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Overabundant Information and Learning Traps∗

Annie Liang† Xiaosheng Mu‡

March 27, 2018

Abstract

We develop a model of learning from overabundant information: Agents

have access to many sources of information, where observation of all sources

is not necessary in order to learn the payoff-relevant unknown. Short-lived

agents sequentially choose to acquire a signal realization from the best source

for them. All signal realizations are public. Our main results characterize two

starkly different possible long-run outcomes, and the conditions under which

each obtains: (1) efficient information aggregation, where signal acquisitions

eventually achieve the highest possible speed of learning; (2) “learning traps,”

where the community gets stuck using an suboptimal set of sources and learns

inefficiently slowly. A simple property of the correlation structure separates

these two possibilities. In both regimes, we characterize which sources are

observed in the long run and how often.

1 Introduction

Most informational environments are environments of informational overabundance:

there are more sources of information than any individual can attend to. A key deci-

sion that individuals must make in such settings is which sources to observe. These

informational choices can have significant consequences: when agents choose informa-

tion at different times, the informational choices of earlier agents impose externalities

∗We thank Vasilis Syrgkanis for insightful comments in early conversations about this project. We

are also grateful to Aislinn Bohren, Ben Golub, Carlos Segura, and Yuichi Yamamoto for suggestions

that improved the paper.
†University of Pennsylvania
‡Harvard University
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on those of later agents. We demonstrate the possibility for a small number of early

inefficient choices to propagate across time, and characterize the exact conditions on

the available informational sources under which this can happen.

To fix ideas, consider a development economist working on the question of how

access to microfinance affects poverty reduction. To contribute towards our under-

standing of these questions, the development economist may run a randomized control

trial in which microcredit is provided to selected individuals. The key constraint is

that the development economist cannot choose to run this experiment in an ideal,

“representative,” sample of the global population, but must choose a single setting:

a village in the suburbs of Bangalore, for example. Experiments conducted in any

individual location provide an inevitably biased estimate of the effect of microcre-

dit on poverty, although the exact extent or direction of this bias may be unknown.

Moreover, the outcomes of experiments conducted in different locations are related by

a potentially complex pattern of correlations: two different villages in the suburbs of

Bangalore may yield close estimates, whereas the same experiment in Morocco may

yield a rather different outcome.

From the perspective of society, there is an optimal allocation of experiments

across locations, but the incentives provided for any single development economist

can be in conflict with this goal. In particular, each development economist may

care only about the marginal contribution of her experiment towards understanding

(for example, if this is the relevant criterion for publication). The question of in-

terest is how the choices of these short-lived decision-makers influence the choices of

subsequent decision-makers, and the speed at which the community learns.

We study these questions within a sequential learning model. There is an unknown

payoff-relevant state ω (the true impact of microcredit on poverty) and additionally

K−1 possible biases or confounding terms, labeled b1, . . . , bK−1. Information sources

(locations where RCTs can be implemented) are modeled as different linear combina-

tions of these K unknowns, plus an independent Gaussian error. For example, it may

be that microcredit is a relatively more effective policy tool in India (relative to other

countries), and there may additionally be regional variation across India regarding

suitability of this intervention. Thus, running a RCT in a particular Indian village

results in an estimate that is affected by a country-specific and also a region-specific

bias. We will say that there are “overabundant” sources of information if experiments

need not be conducted at every possible location in order to recover ω.

Agents (development economists), indexed by t ∈ N, sequentially choose locations
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at which to conduct their experiment. Each RCT generates a public independent

realization of the corresponding (biased) signal of ω. The feature that information is

public contrasts with the classic sequential learning model (Banerjee, 1992; Bikhchan-

dani, Hirshleifer and Welch, 1992; Smith and Sorenson, 2000). Public information

permits us to focus on the externalities created by choices of kind of information, as

opposed to the more frequently studied frictions that emerge from problems of infer-

ence. We assume that each agent takes an action based on all information acquired

up to (and including) himself in order to maximize a private objective that depends

only on ω. As we will discuss, the specific choice of payoff function is not important:

the information choice that maximizes payoffs for each agent will be the one that

maximizes that period’s reduction of (society’s) uncertainty about ω.

We show that there are two (exhaustive) possible long-run outcomes:

• Efficient information aggregation: when sources are related in a particular way

(that we characterize), the pattern of experimentation eventually mimics the

“best” sampling pattern across locations. In this case, development economists

eventually conduct RCTs only at the set of locations which jointly maximize

the speed of society’s learning about ω.

• Learning traps: otherwise, depending on the common prior, there is a set of pos-

sible long-run observation sets (that we characterize), including ones in which

agents become “trapped” conducting RCTs at a set of locations which do reveal

ω, but do so inefficiently slowly.

Our main contribution is to demonstrate that which of these outcomes obtains

depends on a simple property of the correlation structure across sources.

Formally, we refer to any set of informational sources that reveal ω as a spanning

set, and say that a spanning set is minimal if no proper subset of its sources reveals

ω. Whether the long-run outcome is efficient aggregation or a learning trap depends

critically on whether there exists a minimal spanning set that is of lower-dimension

than the state space. The key intuition refers back to an observation used in Sethi and

Yildiz (2016); recall that an agent who observes a biased source learns both about the

payoff-relevant state and also about the source’s own bias. In our setting, where biases

are correlated across sources, there is a further spillover effect: learning from a biased

source helps agents to understand the biases of all sources that are correlated with it.

Suppose now that agents repeatedly observe RCT outcomes at a set of K locations

that collectively reveal all K − 1 unknown biases in addition to the state ω (say that
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these sources have “full rank”). Then, every time an agent conducts a new RCT at

one of these locations, he improves society’s understanding about how to interpret

RCT estimates not only at these locations, but also at all other locations. It can be

shown that eventually agents come to evaluate locations by an objective asymptotic

criterion that is prior-independent. We thus present the following positive result:

if every minimal spanning set has full rank, then long-run acquisitions are optimal,

independently of the prior belief.

In contrast, if it is possible to learn ω by conducting RCTs at fewer than K

locations, then inefficient long-run learning may obtain. Intuitively, RCTs at k < K

locations provide bounded positive spillovers for sources outside of the set. This is

because agents can at most learn k− 1 unknown biases from these sources, while the

other sources may depend on the remaining K − k biases. Thus, the community’s

understanding of locations where experiments have not yet been conducted need not

improve. Formally, we show that for every minimal spanning set that is “best” in its

subspace, there is an open set of priors given which this set of locations is exclusively

observed in the long run. The implied inefficiency—measured as the ratio of the

optimal speed of learning and the achieved speed of learning—can be an arbitrarily

large constant.

Our work combines ideas from two literatures. First, recent work (Sethi and Yildiz,

2016; Che and Mierendorff, 2017; Fudenberg, Strack and Strzalecki, 2017; Liang,

Mu and Syrgkanis, 2017; Mayskaya, 2017; Sethi and Yildiz, 2017) studies choice of

information from a finite set of information sources. We build specifically upon Liang,

Mu and Syrgkanis (2017), which introduced the framework we describe in Section 3

under a restriction that the number of sources and states are the same (thus ruling out

the possibility of informational overabundance, which is the focus here). Our work

also builds on Sethi and Yildiz (2016, 2017), which study long-run acquisitions from

a large number of Gaussian sources. Our model differs from this related work in a

few key ways: First, Sethi and Yildiz (2016, 2017) consider stochastic error variances,

so that the “best” sources vary from period to period, while we fix noise variances, so

that there is (generically) a unique “best” asymptotic set. Second, Sethi and Yildiz

(2016, 2017) focus on correlation structures that fall under our Theorem 2, for which

long-run acquisitions do not necessarily achieve efficient learning, while we explore

also those correlation structures that lead to optimal learning. Thus, the welfare

comparisons that we make here are particular to our framework.

Finally, our model relates to the social learning and herding literatures (Banerjee,
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1992; Bikhchandani, Hirshleifer and Welch, 1992), which consider information aggre-

gation by short-lived agents who sequentially acquire information. At a high level,

the externality identified in our paper is related to the classic externality from this

literature: in both settings, the precision of public information can grow inefficiently

slowly because of endogenous information acquisitions driven by past choices. But in

the present paper, all signal realizations are publicly and perfectly observed, which

turns off the inference problem essential to the existence of cascades in standard herd-

ing models. Our focus is on a new mechanism, in which externalities arise through

choice of kind of information; as we will discuss, this externality has a rather different

nature structure from those studied previously.

Finally, recent papers introducing costly information acquisition to the sequential

learning model include Burguet and Vives (2000), Ali (2017), and Mueller-Frank and

Pai (2016). Relative to this work, our paper considers choice from a fixed set of

information sources (with a capacity constraint), in contrast to choice from a flexible

set of information sources (with a cost on precision).

2 Example

Development economists sequentially run RCTs to uncover an unknown parameter

ω ∈ R; for example, the impact of microcredit on poverty. Each RCT yields a noisy

estimate of ω that is biased by the specific social and market environment in which it

are conducted. The nature of these biases is correlated across different environments,

and in particular, studies that are conducted in similar environments are biased in

similar ways.

At each period t = 1, 2, . . . , an economist chooses to run a RCT at the location

that will reduce (societal) uncertainty about ω as much as possible in that period.

The results of all experiments are public. The question of interest is whether long-

run acquisitions will efficiently aggregate information about ω, and whether RCTs will

eventually be conducted at the “best” set of sites. Below we contrast two patterns of

correlations across potential RCT sites.

Setting 1: RCTs can be conducted in Morocco or India, and there is additionally

heterogeneity over how urban the location is. Write bMorocco for a Morocco-specific

bias, bIndia for an India-specific bias, and bUrban for an urban bias. Additionally,

suppose that there is heterogeneity in how precise the estimates are across sites. The
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following is an example set of sources with these biases:

X1 = ω + bIndia + bUrban + ε1

X2 = 2ω + bIndia + 2bUrban + ε2

X3 = ω + bIndia + ε3

X4 = 2ω + bMorocco + bUrban + ε4

X5 = 5ω + bMorocco + 2bUrban + ε5

X6 = 3ω + bMorocco + ε6

where error terms are i.i.d standard normals.1

Given this correlation structure, application of our subsequent Theorem 1 yields

that the community’s speed of learning is maximized if agents eventually sample only

from the sites in Morocco (corresponding to observation of {X4, X5, X6}). But there

is a set of priors given which agents exclusively run RCTs in India in the long run (this

follows from our subsequent Theorem 2). Intuitively, observations of X1, X2, and X3

provide information not only about the parameter of interest ω, but also about the

India-specific bias bIndia. Thus, each RCT that is conducted in India helps future

economists to de-bias subsequent RCTs in India. This can create a self-reinforcing

sequence of choices, where observations of X1, X2, and X3 increase the value of future

observations of these sources relative to the sources X4, X5, and X6.

In contrast, consider the following setting:

Setting 2: There is heterogeneity across sites along the following dimensions:

whether lending is restricted to women, whether the location is urban, and the inten-

sity to which lending is targeting towards entrepreneurs. Write bWomenOnly, bEntrepeneurs,

and bUrban for these biases. As before, there is additionally heterogeneity in the pre-

cision of estimates across sites. The following is an example set of sources with these

1Note that larger coefficients on ω correspond to more precise estimates.
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biases:
X1 = ω + bWomenOnly + 2bEntrepeneurs + bUrban + ε1

X2 = 2ω + bWomenOnly + bUrban + ε2

X3 = ω + bEntrepeneurs + ε3

X4 = 2ω + bWomenOnly + bEntrepeneurs + bUrban + ε4

X5 = 5ω + bEntrepeneurs + bUrban + ε5

X6 = 3ω + bWomenOnly + 3bEntrepeneurs + ε6

where error terms are i.i.d standard normals.

Again applying our subsequent Theorem 1, the community’s speed of learning is

maximized if agents eventually sample only from sites X1, X2, X5, and X6. In contrast

to the above setting, however, economists will necessarily eventually conduct studies

only in the best subset of sites, and their information acquisitions will approximate the

optimal sampling over these sites. This conclusion holds irrespective of the common

prior.

What differentiates these two informational environments? The framework that

we present in the next section includes these two correlation structures above as

special cases, and our subsequent analysis demonstrates that a simple property of the

correlations (across sources) separates the two settings.

3 Framework

3.1 Model

There is a persistent unknown payoff-relevant state ω, and additionally there are

K − 1 persistent unknown biases b1, . . . , bK−1.2 Throughout, it will be convenient to

write θ = (ω, b1, . . . , bK−1)′ for the K-dimensional vector of unknowns.3 Assume that

θ follows a multivariate normal distribution N (µ0, V 0), where the prior covariance

matrix V 0 has full rank.4 Agents have access to N different sources of information,

2We refer to the biases also as “states”, but we will say that ω is the only “payoff-relevant state”

among the K states.
3All vectors in this paper are column vectors.
4This assumption rules out linear dependence across the state and biases. If there is linear

dependence, we may work with a smaller set of state and biases without changing the model.
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and observation of source i corresponds to an independent realization of the signal

X t
i = 〈ci, θ〉+ εti, εti ∼ N (0, 1).

where each ci = (ci1, . . . , ciK)′ is a constant vector, and the noise terms εti are inde-

pendent from each other and over time. Our assumption that noise terms have unit

variance is without loss since the coefficients ci are unrestricted. We let C denote the

N ×K matrix whose i-th row is c′i.

