learning outcomes are similar to Example 1: for both

types, correct learning occurs a.s. for a low share of the partisan type or mild partisan

bias, beliefs fail to converge for intermediate levels, and incorrect learning occurs a.s.

for a high share of a severely biased partisan type. Even though the non-partisan type

correctly interprets signals, its failure to account for the partisan type has an equally

severe impact on learning.

Fig. 1 illustrates these three learning regions as a function of the level of bias ν and

share of non-partisan types q. See Appendix B.2 for a formal description and analysis

of this variation.

Complete Learning. An immediate consequence of Theorem 1 is that in a correctly

specified model, learning is complete – correct learning occurs almost surely. To see this,

note that when all types are correctly specified, the likelihood ratio is a martingale in

state L. Due to the concavity of the log function, this means that the expected change in

each type’s log likelihood ratio is negative at all beliefs, γi(λ, L) < 0 for all λ ∈ [0,∞]k.

Therefore, 0k is the unique locally stable belief and mixed learning does not arise, i.e.

25



Figure 1. Learning Outcomes in Example 2
(ω = L, FL(s) = 2s− s2, FR(s) = s2, 0.1 share autarkic types)

Λ(L) = {0k} and ΛM(L) is empty.28

But from Theorem 1, γi(λ, L) < 0 at all interior beliefs is not necessary for complete

learning: if γi(λ, L) < 0 at beliefs λ ∈ {0,∞}k, then learning is complete. Further,

complete learning may obtain even if γi(λ, L) > 0 for some types at some λ ∈ {0,∞}k.
Therefore, Theorem 1 provides much weaker conditions for complete learning.

Corollary 1. Complete learning obtains in state L if Λ(L) = {0k} and ΛM(L) is empty.

An analogous result holds for state R.

These weaker conditions are important for establishing the robustness of complete learn-

ing in misspecified models, as with even an arbitrarily small amount of misspecification,

the likelihood ratio is no longer a martingale. Section 4.3 uses Corollary 1 to derive

several robustness results.

Action Convergence. Belief convergence forces action convergence: each type even-

tually settles on an action if and only if its beliefs converge. The limit action choice

is efficient if learning is correct, and otherwise is inefficient. If learning is cyclical for a

type, then that type will choose both efficient and inefficient actions infinitely often.29

28A similar result holds for all correctly specified types when some types are misspecified. A correctly
specified type accurately accounts for other types’ misspecification and is able to probabilistically parse
out the information conveyed by actions. Therefore, misspecified types do not interfere with the learning
of the correctly specified types. See Theorem 3 in Online Appendix E.1.

29In the proof of Theorem 1, we show that if the likelihood ratio for a type does not converge, then it
enters a neighborhood of each certain belief infinitely often. Therefore, the type chooses both efficient
and inefficient actions infinitely often.
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4.3 Robustness of Complete Learning.

The next result establishes that correctly specified models are robust to some misspec-

ification, in that learning is complete when sociable types have approximately correct

models. This may not seem surprising, since Bayes rule is continuous. But in an infinite

horizon setting, nearby models with small per-period differences in belief updating can

aggregate to very different limit beliefs. When this is the case, then even arbitrarily small

departures from the correctly specified model will interfere with learning. In principle,

this would substantially limit the applicability of rational learning models to real-world

settings. Theorem 2 establishes that this does not occur in the environment we consider

in this paper; complete learning obtains for any form of misspecification in which each

sociable type’s subjective model is close enough to the true model.

Theorem 2. Given a generic misspecified model that satisfies Assumption 1, 2, 3 and

4, there exists a δ > 0 such that if |ψ̂i(a, σ|ω,λ)− ψ(a, σ|ω,λ)| < δ at λ ∈ {0,∞}k for

all (a, σ) ∈ A×Σ and θi ∈ ΘS, then learning is complete in state ω.

Robustness follows from the continuity of γ(λ, ω) in each type’s subjective signal and

type distributions. In any correctly-specified model, Λ(L) = {0k} and ΛM(L) = ∅. By

continuity, these sets don’t change when some misspecification is introduced. The tools

in this paper allow for a precise characterization of exactly how robust complete learning

is to different forms of misspecification.

Theorem 2 depends on the subjective and true equilibrium probabilities of each

action at stationary beliefs. The following corollary presents sufficient conditions on the

primitives of the model for these subjective equilibrium probabilities to be close enough

to the true equilibrium probabilities: if all sociable types have subjective type and signal

distributions close enough to the true distributions, then learning is complete.

Corollary 2. Given a generic misspecified model that satisfies Assumption 1, 2, 3 and

4, there exists a δ > 0 such that if ||π̂i − π|| < δ, ||F̂ ω
i − F ω|| < δ and ||Ĝω

i − Gω|| < δ

for all θi ∈ ΘS, then learning is complete in state ω, where || · || denotes the supremum

metric.

Corollary 2 is more restrictive than Theorem 2, since Theorem 2 can hold when agents

are very wrong about the type distribution, as long as the types that they believe exist

are “close” to the actual types. For example, suppose that all agents are type θ1, but

believe that all agents are type θ2 6= θ1. If types θ1 and θ2 have similar preferences

and subjective signal distributions, then the conditions for Theorem 2 hold, but the

conditions for Corollary 2 do not. Similar robustness results hold for an individual type

that has a model close to the correctly specified model, regardless of other types.
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Example 1 (Partisan Bias, cont.). For ν sufficiently close to one, Λ(L) = {0} and

complete learning obtains.

These results contrasts with Frick et al. (2019), who demonstrate a failure of robust-

ness in a social learning setting with misspecification over the distribution of agents’

preferences. Their setting differs from ours in that they consider an infinite state space

and do not assume adequate information (i.e. Assumption 3) – a continuum of prefer-

ence types ensures that actions are informative, but the informational content of these

actions can become arbitrarily small.30 With an infinite state space, action choices are

much more sensitive to small amounts of misspecification. They show that no matter

how small the misspecification in their setting, the limiting belief does not depend on the

underlying state when the state space is infinite, but correct learning is robust to mis-

specification when the state space is finite. Similarly, under an analogue of our adequate

information assumption, correct learning is robust to small amounts of misspecification

in their setting, even with an infinite state space. Nevertheless, settings with larger state

spaces are more sensitive to misspecification and the size of the state space is important

to keep in mind when considering robustness in misspecified models.

4.4 Discussion of Results

When agents learn from the action choices of their peers, model misspecification interacts

with the endogenous informativeness of actions to give rise to the possibility of cyclical

learning or path-dependent learning (for example, both incorrect and correct learning

arise with positive probability).31 These learning outcomes have important economic

implications. Cyclical learning is a failure of beliefs (and actions) to settle down, even

after an arbitrarily long period of time. This means that in the long-run, action choices

oscillate infinitely often between efficient and inefficient actions. When multiple learning

outcomes arise, different paths of signal realizations lead to different long-run beliefs. An

initial signal that, for instance, a medical technology is dangerous or a new restaurant

is low quality when in fact the opposite is true can lead to this misconception becoming

entrenched and beliefs converging to the incorrect state. In contrast, if the initial signal

had been positive, agents would have learned the correct state. Path-dependent learning

can explain why different populations with similar models can come to have very different

entrenched views.

30Specifically, herds do not arise in the correctly specified model but Lemma 10 in our paper does
not hold.

31Belief convergence requires that when agents are almost certain of a state, the action and signal
frequencies they observe confirm their model in that state. If agents are “surprised” when they are
almost certain of either state, this leads to cyclical learning (i.e. |Λ(ω)| = 0). In contrast, if there
are multiple learning outcomes near which the action frequencies confirm each type’s model at that
outcome, then multiple learning outcomes occur with positive probability (i.e. |Λ(ω)| > 1).
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Cyclical and path-dependent learning can also arise in misspecified active individ-

ual learning models, where future information depends on the current action choice of

the agent, or in misspecified passive individual learning models, where the true signal

distribution is independent of the history but an agent’s misspecified signal distribution

depends on her current belief. For example, cyclical learning emerges in the active indi-

vidual learning models of Nyarko (1991); Fudenberg et al. (2017), while path-dependent

learning arises in the passive individual learning models of Rabin and Schrag (1999);

Epstein et al. (2010).

In contrast, cyclical and path-dependent learning do not arise in misspecified passive

individual learning models in which an agent’s signal misspecification is independent

of her current belief. In our framework, this corresponds to settings in which agents

learn from the public signal but not from the actions of others. It follows immediately

from Theorem 1 that, generically, there is exactly one locally stable learning outcome,

|Λ(ω)| = 1, and beliefs almost surely converge to this unique outcome.32

Path-dependent learning also occurs in correctly specified social learning settings

with informational herds (Bikhchandani, Hirshleifer, and Welch 1992; Banerjee 1992;

Smith and Sorensen 2000). In contrast to misspecified settings, all but at most one of

these limit beliefs must be non-degenerate (i.e. incomplete learning). This difference is

economically important. In correctly specified models, informational herds are fragile

(Bikhchandani et al. 1992). Even though all agents are playing the same action, they

remain uncertain about the state. Therefore, a herd of any length can be overturned by

a relatively uninformative public signal or other piece of new information. In contrast,

when an incorrect herd persists in our setting, beliefs almost surely converge to the

incorrect state. This implies that longer herds will become increasingly difficult to

overturn.33

Focus on Asymptotic Learning. When incorrect learning, cyclical learning or dis-

agreement arise asymptotically, then we will observe these learning outcomes even in

the face of an infinite amount of information. This establishes that the source of these

inefficiencies is not a lack of sufficient information to learn the state. Agents are bounded

away from efficiency, irrespective of the amount of information that they observe. Of

course, these asymptotic results also establish that we will observe inefficient choices,

belief cycles and disagreement in finite time.

32When γi(λ, ω) is independent of λ, its sign is constant across the belief space. Therefore, the
conditions in Theorem 1 collapse to the standard result that beliefs converge to the state that minimizes
the relative entropy from the misspecified model to the correct model (Berk (1966); Shalizi (2009)).
When the sign of γi(λ, ω) is independent of λ, there is no wedge between local and global stability for
disagreement outcomes: if the unique locally stable outcome is a disagreement outcome, then it is also
globally stable. Therefore, it is not necessary to check maximal accessibility.

33This observation was first made in Eyster and Rabin (2010) in the context of naive social learning.
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The expression γi(λ, ω) that we use to characterize the locally stable set also deter-

mines the asymptotic rate of learning. The larger this term is in magnitude, the faster

the rate of convergence to (or, depending on the sign, the faster the rate of divergence

from) the candidate limit belief from a neighborhood of this belief.

5 Applications

In this section, we demonstrate how our general framework can be used to gain a deeper

understanding of how different types of model misspecification affect learning. First,

we explore whether two forms of signal misspecification are conceptually robust, in that

they are not sensitive to the parametric specifications chosen to model how agents mis-

interpret information. We show that whether the learning results in these settings are

robust to alternative specifications depends on the type of misspecification. Second,

we compare whether signal misspecification has a similar impact in individual and so-

cial learning settings. Third, we examine whether a representative agent model is a

good approximation for a setting with model heterogeneity by comparing the learning

outcomes for a set of types with heterogenous levels of model misspecification to the

learning outcomes for a single type with the average model of the population. Fourth,

we demonstrate that our framework can connect conceptually distinct forms of model

misspecification that have similar implications for learning and behavior. Finally, we

explore entrenched disagreement in a level-k social learning model.

5.1 The Fragility of Underreaction and Overreaction Specifications

We first study conceptual robustness in a setting in which agents underreact or overreact

to signals.34 We show that this form of misspecification is sensitive to the modeling

choice, in that different parametric specifications lead to qualitatively different asymp-

totic learning results. We also compare individual and social learning settings, and show

that the interaction between under- or overreaction and learning from others’ actions

creates long-run inefficiencies that are not present when agents learn solely from signals.

This illustrates that the context of a learning environment – specifically, whether agents

learn from private or social sources of information – can influence how a bias impacts

long-run behavior.

We model overreaction as an agent who forms beliefs as if she has observed the same

signal multiple times. Analogously, we model underreaction as an agent who needs to

observe multiple realizations of the same signal to reach the posterior induced by the

34Both overreaction and underreaction have been observed empirically (Edward 1982; Tversky and
Kahneman 1971). Griffin and Tversky (1992) reconcile these disparate findings by showing that context
determines whether an individual overreacts or underreacts to information: in updating experiments,
subjects underreact to precise estimates of moderate effect sizes, while subjects overreact to noisy
estimates of large effect sizes.
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true signal distribution. Formally, if a signal induces posterior belief s that the state

is R, then the agent updates her likelihood ratio by
(

s
1−s

)ν
, where ν ∈ [0, 1) captures

underreaction and ν ∈ (1,∞) captures overreaction. For example, if ν = 2, an agent

double counts signal s, and if ν = 1/2, an agent needs to observe two realizations of

signal s in order to arrive at the true posterior induced by one realization of s.

This modeling approach contrasts with Epstein et al. (2010), who represent underre-

action as a subjective posterior belief that is a weighted average of the prior belief and

the posterior induced by the true signal distribution and overreaction as a subjective

posterior belief that places a negative weight on the prior belief and a weight above

one on the true posterior. These different modeling choices are of consequence: in an

individual learning setting, our forms of underreaction and overreaction lead to funda-

mentally different asymptotic learning outcomes than the forms considered in Epstein

et al. (2010).

Individual Learning. In an individual learning setting (i.e. informative public signals

and uninformative private signals), the signal misspecification introduced above corre-

sponds to σ̂(σ)
1−σ̂(σ) =

(
σ

1−σ

)ν
. Our first result establishes that under- and overreaction

do not alter the set of asymptotic learning outcomes in this setting, regardless of the

severity of the bias.

Proposition 1. In an individual learning setting, correct learning occurs almost surely

for any ν ∈ (0,∞).

To understand the intuition for this result, consider the case of overreaction. Agents

overreact symmetrically to signals that favor state L and state R – that is, equally

extreme signals for states L and R in the correctly specified model are interpreted

as equally extreme signals in the misspecified model. For example, when ν = 2, the

symmetric signals σ1 = 1/3 and σ2 = 2/3 are interpreted as symmetrically more extreme

beliefs σ̂(σ1) = 1/5 and σ̂(σ2) = 4/5. Further, agents overreact to weak and strong

signals in a similar manner. For example, agents double count both weaker signal σ =

3/5 and stronger signal σ = 4/5. These properties ensure that overreaction does not

affect the sign of the average change in the log likelihood ratio: as in the correctly

specified model, it remains negative at all beliefs, γ(λ, ω) < 0 for all λ. Therefore, the

set of asymptotic learning outcomes is independent of the level of overreaction.35

In contrast, Epstein et al. (2010) find that sufficiently severe overreaction leads to

35More generally, this result holds for any signal misspecification such that the functions σ/(1−σ) 7→
σ̂(σ)/(1− σ̂(σ)) and (1−σ)/σ 7→ (1− σ̂(σ))/σ̂(σ) are log-concave. Heidhues et al. (2019) find a similar
result for conservatism and base rate neglect in an individual learning model with a continuous state
space and a normal prior and noise. Their result also relies on choosing a symmetric parameterization
for the misspecification.
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the possibility of incorrect learning. In their specification, overreaction alters updating

in an asymmetric way. An agent with prior p who overreacts to signal σ that leads to

true posterior pσ
pσ+(1−p)(1−σ) updates to posterior belief

ν̃

(
pσ

pσ + (1− p)(1− σ)

)
+ (1− ν̃)p,

where ν̃ > 1 is the overreaction parameter. This learning rule is represented by a form of

signal misspecification that asymmetrically skews signals: when an agent believes that

state R is more likely, she overweights signals in favor of state R more than she over-

weights signals in favor of state L, and vice versa. For example, when ν̃ = 1.2 and p ≈ 1,

σ̂(.25) = .23 while σ̂(.75) = .83 > 1 − σ̂(.25). Further, the misspecification depends on

the prior: the asymmetry is more pronounced for more extreme priors. Given this asym-

metry, sufficiently severe overreaction changes the sign of γ(λ, ω), and therefore, the set

of asymptotic learning outcomes. See Appendix C.1 for the representation of this form

of overreaction in our framework.

Relatedly, Bushong and Gagnon-Bartsch (2017) study a setting where an agent is

misspecified about her past preferences. The agent has reference dependent utility and

underestimates the extent of her reference dependence when recalling past outcomes.

This causes her to overreact to past gains and losses. Given that she overreacts sym-

metrically, as in our setting, she accurately learns the average return. Only if she is also

loss averse will she overreact more to losses than gains. As in Epstein et al. (2010), this

asymmetry leads to the possibility incorrect learning.

Although complete learning still obtains when under- or overreaction is symmetric,

these forms of signal misspecification do impact short-run learning and the volatility

of beliefs. An agent who overreacts to signals has beliefs that are more volatile and

converge faster than expected, while an agent who underreacts has beliefs that are less

volatile and converge slower than expected.

Social Learning. Now consider a social learning setting with informative private sig-

nals and uninformative public signals, in which all agents believe private signals are dis-

tributed according to F̂ ω(s) = F ω( sν

(1−s)ν+sν ) in state ω. These misspecified signal distri-

butions lead to the form of under- or overreaction introduced above, i.e. ŝ(s)
1−ŝ(s) =

(
s

1−s

)ν
.

In contrast to individual learning, social learning interacts with under- and overreaction

in a way that can interfere with asymptotic learning. Although the signal misspecifi-

cation is symmetric, these signals are filtered through other agents’ action choices in

a way that gives rise to asymmetric under- or overreaction to actions. Similar to an

asymmetric under- or overreaction to signals, this asymmetric under- or overreaction to

actions can alter the set of asymptotic learning outcomes.
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To illustrate this possibility, consider a decision problem with four actions, a ∈
{a1, a2, a3, a4}, ordered according to increasing preference in state R. Assume preferences

are symmetric: if a1 is optimal at belief p, then a4 is optimal at belief 1−p, and similarly

for a2 and a3. There are two types of agents: θ1 is sociable and θ2 is autarkic. Both

types interpret signals in the same way and have the same preferences and type θ1 has

correct beliefs about the share of autarkic types.

Suppose sociable agents are herding on action a1. Then a1 actions that confirm the

herd are less informative than a4 actions that contradict the herd. Therefore, overre-

action is stronger with respect to the contradictory action a4. This pulls beliefs away

from state L. Similarly, when sociable agents are herding on a4, they overreact more to

contradictory action a1 than confirmatory action a4, pulling beliefs away from state R.

For sufficiently severe overreaction, this gives rise to cyclical learning. In contrast, when

agents underreact to new information, they do not learn enough from contradictory ac-

tions. This makes it more difficult to break a herd, and gives rise to the possibility of

incorrect learning. Fig. 2 illustrates these learning regions.

Note that in the asymmetric signal misspecification in Epstein et al. (2010), incor-

rect learning arises when agents overreact to signals, whereas in the asymmetric action

misspecification that arises from social learning, incorrect learning arises when agents

underreact to signals.

5.2 The Robustness of Confirmation Bias Specifications

We next study conceptual robustness a setting in which an agent misinterprets informa-

tion to confirm her current beliefs – confirmation bias. We use our characterization to

show that the asymptotic learning insights derived in Rabin and Schrag (1999) hold for a

broad class of specifications of confirmation bias. Therefore, in contrast to the previous

section, this form of signal misspecification is less sensitive to modeling choice.36

Rabin and Schrag (1999) study an individual learning model in which an agent

receives a binary signal y ∈ {l, r} that matches the state with probability β > 1/2. If

the signal contradicts her prior belief (i.e. her belief favors state L and she observes signal

r, or vice versa), then with probability q she misreads the signal as a confirmatory signal

(i.e. believes she observed l when she observed r). They establish that for sufficiently

high q, confirmation bias leads to incorrect learning with positive probability. This

set-up makes several strong assumptions to simplify the analysis. First, the severity of

the confirmation bias, i.e. the frequency that a signal is misread, is independent of the

current belief: an agent exhibits the same level of bias when she believes that state L is

36Fryer, Harms, and Jackson (2018) derive similar insights in a model of ambiguous information with
limited memory. The interpretation strategies they study map into a misspecified model that mirrors
confirmation bias.
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Figure 2. Under/overreaction and social learning
(ω = L, FL = 2s− s2, FR = s2, π(θ1) = .9, p0 = 1/2, (pi,1, pi,2, pi,3) = (.25, .5, .75) for i = 1, 2.)

very likely as when she believes that state L is only slightly more likely than state R.

Second, misread contradictory signals are interpreted as having the same informational

content as confirmatory signals.

We use our framework to show that the insights gleaned from this stylized form of

confirmation bias are robust to more general specifications. Consider the case in which

contradictory signals may be viewed as weaker evidence of the more likely state than

confirmatory signals and the degree of the slant can depend on the current belief about

the state.37 This corresponds to a form of signal misspecification in which with probabil-

ity q, a contradictory signal y is interpreted as a weighted average of the true posterior

σ(y) induced by signal y and the true posterior σ(y′) induced by the confirmatory signal

y′. Formally, when belief p > 1/2 that the state is R, with probability q an l signal is

slanted towards state R and interpreted as subjective posterior (1−ν(p))σ(l)+ν(p)σ(r)

and when p < 1/2, with probability q an r signal is slanted towards state L and inter-

preted as subjective posterior (1−ν(p))σ(r) +ν(p)σ(l), where ν : [0, 1]→ [0, 1] captures

the slant of the contradictory signal. To simplify exposition, we assume that ν is contin-

uous and symmetric at certainty, ν(1) = ν(0). The dependence of ν(p) on the current

37As discussed in Section 2.3, it is a straightforward extension to allow the signal misspecification to
depend on the belief about the state (see Online Appendix E.4).
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belief about the state allows this slant to vary with the belief about the state. If ν is

strictly decreasing on [0, 1/2] and strictly increasing on [1/2, 1], then confirmation bias

becomes more severe as the agent’s belief becomes more extreme. The model of Rabin

and Schrag (1999) corresponds to the case where ν(p) = 1, i.e. contradictory signals are

fully slanted, independent of the current belief.

We can apply Theorem 1 to show that the possibility of incorrect learning depends on

the probability of misreading signals and the level of slant at certainty, but is independent

of how the slant depends on the belief about the state.

Proposition 2. There exists cut-offs q ∈ (0, 1) and ν(q) ∈ (0, 1], with ν(q) < 1 for

q > q, such that for q > q and ν(1) > ν(q), both incorrect and correct learning arise with

positive probability, and for q < q or ν(1) < ν(q), then almost surely learning is correct.

If signals are symmetric, σ(r) = 1− σ(l), and fully slanted at certainty, ν(1) = 1, then

q̄ = 1 − 1/2σ(r), which is identical to the cut-off when signals are fully slanted across

the belief space, ν(p) = 1, as in Rabin and Schrag (1999).

This establishes that the stark form of confirmation bias in Rabin and Schrag (1999)

does not drive the incorrect learning result: when confirmation bias is sufficiently severe,

beliefs can become entrenched on both the correct and incorrect state, regardless of its

exact form. In fact, when signals are fully slanted at certainty, the cut-off for incorrect

learning is identical to that when signals are fully slanted at all beliefs, as in Rabin

and Schrag (1999). We obtain a similar result to Proposition 2 when we also allow the

probability q of misreading a signal to depend on the belief about the state.

While the possibility of incorrect learning is independent of the shape of ν(p), the

probability of incorrect learning depends crucially on it. Fixing the slant at certainty,

an ν(p) closer to one at interior beliefs amplifies the impact of early signals and makes

it more difficult to overturn beliefs that even slightly favor the incorrect state. Fig. 3

illustrates that the probability of incorrect learning is increasing in the severity of the

slant using three parameterizations of ν(p).

5.3 Naive Learning with Model Heterogeneity

A standard assumption in papers that study model misspecification is that all agents

have the same misspecified model. This can be viewed as a representative agent ap-

proach, and it significantly simplifies the analysis. More realistically, agents will have

heterogeneous levels of misspecification. The representative agent approach is valid in

the face of heterogeneity if agents process information in a way such that their long-run

behavior is approximated by the long-run behavior of the representative agent.

In this section, we use our framework to explore the validity of the representative

agent approach when agents exhibit a form of naive learning in which they overestimate
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Figure 3. Confirmation Bias
(σ(l) = 3/8, σ(r) = 5/8)

the private information reflected in actions. Bohren (2016); Eyster and Rabin (2010)

study naive learning when all agents have the same misspecified model. We compare

learning in a setting where agents have different levels of naivety to a representative agent

setting in which a single type has a level of naivety equal to the average naivety of the

population. We show that when heterogeneity is small, this representative agent model

is a good approximation of the underlying model with heterogeneity. When hetero-

geneity is large, the models have qualitatively different learning outcomes. Specifically,

heterogeneity facilitates learning in that it leads to correct learning for a strictly larger

set of parameters than the representative agent model.

As in Bohren (2016), we model naive learning as a misspecified belief about the share

of autarkic types. Let θA denote the autarkic type and assume π(θA) ∈ (0, 1). To capture

model heterogeneity, suppose there are two sociable types, θ1 and θ2, that occur with

equal probability, π(θ1) = π(θ2). Both sociable types overestimate the share of autarkic

types, with type θ2 having a more severe bias, π(θA) < π̂1(θA) ≤ π̂2(θA) ≤ 1. This form

of misspecification leads agents to underestimate the correlation between prior actions.

We compare this setting to a representative agent setting in which a single sociable type

believes that the autarkic type occurs with probability π̂ ≡ (π̂1(θA)+ π̂2(θA))/2. In other

words, the representative agent has a bias equal to the average bias in the heterogenous

setting. To close the model, assume that each agent faces a binary decision problem

in which she earns a payoff of one from choosing the action that matches the state,

A = {L,R} and u(a, ω) = 1a=ω, all types correctly interpret private signals, sociable

types have correct beliefs about the relative frequency of each sociable type, all types

have common prior p0 = 1/2, and public signals are uninformative and believed to be
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uninformative.38

We first show that the representative agent model is a good approximation when

heterogeneity is sufficiently small.

