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Abstract

A decision-maker (DM) faces an intertemporal decision problem, where his payoff

depends on actions taken across time as well as on an unknown Gaussian state. The

DM can learn about the state from different (correlated) information sources, and al-

locates a budget of samples across these sources each period. A simple information

acquisition strategy for the DM is to neglect dynamic considerations and allocate sam-

ples myopically. How inefficient is this strategy relative to the optimal information

acquisition strategy? We show that if the budget of samples is sufficiently large then

there is no inefficiency: myopic information acquisition is exactly optimal.
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1 Introduction

In a classic problem of sequential information acquisition, a Bayesian decision-maker (DM)

repeatedly acquires information and takes actions. His payoff depends on the sequence of

actions taken, as well as on an unknown payoff-relevant state. We consider a setting in

which the DM acquires information from a limited number of flexibly correlated information

sources, and allocates a fixed number of observations across these sources each period.

Neglecting dynamic considerations, a simple strategy for information acquisition is to

acquire at each period the set of signals that maximally reduces uncertainty about the

payoff-relevant state. We refer to this as the myopic (or greedy) rule, as it is the optimal

rule if the DM mistakenly believes each period to be the last possible period of information

acquisition.

This myopic rule turns out to possess strong optimality properties when the available

signals are jointly normal. First, if signal observations are acquired in sufficiently large

blocks each period, then myopic information acquisition is exactly optimal (Theorem 1). We

provide a sufficient condition on the required size of the block; this condition depends on

primitives of the informational environment but not on the payoff function.

Second, under a joint condition on the prior and signal structure, myopic information

acquisition is exactly optimal for all block sizes (Theorem 2). And finally, for generic signal

structures, and for any block size, the optimal strategy proceeds by myopic acquisition after

finitely many periods (Theorem 3). These results hold across all payoff functions (and in

particular, independently of discounting).

Why does the myopic rule perform so well? The main inefficiency of myopic planning is

that it neglects potential complementarities across signals. A signal that is individually un-

informative can be very informative when paired with other signals; thus, repeated (greedy)

acquisition of the best single signal need not result in the best sequence of signals.1 A

key observation is that whether the DM perceives two signals as providing complementary

information depends on his current belief over the state space.2 This means that comple-

mentarities across signals are not intrinsic to the underlying signal correlation structure:

As the DM’s beliefs about the states evolve, so too do his perceptions of the correlations

1See Section 4 for a concrete example and further discussion.
2As a simple example, suppose the payoff-relevant state is θ1, and the available signals are about θ1 + θ2

and θ2. These signals are “complementary” when the agent’s prior belief is that θ1 and θ2 are independent:

observations of the first signal improve the value of observing the second signal, and vice versa. But if the

DM’s prior is such that θ2 = θ1, then these signals become substitutes.
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across signals. We show that as information accumlates, the DM’s beliefs evolve in such

a way that the signals endogenously de-correlate from his perspective, and are eventually

perceived as providing approximately independent information.3 At the limit in which all

signals are independent, the value of any given signal can be evaluated separately of the

others. The dynamic problem is thus “separable,” and can be replaced with a sequence of

static problems.

The mechanism we identify is different from the one underlying a classic result from

the experimentation literature. In “learning by experimentation” settings, myopic behavior

is eventually near-optimal: In the long run, the DM’s beliefs converge, so the value of

exploration (i.e. learning) becomes second-order relative to the value of exploitation of the

perceived best arm.4 In our paper, signal acquisition decisions are driven by learning concerns

exclusively, as there is by design no exploitation incentive. To see this, recall that in the

classic multi-armed bandit problem (Gittins, 1979; Bergemann and Välimäki, 2008), actions

play the dual role of influencing the evolution of beliefs and also determining flow payoffs. In

our setting (which does not fall into the multi-armed bandit framework), there is a separation

between signal choices, which influence the evolution of beliefs, and actions, which determine

(unobserved) payoffs. Myopic signal choices become optimal in our framework because they

maximize the speed of learning, and not because they optimize a tradeoff between learning

and payoffs. Additionally, a myopic strategy is immediately optimal in multi-armed bandit

problems only under very restrictive assumptions (Berry and Fristedt, 1988; Banks and

Sundaram, 1992).

Our results simplify the analysis of optimal dynamic information acquisition in an infor-

mational environment that is commonly used in economics: normal signals. However, the

core of our analysis—the “endogenous de-correlation” of signals described above—does not

rely on the assumption of normality. As we discuss further in Section 4, this de-correlation

derives from a Bayesian version of the Central Limit Theorem, which holds for arbitrary

signal distributions. This suggests that our eventual optimality result (Theorem 3) general-

izes.5

3It is clear that the DM’s beliefs eventually become very precise about each of the unknown states.

However, this does not by itself lead to optimality of myopic information acquisition. See Section 5.1 for

more detail.
4Easley and Kiefer (1988) and Aghion et al. (1991) show that if there is a unique myopically optimal

policy at the limiting beliefs, then the optimal policies in each period must converge to this policy. In

our setting, every policy (signal choice) is trivially myopic at the limiting beliefs (a point mass at the true

parameter), so we do not have uniqueness and cannot use this argument to characterize long-run behavior.
5See Section 5.2 for discussion.
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1.1 Related Literature

Information acquisition from Gaussian signals has been studied in a large literature (Angele-

tos and Pavan, 2007; Hellwig and Veldkamp, 2009; Myatt and Wallace, 2012; Bergemann

et al., 2015; Lambert et al., 2018), primarily focusing on strategic settings where information

is given exogenously or acquired at one time. Here we consider repeated information acqui-

sitions by a single decision-maker. The closest works in this regard are Meyer and Zwiebel

(2007), Sethi and Yildiz (2016), Sethi and Yildiz (2017), and Liang and Mu (2018), all of

which focus on long-run or stationary outcomes. In contrast, here we consider the entire

path of information acquisitions and show that in many cases it is identical to the myopic

strategy.

A related recent literature (Bubeck et al., 2009; Russo, 2016) studies “best-arm identi-

fication” in a multi-armed bandit setting: A DM samples for a number of periods before

selecting an arm and receiving its payoff. Our results for the case of two states exactly apply

to the problem of identifying the better of two correlated normal arms. However, due to our

assumption of an one-dimensional payoff-relevant state, we are not able to handle more than

two arms.6 We note that correlation is the key feature of our setting, and are not aware of

many papers that study correlated bandits, either under the classical framework or under

best-arm identification. See Rothschild (1974), Keener (1985) and Mersereau et al. (2009)

for a few stylized cases.

Our results on the comparison of sequential normal experiments (see the discussion in

Section 4, and results in Appendix B) generalize the main result in Greenshtein (1996).

Greenshtein (1996) compares two deterministic (i.e. history-independent) sequences of sig-

nals, where each signal is the payoff-relevant state plus independent normal noise. His

Theorem 3.1 implies that one sequence is Blackwell-dominant if and only if its cumulative

precision is higher at every time. Note that this statement does not refer to the prior beliefs,

but if we impose a normal prior, then higher cumulative precision is equivalent to lower pos-

terior variance. Thus, the result of Greenshtein (1996) coincides with ours when there is only

one persistent (and payoff-relevant) state, and all signals are independent conditional on it.

Our setting features additional correlation across different signals. Consequently, dynamic

6With two arms, the DM only cares about the difference in their expected payoffs. Choosing among

more than two arms would involve multi-dimensional payoff uncertainty and a decision problem that is not

prediction. The lack of a complete Blackwell ordering limits the generalization of our argument. Incidentally,

in related sequential search settings, Sanjurjo (2017), Ke and Villas-Boas (2017) and Chick and Frazier (2012)

also highlight the challenge of characterizing the optimal strategy once there are at least three alternatives.
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Blackwell comparison in our model depends on prior beliefs.7 This feature, together with

the endogenous choice of signals (which may be history-dependent), complicates our analysis

relative to Greenshtein (1996).

Finally, our work is closely related to optimal design, a field initiated by the the early

work of Robbins (1952) (see Chernoff (1972) for a survey). Specifically, the problem of one-

shot allocation of t signals (our t-optimal criterion in Section 5) is equivalent to a Bayesian

optimal design problem with respect to the “c-optimality criterion”, which seeks to minimize

the variance of an unknown parameter. Our analysis is however focused on dynamics, and

we demonstrate here the optimality of “greedy design” for a broad class of intertemporal

objectives.

2 Preliminaries

2.1 Model

Time is discrete. At each time t = 1, 2, . . . , the DM first allocates a budget of samples or

observations across K information sources, and then chooses an action at from a set At.
8

The DM’s payoff U(a1, a2, . . . ;ω) is an arbitrary function that depends on the sequence

of action choices and a payoff-relevant state ω ∈ R. We assume that payoffs are realized only

at an (exogenously or endogenously determined) end date; thus, the information sources

described below are the only channel through which the DM learns. This assumption dis-

tinguishes our model from multi-armed bandit problems.

To illustrate a familiar subclass of such decision problems, imagine that the DM takes an

action just once at a final period T , which may be determined by an exogenous distribution

(e.g. geometric distribution) or endogenously chosen by the DM. Payoff in this case is given

by U(a1, a2, . . . ;ω) = uT (aT , ω), where T is the (random) exogenous or endogenous final

time period, and aT is the action taken. The time-dependent payoff function uT (aT , ω) may

incorporate discounting and/or a per-period cost to signal acquisition.9

Apart from the decision problem, there are K information sources, which depend on

7This is already the case for static comparisons, since as the prior beliefs vary, it is not always the same

signal that leads to the lowest posterior variance about the payoff-relevant state.
8Thus, the action at can be based on the information received in period t. The timing of these choices is

not important for our results.
9In the latter case, we think of costs as fixed across sources in a given period, but can vary across periods.

See See e.g. Fudenberg et al. (2018) and Che and Mierendorff (2019) for recent models with constant waiting

cost per period.
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the unknown and persistent state vector θ = (θ1, . . . , θK)′ ∼ N (µ0, V 0).10 We assume that

the prior covariance matrix V 0 has full rank. The payoff-relevant state ω is some linear

combination of these unknown states, which we write as ω = α′ · θ for some α ∈ RK .

In each period, the DM chooses B sources (allowing for repetition), where B ∈ N+ is

interpreted as a fixed time/attention constraint (see Section 5.3 for extension to endogenous

choice of B). Choice of source k = 1, . . . , K produces an observation of

Xk = c′k · θ + εk, εk ∼ N (0, σ2
k)

where the coefficient vectors ck = (ck1, . . . , ckK)′ and signal variances σ2
k are fixed (and

known), but the Gaussian error terms are independent across realizations and sources.

Throughout, we use C to denote the matrix of coefficients whose k-th row is c′k. We impose

the following assumption on the informational environment:

Assumption 1 (Non-Redundancy). The matrix C has full rank, and no proper subset of

row vectors of C spans α (the vector determining the payoff-relevant state).

This implies that the DM can and must observe each source infinitely often to recover

the value of the payoff-relevant state ω.11

2.2 Interpretations

We provide below several interpretations of this framework.

News Sources with Correlated Biases. On election day T , a DM will choose which of

two candidates 1 and 2 to vote for, where his payoff depends on ω = θ1 − θ2, the difference

between the candidates’ qualities θ1 and θ2. In each period up to time T , the DM can

acquire information from different news sources. All sources provide biased information, and

moreover the biases are correlated across the sources. As the DM acquires information, he

learns not only about the payoff-relevant state ω, but also how to de-bias (and aggregate)

information from the various news sources.

