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Abstract

We use machine learning to uncover regularities in the initial play of matrix

games. We first train a prediction algorithm on data from past experiments.

Examining the games where our algorithm predicts correctly, but existing eco-

nomic models don’t, leads us to add a parameter to the best performing model

that improves predictive accuracy. We then observe play in a collection of new

“algorithmically-generated” games, and learn that we can obtain even better

predictions with a hybrid model that uses a decision tree to decide game-by-

game which of two economic models to use for prediction.
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1 Introduction

In most game theory experiments, equilibrium analysis is a poor predictor of the

choices that participants make the first time they play a new game. Initial play

does however have regularities, as for example shown by the fact that level-k models

(Stahl and Wilson, 1994), the Poisson Cognitive Hierarchy model (Camerer, Ho and

Chong, 2004), and related models surveyed in Crawford, Costa-Gomes and Iriberri

(2013) fit initial play reasonably well in many one-shot simultaneous-move games.

We use machine learning algorithms to discover new regularities in initial play,

and to improve upon existing models. We study the prediction of the action most

likely to be played in a given game. Throughout, we evaluate out-of-sample perfor-

mance, meaning we use different data for training the model and for testing it.1 We

report both the accuracy of the model and its completeness, which we take to be the

percentage of the possible improvement over random guessing, as in Peysakhovich

and Naecker (2017) and Kleinberg, Liang and Mullainathan (2017).2 Our improve-

ments on existing theories of initial play are of interest in their own right, but our

methods for using machine learning to extend and inform modeling are more gen-

eral. Their success here suggests that using machine learning techniques to inform

modeling may be useful in other domains within economics as well.

Our investigation proceeds in the following steps, which we first briefly summa-

rize, and then explain in more detail below.

(A) First, we train a decision tree to predict play in some past experiments. We

study the games where machine learning models predict well and existing models do

not, which leads us to formulate a one-parameter extension of level-1 play, level-1(α),

that makes better predictions.

(B) Next we run experiments on games with randomly determined payoffs, and

use that data to algorithmically generate new games that are designed to display

behaviors that are not captured by level-1(α).

(C) We then elicit play on the algorithmically generated games and train decision

trees on the new data. These decision trees suggest that, in the new games, whether

an action is part of a Pareto-dominant Nash equilibrium (henceforth PDNE) is a

good predictor of whether it will be played.

(D) Neither the level-1(α) model nor PDNE performs well when evaluated on

1 Increasing the flexibility of model—e.g. by adding additional parameters—results in weakly
better in-sample fit (where the training and testing data are the same). But increased flexibility
need not result in higher out-of-sample fit, as more complex models are more likely to overfit to the
training data.

2 Camerer, Ho and Chong (2004)’s related “economic value” compares the expected payoff that
results from best-responding to a theory’s forecast to the payoff that subjects actually obtained;
this measure cannot be computed without a prediction of the entire distribution of play.

1



the combined data set of all games (lab, randomly-generated, and algorithmically-

generated), but we obtain substantially better predictions by training a hybrid model

that decides when to make the level-1(α) prediction and when to make predictions

based on PDNE.

We now go into more detail for each of the steps above.

(A) Where and why do our decision trees perform better than level-1?

The initial data set we consider consists of play in symmetric 3×3 matrix games

from six experimental game theory papers. In 72% of these games, the modal ac-

tion was the action that maximizes expected payoff against the uniform distribution,

i.e. the level-1 action.3 Although the level-1 model performs quite well, our rela-

tively crude machine learning techniques (decision trees built on a set of features

that describe strategic properties of the available actions) lead to a substantial im-

provement.4 To understand the regularities that allow this improvement, we then

examine the 9 (out of 86) games where play is predicted correctly by our algorithm,

but not by level-1. Each of these games has an action whose average payoffs closely

approximate the level-1 action, but with lower variation in possible payoffs. Players

are more likely to choose this “almost” level-1 action than the actual level-1 action.

One explanation for this behavior is that players maximize a concave function over

game payoffs, as if they are risk averse. This leads us to extend the level-1 model to

level-1(α), which predicts the level-1 action when dollar payoffs u are transformed

under f(u) = uα (so that the usual level-1 model is level-1(1)).5 The performance

of this model shows how atheoretical prediction rules fit by machine learning algo-

rithms can help researchers discover interpretable and portable extensions of existing

models.

(B) Algorithmic Experimental Design

The strong performance of the level-1 prediction rule, and the even better perfor-

mance of level-1(α), are interesting in their own right, but leave open the question

of how widely these findings extend beyond our specific set of laboratory games.

We would like to understand how generally the level-1 model is a good description

of modal behavior, and also identify the games where it predicts poorly and what

behaviors it misses. To do this, we need data on play in new games.

Our first step was to construct games with randomly generated payoffs. We

found that the level-1(α) model was an even better predictor of play in these random

3 The best-performing version of the Poisson Cognitive Hierarchy model, which extends the
level-k model by assuming that types best respond to a Poisson distribution over lower level types,
is equivalent to the level-1 model when its free parameter τ is estimated from training data. See
Section 3.2.

4 See Table 2 in Section 3.2 for accuracy and completeness estimates.
5 As we discuss in Section 3.2, allowing for risk aversion parameter to generate better predictions

has many precedents in the experimental literature.
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games than in the lab games, making the correct prediction 89% of the time.6 In

principle we could still identify new regularities by examining data on a sufficiently

large set of randomly generated games, but it is more efficient to focus attention

on games where behavior is less likely to conform to the predictions of level-1(α).

To generate such games, we used an algorithmic approach: First, we trained a rule

for predicting the frequency of level-1(α) play based on the game matrix. Then, we

generated payoff matrices at random, filtered out all the games where the predicted

frequency of level-1(α) play was over 50%, and repeated until we had a set of 200

games.

(C) Learning From the the New Data

We elicited play in these “algorithmically designed” games on Amazon Mechan-

ical Turk (MTurk) with 40 subjects per game. The data from these games showed

that the algorithmic game generation procedure was effective in producing games

where level-1(α) performed poorly. Moreover, a decision tree trained on this data

substantially outperforms level-1(α) on this data, suggesting that there are regu-

larities in initial play that are not captured by level-1(α). Directly consulting this

tree did not yield new insights, since the best decision tree was complex and hard

to interpret. But a simple version of the decision tree (restricted to just two deci-

sion nodes) returns predictions consistent with Pareto Dominant Nash equilibrium

(PDNE).

(D) Hybrid Models

Our findings from the new games demonstrate that level-1(α), while highly pre-

dictive of play in the lab games and randomly-generated games, is outperformed in

other games by models such as PDNE that depend on both player’s payoffs, and so

are more suggestive of strategic behavior. This suggests that we could further im-

prove both our predictions and our understanding of initial play by learning which

games are well-predicted by level-1(α) and which games are better predicted by

PDNE.

Thus, we combine the level-1(α) model and PDNE into a hybrid model that first

chooses between the level-1(α) model and PDNE, and then makes the corresponding

prediction. To do this, we train regression trees to forecast the accuracies of these

two ways of making predictions, and then use the model with the higher predicted

accuracy. Our combination of the easily-interpreted level-1(α) model and PDNE

is a hybrid “meta-model” that uses an algorithmic structure to combine simple

behavioral/economic models. This hybrid model outperforms either of its parts,

6 As discussed in Section 4.1, this is partly because the games with randomly generated payoffs
tended to be “strategically simpler”: compared to the lab games, the games with random payoffs
were more likely to be dominance solvable, more likely to include a strictly dominated action, and
less likely to have three or more pure-strategy Nash equilibria.
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which shows that there are useful methods that straddle the “behavioral versus

algorithmic” dichotomy.

1.1 Background Information and Related Work

As the Crawford, Costa-Gomes and Iriberri (2013) survey shows, there is an ex-

tensive literature that models initial play in matrix games. Most of these papers

use some variant of “cognitive hierarchies,” whose starting point is the specification

of a “level-0” or unsophisticated player who is assumed to assign equal probability

to each action. The various models then use the level-0 type to build up a richer

specification of play.7

The simplest model of initial play is “level-1,” which assumes that the whole pop-

ulation plays a best response to level-0. As we will see, this model does a reasonably

good job of predicting the most likely (i.e. modal) action in many games, but there

is substantial room for improvement. Our goal is to identify alternative models that

are not only better at predicting play, but also interpretable and portable. In this

respect our work is analogous to the extensions of the Poisson Cognitive Hierarchy

model proposed by Leyton-Brown and Wright (2014) and Chong, Ho and Camerer

(2016), which modify the specification of level-0 play.8 Our paper is similar in spirit

to Fragiadakis, Knoepfle and Niederle (2016), which tries to identify the subjects

whose play has regularities that are not captured by cognitive hierarchies.