Proposition 3. Generically, for any average bias π̂, there exists an ε > 0 such that

if heterogeneity is sufficiently small, |π̂1(θA) − π̂2(θA)| < ε, then the heterogeneous and

representative agent settings have the same set of long-run learning outcomes.

Next, we explore how heterogeneity affects learning. It is a priori unclear whether

heterogeneity will facilitate or hinder learning, compared to the representative agent

model. The type with milder misspecification may facilitate learning by counteracting

the type with more severe misspecification, or the type with the more severe misspec-

ification may distort information in a way that hinders learning for both types. The

following result establishes that the first effect dominates and heterogeneity facilitates

learning.

Proposition 4. Suppose the signal distribution is symmetric, FL(s) = 1 − FR(1 − s).

For all π̂1(θA), π̂2(θA) ∈ (π(θA), 1], almost surely learning is either correct or incorrect.

If learning is almost surely correct in the representative agent model at π̂, then learning

is almost surely correct in the heterogeneous model for all π̂1(θA) and π̂2(θA) such that

(π̂1(θA) + π̂2(θA))/2 = π̂, and if incorrect learning occurs with positive probability in the

heterogeneous model at π̂1(θA) and π̂2(θA), then incorrect learning occurs with positive

probability in the representative agent model at π̂ ≡ (π̂1(θA) + π̂2(θA))/2.

Type θ1 is more adept at correcting for correlated information, and as a result, asymp-

totically adopts the inefficient action with lower probability than θ2. In turn, this helps

θ2 learn the true state. Actions from θ1 confirm the state and θ2 overestimates the pri-

vate information reflected in these actions. This reduces the probability that θ2 herds

on an inefficient action.39

Proposition 4 has important implications for policy interventions aimed at mitigating

inefficient choices. Suppose a social planner wishes to intervene if and only if agents face

the possibility of incorrect learning. The planner measures the average level of bias in the

population and uses a representative agent approach to determine whether to intervene.

Given Proposition 4, this method will result in over-intervention, in that there are levels

of bias at which incorrect learning arises in the representative agent model but not in the

38The representative agent model is a special case of Bohren (2016).
39Heterogeneity does not always improve learning. If heterogeneity leads to fundamentally different

biases – for example, if one type overestimates the correlation in prior actions and the other type
underestimates it – then sufficient heterogeneity will interfere with long-run learning, even when the
average bias is close to the truth (e.g. π̂ ≈ π(θA)) and learning is complete in the representative agent
model.
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Figure 4. Learning in Representative Agent and Heterogeneous Models
(π = .3, FL(s) = 2s− s2, FR(s) = s2, p0 = 0.5)

heterogeneous model. However, whenever incorrect learning arises in the heterogeneous

model, it also arises in the representative agent model – and therefore, under-intervention

will not be an issue. Fig. 4 illustrates these insights.

These results provide insight into the use of the representative agent approach to

study how model misspecification impacts learning. The range of heterogeneity plays

a key role in determining whether such an approach is appropriate. If heterogeneity is

large, then assuming all agents are a single type with the average bias of the population

can lead to very different predictions about long-run outcomes. Using these predic-

tions to determine appropriate policy interventions may lead to interventions that are

unnecessary or even harmful. In contrast, if the level of heterogeneity is small, then

the predictions of the representative agent model are a good approximation. The tools

developed in this paper can be used to quickly assess whether a reasonable amount of

heterogeneity will lead to substantially different learning predictions.

5.4 Using the Framework to Demonstrate Behavioral Equivalence

We can use our general framework to connect conceptually distinct forms of model mis-

specification that have similar implications for learning and behavior. To demonstrate

this, we show that a model with naive temptation and a model with partisan bias are

asymptotically equivalent in terms of the set of learning outcomes that arise.

The temptation setting is as follows. Consider a binary action decision problem

in which agents seek to choose the action that matches the state, but differ in whether

they are tempted to choose action R when there is uncertainty. The tempted types place

higher weight on matching the state in state R, ui(a, ω) = (2− β)1a=ω=L + β1a=ω=R for
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some β ∈ (1, 2), while the non-tempted types have symmetric preferences across states,

ui(a, ω) = 1a=ω. Agents are unaware of others’ temptation. We establish an equivalence

between this setting and the partisan bias setting in Example 2.

Proposition 5. For every level of temptation β ∈ [1, 2) and share of non-tempted types

q ∈ [0, 1], the model in Example 2 with level of partisan bias ν(β) ≡ log .5/ log(1− β/2)

and share of non-partisan types q has an identical set of asymptotic learning outcomes.

Proposition 5 shows that fundamentally different biases – the temptation model is a

form of preference misspecification, while the partisan bias model is a form of signal

misspecification – interfere with learning in similar ways. See Appendix C.4 for the full

description and analysis of this setting.

5.5 Entrenched Disagreement in a Level-k Learning Model

This application shows that entrenched disagreement emerges as a robust feature of social

learning in a level-k model. Level-k models describe how boundedly rational agents draw

inference in strategic settings (Costa-Gomes, Crawford, and Iriberri 2009). Agents are

characterized by their “depth” of reasoning, where higher levels use progressively more

sophisticated reasoning. This misspecified model features prominently in the empirical

literature on social learning, but has been relatively unexplored in the corresponding

theoretical literature, as characterizing learning outcomes is significantly more complex

when agents learn in different ways. Using our framework, each level can be modeled as

a type that has a misspecified model of the strategic link between prior actions. When

agents have heterogenous models, observing the same information does not ensure that

they converge to the same beliefs. In fact, we show that agents can become very certain

of different states, despite observing the same patterns of action choices.

Consider a level-k model with four levels. Each level corresponds to a type, Θ =

{θ0, θ1, θ2, θ3}, where the level-0 type is used to anchor the model of level-1.40 Level-0

chooses an action without learning from signals or the actions of others, i.e. it is a noise

type who believes that private signals and prior actions are uninformative, ŝ0(s) = 1/2

and π̂0(θ0) = 1. The level-1, 2 and 3 types accurately learn from private signals but have

a misspecified model of how to interpret actions, which is captured by a misspecified

type distribution. Level-1 chooses an action solely based on its private signal, i.e. it is

an autarkic type who believes that prior actions are uninformative, π̂1(θ0) = 1. Level-2

believes that prior actions solely reflect private information, i.e. π̂2(θ1) = 1. It fails to

account for redundant information from the prior actions of others.41 Level-3 is the most

40Our framework can allow for higher levels. However, empirical and experimental studies rarely
find evidence of levels above level-3.

41A level-2 type is analogous to the “BRTNI” agents in Eyster and Rabin (2010) and the “naive
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sophisticated type: it understands that prior actions contain redundant information, but

does not allow for the possibility that other agents also account for this – it believes that

most other agents are level-2, π̂3(θ2) = 1 − ε for some small ε > 0, and for technical

reasons, places arbitrarily small probability on the level-1 type, π̂3(θ1) = ε.42 The

correctly specified model is not a special case of this set-up for any type, as no type

allows for the existence of its own type. To close the model, assume that each agent

faces a binary decision problem in which she earns a payoff of one from choosing the

action that matches the state, A = {L,R} and u(a, ω) = 1a=ω, the level-0 type does

not actually exist in the population, π(θ0) = 0, the level-1 type occurs with positive

probability, π(θ1) ∈ (0, 1), all types have common prior p0 = 1/2, and public signals are

uninformative and believed to be uninformative.43

A level-1 type incorporates solely its private information into its decision, and its

likelihood ratio is constant across time, λ1,t = 1 for all t. Therefore, a level-1 type

chooses action R iff it observes a signal s ≥ 1/2, independent of the history. A level-

2 type believes all past actions are from level-1 types. Therefore, it believes that the

informational content of actions are independent of the history, and the number of L

and R actions are sufficient statistics for its likelihood ratio. One interpretation is the

level-2 type uses a simple heuristic that counts the number of L and R actions in the

history and uses this number to form beliefs. A level-3 type believes that almost all

past actions are from level-2 types. Its subjective probability of an L action depends

on the probability that level-2 types choose action L, which does depend on the history

through λ2. Therefore, how the level-3 type updates its beliefs depends on the history.

Proposition 6 establishes that there are two distinct regions of learning, which feature

cyclical learning or disagreement depending on the true distribution over types.44

Proposition 6. There exists an ε > 0 such that if ε ∈ (0, ε), then either learning is

cyclical almost surely or disagreement occurs almost surely. For ε ∈ (0, ε), there exists

a cutoff π̄3 ∈ (0, 1) such that if π(θ3) > π̄3, then almost surely learning is cyclical, there

Bayesians” in Hung and Plott (2001). The naive learners in Bohren (2016) can be interpreted as a
modified level-2 type that allows for the possibility that other agents are also level-2. In Eyster and
Rabin (2010), all agents have the same model – they are all level-2 – while Bohren (2016), level-1 and
level-2 types both occur with positive probability.

42The exact parameterization of the level-k model, i.e. ε = 0, violates Assumption 3 and 4. In
a cognitive hierarchy model (Camerer, Ho, and Chong 2004), level-3 places non-trivial probability on
level-1 types. We explore this alternative parameterization in Online Appendix F.2.

43These assumptions are made for expositional simplicity. The results from Section 4 apply to any
level-k model in which the level-1 type occurs with positive probability, π(θ1) > 0 (to satisfy Assumption
3).

44Theorem 1 characterizes the asymptotic learning outcomes as follows: (i) construct the set of
locally stable learning outcomes Λ(ω), (ii) show both disagreement outcomes are maximally accessible,
and (iii) show ΛM (ω) is empty. See Appendix C.5 for a detailed construction of Λ(ω) and ΛM (ω). It
follows from (ii) and (iii) that Λ(ω) fully characterizes the set of asymptotic learning outcomes.
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Figure 5. Level-k Learning Outcomes
(ω = L, FL = 10

3 (s− .5s2 − .6), FR(s) = 5
3 (s2 − .04))

exists a cutoff π̄2 ∈ (0, 1) such that if π(θ2) > π̄2, then both disagreement outcomes arise

with positive probability, and there exists a cutoff π̄1 ∈ (0, 1) such that if π(θ1) > π̄1,

then disagreement outcome in which level-2 learns the correct state and level-3 learns the

incorrect state arises almost surely.

To understand why correct learning almost surely does not arise, suppose that the

state is L and the beliefs of both level-2 and level-3 are near zero. When this is the

case, a level-3 agent underreacts to L actions since she believes these actions are from

herding level-2 agents. However, some L actions are from level-1 agents who reveal

private information. In contrast, she accurately interprets R actions, since she correctly

attributes these actions to the level-1 agents who reveal private information. Therefore,

the level-3 type’s belief increases in expectation, moving away from zero, and correct

learning is not locally stable. The intuition is similar for incorrect learning.

This leaves the disagreement outcomes and cyclical learning as candidate learning

outcomes. Consider disagreement outcome near which level-2 agents choose action L

and level-3 agents choose action R. If a large share of agents are level-3, then most

agents choose action R. A level-2 agent overreacts to these R actions, since she believes

they are from level-1 agents who reveal private information. This pulls the level-2 type’s

belief away from zero and the disagreement outcome is not locally stable. The intuition

for the other disagreement outcome is similar. Therefore, disagreement almost surely

does not arise and learning is cyclical.

As the share of level-1 and level-2 types increase, convergence becomes possible

and disagreement emerges. Disagreement is driven by level-2 agents’ imitation of the

more frequent action and level-3 agents’ anti-imitation in order to correct for the level-2

agents’ overreaction. If a large share of agents are level-1, then most actions do indeed
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reveal private information. Therefore, the level-2 type’s model is close to correct and

almost surely level-2 agents learn the correct state. This corresponds to the disagreement

outcome in which level-2 agents learn the correct state and level-3 agents learn the

incorrect state arising almost surely. In this case, a higher level of reasoning performs

strictly worse than a lower level of reasoning, since level-3 agents almost surely learn

the incorrect state.

If a large share of agents are level-2, then both disagreement outcomes arise with

positive probability. Consider the disagreement outcome at which level-2 agents choose

L and level-3 agents choose R. Due to the high share of level-2 agents, most agents

choose L. A level-2 agent overreacts to these L actions, confirming her belief that the

state is L. In contrast, a level-3 agent believes L actions are from herding level-2 agents

and R actions are from informative level-1 agents. She does not account for informative

level-1 agents playing L or herding level-3 agents playing R. Therefore, she underreacts

to L actions and overreacts to R actions. This confirms her belief that the state is R,

despite the high frequency of L actions. Therefore, this disagreement outcome is locally

stable. The intuition for the other disagreement outcome is similar. Given that both

disagreement outcomes arise, learning is path dependent. Two similar populations who

learn about the same state from different action histories may converge to very different

long-run beliefs.

Fig. 5 illustrates these learning regions. In a social learning experiment, Penczynski

(2017) finds that most agents’ behavior is consistent with level-1, 2 or 3 types, with a

modal type of level-2. His estimate of the type distribution lies in the region where both

disagreement outcomes arise with positive probability.

6 Conclusion

We develop a general framework to study sequential social learning and passive indi-

vidual learning with model misspecification. The framework can capture many biases

and heuristics in interpreting information, including those discussed in Section 2.2. Our

main result characterizes how asymptotic learning outcomes depend on two expressions

that are straightforward to derive from the underlying form of misspecification. This

provides a unified way to compare different forms of misspecification that have been

previously studied, as well as provides new insights about forms of misspecification that

have not been theoretically explored. We use the characterization to show that some

forms of misspecification are robust to different parameterizations (i.e. confirmation

bias) while others are not (i.e. under and overreaction to signals), and explore whether

a representative agent approach yields accurate conclusions about long-run learning in

the presence of model heterogeneity. The characterization also yields new insights into

how misspecification impacts social learning in a level-k framework and provides a ra-
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tional for entrenched disagreement, in which agents’ beliefs converge to certainty about

different states despite observing each others’ actions.
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A Proofs from Section 4

A.1 Proof of Theorem 1

We establish Theorem 1 through a series of lemmas. In Lemma 1, we characterize the

set of stationary beliefs, which are candidate limit points of 〈λt〉. Lemma 2 rules out

convergence to non-stationary beliefs. Next, Lemma 3 establishes when a stationary

belief is locally stable. Lemma 4 establishes that global stability immediately follows

from local stability for agreement outcomes, while Lemma 5 establishes that maximal

accessibility is a sufficient condition for global stability of disagreement outcomes. In

Lemma 6, we show that locally stable mixed learning outcomes must be in ΛM(ω).

Therefore, if ΛM(ω) is empty, almost surely mixed learning does not arise. Finally,

Lemma 7 establishes that the likelihood ratio converges almost surely for all sociable

types when there is at least one globally stable stationary outcome and no locally stable

mixed outcomes.

We present Lemmas 1 to 4 for any finite number of sociable types k ≥ 1, as the con-

structions of local stability and the global stability of agreement outcomes are identical

for all finite k. Establishing the global stability of disagreement outcomes and ruling

out mixed learning is more involved for more than two sociable types, as the number of

possible outcomes increases with k. Therefore, we present Lemmas 5 and 6 for k = 2

sociable types (trivially, disagreement and mixed learning are not possible with a single

sociable type, i.e. k = 1). Finally, we use Lemmas 1 to 6 to establish belief convergence

in Lemma 7 for k ≤ 2 sociable types. The analogues of Lemmas 5 to 7 for k > 2 are in

Online Appendix E.2.

Throughout this section, assume Assumption 1, 2, 3 and 4. Given ε > 0, define a

neighborhood Bε(λ) of λ ∈ {0,∞}k as λi ∈ [0, ε) if λi = 0 and λi ∈ (1/ε,∞] if λi =∞.

A.1.1 Statement of Lemmas

In this section, we state Lemmas 1 to 7 outlined above. The proofs follow in Ap-

pendix A.1.2.

By Assumption 3, the set of stationary beliefs correspond to each type placing prob-

ability one on either state L (λ = 0) or state R (λ =∞).

Lemma 1 (Stationary Beliefs). The set of stationary beliefs are {0,∞}k.

Further, the likelihood ratio almost surely does not converge to non-stationary beliefs.

Lemma 2 (Non-Stationary Beliefs). Given λ∗, if λ∗i ∈ (0, 1) for some θi, then Pr(λt →
λ∗) = 0.
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Therefore, if the likelihood ratio converges for all types, then it must converge to a

stationary belief λ∗ ∈ {0,∞}k.
Next, we determine when the likelihood ratio converges with positive probability.

Recall that λ∗ is locally stable if the process 〈λt〉 converges to λ∗ with positive probability

from a neighborhood of λ∗, and that γi(λ, ω) is the expected change in the log likelihood

ratio for type θi at belief λ. Lemma 3 establishes the relationship between the local

stability of stationary belief λ∗ and the sign of γi(λ
∗, ω).

Lemma 3 (Locally Stable Beliefs). Let λ∗ ∈ {0,∞}k be a stationary belief.

1. If γi(λ
∗, ω) < 0 for all θi ∈ ΘS such that λ∗i = 0 and γi(λ

∗, ω) > 0 for all θi ∈ ΘS

such that λ∗i =∞, then λ∗ is locally stable.

2. If there exists a θi ∈ ΘS such that λ∗i = 0 and γi(λ
∗, ω) > 0 or λ∗i = ∞ and

γi(λ
∗, ω) < 0, then λ∗ is not locally stable and Pr(λt → λ∗) = 0.

Lemma 3 uses results on the local stability of nonlinear equations developed in Smith

and Sorensen (2000) (Theorems C.1 and C.2). Given Lemma 3, the set Λ(ω) defined

in (9) is the set of locally stable beliefs for a generic misspecified model. If there are

no locally stable beliefs, i.e. Λ(ω) is empty in a generic misspecified model, then the

likelihood ratio almost surely does not converge for at least one type, as Lemma 3 rules

out convergence to stationary beliefs that are not locally stable and Lemma 2 rules out

convergence to non-stationary beliefs.

We are interested in determining whether convergence occurs with positive proba-

bility from any initial value of the likelihood ratio, i.e. global stability. Clearly, the

set of globally stable learning outcomes is a subset of the set of locally stable learning

outcomes. Therefore, it remains to establish when local stability implies global stability.

For agreement outcomes, λ∗ ∈ {0k,∞k}, global stability immediately follows from local

stability.

Lemma 4 (Global Stability of Agreement). For λ∗ ∈ {0k,∞k}, if λ∗ is locally stable,

then λ∗ is globally stable, i.e. for any initial belief λ1 ∈ (0,∞)k, Pr(λt → λ∗) > 0.

All types update their beliefs in the same direction following either the maximal action

and signal in favor of state L, (a1, σL), or the maximal action and signal in favor of state

R, (aM , σR). Therefore, from any initial belief, it is possible construct a finite sequence

of action and public signal pairs that occurs with positive probability and pushes the

likelihood ratio arbitrarily close to an agreement outcome. Once the likelihood ratio is in

a neighborhood of the agreement outcome, local stability establishes positive probability

of convergence.
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Lemma 5 establishes that maximal accessibility is a sufficient condition for the global

stability of a disagreement outcome in the case of two sociable types, k = 2 (recall that

disagreement is not possible with a single sociable type).

Lemma 5 (Global Stability of Disagreement). Suppose k = 2. If disagreement outcome

λ∗ ∈ {(0,∞), (∞, 0)} is locally stable and maximally accessible, then λ∗ is globally stable.

Maximal accessibility orders the way each type interprets maximal actions and public

signals, which guarantees that there exists a finite sequence of maximal actions and

public signals that separates the beliefs of each type in the direction of the disagreement

outcome.45 As before, once the likelihood ratio is sufficiently close to the disagreement

outcome, local stability establishes convergence.

As discussed in Section 4.2, a sufficient condition for ruling out mixed outcomes when

k = 2 is that ΛM(ω) is empty (recall that mixed learning is not possible with a single

sociable type).

Lemma 6 (Unstable Mixed Outcomes). Suppose k = 2. If mixed learning outcome

(λ∗i , θi) 6∈ ΛM(ω), then Pr(λi,t → λ∗i and λ−i,t does not converge) = 0.

Finally, if there is at least one locally stable agreement outcome or locally stable and

maximally accessible disagreement outcome and no locally stable mixed outcomes, then

the likelihood ratio converges almost surely for all sociable types (recall that for k = 1,

both stationary learning outcomes are agreement outcomes and ΛM(ω) = ∅).

Lemma 7 (Belief Convergence). Suppose k ≤ 2. If Λ(ω) contains an agreement outcome

or maximally accessible disagreement outcome and ΛM(ω) is empty, then for any initial

belief λ1 ∈ (0,∞)k, there exists a random variable λ∞ with supp(λ∞) = Λ(ω) such that

λt → λ∞ almost surely.

Theorem 1 immediately follows. Part (1) follows from the local and global stability

of agreement outcomes (Lemmas 3 and 4). Part (2) follows from the local and global

stability of disagreement outcomes (Lemmas 3 and 5). For part (3), Lemmas 1 and 2

rule out convergence to non-stationary beliefs, Lemma 3 rules out convergence to sta-

tionary outcomes that are not locally stable, and Lemma 6 rules out convergence to a

mixed learning outcome when ΛM(ω) is empty. Therefore, if Λ(ω) is empty in a generic

misspecified model, there are no locally stable learning outcomes and almost surely the

likelihood ratio does not converge for at least one sociable type, establishing the second

45While maximal accessibility is simple and easy to verify, it can be restrictive, especially in models
with large action or public signal spaces. In Lemma 9 (Appendix A.1.2), we establish a more general
sufficient condition to separate beliefs, which we call separability (Definition 6).
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statement in part (3).46 If ΛM(ω) is also empty, then almost surely the likelihood ratio

does not converge for any sociable type, establishing the first statement in part (3). The

final statement in part (3) follows from Lemma 7, which establishes when the likelihood

ratio converges.

A.1.2 Proofs of Lemmas 1 to 7

Proof of Lemma 1 (Stationary Beliefs). At a stationary belief λ∗ ∈ [0,∞]k,

λ∗ = λ∗

(
ψ̂i(a, σ|R,λ∗)
ψ̂i(a, σ|L,λ∗)

)
(12)

for all (a, σ) such that ψ(a, σ|ω,λ∗) > 0. Trivially, (12) is satisfied for all λ∗ ∈ {0,∞}k,
independent of ψ(a, σ|ω,λ∗). Therefore, all λ∗ ∈ {0,∞}k are stationary. It remains to

be determined whether there exist any interior stationary beliefs λ∗ ∈ (0,∞)k.

Suppose λ∗ ∈ (0,∞)k and Assumption 3.ii holds, i.e. there exists an autarkic θj with

π(θj) > 0 that plays a1 with probability in (0, 1), and each sociable type θi believes this

autarkic type occurs with positive probability, π̂i(θj) > 0. Then the true probability of

action a1 and each type’s subjective probability of action a1 at λ∗ are in (0, 1) for each

state ω ∈ {L,R}. Further, each type’s subjective probability of a1 in state R is less

than its subjective probability of a1 in state L, since F̂R
i < F̂L

i . Given σ̂i(σL) ≤ 1/2,

this implies ψ̂i(a1, σL|R,λ∗) < ψ̂i(a1, σL|L,λ∗) and (12) does not hold for (a1, σL). But

(a1, σL) occurs with positive probability in either state, ψ(a1, σL|ω,λ∗) > 0. Therefore,

λ∗ cannot be stationary.

Suppose λ∗ ∈ (0,∞)k and Assumption 3.i holds. Then σ̂i(σL) < 1/2 and σ̂i(σR) >

1/2 for all sociable types θi. Further, σL and σR occur with positive probability, inde-

pendent of λ. At least one action a occurs with positive probability at λ∗. Since public

signals are informative, it must be that ψ̂i(a,σL|R,λ∗)
ψ̂i(a,σL|L,λ∗)

6= ψ̂i(a,σR|R,λ∗)
ψ̂i(a,σR|L,λ∗)

. Therefore, (12) can-

not hold for both (a, σL) and (a, σR). But both action-signal pairs occur with positive

probability in either state, ψ(a, σL|ω,λ∗) > 0 and ψ(a, σR|ω,λ∗) > 0. Therefore, λ∗

cannot be stationary. �

Proof of Lemma 2 (Non-Stationary Beliefs). Suppose beliefs converge to a non-

stationary belief λ∗ ∈ [0,∞]k \ {0,∞}k with positive probability. After action and

public signal (ãt, σ̃t) = (aM , σR), by Lemma 10, λi,t+1 − λi,t is bounded uniformly away

from zero for all sociable types θi ∈ ΘS. For sufficiently small ε > 0, if λt ∈ Bε(λ
∗),

46In the non-generic set of models where γi(λ, ω) = 0 for some θi ∈ ΘS , the values of λ that satisfy
γi(λ, ω) = 0 may or may not be locally stable. If λ is not locally stable, then 〈λt〉 almost surely does
not converge for at least one type, while if λ is locally stable (and maximally accessible), then Lemmas 4
and 5 establish that it is also globally stable.
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then after observing (ãt, σ̃t) = (aM , σR), λi,t+1 6∈ Bε(λ
∗) for any type with an interior

belief λi,t ∈ (0,∞). The probability Pr(∃t < T |(ãt, σ̃t) = (aM , σR)) converges to one as

T →∞. Therefore, the likelihood ratio almost surely leaves Bε(λ
∗). �

Proof of Lemma 3 (Locally Stable Beliefs). Suppose ω = L. The proof for ω = R

is analogous.