Attribute Discovery. A product has K unknown attributes θ1, . . . , θK . Its value ω is some

arbitrary linear combination of these attribute values. For example, the DM may want to

learn the value of a conglomerate composed of several companies, where each company i is

10Here and later, we use the apostrophe to denote vector or matrix transpose.
11When the DM does not need to observe all sources in order to learn ω, a new question emerges regarding

which subset of sources the DM will choose from. Characterization of that subset is the focus of Liang and

Mu (2018).
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valued at θi and the value of the conglomerate is ω := α1θ1 + · · · + αKθK . The DM has

access to (noisy) observations of different linear combinations of the attributes; for example,

he might have access to evaluations of each θi individually. At some endogenously chosen

end time, the DM decides whether or not to invest in the conglomerate.

Sequential Polling. A polling organization seeks to predict the average opinion in the

population towards an issue. There are K demographic groups in the population, and

opinions in demographic group i are normally distributed with unknown mean θi and known

variance σ2
i . The fraction of the population in each demographic group i is pi, so the average

opinion is ω :=
∑

i piθi. It is not feasible to directly sample individuals according to the

true distribution pi, but the organization can sample individuals according to other non-

representative distributions p̂i 6= pi. Each period, the polling organization allocates a fixed

budget of opinion samples across the available distributions (polling technologies), and posts

a prediction for ω. Its payoff is the average prediction error across some fixed number of

periods.

Intertemporal Investment. Each action at is a decision of how to allocate capital between

consumption, and two investment possibilities: a liquid asset (bond), and an illiquid asset

(pension fund). The return to the liquid asset is known: 1 dollar saved today is worth er

dollars tomorrow. The return to the illiquid asset is unknown: every dollar invested today

in the pension fund deterministically yields eω dollar(s) tomorrow, where ω is the payoff-

relevant state. The worker works for T periods, and in each of these periods he learns about

ω (from some information sources) and then allocates his wealth across consumption, saving

and investment. After period T , the worker retires and receives all the returns from his

investments into the illiquid asset. His objective is to maximize the sum of his discounted

consumption utilities and his payoff after retirement.12

12An important assumption of this example is that the return to investment is deterministic and only

observed at the end. However, our model and results extend to a situation where there are “free” signals

arriving each period that do not count toward the capacity constraint B. By considering the realized log

return as a particular free signal, the extension of our model covers the case where investment returns are

stochastic and the DM observes past return realizations.

6



3 (Eventual) Optimality of Myopic Rule

3.1 Myopic Information Acquisition

A strategy consists of an information acquisition strategy and a decision strategy. An infor-

mation acquisition strategy is a measurable map from possible histories of signal realizations

to multi-sets of B signals, and a decision strategy is a map from histories to actions.

We will say that an information acquisition strategy is myopic if it proceeds by choosing

signals that maximally reduce (next period) uncertainty about the payoff-relevant state.

Definition 1. An information acquisition strategy is myopic, if at every period, it prescribes

choosing the B signals that (combined with the history of observations) lead to the lowest

posterior variance about ω.

Note that the B signals which minimize the posterior variance also Blackwell dominate any

other multi-set of B signals (see e.g. Hansen and Torgersen (1974)). Thus, myopic acquisition

is optimal if the current period is the last chance for information acquisition, and this is true

no matter what the payoff function is.

Our results below reveal a close relationship between the optimal information acquisition

strategy and the myopic rule, even when the DM takes into account the possibility of future

information acquisition. We do not pursue a characterization of the optimal decision strategy,

which in general depends on the payoff function, although we point out one application of

our main results towards simplification of this characterization.

3.2 Main Results

We present three results regarding optimality of the myopic information acquisition rule.

Theorem 1 says that myopic information acquisition is optimal from period 1 if B (the

number of observations acquired each period) is sufficiently large. Our next two results hold

for arbitrary budgets B: Theorem 2 provides a sufficient condition on the prior and the

coefficient matrix C under which myopic information acquisition is optimal from period 1,

and Theorem 3 states that the optimal rule is eventually myopic in generic environments.

Theorem 1 (Immediate Optimality under Many Observations). Fix any prior and signal

structure, and suppose B is sufficiently large. Then the DM has an optimal strategy that

acquires information myopically.13

13Without further assumptions on the payoff function U , we cannot assert strict optimality of the myopic
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The theorem tells us that, optimally, the DM chooses the most informative B signals

in the first period based on his prior, then chooses the most informative B signals in the

second period based on his updated posterior, and so on. Note that since posterior variances

are independent of signal realizations (and since we assume no feedback from past actions),

the myopic strategy is history-independent, and can be represented as a deterministic signal

path. We mention that Theorem 1 can be strengthened to optimality of the myopic rule

following every history, including those in which the DM has previously deviated from the

myopic rule.

A precise bound for how large B must be for Theorem 1 to hold appears in Section

5.1. Our next two results hold for arbitrary block sizes B. First, the myopic rule is again

optimal from period 1 in a class of “separable” environments. Let f(q1, . . . , qK) denote

the DM’s posterior variance about ω, updating from qi observations of each signal Xi. An

informational environment is separable if its posterior variance function can be decomposed

in the following way:

Definition 2. The informational environment (V 0, C, {σ2
i }) is separable if there exist convex

functions g1, . . . , gK and a strictly increasing function F such that

f(q1, . . . , qK) = F (g1(q1) + · · ·+ gK(qK)).

Intuitively, separability ensures that observing signal i does not change the relative value

of other signals, but strictly decreases the marginal value of signal i relative to every other

signal.

Note that separability is not defined directly on the primitives of the informational en-

vironment (V 0, C, and {σ2
i }Ki=1), as it is based instead on the posterior variance function f .

Nevertheless, f can be directly computed from these primitives. For example, it is simple to

verify that the following two informational environments are separable:

Example (Orthogonal Signals). The DM’s prior is standard Gaussian (V 0 = IK), and the

row vectors of C form an orthogonal basis.

Example (Multiple Biases). There is a single payoff-relevant state ω = θ1 ∼ N (0, v1). The

DM has access to observations of X1 = θ1 + θ2 + · · · + θK + ε1, where each θi (i > 1) is a

persistent “bias” independently drawn from N (0, vi), and ε1 ∼ N (0, σ2
1) is a noise term i.i.d.

rule. For instance, this would not be true if there exists a “dominant” action sequence that maximizes

U(a1, a2, . . . ;ω) for every value of ω. But the myopic rule would be uniquely optimal in any decision

problem where more precise beliefs lead to strictly higher expected payoffs.
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over time. Additionally, the DM has access to signals about each bias Xi = θi + εi (i > 1),

where εi ∼ N (0, σ2
i ).

14

The result below says that myopic information acquisition is optimal in all separable

informational environments.

Theorem 2 (Immediate Optimality in Separable Environments). Suppose the informational

environment is separable. Then for every B ∈ N+, the DM has an optimal strategy that

acquires information myopically.

In all remaining cases, optimal signal choices are eventually myopic.

Theorem 3 (Generic Eventual Myopia). Fix any prior covariance matrix V 0 and signal

variances {σ2
i }Ki=1. For generic coefficient matrices C, there exists a time T ∗ ∈ N depending

on the information environment such that in any decision problem, the DM has an optimal

strategy that acquires information myopically after T ∗ periods.

Thus at all late periods, the optimal signal acquisitions are those that maximally reduce

posterior variance in the given period.

This result tells us that the optimal rule eventually proceeds by myopic signal acquisition;

this is different from the statement that acquisition of signals myopically from period 1

eventually leads to the optimal signal path. We show in Appendix H that the latter statement

is also true.

4 Intuition for Theorems 1-3

When Myopic is Optimal. We begin by considering acquisition of B = 1 observations

each period. Even with this small block size, myopic information acquisition is sometimes

optimal.

Example 1. Suppose the DM wants to learn ω = θ1 + θ2 + θ3, where θ1, θ2, θ3 ∼i.i.d. N (0, 1)

14To check separability, note that the DM’s posterior variance about ω is given by

f(q1, . . . , qK) = v0 −
v20

v0 +
σ2
1

q1
+
∑K
i=2

(
vi −

v2i
vi+σ2

i /qi

) .
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and the available signals are:

X1 = θ1 + ε1

X2 = θ2 + ε2

X3 = θ3 + ε3

It is simple to see that myopic information acquisition proceeds by “balancing” acquisition

of information across the sources—e.g. X1X2X3X1X2X3 . . .—and moreover, this strategy

minimizes posterior variance about ω at every period. We generalize a result from Green-

shtein (1996) to show that any strategy which pointwise minimizes posterior variance must

be Blackwell-dominant among the class of all information acquisition strategies, implying its

optimality across all payoff criteria.

An important feature of this example is that the best signal to acquire in period 1 is

contained in the best pair of signals to acquire, which is contained in the best triple, and so

forth. Thus, no tradeoffs are necessary across periods, and the myopic rule minimizes pos-

terior variance period by period. This property is formalized in our notion of “separability”

in Theorem 2, and is a sufficient condition for optimality of myopic acquisition.

The Role of Complementarities. In general however, myopic information acquisition

fails to be optimal when there are strong complementarities across signals, as in the following

example:

Example 2. There are three states θ1, θ2, θ3 ∼i.i.d. N (0, 1) and the available signals are:

X1 = θ1 − θ2 + ε1

X2 = θ2 − θ3 + ε2

X3 = θ3 + ε3

The agent wants to learn ω = θ1.

In this example, the optimal allocation of four observations across X1, X2, and X3 is

(3, 1, 0), and the best subsequent single signal to acquire is X1. But because signals X2 and

X3 are strong complements (observation of either signal increases the value of observation of

the other), the best subsequent pair of signals is {X2, X3}. Thus the optimal allocation of

five observations is (4, 1, 0) while the optimal allocation of six observations is (3, 2, 1), which

cannot be produced from the history (4, 1, 0). Myopic information acquisition fails to be

optimal in this environment.15

15Observe that with five observations to allocate, f(4, 1, 0) = 11
23 <

14
29 = f(3, 1, 1) = f(3, 2, 0). Whereas

with six observations, f(3, 2, 1) = 5
11 <

17
37 = f(4, 1, 1) = f(4, 2, 0).
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“De-correlation” of Posterior Beliefs. A key part of our argument is that complemen-

tarities “wash out” as information is acquired, so that environments which start off like the

second example become “like” the first example (as observations of each signal accumulate).

To facilitate this comparison, rewrite Example 2 in the following way: Define a new set of

states θ̃1 = θ1 − θ2, θ̃2 = θ2 − θ3, and θ̃3 = θ3. The original prior over (θ1, θ2, θ3) defines a

new prior over (θ̃1, θ̃2, θ̃3), and the original payoff-relevant state can be re-expressed in the

new states as ω = θ̃1 + θ̃2 + θ̃3.

Example 2’ . There are three states θ̃1, θ̃2, θ̃3 ∼i.i.d. N (0,Σ) and the available signals are:

X1 = θ̃1 + ε1

X2 = θ̃2 + ε2

X3 = θ̃3 + ε3

The agent wants to learn ω = θ̃1 + θ̃2 + θ̃3.