Our paper is also related to other papers that have focused on improving pre-

diction of play in games, including Ert, Erev and Roth (2011), which compares

the performance of various models of social preference (and their combinations) for

predicting play in a class of extensive-form games, and Sgroi and Zizzo (2009) and

Hartford, Wright and Leyton-Brown (2016), which develop deep learning techniques

for predicting play. These papers differ from ours in that their emphasis is predictive

accuracy, instead of deriving conceptual lessons or portable models.

There is also an extensive literature on the prediction of play in repeated inter-

actions with feedback, where learning plays an important role; see e.g. Erev and

Roth (1999), Crawford (1995), Cheung and Friedman (1997) and Camerer and Ho

(1999). In this paper, we consider only initial play, leaving open the question of how

machine learning methods can contribute to our understanding of play in repeated

7 Outside of the domain of matrix games, modelers sometimes specify other choices for level-0,
for example Crawford and Iriberri (2007) study “truthful” level-0’s in an incomplete-information
auction.

8 Leyton-Brown and Wright (2014) replaces the specification of level-0 from uniform play with
a weighted linear model based on five game features, and Chong, Ho and Camerer (2016) defines
the level-0 player to randomize only over actions that are “never-worst.”
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settings.9

Our hybrid models are a form of “mixture of experts” (Masoudnia and Ebrahim-

pour, 2014). They are related to methods such as “model trees” (Quinlan, 1992),

which are decision trees that select between various parameters of linear regression

models, and to “logistic model trees” (Landwehr, Hall and Frank, 2005), which re-

place linear regression with logistic regression to adapt model trees to classification

tasks.

2 Predictions and Their Performance

2.1 Prediction Task

Throughout the paper we consider only 3 × 3 matrix games. The set of games is

G = R18, and we use g to denote a typical game.

The prediction task we study is a classification problem: given a game, we seek

to predict the action most frequently chosen by the row player (i.e. the modal row-

player action in the observed play). The classification rules for this task are easier

to understand than those for predicting distributions, and thus allow for a clearer

exposition of our methods.10

For this problem, a prediction rule is a mapping f : G→ A1 from games to the

set of row player actions.

2.2 Prediction Rules

We evaluate several rules for predicting the modal action in a game. We first consider

Nash equilibrium, the level-k models of Stahl and Wilson (1995), and the Poisson

Cognitive Hierarchy model of Camerer, Ho and Chong (2004).

Uniform Nash. Predict at random from the set of row player actions that

are part of a pure-strategy Nash equilibrium profile.

Level-1. Following Stahl and Wilson (1994, 1995), define a player to be “level-

0” if he randomizes uniformly over his actions. The level-1 prediction rule assigns

to each game the best response to a level-0 player—we will also refer to these best

9 Camerer, Nave and Smith (2017) uses machine learning to predict play in a repeated bargaining
game.

10 In an earlier version of this paper we considered the problem of predicting the distribution of
play. Our results there suggested that hybrid models have potential to be useful for that problem
as well, although the improvements were smaller than those we report here.
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responses as level-1 actions. When the level-1 prediction is not unique, we randomize

over the set of level-1 actions.

Poisson Cognitive Hierarchy Model (PCHM). Following Camerer, Ho

and Chong (2004), define level-0 and level-1 as above and define the play of level-k

players, k ≥ 2, to be the best responses to a perceived distribution

gk(h) =
πτ (h)∑k−1
l=0 πτ (l)

∀ h ∈ N, h < k, (1)

over (lower) opponent levels, where πτ is the Poisson distribution with rate param-

eter τ .11 The predicted distribution over actions is based on the assumption that

the actual proportion of level-k players in the population is proportional to πτ (k).

We predict the mode of this aggregated distribution.

Prediction rules based on game features. In addition to the methods de-

scribed above, we introduce prediction rules based on features that describe strate-

gic properties of the available actions. For each action, we define an indicator

variable for whether the action has each of the following properties: whether it

is part of a pure-strategy Nash equilibrium, whether it is part of a pure-strategy

Pareto-dominant Nash equilibrium (i.e. its payoffs Pareto-dominate the payoffs of

all other Nash equilibria),12 whether it is part of an action profile that maximizes

the sum of player payoffs (altruistic in Costa-Gomes, Crawford and Broseta (2001)

and efficiency in Leyton-Brown and Wright (2014)), whether it is part of a Pareto-

dominant Nash equilibrium, whether it is level-k (for each k ∈ {1, 2, . . . , 7}) and

whether it allows for the highest possible row player payoff (optimistic in Costa-

Gomes, Crawford and Broseta (2001) and max-max in Leyton-Brown and Wright

(2014)) or maximizes the minimum row player payoff (pessimistic in Costa-Gomes,

Crawford and Broseta (2001)). We also include a score feature for how many of the

above properties each action satisfies as a richer expression of how appealing the

action seems.

We use a decision tree algorithm to learn predictive functions from these features

to outcomes. Decision trees recursively partition the feature space and learn a (best)

constant prediction for each partition element. We consider trees that use only a

single feature to determine the split at each node, and use the standard approach of

building up the decision tree one node at a time using a greedy algorithm. Thus the

first node is the best single split, the second node is the best second split conditional

11 Throughout, we take τ to be a free parameter and estimate it from the training data.
12 Note that a unique Nash equilibrium is always Pareto-dominant.
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on the first, and so forth. When we say “best decision tree, ” we mean the tree

grown using this method that achieves the highest out-of-sample accuracy. Using

other algorithms such as random forests and 2-layer neural nets does not yield

improvements for this data set (see Appendix B), and the outputs of these alternative

algorithms are harder to interpret, so we focus on decision trees in the main text.

2.3 Performance Measure

An observation is a pair (g, a) consisting of a game g and the action a most frequently

chosen by subjects in the role of the row player in that game, i.e. the modal row-

player action. Given a set {(gi, ai)}ni=1 of n games and their modal actions, we

measure the accuracy of prediction rule f using

1

n

n∑
i=1

1(ai = f(gi)).

This is the fraction of games gi in which the predicted modal action f(gi) is indeed

the observed modal action ai in that game.13

We call the ideal prediction rule the rule that assigns to each game the observed

modal action in that game, and so predicts perfectly. This benchmark is idealized

because it uses knowledge of the test set, and also because the modal action in

our data may not be the one we would have seen with more data. In Appendix

D we report completeness measures relative to two alternative benchmarks that do

not have these features.14 We use the prediction rule that corresponds to guessing

uniformly at random as a naive baseline; this yields an expected accuracy of 1/3.

Unless explicitly stated otherwise, we report tenfold cross-validated prediction

accuracies. This means that we divide the games into ten folds, use the games in

nine of the folds for training, and use the remaining games for testing. The reported

accuracy is averaged across the different choices of test fold. The reported standard

errors for the cross-validated prediction accuracies are the standard deviation of

prediction accuracies across choices of test sets, divided by
√

10, because we use 10

folds (see Hastie, Tibshirani and Friedman (2009) for procedural details).15 Some

13 We consider a related accuracy measure in Appendix C, where accuracy is the number of
instances of play that are predicted correctly. With this accuracy measure, it is more important to
correctly predict the modal action in games where the modal action is played more frequently. The
performance ranking of the models could in principle change, but we find that it stays the same.

14 The associated completeness measures are higher for all models—and in some cases substan-
tially higher—so the completeness measures that we report in the main text should be understood
as conservative estimates.

15 This is a standard approach for computing the standard error of a cross-validated prediction
accuracy, although it ignores correlation across the folds.
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of our prediction algorithms do not require estimation from a training set, and for

these prediction algorithms we report bootstrapped standard errors.16

3 Laboratory Games

3.1 Laboratory Data

Our data on play in laboratory experiments consists of all 3 × 3 matrix games in

a data set collected by Kevin Leyton-Brown and James Wright (see e.g. Leyton-

Brown and Wright (2014)). This data includes 40-147 observations of play in each

of 86 symmetric 3×3 normal-games.17 Some of these observations were row players

and some were column players, but since the games we consider are symmetric, we

label all observed actions as row-player actions. Table 1 lists the number of games

and the number of observations from each paper.

