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We develop a framework to assess the economic impact of algorithmic recommendations,
conceptualized as creating personalized prominence in consumer search. Our approach in-
tegrates realistic algorithms trained on synthetic data with a flexible model of consumer
preferences and product differentiation. To demonstrate the utility of our framework, we ap-
ply it to three widely debated issues. First, we evaluate how algorithmic recommendations
influence market concentration and the diversity of consumer choices. Second, we analyze
their effects on equilibrium prices and consumer welfare. Finally, we explore the potential
for platforms to manipulate recommendations to prioritize more profitable products.

1. INTRODUCTION

Recommender systems (RSs) are Al-based algorithms that employ user feedback—such
as ratings, clicks, or other activities—to predict users’ potential interest in items they have not
yet experienced. Digital platforms, which serve as intermediaries between users and suppliers
of these items, routinely collect this feedback and use algorithmic predictions to provide per-
sonalized recommendations, helping users navigate the vast array of available options. These
recommendations already exert a substantial influence on consumer demand (Jannach and Ju-
govac, 2019), and their influence is expected to grow further with advancements in Al technol-
ogy and the ongoing accumulation of user data by platforms.'
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Despite their importance, the economic analysis of RSs remains underdeveloped, primar-
ily due to the challenges of modeling them in a meaningful yet tractable way. Most existing
analyses assume that consumers simply follow algorithmic recommendations. In contrast, this
paper proposes a novel framework that conceptualizes RSs as creating personalized promi-
nence in consumer search. This framework acknowledges that consumers do not always adhere
to platform recommendations. Instead, these recommendations offer personalized pre-search
information — allowing consumers to start their search with products that are expected to align
well with their preferences while maintaining the flexibility to continue searching if the sug-
gested products turn out to be poor matches.

This perspective requires embedding the analysis of algorithmic recommendations within
a fully developed model of consumer search. However, we cannot rely on the standard search
model, which assumes entirely idiosyncratic preferences. Our focus is on collaborative-filtering
recommendation systems—arguably the most popular and widely used class of recommenda-
tion algorithms—which function by identifying patterns of similarity and dissimilarity among
users and products. If consumer preferences were entirely idiosyncratic, any observed corre-
lations in the data would be coincidental, rendering recommendations ineffective or even mis-
leading. To ensure consistency, we must therefore adopt a model of consumer preferences and
product characteristics that exhibits systematic similarities and differences among products and
consumers, allowing the algorithms to generate valuable predictions.

And yet, these predictions cannot be perfect, as in reality, platforms observe feedback
for only a tiny fraction of all consumer-product pairs, and this feedback may provide only
noisy signals of the true value of products to consumers. As a result, algorithmic estimates are
inherently subject to small-sample biases.

Integrating these key elements results in a highly complex framework that challenges the
application of analytical methods. This paper proposes a numerical approach to identifying
and analyzing the impact of RSs within controlled, albeit synthetic, economic settings. Build-
ing on the computer science literature, state-of-the-art algorithms are implemented and trained
using synthetic data generated by a model of consumer preferences and product differentia-
tion. This approach ensures control over both the quality and quantity of information provided
to the algorithm. Consumers’ optimal search patterns and firms’ optimal pricing strategies are
then determined numerically, contrasting the scenario in which consumers receive personalized
recommendations with a benchmark where they rely solely on unassisted search. To address
concerns about external validity, an extensive robustness analysis is conducted.

To demonstrate the potential applications of this novel approach, which integrates RSs
into a search framework, we revisit three issues widely debated among scholars and policy-
makers. First, we analyze the impact of algorithmic recommendations on market concentration
and the diversity of consumer choices. The central question is whether RSs help consumers
discover niche products that would otherwise go unnoticed or whether they create a rich-get-
richer dynamic, disproportionately promoting a few popular items and leading to more highly
concentrated markets.? This analysis specifically focuses on subscription-based platforms such
as Netflix and Spotify, where users pay a fixed fee and do not incur additional costs for each
item consumed.

Turning to platforms like Amazon, where each product is individually priced, we sec-
ondly examine the effect of RSs on equilibrium prices and consumer welfare. Algorithmic
recommendations can influence prices even in the absence of price discrimination by altering

2Similar issues also arise in other settings. For example, it has been contended that the use of RSs may cause
political polarization in social media and a loss of diversity in culture. See, for instance Abdollahpouri and Mansoury
(2020), Abdollahpouri et al. (2021).
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how consumers search for products, thereby affecting consumer demand. Furthermore, algo-
rithmic recommendations directly impact consumer welfare by changing the level of equilib-
rium search and improving the quality of matches between consumers and the products they
ultimately purchase.

Finally, we investigate the possibility that platforms may manipulate their recommenda-
tions to favor more profitable products at the expense of genuinely superior ones. Often, these
favored products are those supplied by the platform itself, which is why the practice is com-
monly referred to as self-preferencing. Existing analyses of self-preferencing, which assume
that consumers mechanically follow the platform’s recommendations, may overestimate the
impact of this practice.

We now provide a brief preview of our substantive results, deferring a more detailed dis-
cussion to the subsequent sections. First, we find that RSs tend to favor mass-market products
over niche ones. This is due to a “uniformity” effect, where the algorithm overestimates con-
sumer similarity, leading it to recommend products that align too frequently with the prefer-
ences of the median consumer. This bias disappears only when the quantity and quality of data
available to the algorithm are very high, far beyond what is typically observed in practice.

Second, we find that RSs lead firms to raise prices, even when price discrimination is
excluded by assumption.” However, compared to a scenario without algorithmic recommen-
dations, RSs also improve the matching between consumers and products, reducing the need
for costly search. While we generally observe a positive total effect, a decline in consumer
surplus may occur in markets with relatively few products, predominantly horizontal product
differentiation, and high search costs.

Even when consumers benefit from RSs compared to their absence, we also demonstrate
that as algorithms gain access to more and better data, consumer surplus may eventually de-
crease. In other words, the relationship between information and consumer welfare may fol-
low an inverted-U curve. Initially, consumer surplus rises as the algorithm’s information level
increases, allowing consumers to more easily find products that match their preferences. How-
ever, higher levels of information also drive up prices. Beyond a certain threshold, this negative
effect dominates, and further increases in information lead to a reduction in consumer surplus.
This pattern holds regardless of the source of information variation, whether due to increased
data quantity, noise reduction, or other factors.

Finally, we find that when platforms manipulate their recommendations, the prices of over-
recommended products tend to decrease. This mitigates the negative welfare impact of such
practices and limits their profitability, suggesting that the profit-maximizing level of manipula-
tion may be relatively small.

We discuss more fully the relationships between each set of results and the relevant lit-
eratures in the subsequent sections, where we present the results in greater detail. Method-
ologically, the two contributions most closely related to this paper are Lee and Wright (2021)
and Castellini et al. (2023). However, these papers do not embed the analysis of RSs within a
framework of individual search* and do not investigate the impact of RSs on product market
competition.’

3Lee and Musolff (2023) empirically uncover price effects of algorithmic recommendations that align with the
findings of our analysis.

“Lee and Wright (2021) assess the information value of RS algorithms by comparing them to purely random
choices, whereas Castellini et al. (2023) use complete information as their benchmark.

SMore broadly, this paper contributes to the recent literature on the implications of Al for industrial organization.
Most of this literature has, so far, focused specifically on the issue of algorithmic collusion: see, for instance, Calvano
et al. (2020), Johnson et al. (2023), Asker et al. (2023), and Klein (2021). More recent work has added empirical
evidence (Assad et al., forthcoming) and theoretical results (Possnig, 2023, Banchio and Mantegazza, 2023).



The rest of the paper is divided into two parts. In the first part, we present our analytical
framework. Section 2 offers a self-contained introduction to the latent-factor, collaborative-
filtering algorithms utilized. Section 3 presents a model of product differentiation that exhibits
systematic similarities and differences among consumers and products. It is a model of the
“address” variety that, for consistency, mirrors the latent-factor structure of the algorithms. The
model encompasses different combinations of horizontal and vertical product differentiation, as
well as both “niche” and “mass” products. Section 4 describes the data the algorithms use and
how they are trained. Section 5 introduces the search theoretic framework that we use to model
consumer behavior. Finally, Section 6 specifies the baseline parameterization of the model in
preparation for the numerical analysis.

The second part of the paper presents our substantive findings. Section 7 examines the im-
pact of RSs on market concentration, while Section 8 analyzes the effect of RSs on equilibrium
prices. In Section 9, we analyze the consequences of varying the amount and quality of infor-
mation, demonstrating an inverted-U relationship between information and consumer welfare.
Section 10 analyzes the case where the platform manipulates its recommendations. In the con-
cluding section, we discuss potential extensions to our work and the policy implications of our
findings. An online appendix includes details that are omitted from the main text. Extensions
of narrower interest are included in supplementary material Calvano et al. (2025).°

2. MODEL-BASED RECOMMENDER SYSTEMS

We focus on latent-factor, collaborative-filtering systems, a class of algorithms that in-
cludes the winner of the Netflix Prize.” According to (Aggarwal, 2016, p. 91), these algorithms
are “considered to be state-of-the art in recommender systems.” Rokach et al., 2022 suggest that
they are widely used in practice.?

