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Abstract: We explore interval forecast comparison when the nominal confidence level is
specified, but the quantiles on which intervals are based are not specified. It turns out that
the problem is difficult, and perhaps unsolvable. We first consider a situation where intervals
meet the Christoffersen conditions (in particular, where they are correctly calibrated), in
which case the common prescription, which we rationalize and explore, is to prefer the
interval of shortest length. We then allow for mis-calibrated intervals, in which case there
is a calibration-length tradeoff. We propose two natural conditions that interval forecast
loss functions should meet in such environments, and we show that a variety of popular
approaches to interval forecast comparison fail them. Our negative results strengthen the
case for abandoning interval forecasts in favor of density forecasts: Density forecasts not only
provide richer information, but also can be readily compared using known proper scoring
rules like the log predictive score, whereas interval forecasts cannot.
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1 Introduction

We consider the following situation: A researcher, R, is presented with two long sequences of

univariate interval forecasts and the corresponding realizations, where each interval forecast

has target (nominal) coverage (1− α)× 100 percent. By “long”, we mean that we need not

distinguish between consistent estimators and their probability limits, effectively working in

population. Knowing nothing else, R must decide which interval forecast he prefers; that

is, he must rank the two. Perhaps surprisingly, a full solution to this highly-practical and

simply-stated problem remains elusive. In this paper we address it.

We emphasize – and this is the source of difficulty – that R knows only that an interval’s

target coverage is (1−α), not the quantiles on which it is based. A target 90 percent interval,

for example, might be equal-tailed (target probability 5 percent in each tail), or it might not,

in which case there are uncountably infinitely many possibilities. R sees only the two sets

of intervals, each with known target coverage (1− α), but with each based on unknown and

potentially different quantiles.

Related foundational literature dates at least to Aitchison and Dunsmore (1968) and

includes Winkler (1972) and Casella et al. (1993). Additional literature includes, among

others, Granger et al. (1989) who note the tradeoff between an interval’s expected length

and its coverage, Giacomini and Komunjer (2005) who explore the relative assessment of

conditional quantile estimates, and Gneiting and Raftery (2007) who propose proper scoring

rules for interval predictions based on identical pairs of quantiles; see also Schervish (1996).

The comparison of interval forecasts is closely connected to the assessment of coverage

intervals for unknown parameters. Optimality results for frequentist confidence intervals

and Bayesian coverage intervals can be found in many statistics textbooks, e.g., Lehmann

(1986), Robert (1994), and Schervish (1996). An important difference between the theory

of interval estimation and the comparison of interval forecasts is that the former typically

restricts the comparison to interval estimates that satisfy a lower bound constraint on the

coverage probability. In our forecasting context, on the other hand, there is no compelling

reason to rule out forecasts that cover the actual observations with a frequency that is

(slightly) smaller than the nominal coverage probability, in particular in settings in which R

wants to make minimal assumptions about the data generating process (DGP). Thus, a key

issue is the trade-off between interval length and coverage.

We proceed as follows. In Section 2 we treat the case where both interval forecasts meet

the optimality conditions of Christoffersen (1998) (“the Christoffersen Conditions”, CC);

that is, when the 0-1 hit sequences associated with the interval forecast sequences are iid



Bernoulli with the correct hit probability. In that case the prescriptive optimum, which we

characterize and explore in detail, is to prefer the interval of shortest length. In Section 3 we

move to the richer case where one or both interval forecasts fail the CC due to mis-calibration.

We consider a natural pair of conditions that interval forecast loss functions should meet,

and we show that a variety of popular approaches to interval forecast comparison fail them.

We conclude in Section 4.

2 The Framework, a Prescriptive Approach, and the

Christoffersen Conditions (CC)

2.1 The Basic Framework

Consider a univariate time series {yt} and let yt+h|t be an h-step-ahead point forecast of

yt+h made at time t. The corresponding h-step-ahead forecast error is et+h|t = yt+h − yt+h|t.
Similarly, denote an h-step-ahead interval forecast (“prediction interval”) by dt+h|t(1−α) =

[dlt+h|t(1−α), dut+h|t(1−α)], where the “1−α” denotes target (1−α)×100 percent coverage,

0 ≤ α ≤ 1. Let |dt+h|t(1 − α)| be the length of the interval. The corresponding h-step “hit

sequence” is 1{yt+h ∈ dt+h|t}, where 1{·} is the indicator function. Finally, denote an h-step-

ahead density forecast by ft+h(y|Ωt), where Ωt is the information set on which the forecast

is based. The corresponding probability integral transform (PIT) is zt+h|t = Ft+h(yt+h|Ωt),

where Ft+h(·|Ωt) is the c.d.f. associated with the density ft+h(·|Ωt). We assume that the

researcher R is presented with two forecasts and wants to rank them.