Paper Games Total # of Observations

Stahl and Wilson (1994) 10 400

Stahl and Wilson (1995) 12 576

Haruvy, Stahl and Wilson (2001) 15 869

Haruvy and Stahl (2007) 20 2940

Stahl and Haruvy (2008) 18 1288

Rogers, Palfrey and Camerer (2009) 17 1210

Total 86 6887

Table 1: Original sources for the lab play data.

The subject pool and payoff scheme differ across the six papers, but all of them

use anonymous random matching without feedback: participants play each game

only once, are not informed of their partner’s play, and do not learn their own

payoffs until the end of the session.

3.2 Results

Table 2 reports the accuracies and completeness measures of our prediction rules on

the lab data. When evaluating the PCHM, the best-performing τ (estimated from

training data) returns the level-1 prediction rule, so we report the performance of

16 We re-sampled our data 100 times and evaluated the model on each of these data sets. We
report the standard deviation of the prediction accuracies.

17 Our data set does not have individual-level subject identifiers.
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these two models together.18,19

Accuracy Completeness

Guess at random 0.33 0%
Uniform Nash 0.42 13%

(0.05)
Level-1/PCHM 0.72 58%
Decision tree 0.77 66%

(0.04)
Ideal prediction 1 100%

Table 2: Predicting the modal action in lab data.

We find that the PDNE rule and the uniform Nash prediction rule are only

slightly better than guessing at random. In contrast, the level-1 model achieves a

substantial improvement, increasing completeness to 58%. The decision tree (re-

ported in Appendix E.1) based on game features performs better still, achieving a

completeness of 66%.

Out of the 86 lab games, modal play is level-1 in 62 of the games. Moreover, there

are nine games in which the modal action is not level-1 but is correctly predicted

by the decision tree. The performance of the decision tree on those nine games

gives us reason to believe that there is a systematic pattern to play in these games,

beyond what is already captured by the level-1 model. We thus examine these

games, displayed in Figure 1, and search for additional regularities.

18 We find that prediction error is minimized at all values of τ in the interval (0, 1.25]. The values
of τ in this range all yield prediction of the level-1 action for the games in our data sets.

19 PCHM (and other variants we consider) better fit the distribution of actions, as we showed
in an earlier version of the paper.
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a1 a2 a3 Actual Freq:

a1 47,47 51,44 28,43 51%

a2 44,51 11,11 43,91 19%

a3 43,28 91,43 11,11 30%

a1 a2 a3 Actual Freq:

a1 45,45 50,41 21,40 81%

a2 41,50 0,0 40,100 6%

a3 40,21 100,40 0,0 13%

a1 a2 a3 Actual Freq:

a1 0,0 35,55 100,30 34%

a2 55,35 40,40 20,0 65%

a3 30,100 0,20 0,0 0%

a1 a2 a3 Actual Freq:

a1 15,15 0,0 0,100 0%

a2 0,41 90,90 10,0 56%

a3 100,0 0,21 20,20 44%

a1 a2 a3 Actual Freq:

a1 20,20 30,40 100,30 35%

a2 40,30 40,40 60,0 65%

a3 30,100 0,60 40,40 0%

a1 a2 a3 Actual Freq:

a1 1,1 0,10 0,100 0%

a2 10,0 90,90 10,5 62%

a3 100,0 5,10 20,20 38%

a1 a2 a3 Actual Freq:

a1 35,35 39,47 95,40 11%

a2 47,15 51,51 67,15 82%

a3 40,100 15,67 47,47 7%

a1 a2 a3 Actual Freq:

a1 10,10 10,15 10,100 2%

a2 15,10 80,80 15,0 57%

a3 100,10 0,15 30,30 41%

a1 a2 a3 Actual Freq:

a1 25,25 30,40 100,31 44%

a2 40,30 45,45 65,0 52%

a3 31,100 0,65 40,40 4%

Figure 1: The decision tree correctly predicted the most frequently played action
(in italics). The level-1 action is in bold.
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Examining these games reveals a common feature: In each game, some action

that is not level-1 yields an expected payoff against uniform play that is nearly as

high as the level-1 payoff, and moreover has lower variation in possible row payoffs.

Consider the first game in Figure 1. Action a3 is the level-1 action in this game, but

the expected payoff to action a1 is not much smaller (42 vs. 48.33), and choosing

action a1 yields significantly lower variation in possible row player payoffs.20 In our

data, more subjects choose action a1 than action a3. This behavior appears in all of

the nine games shown above: subjects preferred actions that were “almost level-1”

when those actions yielded lower variation in payoffs.

We can modify the level-1 model to account for this regularity. Specifically,

because the departure from level-1 behavior is consistent with a risk averse utility

function over payoffs, we consider an alternative model in which players maximize

against a uniform distribution of opponents’ play (as in level-1), but the dollar

payoffs u are transformed under f(u) = uα. We call the resulting model level-1(α);

the standard level-1 model is nested as α = 1. Table 3 compares the prediction error

of level-1(α) with the original model.21 We find that introducing this risk aversion

parameter reduces prediction error substantially, achieving the prediction error of

the best decision tree (with an estimated value α∗ = 0.625).

By focusing our attention on the 9 games where the tree predicted correctly but

level-1 did not, our machine learning model allowed us to detect a new empirical

regularity. Thus, the success of level-1(α) demonstrates how atheoretical prediction

rules can help us identify parametric extensions of existing models that generate

better predictions.

Accuracy Completeness

Level-1 0.72 58%
Decision Tree 0.77 66%

(0.04)
Level-1(α) 0.79 69%

(0.04)

Table 3: Introducing risk aversion improves level-1.

Risk aversion strikes us as a natural interpretation of the α parameter, and

there is substantial evidence that small stakes risk aversion is a better description

of laboratory play choices than is risk neutrality. That said, risk aversion is only

one interpretation, and risk aversion for such small stakes is hard to reconcile with

20 Depending on which action the column player takes, the row player will receive one of
{43, 91, 11} if he (the row player) chooses a3, compared to {47, 51, 28} if he chooses a1.

21 Once again, the PCHM did not yield an improvement.
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standard expected utility theory (see e.g. Rabin (2000)).22

4 Generating New Games

The strong performance of the level-1 prediction rule, and our subsequent extension

to level-1(α), are interesting in their own right, but leaves open the question of

whether this performance is special to our specific set of laboratory games. We would

like to understand whether the level-1(α) model is generally a good description of

modal behavior. If there are games in which it does not predict well, we would like

to know what these are, and what behaviors the model misses. To answer these

questions, we need a larger and more varied set of games.

In a first attempt to generate such games (Section 4.1) , we constructed 200

games with randomly generated payoff matrices. These games do not have the

special structure of the experimentally designed games, so they test the robustness

of our findings, and also give us an opportunity to discover new behaviors.

We find that the level-1(α) model is an even better predictor of modal play

in these randomly-generated games than in the laboratory games. This finding is

reassuring, since it tells us that the performance of level-1(α) in the laboratory

games was not a quirk of the design of these games. But it also means that studying

play in random games is an inefficient way to uncover new regularities. If we want

games in which the level-1(α) action is not modal, we need a more sophisticated

approach for game generation.

One option would have been to hand-craft games where we conjectured that

play would depart from level-1(α). Instead, we tried to learn this structure from our

data. To do this, we trained a machine learning algorithm to predict the frequency

of play of the level-1(α) action, and then selected games that achieved low predicted

frequencies according to this algorithm. This “algorithmic game generation” is

described in detail in Section 4.2.

4.1 Random Games

Our first auxiliary set of games consists of 200 payoff matrices generated from a

uniform distribution over {10, 20, . . . , 90}18. This scale was chosen to match the lab

experiments described above, although unlike in the previous section the randomly

22 Rabin suggested loss aversion as an explanation for apparent risk aversion, but loss aversion
is not applicable when all of the gambles are in the gains domain, as in Holt and Laury (2002)
and our data. Fudenberg and Levine (2006, 2011) instead explain small stakes risk aversion as a
combination of a self control problem and the “narrow bracketing” proposed by Shefrin and Thaler
(1988). More recently, Khaw, Li and Woodford (2018) explains small stakes risk aversion as a result
of “cognitive imprecision.”
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generated games are not symmetric. We presented each of 550 MTurk subjects with

a random subset of fifteen games, and asked them to play as the row player.23

Subjects faced the following incentives: On top of a base payment of $0.35,

they were told that one of the fifteen games would be chosen at random, and their

action would be matched with another subject who had been asked to play as the

column player. Their joint moves determined payoffs that were multiplied by $0.01

to determine the subject’s bonus winnings (ranging from $0.10 to $0.90).24,25

Relative to the random games, the games played in lab experiments have more

pure-strategy Nash equilibria and a higher number of rationalizable actions, as

shown in Figure 2. These differences are large, suggesting that the set of lab games

is indeed different from what we would expect in a random sample.