A countably infinite number of agents, indexed by t ∈ N, move sequentially. Each

agent t acquires an independent realization of one of the N signals, and then chooses

an action a ∈ A to maximize an individual objective ut(a, ω). He bases his action on

the realization of his own signal acquisition, as well as the history of signal acquisitions

and realizations thus far. (Thus, all signal realizations are public.)

Payoff functions may differ across agents, but we assume that the decision prob-

lems are non-trivial in the following way.

Assumption 1 (Payoff Sensitivity to Mean). For every t, any variance σ2 > 0

and any action a∗ ∈ A, there exists a positive measure of µ1 for which a∗ does not

maximize E[ut(a, ω) | ω ∼ N (µ1, σ
2)].

In words, holding the belief variance fixed, the expected value of ω affects the optimal

action to take. A sufficient condition for Assumption 1 is that for every agent t and

every action a∗, there exists some other action â such that ut(â, ω) > ut(a
∗, ω) as

ω → +∞ or as ω → −∞. That is, we require that the two limiting states ω → +∞
and ω → −∞ yield different optimal actions. This is true for all natural applications.

We now introduce some terminology to describe possible information environ-

ments. Let [N ] = {1, . . . , N} index the set of signals. We will call a set of signals

S ⊂ [N ] a spanning set if the vectors {ci : i ∈ S} span the coordinate vector

e1 = (1, 0, . . . , 0)′, so that it is possible to learn ω by exclusively observing signals

from S. If S is spanning, and no proper subset of S is spanning, then we will refer

to S as a minimal spanning set.

Throughout this paper, we assume that the complete set of signals [N ] is spanning,

so that ω can be recovered by observing all signals infinitely often.5 This assumption

5Our results do extend to situations where ω is not identified from the N available signals. To

see this, first note that we can always take a linear transformation and work with the following

equivalent model: the state vector θ̃ is K-dimensional standard Gaussian, each signal Xi is c̃i
′θ̃+ εi

and the payoff-relevant parameter is u′θ̃ for some fixed vector u. Let V be the subspace of RK
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nests two interesting cases. Say that the informational environment has exactly suf-

ficient information if [N ] is minimally spanning. Then, it is possible to recover ω by

observing each informational source infinitely often, but not by observing any proper

subset of sources.

Our main setting of interest, which we refer to as informational overabundance,

obtains when [N ] is spanning but not minimally spanning. Then, there are multiple

different sets of signals which allow for recovery of ω, and a key point of our analysis is

to compare the set of sources that “should” be observed in the long run and the set of

sources that is in fact observed in the long run. Except for trivial cases, informational

overabundance corresponds to N > K (more signals than states).6

3.2 Interpretation

As mentioned in the introduction, the framework can be used to describe the fol-

lowing setting: development economists sequentially choose settings under which to

run RCTs, each of which provides a biased estimate of a parameter of interest (e.g.

the effect of microcredit on poverty). Crucially, biases may be flexibly correlated

across these choices, and may reflect a composition of many different kinds of bi-

ases. For example, the RCT estimates may be biased by the country in which the

RCT is conducted, the size of the lending group, as well as various restrictions on

lending. Economists choose settings to maximize a personal and myopic objective:

for example, they may desire for their experiment to reduce (societal) uncertainty

about the unknown parameter as much as possible, and thus choose the location that

allows for the greatest immediate reduction in posterior variance about the unknown

parameter. We will subsequently describe our main results relative to this primary

interpretation.

spanned by c̃1, . . . , c̃N . Then consider the projection of u onto V : u = v + w with v ∈ V and w

orthogonal to V . This enables us to write u′θ̃ = v′θ̃+w′θ̃. By assumption, the random variable w′θ̃

is independent from any random variable c′θ̃ with c ∈ V (because they have zero covariance). Thus

the uncertainty about w′θ̃ is not reduced upon any signal observation. Consequently the agents only

seek to learn about v′θ̃, returning to the case where the payoff-relevant parameter is identified.
6It is possible for ω to be “overidentified” from a set of N ≤ K signals, e.g. X1 = ω + ε1,

X2 = ω + b1 + b2 + ε2, and X3 = b1 + b2 + ε3. In this case, the set {X1, X2, X3} is spanning, but

not minimally spanning since both of its subsets {X1} and {X2, X3} are also spanning. Although

N = K = 3 in this example, it is equivalent to a model in which there is a single bias b̃1 = b1 + b2,

and the three signals are rewritten X1 = ω + ε1, X2 = ω + b̃1 + ε2 and X3 = b̃1 + ε3. Then, we do

have N > K in this alternative model.
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The basic framework applies also, however, to a variety of other settings. We

briefly describe a few below.

Biased media sources and experts. A related interpretation takes each information

source to be a media outlet or an expert, where biases are correlated across outlets,

and potentially multi-dimensional. For example, a newspaper may simultaneously

want to bias its reporting towards its liberal readership, its conservative donors, the

values of its editorial board, and also in a way that increases sales. Different weights

on these objectives across media sources will result in different (but correlated) slants

on the same issue.

Culture: Interpret each source as feedback from an individual or a social group,

where accurate information processing requires an understanding of the individual’s

(or group’s) cultural context. For example, a computer scientist presenting for the

first time at an economics seminar may not know how to interpret aggressive ques-

tions from the audience, which could indicate skepticism, or simply a high level of

interest and a more aggressive cultural norm. The first interaction with a given social

group thus yields noisy feedback, but repeated interactions allow one to develop a

better understanding for that source. The biases in our framework can be interpreted

as a reduced form model for “communication noise” that reduces with repeated ob-

servation.

Attribute sampling: Suppose that a consumer good is described by K attributes

θ̃1, . . . , θ̃K , and its unknown quality ω =
∑K

k=1 αkθ̃k is a linear combination of its

qualities along each of these dimensions. For example, consumers want to learn about

the quality of a new laptop, where quality is a linear combination of a large number of

attributes, including ease of use, battery life, and screen resolution. Agents can learn

about each of these attributes through different kinds of inspections, which provide

noisy information about different linear combination of attributes. This model can

be rewritten in our framework above, where the state vector is (ω, b1, . . . , bK−1) and

each “bias” term bi = θ̃i for 1 ≤ i ≤ K − 1.

4 Preliminaries

Each agent t faces a history ht−1 ∈ ([N ]× R)t−1 = H t−1 consisting of all past signal

choices and realized signal values. A strategy for agent t is a measurable map from all

(t− 1)-length histories to signals—that is, S : H t−1 → [N ], where S(ht−1) represents
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the signal choice in period t following history ht−1.7

Each agent t’s marginal belief about ω (updated to his own signal acquisition and

all information revealed by past agents) is Gaussian, so we can write ω ∼ N (µt1, V
t

11)

for this belief. His maximum expected payoff is

max
a∈A

E[ut(a, ω) | ω ∼ N (µt1, V
t

11)] (1)

Each agent t chooses the signal that maximizes (1). Observe further that since be-

liefs are Gaussian, the agent’s posterior variance V11 about ω following qi observations

of each signal i can be written as a deterministic function V11 = f(q1, . . . , qN). In par-

ticular, the posterior variance does not depend on signal realizations; see Appendix

B for the complete (closed-form) expression.

We use the following lemma, which says that the signal choice that achieves the

greatest reduction in posterior variance also maximizes expected payoffs:

Lemma 1 (Liang, Mu and Syrgkanis (2017)). The optimal signal acquisition for

every agent, at every history, is the signal that minimizes current posterior variance

about ω.

Using this lemma, we can track society’s acquisitions in the following way. Write

m(t) = (m1(t), . . . ,mN(t)) for the division over signals at time t, where mi(t) is the

number of times that signal i has been observed up to and including time t. Then,

m(t) evolves deterministically according to the following rule: m(0) is the zero vector,

and for each t ≥ 0,

mi(t+ 1) =

{
mi(t) + 1 if f(mi(t) + 1,m−i(t)) ≤ f(mj(t) + 1,m−j(t)) ∀j.
mi(t) otherwise.

That is, in each period t the division vector increases by 1 in exactly one coordi-

nate, corresponding to the signal that allows for the greatest immediate reduction in

posterior variance.8

We are primarily interested in the long-run signal acquisitions: which sources are

observed in the long run, and how often? Below, we characterize the asymptotic

frequency limt→∞mi(t)/t with which source i is observed, and discuss the asymptotic

observation set, meaning the signals that are observed with positive frequency in the

long-run. Our subsequent results in Section 6 show that these limits are well-defined.

7Since information is public, agents do not need to additionally condition on past actions.
8We allow ties to be broken arbitrarily, so there may be multiple paths m(t).
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We will also be interested in how these long-run signal acquisitions compare to

“optimal” acquisitions that a social planner might impose. Below, we begin by charac-

terizing an optimal benchmark, corresponding to the choices that permit the greatest

amount of information revelation (Section 5) and then turn to the community’s long

run acquisitions.

5 Benchmark: Social Planner

Throughout we evaluate society’s acquisitions relative to an “optimal” benchmark,

which we define as the limit of a sequence of solutions to finite horizon problems.

Consider a social planner who takes an action a ∈ ASP on behalf of the society at

some large period t, with payoff function uSPt (a, ω).

The social planner’s payoffs are maximized if the history of t signal acquisitions

are allocated across signals in the following way (see Lemma 3 in Liang, Mu and

Syrgkanis (2017)):

n(t) ∈ argmin
(q1,...,qK):qi∈Z+,

∑
i qi=t

f(q1, . . . , qK).

That is, any allocation of the t observations that minimizes posterior variance about

ω will maximize the social planner’s payoffs.9 Generically, there is a unique optimal

division vector n(t) for every t.10

We can interpret each n(t) as the optimal social benchmark for the finite horizon

problem with final period t. The limiting frequencies limt→∞ n(t)/t are well-defined

under a subsequent condition, and we refer to these as the optimal long-run fre-

quencies. If agents repeatedly choose signals according to these limiting frequencies,

then the empirical distribution over signals at any large t will be arbitrarily close to

n(t)/t. Since payoffs are continuous in signal frequencies, this stationary rule also

approximates aggregate payoffs under a δ-discounting criterion when t is sufficiently

large.11

9In more detail, suppose the planner can dictate signal choices to maximize the expected payoff

after t periods. Then she should use any strategy that observes each signal i exactly ni(t) times. In

particular, there exists an optimal strategy that does not condition on signal realizations.
10Throughout the paper, “generic” means with probability 1 for signal coefficients cij randomly

drawn from a full support distribution on RNK .
11We conjecture that the limiting frequencies n(t)/t also “maximize” the δ-discounted objective

when agents share the same utility function. Formally, for any fixed δ, let S denote a strategy that
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Below, we break up the characterization of limt→∞ n(t)/t into two cases: in Section

5.1 we discuss settings with exactly sufficient information, where all sources must

be observed infinitely often to recover ω. In Section 5.2 we consider informational

overabundance, where asymptotic learning can occur from a strict subset of sources.

5.1 Exactly Sufficient Information

Settings of exactly sufficient information, in which all signals must be observed in

order to recover ω, have fewer signals than states (N ≤ K).12 Moreover, in such

settings, it is possible to decompose the first coordinate vector as a (unique) linear

combination of all of the available signals: e1 =
∑N

i=1 βi · ci, where the coefficients βi

are nonzero real numbers.

Assume for now that N = K. Then each βi admits the simple form βi =

|[C−1]1i|.13 In our prior work, we showed that the optimal frequency with which

each signal i is observed asymptotically is proportional to its coefficient βi:

Proposition 1 (Liang, Mu and Syrgkanis (2017)). Suppose N = K and there is

exactly sufficient information. Then for every signal i, the optimal count satisfies

ni(t) =
|βi|∑N
j=1|βj|

· t+O(1). (2)

Throughout, O(1) represents an error term that remains bounded as t→∞.