2.1. The basic problem

Consider a finite set of users ¢ = 1,2, ..., I, a finite set of items j = 1,2, ..., J and a sparse
matrix R of size I x J which is commonly referred to as the rating matrix in the computer
science literature (we adopt this terminology throughout). Existing entries 7;; represent the
rating of user ¢ for item j when such rating is either reported or inferred from user behavior, and
the entries for the unobserved user-item pairs are missing. (Economists naturally interpret these
ratings as indicative of the utility user ¢ derived from item j5.) The objective of the algorithm is
to estimate the full matrix of true ratings, denoted as R.

Collaborative filters re-estimate the observed values and fill in the missing ones exploiting
the correlation structure of observed ratings. The underlying assumption is that users whose
observed ratings are similar are likely to have similar ratings for unobserved items, while items
whose ratings are similar across observed users are likely to be rated similarly by unobserved
users.

This supplementary material is available at the DOI link: https://doi.org/10.7910/DVN/EREVKI

"In 2006, Netflix launched a one million dollar prize for the first RS that could improve the performance of
Cinematch, their algorithm for predicting ratings, by at least 10%. The challenge provided participants with a rich
data set. After three years, the prize was awarded in 2009 to BellKor’s Pragmatic Chaos team for improving Netflix’s
algorithm by 10.06%. A new challenge in 2010 was discontinued due to concerns that the anonymity of the data
provided had been breached. For more details, see Koren et al. (2009) .

8The main advantage of latent factor methods based on matrix factorization is their high parallelizability, enabling
efficient management of massive, sparse, and dynamically changing datasets. This capability makes them ideal for
delivering a large volume of recommendations, especially in challenging environments where items frequently change
or quickly become outdated.
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2.2. Latent factors

The latent-factor, collaborative filtering algorithms we focus on explain the observed user-
item ratings and predict the unobserved ones by using hidden (latent) factors that represent
inherent properties of both items and users. This approach reduces the dimensionality of the
rating matrix by representing the ratings in terms of a relatively small number of variables.

Analytically, the true rating of item j by user 7 is viewed as the inner product of a vector
of user-specific parameters t, and a vector of item-specific parameters v ;:

H
T :Ztihvg‘h, ()
h=1

where H is the number of latent factors. In matrix notation, R = TV’, where T and V are the
(I x H) and (J x H) matrices formed by the I vectors t, and the J vectors v, respectively.
The variable ¢;;, may be thought of as user i’s proclivity for factor h, and the variable
v, as product j’s affinity to factor h. In applications, the H factors may have a semantic
interpretation. For the algorithm, however, they need not have any specific meaning.

2.3. Estimation procedure

The algorithm estimates the parameters T and V by minimizing some measure of the
distance between the estimated ratings,

Tij =

tinjn 2)

M=

>
Il

1

and the observed ones, 7;;. Using the Euclidean distance, the estimated parameters T and V
solve:
2

H
min Tij — Ztih@jh ) 3)
he1

TV =
(4,9)€S

where S denotes the set of all pairs (¢,7) for which r;; is (imperfectly) observed.” Using the

completed matrix R =TV, the algorithm can generate rankings of all items for all users,
allowing it to provide personalized recommendations.

It is important to note that in collaborative-filtering RSs, attributes and tastes are estimated
jointly, which marks a departure from much of the structural empirical work on demand esti-
mation based on the Random Utility Model. Unlike in those estimations, where it is typically
assumed that the choice attributes (i.e., the v;;,s) are observable while preferences (i.e., the
t;»s) are not, RSs observe neither product attributes nor consumer tastes and estimate both.'

In real-life applications, the density d of the matrix R of observed rating is quite low, often
below 2%.'" Consequently, estimates obtained from such limited data may exhibit small sample

Problem (3) assumes that the algorithm uses a pre-specified number of latent factors H, as we do in our baseline
analysis. However, in a robustness check, we allow the algorithm to estimate the value of H using an internal cross-
validation routine, as described in the online appendix. The results remain nearly unchanged.

0The case where some attributes are observable by the RS can be handled by using hybrid RSs (also known
as ensemble RSs). By symmetry, these algorithms can also deal with the case where consumer tastes are partly
observable. These possible extensions are left for future work.

'The density of a sparse matrix is the fraction of non-empty cells, and the sparsity is the fraction of empty cells.
Therefore, density = 1— sparsity.
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biases. In particular, the estimation procedure (3) may cause overfitting. A common approach
for addressing this problem is to use regularization techniques. The idea is to penalize large
values of the coefficients in the matrices T and V so as to decrease the variance of R. The
actual minimization problem then becomes:

H
min Y | 7y — Y fnn
T,V he1

’7 ijEeS

2

I H H
FNY D AN D O )
h=1

i=1 h=1 j=1

where the non-negative parameters \; and )\, are the regularization weights. The weights are
chosen by a cross-validation procedure described in the online appendix.'?

3. PRODUCTS AND PREFERENCES

In this section, we present a model of consumer preferences and product characteristics
that mirrors the latent-factor structure employed by the algorithms. This ensures that the esti-
mation can be based on a correctly specified model of the economic environment, and in cases
of mis-specification, it allows us to control its nature and extent. The model is rich enough
to accommodate the coexistence of niche and mass products, as well as consumers with both
common and more eccentric preferences.

3.1. A latent-factor model of product differentiation

We examine a monopolistic platform that serves as an intermediary between [ buyers
(indexed by ¢« =1, 2, ..., I) and the sellers of J products (indexed by j = 1,2, ..., J). Consumer
1’s willingness to pay for product j, in monetary units, consists of a deterministic component
u,; that is specific to each product-consumer pair, along with an idiosyncratic shock ¢;;:

Uij = Usj + €45 %)

The shocks ¢;; are normally i.i.d. with zero mean and variance o2. (They serve to smooth out
the demand functions, guaranteeing the existence of a price equilibrium in pure strategies.) The
systematic component, on the other hand, is assumed to be:

H
Uj = Ztihvjir (©6)
h=1

Note the analogy with the structure of the ratings r;; that the algorithm tries to predict. From
an economic viewpoint, [ represents the number of characteristics of the products that are
valued by consumers (akin to different dimensions of product quality), v;;, > 0 the level of the
h-th characteristic in product j, and ¢;;, > 0 the value that consumer ¢ attaches to it. It therefore
appears that this latent-factor formulation is consistent with the Lancastrian approach, which
posits that consumers derive “satisfaction from characteristics that [...] cannot be purchased
directly, but are incorporated in §oods” (Lancaster et al., 1974, p. 567).

We assume that the sum ) ,"_ ¢7, is constant across consumers, so all consumers have the
same total willingness to pay for quality. The interpretation is that consumers may be heteroge-
neous in tastes but not in income. This assumption makes the model trivial if H = 1; therefore,
we focus on the case H > 2. With no further loss of generality, we can normalize the total
willingness to pay to one: Zle 2, =1.

12The appendix also shows that our results are robust to the choice of these weights.
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FIGURE 1.—The distribution of consumers and products in the two-factor model with purely horizontal
differentiation.

3.1.1. Horizontal differentiation

The case where product differentiation is purely horizontal is obtained when all goods
have the same “total” quality Zle v?,,, which can then also be normalized: Zthl v, = 1.
In this case, both products and consumers can be represented as points on the portion of the
unit hyper-sphere that lies in the non-negative orthant.'* Specifically, we assume that both the
J products and the I consumers are equally spaced (see Figure 1).

For each possible consumer type (i.e., for each vector t = (¢4, ..., ¢z )), there is a different
ideal product v = (vy,...,vg), which under horizontal differentiation is v = t. When con-
sumers purchase a product that differs from their ideal product, they incur a “transportation
cost” akin to that considered in the standard Hotelling model. For example, when H = 2, using
polar coordinates {t;; = cosf,t;, =sinf} and {v;; = cosv,v;, =sinv}, it is easy to see that
the transportation cost is 1 — cos(6 — v)."*

The restriction to the non-negative orthant implies that products are not symmetric even if
product differentiation is purely horizontal. To see this, consider for instance the case of three
products. Clearly, the central product, located on the 45-degree line, enjoys higher demand
compared to the two peripheral ones. Thus, it qualifies as a natural candidate for becoming a
“mass” product. Conversely, the peripheral products, which are located on the x- and y-axes in
Figure 1, represent the “niche” products. The presence of both mass and niche products enables
us to study whether RSs lead to a “superstar effect” or a “long-tail effect.” The issue will be
taken up in section 7.

3With two factors, the model becomes similar to Wolinsky (1983), with the twist that products and consumers are
restricted to the non-negative portion of the unit circle.

4Thus, the transportation cost is a convex function of the distance between products and consumers. See the online
appendix for more details.
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FIGURE 2.—The distribution of products under vertical, or mixed, differentiation.

3.1.2. Vertical differentiation

The assumption that product differentiation is purely horizontal can be relaxed, by allow-
ing for the possibility that the quality index Zthl v3, may vary across products. This extension
introduces vertical differentiation into the model.