Figure 2: (a) Percentage of games with zero, one, two, three, or at least four pure
strategy Nash equilibria; (b) Percentage of games with one, two, or three actions
surviving iterated elimination of (pure-strategy) dominated actions.

Table 4 reports prediction accuracies for this new data set. We find that level-

1(α) again improves upon the level-1 model.26 Moreover, both models perform very

well—in fact, achieving higher predictive accuracies than they did on the lab data.

The level-1(α) model predicts the modal action correctly in 92% of new instances,

and achieves 88% of the achievable improvement over random guessing. (Note that

23 Each game was shown to 25-58 subjects, and the average number of responses per game was
41.25.

24 We restricted the subject pool to MTurk participants in the United States who had an approval
rate of 75% or higher. Subjects spent an average of seven minutes on the task, and the average
payment was $0.93, or $8.14 an hour. (This is a typical hourly wage for MTurk.) The minimum
payment was $0.45 and the maximum payment was $1.25; the standard deviation of payments was
$0.23. The complete set of instructions can be found in the Online Appendix.

25 In addition to eliciting play, we asked subjects to volunteer a free-form description of how they
made their decisions. A selection of answers can be found in the Online Appendix.

26 The value of α estimated on this data set is α = 0.41.
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in contrast to the lab data, the level-1 variants are not outperformed by the best

decision tree.27)

Accuracy Completeness

Guess at random 0.33 0%
(0.02)

Uniform Nash 0.57 36%
(0.03)

Decision Tree 0.86 79%
(0.02)

Level-1 0.87 81%
(0.01)

Level-1(α) 0.92 88%
(0.02)

Ideal prediction 1 100%

Table 4: Predicting the modal action in the random games.

The improved performance of level-1 here may be due to differences between

the games that were crafted by experimenters and those with randomly generated

payoffs, as discussed above. A second possibility is that the improvement is driven

by differences between the laboratory subjects and the MTurk subjects. Indeed, we

might expect that MTurk subjects are less sophisticated about the strategic aspects

of the game, and hence are more likely to choose the level-1 action. To separate

this subject-based explanation from the previous game-based explanation, we ran

another experiment in which we asked MTurk subjects to play the lab games. In

this new data, the level-1 model achieved a prediction accuracy of 0.68, which is

much closer to the prediction accuracy of 0.72 we found for the lab games (Table 2)

than the accuracy in the random games of 0.87 (Table 4). This suggests that the

improved performance of level-1 on the new data set of randomly generated games is

driven at least in part by the difference in the strategic structures of the games—our

subsequent results will reinforce this view.28

27 Although the level-1 model can always be reproduced by the decision tree algorithm given the
set of features we have defined, the estimated tree varies depending on the training data. Table 4
thus says that it would be better to simply force the decision tree to use the level-1 model, instead
of giving it the flexibility to learn alternative models from our feature set. Note also that there
may well be other feature sets and other learning algorithms that would do better than the level-1
model here.

28 Many authors have considered how much behavior in laboratory experiments resembles be-
havior on MTurk. While there are some differences, the consensus seems to be that the two types
of data are similar. See e.g. Paolacci, Chandler and Ipeirotis (2010) “experimenters should con-
sider Mechanical Turk as a viable alternative for data collection”; Rand (2012) “. . . evidence that
data collected (on MTurk) is valid, as well as pointing out limitations” ; Mullinix et al. (2015)
“The results reveal considerable similarity between many treatment effects”; Thomas and Clifford
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Collectively, these results reveal that the structure of the laboratory games made

level-1 play less prevalent, which suggests that subjects are most likely to depart

from level-1 play exactly in games that are “strategically interesting.” Thus, to

identify regularities in play beyond level-1(α), we need more games that will induce

such behaviors. One approach would be to hand-craft games along the lines of the

original lab games, or to select games with specific features expected to lead to

interesting findings, as in Stahl (2000). Instead, as described in subsection 4.2, we

automated the game generation procedure by conjecturing many different strategic

features that could be relevant, and then using machine learning to select which

games were more likely to induce departures from level-1(α) play.

4.2 Algorithmic Experimental Design

We first trained an algorithm on the data in both the lab games and the randomly-

generated games to predict the frequency which which the level-1(α∗) action was

played. Throughout, we fix α∗ = 0.625 (our estimate of α from Section 3.2).29

For training, we used bootstrap-aggregated decision trees (also known as bagged

decision trees).30 These trees were built on a feature set describing various strategic

properties of the game (see Appendix A.2 for the complete feature set), chosen

based on our conjectures of what might determine the attractiveness of the level-

1(α∗) action.

For example, one feature we thought might matter is whether the level-1 action is

part of a pure-strategy Nash equilibrium. Another feature is the difference between

the sum of possible row player payoffs given play of the level-1 action and the next

(2017) “. . . insufficient attention is no more a problem among MTurk samples than among other
commonly used convenience or high-quality commercial samples, and. . . that employing rigorous
exclusion methods consistently boosts statistical power without introducing problematic side ef-
fects.” Finally, Snowberg and Yariv (2018) find that behavior in their MTurk data is closer to that
in their nationally-representative survey data than is the behavior in their student data.

29 We needed to fix the value of α since we could not anticipate the best-fit value of α for play
on the yet-to-be designed games.

30 This algorithm generates bootstrap samples of the training data and uses each sample to train
a tree. The predictions of the different trees are averaged for out-of-sample prediction. Bagged
trees are generally considered more predictive but less interpretable than the single decision tree
(Breiman, 1994). To generate games where level-1(α∗) is not common, we care only about successful
predictions, so we use tree ensembles, while elsewhere we rely on single decision trees to make it
easier for us to interpret our results.
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highest row sum. In the game below, this “row sum gap” takes a value of 20:

a1 a2 a3 Row Sum

a1 40, 40 20, 30 0, 20 60

a2 30, 20 20, 20 100, 10 150

a3 20, 0 10, 100 100, 100 130

Yet another feature is whether the game contains a Nash equilibrium that yields

“high payoffs” (specifically, at least 75% of the largest payoff sum31) and is not

level-1—for example, the action profile (a3, a3) above.

After training a tree ensemble to predict the frequency of play of the level-1(α∗)

action, we used it to generate a new data set of symmetric games. We started by

randomly generating a set of 200 games whose row player payoffs were selected from

the empirical payoff distribution from the lab data set, with the column player pay-

offs chosen symmetrically. Then, we applied our algorithm to predict the frequency

of play of the level-1(α∗) action in those games. We eliminated all games in which

the predicted frequency was larger than 1/2, and randomly generated new games to

replace them, repeating this procedure until all games were predicted to have less

than 1/2 frequency of play of the level-1(α∗) action.32,33

A typical game generated by the algorithm is the following:

a1 a2 a3
a1 90, 90 30, 80 45, 30

a2 80, 30 55, 55 37, 5

a3 30, 45 5, 37 70, 70

Note that this game has three pure-strategy Nash equilibria: (a1, a1), (a2, a2), and

(a3, a3). The level-1(α∗) action is a2, but the expected payoff of a1 against uniform

play is close to the payoff from a2, and a1 is also part of a Pareto-dominant Nash

equilibrium.

In general, while the randomly-generated games were strategically simple, the al-

gorithmically designed games exaggerate strategic complexity. For example, Figure

31 We chose the cutoff 75% somewhat arbitrarily, although in the subsequent Section 6 we intro-
duce variations on this feature that use different cutoffs.

32 The threshold 1/2 was chosen somewhat arbitrarily. Our tree ensemble very rarely predicted
frequencies lower than 0.4, so our choice of 1/2 was guided by our desire to both have a low threshold
and also have sufficiently many instances where the frequency of level-1(α∗) is predicted to be below
the threshold.