The above result extends to environments with strictly fewer signals than states

(N < K), under the assumption of exactly sufficient information. This follows from

the observation that any environment with N < K can be transformed into an equiv-

alent environment with N = K. For example, suppose the available signals are

X1 = ω+ b1 + b2 and X2 = ω− b1− b2, so that the number of states (K = 3) exceeds

maximizes
∑∞
t=1 δ

t ·u(at, ω). Further let dδ(t) be the vector of signal counts at time t, under strategy

S. Then we conjecture that for all δ close to 1, limt→∞ dδ(t)/t = limt→∞ n(t)/t.
12It is a simple fact in linear algebra that whenever the K-dimensional vector e1 is spanned by

vectors c1, . . . , cN , it must be spanned by some K of these vectors.
13These coefficients can be interpreted in the following way: Suppose that a single realization

of each signal Xi is observed. The random vector describing these realizations can be written

Y = Cθ + ε, where ε is the K × 1 vector of error terms. Given a realization Y , the best linear

unbiased estimate for the payoff-relevant state ω is then ω̂ =
[
C−1Y

]
11
. If we perturb the vector Y

by η in coordinate i, the estimate for ω changes (in magnitude) by βi · η = |[C−1]1i| · η. Thus, the

larger βi is, the more the estimate ω̂ responds to changes in the realization of signal Xi. Informally,

the larger βi is, the “more important” signal Xi is in determining the estimate of ω.

13



the number of signals (N = 2). We can define a new state b̃1 = b1 + b2 and rewrite

X1 = ω + b̃1 and X2 = ω − b̃1. In this equivalent model, the number of states and

signals are the same (N = K = 2).

This transformation applies in general: we can always choose N states (including

ω), each a linear combination of the originalK states, and re-define the original signals

to be linear combinations of the new states. The transformed model is equivalent to

the original problem, but it satisfies the conditions of Proposition 1. Thus, dropping

the requirement that N = K, we obtain the following corollary:

Corollary 1. Suppose there is exactly sufficient information. Then each ni(t) =
|βi|∑N
j=1|βj |

· t+O(1), for 1 ≤ i ≤ N .

Thus, a sampling procedure in which each signal i is chosen with probability

|βi|/
∑N

j=1|βj| each period will eventually approximate n(t). The subsequent corollary

describes the speed of learning along the sequence n(t).

Corollary 2. The minimum posterior variance after t observations satisfies the fol-

lowing approximation:

f(n(t)) = min∑N
i=1 qi=t

f(q1, . . . , qN) ∼

(
N∑
i=1

|βi|

)2

/t.

where the notation “F (t) ∼ G(t)” means limt→∞
F (t)
G(t)

= 1.

Thus, eventually agents approximate a posterior variance of
(∑N

i=1|βi|
)2

/t.

A key property of the result above is that every signal is viewed with positive

frequency in the long run. This is natural when all signals must be observed in order

to recover ω. But when there is informational overabundance, a question emerges

regarding how many and which signals will be observed asymptotically.

5.2 Informational Overabundance

Suppose now that the number of signals exceeds the number of states (N > K). In in-

formationally overabundant environments, ω can be learned by exclusively observing

signals from any of several distinct spanning sets. In principle, speed of learning can

be further improved by combining observations from multiple spanning sets. We put

this aside for the moment, and consider first the simpler question of which minimal

spanning set maximizes speed of learning.
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Observe that if we restrict to any minimal spanning set (effectively, throwing out

the remaining signals), then we return to a setting of exactly sufficient information.

Let us generalize the previous analysis in the following way: for each minimal spanning

set S, define βSi to be the coefficients satisfying

e1 =
∑
i∈S

βSi · ci.

By Corollary 1, optimal signal acquisitions from any minimal spanning set S yields

a posterior variance of approximately
(∑

i∈S |βSi |
)2
/t at all large times t. Notice that

posterior variance is strictly increasing in

φ(S) =
∑
i∈S

|βSi |,

as it can be rewritten as (φ(S))2/t. Throughout, we work with the simpler statistic

φ(S). The smaller φ(S) is, the faster the community learns.14

We maintain throughout the following assumption on the coefficient matrix C:

Assumption 2 (Unique Minimizer). φ(S) has a unique minimizer S∗ among minimal

spanning sets S ⊂ [N ].

This assumption says that there is a unique minimal spanning set that maximizes

speed of learning. It fails in examples such as the following:

Example 1. The signals are X1 = ω+ ε1 and X2 = ω+ ε2. Clearly these signals are

duplicates of one another, and learning occurs equally fast from either of the minimal

spanning sets {X1} or {X2}.

Example 2. The signals are X1 = ω + b1 + ε1, X2 = b1 + ε2, X3 = ω + b2 + ε3,

and X4 = b2 + ε4. In this environment, learning occurs equally fast from either of the

minimal spanning sets {X1, X2} and {X3, X4}.
14We can extend this definition to arbitrary set of signals A ⊂ [N ] (not necessarily minimally-

spanning) as follows. For any set that contains a minimal spanning set, define

φ(A) = min
S⊂A

φ(S),

where the minimum is taken over all minimal spanning sets S contained in A. If such S does not

exist (i.e., A is not itself spanning), we let φ(A) = ∞. In particular, φ([N ]) = minS⊂[N ] φ(S)

represents the minimum asymptotic standard deviation achieved by observing only those signals in

some minimal spanning set.
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These examples are special, and Assumption 2 holds when we are permitted ar-

bitrarily small perturbations of the environments above.15

From here on, we work under this assumption, so that there is a “best” minimal

spanning set S∗. Define the frequency vector λ∗ ∈ ∆N−1 by

λ∗i =


|βS∗i |∑

j∈S∗ |βS
∗

j |
∀ i ∈ S∗

0 ∀ i /∈ S∗
(3)

Then, λ∗ is the optimal sampling rule when we restrict long run observations to sample

exclusively from a single minimal spanning set. Our first theorem, now stated, says

that λ∗ remains optimal even when we do not impose any restrictions on the sampling

procedure; that is, so long as C satisfies Unique Minimizer, then the best long run

strategy is to restrict to the best minimal spanning set, and to sample from that set

as in the previous section.

Theorem 1. Suppose that the coefficient matrix C satisfies Unique Minimizer, with

S∗ uniquely minimizing φ(S). Let λ∗ be given by (3). Then ni(t) ∼ λ∗i · t for each

signal i.16

The conclusion can be loosely interpreted as stating that λ∗ is the “most efficient

linear representation” of the payoff-relevant state in terms of the signal coefficients.17

The necessity of Assumption 2 for Theorem 1 is seen from the previous Example 1

and Example 2, which did not satisfy Unique Minimizer. In Example 1, all divisions

across signals are (trivially) equally optimal. We show in Appendix A that it is

possible for infinite observations of more than K signals to be strictly optimal, using

the environment given in Example 2.

Finally, we point out the following comparative static.

Corollary 3. Suppose that the coefficient matrix C satisfies Unique Minimizer. Write

each signal as Xi = α〈ci, θ〉 + εi , so that the precision of signal Xi is increasing in

α. Then, either λ∗i = 0 or λ∗i is locally decreasing in α.

15Assumption 2 is generically satisfied.
16We conjecture that the stronger conclusion ni(t) = λ∗i · t+O(1) also holds. In Remark 2 in the

appendix, we prove this conjecture assuming |S∗| = K.
17Specifically, consider the following constrained minimization problem: min

∑N
i=1|βi| subject to∑N

i=1 βi · ci = e1. It can be shown by linear programming that the minimum is attained exactly

when βi = β∗i —that is, when focusing on a single minimal spanning set.
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That is, if signal i is viewed with positive frequency in the long run, then its asymp-

totic frequency is (locally) decreasing in its precision. This implies loosely that a

signal is most frequently viewed when it is least informative subject to being in the

most informative set.

6 Main Results

We move on now to our main analysis: characterization of long-run acquisitions, and

when these converge to the optimal acquisitions discussed above. In general, we may

expect a difference between the best one-shot allocation of t acquisitions, and the

set of t acquisitions that are chosen by sequential decision-makers. We show that

whether society’s acquisitions m(t) eventually approximate the optimal acquisitions

n(t) depends critically on how many signals are required to identify ω.

We present below two versions of our main results. In Section 6.1, we restrict to

a special class of environments, where the main results are simpler to state and the

main intuition (for the general setting) is clearer to see. We then turn to the general

setting in Section 6.2.

6.1 Special Class of Environments

Throughout this section, we impose the following assumption:

Assumption 3 (Strong Linear Independence). N ≥ K, and every K ×K submatrix

of C is of full rank.

Strong Linear Independence holds generically, but rules out environments such as

the following:

Example 3. Suppose that the available signals are X1 = ω + b1 + ε1, X2 = b1 + ε2,

X3 = ω+ b2 + ε3, X4 = b2 + ε4, X5 = ω+ b3 + ε5, and X6 = b3 + ε6. Then K = 4 and

the signals X1, X2, X3, X4 are not linearly independent.

The example below shows that sequential information acquisition need not lead to

the optimal sampling procedure; in particular, agents can become “stuck” observing

signals from a sub-optimal spanning set.
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Example 4. There are three signals

X1 = ω/2 + ε1

X2 = ω + b1 + ε2

X3 = ω − b1 + ε3

Note that φ({X1}) = 2 > 1 = φ({X2, X3}), so the latter two signals maximize speed

of learning.

However, consider a prior belief such that ω and b1 are independent, the variance

about ω is 1, and the variance about b1 exceeds 3. Prior to any observations, the

precision of the first signal ω
2

+ b1 (interpreted as a noisy observation of ω) is 1
4
,

whereas the latter two signals ω + b1 + ε2 and ω − b1 + ε3 each has lower precision.18

Thus the best choice in the first period is to observe X1. Since this observation does

not affect the variance of b1, the same argument shows that every agent observes

signal 1.

The result below (stated as a corollary, since it will follow from Theorem 2 in the

subsequent section) generalizes this example to show that different priors can lead to

different absorbing sets.

Corollary 4. Suppose Strong Linear Independence is satisfied. For any minimal-

spanning set that contains fewer than K signals, there exists an open set of prior

beliefs under which agents exclusively observe signals from this set.

We note that the implied inefficiency, measured as the ratio of the optimal speed

of learning and the achieved speed of learning, can be an arbitrarily large constant.

Specifically, for any positive number L, there exists an environment in which

φ(S)/φ(S∗) > L

where S is the asymptotic observation set and S∗ is the optimal asymptotic obser-

vation set. This can be shown by direct construction: modify the example above so

that

X1 = ω/2 + ε1

X2 = αω + b1 + ε2

X3 = αω − b1 + ε3

18The signal X1 = ω/2 + ε1 is equivalent to the signal ω + 2ε1, which has distribution N (ω, 4).

Each of ω + b1 + ε2 and ω + b2 + ε2 has greater variance conditional on ω.
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with α > L
2
. We note that the set of “inefficient” priors (which result in sub-optimal

learning) does decrease in size as the level of inefficiency increases.19

Converse to the above result, our next result shows that if there is no minimal

spanning set consisting of fewer than K signals, then starting from any prior, infor-

mation acquisition eventually concentrates on the best set of signals.

Corollary 5. Suppose Strong Linear Independence and Unique Minimizer are satis-

fied. Then, if every minimal spanning set has size K, starting from any prior belief,

it holds that mi(t) ∼ λ∗i · t,∀i.

One may argue that generically (for randomly drawn coefficient vectors), every

minimal spanning set is of size K. However, this notion of genericity ignores the fact

that in many economic situations, information sources are not determined by a ran-

dom process. Indeed, if we expect that sources are endogenous to design or strategic

motivations, then important informational environments may be “non-generic.” For

example, the existence of any source that directly reveals ω (that is, X = αω + ε) is

non-generic in the probabilistic sense, but plausible in practice. Sets of signals that

partition into different groups are also economically interesting but non-generic.20

Our earlier Corollary 5 shows that inefficiency is a likely outcome in these cases.

The intuition for the above results, and in particular the role of “small” minimal

spanning sets, is as follows. If a minimal spanning set consists of K signals, then

it must also have “full rank”. As agents accumulate observations from any minimal

spanning set, they learn not only about ω but also about all of the biases. The

aggregated information in the community must then eventually swamp the prior, so

that the asymptotic evaluation of the value of different signals at large periods t is

prior-independent. In fact, this asymptotic evaluation returns the optimal divisions

in Section 5.

The argument above is no longer valid when there is a smaller set of signals

that is minimally spanning. Intuitively, observation of k < K sources can be self-

reinforcing, since at most k unknown states are revealed from these sources. Thus,

19As α increases, the prior variance about b1 has to be sufficiently large in order for the first agent

to choose X1.
20We point out that the set of coefficient matrices that satisfy Unique Minimizer is “generic”

in the following stronger sense: fixing the directions of coefficient vectors (as in Corollary 3), and

suppose that the precisions are drawn at random, then different minimal spanning sets correspond

to different speed of learning. In contrast, whether every minimal spanning set has size K is a

condition on the directions themselves, so this stronger notion of genericity does not apply.
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any uncertainty in the prior about the other K−k states can persist, despite infinitely

many observations of the k signals. If the remaining sources depend on these K = k

“poorly understood” states, then agents can become locked in observing the original

k sources.