Part 1. Consider λ∗ = 0k and suppose γi(0
k, L) < 0 for all sociable types θi ∈ ΘS.

Then there exists a ε > 0 such that in the neighborhood Bε(0
k) ≡ [0, ε]k of 0k,

∑
(a,σ)∈A×Σ

ψ(a, σ|L, 0k) sup
λ∈[0,ε]k

log
ψ̂i(a, σ|R,λ)

ψ̂i(a, σ|L,λ)
< 0. (13)

for all θi ∈ ΘS. Let

gi(a, σ) ≡ sup
λ∈[0,ε]k

log
ψ̂i(a, σ|R,λ)

ψ̂i(a, σ|L,λ)

denote the maximal update from action and signal (a, σ) in the neighborhood [0, ε]k,

with g(a, σ) ≡ (g1(a, σ), ..., gk(a, σ)). Let

ḡi ≡ max
(a,σ)∈A×Σ

gi(a, σ)

denote the maximal update across all action and signal pairs in the neighborhood [0, ε]k,

with g ≡ (ḡ1, ..., ḡk).

For δ > 0, choose a neighborhood [0, εδ]
k ⊆ [0, ε]k with

sup
λ∈[0,εδ]k

|ψ(a, σ|L,λ)− ψ(a, σ|L, 0k)| < δ.

By Lemma 11, ψ(a, σ|L,λ) is continuous at λ = 0k, so such a neighborhood exists.

Suppose λ1 ∈ [0, εδ]
k. Let a(θ, s,λ) be the optimal action for type θ at beliefs λ after

observing private signal s. Define the linear system 〈λδ,t〉∞t=1 as follows: λδ,1 = λ1,

logλδ,t+1 = logλδ,t + g(a(θ̃t, s̃t, 0
k), σ̃t),

when (θ̃t, s̃t) is such that a(θ̃t, s̃t,λ) = a(θ̃t, s̃t, 0
k) for all beliefs λ ∈ [0, εδ] (note this

includes all autarkic types), and

logλδ,t+1 = logλδ,t + ḡ

otherwise. When ω = L, let ψδ(a, σ) be the probability of (a, σ) in the former event and

let ψ̄δ be the probability of the latter event. Note ψδ(a, σ) ≤ infλ∈[0,εδ]k ψ(a, σ|L,λ) and
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ψ̄δ +
∑

(a,σ)∈A×Σ ψδ(a, σ|L) = 1. By Lemma C.1 of Smith and Sorensen (2000), if

ψ̄δḡi +
∑

(a,σ)∈A×Σ

ψδ(a, σ)gi(a, σ) < 0 (14)

for all θi ∈ ΘS, then almost surely limt→∞ λδ,t = 0k. Equation (14) holds for sufficiently

small δ, since by (13), it is strictly less than zero at δ = 0.

Let δ1 > 0 denote an upper bound such that (14) holds for all δ < δ1. Whenever

(θ̃t, s̃t) is such that a(θ̃t, s̃t,λ) = a(θ̃t, s̃t, 0
k) for all λ ∈ [0, εδ], the process 〈logλδ,t〉

updates by g(a, σ). When λt ∈ [0, εδ]
k, by construction this is larger than the update to

the process 〈logλt〉, which is log ψ̂i(a,σ|R,λt)
ψ̂i(a,σ|L,λt)

for each type θi ∈ ΘS. Otherwise, 〈logλδ,t〉
updates by ḡ, which is also larger than the update to 〈logλt〉 when λt ∈ [0, εδ]

k. There-

fore, for δ < δ1, if λδ,t ≥ λt and λδ,t ∈ [0, εδ]
k, then λδ,t+1 ≥ λt+1. Since λδ,1 ∈ [0, εδ]

k, as

long as it remains in [0, εδ]
k, 〈λt〉 is bounded above by a stochastic process that converges

to zero almost surely.

Since limt→∞ λδ,t = 0k almost surely for δ < δ1,

Pr(∪t ∩s≥t {λδ,s ∈ [0, εδ]
k}) = 1.

Therefore, there exists a t ≥ 1 such that Pr(∀s ≥ t,λδ,s ∈ [0, εδ]
k) > 0. Since the system

is linear, if this holds at some t > 1, it must hold at t = 1. Therefore, there exists some

λδ,1 ∈ [0, εδ]
k, with positive probability, λδ,t remains in [0, εδ]

k for all t > 1 and λt ≤ λδ,t.

Moreover, this holds for all λ ≤ λδ,1. When this happens, since limt→∞ λδ,t = 0k, it must

also be that limt→∞ λt = 0k. Let ε∗ = inf λδ,i,1 This establishes that when λ1 ∈ [0, ε∗]k,

with positive probability, limt→∞ λt = 0k i.e. λ∗ = 0k is locally stable.

The proofs for the other stationary beliefs are analogous. If λ∗i =∞, substitute λ−1i
for type θi and modify the transition rules accordingly.

Part 2. Let λ∗ ∈ {0,∞}k be a stationary belief and suppose that there exists a

type, which without loss of generality we denote θ1, such that λ∗1 = 0 but γ1(λ
∗, L) >

0. Without loss of generality, suppose the types are ordered so that the first κ types

correspond to λ∗i = 0 and the latter k−κ types correspond to λ∗i =∞. Since γ1(λ
∗, L) >

0, there exists a ε > 0 such that for neighborhood Bε(λ
∗) ≡ [0, ε]κ × [1/ε,∞]k−κ of λ∗,

∑
(a,σ)∈A×Σ

ψ(a, σ|L,λ∗) inf
λ∈Bε(λ∗)

log
ψ̂1(a, σ|R,λ)

ψ̂1(a, σ|L,λ)
> 0. (15)

Let τε ≡ min{τ |λt ∈ Bε(λ
∗) ∀t ≥ τ} be the first time at which beliefs enter Bε(λ

∗)

and never exit. Suppose Pr(λt → λ∗) > 0. Then for all ε > 0, τε < ∞ with positive
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probability. We will reach a contradiction by showing that for small enough ε, τε = ∞
almost surely. Let

g1(a, σ) ≡ inf
λ∈Bε(λ∗)

log
ψ̂1(a, σ|R,λ)

ψ̂1(a, σ|L,λ)

denote the minimal update for type θ1 following action and signal (a, σ) in the neigh-

borhood Bε(λ
∗) and let

g
1
≡ min

(a,σ)∈A×Σ
g1(a, σ)

denote the minimal update across all action and signal pairs in the neighborhood Bε(λ
∗).

Suppose λτ ∈ Bε(λ
∗) for some time τ (if such a τ doesn’t exist, then clearly λt → λ∗

is not possible along such a sample path). As above, let a(θ, s,λ) be the optimal action

for type θ at beliefs λ after observing private signal s. Define a linear system 〈λ̃t〉 as

follows: let λ̃τ = λ1,τ and for t > τ ,

log λ̃t+1 = log λ̃t + g1(a(θ̃t, s̃t,λ
∗), σ̃t)

when (θ̃t, s̃t) is such that a(θ̃t, s̃t,λ) = a(θ̃t, s̃t,λ
∗) for all beliefs λ ∈ Bε(λ

∗) (note this

includes all autarkic types), and

log λ̃t+1 = log λ̃t + g
1

otherwise. When ω = L, let ψ(a, σ) be the probability of (a, σ) in the former event and

let ψ be the probability of the latter event. Note ψ +
∑

(a,σ)∈A×Σ ψ(a, σ) = 1. Choose ε

sufficiently small so that

ψ g
1

+
∑

(a,σ)∈A×Σ

ψ(a, σ)g1(a, σ) > 0. (16)

Given (15), (16) is strictly greater than zero at ε = 0, so such an ε exists. Moreover,

(log λ̃t+1 − log λ̃t)
∞
t=τ is an i.i.d. process with expectation equal to (16). By the Law of

Large Numbers, almost surely, 1
t
(log λ̃t+1 − log λ̃t) converges to (16), which is positive.

Therefore,

lim
t→∞

log λ̃t = lim
t→∞

(
log λ1,τ +

t∑
s=τ

(log λ̃s+1 − log λ̃s)

)
→∞.

By definition of 〈λ̃t〉, if λ1,t ≥ λ̃t and λt ∈ Bε(λ
∗), then λ1,t+1 ≥ λ̃1,t+1. Since λτ ∈

Bε(λ
∗), as long as 〈λt〉 remains in Bε(λ

∗) for t > τ , 〈λ1,t〉 is bounded below by the
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stochastic process 〈λ̃t〉. Therefore, if 〈λt〉 remains in Bε(λ
∗) for all t > τ

lim
t→∞

log λ1,t ≥ lim
t→∞

log λ̃t →∞.

But this implies that for small enough ε, λt 6∈ Bε(λ
∗) for some t > τ . This is a

contradiction. So it must be that for small enough ε, τε =∞ almost surely. Therefore,

Pr(λt → λ∗) = 0.

Similar logic establishes that for stationary λ∗ such that λ∗1 =∞ and γ1(λ
∗, L) < 0,

Pr(λt → λ∗) = 0. �

Locally Stable Neighborhoods. From Lemma 3, if λ∗ ∈ Λ(ω), then λ∗ is locally

stable, i.e. there exists an ε > 0 and a stable neighborhood Bε(λ
∗) such that when

λ1 ∈ Bε(λ
∗), Pr(λt → λ∗) > 0. Also, generically, for each stationary belief λ∗ 6∈ Λ(ω),

there exists an ε > 0 and an unstable neighborhood Bε(λ
∗) such that when λ1 ∈ Bε(λ

∗),

〈λt〉 almost surely leaves this neighborhood.

Fix state ω and define E > 0 as the smallest constant such that if log λi ∈ R\[−E,E]

for each θi ∈ ΘS, then λ is contained in one of these stable or unstable neighborhoods,

and let BE(λ∗) denote the corresponding neighborhood for each stationary λ∗.47 Let B
denote the union of the stable neighborhoods, B ≡ ∪λ∗∈Λ(ω)BE(λ∗), and let BU denote

the union of the unstable neighborhoods, BU = ∪λ∗∈{0,∞}k\Λ(ω)BE(λ∗). We will use these

neighborhoods in the proofs of Lemmas 4 to 7.

Proof of Lemma 4 (Global Stability of Agreement). Suppose the agreement

outcome is locally stable, 0k ∈ Λ(ω), and there are at least two types, |Θ| ≥ 2. By

Assumption 4, a1 occurs with positive probability, and by Lemma 10, observing (a1, σL)

decreases the likelihood ratio. Given initial likelihood ratio λ1 ∈ (0,∞)k, let N be the

minimum number of consecutive (a1, σL) actions and signals required for the likelihood

ratio to reach the stable neighborhood, λN+1 ∈ BE(0k). By Lemma 10, the change in the

likelihood ratio following (a1, σL) is bounded away from zero. Therefore, N <∞. Let τ1

be the first time that 〈λt〉 enters BE(0k), τ1 ≡ min{t|λt ∈ BE(0k)}, let τ2 be the first that

〈λt〉 leaves BE(0k) after entering, τ2 ≡ min{t > τ1|λt 6∈ BE(0k)}, and let τ3 be the first

time the likelihood ratio enters BE(0k) and never leaves, τ3 ≡ min{τ |λt ∈ BE(0k) ∀t ≥
τ}. We know that Pr(τ1 < ∞) > 0, since the probability of transitioning from λ1

to BE(0k) is bounded below by the probability of initially observing N consecutive

(a1, σL) action and signal pairs. Also, Pr(τ2 = ∞) > 0, since by local stability, when

the likelihood ratio is in BE(0k), with positive probability, it never leaves. Therefore,

47In a slight abuse of notation, we switch from the neighborhood subscript denoting the bound
for the likelihood ratio to denoting the bound for the log likelihood ratio. This simplifies notation in
subsequent lemmas.
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Pr(τ3 < ∞) > Pr(τ1 < ∞ ∧ τ2 = ∞) > 0. Therefore, with positive probability, the

likelihood ratio eventually enters and remains in BE(0k). By Lemma 3, if the likelihood

ratio remains in BE(0k) for all t, beliefs almost surely converge to 0k. Therefore, if

0k ∈ Λ(ω), then from any initial belief λ1 ∈ (0,∞)k, Pr(λt → 0k) > 0.

Suppose the agreement outcome is locally stable, 0k ∈ Λ(ω), and there is a single

type, |Θ| = 1. Then Assumption 3.i must hold and public signals are informative. With

a single type, action a1 may occur with probability zero at some beliefs, and we need

to adapt the proof for multiple types. Let a(λ) be the lowest action that type θ1 plays

at belief λ. When there is a single type θ1, this type has a correctly specified model

of the type distribution (this must be the case when |Θ| = 1, as trivially, π̂1(θ1) = 1),

and therefore, observing a(λ) at belief λ weakly decreases the likelihood ratio (by similar

reasoning to Lemma 10). Therefore, observing (a(λ), σL) strictly decreases the likelihood

ratio, since public signals are informative. Substituting the sequence (a(λt), σL)Nt=1 for

the sequence of N consecutive (a1, σL) actions and signals, where λt is the updated belief

following (a(λt−1), σL), the remainder of the proof is the same as in the multiple types

case.

The proof for agreement outcome ∞k is analogous. �

Intermediate Results for Lemma 5. The following definitions and Lemmas 8 and 9

are used in the proof of Lemma 5. Order the public signals by relative likelihood of state

R, (σ1, σ2, ..., σ|Σ|) (note σ1 = σL and σ|Σ| = σR). Order the action and signal pairs

((a1, σ1), (a2, σ1), ..., (aM , σ|Σ|)) so that pair M(l− 1) +m corresponds to action am and

signal σl. Define A(λ) as the matrix of updates to the log likelihood ratio at beliefs

λ, where each row corresponds to the updates for sociable type θi, and each column

corresponds to the update following action and signal pair j,

(A(λ))ij ≡ log
ψ̂i((a, σ)j|R,λ)

ψ̂i((a, σ)j|L,λ)
. (17)

Without loss of generality, we consider disagreement outcomes that are ordered so

that the first κ ∈ {1, ..., k − 1} types have belief 0 and the remaining k − κ types have

belief∞, i.e. λ∗ = (0κ,∞k−κ). To consider other disagreement outcomes, simply reorder

the types so that this holds.

Definition 6 (Separability).

1. Given κ ∈ {1, ..., k}, λ∗ = (0κ,∞k−κ) is separable at zero if there exist vectors

c ∈ [0,∞)|A×Σ| and G ∈ Rk with Gi > 0 for all i ≥ κ and Gi < 0 for all i < κ,

such that A(λ∗)c = G.
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2. Given κ ∈ {0, ..., k − 1}, λ∗ = (0κ,∞k−κ) is separable at infinity if there exist

vectors c ∈ (0,∞)|A×Σ| and G ∈ Rk with Gi > 0 for all i > κ + 1 and Gi < 0 for

all i ≤ κ+ 1, such that A(λ∗)c = G.

Definition 7 (Adjacently Accessible). Given κ ∈ {1, ..., k}, λ∗2 = (0κ−1,∞k−κ+1) is

adjacently accessible from λ∗1 = (0κ,∞k−κ) if for any ε2 > 0, there exists an ε1 > 0

such that for any λ ∈ Bε1(λ
∗
1), there exists a τ(λ) < ∞ such that if λt = λ, then

Pr(λt+τ(λ) ∈ Bε2(λ
∗
2)) > 0. The definition is analogous for κ ∈ {0, ..., k − 1} and

λ∗2 = (0κ+1,∞k−κ−1) adjacently accessible from λ∗1 = (0κ,∞k−κ).

Lemma 8 (Adjacently Accessible). Given κ ∈ {1, ..., k}, if λ∗1 = (0κ,∞k−κ) is separable

at zero, then λ∗2 = (0κ−1,∞k−κ+1) is adjacently accessible from λ∗1. Given κ ∈ {0, ..., k−
1}, if λ∗1 is separable at infinity, then λ∗2 = (0κ+1,∞k−κ−1) is adjacently accessible from

λ∗1.

Proof. Let λ∗1 = (0κ,∞k−κ), λ∗2 = (0κ−1,∞k−κ+1) and suppose λ∗1 is separable at zero.

We will show that for any ε2 > 0, there exists an ε1 > 0 such that for any λ ∈ Bε1(λ
∗
1),

there exists a τ(λ) < ∞ such that if λ1 = λ, then Pr(λ1+τ(λ) ∈ Bε2(λ
∗
2)) > 0. Since

the log likelihood ratio process is linear, this also holds for any λt = λ.

For ε > 0, recall Bε(λ
∗
1) ≡ [0, ε)κ × (1/ε,∞]k−κ denotes a neighborhood of λ∗1.

Define K(ε) ≡ − log ε, and let [−∞,−K(ε))κ × (K(ε),∞]k−κ denote the corresponding

neighborhood of logλ∗1. Define

gε,i(a, σ) ≡ inf
λ∈Bε(λ∗1)

log
ψ̂i(a, σ|R,λ)

ψ̂i(a, σ|L,λ)
,

as the smallest update to the log likelihood ratio when type i ≥ κ observes (a, σ) and

has likelihood ratio in the neighborhood Bε(λ
∗
1), and

gε,i(a, σ) ≡ sup
λ∈Bε(λ∗1)

log
ψ̂i(a, σ|R,λ)

ψ̂i(a, σ|L,λ)

as the largest update to the log likelihood ratio when type i < κ observes (a, σ) and has

likelihood ratio in the neighborhood Bε(λ
∗
1). Finally, define

ḡε,κ(a, σ) ≡ sup
λ∈Bε(λ∗1)

log
ψ̂κ(a, σ|R,λ)

ψ̂κ(a, σ|L,λ)

as the largest update to the log likelihood ratio when type κ observes (a, σ) and has

likelihood ratio in the neighborhood Bε(λ
∗
1).
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We construct a process that bounds 〈λt〉 as long as it remains close to λ∗1, and use

this process to show that we can separate the log likelihood ratios of types 1, ..., κ − 1

and type κ by an arbitrary amount K while the beliefs of all types remain close to λ∗1.

By separability at zero, there exist vectors c ∈ [0,∞)k and G ∈ Rk that satisfy the

separability condition. Moreover, since the rationals are dense in the reals, there exists

vector c ∈ [0,∞)k of rational numbers and vector G ∈ Rk that satisfies the separability

condition.

Therefore, there exists an ε3 > 0 and integers ca,σ ≥ 0 for each (a, σ) ∈ A ×Σ such

that

Gi ≡
∑

(a,σ)∈A×Σ

ca,σgε3,i(a, σ), (18)

with Gi > 0 for all i ≥ κ and Gi < 0 for all i < κ. Let

Gκ ≡
∑

(a,σ)∈A×Σ

ca,σḡε3,κ(a, σ). (19)

Next we define processes ξi,t ≡
∑t−1

s=1 gε3,i(as, σs) and ξ̄κ,t ≡
∑t−1

s=1 ḡε3,κ(as, σs). Given a

sequence with ca,σ realizations of each (a, σ), at time τ1 ≡
∑
A×Σ ca,σ + 1, the process

ξi,τ1 = Gi by (18) and ξ̄κ,τ1 = Gκ by (19). For i ≥ κ, Gi > 0, and therefore, ξi,τ1 > 0,

while for i < κ, Gi < 0, and therefore, ξi,τ1 < 0. Moreover, there exists an K > 0 such

that for all i > κ, ξi,t ≥ −K for all t < τ1, and there exists a K̄ > 0 such that for

all i < κ, ξi,t < K̄ for all t < τ1. Therefore, for any K > 0, there exists an NK such

that following NK repetitions of the sequence of ca,σ realizations of each (a, σ), at time

τK ≡ NK

∑
A×Σ ca,σ + 1,

1. ξi,τK < −K for all i < κ,

2. ξi,τK > 0 for all i ≥ κ,

3. For all t < τK , ξi,t ≤ K̄ for all i < κ and ξi,t ≥ −K for all i > κ,

4. ξ̄κ,t ≤ NKGκ for all t ≤ τK , with equality at t = τK .

In summary, following NK repetitions of the sequence, the processes 〈ξi,t〉 of types i < κ

and type κ are separated by at least K, and at all t during the repetitions, the process

of type i < κ is bounded above by K̄ and the process of type i > κ is bounded below

by −K. As long as λs ∈ Bε3(λ
∗
1) for all s ≤ t, the change in the log likelihood ratio of

i < κ is bounded above by ξi,t,

log λi,t − log λi,1 ≤ ξi,t ≤ K̄,
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the change in the log likelihood ratio of i = κ is bounded above by ξ̄κ,t,

log λκ,t − log λκ,1 ≤ ξ̄κ,t,

and the change in the log likelihood ratio of i > κ is bounded below by ξi,t,

log λi,t − log λi,1 ≥ ξi,t ≥ −K.

Fix ε2 ∈ (0, ε3) and K > K̄. Choose an ε1-neighborhood of λ∗1 such that log λi,1 <

−K(ε2) −max(K̄,NKGκ) for i ≤ κ and log λi,1 > K(ε2) + K for i > κ. Note ε1 < ε2.

Suppose the initial likelihood ratio λ1 ∈ Bε1(λ
∗
1). We establish local accessibility in

three steps.

Step 1. Repeat NK realizations of the sequence of ca,σ realizations of each (a, σ) to

separate the log likelihood ratio of types i < κ and κ by K. It follows from items (3) and

(4) that λt remains in Bε2(λ
∗
1) for all t ≤ τK . Therefore, for each i and at all t ≤ τK , the

process ξi,t bounds the change in the log likelihood ratio, log λi,t−log λi,1 ≤ ξi,t. After NK

realizations of the sequence, log λi,τK < −K(ε2)−K for i < κ, and log λi,τK > K(ε2)+K

for i > κ.

Step 2. Next, push type κ’s log likelihood ratio to −K(ε3) as follows. Continue

repeating the sequence of ca,σ realizations of each (a, σ) until log λκ,t > −K(ε3). By

construction, the likelihood ratios of all types i 6= κ remain in Bε2(λ
∗
1) after every (a, σ)

in this sequence, since at any point in the sequence, log λi,t < −K(ε2) −K + K̄ for all

i < κ, and log λi,t > K(ε2) for all i > κ.

Step 3. Finally, push type κ’s log likelihood ratio from −K(ε3) to K(ε2), while

keeping the log likelihood ratio of type i < κ less than −K(ε2). Given ε2, there exists

an N2 < ∞ such that if log λκ,t ∈ [−K(ε3), K(ε2)], then following N2 realizations of

(aM , σR), log λκ,t+N2 > K(ε2). Let K2 be the most any type i < κ’s log likelihood

ratio increases after N2 realizations of (aM , σR) across all beliefs λ ∈ Bε2(λ
∗
1). Recall

that when type κ hit the boundary of −K(ε3), log λi,t < −K(ε2) − K + K̄ for all

i < κ and log λi,t > K(ε2) for i > κ. Therefore, after N2 realizations of (aM , σR),

log λi,t < −K(ε2)−K + K̄ +K2 for all i < κ and log λi,t > K(ε2) for i > κ. In order to

keep i < κ in an ε2-neighborhood of zero after N2 realizations of (aM , σR), we need to

separate beliefs by at least K = K̄ +K2. This determines the K we need to use in step

1.

Following these three steps with K = K̄+K2, the likelihood ratio is in neighborhood

Bε2(λ
∗
2). Each step required a finite number of actions and signals that occur with

positive probability. Therefore, given ε1 and ε2 defined above, for any λ ∈ Bε1(λ
∗
1),

there exists a τ(λ) <∞ such that if λ1 = λ, then Pr(λ1+τ(λ) ∈ Bε2(λ
∗
2)) > 0. The case
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of λ∗1 separable at infinity is analogous. �

Definition 8 (Accessible). A belief λ∗ is accessible if for any initial belief λ1 ∈ (0,∞)k

and any ε > 0, there exists a τ <∞ such that Pr(λτ ∈ Bε(λ
∗)) > 0.

Lemma 9 (Accessible Disagreement). Suppose k = 2. If (0, 0) is separable at zero or

(∞,∞) is separable at infinity, then (0,∞) is accessible.

Proof. By Lemma 8, if (0, 0) is separable at zero, then (0,∞) is adjacently accessible

from (0, 0). Fix initial belief λ1 ∈ (0,∞)2 and choose ε2 > 0. Choose ε1 > 0 such that

for any λ ∈ Bε1((0, 0)), there exists a τ2(λ) <∞ such that if λt = λ, then Pr(λt+τ2(λ) ∈
Bε2((0,∞))) > 0. By adjacent accessibility, such an ε1 exists. By Lemma 4, there exists

a finite sequence ξ1 of N1 action and signal pairs that occurs with positive probability,

such that following ξ1, λN1+1 ∈ Bε1((0, 0)). By adjacent accessibility, there exists a

finite sequence ξ2 of N2 action and signal pairs that occurs with positive probability,

such that following sequences ξ1 and ξ2, λN1+N2+1 ∈ Bε2((0,∞)). Since these sequences

occur with positive probability, Pr(λN1+N2+1 ∈ Bε2((0,∞))) > 0, which is the definition

of accessible. The case where (∞,∞) is separable at infinity is analogous. �

Proof of Lemma 5 (Global Stability of Disagreement). Suppose k = 2, (0,∞) ∈
Λ(ω) and θ2 �(0,0) θ1. We first show that θ2 �(0,0) θ1 implies that (0, 0) is separable at

zero. Define the submatrix

Amax ≡

log ψ̂2(a1,σL|R,(0,0))
ψ̂2(a1,σL|L,(0,0))

log ψ̂2(aM ,σR|R,(0,0))
ψ̂2(aM ,σR|L,(0,0))

log ψ̂1(a1,σL|R,(0,0))
ψ̂1(a1,σL|L,(0,0))

log ψ̂1(aM ,σR|R,(0,0))
ψ̂1(aM ,σR|L,(0,0))

 .