Necessary conditions for forecast optimality with respect to an information set exist

and are widely-used for all of point, interval, and density forecasts. The basic idea is just

the well-known “orthogonality condition:” the relevant notion of “forecast error” should

be unforecastable using information available when the forecast was made. In the canonical

one-step-ahead case this is commonly assessed as: (a) point forecast errors et+1|t are indepen-

dently and identically distributed (iid) with mean 0; (b) interval forecast hits 1{yt+h ∈ dt+h|t}
are iid with mean 1− α as in Christoffersen (1998); and (c) density forecast PIT’s zt+1|t are

iid U(0, 1) as in Diebold et al. (1998).1

However, quite apart from “absolute evaluation,” that is, evaluation of whether a forecast

satisfies conditions necessary for efficiency with respect to an information set, there is also the

issue of “relative evaluation” (comparison) – simply quantifying a forecast’s performance and

1In the general h-step-ahead case we simply replace “iid” with “at most (h− 1)-dependent”.
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comparing it to that of competitors, regardless of whether any forecast under consideration

is “optimal” in any sense. Two forecasts, for example, may each be efficient (optimal),

but with respect to different information sets, or both may simply be inefficient. Relative

evaluation is typically done for point forecasts by invoking a loss function (e.g., quadratic loss)

and examining the corresponding realized average loss (e.g., mean-squared error (MSE)).

In precise parallel, for density forecasts one typically invokes a loss function, e.g., the log

predictive score (LPS)

LPS = log (ft+h(y|Ωt)) ,

which is the log of the predictive density evaluated at the corresponding realization, and

examines the corresponding realized average LPS, as in Amisano and Geweke (2017) and

many of the references therein. But it is much less clear what to do – and there is no

“typical” procedure – for interval forecasts, to which we now turn.

2.2 The Prescriptive Optimal Interval Forecast

We begin by providing a decision-theoretic framework to derive an optimal interval forecast.2

Denote an interval forecast by d = [dl, du], with length |d| = du − dl. That is, to reduce

notational clutter, we drop the “t + h|t” and “(1 − α)” notation, as meaning will be clear

from the context. Consider a game between a forecaster F and an adversary A, where F

chooses d and A chooses a scalar δ ∈ [−∞, 0]. Suppose that F’s loss function is

LF (y, d, δ;α) = |d|+ δ
(
1{y ∈ d} − (1− α)

)
. (1)

This just says that, other things the same, F prefers short intervals (small |d| promotes

small L) and intervals that contain the realization (y ∈ d implies that [1{y ∈ d}− (1−α)] is

positive, which promotes small L). Note that F’s loss function reflects a tradeoff: the wider

the interval, the more likely it is to contain the truth, which decreases loss as per the second

term in the loss function, but increases loss as per the first term in the loss function.

Suppose also that A’s loss function is

LA(y, d, δ;α) = −δ
(
1{y ∈ d} − (1− α)

)
. (2)

A’s loss function is very simple: he incurs negative loss (that is, positive utility) of δ(1− α)

when F “gets it wrong” (i.e., when the realization is outside the interval), and positive loss

2The subsequent exposition builds on Herbst and Schorfheide (2015).
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of −δα when F “gets it right” (the realization is inside the interval). Hence A simply wants

F to “get it wrong”, which makes explicit the sense in which A is an adversary.

Notice that d and δ appear in the loss functions of both F and A. But F chooses d

and treats δ as fixed (it is set externally by A), whereas A chooses δ and treats d as fixed

(it is set externally by F). Finally, assume that both players know both loss functions and

the associated strategic considerations, and that they use the same posterior to calculate

posterior expected loss (risk). The equilibrium of the game is easily obtained by considering

F’s three choices:

1. Choose a correctly-calibrated interval, i.e., an interval such that P(y ∈ d) = (1 − α),

where P denotes posterior probability. Risk to F associated with the second term of his

loss function then vanishes, regardless of the adversary’s action, so his risk is governed

entirely by posterior expected interval length.

2. Choose an interval such that P(y ∈ d) > (1 − α). That improves risk to F associated

with the second term of his loss function if δ < 0, so the adversary will choose δ = 0,

which F knows. Hence F has no incentive to choose, and will not choose, intervals with

P(y ∈ d) > (1− α).

3. Choose an interval such that P(y ∈ d) < (1 − α). That worsens risk to F associated

with the second term of his loss function if δ < 0, so the adversary will choose δ = −∞,

which F knows. Hence F has no incentive to choose, and will not choose, intervals with

P(y ∈ d) < (1− α).

Clearly, then, F always prefers the first option, a correctly-calibrated interval, in which case

his expected loss (risk) collapses to3

E
[
L∗F (y, d;α)

]
= E[|d|], (3)

so he prefers the interval with the shortest length. Hence the decision-theoretic prescription

optimizes the length-coverage tradeoff in a very special, lexicographic, way: restrict attention

to correctly-calibrated intervals, and then pick the shortest (on average).