The signal structure and the payoff-relevant state in Example 2’ are the same as in

Example 1, with the crucial difference that the prior over (θ̃1, θ̃2, θ̃2) is correlated in Ex-

ample 2’, while the prior over (θ1, θ2, θ3) was independent in Example 1. Given sufficiently

many observations of each signal in Example 2’, however, the DM’s posterior beliefs over

(θ̃1, . . . , θ̃K) become almost independent. That is, not only does learning about each θ̃k occur,

but the states θ̃k “de-correlate.” Thus, eventually the signals can be viewed as approximately

independent.

The above heuristic statements about de-correlation roughly follow from a Bayesian ver-

sion of the Central Limit Theorem. We establish a technical lemma (Lemma 2 in Appendix

A) that strengthens this with a comparison of the value of different signals. Specifically, we

characterize the externality that observation of a given signal Xi has on the marginal value

of future observations. We show that once posterior beliefs are sufficiently de-correlated, the

effect of observing Xi on the value of future observations of Xi far outweighs its effect on

future observations of any Xj, j 6= i. Thus, the only effect that observation of Xi can have

on the ranking of signals is by reducing the value of signal i relative to other signals. This

means that we eventually have a situation much like Example 1, where the different signals

are almost separable.

Exact Optimality. In near-separable environments, the difference between the myopic

strategy and the optimal strategy is small, but the two strategies may not be identical. We
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show that the “gaps” between myopic and optimal acquisition occur for a purely techni-

cal reason related to integer approximations. Using results from Diophantine approxima-

tion theory, we demonstrate that the environments in which these inefficiencies emerge are

non-generic: this gives us our result in Theorem 3. A different way to resolve the integer

approximation problem is to allow for acquisition of a larger number of signals each period.

We show that given a sufficiently large block size B, the optimal allocations of kB samples

are nested for different integers k, re-producing exact separability. This gives us Theorem 1.

5 Discussion and Extensions

5.1 Precision vs. Correlation

With sufficiently many observations, the DM’s beliefs simultaneously become more precise

and less correlated, and these two effects are confounded in our main results. It is tempting

to think that Theorem 1 (or Theorem 3) follows from the eventual precision of beliefs.

However, as our discussion above suggests, the key feature is not how precise beliefs are,

but how correlated they are. Specifically, the block size B needed in Theorem 1 depends

on how many observations are required for the transformed states θ̃1, . . . , θ̃K (see below) to

“de-correlate,” at which point complementarities across signals are weak.

Below we make this formal with a bound on B. To state our result, we define transformed

states θ̃k = 1
σk
〈ck, θ〉 (dividing through by σk normalizes all error variances to 1), and let Ṽ

denote the prior covariance matrix over these transformed states. The payoff-relevant state

ω = α′ ·θ can be rewritten as another linear combination of the transformed states: ω = α̃′ · θ̃
for some fixed payoff weight vector α̃ ∈ RK . In the following result we assume for simplicity

that α̃ = 1 is the vector of ones, although our analysis can be easily adapted to any vector

α̃.

Proposition 1. Let R denote the operator norm of the matrix (Ṽ )−1.16 Suppose ω =∑K
i=1 θ̃i, then B ≥ 8(R + 1)K1.5 is sufficient for Theorem 1 to hold.

Notice that this bound is increasing in the norm of Ṽ −1. To interpret this, suppose first

that we adjust the precision of the DM’s prior beliefs over θ̃1, . . . , θ̃K but fix the degree of

correlation, for example by scaling Ṽ by a factor less than 1. Then the norm of Ṽ −1 increases,

and a larger block size B is needed. This is because a more precise prior can be understood

16The operator norm of a matrix M is defined as ‖M‖op = sup
{
‖Mx‖
‖x‖ : x ∈ RK with x 6= 0

}
.
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as “re-scaling” the state space by shrinking all states towards zero. Since signal noise is not

correspondingly re-scaled, each signal now reveals less about the states, and de-correlation

takes longer.

In contrast, suppose we hold prior precision fixed and increase the degree of prior correla-

tion. This would correspond to fixing the diagonal entries of Ṽ and increasing the off-diagonal

entries, so that the variances about individual states are unchanged but their covariances

become larger in magnitude. Then the entire matrix Ṽ becomes closer to being singular,

the norm of its inverse increases and a larger B is required. That is, a more correlated prior

requires more observations to de-correlate.

To summarize, optimality of myopic information acquisition obtains quickly when prior

beliefs are imprecise and weakly correlated.

5.2 How Important is Normality?

The key part of our argument is that signals eventually de-correlate. This de-correlation

derives from a Bayesian version of the Central Limit Theorem, and does not rely on special

properties of normality. Consider a more general setting with signals Xi = θ̃i + εi, where

the noise term εi has an arbitrary distribution with zero mean and finite variance. Then, we

have that the suitably normalized posterior distribution over (θ̃1, . . . , θ̃K) converges towards

a standard normal distribution (so that signals are approximately independent). We thus

expect that given sufficiently many observations, our previous comparisons on the value of

information extend beyond normal signals.

But if we drop normality, our results weaken in the following ways:

Immediate Optimality of the Myopic Rule. For normal signals, we can establish a

T such that given T observations of each signal, the posterior covariance matrix (over the

transformed states) is almost independent. Notably, this bound T holds uniformly across

all histories of signal realizations, thanks to the fact that posterior variances do not depend

on signal realizations under normality. As mentioned above, we can use a Bayesian Central

Limit Theorem to argue a similar property for other signal distributions. The difference is

that the CLT gives us approximate independence almost surely, so that at every period t,

there is still positive probability (albeit vanishing as t increases) that the posterior covariance

matrix is far from being diagonal. This precludes us from demonstrating a block size B given

which the optimal rule would be myopic from period 1 (Theorem 1). For general signal

distributions, we thus conjecture that almost surely the optimal rule is eventually myopic,

13



but we do not know what conditions would guarantee this equivalence from the beginning.

General Intertemporal Payoffs. The place where we rely most heavily on normality is

the statement that our results hold for all payoff criteria that depends on ω (and actions).

Indeed, when payoff-relevant uncertainty is one-dimensional (as it is here), all normal sig-

nals can be Blackwell-ordered based on their posterior variances, and this is not the case

for general signals. We note moreover that normality is important for comparison of signal

sequences. As discussed in Section 4, the ranking of sequences of normal signals is the same

whether we consider the class of static decision problems or the broader class of intertem-

poral decisions. This equivalence does not hold in general; see Greenshtein (1996) for a

counterexample involving Bernoulli signals.

5.3 Endogenous Block Sizes

So far we have imposed an exogenous capacity constraint of B signals per period. Suppose

now that in each period t, the DM can choose to observe any number Nt ∈ Z+ of signal

realizations (which are then optimally allocated across signals). The DM incurs a flow cost

of information acquisition, modeled as κ(Nt) for some increasing cost function κ(·) with

κ(0) = 0. This framework embeds our main model if we define κ(N) = 0 for N ≤ B and

κ(N) =∞ for N > B.

Let the DM’s payoff be U(a1, a2, . . . ;ω) −
∑

t δ
t−1 · κ(Nt) for some discount factor δ.17

For the special case of endogenous stopping, the payoff function simplifies to

δτ · u(aτ ;ω)−
τ∑
t=1

δt−1 · κ(Nt)

whenever the DM stops after τ periods. This is a discrete-time generalization of the frame-

work proposed in Moscarini and Smith (2001), although our focus is on allocation of the

signals instead of choice of “learning intensities” Nt.
18

Theorems 1 and 2 generalize to this setting:

Corollary 1. Suppose B is sufficiently large or the informational environment is separable.

Then, even with endogenous block sizes, the DM has an optimal strategy that chooses signals

myopically.

17Our analysis can accommodate more general payoff functions of the form U(N1, a1, N2, a2, . . . ;ω).
18Moscarini and Smith (2001) has a single state and a single signal (K = 1), so the DM only chooses Nt.

Unlike Moscarini and Smith (2001), we do not characterize the optimal sequence of (Nt)t≥1, but instead

show how this problem can be separated from allocation of those Nt observations across different signals.
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In the above corollary, “myopic acquisition” means the following: In any period t, given

(endogenously chosen) block size Nt, optimal acquisitions are the Nt signals that minimize

posterior variance about ω. We emphasize that while myopic signal choices are optimal,

myopic intensity choices are likely not. However, knowing that the signal choices must

follow the myopic path provides a simplifying first step towards the characterization of

optimal block sizes. Generic eventual myopia (Theorem 3) also extends, but we omit the

details.
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Appendix

A Preliminary Results

Throughout this appendix, we assume that the payoff-relevant state ω in fact coincides

with the first unknown state θ1, which will simplify the exposition. This is without loss of

generality, since we can always define “transformed states” to include ω. Moreover, note

that Assumption 1 translates into the requirement that the matrix of signal coefficients C

admits an inverse matrix, whose first row contains non-zero entries. That is, we work under

the assumption that [C−1]1i 6= 0, ∀1 ≤ i ≤ K.19

A.1 Posterior Variance Function

We begin by presenting basic results that will be used repeatedly. The following lemma

characterizes the posterior variance function f mentioned in the main text, which maps

signal counts to the DM’s posterior variance about the payoff-relevant state θ1.

Lemma 1. Given prior covariance matrix V 0 and qi observations of each signal i, the DM’s

posterior variance about θ1 is given by

f(q1, . . . , qK) = [V 0 − V 0C ′Σ−1CV 0]11 (1)

where Σ = CV 0C ′ + D−1 and D = diag
(
q1
σ2
1
, . . . , qK

σ2
K

)
. The function f is decreasing and

convex in each qi whenever these arguments take non-negative extended real values: qi ∈
R+ = R+ ∪ {+∞}.20

Proof. The expression (1) comes directly from the conditional variance formula for multi-

variate Gaussian distributions. To prove ∂f
∂qi
≤ 0, consider the partial order � on positive

semi-definite matrices so that A � B if and only if A − B is positive semi-definite. As qi

increases, the matrices D−1 and Σ decrease in this order. Thus Σ−1 increases in this order,

which implies that V 0 − V 0C ′Σ−1CV 0 decreases in this order. In particular, the diagonal

entries of V 0 − V 0C ′Σ−1CV 0 are uniformly smaller, so that f becomes smaller. Intuitively,

more information always improves the decision-maker’s estimates.

19When M is matrix, we let Mij denote its (i, j)-th entry.
20We allow the function f to take +∞ as arguments. This extension does not affect the properties of f ,

and it is convenient for some of our analysis.
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To prove f is convex, it suffices to prove f is midpoint-convex since the function is clearly

continuous. Take q1, . . . , qK , r1, . . . , rK ∈ R+ and let si = qi+ri
2

. Define the corresponding

diagonal matrices to be Dq, Dr, Ds. We need to show f(q1, . . . , qK) + f(r1, . . . , rK) ≥
2f(s1, . . . , sK). For this, we first use the Woodbury inversion formula to write

Σ−1 = (CV 0C ′ +D−1)−1 = J − J(J +D)−1J,

with J = (CV 0C ′)−1. Plugging this back into (1), we see that it suffices to show the following

matrix order:
(J +Dq)

−1 + (J +Dr)
−1

2
� (J +Ds)

−1.

Inverting both sides, we need to show 2 ((J +Dq)
−1 + (J +Dr)

−1)
−1 � J + Ds. From defi-

nition, Dq + Dr = diag( q1+r1
σ2
1
, . . . , qK+rK

σ2
K

) = 2Ds. Thus the above follows from the AM-HM

inequality for positive definite matrices, see for instance Ando (1983).