Since θ2 �(0,0) θ1, this has a positive determinant. Therefore, there exists a c ∈ R2
+ that

solves

Amaxc =

(
1

0

)
.

By continuity, there exists a perturbation of c to c̃ ∈ R2
+ such that

Amaxc̃ =

(
G2

G1

)
,

where G1 < 0 and G2 > 0. Therefore, by Definition 6, (0, 0) is separable at zero, since

we can set values of cj to zero for the remaining action and signal pairs in matrix (17).

Therefore, by Lemma 9, (0,∞) is accessible.

We will next show that for any initial belief, Pr(λt → (0,∞)) > 0. Fix initial belief

λ1 ∈ (0,∞)2 and choose ε < e−E. By accessibility, there exists a finite sequence ξ
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of N action and signal pairs that occurs with positive probability, such that following

sequences ξ, λN+1 ∈ Bε((0,∞)). From (0,∞) ∈ Λ(ω), Pr(λt → (0,∞)|ξ) > 0. There-

fore, from any initial belief λ1 ∈ (0,∞)2, Pr(λt → (0,∞)) > 0, which implies that

(0,∞) is globally stable. The case where θ2 �(∞,∞) θ1 is analogous, as is the proof for

(∞, 0). �

Proof of Lemma 6 (Unstable Mixed Outcomes). Suppose k = 2 and consider

a generic misspecified model in which the mixed learning outcome (0, θ1) in which θ1’s

belief converges to zero and θ2’s belief doesn’t converge. Suppose (0, θ1) 6∈ ΛM(ω), i.e.

(0, 0) ∈ Λ2(ω) or (0,∞) ∈ Λ2(ω). Without loss of generality, consider the case where

(0, 0) ∈ Λ2(ω). Suppose the initial belief for type θ1 is near zero, λ1,1 ∈ Bε(0) for any

ε < e−E. We want to show that almost surely, either (i) there exists a τ <∞ such that

λ1,τ 6∈ Bε(0); or (ii) 〈λt〉 converges for both types. This will establish that almost surely,

the mixed outcome does not occur.

We first characterize how the behavior of 〈λt〉 near (0, 0) and (0,∞) depends on

Λ1(ω) and Λ2(ω). Suppose (0, 0) ∈ Λ1(ω) (recall by assumption, (0, 0) ∈ Λ2(ω)). By the

construction in Lemma 3, for ε < e−E, if 〈λt〉 enters Bε(0, 0), with positive probability,

〈λt〉 converges to (0, 0). If (0, 0) 6∈ Λ1(ω), then by the construction in Lemma 3, for

ε < e−E, if 〈λt〉 enters Bε((0, 0)), then from any belief in Bε((0, 0)), (i) with positive

probability uniformly bounded away from zero in the starting belief, 〈λ1,t〉 exits Bε(0),

and (ii) almost surely, 〈λt〉 exits Bε((0, 0)). If (0,∞) ∈ Λ2(ω), the behavior of 〈λt〉
in a neighborhood of (0,∞) is similar. If (0,∞) 6∈ Λ2(ω), then by the construction

in Lemma 3, for ε < e−E, if 〈λt〉 enters Bε((0,∞)), then almost surely, 〈λt〉 exits

Bε((0,∞)).

Let τ1 ≡ min{t|λ1,t 6∈ Bε(0)} be the first time that θ1’s belief leaves a neighborhood

of zero. Then it must be that almost surely, τ1 < ∞ or 〈λt〉 visits a neighborhood of

(0, 0) or (0,∞) infinitely often,

Pr(τ1 <∞ or λt ∈ Bε((0, 0)) ∪Bε((0,∞)) i.o.) = 1. (20)

If (0, 0) 6∈ Λ1(ω), so (0, 0) is not locally stable, then λ2 almost surely leaves Bε((0, 0)),

and Pr(τ1 <∞ or λt ∈ Bε((0,∞)) i.o.) = 1. Similarly, if (0,∞) 6∈ Λ(ω), then λ2 almost

surely leaves Bε((0,∞)), and Pr(τ1 <∞ or λt ∈ Bε((0, 0)) i.o.) = 1.

Case (i): Suppose (0, 0) ∈ Λ1(ω) or (0,∞) ∈ Λ1(ω) ∩ Λ2(ω). If 〈λt〉 enters a neigh-

borhood of a locally stable belief infinitely often, then 〈λt〉 almost surely converges for

both types. Therefore, almost surely, τ1 <∞ or 〈λt〉 converges.

Case (ii): Suppose (0, 0) 6∈ Λ1(ω) and (0,∞) ∈ Λ2(ω) \Λ1(ω). Each time 〈λt〉 enters

Bε((0, 0)) ∪ Bε((0,∞)), with positive probability uniformly bounded away from zero in
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the starting belief, 〈λ1,t〉 exits Bε(0). Therefore, if 〈λt〉 enters Bε((0, 0)) ∪ Bε((0,∞))

infinitely often, 〈λ1,t〉 almost surely exits Bε(0). Therefore, almost surely τ1 <∞.

Case (iii): Suppose (0, 0) 6∈ Λ1(ω), (0,∞) 6∈ Λ2(ω). Then Pr(τ1 < ∞ or λt ∈
Bε((0, 0)) i.o.) = 1. Each time 〈λt〉 enters Bε((0, 0)), with positive probability uniformly

bounded away from zero in the starting belief, 〈λ1,t〉 exits Bε(0). Therefore, if 〈λt〉 enters

Bε((0, 0)) infinitely often, 〈λ1,t〉 almost surely exits Bε(0). Therefore, almost surely

τ1 <∞.

The proofs for the other mixed outcomes are analogous. �

Proof of Lemma 7 (Belief Convergence). Suppose k ≤ 2, Λ(ω) contains an agree-

ment outcome or maximally accessible disagreement outcome, and ΛM(ω) is empty.

Recall that B is the set of locally stable neighborhoods and BU is the set of locally

unstable neighborhoods. Let τ1 ≡ min{t|λt ∈ B} be the first time that the likelihood

ratio enters the set of locally stable neighborhoods. By Lemma 10, there exists a finite

sequence of actions and signals such that starting from any initial belief λ1 ∈ (0,∞)k,

〈λt〉 enters B. This sequence occurs with positive probability. Therefore, the probability

of entering B in finite time is bounded away from zero, Pr(τ1 <∞) > 0. If 〈λt〉 enters

BU , then by Lemma 3, 〈λt〉 almost surely leaves BU . Therefore, 〈λt〉 does not converge to

a stationary belief that is not locally stable. If 〈λt〉 enters the neighborhood of a mixed

outcome, by Lemma 6, 〈λt〉 almost surely leaves this neighborhood or converges to a

locally stable belief. Therefore, mixed learning outcomes almost surely do not arise. By

Lemma 2, 〈λt〉 does not converge to a non-stationary belief. Therefore, almost surely,

either 〈λt〉 does not converge for either type or 〈λt〉 converges to a learning outcome

in Λ(ω). Since 〈λt〉 almost surely leaves the neighborhood of any mixed or unstable

outcome, it must be that 〈λt〉 enters B infinitely often, Pr(λt ∈ B i.o.) = 1. But if 〈λt〉
enters a neighborhood of a locally stable belief infinitely often, then almost surely 〈λt〉
converges. �

A.1.3 Intermediate Results

The following two lemmas are intermediate results used to prove Lemmas 1 to 7. They

hold for any k ≥ 1. We first define some additional notation. Fix λ ∈ [0,∞]k. Let a(λ)

denote the �-minimal action played with positive probability at λ and a(λ) denote

the �-maximal action played with positive probability at λ, where � is the order from

Assumption 2. If |Θ| > 1, by Assumption 4, these actions are constant and equal to a1

and aM respectively, i.e. a(λ) = a1 and a(λ) = aM .

Lemma 10 (Minimum Informativeness). For all sociable types θi, the minimal update

to the likelihood ratio is uniformly bounded above by one and the maximal update to the
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likelihood ratio is uniformly bounded below by one,

sup
λ∈[0,∞]k

ψ̂i(a(λ), σL|R,λ)

ψ̂i(a(λ), σL|L,λ)
< 1 and inf

λ∈[0,∞]k

ψ̂i(a(λ), σR|R,λ)

ψ̂i(a(λ), σR|L,λ)
> 1.

Lemma 10 implies that for any λt ∈ (0,∞)k, when (ãt, σ̃t) = (a(λt), σL), then beliefs

update toward state L,

λi,t+1 = λi,t

(
ψ̂i(a(λt), σL|R,λt)
ψ̂i(a(λt), σL|L,λt)

)
< λi,t

for all sociable types θi. Similarly, when (ãt, σ̃t) = (a(λt), σR), then beliefs update toward

state R, λt+1 > λt.

Proof. We first show that for all λ ∈ [0,∞]k and sociable types θi ∈ ΘS, ψ̂i(a(λ),σL|R,λ)
ψ̂i(a(λ),σL|L,λ)

≤
1. Fix λ ∈ [0,∞]k and let m(λ) denote the index of action a(λ), e.g. if a(λ) = a1,

then m(λ) = 1. Consider how sociable type θi updates its beliefs following a(λ). Since

preferences are aligned, any type θj ∈ Θ who chooses a(λ) with positive probability at λ

chooses this action for any signal s ∈ S such that s ≤ sj,m(λ)(λj). Type θi believes that

θj plays a(λ) with probability F̂ ω
i (s̄j,m(λ)(λj)). By Lemma A.1 in Smith and Sorensen

(2000), FR(s) ≤ FL(s), with strict equality for s ∈ int(S). Since signals are aligned, this

is also true for the subjective beliefs. Therefore, F̂R
i (s̄j,m(λ)(λj)) ≤ F̂L

i (s̄j,m(λ)(λj)). This

implies P̂i(a(λ)|R,λ) ≤ P̂i(a(λ)|L,λ), where P̂i(a|ω,λ) denotes type θi’s subjective

probability of action a in state ω at likelihood ratio λ, since P̂i(a|ω,λ) is a convex

combination of the probability each type chooses a in state ω. Public signals are aligned,

so it must be that σ̂i(σL) ≤ 1/2, as the maximal public signal in state L is either

uninformative or indicative of state L. Therefore, ψ̂i(a(λ), σL|R,λ) ≤ ψ̂i(a(λ), σL|L,λ).

We next establish the uniform bound. Recall that autarkic types have a likelihood

ratio that is constant and equal to p0
1−p0 . Sociable type θi’s update to the likelihood ratio

following a(λ) is bounded by

P̂i(a(λ)|R,λ)

P̂i(a(λ)|L,λ)
=

∑
θj∈ΘA π̂i(θj)F̂

R
i (sj,m(λ)(

p0
1−p0 )) +

∑
θj∈ΘS π̂i(θj)F̂

R
i (sj,m(λ)(λj))∑

θj∈ΘA π̂i(θj)F̂
L
i (sj,m(λ)(

p0
1−p0 )) +

∑
θj∈ΘA π̂i(θj)F̂

L
i (sj,m(λ)(λj))

≤
∑

θj∈ΘA π̂i(θj)F̂
R
i (sj,m(λ)(

p0
1−p0 )) +

∑
θj∈ΘS π̂i(θj)F̂

L
i (sj,m(λ)(λj))∑

θj∈ΘA π̂i(θj)F̂
L
i (sj,m(λ)(

p0
1−p0 )) +

∑
θj∈ΘS π̂i(θj)F̂

L
i (sj,m(λ)(λj))

≤
∑

θj∈ΘA π̂i(θj)F̂
R
i (sj,m(λ)(

p0
1−p0 )) + π̂i(ΘS)∑

θj∈ΘA π̂i(θj)F̂
L
i (sj,m(λ)(

p0
1−p0 )) + π̂i(ΘS)

,
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where the first line follows by definition, the second line follows from F̂R
i (s) ≤ F̂L

i (s), and

the third line follows from
∑

θj∈ΘS π̂i(θj)F̂
L
i (s) ≤ π̂i(ΘS) and F̂R

i (s) ≤ F̂L
i (s). Therefore,

ψ̂i(a(λ), σL|R,λ)

ψ̂i(a(λ), σL|L,λ)
≤

(∑
θj∈ΘA π̂i(θj)F̂

R
i (sj,m(λ)(

p0
1−p0 )) + π̂i(ΘS)∑

θj∈ΘA π̂i(θj)F̂
L
i (sj,m(λ)(

p0
1−p0 )) + π̂i(ΘS)

)(
σ̂i(σL)

1− σ̂i(σL)

)
. (21)

Note that both terms on the right hand side of (21) are less than or equal to one for all

λ ∈ [0,∞]k. First suppose Assumption 3.i holds. Then σ̂i(σL)
1−σ̂i(σL)

< 1, independent of λ.

Next suppose Assumption 3.ii holds. This implies that a(λ) = a1, m(λ) = 1 and there

exists at least one autarkic type θj ∈ ΘA with π̂i(θj) > 0 and sj,1(
p0

1−p0 ) ∈ int(S), which

implies F̂R
i (sj,1(

p0
1−p0 )) < F̂L

i (sj,1(
p0

1−p0 )). Therefore, the first term on the right hand side

of (21) is less than one, independent of λ. Itn both cases, the right hand side of (21) is

uniformly bounded away from one and supλ∈[0,∞]k
ψ̂i(a(λ),σL|R,λ)
ψ̂i(a(λ),σL|L,λ)

< 1.

Similar logic holds for the case of (a(λ), σR). �

Lemma 11 (Continuity). λ 7→ ψ(a, σ|ω,λ) and λ 7→ ψ̂i(a, σ|ω,λ) are continuous at

each stationary λ∗ ∈ {0,∞}k for all (a, σ) ∈ A×Σ and ω ∈ {L,R}.

Proof. Consider λ∗ = 0k. Each type θi ∈ ΘS has a unique optimal action at 0k, inde-

pendent of the realization of the private signal. Moreover, since no action is optimal at a

single belief, there exists an ε1 > 0 such that if the posterior belief following the private

signal is in [0, ε1)
k, each type plays this action. Let Θa denote the set of sociable types

who play a at 0k. Fix ε > 0. Let

δ1 ≡ min
a∈A

ε

max{π(ΘS \Θa), π(Θa)}

and

δ2 ≡ min
a∈A,θi∈ΘS

ε

max{π̂i(ΘS \Θa), π̂i(Θa)}
.

and δ ≡ min{δ1, δ2}. Signals are not perfectly informative, so there exists a s̄ such that

1− F̂ ω
i (s̄) < δ and 1− F̂ ω

i (s̄) < δ for all θi ∈ ΘS and ω ∈ {L,R}. Define

ε1(δ) ≡
ε1

maxθi∈Θs ŝi(s̄)/(1− ŝi(s̄))
.

Fix an action a ∈ A and let qa denote the probability that a type is autarkic and plays

action a. If λ ∈ [0, ε1(δ)), then the probability of action a in state ω, denoted P (a|ω,λ),

is bounded above by π(Θa)+δπ(ΘS\Θa)+qa and bounded below by π(Θa)(1−δ)+qa. So

|P (a|ω,λ)−P (a|ω, 0k)| ≤ ε for all λ ∈ [0, ε1(δ))
k. Similarly |P̂i(a|ω,λ)−P̂i(a|ω, 0k)| ≤ ε

for all λ ∈ [0, ε1(δ))
k and θi ∈ ΘS, where P̂i(a|ω,λ) denotes θi’s subjective probability

64



of observing action a in state ω at likelihood ratio λ. The public signal distribution is

independent of λ. Therefore, this continuity extends to ψ(a, σ|ω,λ) and ψ̂i(a, σ|ω,λ)

for all θi ∈ ΘS. The proof for other stationary beliefs is identical. �

A.2 Proofs of Theorem 2 and Corollary 2

Proof of Theorem 2. Assume Assumption 1, 2, 3 and 4 and consider a generic

misspecified model. Suppose ω = L. For any sociable type θi ∈ ΘS, the mapping

ψ̂i(a, σ|L,λ) 7→ γi(λ, L) is continuous. By the concavity of the log operator, γi(λ, L) is

negative when ||ψ̂i(a, σ|L,λ) − ψ(a, σ|L,λ)|| = 0. Therefore, there exists a δ > 0 such

that if ||ψ̂i(a, σ|L,λ) − ψ(a, σ|L,λ)|| < δ for (a, σ,λ) ∈ A × Σ × {0,∞}k and θi ∈ ΘS,

then γi(λ, L) < 0 for all λ ∈ {0,∞}k and θi ∈ ΘS. Therefore, any locally stable point

must have λi = 0 for each sociable type. Therefore, 0k is the unique locally stable point.

We also need to show that ΛM(L) is empty, i.e. all mixed outcomes are reducible.

Consider the mixed outcome λ∗I with convergent types I and non-convergent types N ≡
ΘS \ I. For any node λN in the graph G(λ∗I) (as defined in Definition 12), it follows

from the choice of δ that for each i ∈ N , (λ∗I ,λN) ∈ Λi(L) iff λi = 0. Therefore, each

λ′N that is mixed accessible from λN has fewer i ∈ N with λ′i = 0. Therefore, each path

terminates at 0|N | and the graph has no cycles, i.e. λ∗I is reducible. Therefore, ΛM(L)

is empty. By Theorem 1, if Λ(L) = {0k} and ΛM(L) is empty, then the likelihood ratio

almost surely converges to 0k and learning is complete.

Similar logic holds for ω = R. �

Proof of Corollary 2. Assume Assumption 1, 2, 3 and 4, and consider a generic

misspecified model. Fix state ω. For any sociable type θi, the mapping (π̂i, F̂
ω
i , Ĝ

ω
i ) 7→

ψ̂i(a, σ|ω,λ) is continuous. By continuity, for any δ2 > 0, there exists a δ > 0 such

that if ||π̂i − π|| < δ, ||F̂ ω
i − F ω|| < δ and ||Ĝω

i − Gω|| < δ for all θi ∈ ΘS, then

|ψ̂i(a, σ|ω,λ) − ψ(a, σ|ω,λ)| < δ2 for all (a, σ) ∈ A × Σ, λ ∈ {0,∞}k and θi ∈ ΘS.

Choose δ2 sufficiently small so that Theorem 2 holds. �

B Derivation of Examples 1 and 2

In this section, we present the analysis for Examples 1 and 2.

B.1 Example 1

From Section 3, the autarkic type θ2 plays both actions with positive probability and the

sociable type θ1 places positive probability on θ2, which establishes that Assumption 3.ii

holds. Assumption 4 is redundant in a binary action decision problem that satisfies

Assumption 3.ii, since Assumption 3.ii guarantees that the sociable type believes that

the autarkic type plays both actions with positive probability.

From the action probabilities derived in Section 3, at likelihood ratio λ1, type θ1
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believes action L occurs with probability

ψ̂1(L|ω, λ1) = π(θ1)F
ω(1/(1 + λ1)) + π(θ2)F

ω(.5),

whereas the true probability of action L is

ψ(L|ω, λ1) = π(θ1)F
ω((1/(1 + λ1))

1/ν) + π(θ2)F
ω(.51/ν),

where in a slight abuse of notation we suppress the dependence of ψ̂1 and ψ on σ since

the public signal is uninformative in this example. The construction of γ1(0, L) and

γ1(∞, L) in Section 4.2 follows from evaluating these expressions at λ1 = 0 and λ1 =∞,

respectively.

We next characterize how Λ(ω) depends on ν. To capture its explicit dependence on

ν, let γν1 (λ, ω) correspond to the function γ1(λ, ω) and Λν(ω) correspond to the set Λ(ω)

in the model with partisan bias level ν. To simplify notation, define αν ≡ FL(.51/ν)

as the probability that type θ2 chooses an L action in state L and πA ≡ π(θ2) as the

probability of the autarkic type. By symmetry, FR(.5) = 1 − FL(.5) = 1 − α1 and by

definition of a probability measure, π(θ1) = 1−πA. Also note that FL strictly increasing

implies that αν is strictly increasing in ν, and symmetry implies that α1 > 1/2.

First consider ω = L. To determine whether incorrect learning arises, i.e. whether

∞ ∈ Λν(L), we need to determine the sign of

γν1 (∞, L) = πAαν log
1− α1

α1

+ (1− πAαν) log
1− πA(1− α1)

1− πAα1

.

Since α1 > 1/2, the update from an L action is negative, log 1−α1

α1
< 0 and the update

from an R action is positive, log 1−πA(1−α1)
1−πAα1

> 0. Note both terms are independent of

ν. Since αν is strictly increasing in ν, the probability of an L action, πAαν , is strictly

increasing in ν and the probability of an R action, 1− πAαν , is strictly decreasing in ν.

Therefore, γν1 (∞, L) is strictly decreasing in ν. At ν = 1, γ11(∞, L) < 0 by the concavity

of the log operator. At ν = 0, θ2 chooses action R for all signals, α0 = 0. Therefore,

γ01(∞, L) = log 1−πA(1−α1)
1−πAα1

> 0. This establishes that there exists a cutoff ν1 ∈ (0, 1)

such that for ν < ν1, γ
ν
1 (∞, L) > 0 and ∞ ∈ Λν(L) and for ν > ν1, γ

ν
1 (∞, L) < 0 and

∞ 6∈ Λν(L).

To determine whether correct learning arises, i.e. whether 0 ∈ Λν(L), we need to

determine the sign of

γν1 (0, L) = (1− πA(1− αν)) log
1− πAα1

1− πA(1− α1)
+ πA(1− αν) log

α1

1− α1

.
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As in the previous case, the update from an L action is negative and the probability of

an L action is strictly increasing in ν, while the update from an R action is positive and

the probability of an R action is strictly decreasing in ν. Therefore, γν1 (0, L) is strictly

decreasing in ν. At ν = 1, γ11(0, L) < 0 by the concavity of the log operator. At ν = 0,

θ2 chooses action R for all signals, α0 = 0. Therefore,

γ01(0, L) = (1− πA) log
1− πAα1

1− πA(1− α1)
+ πA log

α1

1− α1

≥ (1− πAα1) log
1− πAα1

1− πA(1− α1)
+ πAα1 log

α1

1− α1

= γ11(0, R) > 0.

This establishes that there exists a cutoff ν2 ∈ (0, 1) such that for ν < ν2, γ
ν
1 (0, L) > 0

and 0 6∈ Λν(L) and for ν > ν2, γ
ν
1 (0, L) < 0 and 0 ∈ Λν(L).

Finally we show that ν1 < ν2. Note

γν1 (∞, L)− γ11(∞, L) = πA(αν − α1)

(
log

1− α1

α1

− log
1− πA + πAα1

1− πAα1

)
and by the symmetry of the signal distributions, γν1 (0, L) − γ11(0, L) = γν1 (∞, L) −
γ11(∞, L). Moreover γ11(0, L) − γ11(∞, L) is zero at πA = 0 and πA = 1, and concave in

πA since the second derivative is

(1− 2α1)πA
(πA(1− α1) + (1− πA))2(πAα1 + 1− πA)2

≤ 0.

Therefore, 0 6∈ Λν(ω) before∞ ∈ Λν(ω). This implies that Λν(L) = {∞} for ν ∈ (0, ν1),

Λν(L) = ∅ for ν ∈ (ν1, ν2), and Λν(L) = {0} for ν ∈ (ν2, 1].

Next consider ω = R. Then γ11(∞, R) > 0 and γ11(0, R) > 0, since only correct

learning can occur at ν = 1. The only change in the above expressions is that now

the true probabilities of each action are taken with respect to state R rather than state

L. Therefore, the comparative statics are similar to the comparative statics in state L:

γν1 (0, R) and γν1 (∞, R) are decreasing in ν. Therefore, γν1 (0, R) > 0 implies 0 6∈ Λν(R) for

all ν ∈ (0, 1]. Similarly, γν1 (∞, R) > 0 implies ∞ ∈ Λν(R) for all ν ∈ (0, 1]. Therefore,

Λν(R) = {∞} for all ν ∈ (0, 1].

When there is a single sociable type, mixed learning and disagreement are trivially

not possible. By Theorem 1, the characterization of the locally stable set fully determines

asymptotic learning outcomes. This leads to the following proposition.

Proposition 7 (Partisan Bias). When ω = L, there exist unique cutoffs 0 < ν1 < ν2 < 1

such that (i) if ν ∈ (ν2, 1], then almost surely learning is correct; (ii) if ν ∈ (ν1, ν2), then
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almost surely learning is cyclical; (iii) if ν ∈ (0, ν1), then almost surely learning is

incorrect. When ω = R, almost surely learning is correct.

The proof follows immediately from the construction of Λν(ω) above.

B.2 Example 2

We construct this variation by adding two types to the setting considered in Example 1.

Types θ1 and θ2 are partisan types with the same signal misspecification and preferences

as in Example 1. Types θ3 and θ4 are non-partisan types that correctly interpret signals,

F̂ ω
3 (s) = F̂ ω

4 (s) = F ω(s); θ3 is a sociable type while θ4 is an autarkic type.48 Both types

have the same preferences as θ1 and θ2, i.e. ui(a, ω) = 1a=ω. Assume that an equal and

positive share of partisan and nonpartisan types are autarkic, π(θ2)/(π(θ1) + π(θ2)) =

π(θ4)/(π(θ3) + π(θ4)) ∈ (0, 1). Both sociable types have correct beliefs about the share

of autarkic types, but partisan θ1 believes all agents are partisan, π̂1(θ1) = π(θ1) +π(θ3)

and π̂1(θ2) = π(θ2) + π(θ4), and analogously, non-partisan θ3 believes that all agents

are non-partisan. Let q ≡ π(θ3) + π(θ4) denote the share of non-partisan types and

πA ≡ π(θ2) + π(θ4) denote the share of autarkic types. To close the model, assume

that the public signal is uninformative, the private signal distribution is informative

and symmetric, FR(s) = 1 − FL(1 − s), and the prior p0 = 1/2. Note that signals are

aligned since partisan types order signals in the same way as nonpartisan types, i.e. sν

is increasing in s (Assumption 1).