For example, one could assume that products are located on the square rather than on the
circle (Figure 2, right panel). In this case, all consumers agree on their favorite product, which
lies on the 45-degree line.

Intermediate cases between purely horizontal and purely vertical differentiation can be
obtained by varying the shape of the product locus from a circle to a square. This can be done
parsimoniously, by means of a single parameter « that ranges from o = 0 (circle, horizontal
differentiation) to o = 1 (square, vertical differentiation). To be pre01se for each product v,

on the circle, define its radial projection on the square as v/ \[7” By taking the
maXp |Vjh

convex combination av; + (1 — v/ of the circle and the square, one can then generate all
intermediate combinations of vertical and horizontal differentiation.

As soon as a > 0, a bunch of consumers (i.e., those close to the 45 -degree line) will
prefer the central product. This is an additional reason why the central product stands out as a

candidate mass product.'’

4. DATA

After purchasing a product, consumers may explicitly or implicitly report a rating to the
platform. These ratings are the data used by the algorithms to estimate the match values.
In the baseline scenario, we assume that the reported rating u;; is equal to the utility

actually experienced, u;;, plus a noise term:

fLZ‘j = Uiy +€ij~ (7)

5In principle, the flexibility of the model permits the consideration of scenarios where the highest-quality product
does not necessarily coincide with the central product. Geometrically, this can be achieved by employing a rectangle
instead of a square. Additionally, it is also possible to explore situations where peripheral products possess higher
quality. However, these possibilities are not pursued here.
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The reporting noise ¢;; is normally i.i.d. with zero mean and variance o2. The higher the vari-
ance o2, the less informative the ratings reported by consumers.

Later on, we will consider extensions where the report is made on a Likert scale. It is
important to note that ratings on a two-level Likert scale may be available to a platform even
without explicit reporting by users. For instance, the platform could monitor whether a con-
sumer has purchased an inspected product, or watched a movie until the end.

As noted, RSs typically have access to information about only a small fraction of all
consumer-product pairs. What determines which ratings are observed and which are not? We
consider two alternative data generation processes, depending on whether the data have been
generated based on recommendations provided by the algorithm itself in the past or not.

4.1. Randomly generated data

In our baseline analysis, we assume that the algorithm itself does not play a role in gener-
ating the data it uses. Specifically, we assume that for each user, the platform observes ratings
for a fixed number of products, drawn randomly and independently across users. The fraction
of consumer-product pairs for which ratings are observed corresponds to the density d of the
matrix R introduced in Section 2.

4.2. Endogenous data

Alternatively, we consider the case where the ratings observed by the platform have been
created based on recommendations provided by the algorithm itself in the past. In this case,
the matrix R is filled in gradually, in a number of successive steps indexed by 7 =0,1,2, ....
Initially, Ro is the empty matrix; that is, a matrix with all entries missing. At step 7 = 1, each
consumer tries a randomly drawn product resulting in ratings ,; for the RS. The matrix R,
therefore has a density of 1/.J.

At each subsequent step, the RS uses R. to produce an estimate R. of the true matrix ac-
cording to the estimation procedure described in Section 2 and recommends to each consumer
1 the product with the highest rating:

J (i, T) = argmaxr;,. (8)
J

This product is then tried by the consumer,'® and the corresponding rating reported to the plat-
form. Thus, f{TH is obtained by adding to f{T one and only one entry ;;«(; ) for each of the
I rows (i.e. for each consumer). If @;;«(; -y is not missing in f{T, its value is overwritten. All
other elements of R, are unchanged.

Thus, RTH is basically equal to R. plus one new entry per consumer, which could be
either a previous value overwritten or a brand new one. As this process unfolds, the density of
R. increases. The algorithm’s learning phase ends when the matrix R achieves a pre-specified

!5Note that during the learning phase, for simplicity, we abstract from the possibility that consumers may disregard
the recommendation and engage in their own search. However, this possibility plays a crucial role in our analysis of
the effects of recommendations once the learning phase has been completed, as we will see below.
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density d."” At this juncture, we analyze the effects of the recommendations ultimately gener-
ated by the algorithm.

Data endogeneity creates a feedback loop extensively discussed in the computer science
literature: the algorithm gathers better information on the user-item pairs it has selected in the
past. This is often referred to as the “bias in the algorithms” (even though a more precise desig-
nation might be “bias in the data”). This bias emerges because, even if the final density matches
that of random data, the user-item pairs observed by the algorithm are somewhat correlated, di-
minishing the quality of the available information. Consequently, the precision of estimates and
the quality of recommendations decline.

5. SEARCH

We now integrate the above model into a search framework. This allows us to concep-
tualize recommendations as generating a form of personalized prominence. In this context,
consumers do not necessarily follow platform recommendations but can initiate their search
with products specifically recommended to them, rather than with randomly chosen ones.

5.1. Product markets

Before proceeding, it is important to note that although the willingness to pay for any
two of the J products is correlated to some extent, not all products traded on the platform
necessarily serve as direct substitutes for one another.

For example, the platform may offer both movies and books. Individuals who enjoy watch-
ing war movies may also like historical novels, while those who prefer wildlife documentaries
may lean towards science books. The algorithm benefits from pooling all products together to
leverage the correlation in consumers’ evaluations. Nevertheless, books and movies belong to
distinct markets.

To account for this, we partition the set of all J products into distinct subsets (markets)
M and assume that each consumer buys at most one product from each market M. We denote
the number of products belonging to market M as m 4.

5.2. Prior information

In general, consumer behavior in a market is shaped by the information individuals have
regarding product availability, prices, and match values. Given that the specific role of RSs is
to estimate the match values, we evaluate their impact by holding other information constant.

Different assumptions cab be made regarding this other information. In the classic search
model of Wolinsky (1986) and Anderson and Renault (1999), consumers are aware of product
availability but do not know individual prices or match values; they are only aware of the distri-
bution of product characteristics and equilibrium prices. Acquiring information on individual
prices and match values requires costly search. However, more recent literature on search has
also explored an alternative scenario, where consumers know product prices but lack knowl-
edge of match values.'8

'7In practice, achieving a target density level may require assuming that the algorithm operates in exploration mode
for a certain fraction of periods, recommending products randomly. Without this, the process may reach a steady state
with a density lower than the target. In our simulations, the case of endogenous data corresponds to the lowest possible
probability of being in exploration mode, typically around 10 percent. By increasing the probability of exploration
mode, we can generate data that lie between purely exogenous and endogenous.

18Yet another possibility is that consumers may not be fully aware of product availability. However, the analysis of
Aridor et al. (2022) suggests that this factor may be of lesser relevance.
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It is important to note that, to focus on the specific function of RSs (which is to estimate
match values), in the first scenario, the platform’s recommendations should be based solely on
the estimated match values. In the second scenario, recommendations should also account for
product prices. Without this distinction, the analysis would conflate the effects of match value
information (which is the focus of our analysis) with those of price information.

For simplicity, we focus on the model of Wolinsky (1986) and Anderson and Renault
(1999) in this paper. The advantage of this approach is that, in the absence of recommendations,
consumer search would be purely random. In contrast, when consumers have information on
prices, they would engage in directed search. This complicates the analysis, so we defer further
investigation into this case to future research.

5.3. Random search benchmark

Based on his prior information and knowledge of his own preferences, each consumer
i calculates the probability distribution, denoted as F; r¢(s;), for his expected surplus s;; =
u;; — p; from the products j € M, where p; denotes the price.

In the benchmark without recommendations, consumer ¢ initially assigns an equal ex-
pected surplus to all products, which is the unconditional mean of s; based on the probability
distribution F; x4(s;). Following this, he has the option to inspect the products, incurring a
unit search cost of ¢,. Lacking specific knowledge about individual products, consumers must
search randomly. When they sample a product, they observe its price and match value.

To ensure stationarity, we assume sampling with replacement and no recall.!® Under this
assumption, consumers will continue to search until they reach a cut-off level of surplus, de-
noted as §; ¢, which is the solution to:

oo

/(SZ —x)dF; pm(8:) = cs. 9

x

Intuitively, at the optimum, the expected benefit of one additional search must be equal to its
cost.

5.4. Personalized prominence

Compared to this benchmark, we investigate a scenario where platforms utilize algorithms
to estimate match values and provide personalized recommendations based on these estimates.
As soon as the recommendations are just minimally informative, consumers will prioritize
examining the products suggested by the RS first. This introduces a form of prominence, as
described by Armstrong et al. (2009). Here, however, different products may be prominent for
different consumers, so prominence is personalized.