2.3 Characterization of the “Shortest Well-Calibrated Interval”

It will prove useful to characterize the shortest well-calibrated interval with respect to the

predictive distribution of y. This interval minimizes the expected length subject to a coverage

3The ∗ superscript indicates that the loss is conditional on the best response of the adversary A.
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constraint:

min
dl,du

(du − dl) s.t. P(y ∈ d) = 1− α. (4)

Because we restrict our attention to connected intervals, the constraint can be written as

P(y < du)− P(y < dl) = 1− α. (5)

The optimal interval satisfies the condition

f(dlo(1− α)) = f(duo(1− α)), (6)

where f(·) is the predictive density and the subscript “o” denotes the optimal interval.4

That is, the optimal interval equalizes the heights of the predictive density f(y) at dlo and

duo . If the predictive density is unimodal, then the solution to the optimization problem

yields the highest-probability-density interval – meaning that it includes all values y such

that f(y) ≥ f(dlo(1 − α)) – which is prominently featured in Bayesian analysis; see, for

instance, the textbook of Robert (1994).

2.4 Interval Forecast Comparison Under the CC

Provided that two interval forecasts satisfy the CC either “exactly” with a hit probability

equal to 1−α or “weakly” with a hit probability that is no less than 1−α, the conventional

prescription is to rank the intervals based on their average length, preferring shorter to

longer, as intervals shorter in expectation presumably condition on more valuable information

sets. This prescription is a consequence of the decision-theoretic framework presented in

Section 2.2. We could simply replace the forecaster “F” by the researcher “R” to formally

justify this prescription.

Unfortunately, adopting the framework of Section 2.2 has some rather undesirable impli-

cations and does not solve the interval-forecast-comparison problem in a satisfactory manner.

First, forecasters receive no penalty for reporting a somewhat longer interval that exceeds

the nominal coverage probability. Second, and more importantly, the penalty for under-

coverage is unreasonably harsh. The risk score associated with an interval that does not

satisfy the coverage probability constraint is E
[
L∗R(y, d;α)

]
= −∞. Thus, any forecast that

does not achieve the nominal coverage should be disregarded and the approach produces no

useful ranking of two interval forecasts whose actual coverage probabilities fall short of the

4We obtain (6) from the first-order conditions of the constrained optimization problem.
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nominal coverage probability. In the remainder of this paper we therefore explore alternative

evaluation approaches.

3 Comparing Potentially Mis-Calibrated Interval

Forecasts

A major practical issue is what to do when we acknowledge that, in general, the CC fail.5

The “shortest well-calibrated interval” result provides a prescriptive recommendation for

constructing interval forecasts, not a descriptive recommendation for evaluating interval

forecasts, precisely because in general the CC fail (because one or both intervals may be

mis-calibrated), in which case there is a calibration-length tradeoff. In this section we study

aspects of that tradeoff.6

3.1 Loss-Function Desiderata

We consider loss functions of the form L(d, y;λ), where d = [dl, du], y is a realization of Y

with density function is f(y) and distribution function F (y), and λ is a finite-dimensional

parameter vector that includes α.7

There are two key desirable traits of such interval-forecast loss functions in our envi-

ronment, in which the researcher R knows nothing about the intervals apart from target

coverage.

D1. L should (a) reflect an inverse tradeoff between length and coverage; (b) avoid the

Casella paradox; and (c) have corresponding risk minimized by the shortest well-calibrated

interval.

D2. L should be evaluable with no knowledge of (a) the DGP, or (b) the specific quantiles

used by the forecasters to form the intervals.

Several explanatory remarks related to D1 and D2 are in order. First, as regards D1(a),

both short expected length and correct coverage are desirable. Hence a loss function’s

“indifference curves” between average length and (absolute) coverage distortion should be

5We assume the iid part of the CC throughout; hence when we speak of failure of the CC we mean
E[1{yt+h ∈ dt+h|t}] 6= 1− α.

6We assume throughout that all intervals are connected, and closely related, that the predictive distribu-
tion of y, f(y), has a single mode.

7Alternatively, we could of course cast the discussion in terms of predictive score functions. The score
function S(d, y;λ) is simply −L(d, y;λ).
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negatively sloped. One should be willing, for example, to accept an increase in expected

length in exchange for a “large enough” improvement in coverage.

Second, as regards D1(b), the Casella paradox refers to situations where the optimal

interval is dominated in expected loss by arbitrarily short mis-calibrated intervals. It emerges

when loss functions place “too much” weight on length as opposed to coverage. In particular,

loss functions that embed a linear length-coverage tradeoff typically fall victim to the Casella

paradox. We provide additional discussion in Appendix A.

Third, as regards D1(c), imagine that one of the forecasters is endowed with knowledge

of the DGP and hence the “true” conditional distribution, denoted by f0(yt+h|Ft). More-

over, suppose that this forecaster reports the shortest well-calibrated interval described in

Section 2.3. Then, given the nominal coverage probability 1 − α, and despite the length-

coverage trade-off encoded in the loss function, no other forecast should yield a lower risk.