Returning to our previous example of sequential choice of locations for RCTs,

application of the results above yields two possible long run outcomes (depending on

the pattern of correlation across signals). One outcome is that information acquisi-

tions eventually approximate the best possible sampling rule over sites, and another

is that information acquisitions eventually concentrate on sites that do not jointly

maximize speed of learning. The key property that separates these two long-run

outcomes is whether there is a set of locations that are revealing—so that given suffi-

ciently many RCTs at those locations, the community will recover ω—and moreover

self-contained—so that they provide limited information that would help future de-

velopment economists interpret estimates at other locations. If so, then long run

learning need not be efficient. In contrast, if these conditions are not fulfilled, then

optimal long run learning will obtain.

Although we defer the proof of Corollary 5 to the appendix, we conclude this

section with a brief sketch of the formal argument. Our strategy is to work with the

following function, defined on frequency vectors:

f ∗(λ1, . . . , λN) = lim
t→∞

t · f(λ1t, . . . , λN t).

We show in an intermediate step that signal acquisitions chosen according to a fre-

quency vector that minimizes f ∗ will asymptotically also minimize the posterior vari-

ance function f . This justifies our analysis of f ∗ (see Lemma 4).

The function f ∗ is convex in λ, and its unique minimum turns out to be the

vector λ∗ (see Lemma 6).21 The question of whether optimal long-run acquisitions

are achieved is equivalent to the question of whether signal acquisition frequencies

converge to λ∗.

Society’s acquisitions follow a procedure of “pseudo”-gradient descent, where the

vector λ(t) = m(t)/t evolves according to

λ(t+ 1) =
t

t+ 1
λ(t) +

1

t+ 1
ei.

The vector ei is the coordinate vector that yields the greatest (immediate) reduction

in f (and roughly the greatest reduction in f ∗). Unlike standard gradient descent,

21Here we use the assumption that S∗ is the uniquely “best” minimal spanning set.
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the descent here can occur only along a finite set of feasible directions, corresponding

to the available signals.

However, this limitation is without loss whenever f ∗ is differentiable at λ, since

then all directional derivatives can be rewritten as a convex combination of partial

derivatives along basis vectors. We observe that f ∗ is differentiable whenever λ has

at least K nonzero coordinates.

It remains to show that λ(t) will in fact eventually have at least K nonzero co-

ordinates (corresponding to positive frequency of observation of at least K signals).

To show this, we argue that society must eventually observe some minimal spanning

set, or else it would not recover ω. Combining this with the above, if every minimal

spanning set has size K, then descent is well-behaved and ends at the global minimum

λ∗. This yields Corollary 5, and Theorem 3 (in the subsequent section) follows from

a similar argument.

In contrast, pseudo-gradient descent can become “stuck” at vectors λ with fewer

than K nonzero coordinates. Formally, f ∗ can fail to be differentiable at these points.

If that is the case, observation of k < K sources can be self-reinforcing, as reflected

in Corollary 4 and more generally Theorem 2 below.

6.2 General Case

Towards the result for the general setting, we introduce the notion of subspace opti-

mality. For any spanning set of signals S, let S ⊆ [N ] be the set of available signals

whose coefficient vectors belong to the subspace spanned by signals in S. Notice in

particular that S contains S. We say a minimal spanning set S is subspace-optimal

if it uniquely minimizes φ among available subsets of S. For example, if the available

signals are X1 = ω/2 + ε1 and X2 = ω+ ε2, then {X1} is a minimal spanning set, but

it is not optimal in its subspace.22

Theorem 2. Suppose S is a minimal spanning set that is moreover subspace-optimal.

Then, there exists an open set of prior beliefs under which long-run frequencies are

strictly positive for signals in S, and zero everywhere else.23

Notice that under the earlier assumption of Strong Linear Independence, any

minimal spanning set with fewer than K signals is subspace-optimal.24 Thus, as we

22X2 belongs to the subspace spanned by X1, and φ({X2}) < φ({X1}).
23These frequencies are the optimal frequencies when only signals in S are available (i.e., given by

Corollary 1).
24Any other signal that belongs to its subspace would violate linear independence.
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saw in Corollary 4, the possibility of inefficiency hinged on existence of such sets.

Converse to Theorem 2, our next result shows that starting from any prior, infor-

mation acquisition eventually concentrates on a set of signals that is subspace-optimal.

We use an assumption which strengthens Unique Minimizer.

Assumption 4 (Unique Minimizer in Every Subspace). For any spanning set A ⊂
[N ], argminS⊂A φ(S) has a unique solution, where the minimum is taken over minimal

spanning sets S.

This says that in every spanning subspace, there exists a unique minimal spanning

subset S that maximizes asymptotic speed of learning. It is clearly guaranteed if

different minimal spanning sets correspond to different values of φ.

Theorem 3. Suppose that Assumption 4 is satisfied. Given any prior belief, long-

run frequencies exist for every signal. Moreover, if S denotes the signals viewed with

positive frequencies, then S is a minimal spanning set that is subspace-optimal.

Notice that if every minimal spanning set is of size K, then all minimal spanning

sets belong to the same subspace. Furthermore, if Unique Minimizer holds, there can

only be one minimal spanning set that is optimal in its subspace, and moreover this

is the “best” set (in the sense of Section 5). This yields the previous Corollary 5 from

the theorem above.

7 Information Interventions

Section 6 demonstrated the possibility for sequential information acquisition to result

in inefficient learning. We ask now whether it is possible for a benevolent outside

party to help society achieve efficient learning by providing a one-time injection of

free information. Naturally, this question applies only when agents (on their own)

could eventually achieve a sub-optimal speed of learning. The conditions under which

this occurs are given in Theorem 2.

Formally, suppose a policy-maker chooses M signals 〈pj, θ〉+N (0, 1), where each

‖pj‖2 ≤ γ, so that signal precisions are bounded by γ2. At time 0, this information

is made public. All subsequent agents update their prior beliefs based on this free

information, and also on the history of signal acquisitions thus far. The goal of the

policy-maker is to maximize the community’s asymptotic speed of learning. Below,

we use efficient learning to mean the case in which the asymptotic speed of learning

22



achieves the optimum—that is, the final observation set is S∗ and long-run frequencies

are λ∗.

Is there a sufficient number of (kinds of) signals, such that efficient learning can be

guaranteed? We answer in the affirmative below: K − 1 precise signals are sufficient

to produce efficient learning:

Proposition 2. For any prior, there exist γ and K − 1 signals with ‖pj‖2 ≤ γ such

that with these free signals provided at t = 0, society achieves efficient learning.

Intuitively, as long as the free signals make agents sufficiently informed about the

biases b1, . . . , bK−1, they can preclude the situation in which agents get stuck in a

sub-optimal set as in Example 4. Notice that optimal information intervention does

not need to teach directly about ω (the payoff-relevant state), which the agents will

learn on their own. Rather, the planner should only provide auxiliary information

that helps agents to better interpret the sources.

8 Related Literature

In addition to the references mentioned in the introduction, our results build on

prior work regarding speed of learning (Vives, 1992; Golub and Jackson, 2012; Harel

et al., 2017; Hann-Caruthers, Martynov and Tamuz, 2017), and is related also to

the experimental design literature in statistics (see Chernoff (1972) for a survey).

Specifically, our results in Section 5 are related to c-optimality, in which t experiments

are chosen to minimize the posterior variance of a linear combination of the unknown

states (in our case, simply the posterior variance of the first unknown state). Theorem

1 can be seen as an integer design version of the problem considered in Chaloner

(1984). Chaloner (1984) showed that a c-optimal Bayesian continuous design exists

on at most K points, but does not provide a construction of this design. Extending

this, we supply a characterization of the optimal design itself; this improves on the

prior result by showing uniqueness of the optimal design, and demonstrating that for

certain correlational structures, optimal design exists on strictly fewer than K points.

9 Conclusion

We study a model of sequential learning, where agents choose what kind of informa-

tion to acquire from a large set of information sources. The key force of interest is
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the externality that current informational choices generate on future agents.

Our main results characterize two starkly different possibilities and the conditions

under which either obtains: (1) the externality is beneficial : past information ac-

quisitions help future agents to discern which sources are most informative, and in

the long run, agents converge to acquiring information only from the most informa-

tive sources; (2) the externality is harmful : past information acquisitions increase

the value of “low-quality” sources relative to “high-quality” sources, pushing future

agents to acquire information from a set of sources that yields inefficiently slow learn-

ing. A simple property of the correlation structure across sources determines when

such “learning traps” emerge, and which sources are a part of them.

When a community is stuck observing inefficient sources, what kind of information

interventions might push the community towards efficient learning? One possibility

is to limit the number of sources, and especially to remove “decoy” sources that are

low-quality but self-reinforcing. Another possibility is to provide agents with free

information. We show that a policy-maker can guarantee efficient long-run learning

if he provides a sufficient number of sufficiently precise signals. The optimal informa-

tion intervention does not inform directly about the payoff-relevant state, but rather

provides auxiliary information that helps agents to interpret the best sources (so that

these are subsequently observed). This intervention may require educating agents

along many different dimensions: we conjecture that provision of a single kind of

information (no matter how precise) can be ineffective in a large number of environ-

ments. This points to the potential long-run ineffectiveness of information campaigns

that are very informative but limited in scope.

Finally, although in this paper we focus on informational demand given a fixed set

of information sources, one may also consider the reverse question of what kinds of

information will be endogenously provided by strategic sources. Our results suggest

that the answer to this question can be subtle: information sources most frequently

viewed in the long run are those that are “least informative in a most informative

set.” Thus, a source that wants to maximize frequency of viewership has two com-

peting incentives: first, to be viewed at all within the competitive market, it must

provide sufficiently useful information; second, conditional on being viewed, it wants

to reveal information slowly (so as to increase the number of observations). We leave

characterization of the supply of information in an “informationally overabundant”

environment for future work.
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A Examples Failing Unique Minimizer

A.1 First Example

Example 5. There are K = 3 states ω, b1, b2 independently drawn with prior variances
1
α ,

1
β ,

1
γ . N = 4 signals are available, and they are respectively

X1 = ω + b1 + ε1

X2 = b1 + ε2

X3 = ω + b2 + ε3

X4 = b2 + ε4

with standard normal errors. Note that the former two signals and the latter two signals are
both spanning, and these two sets generate the same asymptotic variance. Thus Assumption
2 is not satisfied.

The posterior variance about ω as a function of the number of observations q1, q2, q3, q4

of each signal type can be derived as follows. First, given q2 observations of signal X2

and q4 observations of signal X4, posterior variance about θ2 and θ3 are 1/(q2 + β) and
1/(q4 + γ) respectively. Consider now q1 additional observations of X1; this provides the
same information about the payoff-relevant state ω as the signal ω + ε′, where ε′ is an
independent noise term with variance 1

q1
+ 1

q2+β . Similarly, q3 additional observations of

X3 are equivalent to the signal ω+ ε′′, where ε′′ is an independent noise term with variance
1
q3

+ 1
q4+γ . From this we deduce that posterior variance about ω is

f(q1, q2, q3, q4) = 1

/(
α+

1
1
q1

+ 1
q2+β

+
1

1
q3

+ 1
q4+γ

)
.

The optimal division vector thus seeks to maximize

1
1
q1

+ 1
q2+β

+
1

1
q3

+ 1
q4+γ

(4)

It is useful to rewrite (4) in the following way:

1

4

(
q1 + q2 + β + q3 + q4 + γ − (q1 − q2 − β)2

q1 + q2 + β
− (q3 − q4 − γ)2

q3 + q4 + γ

)
.

Then, since q1 + q2 + β + q3 + q4 + γ = t+ β + γ is fixed at any time t, it is equivalent to
choose q1, q2, q3, q4 to minimize the sum of ratios

(q1 − q2 − β)2

q1 + q2 + β
+

(q3 − q4 − γ)2

q3 + q4 + γ
.

Ideally, if signals were perfectly divisible, the optimum would be to choose q1 = q2 + β and
q3 = q4 + γ. But as each qi is restricted to integer values, this continuous optimum is not
feasible whenever β and γ are not integers.
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The solution to this integer optimization problem is involved, and the details are relegated
to Appendix A.2. To express the solution, we need some additional notation. Let r be the
integer that minimizes |r − β| (the distance to β) and let s be the integer that minimizes
|s − γ|. Further, let 〈β〉 and 〈γ〉 be the value of these absolute differences. We show that
when the parity of t and r + s are the same, the optimal (q1, q2, q3, q4) satisfy

q1, q2 ≈
〈β〉

2〈β〉+ 2〈γ〉
· t; q3, q4 ≈

〈γ〉
2〈β〉+ 2〈γ〉

· t.

and otherwise the optimal (q1, q2, q3, q4) satisfy

q1, q2 ≈
〈β〉

2〈β〉+ 2− 2〈γ〉
· t; q3, q4 ≈

1− 〈γ〉
2〈β〉+ 2− 2〈γ〉

· t.