YUnder the alternative assumption of sampling with replacement and perfect recall, since consumers know that the
products are equally spaced, the probability distribution F; a4 (s;) changes upon inspecting a product and observing
its location, implying that the cutoffs vary after each visit. Since the calculation of the cutoffs is by far the most time-
consuming part of the numerical analysis, the property of stationarity is analytically convenient. One could dispense
with the assumption of replacement without losing stationarity by assuming that products are distributed randomly
instead of being equally spaced. However, this would blur the distinction between mass and niche products. In any
case, the difference with the more common assumption of sampling with replacement tends to vanish as the number
of products grows large and disappears with infinitely many products.
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Denote the product j with the highest estimated match value for consumer ¢ in market M
as j*(i,M).* If the platform does not strategically manipulate the recommendations, it will
suggest product j*(i,, M) to consumer 7. Upon receiving the recommendation, consumer %
inspects the recommended product j* (4, M), observes its price p;«(; q), and obtains an as-
sessment of the match value, u;;-(; aq). At this point, he has two options: either purchase the
recommended product or conduct further search, at the same unit cost ¢, as in the bench-
mark. Any additional search conducted is random, similar to the case without RSs. Thus, the
consumer will choose to continue searching if the expected surplus ;= (;, a1y — Pj* (i, m) Talls
below the cut-off §; xq.

6. BASELINE PARAMETRIZATION

In this section, we specify the baseline parameterization of the model in preparation for
the numerical analysis.

We choose the baseline values of the parameters so that the model matches some key
properties of the Netflix Challenge (see footnote 6 and Table I). In the dataset provided by
Netflix to participants in the challenge, the ratio between the number of users and items was
approximately 30, so we set § = 30. Likewise, the density d of the matrix of ratings R is set
to the same value as in Netflix Challenge, i.e., 1.2%.%

To reduce the computational burden of the simulations, we scale down the number of
products and consumers by a factor of approximately 20 compared to the Netflix problem.
Thus, we set J = 801 and hence I = 24,030. (The number of products is odd so that their
distribution can be symmetric around the central product.)

| Environment | Recommender System

| Users I Items.J Observations Density | H ¢ | H 14

Netflix 500,000 17,000 100,000,000 12% | 40 4284 | 100 1.93
Baseline | 24,030 801 231,265 1.2% 2 465 | 5 1.86

TABLE I: The baseline scenario and the Netflix Challenge

The winner of the Netflix Challenge used a number of latent factors H of either 40 or 100.
(The trade-off is that more latent factors allow for more flexibility but increase the number of
variables to be estimated with the same observations, reducing the precision of the estimates.)
To calibrate the corresponding values for our baseline model, we match the ratio between the
number of observations and the number of parameters to be estimated,

_d JxT

K_E(JJFI)'

(10)

2 As noted, we assume that recommendations are solely based on the match value to maintain consistency with
the unassisted search benchmark, in which consumers are unaware of product prices.

2I'The extension where the platform recommends a list of products is left for future work. If the platform manipu-
lates the recommendations, all that changes is that the recommended product may not be j5* (i, M).

22Computer scientists use several benchmark datasets to evaluate RSs. Some of these datasets have densities similar
to Netflix’s, such as the MovieLens 10M Dataset, which contains users’ movie ratings collected by the GroupLens
research project at the University of Minnesota and has a density of 1.34%. However, other benchmark datasets have
lower densities. In the robustness analysis, we investigate the sensitivity of our findings to variations in density.
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This leads us to consider two possible values of H, namely H = 2 (which is our baseline choice
and corresponds to [ = 40 in the Netflix Challenge) and = 5 (which is taken up among the
extensions and corresponds to H = 100).%

For several other parameters of the model, the Netflix challenge or similar datasets provide
no guidance. We proceed as follows. First, we consider a grid of values of the number of
(equally spaced) products in the market, m 4, and the degree of vertical differentiation, «,
with m, ranging from 7 to 31 with a step size of 6 and « ranging from 0 (pure horizontal
differentiation) to 1 (pure vertical differentiation), with a step size of 0.1.*

Second, we explore different values of the unit search cost parameter c,. To provide an
intuition for their practical relevance, we relate ¢, to the fraction of consumers who purchase
the recommended product without further search. We let this fraction vary between 70% and
95%. This translates into a range of values for ¢, from 0.002 to 0.006.

Finally, remember that our baseline model assumes that consumers report the utility level
U;; = U;; + €;; + €5, inclusive of the normally distributed shocks. Both shocks have zero
mean, so it remains to specify their variance. In the baseline analysis, the standard deviation
of the taste shocks o, is set equal, for each consumer 7, to 10% of the standard deviation of
the distribution of #,; across the J products. This value is about as low as it can be without
prejudicing convergence of the iterative procedure for the calculation of equilibrium prices.”
As for the reporting noise, in the baseline scenario we set o, = 20..

For each set of parameters, we conduct 100 simulations with different realizations of the
uncertainties regarding the utility shocks (e;;), the reporting noise (e;;), and the products in-
cluded in R. The results are then averaged across sessions.

In the main text, for clarity, we present only the case where m, = 19 and ¢, = 0.004,
which corresponds to around 85% of consumers not searching further,”® and we use a step size
of 0.25 for . The online appendix provides detailed results for the entire grid of o, m 4, and
¢, values.

After analyzing the baseline scenario, we conducted several robustness checks. Since most
of these involve changes to the quality or quantity of information available to the algorithm, a
more detailed description is provided in Section 9, where we examine the impact of informa-
tion on consumer welfare. For now, it suffices to say that the results for the baseline scenario,
as reported in the following sections, remain generally robust across all these extensions. In
the main text, we highlight only the most significant variations, while a more comprehensive
presentation of the robustness analysis is available in the online appendix and supplementary
material.

230One problem that arises in this extension is the absence of a general solution for evenly positioning points along
the section of the unit hyper-sphere located in the positive orthant when H > 3. To overcome this difficulty, we have
developed an iterative algorithm inspired by the k-means method to approximate the precise positioning of products.
More details are provided in the supplementary material.

24Note that while our assumption that consumers at the outset have no clue of product quality is reasonable when
a =0, as « increases, it becomes progressively less tenable. Consequently, while we have examined all conceivable
combinations of horizontal and vertical product differentiation, our analysis particularly pertains to scenarios where
vertical differentiation is limited.

25When o is lower, the iterative procedure may become trapped in cycles, suggesting that equilibria may involve
mixed strategies.

26 Although this fraction is high, it serves to better highlight the effects of RSs. Intuitively, as the search cost de-
creases, the influence of recommendations tends to diminish. In the extreme case where the search cost becomes
negligible, consumers will choose to inspect all products before making a purchase, rendering the impact of recom-
mendations negligible as well.
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7. CONCENTRATION OF CHOICES

In this section, we concentrate on subscription platforms like Netflix or Spotify, where
consumers pay a fixed fee and can access any product without additional charges. Thus, the
prices of individual products, p;, are all zero. For this scenario, the primary question we address
is the impact of RSs on market concentration.

We specifically revisit two opposing views of RSs that have emerged in the debate over the
effects of RSs: the “long-tail” and “superstar” views. As described by Bar-Isaac et al. (2012),
the former refers to a scenario where RSs increase the popularity of niche products, while the
latter refers to a scenario in which they increase the popularity of mass products. The long-tail
view was first articulated by Anderson (2008), who argues that online markets exhibit a long-
tail phenomenon due to the larger selection of products available to suppliers and consumers
easier access to niche products.?’ In contrast, Fleder and Hosanagar (2009), among others, have
found that RSs may reinforce the popularity of already popular items, resulting in a decrease in
diversity at the aggregate level, even though individual-level diversity may increase. (Note that
these views are not mutually exclusive: in principle, when there are more than three products,
both effects can coexist, at the expense of intermediate products.)

Here, we revisit this debate using a well-structured model of consumer preferences and
product characteristics and explicitly modeling consumer search. This approach enables us to
precisely identify the effect of deploying RSs on the concentration of users’ choices.?®

7.1. Quality of recommendations

Before proceeding, we assess the effectiveness of RS in matching consumers with prod-
ucts. This evaluation is based on the welfare obtained by consumers under the assumption of
zero prices, which is maintained in this section. Table II compares the average utility, net of
search costs, obtained by the average consumer across the 100 simulations under RS and indi-
vidual search, with the standard deviation shown in parenthesis.

As further benchmarks, the table also reports the net utility that the average consumer
would obtain under complete information (this is less than 1 because not all consumers t can
find a perfect match v =t, or because, when o > 0, the quality of the ideal product may be
less than 1) or when choices are entirely random.

The results show that the RS generates a significant utility gain, despite having limited
information. Both the magnitude of the gain and its sources depend on the degree of vertical
differentiation in the market. The gain is higher, the more vertically differentiated the products.
As for the sources, the total gain can be decomposed into better matching and reduced search.
With purely horizontal differentiation (a = 0), it turns out that two-thirds of the gain comes
from lower total search costs. However, when « is larger, a substantial portion of the gain is
due to the RS’s ability to identify the best match.

2"Brynjolfsson et al. (2011) claim that the long-tail phenomenon persists even when holding product availability
constant.

2The existing literature in marketing and computer science often posits assumptions at odds with economic con-
sumer theory, motivated by applications of RSs other than consumer demand.
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e’ \ 0 0.25 0.5 0.75 1

Full information | 0.9957 0.9510 0.9199 0.9020 0.8963
Random choice | 0.7969 0.7563 0.7158 0.6753 0.6347
Unassisted search | 0.9694 0.9225 0.8844 0.8569 0.8411

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Recommender System | 0.9834 0.9396 0.9102 0.8944 0.8911

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
LﬂUn x100 | 1.44% 1.85% 292% 4.37% 5.95%

U

(0.01%)

0.01%)

(0.01%)

(0.01%)

(0.01%)

TABLE II: Consumer average utility, net of search costs (SD in parentheses).