Finally, as regards D2, at some level it is self-evident. Of course evaluation of L should

not require knowledge of the DGP (no one knows the DGP), and of course it should not

require knowledge of the specific left and right quantiles used (the forecasters are simply

asked to provide (1 − α)) % intervals). More formally, what we mean is that the loss

function parameter λ should not depend on the probability measure P associated with the

DGP, which is used to compute expected loss E[L(d, y;λ)].

In what follows we will restrict attention to prominent loss functions that satisfy D1(a)

and D1(b). However, we will show that in general it is difficult to reconcile D1(c) and D2.

3.2 Candidate Approaches

In view of D1 and D2, we now examine several interval-forecast evaluation approaches. We

begin with a modification of the framework in Section 2.2 and then proceed to alternative

loss/risk functions that have been proposed in the literature. A key problem for many of the

loss functions is the following. Had the forecasters known that they will be evaluated based

on such a loss function, they would not have reported the shortest 1 − α coverage interval

under their subjective beliefs about yt+h conditional on their Ωt information sets. That is,

those “scoring rules” are not “proper”.

3.2.1 The Two-Player Game Revisited

The decision-theoretic framework outlined in Section 2.2 evidently fails D1(a), because it

does not generate a (reasonable) trade-off between average length and coverage probability.
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However, a small modification of the setup can generate some improvements. Suppose we

restrict the choice set of the adversary A to δ ∈ [−δ, 0], and define λ = [δ, α]′, which does not

depend on the DGP and therefore satisfies D2. As earlier, the forecaster does not receive a

penalty for providing an interval with a coverage probability that exceeds 1−α, but there is

now a trade-off between length and coverage for intervals whose actual coverage is less than

nominal coverage:

E[L∗R(y, d;λ)] = E[|d|] +

{
0 if E[1{y ∈ d}] ≥ 1− α
δ
(
(1− α)− E[1{y ∈ d}]

)
otherwise.

(7)

As long as δ is not too small, the Casella paradox can be avoided. Moreover, sufficiently

large values of δ may not distort the forecasters’ incentive to truthfully reveal 1−α coverage

sets based on their predictive distributions. A practical difficulty is the choice of the parame-

ter δ. To facilitate this choice in an ex post evaluation, it may be convenient to replace |d| by

log |d| and focus on percentage differences between average interval lengths across forecasts.8

In this case, setting δ = 1 implies the following: compared to the shortest interval with

nominal coverage probability, an interval that has the same length and undercovers by one

percentage point receives the same penalty as an interval that attains the nominal coverage

probability but is one percent longer than the baseline interval.

A key question is whether one can choose δ sufficiently small to keep the tradeoff between

expected length and coverage probability interesting and simultaneously satisfy D1(c) and

D2. Knowledge about some features of the DGP is required to ensure that reducing the

length of the optimal 1 − α interval under the DGP does not lead to a reduction in the

expected loss.

Suppose, for example, that under the DGP the predictive distribution is N(µt+h|t, σ
2
t+h|t).

Then the log length of the predictive interval is |d| = ln 2σt+h|t + ln
(
Φ−1N (1 − α/2)

)
, where

Φ−1N (·) is the inverse cumulative density function of a standard normal random variable.

Suppose that α = 0.05. Increasing the critical value from 0.05 to 0.06 (by 1 percentage

point) reduces the log length of the interval by ln(1.8808/1.96) ≈ −0.04, meaning the length

shrinks by about 4%. This means that at α = 0.05 if we set δ ≥ 5, say, then intervals that

undercover yield a larger loss.

8Of course, from an ex ante perspective, this would create an incentive to report intervals that have length
zero.
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3.2.2 Winkler Loss and its Relatives

The most commonly-used interval-forecast loss function is due to Winkler (1972); see also

Schervish (1996):

Leq(y, d;λ) = |d|+ λl(d
l − y)1{y < dl}+ λu(y − du)1{y > du}, (8)

where λ = [λl, λu]
′ with λl > 0 and λu > 0. The first term penalizes the length of the interval,

and the second and third terms penalize misses from the left and right tails, respectively. If

the interval misses the realization from the left (y < dl), the second term (λl(d
l−y)) becomes

positive and the third term becomes zero. If the interval misses from the right (y > du), the

second term becomes zero and the third term (λu(y − du)) becomes positive.

It can be shown (Gneiting and Raftery, 2007) that the optimal interval forecast under

Winkler loss has left and right endpoints given by the 1/λl and 1− 1/λu quantiles, so that

for the evaluation of intervals with (1 − α) coverage, one should set 1/λl + 1/λu = α. A

popular choice for λl and λu in practice is λl = λu = 2/α, in which case the optimal interval

is equal-tailed (Gneiting and Raftery, 2007),

L(d, y;α) = |d|+ 2

α
inf
x∈d
|y − x|.