Thus, all four signals are observed with positive frequencies in the long run according to the
optimal criterion.

Although the example is involved, its intuition is simple: we would most like to set
q1 = q2 + β and q3 = q4 + γ, but this is not feasible when β and γ are not integers. Thus,
there is inevitably some loss from the ideal case where signals are continuously divisible.
This loss turns out to be convex in signal counts, so to minimize total loss, both groups of
signals are observed infinitely often.

The conclusion of Theorem 1 fails to hold in a strong sense in the example above, since
all signals are observed infinitely often. Later we provide another example that does not
satisfy Unique Minimizer, but where the conclusion of Theorem 1 holds “qualitatively.”
The difference in these two examples, and in addition the complexity of derivation of the
asymptotic frequencies above suggest that characterization of optimal acquisitions is in
general difficult without the Unique Minimizer assumption.

A.2 Details for Example 5

To solve the integer maximization problem (4), let r be the integer that minimizes |r − β|
(the distance to β) and let s be the integer that minimizes |s − γ|. Further, let 〈β〉 and
〈γ〉 be the value of these absolute differences. We assume 2β, 2γ are not integers, so that
0 < 〈β〉, 〈γ〉 < 1

2 . We also assume 〈β〉 6= 〈γ〉, and by symmetry focus on the case of
〈β〉 < 〈γ〉.

With these assumptions, it is clear that when q1, q2 are integers, the minimum value of
|q1 − q2 − β| is 〈β〉, achieved if and only if q1 = q2 + r. Similarly the minimum value of
|q3 − q4 − γ| is 〈γ〉, achieved when q3 = q4 + s. Now if the total number of observations t
has the same parity as r + s, it is possible to choose q1, q2, q3, q4 such that their sum is t
and q1 = q2 + r, q3 = q4 + s—any pair q2, q4 with sum t−r−s

2 leads to such a solution. Given

these constraints, then, the optimum is to choose q2, q4 to minimize 〈β〉2
2q2+r+β + 〈γ〉2

2q4+s+γ . The

optimal q2 and q4 satisfy q2/q4 ≈ 〈β〉/〈γ〉, which together with q2 + q4 = t−r−s
2 implies

q1, q2 ≈
〈β〉

2〈β〉+ 2〈γ〉
· t; q3, q4 ≈

〈γ〉
2〈β〉+ 2〈γ〉

· t.
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On the other hand, suppose t has the opposite parity to r + s. In this case q1 = q2 + r
and q3 = q4 + s cannot both hold, thus |q1− q2−β| and |q3− q4− γ| cannot both take their
minimum values 〈β〉 and 〈γ〉. It turns out that the best one can do is choose q1 = q2 + r
and q3 = q4 + s±1 so that |q1− q2−β| = 〈β〉 and |q3− q4−γ| = 1−〈γ〉. Then, the optimal

choice of q2, q4 with sum t−r−s∓1
2 to minimize 〈β〉2

2q2+r+β + (1−〈γ〉)2
2q4+s+γ±1 . This yields

q1, q2 ≈
〈β〉

2〈β〉+ 2− 2〈γ〉
· t; q3, q4 ≈

1− 〈γ〉
2〈β〉+ 2− 2〈γ〉

· t.

A.3 Second Example

In the following example, Unique Minimizer is violated. However, the qualitative conclusion
of Theorem 1 still holds. Namely, as t→∞, at most K signals are observed with positive
frequency under the t-optimal division.

Example 6. Consider state ω and bias b1 (prior beliefs will be specified shortly). There are
three signals ω+ b1 + ε1, ω− b1 + ε2 and ω+ ε3, where each noise term is standard normal.
We assume the prior beliefs are such that ω+ b1 and ω− b1 are independent, with variances
1
α and 1

β . Observe that φ({1, 2}) = 1 = φ({3}), so Unique Minimizer fails.
We claim that whenever α−β is not an integer, t-optimal divisions choose the third signal

only a bounded number of times. Intuitively, this is because one observation of ω + b1 + ε1
combined with one observation of ω− b1 + ε2 contain at least as much information as their
sum 2ω+ε1+ε2, which is equivalent to two observations of ω+ε3. Thus, devoting any level of
attention to the third signal is weakly worse than splitting that attention evenly between the
first two signals. Moreover, the combination of the first two signals also informs about b1,
which is correlated with the payoff-relevant state ω whenever α 6= β. Thus, society optimally
“ignores” the third signal if its (prior and posterior) beliefs about ω + b1 and ω − b1 are
asymmetric. As we show below, this occurs precisely when α− β is not an integer.

To formalize the above intuition, we observe that given q1 observations of signal 1 and

q2 observations of signal 2, society’s posterior variance about ω is
(

1
q1+α + 1

q2+β

)
/4. Thus,

with q3 additional observations of the third signal, society’s posterior variance becomes

f(q1, q2, q3) = 1

/(
4

1
q1+α + 1

q2+β

+ q3

)
.

The optimal division at time t thus maximizes

max
q1,q2,q3∈Z+,q1+q2+q3=t

4
1

q1+α + 1
q2+β

+ q3.

The maximand can be rewritten as

4
1

q1+α + 1
q2+β

+ q3 = q1 + α+ q2 + β + q3 −
(q1 + α− q2 − β)2

q1 + α+ q2 + β
.

Note that q1 +α+ q2 + β + q3 = t+α+ β is fixed, so society chooses q1, q2 to minimize the

ratio (q1+α−q2−β)2

q1+α+q2+β .
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Suppose α − β is not an integer, let 〈α − β〉 denote its distance to the nearest integer.
Then, as q1, q2 are restricted to integers, the difference |q1 + α − q2 − β| takes minimum

value 〈α−β〉 > 0. It follows that (q1+α−q2−β)2

q1+a+q2+b is uniquely minimized by choosing q1, q2 such
that |q1 +α− q2−β| = 〈α−β〉 and q1 + q2 is as large as possible. Hence, both q1 and q2 are
close to t

2 . As we claimed, t-optimal division eventually focuses on the first two signals.

B Posterior Variance Function

B.1 A Basic Lemma

Here we review and extend a basic result from Liang, Mu and Syrgkanis (2017). Specifically,
we show that the posterior variance about ω weakly decreases over time, and the marginal
value of any signal decreases in its signal count.

Lemma 2. Given prior covariance matrix V 0 and qi observations of each signal i, society’s
posterior variance about ω is given by

f(q1, . . . , qN ) =
[
((V 0)−1 + C ′QC)−1

]
11

(5)

where Q = diag(q1, . . . , qN ). The function f is decreasing and convex in each qi whenever
these arguments take non-negative real values.

Proof. Note that (V 0)−1 is the prior precision matrix, and C ′QC =
∑N

i=1 qi · [cic′i] is the
total precision from the signals. Thus (5) simply represents the fact that for Gaussian
prior and signals, the posterior precision matrix is the sum of prior and signal precision
matrices. To prove the monotonicity of f , consider the partial order � on positive semi-
definite matrices where A � B if and only if A−B is positive semi-definite. As qi increases,
the matrix Q and C ′QC increase in this order. Thus the posterior covariance matrix
((V 0)−1 +C ′QC)−1 decreases in this order, which implies that the posterior variance about
ω decreases. Intuitively, more information always improves the decision-maker’s estimates.

To prove f is convex, it suffices to prove f is midpoint-convex since the function is clearly
continuous. Take q1, . . . , qN , r1, . . . , rN ∈ R+ and let si = qi+ri

2 . Define the corresponding
diagonal matrices to be Q, R, S. Observe that Q+R = 2S. Thus by the AM-HM inequality
for positive-definite matrices, we have in matrix order

((V 0)−1 + C ′QC)−1 + ((V 0)−1 + C ′RC)−1 � 2((V 0)−1 + C ′SC)−1.

Using (5), we conclude

f(q1, . . . , qN ) + f(r1, . . . , rN ) ≥ 2f(s1, . . . , sN ).

This proves the convexity of f .
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B.2 Inverse of Positive Semi-definite Matrices

For future use, we provide a definition of [X−1]11 for positive semi-definite matrices X.
When X is positive definite, its eigenvalues are strictly positive, and its inverse matrix is
defined as usual. In general, we can apply the spectrum theorem to write

X = UDU ′

with U being a K × K orthogonal matrix whose columns are eigenvectors of X, and D
being a K × K diagonal matrix consisting of non-negative eigenvalues. Even if some of
these eigenvalues are zero, we can think of X−1 as

X−1 = (UDU ′)−1 = UD−1U ′ =

K∑
j=1

1

dj
· [uju′j ]

with uj being the j-th column vector of U . We thus define

[X−1]11 =

K∑
j=1

(〈uj , e1〉)2

dj
, (6)

with the convention that 0
0 = 0. Note that by this definition,

[X−1]11 = lim
ε→0+

 K∑
j=1

(〈uj , e1〉)2

dj + ε

 = [(X + εIK)−1]11

since the matrix X + εIK has the same set of eigenvectors as X, with eigenvalues increased
by ε. Hence our definition of [X−1]11 is a continuous extension of the usual definition to
positive semi-definite matrices. Note that we allow [X−1]11 to be infinite.

C Proof of Theorem 1

C.1 Asymptotic Behavior of Posterior Variance

We first approximate the posterior variance as a function of the frequencies with which each
signal is observed. Specifically,

Lemma 3. For any λ1, . . . , λN ≥ 0, let Λ = diag(λ1, . . . , λN ). Then

f∗(λ1, . . . , λN ) := lim
t→∞

t · f(λ1t, . . . , λN t)

=[(C ′ΛC)−1]11

(7)

Note that the matrix C ′ΛC is positive semi-definite. So the value of [(C ′ΛC)−1]11 is well
defined, see (6).
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Proof. Recall that f(q1, . . . , qN ) =
[
((V 0)−1 + C ′QC)−1

]
11

with Q = diag(q1, . . . , qN ).
Thus

tf(λ1t, . . . , λN t) =

[(
1

t
(V 0)−1 + C ′ΛC

)−1
]

11

.

Hence by the continuity of [X−1]11 in the matrix X, we obtain the lemma.

We note that C ′ΛC is the Fisher Information Matrix when the signals are observed
according to frequencies λ. Thus the above lemma can also be seen as an application of the
Bayesian Central Limit Theorem.

C.2 Reduction to the Study of f ∗

The development of the function f∗ is useful for the following reason:

Lemma 4. Suppose λ̂ uniquely minimizes f∗(λ) subject to λ ∈ ∆N−1 (the N−1-dimensional
simplex), then the t-optimal divisions satisfy ni(t) ∼ λ̂i · t for each i.

Proof. Fix any increasing sequence of times t1, t2, . . . . It suffices to show that whenever the
limit λi := limm→∞

ni(tm)
tm

exists for each i, this limit λ must be λ̂. Suppose not, then by

assumption f∗(λ) > f∗(λ̂). For ε > 0, define another vector λ̃ ∈ RN+ with λ̃i = λi + ε, ∀i.
By the continuity of f∗, it holds that f∗(λ̃) > f∗(λ̂) for sufficiently small ε.

Since λi = limm→∞
ni(tm)
tm

, there exists M sufficiently large such that ni(tm) ≤ λ̃i · tm
for each i and m ≥M . Hence, for m ≥M ,

tm · f(n1(tm), . . . , nN (tm)) ≥ tm · f(λ̃1 · tm, . . . , λ̃N · tm)→ f∗(λ̃1, . . . , λ̃N )

The first inequality uses the monotonicity of f . On the other hand,

tm · f(λ̂1 · tm, . . . , λ̂N · tm)→ f∗(λ̂1, . . . , λ̂N ).

Comparing the above two displays, we see that for sufficiently largem, f(n1(tm), . . . , nK(tm)) >
f(λ̂1 · tm, . . . , λ̂N · tm). But this contradicts the t-optimality of the division n(tm), as society
could do better by following frequencies λ̂. The lemma is thus proved.

C.3 Crucial Lemma

We pause to demonstrate the following technical lemma:

Lemma 5. Suppose S∗ = {1, . . . ,K} uniquely minimizes φ(S) and let C∗ be the K × K
submatrix of C corresponding to the first K signals. Further suppose βS

∗
j = [(C∗)−1]1j is

positive for 1 ≤ j ≤ K. Then for any signal i > K, we can write ci =
∑K

j=1 αj · cj with

|
∑K

j=1 αj | < 1.
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Proof. By assumption, we have the vector identity

e1 =
K∑
j=1

βj · cj with βj = [(C∗)−1]1j > 0.