The true action probabilities for partisan types θ1 and θ2 are identical to those derived

in Section 3 for Example 1, as are θ1’s subjective action probabilities for each type. A

non-partisan type θi ∈ {θ3, θ4} who has likelihood ratio λ and observes private signal s

updates to belief pi(λ,s)
1−pi(λ,s) = λ

(
s

1−s

)
. It chooses action L if this belief is less than one,

which is equivalent to s < 1/(1 + λ) = si,1(λ). At likelihood ratio λ3, type θ3 chooses L

with probability F ω(1/(1 + λ3)). Type θ4 is autarkic. Therefore, its likelihood ratio is

constant at λ4 = 1 and it chooses action L with probability F ω(.5). Type θ3 has correct

beliefs about the probability that θ3 and θ4 choose action L.

We use these subjective and true action probabilities for each type to construct ψ̂1,

ψ̂3 and ψ. Partisan type θ1 is now also misspecified about the type distribution, since it

does not account for the nonpartisan types. It believes action L occurs with probability

ψ̂1(L|ω,λ) = (1− πA)F ω(1/(1 + λ1)) + πAF
ω(.5),

where again we suppress the dependence of ψ̂i and ψ on σ since the public signal is

uninformative in this example. This type misspecification leads the partisan type to

48In a slight abuse of notation, we maintain θ2 as the partisan autarkic type for consistency with
Example 1, which violates our convention that the first k types are the sociable types.
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underestimate the range of signals for which other agents choose action L, while its

signal misspecification causes it to overestimate the probability of these signals. The

latter effect dominates, and θ1 overestimates the frequency of action L. Nonpartisan

type θ3 has a correctly specified model of the signal distribution and believes that other

agents do as well, since it does not account for the partisan types. It believes action L

occurs with probability

ψ̂3(L|ω,λ) = (1− πA)F ω(1/(1 + λ3)) + πAF
ω(.5).

This type misspecification leads the nonpartisan type to believe that other agents are

choosing L for a larger range of signals than is actually the case, which leads it to

overestimate the frequency of L actions. The true probability of action L is

ψ(L|ω,λ) = (1− q)((1− πA)F ω((1/(1 + λ1))
1/ν) + πAF

ω(.51/ν))

+ q((1− πA)F ω(1/(1 + λ3)) + πAF
ω(.5)).

Although the partisan and nonpartisan sociable types have different models of the

world, their models collapse to the same subjective probability of each action when

they have the same current belief: for any λ with λ1 = λ3, ψ̂1(L|ω,λ) = ψ̂3(L|ω,λ).

Therefore, these types update their likelihood ratios in the same way following each

action. For different reasons, their beliefs both move too much towards state R following

R actions and too little towards state L following L actions. This implies that when

there is a common prior, after any history ht, beliefs are equal, λ1,t = λ3,t.
49

Given that the two likelihood ratios move in unison, we can consider the partisan and

nonpartisan sociable types as a single type to characterize asymptotic learning outcomes.

Disagreement and mixed learning do not arise, since it is not possible to separate beliefs.

Global stability immediately follows from local stability for the two agreement outcomes.

Therefore, determining the set of parameters (ν, q) for which each agreement outcome

is locally stable fully characterizes asymptotic learning outcomes. This leads to the

following proposition.

Proposition 8 (Partisan Bias). When ω = L, there exist unique cut-offs q1 ∈ (0, 1) and

q2 ∈ (q1, 1) such that:

1. For q < q1, there exist unique cutoffs 0 < ν1(q) < ν2(q) < 1 such that if ν > ν2(q),

then almost surely learning is correct, if ν ∈ (ν1(q), ν2(q)), then almost surely

learning is cyclical and if ν < ν1(q), then almost surely learning is incorrect.

49Partisan and nonpartisan types with the same likelihood ratio may choose different actions following
a given signal s, as they have different private signal cut-offs.
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2. For q ∈ (q1, q2), there exists a unique cutoff 0 < ν2(q) < 1 such that if ν > ν2(q),

then almost surely learning is correct and if ν < ν2(q), then almost surely learning

is cyclical.

3. For q > q2, almost surely learning is correct.

When ω = R, almost surely learning is correct.

The construction of the locally stable set is similar to Example 1. We present it in

Online Appendix F.1.

C Additional Analysis and Proofs from Section 5

C.1 Section 5.1 (Underreaction and Overreaction)

Proof of Proposition 1. Suppose public signals are informative, private signals are

uninformative, and there is a single type θ1 that interprets public signals according

to σ̂(σ)
1−σ̂(σ) =

(
σ

1−σ

)ν
, correctly interprets private signals as uninformative and correctly

believes that all agents are type θ1. Let γC(λ, ω) ≡
∑

σ∈Σ dG
ω(σ) log

(
σ

1−σ

)
denote

the expected change in the log likelihood ratio in a correctly specified model. Since

correct learning occurs almost surely in the correctly specified model, γC(0, L) < 0 and

γC(∞, L) < 0 in state L and γC(0, R) > 0 and γC(∞, R) > 0 in state R. Then

γ(λ, ω) =
∑
σ∈Σ

dGω(σ) log

(
σ

1− σ

)ν
= ν

∑
σ∈Σ

dGω(σ) log

(
σ

1− σ

)
= νγC(λ, ω).

Therefore, γ(λ, ω) has the same sign as γC(λ, ω), which implies Λ(L) = {0} and Λ(R) =

{∞}. Trivially, ΛM(ω) = ∅ since there is a single type. By Theorem 1, correct learning

occurs almost surely, independent of ν. �

Representation of Epstein et al. (2010). Consider the form of under- and over-

reaction specified in Epstein et al. (2010) with constant weights given to the Bayesian

update and the prior belief. That is, an agent with current belief p who observes signal

σ that leads to true posterior p′ ≡ pσ
pσ+(1−p)(1−σ) updates to posterior belief

p̂′ ≡ ν̃

(
pσ

pσ + (1− p)(1− σ)

)
+ (1− ν̃)p, (22)

where ν̃ ∈ [0, 1) corresponds to underreaction, ν̃ > 1 corresponds to overreaction, and

ν̃ = 1 corresponds to the correctly specified model.

This form of signal misspecification can be represented in our framework. Let

φ(σ, p) ≡ pσ+ (1− p)(1− σ). Then p̂′ = ν̃pσ
φ(σ,p)

+ (1− ν̃)p and 1− p̂′ = ν̃(1−p)(1−σ)
φ(σ,p)

+ (1−
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ν̃)(1− p). Therefore,

p̂′

1− p̂′
=

(
ν̃σ

φ(σ,p)
+ 1− ν̃

ν̃(1−σ)
φ(σ,p)

+ 1− ν̃

)(
p

1− p

)
.

To capture this form of under- and overreaction, the signal misspecification needs to

depend on the current belief about the state. As discussed in Section 2.3, this is a

straightforward extension (see Online Appendix E.4). Let σ̂(σ, p) denote the extension

of the signal misspecification σ̂ to depend on current belief p. Then

σ̂(σ, p)

1− σ̂(σ, p)
=

ν̃σ + (1− ν̃)φ(σ, p)

ν̃(1− σ) + (1− ν̃)φ(σ, p)

yields the representation. This form of signal misspecification satisfies the assumptions

of our framework. Therefore, we can use Theorem 1 to determine how the set of learning

outcomes depends on misspecification parameter ν̃.

C.2 Section 5.2 (Confirmation Bias)

Set-up. In Rabin and Schrag (1999), signals are probabilistically misinterpreted. To

allow for this, we extend our framework to allow the signal misspecification to map two

signals that induce the same true posterior to different misspecified posteriors. It is

straightforward to extend all results in our paper to this case. We also allow the severity

of confirmation bias to vary with the current belief about the state.

To model probabilistic misinterpretation in our framework, suppose there are four

public signals, y ∈ {l1, l2, r1, r2}, where signals y ∈ {l1, l2} induce the same posterior,

σl ≡ σ(l1) = σ(l2) and signals y ∈ {r1, r2} induce the same posterior, σr ≡ σ(r1) = σ(r2).

Conditional on an l1 or l2 signal, the signal is l2 with probability q and conditional on

an r1 or r2 signal, the signal is r2 with probability q. Signals l2 and r2 correspond to

the signals that are misread, and signals l1 and r1 correspond to the signals that are

correctly read. Let σ̂(y, p) denote the subjective posterior belief for signal y at belief p.

The confirmation bias we outlined in Section 5.2 corresponds to

σ̂(y, p) =


(1− ν(p))σl + ν(p)σr if y = l2 and p > 1/2

(1− ν(p))σr + ν(p)σl if y = r2 and p < 1/2

σ(y) otherwise,

(23)

where ν : [0, 1]→ [0, 1] is a continuous function.

To complete the model, assume that public signals are informative, σ(r) > 1/2, and

private signals are uninformative and believed to be uninformative.
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Proof of Proposition 2. Suppose public signals are informative, private signals are

uninformative, and there is a single type θ1 that interprets public signals according to

(23), correctly interprets private signals as uninformative and correctly believes that all

agents are type θ1. Let ν̃ ≡ ν(0) denote the slant at certainty (recall ν(1) = ν(0) by

assumption).

We first characterize the locally stable set Λ(L). The local stability of correct learning

is determined by the sign of

γ(0, L) = Pr({r1, r2}|L)

(
(1− q) log

(
σr

1− σr

)
+ q log

(
(1− ν̃)σr + ν̃σl

(1− ν̃)(1− σr) + ν̃(1− σl)

))
+Pr({l1, l2}|L) log

(
σl

1− σl

)
,

where P ({l1, l2}|L) = 1−σr/(1−σr)
σl/(1−σl)−σr/(1−σr)

and P ({r1, r2}|L) = 1− P ({l1, l2}|L). At q = 0,

agents have a correctly specified model, so γ(0, L) < 0. As q increases, more weight

is placed on the second term and less weight is placed on the first term in the above

equation. The second term is less than the first term; therefore, γ(0, L) is decreasing

in q. Therefore, for all q and ν(0), γ(0, L) < 0 and correct learning is locally stable,

0 ∈ Λ(L).

The local stability of incorrect learning is determined by the sign of

γ(∞, L) = Pr({l1, l2}|L)

(
(1− q) log

(
σl

1− σl

)
+ q log

(
(1− ν̃)σl + ν̃σr

(1− ν̃)(1− σl) + ν̃(1− σr)

))
+Pr({r1, r2}|L) log

(
σr

1− σr

)
.

At q = 0 or ν̃ = 0, agents have a correctly specified model, so γ(∞, L) < 0. As q

increases, more weight is placed on the second term and less weight is placed on the first

term in the above equation. The second term is greater than the first term; therefore,

γ(∞, L) is increasing in q. Similarly, the second term is increasing in ν̃, and therefore,

so is γ(∞, L). At q = 1 and ν̃ = 1,

γ(∞, L) = log

(
σr

1− σr

)
> 0. (24)

Therefore, the desired cutoffs q ∈ (0, 1) and ν(q) ∈ (0, 1) exist such that incorrect

learning is locally stable for q > q and ν̃ > ν(q).

When signals are symmetric and fully slanted at certainty, i.e. σ ≡ σr = 1− σl and
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ν(1) = 1,

γ(∞, L) = (2σq + 1− 2σ)) log

(
σ

1− σ

)
. (25)

Given log
(

σ
1−σ

)
> 0, this expression is positive when q > 1− 1/2σ, which is the cut-off

in Rabin and Schrag (1999).

The construction of Λ(R) is analogous. Given that there is a single type, mixed

learning does not arise. Therefore, Λ(ω) fully characterizes the set of asymptotic learning

outcomes. �

C.3 Section 5.3 (Naive Learning)

Set-up.

Proof of Proposition 4. Let αL ≡ FL(1/2) be the probability an autarkic type plays

action L in state L and αR ≡ FR(1/2) be the probability an autarkic type plays action

L in state R. Note that αL ∈ (0, 1) and αR ∈ (0, 1), since private signals are informative.

In a slight abuse of notation, let π̂i denote π̂i(θA) and π denote π(θA) to abbreviate the

following expressions.

We first construct the locally stable set. We write γi(λ, ω; π̂i) and Λ(ω; π̂1, π̂2) to

make these expressions’ dependence on π̂1 and π̂2 explicit. The local stability of correct

learning is determined by the sign of

γi((0, 0), L; π̂i) = (παL + 1− π) log

(
π̂iαR + 1− π̂i
π̂iαL + 1− π̂i

)
+ π(1− αL) log

(
1− αR
1− αL

)
.

In the correctly specified model, γi((0, 0), L; π) < 0, and this expression is decreasing in

π̂i. Therefore, γi((0, 0), L; π̂i) < 0 for all π̂i ≥ π. This implies that (0, 0) ∈ Λ(L; π̂1, π̂2)

for all π̂1, π̂2. Therefore, correct learning arises with positive probability at any level of

heterogeneity.

The local stability of incorrect learning is determined by the sign of

γi((∞,∞), L; π̂i) = παL log

(
αR
αL

)
+ (π(1− αL) + 1− π) log

(
π̂i(1− αR) + 1− π̂i
π̂i(1− αL) + 1− π̂i

)
.

This expression is increasing in π̂i and is equivalent to the representative agent model

at π̂i = π̂. Therefore, if γi((∞,∞), L; π̂) < 0, then γ1((∞,∞), L; π̂1) < 0 since π̂1 ≤ π̂

by definition. This implies that if incorrect learning does not arise in the representa-

tive agent model with bias π̂, i.e. (∞,∞) 6∈ Λ(L; π̂, π̂), then it does not arise in any

corresponding heterogeneous model with average bias π̂, i.e. (∞,∞) 6∈ Λ(L; π̂1, π̂2) for

all π̂1, π̂2 such that (π̂1 + π̂2)/2 = π̂. Further, we know from Bohren (2016) that there

exists a cut-off π ∈ (π, 1] such that for π̂i > π, γi((∞,∞), L; π̂i) > 0, with π < 1 for
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small enough π. Therefore, (∞,∞) ∈ Λ(L; π̂, π̂) for π̂ > π and (∞,∞) ∈ Λ(L; π̂1, π̂2)

for π̂1 > π.

The local stability of disagreement is determined by the sign of

γi((0,∞), L; π̂i) = (παL + (1− π)/2) log

(
π̂iαR + 1

2
(1− π̂i)

π̂iαL + 1
2
(1− π̂i)

)
+ (π(1− αL) + (1− π)/2) log

(
π̂i(1− αR) + 1

2
(1− π̂i)

π̂i(1− αL) + 1
2
(1− π̂i)

)
= π(2αL − 1) log

(
π̂i(1− αL) + 1

2
(1− π̂i)

π̂iαL + 1
2
(1− π̂i)

)
,

where the second equality follows from symmetry, αR = 1 − αL. Given αL > 1/2,
π̂i(1−αL)+ 1

2
(1−π̂i)

π̂iαL+
1
2
(1−π̂i)

< 1 and 2αL − 1 > 0. Therefore, γi((0,∞), L; π̂i) < 0 for any π̂i. This

implies that disagreement outcome (0,∞) almost surely does not arise, i.e. (0,∞) 6∈
Λ(L; π̂1, π̂2). Given γi((∞, 0), L; π̂i) = γi((0,∞), L; π̂i), disagreement outcome (∞, 0)

almost surely does not arise. Therefore, almost surely disagreement does not arise. The

construction of Λ(R; π̂1, π̂2) is analogous.

Next, we rule out mixed learning. Since correct learning is always locally sta-

ble, the only candidate mixed outcomes are λ∗1 = ∞ or λ∗2 = ∞. As argued above

γ1((0,∞), L; π̂1) < 0 for any π̂1 and γ2((∞, 0), L; π̂2) < 0 for any π̂2. This implies

ΛM(L) = ∅. Therefore, mixed learning almost surely does not arise. The construction

of ΛM(R) is analogous.

Given ΛM(ω) = ∅ and Λ(ω; π̂1, π̂2) does not contain any disagreement outcomes – and

therefore, we do not need to consider maximal accessibility – by Theorem 1, Λ(ω; π̂1, π̂2)

fully characterizes the set of asymptotic learning outcomes. From the above charac-

terization, either Λ(ω; π̂1, π̂2) = {(0, 0)} or Λ(ω; π̂1, π̂2) = {(0, 0), (∞,∞)}. Therefore,

either learning is almost surely correct, or learning is almost surely correct or incorrect

with both occurring with positive probability. Further, if Λ(ω; π̂, π̂) = {(0, 0)}, then

Λ(ω; π̂1, π̂2) = {(0, 0)} for all π̂1, π̂2 such that (π̂1 + π̂2)/2 = π̂, and if Λ(ω; π̂1, π̂2) =

{(0, 0), (∞,∞)}, then Λ(ω; π̂, π̂) = {(0, 0), (∞,∞)} at π̂ = (π̂1 + π̂2)/2.

Proof of Proposition 3. This result follows directly from the constructions of γi(λ, ω; π̂i)

in Proposition 4. Generically, γi((0, 0), ω; π̂i) 6= 0 and γi((∞,∞), ω; π̂i) 6= 0 for i = 1, 2.

Given an average bias π̂, consider the case where γi((0, 0), ω; π̂) 6= 0 and γi((∞,∞), ω; π̂) 6=
0 for i = 1, 2. For any δ > 0, there exists an ε such that for |π̂1 − π̂| < ε/2 and

|π̂2 − π̂| < ε/2, |γi(λ, ω; π̂i) − γi(λ, ω; π̂)| < δ for λ ∈ {(0, 0), (∞,∞)} and i = 1, 2.

Choosing δ small enough ensures that γi(λ, ω; π̂i) and γi(λ, ω; π̂) have the same sign.

Therefore, Λ(ω; π̂1, π̂2) = Λ(ω; π̂, π̂) and the heterogeneous set-up has the same set of

learning outcomes as the corresponding representative agent set-up. �
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C.4 Section 5.4 (Using the Framework to Demonstrate Behavioral Equiva-

lence)

Set-up. As in Example 2, consider a setting with a binary action space, A = {L,R}
and four types of agents: θ1 and θ3 are sociable types, and θ2 and θ4 are autarkic types.50

All types seek to choose the action that matches the state, but differ in whether they

are tempted to choose action R when there is uncertainty. Types θ1 and θ2 are tempted:

their preferences place higher weight on matching the state in state R, ui(a, ω) = (2 −
β)1a=ω=L + β1a=ω=R for some β ∈ [1, 2) and θi ∈ {θ1, θ2}. Types θ3 and θ4 are not

tempted: their preferences are symmetric across states, ui(a, ω) = 1a=ω. Assume that an

equal and positive share of tempted and non-tempted types are autarkic, π(θ2)/(π(θ1)+

π(θ2)) = π(θ4)/(π(θ3) + π(θ4)) ∈ (0, 1). Both sociable types have correct beliefs about

the share of autarkic types, but believe that no agents are tempted, π̂1(θ3) = π(θ1)+π(θ3)

and π̂1(θ4) = π(θ2)+π(θ4) and similarly for π̂3. Let q ≡ π(θ3)+π(θ4) denote the share of

non-tempted types and πA ≡ π(θ2) + π(θ4) denote the share of autarkic types. To close

the model, assume that the public signal is uninformative, the private signal distribution

is informative and symmetric, FR(s) = 1−FL(1−s), all types have a correct subjective

signal distribution, and the prior p0 = 1/2. Note that preferences are aligned since

tempted and non-tempted types order actions in the same way (Assumption 2).

Proposition 5 in Section 5.4 establishes that there is an equivalence between this

setting with preference misspecification and the signal misspecification in Example 2.

Proof of Proposition 5 Each type θi updates to belief pi(λ,s)
1−pi(λ,s) = λ

(
s

1−s

)
following

likelihood ratio λ and private signal s. Types θ1 and θ2 choose action L if this belief is

less than (2−β)/β, which is equivalent to s < (2−β)/(2+βλ−β). Therefore, s1,1(λ) =

s2,1(λ) = (2−β)/(2 +βλ−β). Types θ3 and θ4 choose action L if this belief is less than

one, which is equivalent to s < 1/(1 + λ). Therefore, s3,1(λ) = s4,1(λ) = 1/(1 + λ).

At likelihood ratio λ1, type θ1 chooses L with probability F ω((2−β)/(2 +βλ3−β)).

Type θ2 is autarkic. Therefore, its likelihood ratio is constant at λ2 = 1 and it chooses

action L with probability F ω(1 − β/2). At likelihood ratio λ3, type θ3 chooses L with

probability F ω(1/(1+λ3)). Type θ4 is autarkic. Therefore, its likelihood ratio is constant

at λ4 = 1 and it chooses action L with probability F ω(.5). Both sociable types θ1 and

θ3 have correct beliefs about the probability that θ3 and θ4 choose action L, but neither

accounts for the presence of θ1 and θ2. Therefore, at likelihood ratio λ, type θ1 believes

action L occurs with probability

ψ̂1(L|ω,λ) = (1− πA)F ω(1/(1 + λ3)) + πAF
ω(.5),

50For ease of comparison with Example 2, in a slight abuse of notation we continue to let θ2 denote
an autarkic type, which violates our convention that the first k types are the sociable types.
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where again in a slight abuse of notation we suppress the dependence of ψ̂i and ψ on σ

since the public signal is uninformative. Since θ3 has an identical model as θ1, its sub-

jective action probability is equivalent, ψ̂3(L|ω,λ) = ψ̂1(L|ω,λ). The true probability

of action L is

ψ(L|ω,λ) = (1− q)((1− πA)F ω((2− β)/(2 + βλ1 − β)) + πAF
ω(1− β/2))

+ q((1− πA)F ω(1/(1 + λ3)) + πAF
ω(.5)).

From these subjective probabilities, the construction of γβ,q1 ((0, 0), ω) and γβ,q1 ((∞,∞), ω)

are similar to Proposition 8, replacing αν with αβ ≡ FL(1− β/2) and noting that αβ is

strictly decreasing in β.

Define ν(β) ≡ log .5/ log(1 − β/2). Then αβ in the model with level of temptation

β and share of non-tempted types q is equal to αν(β) in the model in Example 2 with

level of partisan bias ν(β) and share of non-partisan types q. Therefore, the models

have identical locally stable sets, and hence, an identical set of asymptotic learning

outcomes. �

C.5 Section 5.5 (Level-k)

Let λ = (λ2, λ3) denote the vector of likelihood ratios for the sociable types θ2 and θ3.

Construction of Λ(ω). When type θi ∈ {θ1, θ2, θ3} has current belief λi, it chooses

action R iff it observes a signal s ≥ 1/(λi + 1) = si,1(λi). Given s1,1(λ1) = 0.5, type θ1

chooses action L with probability F ω(0.5) and action R with probability 1 − F ω(0.5).

Type θ2’s subjective probability of each L action in the history is the probability that

a level-1 type chooses action L, ψ̂2(L|ω,λ) = F ω(0.5) and its subjective probability

of each R action is ψ̂2(R|ω,λ) = 1 − F ω(0.5), where in a slight abuse of notation, we

suppress the dependence of ψ̂i on the public signal since it is uninformative. Given belief

λ2, level-2 chooses an L action with probability F ω(1/(λ2 + 1)) and an R action with

probability 1− F ω(1/(λ2 + 1)). Type θ3’s subjective probability of each L action is the

weighted average of the probability that a level-1 type and a level-2 type choose action

L,

ψ̂3(L|ω,λ) = (1− ε)F ω(1/(λ2 + 1)) + εF ω(.5). (26)

The subjective probability of an R action is analogous. Finally, the true probability of

an L action depends on the correct distribution over types,

ψ(L|ω,λ) = π(θ1)F
ω(.5) + π(θ2)F

ω(1/(λ2 + 1)) + π(θ3)F
ω(1/(λ3 + 1)). (27)
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To simplify the exposition, let αL ≡ FL(.5) be the probability a level-1 type plays action

L in state L and αR ≡ FR(.5) be the probability a level-1 type plays action L in state

R. Note that αL ∈ (0, 1) and αR ∈ (0, 1), since private signals are informative.

Suppose ω = L. We first consider local stability for the level-3 type. At the correct

learning outcome, (0, 0), the level-2 type chooses action L for all signals. Therefore,

the level-3 type believes that L actions are approximately uninformative for small ε,
ψ̂3(L|R,(0,0))
ψ̂3(L|L,(0,0))

= 1−ε+εαR
1−ε+εαL

≈ 1 and R actions are from the level-1 type, ψ̂3(R|R,(0,0))
ψ̂3(R|L,(0,0))

= 1−αR
1−αL

.

Since only the level-1 type plays action R, the true probability of an R action is π(θ1)(1−
αL). Therefore, for small ε,

γ3((0, 0), L) = (π(θ1)αL + π(θ2) + π(θ3)) log

(
1− ε+ εαR
1− ε+ εαL

)
+ π(θ1)(1− αL) log

(
1− αR
1− αL

)
≈ π(θ1)(1− αL) log

(
1− αR
1− αL

)
> 0

and correct learning is not locally stable for the level-3 type, (0, 0) 6∈ Λ3(L). Similarly,

for small ε,

γ3((∞,∞), L) ≈ π(θ1)αL log

(
αR
αL

)
< 0

and incorrect learning is not locally stable for the level-3 type, (∞,∞) 6∈ Λ3(L). This

establishes that correct learning and incorrect learning almost surely do not occur for

small ε, as neither outcome is locally stable for level-3 types.