Notice, crucially, that good interval forecasting under Winkler loss amounts to good quantile

forecasting, for known, stated, quantiles.

Some other well-known loss functions are similar to Winkler’s. For example, Schlag and

van der Weele (2015) disucss Schmalensee (1976)’s loss function

LS(y, d, λl, λu) = |d|+ 2

α
(dl − y)1{y < dl}+

2

α
(y − du)1{y > du}+

2

α

∣∣∣∣y − du + dl

2

∣∣∣∣. (9)

The first three terms are the same as Winkler’s. The difference is an additional penalty for

the divergence between the realization and the midpoint of the interval. Nevertheless, good

interval forecasting under this loss function amounts to good quantile forecasting.

The key insight is that all Winkler-type loss functions are quantile-type loss functions –

they involve properties of estimates of known quantiles that define the left and right interval

endpoints; see also Gneiting (2011b). Quantile-type loss functions appear reasonable if one

knows (or is willing to assume) that the intervals to be compared are equal-tailed, or, more

generally, are based on known left and right quantiles. But that’s not our case – we are
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simply provided with two sequences of intervals, and we must decide which we prefer.

Only in very special cases can quantile-type loss functions resolve the tension between

D1(c) and D2. Consider the following example based on Winkler loss. In order to generate

a 1 − α interval forecast, it must be the case that 1/λl + 1/λu = α. Moreover, in order to

satisfy D2, the parameters λl and λu cannot depend on features of the DGP. If the DGP is

of the form yt+h|Ft ∼ N(µt+h|t, σ
2
t+h|t), then the optimal 1−α interval forecast in any period

corresponds to the α/2 and 1 − α/2 conditional quantiles, which also minimize expected

Winkler loss for λl = λu = 2/α. Thus, no further information about the DGP is required to

satisfy D1(c) and D2.

For asymmetric and time-varying distributions, however, it is generally not true that one

can find λ’s such that the optimal 1 − α interval forecast also minimizes Winkler loss. In

Appendix B we provide a specific example in which a quantile-type loss function prefers a

mis-calibrated interval of greater length to the shortest-length correctly calibrated interval,

thereby violating D1(c).

3.2.3 Length / Hit Loss

Loss functions that directly respect a length / hit tradeoff are of the form,

LG(d, y;λ) = M (|d|, 1{y ∈ d};λ) , (10)

where M(·, ·) is a potentially nonlinear function parametrized by λ ∈ Λ ⊆ Rn. The first

argument is the interval length and the second argument is the hit indicator.9 M(·, ·) is

increasing in length, and M(x, 1;λ) < M(x, 0;λ) for all x and λ ∈ Λ. Note that y enters

M only through the hit indicator. We assume that M ’s risk minimizer is unique, and that

M(·, 1;λ) and M(·, 0;λ) are smooth functions (twice differentiable).10

One prominent example proposed by Casella et al. (1993) is,

LCHR(d, y;λ) =
|d|
|d|+ λ

− 1{y ∈ d} for λ ∈ (0,∞), (11)

9The function LF (y, d, δ;α) in Section 2.2 is a function of the length and the hit indicator, but it also
depends on the decision δ of the adversary.

10Casella et al. (1993) provide a set of conditions for M that avoid Casella’s paradox.
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and another is the “most likely interval” loss of Schlag and van der Weele (2015),

LMLI(d, y;λ) = −
(

1− |d|
b− a

)λ
1{y ∈ d} for λ ∈ (0,∞), (12)

where the support of y is restricted to a bounded interval, [a, b].

The bounds of the risk-minimizing interval d∗ satisfy the following for any λ ∈ Λ:

f(dl∗(λ)) = f(du∗(λ)). (13)

To see this, write |d| = du − dl and note that the expected loss is

E[LG(d, y;λ)] = M(|d|, 1;λ)[F (du)− F (dl)] +M(|d|, 0;λ)[1− F (du) + F (dl)], (14)

so that the first order conditions with respect to dl and du are

∂dl : −M ′(|d|, 1;λ)[F (du)− F (dl)]−M(|d|, 1;λ)f(dl)

−M ′(|d|, 0;λ)[1− F (du) + F (dl)] + M(|d|, 0;λ)f(dl) = 0

∂du : M ′(|d|, 1;λ)[F (du)− F (dl)] +M(|d|, 1;λ)f(dl)

+M ′(|d|, 0;λ)[1− F (du) + F (dl)]−M(|d|, 0;λ)f(du) = 0.

(15)

After rearranging terms, we find that f(dl) = f(du). This implies that the optimal interval

prediction under loss function (10) satisfies one of the requirements for the shortest well-

calibrated interval, as stated in equation (6).