Suppose for contradiction that
∑K

j=1 αj ≥ 1 (the opposite case where the sum is ≤ −1 can
be similarly treated). In particular, some αj is positive. Without loss of generality, we
assume α1

β1
is the largest among such ratios. Then α1 > 0 and

e1 =
K∑
j=1

βj · cj =

 K∑
j=2

(βj −
β1

α1
· αj) · cj

+
β1

α1
·

 K∑
j=1

αj · cj


This represents e1 as a linear combination of the vectors c2, . . . , cK and ci, with coefficients
β2 − β1

α1
·α2, . . . , βK − β1

α1
·αK and β1

α1
. Observe that these coefficients are non-negative: for

each 2 ≤ j ≤ K, βj − β1
α1
·αj is clearly positive if αj ≤ 0 (since βj > 0). And if αj > 0, then

by assumption
αj

βj
≤ α1

β1
and βj − β1

α1
· αj is again non-negative.

By definition, φ({2, . . . ,K, i}) is the sum of the absolute value of these coefficients. This
sum is

K∑
j=2

(βj −
β1

α1
· αj) +

β1

α1
=

K∑
j=1

βj +
β1

α1
· (1−

K∑
j=1

αj) ≤
K∑
j=1

βj .

But then φ({2, . . . ,K, i}) ≤ φ({1, 2, . . . ,K}), leading to a contradiction. Hence the lemma
must be true.

C.4 Proof of Theorem 1 when |S∗| = K

Given Lemma 4, Theorem 1 will follow once we show that λ∗ uniquely minimizes f∗(λ)
over the simplex—recall that λ∗ denotes the optimal asymptotic frequencies for the minimal
spanning set S∗ that minimizes φ. In this section, we prove λ∗ is indeed the unique minimizer
whenever this “best” subset S∗ contains exactly K signals. Later on we will prove the same
result even when |S∗| < K, but that proof will require additional techniques.

Lemma 6. Suppose S∗ = {1, . . . ,K} is the unique minimizer of φ(S) over minimal span-
ning sets. Define λ∗ ∈ ∆N−1 by

λ∗i =
|[(C∗)−1]1i|∑K
j=1|[(C∗)−1]1j |

, 1 ≤ i ≤ K

with C∗ = C[K][K],
25 and λ∗i = 0,∀i > K. Then f∗(λ∗) < f∗(λ) for any λ ∈ ∆N−1, λ 6= λ∗.

25For any subset I ⊂ [N ] and J ⊂ [K], write CIJ for the sub-matrix of C with row indices in I
and column indices in J . Likewise, let C−IJ be the sub-matrix of C after deleting rows in I and
columns in J .
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Proof. First, we will assume that [(C∗)−1]1i is positive for 1 ≤ i ≤ K. This is without loss
because we can always work with the “negative” of any signal (replace ci with −ci), which
does not affect agents’ behavior.

Since f(q1, . . . , qN ) is convex in its arguments, f∗(λ) = limt→∞ t ·f(λ1t, . . . , λN t) is also
convex in λ. To show f∗(λ∗) < f∗(λ), we only need to show f∗(λ∗) < f∗((1− ε)λ∗+ ελ) for
some ε > 0. In other words, it suffices to show f∗(λ∗) < f∗(λ) for λ in an ε-neighborhood
of λ∗. By assumption, S∗ is minimally-spanning and so its signals are linearly independent.
Thus its signals must span all of the K states. From this it follows that the K ×K matrix
C ′Λ∗C is positive definite, and by (7) the function f∗ is differentiable near λ∗ (not just ,
see Remark 1 below).

We claim that the partial derivatives of f∗ satisfy the following inequality:

∂Kf
∗(λ∗) < ∂if

∗(λ∗) ≤ 0, ∀i > K. (**)

Once this is proved, we will have, for λ close to λ∗,

f∗(λ1, . . . , λK , λK+1, . . . , λN ) ≥ f∗(λ1, . . . , λK−1, λK + λK+1 + · · ·+ λN , 0, . . . , 0) ≥ f∗(λ∗).
(8)

The first inequality is based on (**) and continuous differentiability of f∗, while the second
inequality is because λ∗ uniquely minimizes f∗ if society only observes the first K signals.
Moreover, when λ 6= λ∗, one of these inequalities is strict so that f∗(λ) > f∗(λ∗) strictly.

To prove (**), we recall that

f∗(λ1, . . . , λN ) = e′1(C ′ΛC)−1e1.

Since Λ = diag(λ1, . . . , λN ), its derivative is ∂iΛ = ∆ii, which is an N × N matrix whose
(i, i)-th entry is 1 and all other entries are zero. Using properties of matrix derivatives, we
obtain

∂if
∗(λ) = −e′1(C ′ΛC)−1C ′∆iiC(C ′ΛC)−1e1.

As the i-th row vector of C is c′i, C
′∆iiC is the K ×K matrix cic

′
i. The above simplifies to

∂if
∗(λ) = −[e′1(C ′ΛC)−1ci]

2.

At λ = λ∗, the matrix C ′ΛC further simplifies to (C∗)′ · diag(λ∗1, . . . , λ
∗
K) · (C∗), which is a

product of K ×K invertible matrices. We thus deduce that

∂if
∗(λ∗) = −

[
e′1 · (C∗)−1 · diag

(
1

λ∗1
, . . . ,

1

λ∗K

)
· ((C∗)′)−1 · ci

]2

.

It is crucial for our analysis that the term in the brackets is a linear function of ci. To ease

notation, we write v′ = e′1 · (C∗)−1 · diag
(

1
λ∗1
, . . . , 1

λ∗K

)
· ((C∗)′)−1 and γi = 〈v, ci〉. Then

∂if = −γ2
i , 1 ≤ i ≤ N. (9)

For 1 ≤ i ≤ K, ((C∗)′)−1 · ci is just ei. Thus, using the assumption [(C∗)−1]1j > 0,∀j,
we have

γi = e′1 · (C∗)−1 · diag

(
1

λ∗1
, . . . ,

1

λ∗K

)
· ei =

[(C∗)−1]1i
λ∗i

=
K∑
j=1

[(C∗)−1]1j = φ(S∗), 1 ≤ i ≤ K.

(10)
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On the other hand, choosing any i > K, we can uniquely write the vector ci as a linear
combination of c1, . . . , cK . By Lemma 5, for any i > K we have

γi = 〈v, ci〉 =
K∑
j=1

αj · 〈v, cj〉 =
K∑
j=1

αj · γj = φ(S∗) ·
K∑
j=1

αj . (11)

The last equality uses (10). Since |
∑K

j=1 αj | < 1, the absolute value of γi for any i > K is
strictly smaller than the absolute value of γK . This together with (9) proves the desired
inequality (**), and the lemma follows.

Remark 1. The essence of this proof is the following non-obvious fact: the subset {1, . . . ,K}
uniquely minimizes φ among all subsets of size K if and only if

φ({1, . . . ,K}) < φ({1, . . . ,K} ∪ {i}\{j}), ∀1 ≤ j ≤ K < i ≤ N.

That is, if a set of K signals does not minimize φ, then we can improve the speed of learning
simply by adding one signal to replace one existing signal. This property enables us to reduce
the general problem with N signals to the much simpler problem with K+ 1 signals, and we
are able to use calculus to resolve the latter problem, see (**).

However, the above fact relies on the original set containing exactly K signals. To
see this, consider two states and three signals with coefficient vectors c1 = (0.5, 0), c2 =
(1, 1), c3 = (1,−1). If we start with the first signal alone, adding either of the latter two
signals does not decrease φ. However, the latter two signals combined yield a faster speed
of learning, as φ({2, 3}) = 1 < 2 = φ({1}). On the technical level, this occurs because
at λ = (1, 0, 0), f∗ is differentiable along every direction but not differentiable as a multi-
variate function (i.e. it does not admit a gradient vector). Thus, even though the partial
derivatives satisfy (**), we cannot deduce that any directional derivative similarly satisfies
(**). It is for this reason that we need a different proof of Lemma 6 when |S∗| < K, which
we present later.

Remark 2. Still assuming that the “best” subset S∗ contains exactly K signals, we now
show ni(t) = λ∗i · t + O(1),∀i, which improves upon the conclusion of Theorem 1. First,
we can apply Lemma 5 to find a positive constant η < 1 such that for each i > K, if
ci =

∑K
j=1 αjcj then |

∑K
j=1 αj | ≤ 1− η. By (9), (10) and (11), we have

∂1f(λ∗) = · · · = ∂Kf(λ∗) = −φ(S∗)2; ∂if(λ∗) ≥ −(1− η)2 · φ(S∗)2, ∀i > K. (12)
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For any λ ∈ ∆N−1, the convexity of f∗ implies26

f∗(λ) ≥ f∗(λ∗) +
N∑
i=1

(λi − λ∗i ) · ∂if∗(λ∗)

= f∗(λ∗) +

N∑
i=1

(λi − λ∗i ) · (∂if∗(λ∗) + φ(S∗)2)

≥ f∗(λ∗) + (2η − η2) · φ(S∗)2 ·
N∑

i=K+1

λi.

(13)

The second line uses
∑N

i=1(λi − λ∗i ) = 0 and the last inequality is due to (12).
Consider any division (q1, . . . , qN ) at time t. A straightforward refinement of Lemma 3

gives that whenever f∗(λ) is finite, t · f(λt) approaches f∗(λ) at the rate of 1
t . In particular

f(λ∗ · t) = 1
t · f

∗(λ∗) + O( 1
t2

). For (q1, . . . , qN ) to be a t-optimal division, it is necessary
that f(q1, . . . , qN ) ≤ f(λ∗ · t). Thus

f∗
(q1

t
, . . . ,

qN
t

)
≤ f∗(λ∗) +O

(
1

t

)
. (14)

By (13) and (14), any t-optimal division n(t) must satisfy ni(t) = O(1) for each signal
i > K. Conditional on these signal counts, society’s optimal choice over signals 1 through
K must satisfy ni(t) = λ∗i · t+ O(1), ∀1 ≤ i ≤ K, as shown in Proposition 1. This is what
we desire to prove here.

C.5 A Perturbation Argument

We have shown that whenever φ(S) is uniquely minimized by a set S containing K signals,

min
λ∈∆N−1

f∗(λ) = f∗(λ∗) = min
S⊂[N ]

φ(S)2 = φ([N ])2

We now show this equality holds more generally.

Lemma 7. For any coefficient matrix C,

min
λ∈∆N−1

f∗(λ) = φ([N ])2. (15)

Proof. Because society can choose to focus on any minimal spanning set, it is clear that
minλ f

∗(λ) ≤ φ([N ])2 = minS(φ(S))2. It remains to prove f∗(λ) ≥ φ([N ])2 for any fixed
λ ∈ ∆N−1. By Lemma 3, we need to show [(C ′ΛC)−1]11 ≥ φ([N ])2.

26As mentioned in Remark 1, it is crucial that f∗ is differentiable at λ∗. The argument here relies
on the directional derivative in the direction λ− λ∗ being well-defined and equal to a linear sum of
partial derivatives.
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This was already proved for generic coefficient matrices C; specifically, those for which
φ(S) is minimized by a set of K signals. But even if C is “non-generic”, we can approximate
it by a sequence of “generic” matrices Cm.27 Along this sequence, we have

[(C ′mΛCm)−1]11 ≥ φm([N ])2

where φm is the speed of learning from the N signals given by coefficient matrix Cm. As
m → ∞, the LHS above approaches [(C ′ΛC)−1]11. Thus the lemma will follow once we
show that lim supm→∞ φm([N ]) ≥ φ([N ]).

For this we invoke the following characterization

φ([N ]) = min
β∈RN

N∑
i=1

|βi| s.t. e1 =
N∑
i=1

βi · ci.

If e1 =
∑

i β
(m)
i · c(m)

i along the convergent sequence, then e1 =
∑

i βi · ci for any limit point
β of β(m). This enables us to conclude lim infm→∞ φm([N ]) ≥ φ([N ]), which is more than
what we need.

C.6 Proof of Theorem 1 when |S∗| < K

We now complete the proof of Theorem 1 for the case where the “best” subset S∗ contains
fewer than K signals. To be precise, let S∗ = {1, . . . , k} and define λ∗ ∈ ∆N−1 to be the
optimal frequencies when only the first k signals are observed. We will show ni(t) ∼ λ∗i ·t,∀i.
By Lemma 4, we only need to show that λ∗ uniquely minimizes f∗(λ) over the simplex.
Since f∗(λ∗) = φ(S∗)2 = φ([N ])2 by definition, we know from Lemma 7 that λ∗ does
minimize f∗(λ).

It remains to show that λ∗ is the unique minimizer. Suppose for contradiction that
f∗(λ∗) = f∗(λ̃) for some λ̃ ∈ ∆N−1 distinct from λ∗. For η ∈ R, define λη = λ∗+η ·(λ̃−λ∗),
so that λ0 = λ∗, λ1 = λ̃. Observe that when η ∈ (0, 1), λη is a convex combination between
λ∗ and λ̃. Thus the convexity of f∗ implies

f∗(λη) ≤ (1− η)f∗(λ∗) + ηf∗(λ̃) = f∗(λ∗)

Since f∗(λ∗) is minimal, we must then have f∗(λη) = f∗(λ∗) for η ∈ (0, 1). But for fixed λ∗

and λ, (7) shows that the value of f∗(λη) is a rational function (quotient of two polynomials)
of η. Thus this rational function is itself a constant. Consequently, f∗(λη) = f∗(λ∗) for all
η (not just those in the unit interval) such that λη ∈ ∆N−1.