33 Our approach is related in spirit to adversarial machine learning Huang et al. (2011) and
generative adversarial networks Goodfellow et al. (2014) in that we are generating instances to
trick the level-1(α∗) model. Here, though, our goal is to design new instances for data collection.
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3 replicates Figure 2 with the new games added in, and shows that the distribution

of the number of pure-strategy Nash equilibria in the new games (as well as the num-

ber of rationalizable actions) first-order stochastically dominates the corresponding

distribution in the lab games.

We elicit play in these new games on MTurk (using an identical experiment to

the previous section), collecting 40 observations per game.

Figure 3: (a) Percentage of games with zero, one, two, three, or four pure strategy
Nash equilibria (no games had more than four Nash equilibria); (b) Percentage
of games with one, two, or three actions surviving iterated elimination of (pure-
strategy) dominated actions.

5 Preliminary Lessons from the New Data

Table 5 reports the prediction accuracies of our best decision tree and of the models

used above. We evaluate these approaches first on the new set of algorithmically

designed games, and then separately on the full data set of games (consisting of the

lab games, the randomly-generated games, and the algorithmically designed games).
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Algo Games Only All Games

Accuracy Completeness Accuracy Completeness

Guess at random 0.33 0% 0.33 0%
Uniform Nash 0.43 15% 0.49 24%

(0.03) (0.02)
Level-1 0.36 5% 0.64 46%
Level-1(α) 0.38 7% 0.68 52%

(0.02) (0.02)
Decision Tree 0.67 51% 0.70 55%

(0.03) (0.03)
Ideal prediction 1 100% 1 100%

Table 5: Predicting the modal action

The algorithmically designed games were selected to be poor matches for the

level-1 models, and we find that they succeed in this goal: the level-1(α) model

correctly predicts the modal action in only 38% of games, achieving a completeness

of 7%. (Recall that level-1(α) achieved an completeness of 58% for the lab games

and 84% for the randomly-generated games.) In the aggregated data, the accuracy

of level-1(α) is 0.66 and its completeness is 34%.34

The best decision tree in the algorithmically designed games is complex and

hard to interpret, so we present the best 2-split decision tree instead, which achieves

an accuracy of 0.6235; this is still substantially better than either uniform Nash or

level-1(α) but below the 0.67 of the best tree. This 2-split tree, shown in Figure 4,

is very simple: if there is a Pareto-dominant Nash equilibrium, the tree predicts it;

otherwise the tree defaults to action a3.
36

34 The best-performing value of α for the algorithmically designed games is 0.97, but given that
play in these games is poorly predicted by the level-1(α) model, it is not clear that this parameter
estimate has a meaningful economic interpretation.

35 The standard error of the accuracy is 0.02.
36 When we report trees such as this one, we report the tree estimated on the full data set, since

the trained tree potentially fluctuates across choices of training data. This 2-split tree was produced
on seven of the ten training sets.
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Is action a1 part of a
Pareto-dominant NE?

predict a3predict a2

Is action a2 part of a
Pareto-dominant NE?

predict a1

NoYes

NoYes

Figure 4: Best 2-split decision tree for the algorithmically designed games.

Motivated by this tree, we introduce the following rule:

Pareto-Dominant Nash Equilibrium (PDNE). We predict at random from

the set of row player actions ai such that (ai, aj) is a pure-strategy Nash equilib-

rium whose payoffs Pareto-dominate the payoffs in every other pure-strategy Nash

equilibrium. If this set is empty, we predict an action uniformly at random.

This PDNE rule substantially outperforms level-1(α) on the algorithmically gen-

erated games, achieving an acccuracy of 0.65 and completeness of 48% (compare to

0.38 and 7%). It does not outperform level-1(α) on the set of all games, where it

achieves an accuracy of 0.56 and completeness of 34% (compare to 0.68 and 52%).37

The differences in play and model fit across data sets highlights the importance of

the experimental-design process for the resulting findings. It also raises the question

of which distributions over games are the most economically relevant. We find this

question difficult to answer, in part because 3× 3 games are themselves a simplified

representation of real-world interactions. In what follows we will report results on

the combined set of all games.

Note also that while PDNE and level-1(α) respectively achieve accuracies of 0.56

and 0.68 on our full data set, the best decision tree achieves an accuracy of 0.70.

This increased accuracy suggests that there is additional structure to discover. One

possibility is that there are regularities beyond PDNE and level-1(α), but another

possibility is that PDNE and level-1(α) are good predictors of play in different

37 Note that the differences in the performance of PDNE across these data sets is not simply
because there are more Pareto-Dominant NE in the algorithmically-generated games. In fact, the
fraction of Pareto-Dominant NE is largest in the set of random games (70%), and comparable in
the laboratory games (52%) and the algorithmically designed games (59%).
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games, so that neither model on its own performs well on our aggregate data set.

Table 6 provides evidence supporting the second hypothesis:

XXXXXXXXXXXPDNE

Level-1(α)
Right Wrong

Right 155 115

Wrong 175 41

Table 6: There are many games where level-1(α) predicts correctly while PDNE
does not, and vice versa.

This suggests that, if we can predict when PDNE is a good model of play and when

level-1(α) is better, we can improve upon both component models. We explore this

idea in the next section.

6 Hybrid Models

There are many possible ways combine level-1(α) and PDNE to make predictions.

Perhaps the simplest is to use a “lexicographic rule” that predicts the PDNE when

a PDNE exists and otherwise uses level-1(α). This rule improves on both of its

components in the overall data set, due to its superior performance on the algo-

rithmically generated games, but does worse than level-1(α) both on the lab games

(which may have been designed to elicit non-Nash play) and also on the random

games.38

We would like to find a better way to combine these two prediction rules, and

moreover do so in a way that can be extended to combine arbitrary classification

rules. To this end, we take the following approach: First, we estimate each model

on the training data (if it has free parameters—note that PDNE does not). We then

use the estimated model to predict the modal action in each game in the training

data. Thus for each model we have a binary vector of accuracy outcomes (“correctly

predicted” versus “incorrectly predicted”) across the games in the training data. We

then fit a regression tree39 to predict a probability with which the model chooses

the the correct action, based on the feature set described above in Section 4.2 (and

reported in Section A.2). This returns, for each model, an algorithm that maps

game features into a probability that the model’s prediction is correct.

On out-of-sample games, we use the “accuracy prediction algorithms” to predict

the probability of an accurate prediction under either model. We then select the

38 The lexicographic rule has accuracy 0.72 on the combined data, 0.52 on the lab games, and
0.71 on the random games.

39 Regression trees are decision trees where the predicted outcome is a real number.
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model with the larger (predicted) accuracy, and use that model to predict the modal

action. This procedure is depicted in Figure 6:

pA(x) > pB(x) pA(x)  pB(x)

Features x describing
the new game

Predicted probability (respectively) of accurate
prediction by Model A and Model B:

(pA(x), pB(x))

Predict using
Model A

Predict using
Model B

Figure 5: Hybrid models

This model selection procedure is a form of “mixtures of experts” (Masoudnia

and Ebrahimpour, 2014). There are many possible ways to use game features, and

we do not claim that ours is optimal. We chose it because it is relatively simple to

implement and interpret. Even with this simple formulation, we were able to achieve

notable improvements in performance, but more sophisticated methods might do

better still.

Hybrid models are closely related to model trees (Quinlan, 1992; Landwehr,

Hall and Frank, 2005), which are decision trees whose branches lead to linear (or

logistic) regression models. The hybrid models we use similarly embed models at the

nodes of a decision tree, but our component models are simple economic/behavioral

models. Our procedure is also related to the literature on forecast combinations (e.g.

Timmermann (2006)), where different structural models are averaged using weights

determined according to past performance.40,41

In general, the regression trees used to predict the accuracies of the two com-

ponent models can vary across folds of cross-validation. But for our hybrid model

combining level-1(α) with PDNE, the best-cross validated prediction trees (reported

40 For example, the weights might correspond to posterior probabilities as in Bayesian model
averaging.

41 For example, Negro, Hasegawa and Schorfheide (2016) combines different dynamic stochastic
general equilibrium (DSGE) models for improvements in forecasting real GDP growth. Our work
differs in that we assign a single model to each game, using properties of the game itself to determine
this assignment, rather than assigning the same average to all of the games
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in Appendix E.2.1) have only two splits each, and are the same on 9 of the 10 folds.