Unfortunately, however, the coverage rate of this interval depends on λ. That is, λ needs

to be set in a way that generates (1 − α) coverage, which requires knowledge of the true

predictive distribution (i.e., the DGP, which is specified as a conditional distribution). In

time-series settings, moreover, the shape of the predictive distribution can change over time,

which implies that the λ that induces (1−α) coverage can also vary over time. In any event,

it is clear that D1(c) and D2 cannot be satisfied simultaneously.

3.2.4 Direct Risk-Based Comparisons

In practice, researchers and practitioners often separately report and examine interval fore-

casts’ average length and empirical coverage, as in Granger et al. (1989). In this way, people
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can presumably rank interval forecasts according to their own preferences (i.e., relative im-

portance of length vs. calibration).

An interesting question is therefore whether there exists a loss function whose expected

loss (risk) (a) can be written as a function of expected length and coverage, and (b) is

minimized by the shortest well-calibrated interval. Requirement (a) allows us to compute

the expected loss easily by just replacing the expected length and coverage rate by their

sample counterparts.

This motivates the direct study of risk functions, where risk depends only on expected

length (L = E[|d|]) and the difference between the target coverage rate and the actual

coverage rate (C = (1− α)− E[1{y ∈ d}], the “coverage distortion”). The risk function (7)

that resulted from the two player game takes this particular form. More generally, consider

E[LG′(d, y;λ)] = M(L,C;λ), (16)

where the expectation is taken with respect to the true predictive distribution, the function

M is smooth (piecewise differentiable) for λ ∈ Λ ⊆ Rn, and

∂M(L,C;λ)

∂L
> 0 and

∂M(L,C;λ)

∂C
> 0, (17)

whenever the derivatives exist.11 An immediate example is the linear loss function,

E[LG′(d, y;λ)] = L+ λC, (18)

where λ ∈ (0,∞). Due to the linearity, this risk function corresponds to a loss function of

the form (10).

Direct measures (16) have some good properties. In particular, under our earlier assump-

tions on M(·, ·), for any given λ the risk minimizer satisfies:

f(dl∗(λ)) = f(du∗(λ)), (19)

11As discussed in Section 3.2.1, in principle we would also need to impose restrictions on M(·, ·) sufficient
to ensure avoidance of Casella’s paradox, but we do not pursue that here.
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which follows trivially from the first order conditions,

∂dl : − ∂M(L,C)

∂L
+
∂M(L,C)

∂C
f(dl) = 0

∂du :
∂M(L,C)

∂L
− ∂M(L,C)

∂C
f(du) = 0,

(20)

rearrangement of which yields f(dl) = f(du). This implies that the optimal interval pre-

diction under risk function (16) satisfies one of requirements for the shortest well-calibrated

interval (equation (6)).

Unfortunately, however, direct risk measures (16) also have the earlier-discussed bad

properties that plagued other approaches. In particular, the coverage rate of the optimal

predictive interval depends on λ. That is, for this risk functions of the form (16) to be proper

for the shortest connected interval with (1 − α) coverage, we need to select λ accordingly,

but λ depends on the DGP, which is unknown. Of course more can be said if the DGP is

known. For example consider again the linear loss function (16) with λ ∈ (0,∞), in which

case 1/λ = f(dl) = f(du). If f is a standard normal density, then λ = 1/f(qα/2) uniquely

produces the shortest connected interval with (1−α) coverage, where qα/2 is the α/2 quantile

of the standard normal distribution.

3.2.5 On Medians, Means, and Modes

Note that the use of equal-tailed interval forecasts naturally parallels the use of conditional-

median point forecasts. To see this, note that the equal-tailed interval with ε coverage

probability approaches the conditional median as ε→ 0. The associated absolute-error loss

function is well studied in the literature, which facilitates finding good scoring rules for

equal-tailed intervals.

As an aside we note that, interestingly, little attention has been given to interval forecasts

that parallel conditional-mean point forecasts. We are aware of just one paper, Rice et al.

(2008), which considers the loss function

L(d, y;λ) = λ
|d|
2

+

(
y − |du + dl|/2

)2
|d|/2

, (21)

which leads to the interval forecast
[
m± s/

√
λ
]
, where m and s are the mean and standard

deviation of the predictive distribution of y. The coverage rate is implicitly defined through

13



λ and the predictive distribution of y. As the coverage rate approaches zero, the interval

approaches the mean of the predictive distribution.12

Now, finally, consider finding good scoring rules for the shortest connected interval. Short-

est connected interval forecasts naturally parallel conditional-mode point forecasts, because

the shortest connected interval with ε coverage probability approaches the conditional mode

as ε→ 0.13 The associated 0-1 loss function, however, is mathematically more clumsy than

absolute-error loss, which impedes finding good scoring rules for shortest connected intervals.

Gneiting (2011a), for example, discusses a scoring rule for the mode, but he does not find a

scoring rule that selects the mode as the global optimum.