Because λ̃ 6= λ∗, there exists some j ∈ {1, . . . , k} such that λ̃j < λ∗j . Without loss,

we assume λ̃1
λ∗1

is the smallest among such ratios. Let η =
λ∗1

λ∗1−λ̃1
, then the vector λη

27First, we may add repetitive signals to ensure N ≥ K. This does not affect the value of min f∗(λ)
or φ([N ]). Whenever N ≥ K, it is generically true that every minimal spanning set contains exactly
K signals. Moreover, the equality φ(S) = φ(S̃) for S 6= S̃ induces a non-trivial polynomial equation
over the entries in C. This means we can always find C(m) close to C such that for the coefficient
matrix C(m), different subsets S (of size K) attain different values of φ(S).
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has first-coordinate 0 and all other coordinates non-negative. By our preceding analysis,
f∗(λη) = f∗(λ∗) for this η. However, since λη “ignores” signal 1, Lemma 7 implies that

f∗(λη) ≥ min
λ∈∆N−1, λ1=0

f∗(λ) = φ([N ]\{1})2.

By assumption, S∗ = {1, . . . , k} is the unique minimal spanning set that minimizes φ. Thus
the RHS above is strictly larger than φ(S∗)2 = f∗(λ∗), leading to the contradictory result
f∗(λη) > f∗(λ∗).

This contradiction shows λ∗ must uniquely minimize f∗(λ). Theorem 1 follows.

D Proof of Theorem 2

Let signals 1, . . . , k (with k ≤ K) be a minimally spanning set that is optimal in its subspace.
We will demonstrate an open set of prior beliefs given which all agents observe these k
signals. Since these signals are minimally spanning, they must be linearly independent.
Thus we can consider linearly transformed states θ̃1, . . . , θ̃K such that these k signals are
simply θ̃1, . . . , θ̃k plus standard Gaussian noise. This linear transformation is invertible,
so any prior over the original states is bijectively mapped to a prior over the transformed
states. Thus it is without loss to work with the transformed model and look for prior beliefs
over the transformed states.

The payoff-relevant state ω becomes a linear combination w1θ̃1 + · · · + wkθ̃k. We may
without loss assume the weights wi are all positive. Moreover, since the first k signals are
optimal in its subspace, Lemma 5 implies that any other signal that belongs to this subspace
can be written as

k∑
i=1

αiθ̃i + N (0, 1)

with |
∑k

i=1 αi| < 1. On the other hand, if a signal does not belong to this subspace, it must
take the form of

K∑
i=1

βiθ̃i + N (0, 1)

with βk+1, . . . , βK not all equal to zero.
Now consider a prior belief such that θ̃1, . . . , θ̃K are independent from each other. Given

prior variances v1, . . . , vK , the reduction in the variance of w1θ̃1 + · · ·+wkθ̃k by any signal∑k
i=1 αiθ̃i +N (0, 1) is

(
∑k

i=1 αiwivi)
2

1 +
∑k

i=1 α
2
i vi

If v1, . . . , vk are small positive numbers and if the product wivi is approximately constant
across 1 ≤ i ≤ k, then the above is approximately (

∑k
i=1 αi)

2w2
1v

2
1. Since |

∑k
i=1 αi| < 1, we

deduce that any other signal belonging to the subspace of the first k signals is worse than

signal 1 (in the first period), whose variance reduction is
w2

1v
2
1

1+v1
.
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Meanwhile, take any signal that does not belong to the subspace. The variance reduction
by such a signal

∑K
i=1 βiθ̃i +N (0, 1) is

(
∑k

i=1 βiwivi)
2

1 +
∑K

i=1 β
2
i vi

As βk+1, . . . , βK are not all zero, the denominator above can be arbitrarily large if vk+1, . . . , vK
are chosen to be large. Then, this signal is again worse than signal 1 for the first agent,
similar to the situation in Example 4.

To summarize, we have shown that whenever the prior variances v1, . . . , vK satisfy the
following three conditions, the first agent chooses among the first k signals:

1. v1, . . . , vk are close to 0;

2. w1v1, . . . , wkvk have pairwise ratios close to 1;

3. vk+1, . . . , vK are large.28

To show that every agent chooses among the first k signals, it suffices to check that
starting from any prior beliefs satisfying the above conditions, the posterior beliefs after
observing a signal continue to satisfy these conditions. Since variances decrease over time,
the first condition is obviously satisfied. By independence, learning about θ̃1, . . . , θ̃k does not
affect the variances of the remaining states. So vk+1, . . . , vK are unchanged, and the third
condition is verified. Finally, the second condition holds for the posterior beliefs because

the signal i that is chosen has the greatest value of
w2

i v
2
i

1+vi
. This choice ensures that vi ∝ 1

wi
,

as shown also in Liang, Mu and Syrgkanis (2017). Hence Theorem 2 is proved.
Strictly speaking, the above construction does not provide an open set of prior beliefs

given which agents always observe the first k signals. This is because we restricted attention
to priors that are independent over θ̃1, . . . , θ̃K . But it could be shown that the argument
extends to mild correlation across states. We omit the somewhat cumbersome details, which
do not add any further intuition.

E Proof of Theorem 3

E.1 Preliminary Steps

Given any prior, let A ⊂ [N ] be the set of signals that are observed by infinitely many
agents. We first show that A is a spanning set.

Indeed, by definition we can find some period t after which agents only observe signals
in A. Also note that the variance reduction of any signal approaches zero as its signal
count gets large. Thus, along society’s signal path, the variance reduction is close to zero
at sufficiently late periods.

28Formally, we require that for some ξ > 0, it holds that v1, . . . , vk < ξ; max1≤i≤k wivi ≤ (1 + ξ) ·
min1≤i≤k wivi; and vk+1, . . . , vK > 1

ξ .
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If A is not spanning, society’s posterior variance remains bounded away from zero. Thus
in the limit where each signal in A has infinite signal counts, there still exists some signal
j outside of A whose variance reduction is strictly positive.29 By continuity, at sufficiently
late periods, observing signal j would reduce the variance by a positive amount. This is a
profitable deviation from observing some signal in A, leading to a contradiction!

Now that A is spanning, we can take S to be the optimal minimal spanning set in the
subspace spanned by A. To prove Theorem 3, we will show the long-run frequencies are
positive precisely for the signals in S. Ignoring the initial periods, it is without loss to assume
that only signals in A are available. It suffices to show that whenever the signals observed
infinitely often span that subspace, agents eventually sample from the optimal subset S. To
ease notation, we assume this subspace is the entire RK , and prove the following result:

Theorem 3 Restated. Suppose that the signals observed infinitely often span RK . Then
society eventually observes signals in S∗ with frequencies λ∗.

The next sections are devoted to the proof of this restatement.

E.2 Controlling the Derivatives

To study the posterior variance function f , it will be convenient to instead work with the
homogenous function f∗ we introduced in Lemma 3. We formalize this connection as follows:

Lemma 8. Suppose that signals in A span RK . Then, as qi →∞ for each i ∈ A,

f(q1, . . . , qN ) ∼ 1

t
· f∗

(q1

t
, . . . ,

qN
t

)
with t =

N∑
i=1

qi

The partial derivatives and second partial derivatives also satisfy the approximations

∂jf(q1, . . . , qN ) ∼ 1

t2
· ∂jf∗

(q1

t
, . . . ,

qN
t

)
∂jjf(q1, . . . , qN ) ∼ 1

t3
· ∂jjf∗

(q1

t
, . . . ,

qN
t

)
Proof. Recall that

f(q1, . . . , qN ) =
[
((V 0)−1 + C ′QC)−1

]
11
.

Since qi →∞ for i ∈ A, the least eigenvalue of the matrix C ′QC approaches infinity. That
is, for any ε > 0, it holds eventually that (V 0)−1 � ε · C ′QC in matrix order. Then

1

1 + ε
· [(C ′QC)−1]11 ≤ f(q1, . . . , qN ) ≤ [(C ′QC)−1]11.

29Formally, let s1, . . . , sN denote the limit signal counts, where si =∞ if and only if i ∈ A. Then
there exists j such that f(sj + 1, s−j) < f(sj , s−j). This is because if f(sj + 1, s−j) = f(sj , s−j) for
each j, then the partial derivatives of f at s are all zero. Since f is differentiable, this would imply
all directional derivatives of f are also zero. By the convexity of f , f(s) must achieve minimum
value. But by assumption there exists a spanning set, so f(q) = 0 if q1, . . . , qN are all infinite. This
contradicts f(s) > 0.
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Equivalently, this shows

1

(1 + ε)t
· f∗

(q1

t
, . . . ,

qN
t

)
≤ f(q1, . . . , qN ) ≤ 1

t
· f∗

(q1

t
, . . . ,

qN
t

)
.

Similar approximation holds for the derivatives, proving the lemma.

Lemma 9. Under the same assumptions as in Lemma 8, it holds that

∂jjf(q1, . . . , qN )

∂jf(q1, . . . , qN )
→ 0

and similarly
∂jjf

∗ ( q1
t , . . . ,

qN
t

)
t · ∂jf∗

( q1
t , . . . ,

qN
t

) → 0

Proof. It suffices to prove the first result. From f(q1, . . . , qN ) = e′1 · [(V 0)−1 +C ′QC]−1 · e1

we compute that

∂jf = −e′1 · [(V 0)−1 + C ′QC]−1 · cj · c′j · [(V 0)−1 + C ′QC]−1 · e1

and

∂jjf = 2e′1 · [(V 0)−1 +C ′QC]−1 · cj · c′j · [(V 0)−1 +C ′QC]−1 · cj · c′j · [(V 0)−1 +C ′QC]−1 · e1.

Let γj = e′1 · [(V 0)−1 + C ′QC]−1 · cj , which is a number. Then the above shows

∂jf = −γ2
j ; ∂jjf = 2γ2

j · c′j · [(V 0)−1 + C ′QC]−1 · cj .

Again, all eigenvalues of the matrix (V 0)−1 + C ′QC become large as qi → ∞ for i ∈ A.
Thus for arbitrarily large constant L, eventually (V 0)−1 +C ′QC � L · cjc′j in matrix norm.

Then the number c′j · [(V 0)−1 +C ′QC]−1 ·cj is arbitrarily small, and the above display shows
∂jjf is small compared to ∂jf .

The above lemmata imply that at sufficiently late periods along society’s signal path,
the variance reduction of any discrete signal can be approximated by the continuous partial
derivative of f (or f∗). A direct corollary is the following:

Lemma 10. For any ε > 0, there exists sufficiently large t(ε) such that if signal j is observed
in any period t+ 1 later than t(ε), then

∂jf
∗
(
m(t)

t

)
≤ (1− ε) min

1≤l≤N
∂lf
∗
(
m(t)

t

)
.

That is, the signal choice in any sufficiently late period almost minimizes the directional
derivative of f∗.
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E.3 (Pseudo) Gradient Descent of f ∗

We define λ(t) = m(t)
t ∈ ∆N−1. If j is the signal choice in period t + 1, then it is easily

checked that

λ(t+ 1) =
t

t+ 1
λ(t) +

1

t+ 1
ej .

The frequencies λ(t) move in the direction of ej , which is the direction where f∗ decreases
almost the fastest (by Lemma 10). Thus, the evolution of λ(t) over time resembles the
gradient descent dynamics—the value of f∗(λ(t)) roughly decreases over time, and we can
expect that eventually λ(t) approaches the unique minimizer λ∗ of f∗.

To formalize this intuition, we consider (for fixed ε > 0 and sufficiently large t)

f∗(λ(t+ 1)) = f∗
(

t

t+ 1
λ(t) +

1

t+ 1
ej

)
= f∗

(
t

t+ 1
λ(t)

)
+

1

t+ 1
· ∂jf∗

(
t

t+ 1
λ(t)

)
+O

(
1

(t+ 1)2
· ∂jjf∗

(
t

t+ 1
λ(t)

))
≤ f∗

(
t

t+ 1
λ(t)

)
+

1− ε
t+ 1

· ∂jf∗
(

t

t+ 1
λ(t)

)
=
t+ 1

t
· f∗(λ(t)) +

(1− ε)(t+ 1)

t2
· ∂jf∗(λ(t))

≤ f∗(λ(t)) +
1

t
· f∗(λ(t)) +

1− 2ε

t
· min

1≤l≤N
∂lf
∗(λ(t)).

(16)

The first inequality uses Lemma 9, the next equality uses the homogeneity of f∗, and the
last inequality uses Lemma 10.