7.2. Tails

We now investigate whether RSs lead to an increase in the market share of niche products,
resulting in a long-tail effect. To explore this question, we examine the average market shares
of the most peripheral products, i.e., the ones lying on the x- and y-axis in Figure 1. As noted,
these products are natural candidates for being niche products in our framework. The results
are presented in Table III.

o | 0 0.25 0.5 0.75 1
Unassisted search 0;(9)2}02)5 0;90%06)3 0;33008)9 O;g}0g3 0;[9,9002)9
Recommender System 0;83;5)8 0;90% 01) 6 O;?U (}0;5) 8 O[gg)o?;l 0;83 01) 8
% x 100 | -20.66% -18.16% -16.39% -11.63% -38.11%
G82%) 3.79%) 379%) G41%) 173%)

TABLE III: Market share of niche products (i.e., the two most peripheral products in Figure 1).

Contrary to the long-tail hypothesis, the market shares of niche products are consistently
lower with RSs than in the benchmark. (In fact, we observe a decrease in the market shares not
only of the two most extreme products, but also of the nearby ones.) The decline ranges from
one-tenth to more than a third. Similar results are found for any number of products and any
level of the search cost, as well as in all the extensions discussed in Section 9. Therefore, we
conclude that our findings do not support the notion that RSs encourage the diffusion of niche
products.

7.3. Superstars

The alternative view of RSs in marketing and computer science is that they tend to produce
superstars. In order to determine whether there is any evidence of a superstar effect, we perform
the same analysis on the central product, which is located on the 45-degree line in Figure 1.
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FIGURE 3.—Avg Market share by product rank

al 0 0.25 0.5 0.75 1
Unassisted search | 0.0565 0.1291 0.2302 0.3650 0.5312
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Recommender System | 0.0682 0.3091 0.5539 0.7545 0.9153
(0.0074) (0.0096) (0.0065) (0.0047) (0.0034)
% x 100 | 20.61 139.41 140.67 106.73 72.30
(13.10) (7.40) (2.82) (1.29) (0.64)

TABLE IV: Market share of the central product.

Remember that the central product stands out due to two reasons: its central position,
which places it closest to the median consumer, and its higher total quality when a > 0. As
shown in Table IV, with RSs, the market share of the central product increases significantly.
Again, this result remains true varying the number of products and the level of the search cost,
as well as in all the extensions considered in Section 9.

The rise in the market share of the central product is smaller when product differentiation
is purely horizontal (o = 0),” but in fact, the RS has a strong tendency to create superstars
even in this case. This tendency is not fully apparent in Table IV because with m, = 19,
several products are “central” to some extent, and the ones selected by the RS as superstars
vary randomly from session to session.

To control for this effect, we ranked products based on their market share and calculated
the average share of the most popular product, the second most popular, and so forth. The
resulting distribution is illustrated in Figure 3, for both the RS scenario and the benchmark of
unassisted search. It appears that the RS creates a substantial superstar effect even when oo = 0,
with the most popular product earning a market share more than three times larger than in the
benchmark.

PThe rise is also less pronounced when product differentiation is predominantly vertical. This is because, in such
cases, consumers can readily identify the superior product to a significant degree even without relying on the RS.
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7.4. The degree of market concentration

The combination of superstar effect and reverse long-tail effect results in a signifi-
cant increase in market concentration. To quantify this phenomenon, we use the Herfindahl-
Hirschman Index (HHI), as shown in Table V.*° The increase in the HHI is substantial for all
types of product differentiation, but is particularly significant for intermediate values of «.

For large values of «, the increase in market concentration may be seen as a benign out-
come, as it indicates that the algorithm is able to effectively identify and promote the superior
product to consumers. However, for low values of «, it is more concerning. In this case, the
RS appears to create its own “champions” without any clear objective basis for favoring one
product over others.

al 0 0.25 0.5 0.75 1

Unassisted search | 538.5979 650.1194  1,057.3305 1,902.0176 3,323.1593

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Recommender System | 1,078.0114 1,593.3218 3,329.5506 5,788.5495 §8,410.1934

(11.4180) (37.1896) (57.4467) (61.6039) (56.8680)

% x 100 | 100.15% 145.08% 214.90% 204.34% 153.08%

(2.12%) (5.72%) (5.43%) (3.24%) (1.71%)

TABLE V: The Herfindahl-Hirschman Index of market concentration.

7.5. Estimation biases and the “uniformity effect”

What, then, is the source of the superstar effect and the increase in market concentration?
Our analytical framework provides a valuable tool for addressing this question. By ensuring the
correct model specification by the RS, we can attribute these effects to estimation biases result-
ing from small sample sizes. To explore this issue further, we examine how the estimates T and
\Y% compare with the true coefficients T and V. Given that the increase in market concentration
is particularly concerning in the case of purely horizontal product differentiation (o = 0), we
focus our analysis on this scenario.

To gain some preliminary insight, we start by randomly selecting one session. For this ses-
sion, Figure 4 depicts the algorithm’s estimates of both consumers’ and products’ latent vectors,
{(fs1,t:2)}_, and {(9;1,0;2)}/_,. The red dashed curve represents the “true” consumers and

products, as in Figure 1, while the orange dots represent the “virtual” consumers #; estimated
by the algorithm, and the blue dots the “virtual” products ;. The size of the disk around each
blue dot indicates how frequently that product is recommended.

Note that the virtual consumers (fﬂ , fiz) are fully described by the ratio

12, with the level

of the s being irrelevant. This means that equi-proportional changes in ¢; and ¢, will not affect
consumers’ choices as long as the market is covered. On the other hand, for the virtual products
(0;1,0;2), both the ratio ;’J—f and the level of the s matter. The former represents the product’s

J
estimated “type,” the latter the estimated “quality.”

30We follow the common practice in industrial organization of normalizing the HHI so that it ranges between 0
and 10,000. We have also considered other indices of market concentration, such as the Gini index or the fraction of
products that carry a positive market share, with similar results.
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FIGURE 4.—The estimated location of consumers (orange dots) and products (blue dots), plotted against
their true location (the red dashed curve), for a single session with oo = 0. The size of the disk around the
blue dots represents the product’s market share.

In principle, therefore, the algorithm can make three types of errors: (i) the estimated
consumer tastes may differ from the true ones, resulting in tﬂ 7é “—2, (i) the estimated product

types may differ from the true ones, resulting in ﬁﬂ ;é ; and (iii) the estimated product

qualities may differ from the true ones, resulting in Z 1 O3 3£ S v, (=1).

The session shown in Figure 4 illustrates all three types of estimation biases. Firstly, the
orange dots are clustered together towards the 45-degree line, indicating that the algorithm
tends to overestimate consumer uniformity. We shall refer to this tendency as the uniformity
effect. Secondly, the blue dots are scattered away from the centre, suggesting that the algorithm
tends to overestimate the heterogeneity among products, although to a lesser extent than the first
bias. Thirdly, some products are located above the red curve, especially those on the periphery,
while others lie on or below it. This suggests that the quality of peripheral products tends to be
overestimated.

The biases highlighted in Figure 4 are not unique to that particular session. Figure 5
presents a more general analysis that considers all 100 sessions. The left panel shows the dif-
ference between the estimated and true ratlos 2 — 1? for the I consumers, ranked from the
z- to the y-axis. The estimated ratios are less dlspersed than the true ratios with positive dif-
ferences for consumers whose true ratio is small and negative differences for those with a high
true ratio. This reflects the uniformity effect The central panel displays the same analysis for
the J products, plotting the differences + Ar.l Y -2 Here, the estimated product types are more

dispersed than the true types, although the bias i 1s smaller than that observed for the consumer
ratios. Finally, the right panel shows the distribution of Z 1—1 U5, — 1 for the J products, rep-
resenting the algorithm’s tendency to overestimate products’ overall quality. The figure shows
a bias against central products.
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FIGURE 5.—Estimation biases with a = 0: the consumer uniformity effect (left), the product hetero-

genization effect (center), and the quality bias against central products (right). The first two effects are
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spectively. The third effect is measured as the distance between the estimated quality Zizl 07, and the
actual quality, 1.

The quality bias that favors peripheral products could have produced a long-tail effect.
However, this bias is outweighed by the uniformity effect. That is, the algorithm may think that
the peripheral products are better than they actually are, but it also assumes that only a few
consumers like such “extreme” products, so it recommends them infrequently. This explains
the reverse long-tail effect. On the other hand, the superstar effect arises, when o = 0, because
the algorithm estimates certain products to be of higher quality than their nearby counterparts,
even when all products are of the same overall quality. The products with the highest estimated
qualities become the superstars that command the largest market share.

Naturally, these biases tend to disappear as the density d of the matrix of observed ratings
R is large. However, in the online appendix we show that for realistic values of d, the biases
remain.