A.2 The Matrix Qi

Let us define for each 1 ≤ i ≤ K,

Qi = C−1∆iiC
′−1 (2)

where ∆ii is the matrix with ‘1’ in the (i, i)-th entry, and zeros elsewhere. We note that

[Qi]11 = ([C−1]1i)
2, which is strictly positive under Assumption 1. These matrices Qi play

an important role in our proofs.

A.3 Order Difference Lemma

Here we establish the asymptotic order for the second derivatives of f .

Lemma 2. As q1, . . . , qK →∞, ∂2f
∂q2i

is positive with order 1
q3i

, whereas ∂2f
∂qi∂qj

has order at most
1

q2i q
2
j

for any j 6= i. Formally, there is a positive constant L depending on the informational

environment, such that ∂2f
∂q2i
≥ 1

Lq3i
and | ∂2f

∂qi∂qj
| ≤ L

q2i q
2
j
.

To interpret, the second derivative ∂2f/∂q2i is the effect of observing signal i on the marginal

value of the next observation of signal i. Our lemma says that this second derivative is

always eventually positive, so that each observation of signal i makes the next observation

of signal i less valuable. The cross-partial ∂2f/∂qi∂qj is the effect of observing signal i on

the marginal value of the next observation of a different signal j, and its sign is ambiguous.
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The key content of the lemma is that regardless of the sign of the cross partial, it is

always of lower order compared to the second derivative. In words, the effect of observing a

signal on the marginal value of other signals (as quantified by the cross-partial) is eventually

second-order to its effect on the marginal value of further realizations of the same signal (as

quantified by the second derivative). This is true for any signal path in which the signal

counts q1, . . . , qK go to infinity proportionally, which we will justify later.

Proof. Recall from Lemma 1 that f(q1, . . . , qK) = [V 0 − V 0C ′Σ−1CV 0]11 and therefore

∂2f

∂qi∂qj
= [∂ij(V

0 − V 0C ′Σ−1CV 0)]11
∂2f

∂q2i
= [∂ii(V

0 − V 0C ′Σ−1CV 0)]11 (3)

Using properties of matrix derivatives,

∂ii(Σ
−1) = Σ−1(∂iΣ)Σ−1(∂iΣ)Σ−1 − Σ−1(∂iiΣ)Σ−1 + Σ−1(∂iΣ)Σ−1(∂iΣ)Σ−1. (4)

The relevant derivatives of the covariance matrix Σ are

∂iΣ = −σ
2
i

q2i
∆ii ∂iiΣ =

2σ2
i

q3i
∆ii

Plugging these into (4), we obtain ∂ii(Σ
−1) = −2σ2

i

q3i
(Σ−1∆iiΣ

−1) +O
(

1
q4i

)
. Thus by (3),

∂2f

∂q2i
=

[
−V 0C ′ · ∂

2(Σ−1)

∂q2i
· CV 0

]
11

=
2σ2

i

q3i
·
[
V 0C ′Σ−1∆iiΣ

−1CV 0
]
11

+O

(
1

q4i

)
. (5)

As q1, . . . , qk → ∞, Σ → CV 0C ′ which is symmetric and non-singular. Thus the matrix

V 0C ′Σ−1∆iiΣ
−1CV 0 converges to the matrix Qi defined earlier in (2). From (5) and [Qi]11 >

0, we conclude that ∂2f
∂q2i

is positive with order 1
q3i

. Similarly, for i 6= j, we have

∂ij(Σ
−1) = Σ−1(∂jΣ)Σ−1(∂iΣ)Σ−1 − Σ−1(∂ijΣ)Σ−1 + Σ−1(∂iΣ)Σ−1(∂jΣ)Σ−1.

The relevant derivatives of the covariance matrix Σ are

∂iΣ = −σ
2
i

q2i
∆ii ∂jΣ = −

σ2
j

q2j
∆jj ∂ijΣ = 0

From this it follows that ∂ij(Σ
−1) = O

(
1

q2i q
2
j

)
. The same holds for ∂2f

∂qi∂qj
because of (3),

completing the proof of the lemma.
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A.4 t-optimality

We introduce a central definition that will go into our proofs:

Definition 3. Say a vector of signal counts (n1, . . . , nK)′ is t-optimal if it minimizes the

posterior variance about ω among all vectors that allocate t observations. That is,

(n1, . . . , nK) ∈ argmin
(q1,...,qK):qi∈Z+,

∑
i qi=t

f(q1, . . . , qK).

Such vectors need not be unique, but we will often write n(t) as a generic t-optimal

vector. We will also use the phrase “division vector” interchangeably with “signal count

vector.”

B Dynamic Blackwell Comparison

B.1 Statement of the Lemma

This subsection establishes a dynamic version of Blackwell dominance for sequences of normal

signals. As an overview, we first generalize Greenshtein (1996) and show that a deterministic

(i.e. history-independent) signal sequence yields higher expected payoff than another in every

intertemporal decision problem if (and only if) the former sequence induces lower posterior

variances about θ1 at every period. This will be a corollary of the lemma below, which also

covers strategies that may condition on signal realizations.

We introduce some notation: Since θ1 is the only payoff-relevant state, the DM in our

model only needs to remember the expected value of θ1 and the covariance matrix over all

of the states (that is, expected values of the other states do not matter). Thus, we can

summarize any history of beliefs by hT = (µ0
1, V

0; . . . , µT1 , V
T ), with µt1 representing the

posterior expected value of θ1 after t periods and V t the posterior covariance matrix. Since

the posterior covariance matrix is a function of signal counts, we can also keep track of the

evolution of posterior covariance matrices by a sequence of division vectors. That is, we

will write the history as hT = (µ0
1, d(0); . . . ;µT1 , d(T )), where each d(t) = (d1(t), . . . , dK(t))

counts the number of each signal acquired by time t. We can then view any information

acquisition strategy S as a mapping from such sequences of expected values and division

vectors to signal choices.

Consider a mapping G̃ from possible sequences of divisions to these sequences themselves:

For each (d(0), . . . , d(T )), G̃ maps to another sequence (d̃(0), . . . , d̃(T )), subject to the fol-

lowing “consistency” requirements. First,
∑

i d̃i(t) = t, meaning that each d̃(t) must be a
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possible division at time t. Second, d̃i(t) ≥ d̃i(t − 1), meaning that the sequence d̃ can be

attained via a sequential sampling rule. Lastly, we require

(d̃(0), . . . , d̃(T − 1)) = G̃(d(0), . . . , d(T − 1))

so that nesting sequences are mapped to nesting sequences.

The following lemma says that if d(·) represents the division vectors under an information

acquisition strategy S, and if G̃ is a consistent mapping that uniformly reduces the posterior

variance, then we can find another information acquisition strategy S̃ whose division vectors

are given by d̃(·). Moreover, our construction ensures that S̃ leads to more dispersed posterior

beliefs than S at every period, so that in any decision problem, acquiring signals according

to S̃ is weakly better than S (when actions are taken optimally).

Lemma 3. Fix any information acquisition strategy S and any consistent mapping G̃ defined

above. Suppose that for every sequence of divisions (d(0), . . . , d(T )) realized under S, it holds

that

f(d̃(T )) ≤ f(d(T )).

Then there exists deviation strategy S̃ such that, at every period T , any history hT =

(µ0
1, d(0); . . . ;µT1 , d(T )) under S can be “associated with” a distribution of histories h̃T =

(ν01 , d̃(0); . . . ; νT1 , d̃(T )) with the following properties:

1. the probability of hT occurring under S is the same as the probability of its associated

h̃T (integrated with respect to the probability of “association”) occurring under S̃;

2. the total probability that any h̃T is associated to (integrated with respect to different

possible hT ) is 1;

3. under the association, the distribution of νt1 is normal with mean µt1 and variance

f(d(t))− f(d̃(t)) for each t.

Consequently, for any decision strategy A, there exists another decision strategy Ã such that

the expected payoff under (S̃, Ã) is no less than the expected payoff under (S,A).

To interpret, the first two properties require that the association relation is a Markov

kernel between histories under S and histories under S̃; this enables us to compare payoffs

under S̃ to those under S. The third property guarantees that the alternative strategy S̃ is

more informative than S.

We note the following corollary, which is obtained from the previous lemma by considering

a constant mapping G̃. Recall the t-optimal division vectors n(t) from Definition 3.
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Corollary 2. Suppose each coordinate of n(Bt) increases in t. Then it is possible and

optimal for the DM to achieve cumulated signal count n(Bt) at every period t. In these cases

the myopic rule is optimal.

B.2 Proof of Lemma 3

We construct S̃ iteratively as follows. In the first period, consider the signal choice under

S (given the null history). This signal leads to the division d(1). Let S̃ observe the unique

signal that would achieve the division d̃(1).

After the first observation, the DM’s distribution of posterior beliefs about θ1 under S is

θ1 ∼ N (µ1
1, f(d(1))) with µ1

1 a normal random variable with mean µ0
1 and variance f(0) −

f(d(1)). By comparison, the distribution of posterior beliefs under S̃ is θ1 ∼ N (ν11 , f(d̃(1)))

with ν11 drawn from N (µ0
1, f(0)− f(d̃(1))). Since f(d̃(1)) ≤ f(d(1)), the latter distribution

of beliefs (under S̃) is more informative a la Blackwell. Thus, we can associate each belief

θ1 ∼ N (µ1
1, f(d(1))) under S with a more informative distribution of beliefs N (ν11 , f(d̃(1)))

under S̃. To be more specific, for fixed µ1
1, the associated ν11 is distributed normally with

mean µ1
1 and variance f(d(1)) − f(d̃(1))). Thus by construction, all three properties are

satisfied at period 1. To facilitate the discussion below, we say this distribution of beliefs

under S̃ “imitates” the belief (µ1
1, f(d(1))) under S.

In the second period, the deviation strategy S̃ takes the current belief (ν11 , f(d̃(1))) and

randomly selects some µ1
1 (with conditional probabilities under the Markov kernel) to “im-

itate.” That is, given any selection of µ1
1, find the signal that S would observe in period

2 given belief (µ1
1, f(d(1))). This signal choice under S leads to the division sequence

(d(0), d(1), d(2)), which is mapped to (d̃(0), d̃(1), d̃(2)). Naturally, we let S̃ observe the signal

that would lead to the division d̃(2). Such a signal is well-defined due to our consistency

requirements on G̃.

To proceed with the analysis, let us fix µ1
1 and study the distribution of posterior beliefs

about θ1 after two observations. Under S, the distribution of posterior beliefs is θ1 ∼
N (µ2

1, f(d(2))) with µ2
1 normally distributed with mean µ1

1 and variance f(d(1)) − f(d(2)).