The resulting rule for model assignment is depicted in Figure 6 below:

Is there a symmetric NE that 
achieves 75% of max possible 

payoffs and is not level 1?

No Yes

Is there a level 1 action that is also part of 
a Pareto-dominant NE?

Yes

Level-1(↵)

#obs: 196

Actual accuracies:
level-1(↵)—0.80
PDNE—0.29

Is there an action profile that
maximizes both players’ payoffs?

No Yes

PDNELevel-1(↵)

#obs: 60

Actual accuracies:
level-1(↵)—0.42
PDNE—0.22

#obs: 116

Actual accuracies:
level-1(↵)—0.22
PDNE—0.72

PDNE

#obs: 114

Actual accuracies:
level-1(↵)—0.89
PDNE—0.94

No

Figure 6: Assignment of games to models

This tree partitions the space of games into four classes. In two of these classes,

the tree predicts a PDNE.42 In the other two classes, the tree uses level-1(α). Of the

games assigned to level-1(α), 74 games have a PDNE, so the the tree does not always

pick the PDNE model even when a Pareto-dominant Nash equilibrium exists.43

The specific feature of whether the symmetric NE achieves 75% of the max

possible sum of player payoffs was chosen somewhat arbitrarily, but the prediction

accuracy of the hybrid model is essentially unchanged when we replace 75% with 70%

42 Note that when there is a profile that maximizes both player’s payoffs, it is guaranteed to be a
PDNE, so the tree only uses PDNE to make its prediction when there is a PDNE to predict. Note
also that a unique Nash equilibrium is by definition a PDNE.

43 We do not include the source of the game—lab-designed, algorithmically-designed, or
randomly-generated—as a feature for the tree to use. Nevertheless it is possible that other fea-
tures proxy for this, and the tree assigns games to models based on which data set the game
belongs to. This turns out not to be the case: of the games assigned to PDNE, 13 come from the
lab data set, 101 from the randomly-generated games, and 116 from the algorithmically-generated
games.
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or 80%. (The accuracy is the same up to two significant figures.) Our qualitative

takeaway from this decision tree is that the important feature is whether there is a

symmetric NE with “high” payoffs that does not include the level-1 action.

We report the accuracies of PDNE and level-1(α) on each of these four classes

in Figure 6.44 By inspecting the tree, we see that only a little accuracy is gained by

using PDNE in the 114 games with a level-1 action that is part of a Pareto-dominant

Nash equilibrium, as here both PDNE and level-1(α) predict quite well.45 The gains

from using PDNE are much greater in the other 116 games where it is used. In these

games, PDNE is right 72% of the time while level-1(α) is worse than guessing at

random. These games all contain a very good Nash equilibrium (Pareto-dominant,

symmetric, yields maximal payoffs for both players) that does not correspond to the

level-1 action. For example:

a1 a2 a3 Frequency of Play

a1 90, 90 30, 80 45, 30 72%

a2 80, 30 55, 55 37, 5 28%

a3 30, 45 5, 37 70, 70 0%

In this game, action a2 is level-1(α) but the action profile (a1, a1) is a Pareto-

dominant Nash equilibrium and also maximizes both player’s payoffs. We expect

that PDNE will be a better prediction than level-1(α) in similar games beyond our

data set.

Notice that the hybrid model is not guaranteed to improve upon the (out-of-

sample) predictive performance of either base model, as it runs the risk of overfitting

due to its greater complexity. Nevertheless, we find that “level-1(α) + PDNE”

substantially improves upon the performance of both base models in the data set of

all games. Moreover, for the lab data we used to begin our analysis, we find that

the hybrid model weakly improves upon the level-1(α) model as well.46

44 We set α = 0.41, which is the estimate on the full data set. In practice the value of α fluctuates
across the different choices of training data, so the prediction accuracies reported above are not
exact.

45 Note that there is a gap between the feature that describes whether the level-1 action is part
of the Pareto-dominant Nash equilibrium and this hybrid model, because the latter predicts the
level-1(α) action. Since the level-1(α) action and the level-1 action are not always the same, there
are multiple instances in which the level-1(α) prediction is wrong even though the level-1 action is
part of the unique Pareto-dominant Nash equilibrium.

46 The hybrid model also outperforms both component models in the set of algorithmically gen-
erated games. The hybrid model does not improve on level-1(α) on the random games where
level-1(α) already achieves a predictive accuracy of 91%.
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All Games Lab Games

Accuracy Completeness Accuracy Completeness

Guess at random 0.33 0% 0.33 0%
PDNE 0.56 34% 0.38 7%
Level-1(α) 0.68 52% 0.79 69%

(0.02) (0.02)
Level-1(α) + PDNE 0.79 69% 0.82 73%

(0.03) (0.03)
Ideal prediction 1 100% 1 100%

Table 7: The level-1(α) + PDNE hybrid model improves upon the performance of
both component models.

Our analysis above demonstrates that we can improve predictions by combining

two interpretable models. In principle, hybrid models can be built from a wide array

of component models. For example, instead of combining two behavioral/economic

models as we do here, we could combine a model such as level-1(α) with an algorith-

mic model, such as lasso or logistic regression. This kind of model would further blur

the distinction between “behavioral” and “algorithmic” approaches. For more com-

plex problem domains, such as predicting the distribution of play, we might consider

hybrid models that combine two different structural models of play—for example,

PCHM and a mixture-model of level-k types (as in Costa-Gomes, Crawford and

Broseta (2001)). Yet another possibility is to combine a model based on the game

matrix (as all of the approaches discussed so far are) with more “unconventional”

models that use auxiliary data, such as crowd predictions. We leave pursuit of these

other interesting hybrid models to future work.

7 Conclusion

This paper uses approaches from machine learning algorithms not only to improve

predictions of initial play, but also to improve our understanding of it. We use these

tools to develop simple and portable improvements on existing models.

One way we improve existing models is by studying games where machine learn-

ing algorithms predict well, but existing models do not. In Section 3, we showed how

this exercise helped us realize that adding a risk aversion parameter to the level-1

model generates better out-of-sample predictions of the most likely action. We de-

veloped even better predictions by generating data on new games where level-1(α)

performs poorly, identifying a simple alternative (PDNE) that does better on this

new domain, and then using a hybrid model that learns which of the two sub-models
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should be applied to a given game.

Along with papers such as Leyton-Brown and Wright (2014), these results show

how a combination of machine learning and behavioral models can improve the

prediction and understanding of play in games. These methods are not special

to the problem of predicting initial play in matrix games, so we expect that the

proposed approaches can be used to improve prediction in other domains, both in

game theory (e.g. the effect of learning and feedback on play in static games, or

initial play in extensive-form games) and in other areas of economics such as decision

theory, as well as in social science more generally.

We offer a few final comments on interpretations of our results as well as some

potential future directions:

1) Although we studied a relatively large and diverse set of games compared to

the literature, we restricted attention to the relatively simple setting of 3×3 matrix

games. When the test set of games is small or less varied in structure, simple

low-parameter models such as level-1(α) have an advantage over models with more

parameters, which may overfit. In settings with more diverse behavior, richer models

may perform better, just as the hybrid models improved on the level-1(α) model in

predicting play in the algorithmically generated games.

2) Our finding that the performance ranking of our different models depends

on which data set we examine raises an important caution about generalizing from

experiments that were designed to highlight certain behaviors or to make specific

points.

3) We did not use subject identifiers, so we could not predict or differentiate

across the behavior of different subjects. Another interesting direction would be to

use similar methods to categorize subjects (instead of games), assigning different

groups of subjects different models of play as in Fragiadakis, Knoepfle and Niederle

(2016).

4) We used hand-crafted features to train the rule for selecting between models.

It is possible to simultaneously learn the prediction rule and the feature repre-

sentation of the game, as in the deep learning methods of Hartford, Wright and

Leyton-Brown (2016), but at present these techniques do not yield interpretable

features.