8. EQUILIBRIUM PRICES

We now turn our attention to platforms such as Amazon, where consumers are charged
separately for each product they purchase. We assume that sellers independently determine the
prices of their products. (The platform generates revenue, for example, by collecting transaction
fees.) Our objective is to examine the effect of algorithmic recommendations on equilibrium
prices and consumer welfare.

Our analysis in this section is related to the extensive body of research in the field of
industrial organization that has explored the impact of pre-search information on the market
equilibrium. This literature remains largely unsettled. On one hand, de Corniere (2016) and
Zhong (2023) demonstrate that when pre-search information directs consumers to a subset of
products with the highest match values, but without ordering the products in this subset, having
more information (i.e., a narrower, better-selected subset) tends to result in lower prices, unless
the information becomes so precise that consumers cease searching altogether. On the other
hand, Anderson and Renault (2000) assume that a fraction of consumers have full knowledge of
their match values and demonstrate, for the case of two products, that as this fraction increases,
prices rise. Zhou (2022), allowing for more general types of pre-search information, presents
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more nuanced results. Specifically, he shows that prices decrease if the additional information
does not prompt consumers to search more, but this result can be reversed if this condition does
not hold.

In light of these contradictory findings, it is not clear a priori what the price effect of al-
gorithmic recommendations may be. Furthermore, there are two important differences between
our setup and those considered in the existing literature. First, the pre-search information in
our framework consists of top-product signals that create personalized prominence, a case that,
to the best of our knowledge, has not been considered thus far.>’ Furthermore, in the papers
mentioned above, preferences are idiosyncratic, whereas in our setting, as explained earlier, we
have included systematic differences and similarities among consumers and products.

It turns out that algorithmic recommendations generally lead firms to increase prices, even
if consumers search less. After presenting our results, we briefly discuss how they relate to
previous findings in the literature.

8.1. Price equilibrium

We assume that each of the m, products traded in market M is supplied by a sepa-
rate firm and that marginal production costs are zero. Firms compete in prices and correctly
anticipate the demand functions.*” It is important to remember that recommendations are per-
sonalized but we assume that sellers do not engage in price discrimination.

Given the large number of products and consumers, and given that we cannot exploit
symmetry, we calculate the Bertrand-Nash equilibrium prices p* numerically. The calculation
is accomplished by iteratively solving the system of first-order conditions corresponding to
the maximization of each firm’s profit with respect to its own price.*® The iteration starts with
random prices p;,. At each successive step 7 = 1,2, ..., starting from the vector of candidate
equilibrium prices p*_,, we calculate the cut-offs $; r¢.,** and then from these the system of
individual demand functions. For each firm j, we then calculate the new p; by maximizing
firm j’s profit while holding the other prices in p* _, constant.” In this way, we obtain the new
candidate vector p’. The procedure is iterated to convergence.

31'The case where the platform recommends the product with the best estimated match value could be regarded as
a limiting case of the information transmission mechanism analyzed in de Corniere (2016) and Zhong (2023), where
the subset of products presented to each consumer contains just one product. In fact, however, both of those papers
focus on the case where the subset contains infinitely many products.

32The derivation of the demand functions is presented in greater detail in the online appendix. It is important to
note that each firm is supposed to know perfectly which product is recommended to each consumer. This is a natural
starting point for the analysis, but in future work, it would be interesting to consider the case where firms have access
only to the probability that each product may be recommended to each consumer, and calculate the demand function
accordingly.

33To solve the system of first-order conditions, we use subroutine DNQSOL in the Caltech’s MATH77 Fortran
library, exercising special care in checking the second-order conditions.

3 Calculating the individually optimal cut-offs 3; a4 for our 24,030 consumers at each step of the iteration is a
computationally intensive task, accounting for over 95% of the simulation time. To expedite the process, we assume
that equilibrium prices follow a normal distribution with the same mean and variance as the actual equilibrium prices.
We verified the validity of this assumption by also using the true distribution of equilibrium prices in some cases, but
found the differences to be negligible.

35This is consistent with the assumption that consumer search decisions depend on their expectations of prices and
not on the actual prices, an assumption that is sometimes called passive beliefs.
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8.2. The impact of RSs on equilibrium prices

Table VI presents the equilibrium prices, which are equal to the equilibrium price-cost
margins under our cost normalization. The reported values are obtained by taking the average
across products, with each product’s weight equal to its equilibrium market share.

o \ 0 0.25 0.5 0.75 1

Unassisted search | 0.0383  0.0356 0.0322 0.0283 0.0227

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Recommender System | 0.0441  0.0402 0.0351 0.0303 0.0243

(0.0002) (0.0001) (0.0000) (0.0000) (0.0000)

RS;nU”xl()O 15.10% 13.01% 9.06% 7.39% 7.13%

v (0.41%) (0.28%) (0.15%) (0.08%) (0.03%)

TABLE VI: Average equilibrium prices.

Algorithmic recommendations lead to an increase in prices across all values of a. The
magnitude of the increase varies with «, with the largest increase (around 15%) occurring
when product differentiation is purely horizontal, and the smallest (around 7%) when it is
purely vertical. The online appendix confirms that varying the number of products and the
level of the search cost does not modify the result. The outcome remains valid even when the
algorithm is trained on data that it has previously contributed to generating.

Figure 6 provides a more detailed view of the changes in prices by showing the price
changes for each individual product. Under horizontal differentiation, the price increase is rel-
atively uniform across all products. In contrast, under pure vertical differentiation, the price of
the central product slightly decreases, while the prices of other products increase. However,
the decrease in the price of the central product, which carries the highest price, is offset by an
increase in its market share, resulting in an increase in the weighted average price.

8.3. Consumer surplus

The increase in prices obviously has a negative impact on consumer welfare. However, RSs
also have positive effects. First, they improve the matching between consumers and products.
Second, with RSs, consumers can afford to search less extensively than in the benchmark, as
the recommended product is more likely to surpass the cut-off level of surplus than a randomly
chosen one. Can these positive effects ultimately outweigh the negative impact of the price
rise?

To answer this question, Table VII reports the change in consumer surplus, taking into
account all of these effects. Overall, consumer surplus increases. Naturally, it does not increase
as much as in Table II, due to the higher prices.

The three effects on consumer surplus resulting from the introduction of RSs, namely,
higher prices, reduced search, and better matching, are of the same order of magnitude. To
illustrate, let us consider for instance the case where o = (.5. In this case, the better matching
between consumers and products alone increases consumer surplus by around 1.5%. The price
increase has almost the same impact but of the opposite sign, which would leave the consumer
surplus almost unchanged (—0.09%) if these two effects were taken together. Thus, the overall
increase of 1.3% in consumer surplus nearly coincides with the reduction in total search costs.
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FIGURE 6.—The prices of the different products, ranked according to their location in the space of prod-
ucts: products 1 and 19 are peripheral, product 10 is central. The figure shows the median, inter-quartile
range (IQR), and the highest and lowest value excluding outliers (obtained by subtracting 1.5 times the
IQR range from the first quartile (Q1), and adding 1.5 times the IQR to the third quartile (Q3)).

The online appendix shows that the increase in consumer surplus is lower when the search
cost is higher and the number of products is lower. RSs can actually decrease consumer sur-
plus when three conditions cumulatively hold: the search cost is high, the number of products
is small, and product differentiation is mainly horizontal. Taken together, however, these con-
ditions seem rather implausible; for example, in this scenario, the fraction of consumers who
follow the platform’s recommendation is more than 95%. For more reasonable parameter val-
ues, the overall impact of RSs on consumer surplus is positive.
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o 0 0.25 0.5 0.75 1

Unassisted search | 0.9313 0.8855 0.8457 0.8130 0.7886

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Recommender System | 0.9371 0.8930 0.8581 0.8329 0.8202

(0.0001) (0.0001) (0.0000) (0.0000) (0.0000)

BS-Un » 100 | 0.62% 0.85% 147% 245% 4.00%

u (0.01%) (0.01%) (0.00%) (0.00%) (0.00%)

TABLE VII: Consumer surplus, net of search costs.

8.4. Profits

Since the market is always fully covered, the increase in prices generally results in greater
profits for firms. However, the impact of RSs on firms’ profits is not uniform and can lead to
both winners and losers, as discussed in detail in the online appendix.

8.5. Demand shifts

What drives the price changes that we have found? To gain insight, we now examine the
shifts in demand generated by algorithmic recommendations. Figure 7 illustrates the overall im-
pact of the RS on demand for both central and peripheral products across various combinations
of horizontal and vertical differentiation. It appears that the way demand shifts is intricate and
varies between mass and niche products, as well as with the degree of vertical differentiation,
making it challenging to discern a clear pattern.

Upon closer examination, however, one can identify some major changes in the demand
curves. To begin, let us focus on the first panel in the top row of the figure, which illustrates
the demand for the central product under purely horizontal differentiation. We note, firstly, a
counterclockwise rotation in the upper segment of the demand curve, specifically for prices
higher than the equilibrium ones. This rotation occurs as a result of a more homogeneous
customer base, which is due to the personalized nature of prominence. (If prominence were
non-personalized, the rotation would be clockwise, reflecting a more diverse customer pool
due to one product being recommended to all consumers.)