While under S̃, the distribution of posterior beliefs is θ1 ∼ (ν21 , f(d̃(2))) with ν21 drawn from

N (µ1
1, f(d(1))− f(d̃(2))).21

21Here we use the following technical result: suppose the DM is endowed with a distribution of prior

beliefs θ ∼ N (µ, V ), with µ1 normally distributed with mean y and variance σ2, then upon observing signal

i and performing Bayesian updating, his distribution of posterior beliefs is θ ∼ N (µ̂, V̂ ), with µ̂1 normally

distributed with mean y and variance σ2 + [V − V̂ ]11. This is proved by noting that the DM’s distribution

of beliefs about θ1 must integrate to the same ex-ante distribution of θ1.
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Since f(d̃(2)) ≤ f(d(2)), the distribution of beliefs under S̃ Blackwell-dominates the

distribution under S, for each µ1
1. We can thus associate each history (µ1

1, d(1);µ2
1, d(2)) under

S with a distribution of histories (ν11 , d̃(1); ν21 , d̃(2)) under S̃, such that the corresponding

beliefs under S̃ are more informative at both periods. Repeating this procedure completes

the construction of S̃, which satisfies all three properties stated in the lemma.

Finally, suppose A is any decision strategy that maps histories to actions. We need to

find Ã such that the pair (S̃, Ã) does no worse than (S,A). This is straightforward given

what we have done: at any history h̃T under S̃, let h̃T randomly select hT to imitate, and

define Ã(h̃T ) = A(hT ). Then we see that a DM who follows the decision strategy A obtains

the same payoff along any belief history h as another DM who uses the decision strategy Ã

and faces the distribution of belief histories h̃. Integrating over h, we have shown that (S̃, Ã)

achieves the same payoff as (S,A). The lemma is proved.

C Proof of Theorem 1 (Large Block Sizes)

By Corollary 2, it suffices to show that for sufficiently large B, each coordinate n(Bt) is

increasing in t. To do this, we first argue that the t-optimal signal counts for different

signals grow to infinity (roughly) proportionally. In more detail, define

λi =
|[C−1]1i| · σi∑K
j=1|[C−1]1j| · σj

. (6)

Then we will show that for each signal i, ni(t)− λi · t remains bounded even as t→∞.

Indeed, we must at least have ni(t) → ∞; otherwise the posterior variance f(n(t))

would be bounded away from zero, which would contradict the optimality of n(t) since

f(t/K, . . . , t/K)→ 0. Additionally, we compute from (1) that

∂if(n(t)) = −σ
2
i

n2
i

· [V 0C ′Σ−1∆iiΣ
−1CV 0]11. (7)

As each ni → ∞, the matrix Σ = CV 0C ′ + D−1 (see Lemma 1) converges to CV 0C ′.

So V 0C ′Σ−1∆iiΣ
−1CV 0 converges to the matrix Qi defined in (2). It follows from (7) that

∂if ∼ −σ2
i

n2
i
· [Qi]11, where ∼ means their ratio converges to 1. Since a t-optimal division

must satisfy ∂if ∼ ∂jf (because we are doing discrete optimization, ∂if and ∂jf need

only be approximately equal), we deduce that ni and nj must grow proportionally. Using

[Qi]11 = ([C−1]1i)
2, we have ni(t) ∼ λit.

Next, note that because ni(t) ∼ λit, Σ = CV 0C ′ + D−1 = CV 0C ′ + O(1
t
), where we

follow the standard “Big O” notation for the limit t→∞. Thus in fact V 0C ′Σ−1∆iiΣ
−1CV 0
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converges to Qi at the rate of 1
t
. From (7), we obtain ∂if =

−σ2
i ·[Qi]11+O( 1

t
)

n2
i

. Optimality of

the division vector n(t) gives us the first-order condition ∂if = ∂jf +O( 1
t3

).22 So

λ2i +O(1
t
)

n2
i

=
λ2j +O(1

t
)

n2
j

.

This is equivalent to λ2in
2
j−λ2jn2

i = O(t), which yields λinj−λjni = O(1) after factorization.

Hence ni(t) = λi · t+O(1) as we claimed.

Having completed this asymptotic characterization of the t-optimal division vectors, we

will now show that n(t+K − 1) ≥ n(t) (in each coordinate) whenever t is sufficiently large.

Theorem 1 will follow once this is proved.23

Suppose for the sake of contradiction that n1(t + K − 1) ≤ n1(t) − 1. Note we have∑K
i=1(ni(t + K − 1) − ni(t)) = K − 1. So

∑K
i=2(ni(t + K − 1) − ni(t)) ≥ K, and we can

without loss of generality assume n2(t+K−1) ≥ n2(t)+2. To summarize, when transitioning

from t-optimality to t+K − 1-optimality, signal 1 is acquired at least once less and signal 2

at least twice more. Below we will obtain a contradiction by arguing that at period t+K−1,

the posterior variance could be further reduced by observing signal 1 once more and signal

2 once less.

Indeed, let us write ni = ni(t) and ñi = ni(t+K − 1). Then t-optimality of n(t) gives us

f(n1 − 1, n2 + 1, . . . , nK) ≥ f(n1, n2, . . . , nK).

With a slight abuse of notation, we let ∂if to denote the discrete partial derivative of f :

∂if(q) = f(qi + 1, q−i)− f(q). Then the above display is equivalent to

∂2f(n1 − 1, n2, . . . , nK) ≥ ∂1f(n1 − 1, n2, . . . , nK). (8)

We claim this implies the following:

∂2f(ñ1, ñ2 − 1, . . . , ñK) > ∂1f(ñ1, ñ2 − 1, . . . , ñK). (9)

This would lead to

f(ñ1, ñ2, . . . , ñK) > f(ñ1 + 1, ñ2 − 1, . . . , ñK),

22Since n(t) minimizes the posterior variance function f only among integer vectors, we need not have the

exact equality ∂if = ∂jf . However, error terms that arise due to discreteness are bounded by O( 1
t3 ).

23To be fully rigorous, this only proves Theorem 1 when B is sufficiently large and is a multiple of K − 1.

However, we can similarly show n(t+K) ≥ n(t) for sufficiently large t. The two inequalities n(t+K−1) ≥ n(t)

and n(t+K) ≥ n(t) together are sufficient to deduce Theorem 1 for all large B.
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which would be our desired contradiction.

It remains to show (8) =⇒ (9). By assumption, we have ñ1 ≤ n1−1, ñ2 ≥ n2 +2 and the

difference between any ñj and nj is bounded uniformly over t. Thus the LHS of (9) exceeds

the LHS of (8) by (at least) a second derivative ∂22 minus a finite number of cross partial

derivatives ∂2j. By Lemma 2, this difference on the LHS is positive with order 1
t3

. The

difference between the RHS of (9) and the RHS of (8) can be positive or negative, but either

way it has order O( 1
t4

). This shows (9) is a consequence of (8), and the theorem follows.

D Proof of Theorem 2 (Separable Environments)

Suppose the informational environment is separable. We will show n(t) increases in t, which

implies the theorem via Corollary 2.

Note that in a separable environment, the definition of t-optimality reduces to:

n(t) = (n1(t), . . . , nK(t)) ∈ argmin
(q1,...,qK):qi∈Z+,

∑K
i=1 qi=t

K∑
i=1

gi(qi)

where g1, . . . , gK are convex functions.

In this setting, the myopic rule sequentially chooses the signal i that minimizes the

difference gi(qi + 1) − gi(qi), given the current division vector q. But since the g-functions

are convex, the outcome under this greedy procedure actually achieves t-optimality at every

period t.24 Hence n(t) increases in t and is achieved by the myopic rule.

E Preparation for the Proof of Theorem 3

E.1 Switch Deviations

We now introduce several results that will be used to show that the optimal rule eventually

proceeds myopically in generic environments. Relative to the proofs of Theorems 1 and 2,

the new difficulty that arises is that in general, the optimal information acquisition strategy

conditions on signal realizations. As a result, the induced division vectors d(·) are stochastic,

and we will need the full power of our dynamic Blackwell lemma.

In what follows, we will apply Lemma 3 using a particular class of mappings G̃.

24This can be easily proved by induction.
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Definition 4. Fix a particular sequence of divisions (d∗(0), d∗(1), . . . , d∗(t0)). Let i be the

signal observed in period t0 and j be any other signal. An (i, j)-switch mapping G̃ specifies

the following:

1. Suppose T < t0 or d(t) 6= d∗(t) for some t ≤ t0, then let G̃(d(0), . . . , d(T )) be itself.

2. Otherwise T ≥ t0 and d(t) = d∗(t),∀t ≤ t0. If dj(T ) = dj(t0), then let d̃(T ) =

(di(T )− 1, dj(T ) + 1, d−ij(T )). If dj(T ) > dj(t0), then let d̃(T ) = d(T ).

s1 s2 s3 s4 s5 . . . st0−1︸ ︷︷ ︸
Signals match divisions d∗(0), . . . , d∗(t0 − 1)

Xi st0+1 . . . sτ−1︸ ︷︷ ︸
None of these are Xj

Xj sτ+1 . . .

(i, j)-switch

Figure 1: Pictorial representation of an (i, j)-switch based on a sequence of divisions d∗(0), . . . , d∗(t0).

Let us interpret this definition by relating to the resulting deviation strategy S̃ con-

structed in Lemma 3. The first case above says that S̃ only deviates when the history of

divisions is d∗(0), . . . , d∗(t0 − 1) and S is about to observe signal i in period t0. The second

case says that S̃ dictates observing signal j instead at that history; subsequently, S̃ observes

the same signal as S (at the imitated belief) until the first period at which S is about to

observe signal j. If that period exists, the deviation strategy S̃ switches back to observing

signal i and coincides with S afterwards.

The benefit of these “switch deviations” is that their posterior variances can be easily

compared to the original strategy. Specifically, d̃(t) = d(t) except at those histories that

begin with d∗(0), d∗(1), . . . , d∗(t0 − 1) (and before signal j is observed again under S). At

such histories, the posterior variance is strictly lower under S̃ if and only if

f(di(t)− 1, dj(t) + 1, d−ij(t)) < f(d(t)).

Using (absolute values of) the discrete partial derivatives, we can rewrite this condition as

|∂if(di(t)− 1, dj(t), d−ij(t))| < |∂jf(di(t)− 1, dj(t), d−ij(t))|. (*)

We can thus obtain the following corollary:

Corollary 3. Suppose we can find a history of divisions d(0), . . . , d(t0) realized under S such

that di(t0) = di(t0 − 1) + 1 and moreover (*) holds for all divisions d(t) with dj(t) = dj(t0)

and dk(t) ≥ dk(t0),∀k. Then the switch deviation S̃ constructed above improves upon S.
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Note that the condition dj(t) = dj(t0) captures the fact that d̃(t) differs from d(t) only

until signal j is chosen again by S. Meanwhile, dk(t) ≥ dk(t0),∀k holds because we only

compare posterior variances after t0 periods.

E.2 Asymptotic Characterization of Optimal Strategy

Below we will use the contrapositive of Corollary 3 to argue that if S is the optimal infor-

mation acquisition strategy, then we cannot find any history of realized divisions such that

(*) always holds. Technically speaking, we might worry that although S̃ strictly improves

upon S in terms of posterior variances, it might achieve the same expected payoff as S (for

instance, when the DM faces a constant payoff function). Nonetheless, by Zorn’s lemma

we can choose S to be an optimal strategy that is additionally “un-dominated” in terms

of posterior variances. With that choice, the deviation S̃ cannot exist, and our arguments

remain valid.

To illustrate, we now derive the asymptotic signal proportions for the optimal information

acquisition strategy S.

Lemma 4. Suppose S is the optimal information acquisition strategy, and d(·) is its induced

divisions. Let λk be defined as in (6). In generic informational environments, the difference

dk(T )− λk ·T remains bounded as T →∞, for any realized division d(T ) and each signal k.