This leaves the disagreement outcomes as candidate learning outcomes. Consider

(0,∞). As in the case of (0, 0), the level-3 type believes that L actions are approximately

uninformative and R actions are from the level-1 type. But now, this confirms the level-3

type’s belief that the state is R,

γ3((0,∞), L) ≈ (π(θ1)(1− αL) + π(θ3)) log

(
1− αR
1− αL

)
> 0.

and (0,∞) ∈ Λ3(L). Similarly,

γ3((∞, 0), L) ≈ (π(θ1)αL + π(θ3)) log

(
αR
αL

)
< 0

and (∞, 0) ∈ Λ3(L). Therefore, for small ε, both disagreement outcomes are locally

stable for the level-3 type, Λ3(L) = {(0,∞), (∞, 0)}.
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Next, we determine whether the disagreement outcomes are locally stable for the

level-2 type. The level-2 type believes that all actions are from level-1 types. Therefore,

it interprets L and R actions in the same way at both disagreement outcomes. At

(0,∞), the true probability of an L action is π(θ1)αL + π(θ2), while at (∞, 0), it is

π(θ1)αL + π(θ3). Therefore,

γ2((0,∞), L) =(π(θ1)αL + π(θ2)) log

(
αR
αL

)
+ (π(θ1)(1− αL) + π(θ3)) log

(
1− αR
1− αL

)
and

γ2((∞, 0), L) =(π(θ1)αL + π(θ3)) log

(
αR
αL

)
+ (π(θ1)(1− αL) + π(θ2)) log

(
1− αR
1− αL

)
.

The signs of these expressions vary with the true distribution of types. We next charac-

terize the region of the type distribution at which each disagreement outcome is locally

stable. To do so, we use the inequalities (a) αR
αL

< 1, (b) 1−αR
1−αL

> 1 and (c) from the

correctly specified model, αL log αR
αL

+ (1−αL) log 1−αR
1−αL

< 0, as well as the property that

π 7→ γ2((0,∞), L) and π 7→ γ2((∞, 0), L) are continuous.

1. As π(θ3)→ 0,

γ2((0,∞), L)→ (π(θ1)αL + 1− π(θ1)) log

(
αR
αL

)
+ π(θ1)(1− αL) log

(
1− αR
1− αL

)
< 0

for all π(θ1), where the negative sign follows from inequalities (a) and (c). There-

fore, there exists a cut-off c1 > 0 such that for π(θ3) < c1, (0,∞) ∈ Λ2(L) for all

π(θ1) and π(θ2).

2. As π(θ3)→ 1,

γ2((0,∞), L)→ log

(
1− αR
1− αL

)
> 0

γ2((∞, 0), L)→ log

(
αR
αL

)
< 0.

Therefore, there exists an interior cut-off c2 ∈ (0, 1) such that for π(θ3) > c2,
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(0,∞) 6∈ Λ2(L) and there exists a cut-off c3 < 1 such that for π(θ3) > c3, (∞, 0) 6∈
Λ2(L) for all π(θ1) and π(θ2), where c2 > 0 follows from part (1). Therefore,

there exists an interior cutoff π̄3 = max{c2, c3} ∈ (0, 1) such that if π(θ3) > π̄3,

neither disagreement outcome is locally stable for θ2. Combined with Λ3(L) =

{(0,∞), (∞, 0)}, this implies that Λ(L) = ∅ for π(θ3) > π̄3 and small ε.

3. As π(θ2)→ 0,

γ2((∞, 0), L)→ (π(θ1)αL + 1− π(θ1)) log

(
αR
αL

)
+ π(θ1)(1− αL) log

(
1− αR
1− αL

)
< 0,

for all π(θ1), where the negative sign follows from inequalities (a) and (c). There-

fore, there exists a cut-off c4 > 0 such that for π(θ2) < c4, (∞, 0) 6∈ Λ2(L) for all

π(θ1) and π(θ3).

4. As π(θ2)→ 1,

γ2((0,∞), L)→ log

(
αR
αL

)
< 0

γ2((∞, 0), L)→ log

(
1− αR
1− αL

)
> 0.

Therefore, there exists a cut-off c5 < 1 such that for π(θ2) > c5, (0,∞) ∈ Λ2(L)

and there exists an interior cut-off c6 ∈ (0, 1) such that for π(θ2) > c6, (∞, 0) ∈
Λ2(L) for all π(θ1) and π(θ3), where c6 > 0 follows from part (3). Therefore,

there exists an interior cutoff π̄2 = max{c5, c6} ∈ (0, 1) such that if π(θ2) > π̄2,

both disagreement outcomes are locally stable for θ2. Combined with Λ3(L) =

{(0,∞), (∞, 0)}, this implies that Λ(L) = {(0,∞), (∞, 0)} for π(θ2) > π̄2 and

small ε.

5. As π(θ1)→ 1,

γ2((0,∞), L)→ αL log
αR
αL

+ (1− αL) log
1− αR
1− αL

< 0

γ2((∞, 0), L)→ αL log
αR
αL

+ (1− αL) log
1− αR
1− αL

< 0.

Therefore, there exists an interior cut-off c7 ∈ (0, 1) such that for π(θ1) > c7,

(0,∞) ∈ Λ2(L) and there exists an interior cut-off c8 ∈ (0, 1) such that for π(θ1) >

c8, (∞, 0) 6∈ Λ2(L) for all π(θ2) and π(θ3), where c7 > 0 and c8 > 0 follow from parts
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(2) and (4). Therefore, there exists an interior cutoff π̄1 = max{c7, c8} ∈ (0, 1)

such that if π(θ1) > π̄1, (0,∞) is locally stable for θ2 and (∞, 0) is not. Combined

with Λ3(L) = {(0,∞), (∞, 0)}, this implies that Λ(L) = {(0,∞)} for π(θ1) > π̄1

and small ε.

Fixing π(θ2), γ2((0,∞), L) is increasing in π(θ3). Given this, we next show that

the type distribution can be divided into two connected regions in the simplex such that

(0,∞) ∈ λ2(L) or (0,∞) 6∈ λ2(L), and these regions are separated by the unique solution

to γ2((0,∞), L) = 0. As shown above, at π(θ2) = 0 and π(θ3) = 0, γ2((0,∞), L) < 0 and

at π(θ2) = 0 and π(θ3) = 1, γ2((0,∞), L) > 0. Therefore, there exists a cutoff c9 ∈ (0, 1)

such that at π(θ2) = 0 and π(θ3) = c9, γ2((0,∞), L) = 0. Similarly, there exists cut-off

c10 ≡
log αL

αR

log αL
αR
− log 1−αL

1−αR

such that at π(θ1) = 0 and π(θ3) = c10, γ2((0,∞), L) = 0. Given γ2((0,∞), L) is

linear in π(θ2) and π(θ3), the solution to γ2((0,∞), L) = 0 is linear in the simplex and

represented by the line connecting (1− c9, 0, c9) and (0, 1− c10, c10). This establishes the

above statement.

Fixing π(θ2), γ2((∞, 0), L) is decreasing in π(θ3). Therefore, by similar reasoning, the

type distribution can be divided into two connected regions such that (∞, 0) ∈ λ2(L) or

(∞, 0) 6∈ λ2(L), and these regions are separated by the unique solution to γ2((∞, 0), L) =

0. Given γ2((∞, 0), L) is linear in π(θ2) and π(θ3), the solution to γ2((∞, 0), L) =

0 is linear in the simplex and represented by the line connecting (1 − c11, c11, 0) and

(0, 1− c12, c12), where c11 ∈ (0, 1) is the value of π(θ2) such that γ2((∞, 0), L) = 0 when

π(θ3) = 0, and

c12 ≡
log 1−αL

1−αR
log 1−αL

1−αR
− log αL

αR

.

Given the linearity of both solutions, if c10 ≥ c12, then the solution to γ2((0,∞), L) =

0 lies above the solution to γ2((∞, 0), L) = 0. Therefore, there are three distinct

regions such that for small ε, either (i) Λ(L) = ∅, (ii) Λ(L) = {(0,∞)}, or (iii)

Λ(L) = {(0,∞), (∞, 0)}. Otherwise, if c10 ≤ c12, the solutions cross exactly once.

Therefore, there are four distinct regions such that for small ε, either (i) Λ(L) = ∅, (ii)

Λ(L) = {(0,∞)}, (iii) Λ(L) = {(∞, 0)}, or (iv) Λ(L) = {(0,∞), (∞, 0)}. Note that

when the signal distributions are symmetric, c10 ≥ c12.

The construction of Λ(R) is analogous.

Maximal Accessibility. When Λ(ω) contains a disagreement outcome, we need to

check whether the disagreement outcome is maximally accessible to determine whether
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it occurs with positive probability from any initial belief. The following lemma estab-

lishes that both disagreement outcomes are maximally accessible at all distributions over

types and all ε ∈ (0, 1]. This implies that a disagreement outcome arises with positive

probability if and only if it is in Λ(ω).

Lemma 12. For any π ∈ ∆((θ1, θ2, θ3)) and ε ∈ (0, 1], both disagreement outcomes

(0,∞) and (∞, 0) are maximally accessible.

Proof. At λ = (0, 0), type θ2 perceives L actions as stronger evidence of state L than

type θ3,

ψ̂2(L|R, (0, 0))

ψ̂2(L|L, (0, 0))
=
αR
αL

<
ε+ (1− ε)αR
ε+ (1− ε)αL

=
ψ̂3(L|R, (0, 0))

ψ̂3(L|L, (0, 0))
,

and both types perceive R actions in the same way,

ψ̂2(R|R, (0, 0))

ψ̂2(R|L, (0, 0))
=
ψ̂3(R|R, (0, 0))

ψ̂3(R|L, (0, 0))
=

1− αR
1− αL

. (28)

Therefore, θ3 �(0,0) θ2. From Definition 4, this implies that (0,∞) is maximally accessi-

ble. At λ = (∞,∞), type θ2 perceives R actions as stronger evidence of state R than

type θ3,

ψ̂2(R|R, (∞,∞))

ψ̂2(R|L, (∞,∞))
=

1− αR
1− αL

>
ε+ (1− ε)(1− αR)

ε+ (1− ε)(1− αL)
=
ψ̂3(R|R, (∞,∞))

ψ̂3(R|L, (∞,∞))
,

and both types perceive L actions in the same way,

ψ̂2(L|R, (∞,∞))

ψ̂2(L|L, (∞,∞))
=
ψ̂3(L|R, (∞,∞))

ψ̂3(L|L, (∞,∞))
=
αR
αL

. (29)

Therefore, θ2 �(∞,∞) θ3. From Definition 4, this implies that (∞, 0) is maximally acces-

sible. �

Construction of ΛM(ω). Finally, we need to rule out mixed learning outcomes in

which θ2’s beliefs converge and θ3’s beliefs cycle, or vice versa. Suppose ω = L and

consider the four possible mixed outcomes.

1. Consider the mixed outcome (0, θ3) in which 〈λ2,t〉 does not converge and 〈λ3,t〉 →
0. By the concavity of the log operator,

αL log

(
αR
αL

)
+ (1− αL) log

(
1− αR
1− αL

)
< 0.
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Therefore, since αR
αL

< 0,

γ2((0, 0), L) = (π1αL + π(θ2) + π(θ3)) log

(
αR
αL

)
+ π1(1− αL) log

(
1− αR
1− αL

)
< 0.

and (0, 0) ∈ Λ2(L). By the definition of ΛM(L), this implies that (0, θ3) 6∈ ΛM(L)

and this mixed learning outcome almost surely does not arise.

2. Consider the mixed outcome (∞, θ3). This outcome is in ΛM(L) if (∞,∞) 6∈ Λ2(L)

and (0,∞) 6∈ Λ2(L), which is equivalent to γ2((∞,∞), L) < 0 and γ2((0,∞), L) >

0. However, γ2((λ2,∞), L) is increasing in λ2, so this is not possible. Therefore,

(∞, θ3) 6∈ ΛM(L) and this mixed learning outcome almost surely does not arise.

3. Consider the mixed outcome (0, θ2). This outcome is in ΛM(L) if (0, 0) 6∈ Λ3(L)

and (0,∞) 6∈ Λ3(L). From the characterization of Λ(L) above, we know that

(0,∞) ∈ Λ3(L). Therefore, (0, θ2) 6∈ ΛM(L) and this mixed learning outcome

almost surely does not arise.

4. Consider the mixed outcome (∞, θ2). This outcome is in ΛM(L) if (∞, 0) 6∈ Λ3(L)

and (∞,∞) 6∈ Λ3(L). From the characterization of Λ(L) above, we know that

(∞, 0) ∈ Λ3(L). Therefore, (∞, θ2) 6∈ ΛM(L) and this mixed learning outcome

almost surely does not arise.

Therefore, ΛM(L) = ∅ and mixed outcomes almost surely do not arise if the state is L.

Similar logic rules out mixed outcomes if the state is R.

Proof of Proposition 6. As ε→ 1, Λ(ω) ⊆ {(0,∞), (∞, 0)}. Given ΛM(ω) = ∅ and

by Lemma 12, both disagreement outcomes are maximally accessible, by Theorem 1,

Λ(ω) determines the set of asymptotic learning outcomes. Either Λ(ω) = ∅, in which

case learning is cyclical for both types, or Λ(ω) ⊆ {(0,∞), (∞, 0)} and Λ(ω) 6= ∅, in

which case beliefs almost surely converge to a limit random variable with support Λ(ω).

The construction of Λ(ω) above establishes the cut-offs on the type distribution such

that Λ(ω) = ∅, Λ(ω) = {(0,∞)}, Λ(ω) = {(∞, 0)} or Λ(ω) = {(0,∞), (∞, 0)}.
�
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D Posterior Representation.

Let Z be a signal space. Let µω ∈ ∆(Z) and µ̂ω ∈ ∆(Z) be probability measures

on Z in state ω. Assume µL, µR and µ̂L, µ̂R are mutually absolutely continuous. Let

r(z) ≡ 1/(1 + dµL

dµR
(z)) and r̂(z) ≡ 1/(1 + dµ̂L

dµ̂R
(z)) denote the posterior belief that the

state is L under each set of measures. The c.d.f.s F ω
r (x) ≡ µω(z|r(z) ≤ x) and F̂ ω

r̂ (x) ≡
µ̂ω(z|r̂(z) ≤ x) are the distributions of the posterior beliefs r(z) and r̂(z) under measures

µω and µ̂ω, respectively. Given these two measures, we can also define the distribution

of r̂(z) under measure µω as F ω
r̂ (x) ≡ µω(z|r̂(z) ≤ x), and the distribution of r(z) under

measure µ̂ω as F̂ ω
r (x) ≡ µ̂ω(z|r(z) ≤ x).

As in the text, we say that two pairs of distributions are aligned if they induce the

same ordinal ranking over signals, in terms of the posterior belief. Pairs of distributions

are equality-preserving if, for all sets of signals that map into a given posterior belief r

under one pair of distributions, these signals also map into the same posterior belief r̂

under the other pair of distributions (which may differ from r).51

Definition 9. (Equality-Preserving Signals). Mutually absolutely continuous probability

measures µL, µR ∈ ∆(Z)2 and µ̂L, µ̂R ∈ ∆(Z)2 are equality-preserving if for any z, z′ ∈
suppµ ∩ supp µ̂, dµL

dµR
(z) = dµL

dµR
(z′) if and only if dµL

dµR
(z) = dµL

dµR
(z′).

Multiple signals z and z′ can lead to the same posterior belief. Therefore, two pairs

of distributions can map to the same distribution over posterior beliefs. The following

property describes an equivalence class of probability measures. These measures have

the same ordinal ranking of signals and the same distribution over posterior beliefs.

Definition 10 (Equivalent Measures). Measures µL, µR and µ̂L, µ̂R are equivalent iff

they are aligned, equality-preserving, suppµ = supp µ̂, and µω(z|1/(1 + dµL

dµR
(z)) ≤ x) =

µ̂ω(z|1/(1 + dµ̂L

dµ̂R
(z)) ≤ x) for all x ∈ [0, 1] and ω ∈ {L,R}.

Lemma 13 establishes that when pairs of probability measures µ̂L, µ̂R ∈ ∆(Z)2 and

µL, µR ∈ ∆(Z)2 are aligned and equality-preserving, there is a unique representation of

µ̂L, µ̂R as (ŝ, F̂R
r ), where ŝ : suppFr → [0, 1] is a strictly increasing function mapping

the posterior r(z) to the posterior r̂(z) and F̂R
r is the distribution of r(z) under measure

µ̂R.

51If the signal distributions are aligned and equality-preserving, then the mapping from z 7→ µ̂L

µ̂R (z)

is an order preserving mapping from (suppµ ∩ supp µ̂,�) to (R,≥), where z ' z′ if µL

µR (z) ≥ µL

µR (z′).
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Lemma 13. Suppose µL, µR have full support and signals are informative, dµR

dµL
(z) 6= 1.

1. For any mutually absolutely continuous probability measures µ̂L, µ̂R ∈ ∆(Z)2 that

have full support and are equality-preserving and aligned with µL, µR, there exists

a unique (ŝ, F̂R
r ), where ŝ : suppFr → [0, 1] is a strictly increasing function with

ŝ(inf suppFr) < 1/2 and ŝ(sup suppFr) > 1/2, such that ŝ(r(z)) = 1/(1 + dµ̂L

dµ̂R
(z))

for all z ∈ Z and F̂R
r is the distribution of r(z) under measure µ̂R.

2. For any strictly increasing function ŝ : suppFr → [0, 1] and any c.d.f. F̂R
r

with supp F̂R
r = suppFr and

∫ 1

0

(
1−ŝ(s)
ŝ(s)

)
dF̂R

r = 1, there exist unique (up to an

equivalent pair of measures) mutually absolutely continuous probability measures

(µ̂L, µ̂R) ∈ ∆(Z)2 that have full support, are equality-preserving and aligned with

µL, µR, and satisfy ŝ(r(z)) = 1/(1 + dµ̂L

dµ̂R
(z)) for all z ∈ Z. The measures µ̂L, µ̂R

are equality-preserving and aligned with µL, µR.52

3. For any strictly increasing function ŝ : suppFr → [0, 1] such that ŝ(inf suppFr) <

1/2 and ŝ(sup suppFr) > 1/2, there exists mutually absolutely continuous proba-

bility measures µ̂L, µ̂R ∈ ∆(Z)2 that have full support, are equality-preserving and

aligned with µL, µR, and satisfy ŝ(r(z)) = 1/(1 + dµ̂L

dµ̂R
(z)) for all z ∈ Z.

The first part of Lemma 13 implies that F ω
r̂ (ŝ(s)) = F ω

r (s) for all s ∈ supp(Fr) and

suppFr̂ = ŝ(suppFr). Similarly, F̂ ω
r̂ (ŝ(s)) = F̂ ω

r (s) for all s ∈ supp F̂r and supp F̂r̂ =

ŝ(supp F̂r).

Proof. First establish part (i). Let (µ̂L, µ̂R) ∈ ∆(Z)2 be mutually absolutely continuous

probability measures that have full support and are equality-preserving and aligned

with (µL, µR). Define the mapping ŝ : suppFr → [0, 1] as ŝ(r(z)) = r̂(z), where r̂(z) ≡
1/(1 + dµ̂L

dµ̂R
(z)). This is a function since if r(z) = r(z′), then r̂(z) = r̂(z′), which

establishes existence. For any z such that r(z) > r(z′), r̂(z) = ŝ(r(z)) > r̂(z′) = ŝ(r(z′))

since (µ̂L, µ̂R) is equality-preserving and aligned. Therefore, ŝ is strictly increasing on

suppFr.

By the Bayesian constraint, it must be that Eµ̂[r̂(z)] = 1/2, where the expectation is

taken with respect to (µ̂L, µ̂R). Given that (µL, µR) are informative, equality-preserving

and aligned with (µ̂L, µ̂R), it cannot be that r̂(z) = 1/2 for all z ∈ Z. Therefore, there

exist z, z′ ∈ Z such that r̂(z) > 1/2 and r̂(z′) < 1/2, which implies that there exist

s, s′ ∈ suppFr such that ŝ(s) > 1/2 and ŝ(s′) < 1/2. Given that ŝ is strictly increasing

in s, it immediately follows that ŝ(inf suppFr) < 1/2 and ŝ(sup suppFr) > 1/2. Define

52Note that if F̂Rr is a c.d.f. and
∫ 1

0

(
1−ŝ(s)
ŝ(s)

)
dF̂Rr = 1, then it must be that ŝ(sup(suppFr)) > 1/2

and ŝ(inf suppFr) < 1/2.
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F̂R
r (x) ≡ µ̂L(z|r(z) ≤ x). Then F̂R

r is the distribution of s under measure µ̂R. Given

{ŝ, F̂R
r }, F̂L

r is uniquely pinned down by

F̂L
r (x) =

∫ x

0

(
1− (̂s)

(̂s)

)
dF̂R

r (s)

for any x ∈ suppFr.

Next, show part (ii). Let ŝ : suppFr → [0, 1] be a strictly increasing function and

let c.d.f. F̂R
r be the distribution of r(z) under measure µ̂R, with supp F̂R

r = suppFr and∫ 1

0

(
1−ŝ(s)
ŝ(s)

)
dF̂R

r = 1. By Lemma A.1 in Smith and Sorensen (2000), the distribution of

r(z) under measure µ̂L is uniquely determined by

F̂L
r (x) =

∫ x

0

(
1− ŝ(s)
ŝ(s)

)
dF̂R

r (s).

Since F̂L
r has Radon-Nikodym derivative 1−ŝ(s)

ŝ(s)
, it induces posterior belief ŝ(s) after ob-

serving signal z from set of signals Z = {z|r(z) = s} that lead to correctly specified

posterior s, for any s ∈ suppFr. If any other distribution induced the same posterior be-

liefs, then it would also have Radon-Nikodym derivative 1−ŝ(s)
ŝ(s)

, so it would be equivalent

to F̂L
r . Since 1−ŝ(s)

ŝ(s)
> 0 and F̂L

r (1) = 1, F̂L
r is a probability distribution.

Define the random variable S = r(z). F̂ ω
r defines a probability measure over this

random variable in state ω. For any measurable set A ⊆ Z, define

µ̂ω(A) =

∫
E(1A|S)dF̂ ω

r ,

where E is the conditional expectation defined with respect to µR. By the uniqueness

and additivity of conditional expectation, for any disjoint, measurable sets A,B ⊆ Z,

µ̂ω(A ∪B) =

∫
E(1A∪B|S)dF̂ ω

r =

∫
(E(1A|S) + E(1B|S))dF̂ ω

r = µ̂ω(A) + µ̂ω(B),

so µ̂ω is a measure. For any set A, if µ̂L(A) = 0, then µ̂R(A) = 0 and vice versa, since

the integrand used to define µ̂R is strictly positive. Therefore, the distributions (µ̂L, µ̂R)

are mutually absolutely continuous with common support supp µ̂. Also, supp µ̂ = suppµ

by construction, so the measures have full support on Z. Moreover, since F ω
r is unique,

µ̂ω is unique up to the probability measure that is used to evaluate E(·|S). For any

measurable set A ⊆ Z,

µ̂L(A) =

∫
E(1A|S)

(
1− ŝ(S)

ŝ(S)

)
dF̂R

r =

∫
A

(
1− ŝ(r(z))

ŝ(r(z))

)
dµ̂R(z),
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where the first equality follows from the definition of F̂L
r and the second equality follows

from the definition of µ̂R, so these distributions induce the correct posterior beliefs.

Finally, µ̂R(Z) =
∫ 1

0
dF̂R

r (s) = 1 and µ̂L(Z) =
∫ 1

0
dF̂L

r (s) = 1, so these are indeed

probability measures.

Finally, show part (iii). Suppose ŝ : suppFr → [0, 1] is a strictly increasing function

with ŝ(inf suppFr) < 1/2 and ŝ(sup suppFr) > 1/2. Fix any distribution F̂ with support

suppFr ∩ {s|ŝ(s) < 1/2}. Then
∫ 1

0

(
1−ŝ(s)
ŝ(s)

)
dF̂r(s) < 1. Similarly, fix a distribution Ĝ

with support suppFr ∩ {s|ŝ(s) ≥ 1/2}. Then
∫ 1

0

(
1−ŝ(s)
ŝ(s)

)
dĜ(s) > 1. For any λ ∈ [0, 1],

let Gλ be the distribution of the compound lottery Gλ = λF̂ + (1 − λ)Ĝ. This lottery

draws signals from F̂ with probability λ and Ĝ with probability (1 − λ). The function

H(λ) ≡
∫ (1−ŝ(s)

ŝ(s)

)
dGλ is a continuous mapping from [0, 1] to R, so by the intermediate

value theorem, there exists a λ∗ ∈ (0, 1) such that
∫ (1−ŝ(s)

ŝ(s)

)
dGλ∗ = 1. Let F̂R =

Gλ∗ . Then F̂R is a probability distribution, since it is the convex combination of two

distributions. By construction, supp F̂R
r = suppFr and

∫ 1

0

(
1−ŝ(s)
ŝ(s)

)
dF̂R

r = 1. Therefore,

from part(ii), it is possible to construct the desired probability measures (µ̂L, µ̂R). �

E Additional Results from Section 4

E.1 Complete Learning for Correctly Specified Types

The following result establishes that misspecified types do not interfere with the learning

of correctly specified types.

Theorem 3. Given Assumption 1, 2, 3 and 4, learning is complete for all correctly

specified types.