Secondly, for lower prices, we see an upward vertical shift in the demand curve. This
shift occurs because RSs guide consumers toward their preferred products, increasing their
willingness to pay compared to when they search individually.

Thirdly, for these lower prices, we observe a clockwise rotation of the demand curve.
This rotation reflects the difference in demand elasticity between consumers who randomly
encounter a product and those directed to their preferred products by the algorithm. When
consumers can rely on algorithmic recommendations, random visits are less frequent, leading
to a less elastic demand curve. Note that the last two effects dominate precisely within the price
range where the equilibrium price lies.

The shifts described above are also detectable in the other panels of the figure, but they
are somewhat masked by significant horizontal shifts. These shifts are positive for the central
product when « > 0, and negative for the peripheral ones. They correspond to the changes
in volumes observed at zero prices and, like them, reflect the uniformity effect discussed in
Section 7.4.
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uct 1), for different combinations of horizontal and vertical differentiation in the benchmark (orange) and
with the RS (light blue). The individual demands are calculated holding the prices of all other products
constant at the equilibrium level in the benchmark case. The dots represent the equilibrium points.

Some of the shifts described above lead to price decreases, while others result in price
increases. Overall, it appears that the predominant effect is the clockwise rotation in the vicinity
of the equilibrium price. This corresponds to the reduction in demand elasticity highlighted by
Anderson and Renault (2000). In other words, with personalized recommendations, consumers
are more likely to find a suitable match during their initial visit, reducing their incentive to
search further. This decrease in search activity diminishes competition among firms, prompting
them to increase prices. However, in the case of vertically differentiated products, the increase
in volume for the central product leads to a counteracting decrease in elasticity, which may
result in a lower equilibrium price. In this case, the rise in the average price is primarily driven
by a composition effect.

9. INFORMATION AND WELFARE

We now perform a comparative statics analysis by varying the quantity and quality of
information available to the algorithms. For example, as the density of the observed rating
matrix (d) increases, the algorithms access more information. Similarly, as the reporting noise
(0?) decreases—or when reports are made on a finer Likert scale—the information becomes
more reliable.

9.1. Varying information levels

To begin, we outline the specific modifications made to the baseline scenario to vary the
information available to the algorithm.
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Density. First, we allowed the density d of the observed ratings matrix R, which in the
baseline scenario is set to 1.2%, to vary from 0.6% to 2.4%, increasing in steps of 0.3%.

Reporting noise. Next, we varied the standard deviation of the idiosyncratic shocks ¢;;,
letting it range from 0 to 40% of the standard deviation of the expected utility across the J
products, with a stepsize of 2.5%. (In the baseline, it is set to 20%.)

Likert scale. A different way to vary the information derived from the reported ratings
is to assume that consumers provide a value on a Likert scale, instead of a utility level. For
instance, consumers might rate the product they purchased by assigning it a certain number
of stars, or the platform may infer implicit, coarse ratings from the observation of consumers’
behavior. To explore this possibility, we partitioned the original range of the ratings ,; into k
intervals of the same size, effectively creating a Likert scale with & levels. We assumed that the
algorithm observes only the interval to which the rating belongs, instead of the exact value @;;.
We considered values of k ranging from 2 to 10.

Number of consumers and products. Perhaps less obviously, changing the number of
products and consumers also affects the available information, as it alters the ratio ¢ between the
number of observations and parameters to be estimated. Specifically, we explored two changes
to the baseline. First, we doubled and halved both I and J while keeping their ratio constant and
equal to 30. Second, we reduced the ratio of I/.J to 15, and then down to 3, while changing
the levels to ensure that ¢ remains constant.

Endogenous data. As previously discussed, the quality of information deteriorates when
transitioning from randomly generated data to endogenous data. Our final extension involved
examining data endogenously generated as detailed in Subsection 4.2.

9.2. Measuring information levels

Detailed results for each of these extensions are provided in the online appendix and sup-
plementary material. As it turns out, the effects of all of these changes depend more on the level
of information than on the specific factors causing the change. This enables us to pool all exten-
sions together to better elucidate the resulting pattern. The pooling capitalizes on the fact that
the quantity and quality of information available to the algorithms translates into the precision
of the estimates they produce and, consequently, the recommendations they make. Therefore,
we consider all extensions as varying the precision of algorithmic recommendations, which we
proxy by the average net utility that consumers would receive at zero prices.

9.3. Results

Let us first examine how information affects equilibrium prices. In Figure 8, the average
price is plotted against the level of information, measured as just discussed. The figure indicates
that having more and better information leads to higher prices, confirming that the specific
way in which the change in information is generated is less important than the overall level
of information available. The same general pattern holds for profits, which generally increase
with the level of information.

36This is motivated by the fact that the alternative dataset mentioned in footnote 22 typically have lower I/ J ratios
than the Netflix dataset.
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Turning to consumer welfare, more and better information has two opposing effects. On
the one hand, it improves the matching between consumers and products and reduces total
search costs. On the other hand, we have just seen that equilibrium prices increase. When
product differentiation is purely horizontal, the initial effect of improved matching prevails
but is eventually dominated by the effect of higher prices, resulting in an inverted U-shaped
relationship between welfare and information, as illustrated in Figure 9. (Incidentally, it appears
that our baseline scenario lies on the downward slope of the curve.) ¥’

Firms have a clear interest in obtaining more information, as their profits increase mono-
tonically with it. However, the inverted-U relationship between information and consumer sur-
plus suggests that imposing limits on the amount of personal information that platforms can
access may improve economic welfare. Therefore, some degree of privacy could be beneficial
not only for its own sake but also for its positive effect on the intensity of product market
competition.

The trade-off we have just identified — when consumers have access to more informa-
tion, the quality of the match between consumers and products improves, but firms also gain
increased market power and set higher prices — also arises in different frameworks, such as
those presented in Armstrong and Zhou (2022) and Jullien and Pavan (2019). However, these
papers consider frameworks without consumer search, and the mechanisms creating the trade-
off seem unrelated ours. Zhou (2022) also presents examples where a trade-off similar to ours
can arise, but, as discussed above, this occurs only if pre-search information prompts consumers
to search more, not less.
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FIGURE 8.—The effect of information on equilibrium prices (a = 0).

¥In the supplementary material, we show that the inverted-U pattern persists even when « is positive but not
excessively large, indicating a predominantly horizontal product differentiation. In contrast, the pattern disappears
when vertical differentiation predominates.
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10. SELF PREFERENCING

We now consider the scenario where the platform suggests a product other than the one
with the highest estimated match value. This situation may occur when the platform promotes
specific products that yield higher earnings, possibly because they are supplied by a subsidiary
of the platform rather than an independent supplier.

The possibility of such self-preferencing behavior has sparked various antitrust litigations
and a growing body of economic literature,*® which remains largely unsettled. The framework
developed in this paper offers a fresh perspective on this ongoing debate.

The specific role of algorithmic estimates when the platform engages in self-preferencing
is twofold: first, for genuine recommendations when the platform does not manipulate, and
second, to determine when self-preferencing should occur. Specifically, we assume that, for a
given rate of self-preferencing, the platform promotes its favored product to consumers whose
estimated ideal product is closest to it. This strategy minimizes potential costs incurred by the
platform when manipulating recommendations.*

We treat both the rate of self-preferencing, which represents the frequency with which
the platform recommends its favored product to consumers for whom it is not already the best
estimated match, and the platform’s favored product as parameters in our analysis. Regarding

38Following the seminal contribution of Hagiu and Jullien (2011), more recent papers include Calvano and Jullien
(2018), de Corniere and Taylor (2019), Teh and Wright (2022), Bourreau and Gaudin (2022), Peitz and Sobolev
(2022), and Bar-Isaac and Shelegia (2023).

¥When recommendations are misleading, consumers will revert to individual search more frequently. In such
cases, consumers may end up purchasing from an alternative marketing channel, potentially resulting in revenue loss
for the platform. Additionally, the platform risks losing users if their surplus falls below a certain level.
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FIGURE 10.—The distribution across sessions of the impact of self-preferencing on the average price.
The platform’s favorite product is the central one, and the rate of self-preferencing is 50%.

the latter, we examine two scenarios: one where the platform’s favored product is the central
one (product 10),* and when it is one of the peripheral products (say product 1).

10.1. Intensity of competition

In all cases, self-preferencing intensifies competition and reduces equilibrium prices.

Figure 10 presents the change in equilibrium prices, relative to the case of genuine rec-
ommendations, for the case where the favored product is the central one and the rate of self-
preferencing is 50%. The online appendix shows that the same qualitative pattern holds more
generally. It also shows that the largest decrease in price occurs for the favored product and
its closest competitors. This can be explained by the fact that without self-preferencing, the
pool of consumers inspecting the favored product is relatively homogeneous. When instead the
platform manipulates the recommendations, this pool becomes both larger and more heteroge-
neous. As a result, the demand for the favored product increases, but also becomes more elastic,
leading the supplier to lower the price. *!