Proof. For this proof, we only need the informational environment to be such that each

signal has strictly positive marginal value. That is, for any signal k and any possible division

q, we require

f(qk + 1, q−k) < f(q).

This is “generically” satisfied because any equality f(qk + 1, q−k) = f(q) would impose a

non-trivial polynomial equation over the signal linear coefficients, and the number of such

constraints is at most countable.

Under this genericity assumption, let us first show dk(T )→∞ holds for each signal k, and

the speed of divergence depends only on the informational environment. For contradiction,

suppose this is not true. Then we can find a sequence of histories {hTm} such that Tm →∞
but d1(Tm) remains bounded (these histories need not nest one another). By passing to a

subsequence, we may assume qk = limm→∞ dk(Tm) exists for every signal k, where this limit

may be infinity. Define I to be the non-empty subset of signals (not including signal 1) with

qk =∞. Furthermore, we assume that the signal observed in the last period of each of these
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histories hTm is the same signal i. We also assume i ∈ I; otherwise just truncate the histories

by finitely many periods.

Take any signal j /∈ I (for instance, j = 1 works). Choose Tm sufficiently large and

consider the (i, j)-switch deviation S̃ that deviates from hTm by observing signal j instead

of i in period Tm. We will verify (*) for all possible divisions d(t) with dj(t) = dj(Tm) and

di(t) ≥ di(Tm), which will contradict the optimality of S via Corollary 3. Indeed, note that

as Tm → ∞, di(Tm) → ∞ because i ∈ I. Since di(t) ≥ di(Tm), the LHS of (*) approaches

zero as Tm increases. By comparison, the RHS of (*) is bounded away from zero because

dj(t) = dj(Tm) is bounded, and we assume each signal has strictly positive marginal value.

Hence (*) holds and we have shown that d(T )→∞ in each coordinate.

Next, from (7), we have the following approximations for the partial derivatives:

|∂if(di(t)− 1, dj(t), d−ij(t))| ∼
σ2
i · [Qi]11
di(t)2

|∂jf(di(t)− 1, dj(t), d−ij(t))| ∼
σ2
j · [Qj]11

dj(t)2
.

If lim supt0→∞
di(t0)
dj(t0)

> λi
λj

(recall that λi is proportional to σi ·
√

[Qi]11), then the above

estimates would imply (*) whenever di(t) ≥ di(t0) (because t ≥ t0) and dj(t) = dj(t0). That

would contradict the optimality of S. Hence, lim supt0→∞
di(t0)
dj(t0)

≤ λi
λj

for every pair of signals

i and j. It follows that dk(t0) ∼ λk · t0, ∀k.

Once these asymptotic proportions are proved, we know that the matrix Σ = CV 0C ′ +

D−1 converges to CV 0C ′ at the rate of 1
t
. By (7), we can deduce more precise approximations:

|∂if(di(t)− 1, · · · )| =
σ2
i · [Qi]11 +O(1

t
)

di(t)2
|∂jf(di(t)− 1, · · · )| =

σ2
j · [Qj]11 +O(1

t
)

dj(t)2
.

If di(t0)
dj(t0)

> λi
λj

+ O( 1
t0

), then these refined estimates would again imply (*) whenever di(t) ≥
di(t0) and dj(t) = dj(t0). To avoid the resulting contradiction, we must have di(t0)

dj(t0)
≤ λi

λj
+

O( 1
t0

) for every signal pair. This enables us to conclude dk(t0) = λk · t0 +O(1) as desired.

F Proof of Theorem 3 (Generic Eventual Myopia)

F.1 Outline

To guide the reader through this appendix, we begin by outlining the proof of the theorem,

which is broken down into several steps. Throughout, we focus on the case of B = 1 (one

signal each period), but our proof easily extends to arbitrary B. We will first show a simpler

(and weaker) result that, in generic environments, the number of periods in which the optimal
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strategy differs from the t-optimal division has natural density 1. Our proof of this result

is based on the observation that if equivalence does not hold at some time t, there must be

two different divisions over signals for which the resulting posterior variances about θ1 are

within O( 1
t4

) from each other. This leads to a Diophantine approximation inequality, which

we can show only occurs at a vanishing fraction of periods t.

To improve the result and demonstrate equivalence at all late periods, we show that the

number of “exceptional periods” t is generically finite if there are three different divisions

over signals whose posterior variances are within O( 1
t4

) from each other. This allows us

to conclude that in generic environments, the t-optimal divisions eventually monotonically

increase in t.

In such environments, t-optimality can be achieved at every late period. Thus, whenever

t-optimality obtains in some late period, it will be sustained in all future periods. Since we

have already established that the optimal strategy achieves t-optimality infinitely often, we

conclude equivalence at all large t.

We mention that in this appendix, we use a slightly different notion of “generic” where

we fix the signal coefficient matrix C and instead (randomly) vary the signal variances {σ2
i }.

This concept implies (and is stronger than) the previous genericity concept defined on C.

F.2 Equivalence at Almost All Times

We begin by proving a weaker result, that the optimal strategy induces the t-optimal division

n(t) at almost all periods t.

Proposition 2. Suppose the informational environment (V 0, C, {σ2
i }) has the property that

for any i 6= j, the ratio λi
λj

is an irrational number. Then, at a set of times with natural

density 1,25 d(t) = n(t) (which is unique) holds for every decision problem. In particular,

the optimal strategy induces a deterministic division vector at such times.

Proof of Proposition 2. Suppose that d1(T ) ≥ n1(T ) + 1 and d2(T ) ≤ n2(T ) − 1. Consider

the last period t0 ≤ T in which the optimal strategy observed signal 1. Then

d1(t0) = d1(T ) ≥ n1(T ) + 1; d2(t0) ≤ d2(T ) ≤ n2(T )− 1.

Using the contrapositive of Corollary 3 with the (1, 2)-switch, we know that (*) cannot

always hold. Thus there exists a division d(t) such that the inequality (*) is reversed. That

25Formally, for any set of positive integers A, let A(N) count the number of integers in A no greater than

N . Then we define the natural density of A to be limN→∞
A(N)
N , when this limit exists.
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is, we can find a division d(t) with d1(t) ≥ d1(t0) and d2(t) = d2(t0) such that (getting rid of

the absolute values)

∂1f(d1(t)− 1, d2(t), d−12(t)) ≤ ∂2f(d1(t)− 1, d2(t), d−12(t)). (10)

On the other hand, t-optimality of n(t) gives us

∂1f(n1(T ), n2(T )− 1, n−12(T )) ≥ ∂2f(n1(T ), n2(T )− 1, n−12(T )). (11)

Note that d2(t) = d2(t0) implies t− t0 is bounded (due to Lemma 4). On the other hand,

we have d1(t) = d1(T0) by construction (t0 is the last period signal 1 was observed). Hence

t0 − T is also bounded. Combining both, we deduce t − T must be bounded. Applying

Lemma 4 again, we know that any difference di(t)− ni(T ) is bounded.

Now because d1(t) − 1 ≥ d1(t0) − 1 ≥ n1(T ), the LHS of (10) has size at least the LHS

of (11) minus a finite number of cross partial derivatives ∂1j. Similarly, the RHS of (10) is

at most bigger than the RHS of (10) by a number of cross partials. Together with the order

difference lemma, these imply that the only way (10) and (11) can both hold is if the two

sides of (11) differ by at most O
(

1
T 4

)
.

To summarize: A necessary condition for d1(T ) ≥ n1(T ) + 1 and d2(T ) ≤ n2(T ) + 1 to

occur is that

|f(n1(T ) + 1, n2(T )− 1, . . . , nK(T ))− f(n(T ))| = O

(
1

T 4

)
. (12)

Hence, to prove the Proposition we only need to show that (12) holds at a set of times with

natural density 0. The following lemma proves exactly this property.

Lemma 5. Suppose λ1
λ2

is an irrational number. For positive constants c0, c1, define A(c0, c1)

to be the following set of positive integers:

{t : ∃ q1, q2, . . . , qK ∈ Z+, s.t. |qi − λi · t| ≤ c0,∀i

∧ |f(q1, q2 + 1, . . . , qK)− f(q1 + 1, q2, . . . , qK)| ≤ c1/t
4}.

Then A(c0, c1) has natural density zero.

Proof of Lemma 5. The proof relies on the following technical result, which gives a precise

approximation of the discrete partial derivatives of f :
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Lemma 6. Fix the informational environment. There exists a constant aj such that

f(qj, q−j)− f(qj + 1, q−j) =
σ2
j · [Qj]11

(qj − aj)2
+O

(
1

t4
; c0

)
(13)

holds for all q1, . . . , qK with |qi−λit| ≤ c0,∀i. The notation O
(

1
t4

; c0
)

means an upper bound

of L
t4

, where the constant L may depend on the informational environment as well as on c0.
26

Assuming (13), we see that the condition

|f(q1, q2 + 1, . . . , qK)− f(q1 + 1, q2, . . . , qK)| ≤ c1
t4

implies
∣∣∣σ2

1 ·[Q1]11
(q1−a1)2 −

σ2
2 ·[Q2]11

(q2−a2)2

∣∣∣ ≤ c2
t4

and thus
∣∣∣( λ1
q1−a1 )2 − ( λ2

q2−a2 )2
∣∣∣ ≤ c3

t4
for some larger positive

constants c2, c3. This further implies
∣∣∣ λ1
q1−a1 −

λ2
q2−a2

∣∣∣ ≤ c4
t3

, which reduces to∣∣∣∣q2 − a2 − λ2
λ1

(q1 − a1)
∣∣∣∣ ≤ c5

t
. (14)

This inequality says that the fractional part of λ2
λ1
q1 is very close to the fractional part of

λ2
λ1
a1−a2. But since λ2

λ1
is an irrational number, the fractional part of λ2

λ1
q1 is “equi-distributed”

in (0,1) as q1 ranges in the positive integers.27 Thus the Diophantine approximation (14)

only has solution at a set of times t with natural density 0, proving Lemma 5. Below we

supply the technically involved proof of (13).

Proof of Lemma 6. Fix q1, . . . , qK and the signal j. Recall the diagonal matrixD = diag( q1
σ2
1
, . . . , qK

σ2
K

).

Consider any q̂j ∈ [qj, qj + 1] and let D̂ be the analogue of D for the division (q̂j, q−j). That

is, D̂ = D except that [D̂]jj =
q̂j
σ2
j
. Let Σ̂ = CV 0C ′ + D̂−1. From (7), we have

∂jf(q̂j, q−j) = −
σ2
j

q̂2j
·
[
V 0C ′Σ̂−1∆jjΣ̂

−1CV 0
]
11
. (15)

Here and later in this proof, ∂jf represents the usual continuous derivative rather than the

discrete derivative.

Let D0 = diag
(
λ1t
σ2
1
, . . . , λKt

σ2
K

)
and Σ0 = CV 0C ′ + D−10 . For |qi − λit| ≤ c0,∀i we have

D̂ −D0 = O(c0), where the Big O notation applies entry-wise. It follows that

Σ̂ = CV 0C ′ + D̂−1 = CV 0C ′ +D−1 +O(
1

t2
; c0) = Σ0 +O(

1

t2
; c0).