3.3 Additional Remarks

First, the overarching point is that, to use any of the leading loss or risk functions discussed

above for evaluating interval forecasts, in general one needs to know at least some features

of the DGP. This creates a tension between D1(c) and D2, which often can only be jointly

satisfied for a limited class of DGP’s.

Second, shortest connected intervals have drawbacks even beyond the difficulty of finding

proper scoring rules. One example: The shortest interval may not be invariant to nonlinear

transformations g(·); hence, for example if [a, b] is the shortest connected interval for y with

support y > 0, then [a2, b2] is not necessarily the shortest connected interval for y2. Another

example: If the predictive density is multi-modal, the shortest interval is not necessarily the

shortest connected interval; rather, it can be a union of disjoint intervals.

Third, various methods have been proposed to construct the shortest predictive interval

(the shortest connected interval for a class of unimodal distributions) based on paramet-

ric models (Hyndman, 1995, 1996), nonparametric models (Polonik and Yao, 2000), and

semi-parametric models (Wu, 2012). However, quantile-based predictive intervals remain

dominant, probably because proper scoring rules are readily available for quantile-based in-

tervals. There seems to be willingness to accept some extra length in exchange for availability

of a proper scoring rule.

Fourth, we note, however, that under some additional assumptions it may be possible

to infer the predictive distribution from the interval forecast, which would let us move from

interval forecast comparisons to the well-understood world of density forecast comparisons

12Note that setting the target coverage rate requires knowledge of the predictive distribution of y.
13Here we are implicitly assuming unimodality of the predictive distribution, as the shortest connected

interval is the high probability density region when the predictive interval is unimodal.

14



using well-known proper scoring rules. The conditions are of course strong, but perhaps

not absurdly strong. Suppose that each interval prediction is a shortest connected interval

(based on predictive distribution P̃ and density f̃ , which do not necessarily match the true

predictive distribution P and density f). Then the interval forecast d = [dl, du] contains the

following information: (1) P̃ (y ∈ d) = 1− α, and (2) f̃(dl) = f̃(du). If we knew P̃ , then the

log predictive score log P̃ (y) could serve as a proper scoring rule, but we know only d, not

P̃ . But if we know the true predictive distribution P then we can infer P̃ by solving

min
q

∫
P log

(
P

P̃

)
dµ (22)

s.t. P̃ (y ∈ d) = 1− α and f̃(dl) = f̃(du),

and then compute the log predictive score for the interval forecast by

LKL(y, d) = log P̃ (y; d). (23)

This scoring rule is proper, so long as the true predictive distribution is unimodal and we

consider a connected interval. To see this, suppose that a forecaster’s predictive distribution

is P̃ = P . Then the solution to the minimization problem is any ˆ̃P such that ˆ̃P = P almost

everywhere, which yields a value of 0 for the objective function (22). Achieving a value of 0

implies that the log predictive score is maximized with probability 1.14

Fifth, in general, making operational interval comparisons with desirable properties re-

quires (some) knowledge of the “true” predictive distribution, whereas it is in fact unknown.

But one could perhaps approximate it flexibly using, for example, ARMA conditional mean

dynamics and GARCH conditional variance dynamics, together with a nonparametrically-

specified conditional density. This approximation could then be used to calibrate the loss

and risk functions that are used to evaluate the interval forecasts.

4 Concluding Remarks

We have explored aspects of comparing two interval forecasts when the nominal confidence

level is specified, but the quantiles on which intervals are based are not specified. The

problem seems simple, and the lack of attention to it in the literature seems odd. It turns

14This scoring rule will generally not be strictly proper, however, in that many predictive distributions
can have the same shortest predictive interval as the true distribution and will thus achieve 0 loss.
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out that the problem is generally quite difficult, and perhaps unsolvable.

We first considered a situation where both intervals meet the Christoffersen conditions

(in particular, where both are correctly calibrated), in which case a common prescription is

to prefer the interval of shortest length, and we explored and rationalized that prescription.

We then allowed for mis-calibrated intervals, which cannot happen under the Christoffersen

conditions. We proposed two natural desiderata for interval forecast loss functions in that

case, and we showed that a variety of popular approaches fail to meet them.

A positive suggestion that springs from our negative results is that interval forecasts

might be beneficially abandoned, with focus instead placed on making and comparing com-

plete density forecasts. This has already been happening in recent decades, because density

forecasts are richer than interval forecasts in terms of the information conveyed, yet easily

computed by simulation in both frequentist and Bayesian frameworks. Our results come

from a different perspective yet add still more weight to the case for abandoning interval

forecasts in favor of density forecasts: density forecasts can be readily compared using known

proper scoring rules like the log predictive score, whereas interval forecasts cannot.

As for future research, it will be interesting to explore whether our results could be made

less negative if we were to make stronger assumptions on the underlying distributions. Of

course the answer is yes, which we have highlighted in various places, where we specialized

to situations like Gaussian DGP’s. But those are basically just one-off examples, and it

would be very interesting to attempt a more systematic characterization where the DGP is

(say) a mixture of normals, determining what can be said depending on the mixture weights,

number of components, etc.