Proof. Assume Assumption 1, 2, 3 and 4, and suppose ω = L. Under these assumptions,

if 〈λi,t〉 converges for any type θi, then the support of the limit belief λ∞ is a subset of

{0,∞}, i.e. supp(λ∞) ⊂ {0,∞}. Let θi be a correctly specified type. Then its subjective

probability of each action is equal to the true probability, ψ̂i = ψ. Therefore, given ω =

L, 〈λi,t〉 is a martingale for any learning environment {Θ, π, FL, FR}. By the Martingale

Convergence Theorem, 〈λi,t〉 converges almost surely to a limit random variable λ∞ with

supp(λ∞) ⊂ [0,∞). This rules out incorrect and cyclical learning. Therefore, zero is the

only candidate limit belief for the correctly specified type, supp(λ∞) = {0}, and it must

be that λi,t → 0 almost surely. �

E.2 Analogue of Theorem 1 for k > 2.

This section proves the analogue of Theorem 1 for more than two sociable types, k > 2.

The statement of the result is identical to Theorem 1, using the modified definitions of

Λ(ω) (defined in (8)), ΛM(ω) and maximal accessibility (defined for k > 2 below). Recall

that Lemmas 1 to 4 hold for all k ≥ 1. Therefore, we prove analogues of Lemmas 5 to 7.
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Global Stability of Disagreement. As above, without loss of generality, order a

disagreement outcome so that the first κ types have belief zero, and the remaining k−κ
types have belief infinity, i.e. λ = (0κ,∞k−κ). As in the case of two sociable types, we

can use the maximal action and signal pairs to define a sufficient condition for global

stability, and use this to prove an analogue of Lemma 5.

Definition 5′ (Maximal Accessibility). Disagreement outcome (0κ,∞k−κ) is maximally

accessible if either:

(i) for all κ′ = 0, ..., κ − 1, given λ = (0κ
′
,∞k−κ′), θi �λ θκ′+1 for all i > κ′ + 1 and

θκ′+1 �λ θi for all i < κ′ + 1;

(ii) for all κ′ = κ+1, ..., k, given λ = (0κ
′
,∞k−κ′), θi �λ θκ′ for all i > κ′ and θκ′ �λ θi

for all i < κ′,

where �λ is the maximal R-order defined in Definition 4.

Note that this definition is equivalent to Definition 5 for the case of k = 2. If the belief

of the type with λ∗i = 0 that interprets maximal action and signal pairs as the weakest

evidence of state L decreases at a faster rate than the belief of the type with λ∗j =∞ that

interprets maximal action and signal pairs as the strongest evidence of state L, then it is

possible to find a finite sequence of maximal action and public signal pairs that separate

beliefs. Once again, this condition is straightforward to verify from the primitives of

the model. As in the case of k = 2, for any disagreement outcome in Λ(ω), maximal

accessibility is a sufficient condition for global stability. Given this revised definition of

maximal accessibility, the statement of Lemma 5 is identical.53

Lemma 5′ (Global Stability of Disagreement). If disagreement outcome λ∗ = (0κ,∞k−κ)

is locally stable and maximally accessible, then λ∗ is globally stable.

Mixed Learning Outcomes. Consider the mixed outcome in which beliefs converge

to λ∗I ∈ {0,∞}|I| for some subset of sociable types I ⊂ ΘS, where λ∗I denotes the

likelihood ratio vector restricted to set I, and beliefs do not converge for the remaining

sociable types N ≡ ΘS \ I. As in the case with two types, denote this mixed outcome as

the pair (λ∗I , I), where I ⊆ Θ is the set of sociable types whose beliefs converge and λ∗I is

the vector of limit beliefs these types. For example, a mixed outcome where θ1 and θ2’s

beliefs converge to zero and θ3’s beliefs do not converge is denoted ((0, 0), {θ1, θ2}). This

outcome is not locally stable if it is possible for the beliefs of the non-convergent types to

53The proof of Lemma 5′ shows that Definition 5′ is sufficient for a much weaker, but more com-
plicated to verify, condition called separability (Definition 6) that utilizes the entire set of actions to
separate beliefs.
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converge. For example, suppose there are three sociable types. If (0, 0, 0) ∈ Λ1(ω), then

the mixed learning outcome in which θ1 has cyclical learning, and θ2 and θ3 have correct

learning is not locally stable, since if the beliefs of θ2 and θ3 converge to zero, then

the beliefs of θ1 will also almost surely converge to zero. For mixed learning outcomes

in which two or more types have cyclical learning, the argument is more involved. To

rule out mixed learning, we also need to show that a locally stable outcome for the

non-convergent types is accessible from other points in the mixed outcome belief space.

For example, if (0, 0, 0) ∈ Λ1(ω) ∩ Λ2(ω), then to rule out the mixed learning outcome

in which θ1 and θ2 have cyclical learning and θ3 has correct learning, we need to show

that for λ ∈ {(0,∞, 0), (∞, 0, 0), (∞,∞, 0)}, either (i) beliefs will almost surely enter

a neighborhood of (0, 0, 0) from a neighborhood of λ, or (ii) λ ∈ Λ1(ω) ∩ Λ2(ω). The

following definition formalizes this notion.

Definition 11 (Mixed Accessible). Given mixed outcome (λ∗I , I) for I ⊂ ΘS and non-

convergent types N ≡ ΘS \ I, (λ′N , N) is mixed accessible from (λN , N) if (λ′N , N) 6=
(λN , N) and (λ∗I ,λN) 6∈ Λi(ω) for each i ∈ N such that λ′i 6= λi, and (λ′N , N) is strongly

mixed accessible from (λN , N) if (λ′N , N) is mixed accessible from (λN , N) and for each

distinct i, j ∈ N with λi 6= λ′i and λj 6= λ′j, then λi = λj.

Given mixed outcome (λ∗I , I), we construct a graph G(λ∗I , I) with nodes (λN , N) such

that λN ∈ {0,∞}|N | and N ≡ ΘS \I to represent which nodes are mixed accessible from

other nodes for the non-convergent types.

Definition 12 (Accessible Graph). Given (λ∗I , I) and N ≡ ΘS \ I, define the directed

graph G(λ∗I , I) with nodes (λN , N) such that λN ∈ {0,∞}|N | as follows: there is an edge

from (λN , N) to (λ′N , N) iff (λ′N , N) is strongly mixed accessible from (λN , N).

A terminal node (λN , N) is a node with no edges leaving it.

Definition 13 (Reducible). A mixed outcome (λ∗I , I) is reducible if G(λ∗I , I) has no

cycles.

If a mixed outcome is reducible, then conditional on the convergent types I remaining

in a neighborhood of λ∗I , almost surely, the beliefs of the non-convergent types converge.

This is a contradiction. Therefore, almost surely, this mixed outcome will not arise. Let

ΛM(ω) denote the set of mixed learning outcomes that are not reducible,

ΛM(ω) ≡ {(λ∗I , I)|λ∗I ∈ {0,∞}|I|, I ⊂ ΘS, (λ∗I , I) is not reducible}. (30)

As in the case of two sociable types, if a mixed learning outcome arises with positive

probability, it must be in ΛM(ω).
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Given the modified definition of ΛM(ω), the statement of Lemma 6 is identical.54

Lemma 6′ (Unstable Mixed Outcomes). Given I ⊂ ΘS and N ≡ ΘS \ I, if mixed

learning outcome (λ∗I , I) 6∈ ΛM(ω), then Pr(λI,t → λ∗I and λN,t does not converge) = 0.

Reducibility is always satisfied in some important cases and is relatively straightfor-

ward to verify. For instance, it is satisfied in models near the correctly specified model,

in which γi(λ, ω) < 0 at all stationary λ ∈ {0,∞}k for all sociable types θi. In this

model, each node in the graph is connected to all nodes with fewer ∞’s than it and

is connected to no other nodes. Therefore, for any mixed outcome (λ∗I , I) and set of

non-convergent types N = ΘS \ I, every path in the graph terminates at node (0|N |, N).

For mixed outcome (0|I|, I), this is a convergent point. For other mixed outcomes, this

is a point at which λi moves towards zero in expectation for all i ∈ ΘS, and therefore,

some i ∈ I’s beliefs must eventually exit a neighborhood of λ∗I .

Belief Convergence. Finally, if there is at least one globally stable agreement or

maximally accessible disagreement outcome and no locally stable mixed outcomes, then

the likelihood ratio converges almost surely for all types. Given the modified definitions

of Λ(ω), ΛM(ω) and maximal accessibility, the statement of Lemma 7 is identical.

Lemma 7′ (Belief Convergence). Consider a generic misspecified model. Suppose Λ(ω)

contains an agreement outcome or maximally accessible disagreement outcome and ΛM(ω)

is empty. Then for any initial belief λ1 ∈ (0,∞)k, there exists a random variable λ∞

with supp(λ∞) = Λ(ω) such that λt → λ∞ almost surely.

E.2.1 Proofs of Lemmas 5′ to 7′.

Using the definition of accessible (Definition 8), the analogue of Lemma 9 for k > 2 is

as follows. We use this result in the proof of Lemma 5′.

Lemma 9′ (Accessible Disagreement). Disagreement outcome λ∗J = (0κ,∞k−κ) is ac-

cessible if there exists a sequence of stationary likelihood ratios λ∗1,λ
∗
2 . . .λ

∗
J , with λ∗1 ∈

{0k,∞k} and λ∗j adjacently accessible from λ∗j−1 for j = 2, ..., J .

Proof. The proof follows almost directly from Lemma 8. Each element of the sequence

λ∗j is adjacently accessible from the previous element of the sequence λ∗j−1. Starting with

λ∗J and any εJ > 0, there exists an εJ−1 > 0 and τJ <∞ such that if λt ∈ BεJ−1
(λ∗J−1),

then Pr(λt+τJ ∈ BεJ (λ∗J)) > 0. Iterating back to λ∗1, for any εJ > 0, there exists an

ε1 > 0 and τ2 < ∞ such that if λt ∈ Bε1(λ
∗
1), then Pr(λt+∑J

j=2 τj
∈ BεJ (λ∗J)) > 0.

54An alternative condition that involves bounding γi(λ, ω) across the belief space for i ∈ ΘS \ I can
also be used to rule out mixed learning.
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Consider agreement outcome λ∗1 ∈ {0k,∞k}. By Lemma 4, for any initial belief λ1 ∈
(0,∞)k and any ε1 > 0, there exists a finite sequence of τ1 actions and public signals

such that following this sequence, λτ1+1 ∈ Bε1(λ
∗
1). Therefore, from any initial beliefs,

Pr(λτ1+1 ∈ Bε1(λ
∗
1)) > 0. Therefore, for any εJ > 0 and initial beliefs λ1 ∈ (0,∞)k,

Pr(λτ ∈ BεJ (λ∗J)) > 0, where τ ≡
∑J

j=1 τj + 1. Since each τj <∞, τ <∞. �

Proof of Lemma 5′. Consider λ∗ = (0κ,∞k−κ). Suppose λ∗ ∈ Λ(ω) and λ∗ is maxi-

mally accessible. Consider the sequence of stationary likelihood ratios λ∗j = (0k−j+1,∞j−1)

for j = 1, . . . k − κ + 1, and suppose part (ii) of Definition 5′ holds. We first show that

this implies separability at zero (Definition 6) for each likelihood ratio in the sequence.

For each j = 1, . . . k − κ+ 1, define the submatrix

Aj ≡

log
ψ̂k−j+1(a1,σL|R,λ∗j )
ψ̂k−j+1(a1,σL|L,λ∗j )

log
ψ̂k−j+1(aM ,σR|R,λ∗j )
ψ̂k−j+1(aM ,σR|L,λ∗j )

log
ψ̂k−j(a1,σL|R,λ∗j )
ψ̂k−j(a1,σL|L,λ∗j )

log
ψ̂k−j(aM ,σR|R,λ∗j )
ψ̂k−j(aM ,σR|L,λ∗j )

 .

Since θk−j+1 � θk−j, this has a positive determinant. Therefore, there exists a c ∈ R2
+

that solves

Ajc =

(
1

0

)
.

By continuity, there exists a perturbation of c to c̃ ∈ R2
+ such that

Aj c̃ =

(
Gk−j+1

Gk−j

)
,

where Gk−j+1 > 0 and Gk−j < 0. Moreover, by maximal accessibility, for any j′ >

k − j + 1, (
log

ψ̂j′(aM , σR|R,λ∗j)
ψ̂j′(aM , σR|L,λ∗j)

, log
ψ̂j′(a1, σL|R,λ∗j)
ψ̂j′(a1, σL|L,λ∗j)

)
· c̃ > 0

and for any j′ < k − j,(
log

ψ̂j′(aM , σR|R,λ∗j)
ψ̂j′(aM , σR|L,λ∗j)

, log
ψ̂j′(a1, σL|R,λ∗j)
ψ̂j′(a1, σL|L,λ∗j)

)
· c̃ < 0.

Therefore, λ∗j is separable at zero, since we can set the elements of c to zero for the

remaining action and signal pairs in matrix (17). Therefore, by Lemma 8, λ∗j+1 is

adjacently accessible from λ∗j . Since this holds for each element of the sequence, starting

at λ∗1 = 0k and ending at λ∗J = λ∗, by Lemma 9′, λ∗ is accessible. Similar to the proof

of Lemma 9, we can choose ε < e−E, so that the likelihood ratio reaches the locally
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stable neighborhood of λ∗ with positive probability. From here, local stability implies

that P (λt → λ∗) > 0. The case where part (i) of Definition 5′ holds is analogous. �

We use the following result in the proof of Lemma 6′.

Lemma 14. Given mixed outcome (λ∗I , I), non-convergent types N ≡ ΘS \ I and graph

G(λ∗I , I), if (λN , N) is a terminal node, then (λ∗I ,λN) ∈ ∩i∈NΛi(ω).

Proof. Let (λN , N) be a terminal node in G(λ∗I , I). By definition of terminal node,

no nodes are strongly mixed accessible from (λN , N). If any node is mixed accessible

from (λN , N), then there exists an i ∈ N such that (λ∗I ,λN) 6∈ Λi(ω). Then the node

(λ′N , N) where λ′j = λj for all j 6= i is strongly mixed accessible, so (λN , N) is not a

terminal node. This is a contradiction. Therefore, if (λN , N) is a terminal node, then

no nodes (λ′N , N) are mixed accessible from (λN , N). Therefore, by definition of mixed

accessibility, (λ∗I ,λN) ∈ ∩i∈NΛi(ω). �

Proof of Lemma 6′. Consider a generic misspecified model and suppose mixed out-

come (λ∗I , I) is reducible, i.e. (λ∗I , I) 6∈ ΛM(ω). We will show that this implies that

(λ∗I , I) almost surely does not occur. Fix ε < e−E and suppose λI,1 ∈ Bε(λ
∗
I). We will

show that almost surely, either (i) there exists a time τ <∞ such that λI,τ 6∈ Bε(λ
∗
I) or

(ii) 〈λt〉 converges for all sociable types.

By reducibility, at every λN ∈ {0,∞}|N |, either (λ∗I ,λN) ∈ ∩i∈NΛi(ω) or there exists

a λ′N ∈ {0,∞}|N | such that (λ′N , N) is strongly mixed accessible from (λN , N) and

(λ∗I ,λ
′
N) ∈ ∩i∈NΛi(ω). First consider λN ∈ {0,∞}|N | such that (λ∗I ,λN) ∈ ∩i∈NΛi(ω).

By the construction in Lemma 3, if beliefs enter Bε((λ
∗
I ,λN)), then 〈λN,t〉 is bounded

above by a process that converges to λN with positive probability, and this probability

is uniformly bounded away from zero for any belief in Bε((λ
∗
I ,λN)). If (λ∗I ,λN) ∈

∩i∈IΛi(ω), then (λ∗I ,λN) is locally stable, so with positive probably, λt → (λ∗I ,λN).

Otherwise, if (λ∗I ,λN) 6∈ ∩i∈IΛi(ω), then for some i ∈ I, 〈λi,t〉 is bounded below by a

process that almost surely leaves Bε(λ
∗
I). Therefore, in the event that 〈λN,t〉 → λN ,

〈λI,t〉 almost surely leaves Bε(λ
∗
I).

Next consider λN ∈ {0,∞}|N | such that (λ∗I ,λN) 6∈ ∩i∈NΛi(ω). Fix 0 < ε′ < e−E.

We want to show that there exists a ε2 > 0 such that if initial belief λN,1 ∈ Bε2(λN),

then there exists a (λ′N , N) that is strongly mixed accessible from (λN , N) such that

with probability uniformly bounded away from zero in initial belief λN,1, beliefs enter

a neighborhood Bε′(λ
′
N). Given (λ∗I ,λN), let λi denote the component for type i ∈ N

and λ∗i denote the component for type i ∈ I. By the construction in Lemma 3, there

exists an i ∈ N such that 〈λi,t〉 is bounded below by a process that almost surely leaves

Bε(λi). Let NU be the set of types i ∈ N such that (λ∗I ,λN) 6∈ Λi(ω), with NU,0 the

set of i ∈ NU such that λi = 0 and NU,∞ the set of i ∈ NU such that λi = ∞. We
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now argue that starting from a neighborhood Bε2(λN) for i ∈ N and Bε(λ
∗
I) for i ∈ I,

with positive probability, either 〈λI,t〉 leaves Bε(λ
∗
I) or 〈λN,t〉 reaches Bε′(λ

′
N) for some

strongly mixed accessible point (λ′N , N). For i ∈ NU,0, let Ni be the minimum number

of (aM , σR) actions it takes for any λi,t ∈ [ε′, 1/ε′] to hit 1/ε′. Similarly, for i ∈ NU,∞, let

Ni be the minimum number of (a1, σL) actions it takes for any λi,t ∈ [ε′, 1/ε′] to hit ε′.

By the construction in Lemma 3, there exists an ε2 > 0 such that if λN,1 ∈ Bε2/2(λN),

with positive probability there exists a finite t such that λN\NU ,t ∈ Bε2(λN\NU ), and

λNU ,t 6∈ Bε′(λNU ).

Choose ε2 such that if λN\NU ,1 ∈ Bε2(λN\NU ), then after
∑

i∈NU,0 Ni action and

signal realizations (aM , σR), λi,t ∈ Bε′(λi) for all i ∈ N \ NU,0, and after
∑

i∈NU,∞ Ni

action and signal realizations (a1, σL), λi,t ∈ Bε′(λi) for all i ∈ N \ NU,∞. Therefore, if

λN,1 ∈ Bε2/2(λN) and λI,1 ∈ Bε(λ
∗
I), then with positive probability either (i) there exists

a t < ∞ such that λI,t 6∈ Bε(λ
∗
I), or (ii) there exists t < ∞ such that for some i ∈ NU ,

λi,t 6∈ Bε′(λi) and for all i ∈ N \NU , λi,t ∈ Bε2(λi). First consider case (ii) and suppose

that a type i ∈ NU,0 leaves. After Ni actions and signals (aM , σR), if λN,t ∈ Bε′(λ
′
N)

for some (λ′N , N) that is strongly mixed accessible from (λN , N), then stop. Otherwise,

there exists an i2 ∈ NU,0 such that λi2,t 6∈ Bε′(λi2). Repeat Ni2 realizations (aM , σR).

After these Ni1 + Ni2 realizations of (aM , σR), if λN,t ∈ Bε′(λ
′
N) for some (λ′N , N) that

is strongly mixed accessible from (λN , N), then stop. Otherwise, there is an i3 ∈ Nλ,0

such that λi3,t 6∈ Bε′(λi3). Repeat Ni3 realizations (aM , σR), and so on. Therefore, after

at most
∑

i∈NU,0 Ni realizations of (aM , σR), beliefs have entered the ε′ ball around some

other stationary point (λ∗I ,λ
′
N) such that (λ′N , N) is strongly mixed accessible from

(λN , N). Therefore, the probability of either 〈λN,t〉 reaching a neighborhood Bε′(λ
′
N)

of some (λ′N , N) that is strongly mixed accessible from (λN , N) or 〈λI,t〉 leaving the

neighborhood Bε(λ
∗
I) is bounded below by the probability of

∑
i∈NU,0 Ni realizations of

(aM , σR), which is strictly positive. The argument for a type i ∈ NU,∞ is analogous.

Consider the graph G(λ∗I , I). We will choose an ε(λN) to correspond to each node

(λN , N). At any terminal node (λN , N), define ε(λN) = ε. For any node (λ′N , N)

that only has edges going to terminal nodes, by the above construction, there exists

an ε(λ′N) such that if λN,t ∈ Bε(λ′N )(λ
′
N), then with positive probability, either 〈λN,t〉

reaches Bε(λN )(λN) for terminal node (λN , N) or 〈λI,t〉 exits Bε(λ
∗
I). Repeat this process

for each node in the graph.

Let τ1 = min{t|λI,t 6∈ Bε(λ
∗
I)}. Then almost surely, τ1 < ∞ or 〈λN,t〉 enters the

neighborhood of a node on the graph constructed above infinitely often,

Pr(τ1 <∞ or for some λN ∈ {0,∞}|N |, λN,t ∈ Bε(λN )(λN) i.o.).

If 〈λN,t〉 enters the neighborhood of a terminal node (λN , N) infinitely often, then λN ∈
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∩i∈NΛi(ω), so either λN,t → λN or 〈λI,t〉 leaves Bε(λ
∗
I). Otherwise. 〈λN,t〉 enters the

neighborhood of some (λ′N , N) that is strongly mixed accessible infinitely often. Since

any path of this form ends at a terminal node, this implies that almost surely, either

〈λN,t〉 converges or 〈λI,t〉 leaves Bε(λ
∗
I). Therefore, the mixed outcome (λ∗I , I) almost

surely does not arise. �

Proof of Lemma 7′. Suppose Λ(ω) contains an agreement vector or maximally ac-

cessible disagreement vector and ΛM(ω) is empty. Recall that B is the set of lo-

cally stable neighborhoods and BU is the set of locally unstable neighborhoods. Let

τ1 ≡ min{t|λt ∈ B} be the first time that the likelihood ratio enters the set of locally

stable neighborhoods. By Lemma 10, there exists a finite sequence of actions and sig-

nals such that starting from any initial belief λ1 ∈ (0,∞)k, 〈λt〉 enters B. This sequence

occurs with positive probability. Therefore, the probability of entering B in finite time

is bounded away from zero, Pr(τ1 <∞) > 0. If 〈λt〉 enters BU , then by Lemma 3, 〈λt〉
almost surely leaves BU . If 〈λt〉 enters the neighborhood of a mixed outcome λI , by

Lemma 6′, 〈λt〉 almost surely leaves this neighborhood or converges to a locally stable

point. By Lemma 2, 〈λt〉 does not converge to a non-stationary belief. Therefore, almost

surely, either 〈λt〉 does not converge for all types or 〈λt〉 converges to a learning outcome

in Λ(ω).

Suppose with positive probability 〈λt〉 exits and never re-enters the interior of the

belief space, [e−E, eE]k. Then either 〈λt〉 enters the neighborhood of each mixed outcome

where |I| = 1 infinitely often, in which case with probability one they visit a locally stable

set, or there exists some i such that λi is constant across all neighborhoods that 〈λt〉
enters. But then 〈λt〉 is in the neighborhood of the mixed outcome λi, and by Lemma 6′,

almost surely, 〈λt〉 must leave this neighborhood or converge to a locally stable point.

So almost surely, beliefs either return to [e−E, eE]k or converge to a locally stable point.

Let τ2 ≡ min{τ |λt ∈ B ∀t > τ} be the time at which 〈λt〉 enters B and never

leaves. From Lemma 3, Pr(λt → λ∞|τ2 <∞) = 1, where λ∞ is a random variable with

supp(λ∞) ⊂ Λ(ω). Suppose τ2 =∞. Then it must be that 〈λt〉 enters B infinitely often,

Pr(λt ∈ B i.o.) = 1. But if 〈λt〉 enters a neighborhood of a locally stable belief infinitely

often, then almost surely, 〈λt〉 converges. This is a contradiction, as we supposed τ2 =∞.

Therefore, Pr(τ2 < ∞) = 1. This implies Pr(λt → λ∞) = 1, where λ∞ is a random

variable with supp(λ∞) ⊂ Λ(ω). �

E.3 Sufficient Conditions for Mixed Learning

The intuition for when mixed learning outcomes arise is similar to that for convergent

learning outcomes. Consider the mixed learning outcome in which λ1 → 0. A sufficient

condition for the likelihood ratio of type θ1 to converge to zero, independently of λ2,
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is that the expected change in log λ1 is negative at zero for all possible beliefs of type

θ2, i.e. supλ2 γ1((0, λ2), ω) < 0. We also need to ensure that type θ2’s beliefs do not

converge. By definition of ΛM(ω), no limit beliefs with λ1 = 0 are locally stable for θ2,

i.e. (0, 0) 6∈ Λ2(ω) and (0,∞) 6∈ Λ2(ω). Therefore, θ2’s beliefs do not converge. The

following theorem states sufficient conditions for mixed learning to occur with positive

probability.

Theorem 4. Suppose there are two sociable types, Assumption 1, 2, 3 and 4 hold, and

the true and subjective private signal distributions have a finite number of discontinuities.

If mixed outcome (λi, θi) ∈ ΛM(ω) and (i) supλ−i γi((0, λ−i), ω) < 0 if λi = 0, or

(ii) infλ−i γi((∞, λ−i), ω) > 0 if λi = ∞, then the mixed outcome occurs with positive

probability. If (λi, θi) 6∈ ΛM(ω), then the mixed outcome almost surely does not occur.

Proof. Suppose ω = L and suppose the mixed outcome (λ2, θ2) ∈ ΛM(L). As in the proof

of Lemma 3, we can construct neighborhoods (0, e−E]2 and [eE,∞)× (0, e−E] such that

in each of these neighborhoods, there exists an i.i.d. process that bounds θ1’s updates

above as long as beliefs remain in the neighborhood and almost surely converges to zero,

and a process that bounds θ2’s updates below (above) in the neighborhood of 0 (∞) and

eventually leaves the neighborhood.