26In applying Lemma 5 to prove Proposition 2, c0 is taken to be the bound on ni − λi · t.
27The Equi-distribution Theorem states that for any irrational number α and any sub-interval (a, b) ⊂

(0, 1), the set of positive integers n such that the fractional part of αn belongs to (a, b) has natural density

b− a. It is a special case of the Ergodic Theorem.
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Observe that the matrix inverse is a differentiable mapping at Σ0 (which is CV 0C ′+D−10 �
CV 0C ′ and thus positive definite). Thus we have

Σ̂−1 = Σ−10 +O

(
1

t2
; c0

)
.

Plugging this into (15) and using q̂j ∼ λjt, we obtain that

∂jf(q̂j, q−j) = −
σ2
j

q̂2j
·
[
V 0C ′Σ−10 ∆jjΣ

−1
0 CV 0

]
11

+O

(
1

t4
; c0

)
. (16)

Since Σ0 = CV 0C ′+ 1
t
·diag

(
σ2
1

λ1
, . . . ,

σ2
K

λK

)
, we can apply Taylor expansion (to the matrix

inverse map) and write

Σ−10 = (CV 0C ′)−1 − 1

t
(CV 0C ′)−1 · diag

(
σ2
1

λ1
, . . . ,

σ2
K

λK

)
· (CV 0C ′)−1 +O

(
1

t2

)
. (17)

This implies

V 0C ′Σ−10 ∆jjΣ
−1
0 CV 0 = V 0C ′(CV 0C ′)−1∆jj(CV

0C ′)−1CV 0 − Mj

t
+O

(
1

t2

)
= Qj −

Mj

t
+O

(
1

t2

)
, (18)

where Mj is a fixed K ×K matrix depending only on the informational environment. For

future use, we note that

Mj = V 0C ′(CV 0C ′)−1 diag

(
σ2
1

λ1
, . . . ,

σ2
K

λK

)
(CV 0C ′)−1∆jj(CV

0C ′)−1CV 0

+ V 0C ′(CV 0C ′)−1∆jj(CV
0C ′)−1 diag

(
σ2
1

λ1
, . . . ,

σ2
K

λK

)
(CV 0C ′)−1CV 0

= C−1 diag

(
σ2
1

λ1
, . . . ,

σ2
K

λK

)
(CV 0C ′)−1∆jjC

′−1

+ C−1∆jj(CV
0C ′)−1 diag

(
σ2
1

λ1
, . . . ,

σ2
K

λK

)
C ′−1. (19)

Using (18), we can simplify (16) to

∂jf(q̂j, q−j) = −
σ2
j

q̂2j
·
[
Qj −

Mj

t

]
11

+O

(
1

t4
; c0

)
. (20)

Integrating this over q̂j ∈ [qj, qj + 1], we conclude that

f(qj, q−j)− f(qj + 1, q−j) =
σ2
j

qj(qj + 1)
·
[
Qj −

Mj

t

]
11

+O

(
1

t4
; c0

)
. (21)
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We set aj = −
(
λj ·[Mj ]11
2[Qj ]11

+ 1
2

)
. Then

σ2
j

qj(qj + 1)
·
[
Qj −

Mj

t

]
11

= (σ2
j · [Qj]11) ·

1 +
2aj+1

λjt

qj(qj + 1)
=
σ2
j · [Qj]11

(qj − aj)2
+O

(
1

t4
; c0

)
,

implying the desired approximation (13). The last equality above uses
1+

2aj+1

λjt

qj(qj+1)
= 1

(qj−aj)2 +

O
(

1
t4

; c0
)
, which is because

qj(qj + 1)

(qj − aj)2
= 1 +

2(aj + 1)

qj − aj
+O

(
1

(qj − aj)2

)
= 1 +

2aj + 1

λjt
+O

(
1

t2
; c0

)
dividing through by qj(qj + 1).

F.3 Simultaneous Diophantine Approximation

The above Lemma 5 tells us that at most times t, there do not exist a pair of divisions

(differing minimally on two signal counts) that lead to posterior variances close to each

other (with a difference of c1
t4

). We obtain a stronger result if a triple of such divisions were

to exist.

Lemma 7. Fix V 0 and C, and let signal variances vary. For positive constants c0, c1, define

A∗(c0, c1) to be the following set of positive integers:

{t : ∃ q1, q2, q3, . . . , qK ∈ Z+, s.t. |qi − λit| ≤ c0,∀i

∧ |f(q1, q2 + 1, q3, . . . , qK)− f(q1 + 1, q2, q3, . . . , qK)| ≤ c1/t
4

∧ |f(q1, q2, q3 + 1, . . . , qK)− f(q1 + 1, q2, q3, . . . , qK)| ≤ c1/t
4}

Then, for generic signal variances, A∗(c0, c1) has finite cardinality.

Proof. So far we have been dealing with fixed informational environments. However, a

number of parameters defined above depend on the signal variances σ = {σ2
i }Ki=1. Specifically,

while the matrix Qi = C−1∆iiC
′−1 is independent of σ, the asymptotic proportions λi (which

is proportional to σi · [Qi]11) do vary with σ. In this proof, we write λi(σ) to highlight this

dependence.

Next, we recall the matrix Mj introduced earlier in (19). We note that for fixed matrices

V 0 and C, each entry of Mj(σ) is a fixed linear combination of
σ2
1

λ1(σ)
, . . . ,

σ2
K

λK(σ)
.

Then, the parameter aj(σ) in (13) is given by (see the previous proof)

aj(σ) = −1

2
− λj(σ) · [Mj(σ)]11

2[Qj]11
= −1

2
+ λj(σ)

K∑
i=1

b̃ji
σ2
i

λi(σ)
= −1

2
+

K∑
i=1

bjiσiσj (22)
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for some constants b̃ji, bji independent of σ. In the last equality above, we used the fact that
λj(σ)

λi(σ)
equals a constant times

σj
σi

.

Thus Lemma 6 gives

f(qj, q−j)− f(qj + 1, q−j) =
σ2
j · [Qj]11

(qj − aj(σ))2
+O

(
1

t4
; c0

)
whenever |qi − λi(σ) · t| ≤ c0,∀i. We comment that the Big O constant here may depend

on σ. However, a single constant suffices if we restrict each σi to be bounded above and

bounded away from zero. Since measure-zero sets are closed under countable unions, this

restriction does not affect the result we want to prove.

By the above approximation, a necessary condition for t ∈ A∗(c0, c1) is that q1, q2, q3

satisfy ∣∣∣∣(q2 − a2(σ))− η · σ2
σ1

(q1 − a1(σ))

∣∣∣∣ ≤ c6
q1

(23)

as well as ∣∣∣∣(q3 − a3(σ))− κ · σ3
σ1

(q1 − a1(σ))

∣∣∣∣ ≤ c6
q1

(24)

for some constant c6 independent of σ (c6 may depend on c0, c1 stated in the lemma). The

constant η is given by η =
√

[Q2]11/[Q1]11, and similarly for κ.

It remains to show that for generic σ, there are only finitely many positive integer triples

(q1, q2, q3) satisfying the simultaneous Diophantine approximation (23) and (24). To prove

this, we assume that each σi is i.i.d. drawn from the uniform distribution on [ 1
L
, L], where L

is a large constant. Denote by F (q1, q2, q3) the event that (23) and (24) hold simultaneously.

We claim that there exists a constant c7 such that P(F (q1, q2, q3)) ≤ c7
q41

holds for all q1, q2, q3.

Since F (q1, q2, q3) cannot occur for q2, q3 > c8q1, this claim will imply∑
q1,q2,q3

P(F (q1, q2, q3)) <
∑
q1

∑
q2,q3≤c8q1

c7
q41
<
∑
q1

c7c
2
8

q21
<∞. (25)

Generic finiteness of tuples (q1, q2, q3) will then follow from the Borel-Cantelli Lemma.28

To prove this claim, it suffices to show that if σ = (σ1, σ2, σ3, σ4, . . . , σK) and σ′ =

(σ1, σ
′
2, σ

′
3, σ4, . . . , σK) both satisfy (23) and (24), then |σ2 − σ′2|, |σ3 − σ′3| ≤ c

q21
for some

28Because of the use of Borel-Cantelli Lemma, this proof (unlike Lemma 5 above) does not allow us to

effectively determine for given σ whether (23) and (24) only have finitely many integer solutions. Nonetheless,

a modification of this proof does imply the following finite-time probabilistic statement: when σ1, . . . , σK

are independently drawn, the probability that the optimality strategy coincides with t-optimality at every

period t ≥ T is at least 1−O( 1
T ), where the constant involved only depends on the distribution of σ.
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constant c.29 Without loss, we assume |σ2 − σ′2| ≥ |σ3 − σ′3|. Using (22), we can rewrite the

condition (23) as ∣∣∣∣ (q2 +
1

2

)
− η · σ2

σ1

(
q1 +

1

2

)
︸ ︷︷ ︸

A

+
∑
i

βiσ2σi︸ ︷︷ ︸
B

∣∣∣∣ ≤ c6
q1

for some constants βi independent of σ. A similar inequality holds at σ′:∣∣∣∣ (q2 +
1

2

)
− η · σ′2

σ1

(
q1 +

1

2

)
︸ ︷︷ ︸

A′

+
∑
i

βiσ
′
2σ
′
i︸ ︷︷ ︸

B′

∣∣∣∣ ≤ c6
q1
.

It follows from the above two inequalities that |A+B − A′ −B′| ≤ 2c6
q1

. Furthermore, since

|A− A′| ≤ |A+B − A′ −B′|+ |B −B′| (by triangle inequality), we deduce∣∣∣∣η · (σ′2 − σ2)σ1
·
(
q1 +

1

2

)∣∣∣∣ ≤ 2c6
q1

+

∣∣∣∣∣∑
i

βi(σ
′
2σ
′
i − σ2σi)

∣∣∣∣∣ . (26)

Because σ′i = σi for i 6= 2, 3, we have∣∣∣∣∣∑
i

βi(σ
′
2σ
′
i − σ2σi)

∣∣∣∣∣ =

∣∣∣∣∣∑
i

βi(σ
′
2 − σ2)σi +

∑
i

βiσ
′
2(σ
′
i − σi)

∣∣∣∣∣
=

∣∣∣∣∣
(∑

i

βi(σ
′
2 − σ2)σi

)
+ β2σ

′
2(σ
′
2 − σ2) + β3σ

′
2(σ
′
3 − σ3)

∣∣∣∣∣
≤ (K + 2)L ·max

i
|βi| · |σ′2 − σ2| .

Plugging this estimate into (26), we obtain the desired result |σ2− σ′2| ≤ c
q21

. This completes

the proof of the lemma.

F.4 Monotonicity of t-Optimal Divisions

We apply Lemma 7 to prove the eventual monotonicity of t-optimal divisions in generic

informational environments.

Proposition 3. Fix V 0 and C. For generic signal variances {σ2
i }Ki=1, there exists T0 such

that for t ≥ T0, the t-optimal division n(t) is unique, and it satisfies ni(t+ 1) ≥ ni(t),∀i.
29This implies that the probability of the event F (q1, q2, q3) conditional on any value of σ1, σ4, . . . , σK is

bounded by c7
q41

, which is stronger than the claim.
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Proof. Uniqueness follows from the stronger fact that in generic informational environments,

f(q1, . . . , qK) differs from f(q′1, . . . , q
′
K) whenever q 6= q′. Below we focus on monotonicity.