It may also be interesting to explore whether our framework and results might extend

to sets of interval forecasts of different series, as opposed to sets of interval forecasts of

the same series, where the various series are potentially measured on different scales.15 In

calibration / length loss functions, for example, comparison of calibration is straightforward

as it is dimensionless (measured in percent), but comparison of length is more challenging,

as it is influenced by scale. Of course standardization may help, but the details remain to

be explored.

15Such issues have been considered in depth for point forecasts (e.g., Hyndman and Koehler (2006)) but
not interval forecasts.
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Appendices

A Casella’s Paradox

Let us illustrate the paradox by means of an example. Consider a loss function that trades

off length and calibration,

L(d, y;λ) = λ|d| − 1{y ∈ d},

where λ is a scale parameter chosen by a researcher R, and consider forecasting a Gaussian

y ∼ N(0, σ2). Suppose forecaster 1 issues a degenerate interval that is just the set d1 = {0},
while forecaster 2 issues the correct equal-tailed interval d2 = [−zα/2σ, zα/2σ], with zα/2

denoting the α critical value. Then the expected losses are

E[L(d1, y;λ)] = 0

E[L(d2, y;λ)] = 2λtασ − (1− α).

Hence, to avoid selecting the degenerate interval forecast d1, R must set λ <
1− α
2zα/2σ

.

That the parameter λ depends on the possibly unknown σ, and that for a fixed λ increas-

ing σ will inevitably yield selection of the degenerate interval instead of an increasingly wide

interval, is known as “Casella’s paradox”. The Casella et al. (1993) solution is to augment

the loss function with a size function S(·), so that

L
(
d, y;S(·)

)
= S(|d|)− 1{y ∈ d}.

It is simple to derive conditions on S(·) that rule out the selection of empty intervals over

those with correct coverage; however, parametric forms of S(·) that allow a researcher to

consistently describe a desired tradeoff between coverage and length remain elusive.

B An Example of Common Loss Functions Failing: Equal-

Tailed Intervals and Asymmetric Distributions

We provide an example in which a quantile-type loss function prefers a mis-calibrated interval

of greater length to the shortest-length correctly calibrated interval. Consider the Gneiting
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Figure 1: Motivating Example

The predictive density is beta with parameters a = 1, b = 10. Interval c = [c1, c2] is the equal-tailed interval with 75% coverage.
Interval d1 (red) is constructed as the shortest interval with 75% coverage. Interval d2 (blue) targets the equal-tailed interval,
but the lower endpoint is incorrectly shifted up by εL and the upper endpoint is shifted up by εU (εL = 0.010 and εU = 0.026).
Interval d2 will be chosen over d1 by the Gneiting-Raftery loss function despite being longer and having incorrect coverage.

and Raftery (2007) loss function,

L(d, y;α) = |d|+ 2

α
inf
x∈d
|y − x|.

Under this loss function, the optimal interval is equal tailed and given by the α/2 and 1−α/2
quantiles.

Suppose that data is generated from a Beta distribution with shape parameters a = 1,

b = 10. We will compare two intervals. The first interval, d1, is constructed as the shortest

interval with 75% coverage. The second interval, d2, is constructed by shifting the lower

and upper endpoints of the 75% equal-tailed interval to the right by some ε1 and ε2 6= ε1,

respectively. The density of the beta distribution and the end points for the two intervals

are displayed in Figure 1. Lengths and coverage probabilities are given by:

d1 : |d1| = .13, P(y ∈ d1) = .75 = 1− α

d2 : |d2| = .19, P(y ∈ d2) = .70 6= 1− α.

Let pB(y) denote the pdf of a Beta distribution. The expected Gneiting-Raftery loss for

interval d1 can be calculated as follows:

E[L(d1, y;α)] = |d1|+
2

α

∫ 1

d1,U

(y − d1,U)pB(y)dy ≈ 0.29.
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A similar calculation can be used to determine E[L(d2, y α)]:

E[L(d2, y;α)] = |d2|+
2

α

∫ d2,L

0

(d2,L − y)pB(y)dy +
2

α

∫ 1

d2,U

(y − d2,U)pB(y)dy ≈ 0.26.

Hence in this example

E[L(d2, y;α)] < E[L(d1, y;α)].

That is, under the Gneiting-Raftery loss the longer interval d2, with coverage probability less

than 1 − α, is preferred to the shorter interval with the desired coverage probability. The

crux of the issue is that the forecasters and the researcher R do not have the same target. In

using this loss function, R is effectively stating that he prefers intervals closer to the given

quantiles over intervals with correct coverage that are far from these quantiles. Forecaster

who place priority only on length and coverage will be routinely discarded, despite doing

their best for their given objective.
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