5) Although many situations are intermediate between the “pure initial play”

case we study here and the long-run outcomes studied in models of learning in games

(Fudenberg and Levine, 1998), the distribution of initial play in a game can have a

major role in determining the evolution of subsequent play. Thus, we expect that

better modeling of initial play can improve predictions of medium and long run

behaviors. We leave this direction for subsequent work.
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Appendix

A Feature Sets

A.1 Features Describing Specific Actions

For each row player action ai, we include an indicator variable for whether that
action:

• is part of a pure-strategy Nash equilibrium
• is part of an action profile that maximizes the sum of player payoffs.
• is part of a Pareto-dominant pure-strategy Nash equilibrium (its payoffs Pareto-

dominate the payoffs in every other pure-strategy Nash equilibrium)
• is part of an action profile that is Pareto-undominated
• is “max-max”: ai is played in the profile that maximizes the row player’s payoff
• is “max-min”: ai maximizes the minimum, over the column player’s actions,

of the row player’s payoff
• is level k for each k = 1, 2, 3
• is part of a “good” Nash equilibrium, meaning that the sum of player payoffs

in this Nash equilibrium is at least 3/4 of the largest possible player payoff sum
• is part of a symmetric good Nash equilibrium

Additionally, we include a score feature for each action, which is the number of the

following properties that it satisfies: part of a Nash equilibrium, level-1, level-2,

level-3, level-4, level-5, level-6, level-7, part of a Pareto-dominant Nash equilibrium,

part of an action profile that maximizes the sum of player payoffs.

A.2 Features Describing Properties of the Game

We define features for the following properties of the payoff matrix:

• number of pure strategy Nash equilibria
• number of actions that survive iterated elimination of strictly dominated pure

strategies
• indicator for whether there is at least one action that is strictly dominated
• number of strictly dominated actions
• existence of an action that simultaneously maximizes both players’ payoffs
• number of different actions that yield the maximal row player payoff (for some

column player action)
• number of different actions that are part of an action profile that maximizes

the sum of player payoffs
• number of different actions that are part of a Pareto-undominated Nash equi-

librium
• number of different level-1 actions

30



• number of actions that are simultaneously level-1, achieve the highest possible
row-player payoff (for some column player action), and achieve the highest
possible sum of player payoffs (for some column player action)
• number of actions that are level-k for some k ∈ {1, 2, . . . , 7}
• indicator for whether there is some row player payoff that is 100
• number of actions that yield a row player payoff of 100
• indicator for whether some level-1 action is also level 2
• indicator for whether some level-1 action also yields the largest possible row

player payoff (max-max )
• indicator for whether some level-1 action maximizes the sum of player payoffs

(max-sum)
• indicator for whether some level-1 action is max-max and also max-sum
• largest number n where some row player action satisfies n of the following

properties: level-1, max-max, max-sum
• indicator for whether some level-1 action is part of a Pareto-dominant pure-

strategy Nash equilibrium
• indicator for whether some level-1 action is also part of a pure-strategy Nash

equilibrium
• indicator for whether there is a symmetric pure-strategy Nash equilibrium
• indicator for whether some Nash equilibrium achieves 75% of the largest pos-

sible sum of player payoffs47

• indicator for whether some Nash equilibrium achieves 75% of the largest pos-
sible sum of player payoffs, and includes the level-1 row player action
• indicator for whether some Nash equilibrium achieves 75% of the largest pos-

sible sum of player payoffs, and does not include the level-1 row player action
• indicator for whether some Nash equilibrium achieves 75% of the largest pos-

sible sum of player payoffs, and does not include any level-k row player action
• indicator for whether some symmetric Nash equilibrium achieves 75% of the

largest possible sum of player payoffs
• indicator for whether some symmetric Nash equilibrium achieves 75% of the

largest possible sum of player payoffs, and includes the level-1 row player action
• indicator for whether some symmetric Nash equilibrium achieves 75% of the

largest possible sum of player payoffs, and does not include the level-1 row
player action
• indicator for whether some symmetric Nash equilibrium achieves 75% of the

largest possible sum of player payoffs, and does not include any level-k row
player action
• indicator for whether the best sum of player payoffs in the matrix exceeds—by

at least 20% of the max row player payoff in the matrix—the best payoff sum

47 We note that in this feature and the others below using %’s, the % was chosen somewhat
arbitrarily; future work may consider estimation of the optimal choice of what % to use.
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when the row player chooses a level-k action.
• indicator for whether the best sum of player payoffs in the matrix exceeds—by

at least 40% of the max row player payoff in the matrix—the best payoff sum
when the row player chooses a level-k action.
• indicator for whether the best sum of player payoffs in the matrix exceeds—by

at least 60% of the max row player payoff in the matrix—the best payoff sum
when the row player chooses a level-k action.
• indicator for whether the row sum gap, defined as the difference between the

sum of possible row player payoffs when the row player chooses his level-
1 action (and the column player’s action is allowed to vary), and the next
highest row sum, is at least 30% of the max row player payoff in the matrix

B Other Prediction Algorithms

Here we consider more sophisticated algorithms for predicting the modal action in

the set of all games. We consider a random forest algorithm—which grows decision

trees using bootstrapped samples of the data, predicting based on a majority vote

across the ensemble of trees—and a 2-layer neural net, which feeds features (inputs)

through a layer of nonlinear transformations, producing outputs that can be fed into

the next layer.

Lab Games Only All Games

Accuracy Completeness Accuracy Completeness

Guessing at Random 0.33 0% 0.33 0%
Decision Tree 0.77 66% 0.70 55%

(0.04) (0.03)
Random Forest 0.74 61% 0.72 61%

(0.03) (0.02)
2-layer Neural Net 0.76 64% 0.77 69%

(0.02) (0.01)
Ideal prediction 1 100% 1 100%

The alternative algorithms underperform the single decision tree for predicting

modal play in the lab games. They improve upon the single decision tree on our set

of all games, but do not improve upon the performance of the hybrid model built on

level-1(α) and PDNE. The outputs of these alternative algorithms are substantially

less interpretable than the single decision tree, so we do not focus on them in this

paper.
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C Robustness Check: Predicting Each Instance of Play

As a robustness check, we repeat our main analysis on the full set of games for a

related prediction task. Instead of predicting the modal action, we predict a given

instance of play. For this problem, a prediction rule is still a map f : G→ A1 from

games to row player actions, but now each observation is a pair (gi, ai) where gi is

the game played in instance i and ai is the action chosen in that instance of play.

Thus we have many repetitions of each game corresponding to the different subjects

we observe playing those games. Given a set of instances of play {(gi, ai)}, we again

evaluate accuracy using the correct classification rate.

The naive rule is guessing at random, and again yields an expected accuracy of

1/3. The ideal prediction rule assigns the observed modal action to each game (as

before), but now has an accuracy far from 1, since different subjects play different

actions in the same game. Table 8 reports prediction accuracies and completeness

measures on our set of all games. The ranking is qualitatively unchanged from the

main text.

Accuracy Completeness

Guess at random 0.333 0%
Level-1 0.431 31%

(0.01)
Level-1(α) 0.449 37%

(0.00)
PDNE 0.552 39%

(0.02)
Decision Tree 0.563 70%

(0.01)
Ideal prediction 0.645 100%

(< 0.01)

Table 8: Hybrid models also improve predictive accuracy in predicting each instance
of play.

D Alternative Ideal Benchmarks

In the main text we evaluated completeness relative to predicting the actual ob-

served modal action in each game. This ideal benchmark is not attainable, and thus

we under-estimate the completeness of the models we consider. Below we present

completeness measures relative to two alternative ideal benchmarks. These com-

pleteness measures are not very different from the main text, but do suggest that

some of the performances are closer to complete than the main text suggests. For
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example, the best completeness measure for predicting the modal action in the set of

all games is 69% in the main text, but 78% and 92% relative to the two benchmarks

we consider in this section.

D.1 Bootstrapped Benchmark

We construct a bootstrapped prediction benchmark as follows. First, we assign

the observed modal action ai to each game gi . We test this prediction rule on

bootstrap-resamples of our data. That is, for each game gi, we sample ni times

with replacement from the empirical distribution of actions observed in that game,

where ni is the number of observations we have for that game. Our test data is

then {(gi, âi)} where âi is the modal resampled action in game gi. We repeated

this procedure 100 times and report the average prediction accuracy, along with the

standard deviation of these prediction accuracies.