Using the order difference lemma, we can already deduce the difference |ni(t+ 1)−ni(t)|
is no more than 1 at sufficiently late periods t. Suppose that n1(t + 1) = n1(t) − 1. Then

because
∑

i(ni(t + 1) − ni(t)) = 1, we can without loss assume n2(t + 1) = n2(t) + 1 and

n3(t+ 1) = n3(t) + 1.

For notational ease, write ni = ni(t), n
′
i = ni(t+ 1). By t-optimality, we have

f(n1, n2, n3, . . . , nK) ≤ f(n1 − 1, n2 + 1, n3, . . . , nK)

f(n′1, n
′
2, n

′
3, . . . , n

′
K) ≤ f(n′1 + 1, n′2 − 1, n′3, . . . , n

′
K)

These inequalities are equivalent to

∂2f(n1 − 1, n2, n3, . . . , nK) ≥ ∂1f(n1 − 1, n2, n3, . . . , nK) (27)

∂2f(n′1, n
′
2 − 1, n′3, . . . , n

′
K) ≤ ∂1f(n′1, n

′
2 − 1, n′3, . . . , n

′
K) (28)

with ∂if representing the discrete partial derivative.

Since n′2 − 1 = n2, the LHS of (28) is at least the LHS of (27) minus a number of cross

partials. Similarly, the RHS of (28) is at most bigger than the RHS of (27) by a number

of cross partials. Thus the only way (27) and (28) can both hold is if the two sides of (27)

differ by no more than O( 1
t4

). That is, for some absolute constant c1,
30 we have

|f(n1 − 1, n2 + 1, n3, . . . , nK)− f(n1, n2, n3, . . . , nK)| ≤ c1
t4
. (29)

An analogous argument yields

|f(n1 − 1, n2, n3 + 1, . . . , nK)− f(n1, n2, n3, . . . , nK)| ≤ c1
t4
. (30)

But now we can apply Lemma 7 to show that in generic environments, there are only finitely

many integer tuples (n1, . . . , nK) that satisfy both (29) and (30). This proves the result.

F.5 Completing the Proof of Theorem 3

By Proposition 3, generically there exists T0 such that n(t) is monotonic in t after T0 periods.

Thus, using our dynamic Blackwell lemma, if the DM achieves t-optimality at some period

t ≥ T0, he will continue to do so in the future. By Proposition 2, such a time t does exist.

This proves Theorem 3.

30As discussed in the proof of Lemma 7, we can find a single constant c1 that works for all σ bounded

above and bounded away from zero.
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G Proof of Proposition 1 (Bound on B)

G.1 Some Estimates

Throughout, we work with the transformed model, where each signal Xi is simply θ̃i plus

standard Gaussian noise, and the DM’s prior covariance matrix over the transformed states

is Ṽ . Let γ = γ(q1, . . . , qK) represent the following K × 1 vector:

γ = (Ṽ + E)−1 · Ṽ · α̃ (31)

with E = diag( 1
q1
, . . . , 1

qK
) and ω = α̃′ · θ̃. For 1 ≤ i ≤ K, γi is the i-th coordinate of γ.

Here we re-derive the posterior variance function f , its derivatives and second derivatives.

Our formulae below take as primitives Ṽ and α̃, but they are equivalent to those presented

in Appendix A (for the original model).

Fact 1 (Posterior Variance). f(q1, . . . , qK) = α̃′(Ṽ − Ṽ (Ṽ + E)−1Ṽ )α̃.

Fact 2 (Partial Derivatives of Posterior Variance). ∂if(q1, . . . , qK) = − 1
q2i
·α̃′Ṽ (Ṽ+E)−1∆ii(Ṽ+

E)−1Ṽ α̃ = −γ2i
q2i
.

Fact 3 (Second-Order Partial Derivatives of Posterior Variance).

∂iif(q1, . . . , qK)

=
2 · α̃′Ṽ (Ṽ + E)−1∆ii(Ṽ + E)−1Ṽ α̃

q3i
− 2 · α̃′Ṽ (Ṽ + E)−1∆ii(Ṽ + E)−1∆ii(Ṽ + E)−1Ṽ α̃

q4i

=
2γ2i
q3i
·

(
1− [(Ṽ + E)−1]ii

qi

)
Fact 4 (Cross-Partial Derivatives of Posterior Variance).

∂ijf(q1, . . . , qK) =
−2

q2i q
2
j

· α̃′Ṽ (Ṽ + E)−1∆ii(Ṽ + E)−1∆jj(Ṽ + E)−1Ṽ α̃

=
−2γiγj
q2i q

2
j

· [(Ṽ + E)−1]ij.

All of the above facts can be proved by simple linear algebra, so we omit the details.

G.2 Refined Asymptotic Characterization of n(t)

We now specialize to α̃ = 1 and establish the next lemma, which refines our asymptotic

characterization of n(t) in Appendix C.31 Proposition 1 will immediately follow.

31It is easy to see that in the transformed model, λi is proportional to |α̃i|. So λi = 1
K here.
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Lemma 8. For t ≥ 8(R + 1)K
√
K, it holds that |ni(t)− t

K
| ≤ 4(R + 1)

√
K.

Proof. Note from (31) that (Ṽ + E)γ = Ṽ 1. So Ṽ (1− γ) = Eγ = (γ1
q1
, . . . , γK

qK
)′, and

1− γ = (Ṽ )−1 ·
(
γ1
q1
, . . . ,

γK
qK

)′
.

From the definition of the operator norm, we deduce

K∑
i=1

(1− γi)2 = ‖w − γ‖2 ≤ R2 ·

(
K∑
j=1

γ2j
q2j

)
. (32)

This holds for any division vector q and the corresponding γ (which is a function of q).

Now suppose without loss of generality that n1(t) ≥ t
K

. Let q = (n1(t)−1, n2(t), . . . , nK(t))

and consider the corresponding γ. Then from t-optimality we have

|f(q1 + 1, q−1)− f(q)| ≥ |f(qj + 1, q−j)− f(q)|, ∀j.

Note that the discrete partial derivatives above are related to the usual continuous partials

by the following inequalities:32

γ2j
qj(qj + 1)

≤ |f(qj + 1, q−j)− f(q)| ≤
γ2j
q2j
.

We therefore deduce
γ21
q21
≥

γ2j
qj(qj + 1)

, ∀j. (33)

Combining (32) and (33) and using 1
q2j
≤ 2

qj(qj+1)
, we see that

K∑
i=1

(1− γi)2 ≤ 2R2K · γ
2
1

q21
. (34)

In particular, we know that γ1 − 1 ≤ R
√

2K · γ1
q1

. It is easy to see this implies

γ1 ≤ 1 +
2R
√
K

q1
≤
√

2 (35)

whenever q1 = n1(t) − 1 ≥ t
K
− 1 ≥ (2

√
2 + 2)R

√
K. Plugging this back into the RHS of

(34), we then obtain

γj ≥ 1− 2R
√
K

q1
≥ 2−

√
2. (36)

32The RHS follows from the convexity of f . The LHS can be proved by using Fact 2, Fact 3 and noting

that γ2j is an increasing function in qj , because
∂γj(q)
∂qj

=
γj
q2j
· [(V + E)−1]jj has the same sign of γj .
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Now use (33), (35) and (36) to deduce that

qj + 1 ≥ γj
γ1
· q1 ≥

1− 2R
√
K

q1

1 + 2R
√
K

q1

· q1 ≥

(
1− 4R

√
K

q1

)
· q1 = q1 − 4R

√
K.

Recall qj = nj(t) for j > 1 and q1 = n1(t)− 1. We thus have

nj(t) ≥ n1(t)− 4R
√
K − 2. (37)

Since n1(t) ≥ t
K

, the above implies nj(t) ≥ t
K
− 4(R + 1)

√
K for each signal j. This proves

half of the lemma.

For the other half, note that nj(t) ≤ t
K

must hold for some signal j. Thus (37) yields

n1(t) ≤ t
K

+ 4(R+ 1)
√
K. This is not just true for signal 1, but in fact for any signal i with

ni(t) ≥ t
K

. So we conclude ni(t) ≤ t
K

+ 4(R + 1)
√
K for each signal i. The proof of the

lemma is complete.

H Eventual Optimality of the Myopic Rule

Below, write m(t) for the division vector at time t achieved under the (history-independent)

myopic rule.33 We have discussed that when Theorems 1 or 2 apply, the myopic division

vector m(t) is t-optimal at every period t. In this appendix, we argue that generically,

division vectors m(t) at late periods are t-optimal. This result complements our Theorem

3 (which characterizes the eventual path of the optimal strategy), and suggests that a DM

who naively follows the myopic rule all the way from the beginning will not do poorly.

To avoid repetition, here we only sketch the core argument. The main new step is to

show that the division vectors m(t) under the myopic rule grow to infinity in each coordinate.

That is, a myopic DM would not get stuck observing a subset of signals forever. Once this

is shown, we can repeat the (rest of the) proof of Lemma 4 and deduce that mi(t) − λi · t
remains bounded. And with these asymptotic characterizations, we can reproduce the proof

of Theorem 3 (now for the myopic strategy instead of the optimal strategy) without muh

modification.34

To see myopic signal choices never get stuck, we establish the following lemma.

33That is, m(t) = (m1(t), . . . ,mK(t)) where mi(t) is the number of times signal i has been observed under

myopic information acquisition prior to and including period t.
34These latter steps are actually simpler to carry out for the myopic strategy. This is because in con-

structing a profitable deviation from the myopic strategy, we only need to achieve lower posterior variance

at a single period. The switch deviations we used before are no longer needed.
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Lemma 9. Fix an arbitrary division vector q ∈ RK
+ (need not be integers). The partial

derivatives of f at q are all zero if and only if q1 = · · · = qK =∞.

This holds because for normal-linear signals, the posterior variance is globally convex. So

if each signal has zero marginal value given a division vector q, then q must be a global

minimizer of posterior variance, which only occurs when each qi =∞.

We mention that a similar result (i.e. myopic information acquisition does not get stuck)

would not in general be true for other signal structures. The following is a counterexample

with normal but non-linear signals.

Example 3. Consider three states θ1, θ2, θ3 drawn independently. The DM has access to the

following three signals:

X1 = θ1 + sign(θ2) + ε1

X2 = sign(θ2θ3) + ε2

X3 = θ3 + ε3

where ε1, ε2, ε3 are Gaussian noise terms. We focus on the prediction problem, in which (at

a random time) the DM makes a prediction about θ1 and receives negative of the squared

prediction error.

Note that prior to the first observation of X2, signal X3 is completely uninformative

about the payoff-relevant state θ1 (even when combined with previous observations of X1).

Similarly, signal X2 is individually uninformative about θ2,
35 and thus about θ1. These imply

that the DM’s uncertainty about θ1 is not reduced upon the first observation of either X2 or

X3. Hence, the myopic rule in this example is to always observe X1, contrary to Lemma 9.

Thus, if the DM follows the myopic rule in this example, he will never completely learn the

value of θ1. By contrast, if he is sufficiently patient, then his optimal strategy will observe

each signal infinitely often and identify the value of θ1 in the long run. This distinction

suggests that eventual optimality of the myopic rule may not hold in general informational

environments beyond those considered in this paper. Nonetheless, we conjecture that the

optimal rule eventually proceeds myopically (that is, Theorem 3 generalizes).

35This is because the sign of θ2θ3 does not contain any new information about θ2 when θ3 is equally likely

to be positive or negative.
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