Write λ = λ(t) for short. Observe that f∗ is differentiable at λ, since λi(t) > 0 for
i ∈ A, which spans the entire space. Thus the convexity of f∗ yields

f∗(λ∗) ≥ f∗(λ) +

N∑
j=1

(λ∗j − λj) · ∂jf∗(λ).

The homogeneity of f∗ implies
∑N

j=1 λj · ∂jf∗(λ) = −f∗(λ). This enables us to rewrite the
above display as

N∑
j=1

λ∗j · ∂jf∗(λ) ≤ f∗(λ∗)− 2f∗(λ).

Thus, in particular,
min

1≤l≤N
∂lf
∗(λ(t)) ≤ f∗(λ∗)− 2f∗(λ). (17)

Combining (16) and (17), we have for all large t:

f∗(λ(t+ 1)) ≤ f∗(λ(t)) +
1

t
· [(1− 2ε) · f∗(λ∗)− (1− 4ε) · f∗(λ(t))]. (18)

We claim this implies f∗(λ(t)) ≤ (1 + 4ε) · f∗(λ∗) holds for all large t. Indeed, if this holds
for some t, then (18) implies the same is true at future periods. It thus suffices to show
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the opposite inequality f∗(λ(t)) > (1 + 4ε) · f∗(λ∗) cannot hold at every large t. By (18),

that would give f∗(λ(t + 1)) ≤ f∗(λ(t)) − ε·f∗(λ∗)
t . But since the harmonic series diverges,

f∗(λ(t)) would then decrease without bound, leading to a contradiction!
Hence we have shown that for any fixed ε, f∗(λ(t)) ≤ (1 + 4ε) · f∗(λ∗) holds eventually.

As λ∗ is the unique minimizer of f∗, this implies λ(t)→ λ∗. Theorem 3 follows.

Remark 3. The above argument leaves open the possibility that some signals outside of S∗
are observed infinitely often, yet with zero long-run frequency. We conjecture this cannot
happen, but we are only able to show this when |S∗| = K.

Specifically, suppose |S∗| = K and mi(t) ∼ λ∗i · t,∀i, then we claim that the stronger
conclusion mi(t) = λ∗i · t + O(1) also holds.30 Together with Remark 2, this suggests that
the difference between mi(t) and the optimal ni(t) remains bounded.

To prove this claim, we assume without loss that S∗ = {1, . . . ,K} is the first K signals.
By the previously established (**), the first K partial derivatives of f∗ are equal at λ∗ and
they are strictly smaller (i.e., more negative) than the other partial derivatives. Since these
partial derivatives are continuous, we can find ε > 0 such that whenever λ is within ε
distance from λ∗, it holds that

∂if
∗(λ) < (1 + ε) · ∂jf∗(λ), ∀1 ≤ i ≤ K < j

By assumption we have λ(t) = m(t)
t → λ∗. Thus at sufficiently late periods, Lemma 10

implies that the signal choice must be within the first K signals. This shows signals outside
of S∗ are observed finitely often, as desired. And for any signal i in S∗, its signal count
satisfies mi(t) = λ∗i · t+O(1) by Proposition 1.

F Proof of Proposition 2

We will prove that given any prior belief, the planner can provide K − 1 sufficiently precise
signals so that once they are processed, society eventually observes the best set S∗. In fact,
the following argument shows that the planner can provide these free signals at any time t,
not necessarily before agents arrive.

The proof of the proposition closely resembles the proof of the restated Theorem 3,
see Appendix E. Indeed, with sufficiently high precision on the free signals, it is as if each
free signal has unit precision but is observed many times. Thus, as long as the K − 1 free
signals span b1, . . . , bK−1, the restated Theorem 3 applies since society eventually learns ω
anyways. Of course, the assumption of that theorem is not exactly satisfied, and one may
wonder whether observing a signal many times has the same consequence as observing it
infinitely often. In what follows we show how to resolve this concern.

Consider for simplicity that the planner provides L i.i.d. free signals in A ⊂ [N ], which
spans b1, . . . , bK−1. We are free to choose L by making γ sufficiently large. Then, at any
time t, the signal count mi(t) is at least L for each signal i ∈ A. Fix any ε > 0, there exists
such an L that the approximations in Lemma 8 and 9 hold up to a margin of error no more

30Thus, the conclusion of Corollary 5 can be strengthened.

42



than ε. That is, for Lemma 8, we now have

(1− ε) · f(q1, . . . , qN ) ≤ 1

t
· f∗

(q1

t
, . . . ,

qN
t

)
≤ (1 + ε) · f(q1, . . . , qN )

etc., and we similarly modify Lemma 9 to

|∂jjf(q1, . . . , qN )

∂jf(q1, . . . , qN )
| ≤ ε.

These hold because the signal precision matrix C ′QC eventually dominates the prior pre-
cision matrix (V 0)−1.

As a result, for any fixed ε, Lemma 10 still holds if we choose L to be sufficiently large.
We could then derive (16), (17) and (18) in the same way as before. This enables us to
conclude

f∗(λ(t)) ≤ (1 + 4ε) · f∗(λ∗)
at every late period t. Since we have fixed ε (and L), the above inequality does not by itself
imply λ(t)→ λ∗. However, if we had chosen ε to be sufficiently small, then λ(t) eventually
belongs to a small neighborhood of λ∗. In particular, for ε small the above display implies

λi(t) ≥
λ∗i
2 > 0 for each i ∈ S∗.

With such a choice of ε and corresponding L, we know that society observes each signal
in S∗ with positive frequencies. But Theorem 3 shows that the set of signals with positive
frequencies is a minimal spanning set. So this set must be S∗ itself, and the long-run
frequencies must be λ∗. Hence efficient learning is achieved, and Proposition 2 follows.

G Multiple Payoff-Relevant States

In this appendix, we consider optimal long-run acquisitions for the problem of predicting
multiple states. We assume that society seeks to minimize the sum of his posterior variances
about the K states. Formally, the planner’s objective function is to minimize

F (q1, . . . , qN ) = Tr
[
((V 0)−1 + C ′QC)−1

]
.

subject to the signal counts qi being integers and summing up to t. We use “Tr” to denote
the trace of a matrix.

The solution to this minimization problem turns out to be very complex when N > K.
To make the problem more tractable, we impose a further assumption that the signal
coefficient vectors ci have the same norm. This allows us to focus the analysis on the
directions of the signals, rather than their precisions.

Assumption 5 (Unit Norm). Each vector ci ∈ RK has norm 1.

Given this assumption, a basic question is to understand how fast society can jointly
learn about different states. If N = K and each signal is about an individual state, then
obviously society cannot do better (in the long run) than spending the same number ( t

K )
of observations on each signal. In so doing, its posterior variance at time t about each state
is approximately K

t , and the sum of these variances is K2

t . Our next result shows this is
asymptotically best, even when additional signals are available.
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Proposition 3. Under Assumption 5, we have

lim inf
q1+···+qN→∞

(q1 + · · ·+ qN ) · F (q1, . . . , qN ) ≥ K2.

For the special case of K = 2, we are able to determine the exact asymptotic variance
(the value of the LHS above) for any given set of signals, see later in this appendix. Deriving
the analogous result for general K is left for future work.

We highlight that unlike the case of a single payoff-relevant state, here the minimum
asymptotic variance can in general be achieved by more than one vector of frequencies.
Thus, the above results only describe agents’ payoffs at large t, but they do not pin down
agents’ optimal behavior. When qi is not restricted to integer values, Chaloner (1984)
showed that the minimum posterior variance at any fixed time t is achieved by focusing
on at most K(K+1)

2 signals. However, it is not known whether the same subset of K(K+1)
2

signals are observed for all large t, and her result also does not apply to our integer design
problem.

G.1 Proof of Proposition 3

We first show that
F ∗(λ) := lim

t→∞
t · F (λt) = Tr

[
(C ′ΛC)−1

]
(19)

If at least K of λ1, . . . , λN are positive, this follows from the previous formula for F . Suppose
instead that only λ1, . . . , λk are positive, with k < K. Consider the limit of Tr

[
(C ′ΛC)−1

]
as λk+1, . . . , λN approaches zero. In this limit, the K ×K matrix C ′ΛC approaches a rank
k matrix, so an eigenvalue of C ′ΛC approaches zero. This means an eigenvalue of (C ′ΛC)−1

approaches infinity, and since all its eigenvalues are non-negative by positive-definiteness,
we deduce Tr

[
(C ′ΛC)−1

]
→ ∞. Meanwhile, F (λt) is bounded away from zero since the

first k signals cannot identify all of the states ω, . . . , θK . Thus (19) always hold.
We need to show that if each signal coefficient vector ci has norm 1, then F ∗(λ) ≥ K2

for all λ ∈ ∆N−1. For this, consider the positive-definite K ×K matrix C ′ΛC. Let its K
(positive) eigenvalues be β1, . . . , βK , then we have

β1 + · · ·+ βK = Tr(C ′ΛC) =

N∑
i=1

λi

K∑
j=1

c2
ij =

N∑
i=1

λi = 1,

Observe that the eigenvalues of the inverse matrix (C ′ΛC)−1 are simply 1
β1
, . . . , 1

βK
. Thus,

by (19) and Cauchy-Schwartz inequality,

F ∗(λ) = Tr
[
(C ′ΛC)−1

]
=

1

β1
+ · · ·+ 1

βK
≥ K2

β1 + · · ·+ βK
= K2.

This proves Proposition 3.
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G.2 Characterization of Asymptotic Variance when K = 2

Suppose there are just two states and each signal has unit norm, we determine here the
exact value of minλ∈∆N−1 F ∗(λ) for any given coefficient matrix C. By what we have shown,
this value (divided by t) approximates the minimum of the objective function F that can
be achieved given t observations.

Applying Lemma 3 and adding up the variances about ω and θ2, we have for K = 2,

F ∗(λ) =

∑N
i=1 λi(x

2
i + y2

i )∑
1≤i<j≤N λiλj(xiyj − xjyi)2

,

where each signal coefficient vector ci = (xi, yi)
′. By Assumption 5, x2

i + y2
i = 1 for each

i. Thus the numerator above is exactly 1, and we only need to maximize the denominator.
It will be convenient to parametrize (xi, yi) = (cosφi, sinφi), with φi ∈ [0, π) distinct from
one another.31 Then, the denominator becomes∑
1≤i<j≤N

λiλj(xiyj − xjyi)2 =
∑

1≤i<j≤N
λiλj sin2(φi − φj) =

1

4
·
∑

1≤i<j≤N
λiλj(2− 2 cos(2φi − 2φj))

=
1

4
(λ1 + · · ·+ λN )2 − 1

4

N∑
i=1

λ2
i −

1

4

∑
1≤i<j≤N

λiλj2 cos(2φi − 2φj)

=
1

4
−

N∑
i,j=1

λiλj cos(2φi − 2φj)

=
1

4
−

(
N∑
i=1

λi cos 2φi

)2

−

(
N∑
i=1

λi sin 2φi

)2

.

This recovers the result of Proposition 3 that F ∗(λ) ≥ 4. More generally, given
φ1, . . . , φN , let ui = (cos 2φi, sin 2φi) be a vector/point lying on the unit circle. Then
society seeks to minimize (

∑N
i=1 λi cos 2φi)

2 +(
∑N

i=1 λi sin 2φi)
2, which is the squared norm

of the vector
∑N

i=1 λiui. Taking a geometric perspective, this problem is to choose a point in
the convex hull of points u1, . . . , uN that is closest to the origin. There are two possibilities:

1. Suppose the points u1, . . . , uN lie on a semi-circle. Without loss, we label u1 as the
point closest to one end of this semi-circle and u2 being closest to the other end. Then
the point in Conv(u1, . . . , uN ) that is closest to the origin is the mid-point between u1

and u2. In this case F ∗ is uniquely minimized at λ = (1
2 ,

1
2 , 0, . . . , 0). The minimum

value of F ∗ is strictly larger than 4 except when u1 = −u2 (equivalently, when the
original signal coefficients c1, c2 are orthogonal).

2. Suppose the points u1, . . . , uN do not lie on a semi-circle. Then their convex hull
contains the origin in the interior and in particular N > 2. We can find three of these
N points, say u1, u2, u3, such that the triangle connecting these three points contains
the origin. Then, F ∗ is minimized at λ = (λ1, λ2, λ3, 0, . . . , 0), where λ1, λ2, λ3 are

31φi ∈ [π, 2π) can be replaced by φi − π, corresponding to replacing the vector ci by −ci.
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unique weights such that λ1u1 + λ2u2 + λ3u3 = 0. In this case the minimum value of
F ∗ is exactly 4.

We note that in the latter case, whenever N > 3, there is not a unique set of three
points whose convex hull contains the origin. Thus F ∗ is not uniquely minimized, and we
cannot use the analogue of Lemma 4 to characterize society’s t-optimal divisions.
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