Lab Games Random Games Algo Games All Games

Acc Complete Acc Complete Acc Complete Acc Complete

Guess at random 0.33 0% 0.33 0% 0.33 0% 0.33 0%
PDNE 0.38 8% 0.55 37% 0.65 58% 0.56 34%
Uniform Nash 0.42 15% 0.57 40% 0.43 18% 0.49 27%

(0.03) (0.03) (0.03) (0.02)
Level-1 0.72 63% 0.87 79% 0.36 5% 0.64 53%
Level-1(α) 0.79 74% 0.91 97% 0.38 9% 0.68 59%
Decision Tree 0.77 71% 0.86 88% 0.67 62% 0.70 63%

(0.04) (0.02) (0.03) (0.03)
Bootstrap 0.95 100% 0.93 100% 0.88 100% 0.92 100%

(0.02) (0.01) (0.02) (0.01)

Table 9: Compare the lab game results to Table 2, the random game results to
Table 4, and the final two columns to Table 5.

Accuracy Completeness

Guess at random 0.33 0%
Level-1(α) 0.68 59%

(0.02)
PDNE 0.56 39%
Level-1(α) + PDNE 0.79 78%

(0.03)
Bootstrap 0.92 100%

(0.01)

Table 10: Compare to Table 7
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D.2 Table Lookup Benchmark

Following Kleinberg, Liang and Mullainathan (2017) we consider a “table lookup”

benchmark, defined as follows: We divide the observations of play for each game gi
into three folds and randomly select two of these folds for training. Based on this

data, we learn the prediction rule that assigns the modal action to each game in

the training data, and use this rule to predict the modal action in the remaining

fold. We report the average prediction accuracy across the three choices of test fold

in Table 11. Although this approach will converge to the idealized benchmark of

1 given enough data, since we use only a limited number of observations, it is in

fact possible to beat the table lookup benchmark, and indeed our model beats the

benchmark for the set of randomly-generated games.

Lab Games Random Games Algo Games All Games

Acc Complete Acc Complete Acc Complete Acc Complete

Guess at random 0.33 0% 0.33 0% 0.33 0% 0.33 0%
PDNE 0.38 9% 0.55 42% 0.65 76% 0.56 46%
Uniform Nash 0.42 16% 0.57 46% 0.43 24% 0.49 32%

(0.03) (0.03) (0.03) (0.02)
Level-1 0.72 68% 0.87 104% 0.36 7% 0.64 62%
Level-1(α) 0.79 81% 0.91 112% 0.38 9% 0.66 66%
Decision Tree 0.77 77% 0.86 102% 0.67 81% 0.65 64%

(0.04) (0.02) (0.03) (0.03)
Table Lookup 0.90 100% 0.85 100% 0.75 100% 0.83 100%

(0.01) (0.02) (0.03) (0.03)

Table 11: Compare the lab game results to Table 2, the random game results to
Table 4, and the final two columns to Table 5.

Accuracy Completeness

Guess at random 0.33 0%
Level-1(α) 0.68 70%

(0.01)
PDNE 0.56 46%
Level-1(α) + PDNE 0.79 92%

(0.03)
Table Lookup 0.83 100%

(0.01)

Table 12: Compare to Table 7
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E Decision Trees

E.1 Prediction of Modal Action in Lab Games

The decision tree with lowest out-of-sample error is shown below:48,49

Is action a1 level 1?

Yes

predict a3 predict a2

Is action a2 level 1?

predict a1 predict a2

Is action a2’s score 7 
or higher?

number of obs: 21
actual counts:

(3,3,15)

number of obs: 19
actual counts:

(2,14,3)

number of obs: 40
actual freq: 

(33,2,5)

number of obs: 6
actual freq:

(0,6,0)

No

YesNo YesNo

Figure 7: Best decision tree for predicting the realized action in lab data.

This tree appends a single additional criterion to the level 1 model: it agrees

with the level-1 model unless there are sufficiently many other reasons to choose

a2. (The score variable, described in Section A.1 ranges from zero to 10, and a2
is predicted if its score is at least seven.) In that case, even if action a1 is level-1,

action a2 is predicted instead.

Note that features are indexed to labelled actions, so the tree does not need to

treat them symmetrically. The favored treatment of a1 here reflects the fact that

this was the most common modal action in the lab data.

E.2 Used in Hybrid Models

E.2.1 Supplementary Material to Section 6

Below we report the trees used to predict accuracy of the level-1(α) prediction

(Figure 8) and accuracy of the PDNE prediction (Figure 9) in the level-1(α) +

PDNE hybrid model.

48 As we allow for additional complexity by increasing the number of decision nodes n, the best
n-split decision tree builds on the level-1 model. Large values of n quickly result in overfitting.

49 The tree in Figure 7 was produced for eight of the ten training sets.
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Is there a symmetric NE that achieves 75% of 
max possible payoffs and is not level 1?

Is there an action that maximizes 
both players’ payoffs?

No Yes

YesNo0.84

0.73 0.24
no. of obs: 308

no. of obs: 60 no. of obs: 118

Figure 8: Predicted probability that the level-1(α) prediction is correct in bold.

Is there a level 1 action that is also part of 
a Pareto-dominant NE?

No Yes

Is there a symmetric NE that 
achieves 75% of max possible 

payoffs and is not level 1?

YesNo

0.29 0.61
no. of obs: 196 no. of obs: 176

0.94
no. of obs: 114

Figure 9: Predicted probability that the PDNE prediction is correct in bold.

The first tree predicts the probability that whether the level-1(α) model will

choose the modal action. For example, if the game does not have a symmetric NE

with high payoffs (75% of max possible) that does not include the level-1 action,

then the level-1(α) action is predicted to be modal 84% of the time.50 The level-1(α)

model is predicted to perform worst when there is a symmetric NE that maximizes

both players’ payoffs but does not contain the level-1 action: In this case, the level-

1(α) action is predicted to be correct only 24% of the time.

The second tree predicts the probability that the PDNE prediction will be cor-

rect. The model is predicted to perform well when the Pareto-dominant NE includes

50 Roughly this means that in 84% of games in the training sample with this property, the
level-1(α) action was modal.
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the level-1 action, and also when there is a symmetric NE that achieves high payoffs

(this is almost always a Pareto-dominant NE in our data). We do not know whether

this is true more generally or whether it is a special feature of our set of games.

E.3 Lab Games Only

We report below the analogue of Figure 6—which chooses between the level-1(α)

model and PDNE—for the data set consisting only of the lab games.

Is there a “decoy”?

No Yes

Is the row sum gap at least 25% of the 
max row player payoff?

Yes

Level-1(↵)

#obs: 6

Actual accuracies:
level-1(↵)—0.16
PDNE—0.83

Is there a Pareto-Dominant NE?

No Yes

PDNELevel-1(↵)

#obs: 23

Actual accuracies:
level-1(↵)—0.78
PDNE—0.34

#obs: 15

Actual accuracies:
level-1(↵)—0.80
PDNE—0.80

PDNE

#obs: 42

Actual accuracies:
level-1(↵)—0.93
PDNE—0.17

No

Figure 10: Assignment of games to level-1(α) or PDNE (lab games only)—compare
to Figure 6.

Above, the feature “is there a decoy” refers to the indicator for whether the best

sum of player payoffs in the matrix exceeds—by at least 60% of the max row player

payoff in the matrix—the best payoff sum when the row player chooses a level-k

action.
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For Online Publication

F Experimental Instructions

The instructions provided to Mechanical Turk subjects in the experiment described

in Section 4 are reproduced below. With a few exceptions, instructions that were

repeated across these experiments are only presented once.

F.1 Initial Instructions
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F.2 Typical Question

41



G Explanation of Choices in Experiments

Subjects were asked to explain how they made their choices in a (free-form) text

box. We show below selected answers from our experiments in which players were

asked to choose an action:

• “I chose based on mutually beneficial numbers, followed by singular benificial

[sic] numbers, and finished with whatever was left over.”

• “Except the first question. I added the orange in each row(A,B,C) Then put

it in order from highest to the least. I’m hoping I did this right :o)”

• “i count each value quickly. It is easy for me. Good game”

• “I assumed Green was aquisitive [sic] and non-sharing”

• “Without knowing what sort of patterns the partner displayed it’s mostly

guesswork. I assumed orange would avoid choosing rows where zero payoff

was possible, and that green would similarly prefer not to bet on columns

with a zero payoff. I assumed both would think the same way and be trying

to achieve a good payoff, not just selecting the row or column with the highest

possible payoff. Wheels within wheels.”

• “i tried to figure out if there is obvious worst of all, then eliminate it”

• “I looked at what Green would probably pick and then based on that decided

what Orange would pick when thinking about what the Green letter would

likely be.”
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