Consider the interior of the belief space, [e−E, eE]2. This space can be partitioned

into finitely many closed, convex sets D1, D2, . . . DN where γ2(·, L) is continuous on the

interior of these sets. Consider the set Dj and define the function γ̂Dj : Dj → R as

γ̂i,Dj(λ) ≡

γ2(λ, L) if λ ∈ interior of Dj

limx→λ γ2(x, L) otherwise.

This is a continuous function. So, for each (λ, 0) ∈ Dj, we can construct an open, convex

set B(λ, 0) such that if λt is in this set, then log λ2,t+1 − log λ2,t is bounded above by

gj(a, σ) ≡ sup
λ∈B(λ,0)

log
ψ̂2(a, σ|R,λ)

ψ̂2(a, σ|L,λ)
.

Let

ḡj ≡ max
(a,σ)∈A×Σ

gj(a, σ).

Define the process

ξDj ,t+1 = ξDj ,t + gj(a(θ̃t, s̃t, (λ, 0)), σ̃t),

when (θ̃t, s̃t) is such that a(θ̃t, s̃t,λ) = a(θ̃t, s̃t, (λ, 0)) for all beliefs λ ∈ Dj (note this
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includes all autarkic types) and

ξDj ,t+1 = ξDj ,t + ḡj

otherwise. When ω = L, let ψj(a, σ) be the probability of (a, σ) in the former event

and let ψ̄j be the probability of the latter event. By construction, log λ2,t+1 − log λ2,t <

ξDj ,t+1 − ξDj ,t if λt ∈ Dj. Moreover, choose Dj sufficiently small so that

ψ̄j ḡj +
∑

(a,σ)∈A×Σ

ψj(a, σ)gj(a, σ) < 0. (31)

As in Lemma 3, this sequence converges to −∞ almost surely. But now the process that

bounds the updates changes as the likelihood ratio moves across the state space even if

λ2 stays in a neighborhood of 0, so this is insufficient to conclude that λ2 converges.

By compactness, we can find a finite collection of open sets BDj ,1 . . . BDj ,n that

contain all (λ, 0) ∈ Dj. Since this procedure can be done for each Dj, there exists a

disjoint, finite collection of sets C = (Cj)
N
i=1 and an ε > 0 such that these sets contain each

point λ ∈ [e−E, eE]×[0, ε], each set is contained in exactly one BDj ,j for some i and j, and

each discontinuity point λ is contained in a subset of the Dj, where γ2(λ, L) = γ̂Dj(λ).

Within each set in this cover, log λ2,t − log λ2,1 is bounded above by an i.i.d. process

ξCj ,t − ξCj ,t−1, and with positive probability, supCj E(ξCj ,t − ξCj ,t−1) < 0. It remains

to show that with positive probability, λ2 remains below ε and converges. For each

Cj, there exists a sequence of actions and public signals such that ξCj → −∞ and

sup ξt < log ε/2N . Let Nj be the set of realizations of the process (ξCj ,t − ξCj ,t−1)∞t=1 for

set Cj. Let ΞT
j be the set of these sequences truncated after the first T terms.

Let τj,k be the kth time the λ process enters Cj, and let τj,0 = 0 and ξCj ,0 = 0. Let n

be the n that satisfies where τj,n ≤ t and τj,n+1 > t if it exists. Let At be the event that

for all Cj, the sequence NT
j = ((ξCj ,τj,k+1 − ξj,τj,k))nk=1 is in Ξ

τj,n
j for each j. Elements in

this sequence bound the change in the log-likelihood ratio above at each time τj,k when

the likelihood ratio is in set Cj. Finally let Pj,NT
j

be the probability that the process

realization of the process ξCj ,s s ≥ T satisfies (NT
j , (ξCj ,s+1− ξCj ,s)∞s=T )) ∈ Ξj, and let Pj

13



be the probability that (ξCj ,s+1− ξCj ,s)∞s=T ∈ Ξj. Let ct be the set C that λt is in. Then

Pr(A2|c1) = Pr(A1|c1)Pr(A2|A1, c1)

= Pr(A1|c1)E(Pr(A2|ξc1,1, A1, c1)|A1, c1)

= Pr(A1|c1)E[Pr(c1 6= c2|c1, A1, ξc1,1)Pr(A2|c1, A1, ξc1,1, c1 6= c2)

+ Pr(c1 = c2|c1, A1, ξ1)Pr(A2|c1, A1, ξc1,1, c1 = c2)|A1, c1]

≥ Pr(A1|c1)E[Pr(c1 6= c2|c1)∑
c 6=c1

Pr(c|c1, A1, ξc1 , c 6= c1)Pc + Pr(c1 = c2|c1, A1, ξc1)Pc1,N2
c
|A1, c1]

≥ Pr(A1|c1)E(Pc1,N2
c

∏
c6=c1

Pc,1|A1, c1) =
N∏
j=1

Pj > 0

where the first inequality follows from the fact that at time t, given the current neigh-

borhood beliefs are in c, the probability that the next realization is consistent with the

desired sequence is at least the probability that all subsequent realizations of ξ are in

that sequence. Now suppose we start at time t, and condition on the current set and

the past realizations of the sequences. Then

Pr(At+1|(N t
j )
n
j=1, ct) = Pr(At|(N t

j )
N
j=1, ct)Pr(At+1|At, (N t

j )
N
j=1, ct)

= Pr(At|N t
j )
n
j=1, ct)E[Pr(ct 6= ct+1|(N t+1

j )Nj=1, ct, At)

∗Pr(At+1|(N t+1
j )Nj=1, ct, At, ct 6= ct+1)

+ Pr(ct = ct+1|(N t+1
j )Nj=1, ct, At)

∗Pr(At+1|(N t+1
j )Nj=1, ct, At, ct = ct+1)|At, ct, (N t

j )
N
j=1]

≥ Pr(At|(Nc)
N
j=1, ct)E(Pct,Nt+1

ct

∏
j 6=ct

Pj,Nt
j
|At, ct, (N t

j )
N
j=1)

=
N∏
j=1

Pj,Nt
j
,

where the inequality follows from similar logic to the previous case. Conditional on

knowing the current set ct and the previous realizations of the sequence when λt was in

ct, the current realization being consistent does not depend on anything else. Moreover,

the current realization being consistent is bounded below by the probability that all

14



future realizations are consistent. Finally

Pr(At+1) = E(Pr(At+1|(N t
j )
N
j=1ct)) ≥ E(ΠN

j=1Pj,Nt
j
)

= E(E(ΠN
j=1Pj,Nt

j
|(N t−1

j )Nj=1, ct−1))

= E(Pj,Nt−1
j

) . . .
n∏
j=1

Pj > 0.

Therefore, limT→∞ P (AT ) > 0. By the dominated convergence theorem, limT→∞ Pr(AT ) =

Pr(A). Moreover, at any time T , if the event AT has occurred and λ2,1 < ε/2, the like-

lihood ratio updates are bounded above by

log λ2,T − log λ2,1 ≤
T−1∑
t=1

(ξct,t+1 − ξct,t) < Nε/2N = ε/2.

So λ2 never leaves the ε-ball.

Finally, since the mixed outcome (λ2, θ2) ∈ ΛM(ω), beliefs cannot converge to (0, 0)

or (∞, 0). Otherwise, beliefs would eventually enter either (0, e−E]2 or [eE,∞)× (0, e−E]

and never leave. But there exists a process that bounds type θ1’s belief updates below

and leaves the neighborhood almost surely, which is a contradiction. Therefore, the

mixed outcome occurs with positive probability. �

E.4 Belief-Dependent Signal Misspecification

Some updating rules are represented by a model of inference in which the subjective

signal and/or type distributions depend on an agent’s current belief. For example, one

of the parameterizations of over/underweighting in Section 5.1 and the confirmation

bias application in Section 5.2 both have subjective signal distributions that vary with

the current belief. In this section, we present the formal set-up of this extension. This

extension allows our framework to nest Rabin and Schrag (1999); Epstein et al. (2010).

Specifically, given likelihood ratio λ, an agent of type θi has subjective private signal

distribution F̂ ω
i (s;λ), subjective public signal distribution Ĝω

i (σ;λ), and subjective type

distribution π̂i(θ;λ) in state ω. An agent of type θi uses likelihood ratio λi,t to interpret

the realized action and public signal (ãt, σ̃t) at time t.

As in Section 2, we focus on settings in which sociable types believe that actions or

public signals are informative. When the model of inference depends on the current be-

lief, we need to modify Assumption 3 to ensure that the adequate information property

holds uniformly across all values of the likelihood ratio. We define a notion of uniform

informativeness to describe families of signal distributions that are bounded away from

uninformative across the belief space. This definition requires each possible signal re-
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alization to be either perceived as informative at all values of the likelihood ratio or

perceived as uninformative at all values of the likelihood ratio. Further, it requires at

least some signals to be informative.

Definition 14 (Uniformly Informative). The family of subjective private signal distri-

butions {F̂L
i (s;λ), F̂R

i (s;λ)}λ∈[0,∞) are uniformly informative if for all s ∈ S, either

F̂L
i (s;λ) = F̂R

i (s;λ) = 0 for all λ ∈ [0,∞), F̂L
i (s;λ) = F̂R

i (s;λ) = 1 for all λ ∈ [0,∞),

or infλ∈(0,∞) F̂
L
i (s;λ) − F̂R

i (s;λ) > 0, and similarly for the family of subjective public

signal distributions.

We use this definition to modify Assumption 3 in a way that ensures adequate informa-

tion at all values of the likelihood ratio. This rules out sequences of beliefs along which

either public signals or an autarkic type’s actions are perceived to become arbitrarily

uninformative.

Assumption 3′ (Uniform Adequate Information). Either (i) public signals are informa-

tive, dGR/dGL 6= 1, and each sociable type θi ∈ ΘS has uniformly informative subjective

public signal distributions, or (ii) there exists an autarkic type θj ∈ ΘA with π(θj) > 0

that plays actions a1 and aM with positive probability, and each sociable type θi ∈ ΘS

believes this autarkic type uniformly exists, infλ∈[0,∞) π̂i(θj;λ) > 0 and has uniformly

informative subjective private signal distributions.

For technical reasons, we also make the following continuity assumption about the sub-

jective distributions.

Assumption 5 (Continuity). For each θi ∈ Θ, the mapping λ 7→ (F̂L
i , F̂

R
i , Ĝ

L
i , Ĝ

R
i , π̂i)

is continuous under the total variation norm except at at most a finite number of interior

likelihood ratios λ ∈ (0,∞).

Substituting Assumption 3′ for Assumption 3 and adding Assumption 5, the proofs

of Lemmas 1 to 7 are unchanged, using the following modified version of (3) for the

probability of each action and public signal:

ψ̂i(a, σ|ω,λ) ≡ dĜω
i (σ;λi)

n∑
j=1

π̂i(θj;λi)(F̂
ω
i (s̄j,m(λj);λi)− F̂ ω

i (s̄j,m−1(λj);λi)).

The proofs of Lemmas 10 and 11 require minor modifications, but continue to hold.

Therefore, Theorems 1 and 2 and Corollaries 1 and 2 continue to hold as stated in

Section 4.2.
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F Additional Material from Example 2 and Section 5.5

F.1 Proof of Proposition 8 from Example 2

To simplify notation, define αν ≡ FL(.51/ν) as the probability that type θ2 chooses action

L in state L. Given this notation, type θ4 chooses action L in state L with probability

α1. As in Example 1, FR(.5) = 1 − FL(.5) = 1 − α1, αν is strictly increasing in ν and

α1 > 1/2.

We characterize how Λ(ω) depends on ν and q. To capture its explicit dependence

on these parameters, let γν,q1 (λ, ω) correspond to the function γ1(λ, ω) and Λν,q(ω) cor-

respond to the set Λ(ω) in the model with partisan bias level ν and share of nonpar-

tisan types q, with an analogous definition of γν,q3 (λ, ω). Since beliefs move in unison,

γν,q3 (λ, ω) = γν,q1 (λ, ω), and therefore, we can focus on characterizing γν,q1 (λ, ω) at the

two possible stationary limit beliefs, (0, 0) and (∞,∞).

To determine whether (∞,∞) ∈ Λν,q(L), we need to determine the sign of

γν,q1 ((∞,∞), L) = ψν,q(L|L, (∞,∞)) log
1− α1

α1

+ ψν,q(R|L, (∞,∞)) log
1− πA(1− α1)

1− πAα1

,

where

ψν,q(L|L, (∞,∞)) ≡ πA[(1− q)αν + qα1]

ψν,q(R|L, (∞,∞)) ≡ πA[(1− q)(1− αν) + q(1− α1)] + 1− πA.

Since α1 > 1/2, the update from an L action is negative, log 1−α1

α1
< 0 and the up-

date from an R action is positive, log 1−πA(1−α1)
1−πAα1

> 0. Note both terms are indepen-

dent of ν and q. Since αν is strictly increasing in ν, the probability of an L action,

ψν,q(L|L, (∞,∞)), is strictly increasing in ν and q, and the probability of an R ac-

tion, ψν,q(R|L, (∞,∞)), is strictly decreasing in ν and q. Therefore, γν,q1 ((∞,∞), L)

is strictly decreasing in ν and q. At ν = 1, both partisan and nonpartisan types are

identical, so ψ1,q(L|L, (∞,∞)) = πAα1 and ψ1,q(R|L, (∞,∞)) = πA(1 − α1) + 1 − πA.

Therefore, for any q ∈ [0, 1], γ1,q1 ((∞,∞), L) < 0 by the concavity of the log opera-

tor. Similarly, at q = 1, for any ν ∈ [0, 1], γν,11 ((∞,∞), L) < 0 by the concavity of

the log operator. At ν = 0, θ2 chooses action R for all signals, α0 = 0. Therefore, at

q = 0, ψ0,0(L|L, (∞,∞)) = 0 and γ0,01 ((∞,∞), L) = log 1−πA(1−α1)
1−πAα1

> 0. This estab-

lishes that there exists a cutoff q1 ∈ (0, 1) such that for q < q1, there exists a cutoff

ν1(q) ∈ (0, 1) such that for ν < ν1(q), γ
ν,q
1 ((∞,∞), L) > 0 and (∞,∞) ∈ Λν,q(L) and for

ν > ν1(q), γ
ν,q
1 ((∞,∞), L) < 0 and (∞,∞) 6∈ Λν,q(L). For q > q1, γ

ν,q
1 ((∞,∞), L) < 0

and (∞,∞) 6∈ Λν,q(L).
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To determine whether (0, 0) ∈ Λν,q(L), we need to determine the sign of

γν,q1 ((0, 0), L) = ψν,q(L|L, (0, 0)) log
1− πAα1

πAα1 + 1− πA
+ ψν,q(R|L, (0, 0)) log

α1

1− α1

,

where

ψν,q(L|L, (0, 0)) ≡ πA[(1− q)αν + qα1] + 1− πA
ψν,q(R|L, (0, 0)) ≡ πA[(1− q)(1− αν) + q(1− α1)].

As in the previous case, the update from an L action is negative and the probability of an

L action is strictly increasing in ν and q, while the update from anR action is positive and

the probability of an R action is strictly decreasing in ν and q. Therefore, γν,q1 ((0, 0), L)

is strictly decreasing in ν and q. By similar reasoning to the case of (∞,∞), at ν = 1,

γ1,q1 ((0, 0), L) < 0 for all q ∈ [0, 1] and at q = 1, γ1,q1 ((0, 0), L) < 0 for all ν ∈ [0, 1] by the

concavity of the log operator. At ν = 0 and q = 0, ψ0,0(L|L, (0, 0)) = 1−πA since α0 = 0.

As in Example 1, γ0,01 ((0, 0), L) > 0. This establishes that there exists a cutoff q2 ∈ (0, 1)

such that for q < q2, there exists a cutoff ν2(q) such that for ν < ν2(q), γ
ν,q
1 ((0, 0), L) > 0

and (0, 0) 6∈ Λν,q(L), and for ν > ν2(q), γ
ν,q
1 ((0, 0), L) < 0 and (0, 0) ∈ Λν,q(L). For

q > q2, γ
ν,q
1 ((0, 0), L) < 0 and (0, 0) ∈ Λν,q(L).

Finally we show that q1 < q2 and ν1(q) < ν2(q) for all q < q1. Note

γν,q1 ((∞,∞), L)− γ1,q1 ((∞,∞), L) = πA(1− q)(αν − α1)

(
log

1− πAα1

πAα1 + 1− πA
− log

α1

1− α1

)
and by the symmetry of the signal distributions, γν,q1 ((0, 0), L)−γ1,q1 ((0, 0), L) = γν,q1 ((∞,∞), L)−
γ1,q1 ((∞,∞), L). Moreover, γ1,q1 ((0, 0), L)− γ1,q1 ((∞,∞), L) is 0 at πA = 0, 0 at πA = 1,

and concave in πA.55 Therefore, (0, 0) 6∈ Λν,q(ω) before (∞,∞) ∈ Λν,q(ω). This

establishes the first part of the proposition.

Next consider ω = R. Then γ1,q((∞,∞), R) > 0 and γ1,q((0, 0), R) > 0 for all

q ∈ [0, 1], since only correct learning can occur at ν = 1. The only change in the above

expressions is that now the true probabilities of each action are taken with respect to

state R, rather than state L. Therefore, the comparative statics are similar to the

comparative statics in state L: γν,q1 ((0, 0), R) and γν,q1 ((∞,∞), R) are decreasing in ν

and q. Therefore, γν,q((0, 0), R) > 0 for all ν and q, which implies (0, 0) 6∈ Λν,q(R) for all

55The second derivative is

πA(1− 4q(1− q)) 2(1− α1)− 1

(πA(1− α1) + (1− πA))2(πAα1 + (1− πA))2
≤ 0.

18



ν and q. Similarly, γν,q1 ((∞,∞), R) > 0 for all ν and q, which implies (∞,∞) ∈ Λν,q(R)

for all ν and q. Therefore, Λν,q(R) = {(∞,∞)} for all ν and q and learning is almost

surely correct. �

F.2 Cognitive Hierarchy Parameterization.

In the cognitive hierarchy parameterization, level-3 places non-trivial probability on

level-1 types. We study how asymptotic learning varies with level-3’s belief about the

frequency of the level-2 type, denoted q ≡ π̂3(θ2). Aside from allowing any q ∈ [0, 1), we

maintain the set-up introduced in Section 5.5. As in Appendix C.5, let αL ≡ FL(1/2)

be the probability a level-1 type plays action L in state L and αR ≡ FR(1/2) be the

probability a level-1 type plays action L in state R. Note that αL ∈ (0, 1) and αR ∈ (0, 1),

since private signals are informative. To simplify exposition, assume that the types are

evenly distributed, π(θ1) = π(θ2) = π(θ3) = 1/3, and private signals are symmetrically

distributed across states, αL = 1− αR.

Similar to the level-k parameterization, we construct Λ(ω) for each q and show that

ΛM(ω) is empty. Lemma 12 holds for all q ∈ [0, 1), and therefore, both disagreement

outcomes are maximally accessible. Therefore, Λ(ω) fully characterizes the set of asymp-

totic learning outcomes. Proposition 9 establishes that there are four regions of learning,

featuring incorrect learning, correct learning and disagreement.

Proposition 9 (Cognitive Hierarchy). The likelihood ratio almost surely converges to a

limit random variable with support Λ(ω) 6= ∅. When ω = L, there exist unique cutoffs

0 < q1 < q2 < q3 < 1 such that:

1. If q < q1, then incorrect and correct learning occur with positive probability, Λ(L) =

{(0, 0), (∞,∞)}.

2. If q ∈ (q1, q2), then incorrect learning, correct learning and disagreement occur with

positive probability, Λ(L) = {(0, 0), (∞,∞), (0,∞)}.

3. If q ∈ (q2, q3), then correct learning and disagreement occur with positive probabil-

ity, Λ(L) = {(0, 0), (0,∞)}.

4. If q > q3, then disagreement occurs almost surely, Λ(L) = {(0,∞)}.

An analogous result holds for ω = R.

When q is low, level-3 types believe most agents are level-1 and they behave similarly

to level-2 types. Both types overreact to confirming actions and underreact to contrary

actions. Initial actions have an outsize effect on asymptotic beliefs, as the information

from these actions is amplified in every subsequent action. Therefore, whether initial
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Figure 6. Cognitive Hierarchy Learning Outcomes
(ω = L, FL(s) = 10

3 (s− 1
2s

2 − 3/5), FR(s) = 5
3 (s2 − .04))

actions are correct or incorrect will influence whether beliefs build momentum on the

correct or incorrect state, leading to either correct or incorrect learning. The models of

level-2 and level-3 types are very close, and asymptotic disagreement is not possible.

As q increases, level-2 and level-3 types interpret the action history in an increasingly

different way, and disagreement becomes possible. Further, as q increases, level-3 types

move closer to the level-k model in which they anti-imitate the more frequent action.

Even though level-2’s model does not change, the shift in level-3’s model leads to be-

havior that moves level-2’s model closer to the correctly specified model. Therefore,

disagreement takes a specific form: level-2 learns the correct state, while level-3 learns

the incorrect state. Once q is sufficiently large, this disagreement outcome becomes

the unique learning outcome, and level-3 almost surely learns the incorrect state, while

level-2 almost surely learns the correct state.

Fig. 6 plots the probability of each learning outcome, as a function of q. Increasing q

monotonically increases the probability that level-2 learns the correct state, as level-3’s

behavior mitigates level-2’s misspecification. However, increasing q has a non-monotonic

effect on the probability that level-3 learns the correct state. At first, raising q moves

level-3’s model closer to the true model, as it becomes aware of the level-2 type. This

increases the probability of complete learning. But above q = .55, increasing q moves

level-3’s model further from the true model, as it begins to overestimate the frequency

of the level-2 type. In this specification, q1 = .01, q2 = .55 and q3 = .76.

While this example focuses on a particular distribution of types, π = (0, 1/3, 1/3, 1/3),

a robustness result that is similar in spirit to Theorem 2 establishes that Proposition 9

holds for nearby type distributions.
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Proof of Proposition 9. Suppose ω = L. Consider the level-2 type. Since αL > 1/2,

γ2((0, 0), L) = −
(

1 + 2αL
3

)
log

(
αL

1− αL

)
< 0

γ2((∞, 0), L) =

(
1− 2αL

3

)
log

(
αL

1− αL

)
< 0

γ2((0,∞), L) =

(
1− 2αL

3

)
log

(
αL

1− αL

)
< 0

γ2((∞,∞), L) =

(
3− 2αL

3

)
log

(
αL

1− αL

)
> 0.

Therefore, Λ2(L) = {(0, 0), (0,∞), (∞,∞)}. Consider the level-3 type.

γ3((∞,∞), L) =
(αL

3

)
log

(
1− αL
αL

)
+

(
3− αL

3

)
log

(
q + (1− q)αL

q + (1− q)(1− αL)

)
γ3((0,∞), L) =

(
1 + αL

3

)
log

(
q + (1− q)(1− αL)

q + (1− q)αL

)
+

(
2− αL

3

)
log

(
αL

1− αL

)
γ3((0, 0), L) =

(
2 + αL

3

)
log

(
q + (1− q)(1− αL)

q + (1− q)αL

)
+

(
1− αL

3

)
log

(
αL

1− αL

)
.

If γ3((∞,∞), L) > 0, then (∞,∞) ∈ Λ(L). From these expressions, γ3((∞,∞), L) is

positive at q = 0, decreasing in q, and negative at q = 1. Therefore, there exists a q2

such that for q < q2, (∞,∞) ∈ Λ(L), and for q > q2, (∞,∞) /∈ Λ(L). If γ3((0,∞), L) >

0, then (0,∞) ∈ Λ(L) and if γ3((0, 0), L) < 0, then (0, 0) ∈ Λ(L). The expressions

γ3((0, 0), L) < γ3((0,∞), L) are both negative at q = 0, increasing in q, and positive at

q = 1. Therefore, there exists q1 < q3 such that (0, 0) ∈ Λ(L) for q < q3 and (0, 0) /∈ Λ(L)

for q > q3, while (0,∞) /∈ Λ(L) for q < q1 and (0,∞) ∈ Λ(L) for q > q1. This yields

the characterization of Λ(L) as a function of q.

It immediately follows from Theorem 1 that the agreement outcomes (0, 0) and

(∞,∞) are globally stable iff they are in Λ(L). By Lemma 12, both disagreement out-

comes are maximally accessible. Therefore, (0,∞) is globally stable iff (0,∞) ∈ Λ(L).

Finally we have to rule out mixed outcomes. In the region where both correct learning

and incorrect learning are locally stable (parts 1 and 2), it immediately follows that

ΛM(L) is empty and mixed outcomes almost surely do not arise. Given γ2((∞, 0), L) < 0

and

γ3((∞, 0), L) =

(
1 + αL

3

)
log

(
1− αL
αL

)
+

(
2− αL

3

)
log

(
q + (1− q)αL

q + (1− q)(1− αL)

)
< γ3((∞,∞), L) < 0,
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(∞, θ2) 6∈ ΛM(L). If disagreement and correct learning are locally stable (part 3), then

(∞, θ2) is the only candidate mixed outcome and therefore, ΛM(L) is empty. If only

disagreement is locally stable (part 4), we also have to rule out λ∗3 = 0. But since

(0, 0) 6∈ Λ(L), γ3((0, 0), L) > 0. Also, γ2((0, 0), L) < 0. Therefore, (0, θ3) 6∈ ΛM(L).

Therefore, ΛM(L) is empty for all q ∈ [0, 1).

Given this characterization, by Theorem 1, beliefs almost surely converge to a limit

random variable λ∞ with suppλ∞ = Λ(L). �
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