Conversely, the demand for competing products decreases as fewer consumers are directed
toward them. As a result, competitors decrease their prices to remain competitive. These firms
therefore suffer both from lower volumes and lower prices, so their profits decrease. These
effects are largest for the products that are closest to the favored one, as the consumers who are
misdirected are those whose ideal product is relatively similar to it. For more distant products,
the effect is smaller.

10.2. Profitability

Now suppose that the platform adjusts the rate of self-preferencing. Neglecting the poten-
tial costs associated with self-preferencing mentioned in footnote 39, we examine the impact
on the profits of the favored products. To investigate this, we vary the rate of self-preferencing
from 0% to 100% and calculate the corresponding profits. The results are depicted in Figure

“ONote that when « is large, most consumers are already directed towards the central product, regardless of self-
preferencing. As a result, in this case the impact of self-preferencing is almost imperceptible.
4IThis is similar to the effect of uniform prominence in Armstrong et al. (2009) .
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FIGURE 11.—The profits of the favored products (central in light blue, peripheral in orange) as a func-
tion of the rate of self-preferencing, with o = 0.

11, which indicates that the profit of the favored product reaches its peak at relatively low rates
of self-preferencing, roughly between 20% to 30%.

From the figure, it becomes apparent that there is a trade-off between price and volume:
increasing self-preferencing leads to higher demand for the favored product, but it also in-
tensifies competition, resulting in lower prices. The observed decline in profit as the rate of
self-preferencing increases is driven precisely by the competition-enhancing effect highlighted
above.

10.3. Consumer surplus

Consumer surplus decreases when recommendations are manipulated relative to the case
where they are sincere. Due to the price reduction, however, the decrease is relatively small.
The analysis presented in the online appendix suggests that, given a certain market structure,
the impact of self-preferencing on consumer surplus is likely limited. However, a more con-
cerning issue could be the decrease in competitors’ profitability, which may lead to exits or
deter entry in the long run. As a result, policymakers may view self-preferencing as more of an
exclusionary abuse rather than an exploitative one.

11. CONCLUSIONS

We have proposed a novel framework to analyze the potential effects of algorithmic rec-
ommendations on competition in product markets, applying this framework to three significant
economic issues: the possibility that RSs could increase market concentration; enable sellers to
more effectively segment the market and charge higher prices; and allow platforms to manipu-
late their recommendations for their own benefit.

While our analysis confirms these risks, it also demonstrates that RSs exhibit pro-
competitive effects, such as improving the match between products and consumers and re-
ducing the need for costly search. Based on our quantitative assessment, the pro-competitive
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effects of RSs are at least as significant as their anti-competitive effects, and in many cases,
outweigh them. Nevertheless, we also find that increasing the amount of information available
to RSs may harm consumers. Therefore, imposing limits on the platforms’ access to personal
information may be socially desirable. In addition to safeguarding privacy, such limitations
could promote competition among sellers, leading to higher consumer surplus.

Methodologically, the analytical framework proposed is flexible and can be adjusted to in-
corporate different algorithms, preferences, and assumptions about the search process to deliver
more robust conclusions. We conclude by mentioning some potential extensions that could be
explored in future work.

Firstly, we have assumed that consumers know the equilibrium price distribution but not
individual product prices. While this approach is widely used in search theory, in online mar-
kets, consumers can easily obtain information on product prices. Accordingly, a more recent
search literature has explored the case where consumers initially know the prices of individual
products but not how well each product fits their personal preferences. Extending our anal-
ysis to this case necessitates two adjustments. First, in the individual search benchmark, we
must account for the possibility of ordered search, where the sequence of products searched is
determined by their prices. Second, for consistency, the platform should recommend the prod-
uct with the highest estimated net surplus (7;; — p;) rather than the highest estimated utility
(7;;). Both modifications lead to lower prices and must be implemented simultaneously to en-
sure valid comparisons. While the second adjustment is straightforward, the first significantly
increases the complexity of the analysis. As previously noted, calculating the cut-offs §; q is
already the most computationally intensive part of the numerical analysis, and adding this layer
of complexity makes the process even more demanding.

Secondly, when a platform recommends several products instead of just one, and presents
them in a particular order, it complicates the analysis of consumer behavior with RSs (while
the individual search benchmark does not change). In this scenario, consumers may have a
stronger incentive to continue searching after inspecting the first product because further sam-
pling would not be random. This increased search effort is likely to be pro-competitive.

Thirdly, two or more platforms often compete to attract consumers. In this case, the quality
of the algorithm’s estimates may represent a factor of competitive advantage or disadvantage.

In more extended models, one could analyze the impact of RSs on other economic de-
cisions, such as entry and exit, product quality, and R&D investment. Although these other
aspects are beyond the scope of this study, our analytical framework can be used to systemati-
cally analyze them in future research.

In terms of policy, our framework can be used to assess the effect of various forms of
regulations. For example, it may be interesting to consider a policy that limits the level of
personalization in recommendations. Although this could potentially decrease the match-value
of the recommendation system, it could also help mitigate the price increases we have found.

Finally, an intriguing and challenging extension to our analysis would be to consider the
possibility that RSs may influence individual preferences. This possibility arises because tastes
are endogenous, a fact that has been recognized at least since Knight (1923) but has been rarely
studied analytically. The act of inspecting a product, such as starting to watch a movie, may not
only reveal the match value but also shape consumer preferences. If this is the case, it raises
concerns about the potential for platforms to manipulate individual tastes to their advantage.
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The appendix offers additional results and detailed modeling information that were not
included in the main text. To maintain coherence, we have preserved the section numbering
to align with the corresponding sections in the main article. Consequently, Section A.x.y
complements Section X.y in the main text and so forth.

3. MODEL-BASED RECOMMENDER SYSTEMS
3.1. Estimation procedure: regularization and cross-validation

In this section we discuss more details of the estimation procedure of the RS, its regulariza-
tion and the cross-validation routine mentioned in Section 3.3 of the paper.

The minimization of the loss function (6) in the paper proceeds by calculating the gradient
vector of partial derivatives w.r.t. the J x H + I x H decision variables and using numerical
methods to find improved values of T, V.

In vector notation, the gradient is

EV —\T
G“(E'T-Aﬁ) M

where E is the I x J matrix of residuals e;; = 7; ; — Zf L tinjn.

The estimation algorithm is a version of the Stochastic Gradient Descent algorithm that is
available upon request. Given some arbitrary initial values for T, V., at iteration ¢ the algo-
rithm computes an estimate of G, and iterates according to:

Tt+1 _ T, _
(v)= () -nee %

where 7 > 0 is the step size and T, 1, V1 are the new values of the variables of interest at the
end of the iteration. The procedure is stopped at 50 iterations, to avoid overfitting and reduce
the computational burden.
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The regularization parameters A;, A, and 1 and the number of factors H when not pre-
specified (more on this below), are determined with a 5-fold cross-validation, which is custom-
ary in machine learning.

In particular, we partition the ratings into five equally sized subsets. We then use four of these
sets to estimate the model and compute the out-of-sample prediction error for the fifth set, ob-
taining a measure of the predictive ability of the model (RMSE). For a given parameterization,
this procedure is replicated changing the left-out set, and the average RMSE is computed.

The entire procedure is then replicated for a range of possible values of A;, A, and 7
(as well as H when it is not pre-specified). Specifically, we have used the grid \;, \,,n €
{0.01,0.05,0.1,0.15,0.20} . We then choose the values of the hyper-parameters that minimize
the average RMSE as computed above.

In one of the robustness checks, we allow the algorithm to choose the number of latent factors
by means of a cross-validation procedure (results are reported in supplementary material). In
this case, holding the true number of latent factors equal to H = 2, we let the algorithm choose
the estimate H from a grid 1,2, 3,4,5". Table 1, which reports the fraction of sessions where
the number of latent factors is estimated at each of the possible five values, shows that the
cross-validation routine almost systematically identifies the correct number of factors, H = 2.
In less than 5% of the cases, the algorithm chooses H = 3 instead.

H/a 0 025 05 0.5 1

0.00 0.00 0.00 0.00 0.00
095 096 095 096 097
0.05 0.04 0.05 0.04 0.03
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

W -

TABLE 1. Each cell reports the fraction of cases in which the cross-validation procedure identifies a
number of factors H as indicated in each rows, for different values of « (in the columns).

4. PRODUCTS AND PREFERENCES
4.1. Preferences and transportation costs

As mentioned in the main text, our model of horizontal product differentiation shares certain
similarities with the conventional Hotelling framework. To emphasize these resemblances, we
calculate the “transportation-cost” implicit in our framework when o« = 0 and compare it to the
cost associated with more traditional Hotelling frameworks.

To calculate the implicit transportation cost, we employ polar coordinates as in Perego
(2020), denoting product positions as {t;; = cosf,t;; =sinf} and consumer positions as
{v;1 = cosv,vj, =sinv}. Using these coordinates, a product’s location is represented by v
within the range [0, g] and a consumer’s location is represented by ¢ within the same range.
Therefore, 6 — v represents the angular distance between a consumer located at € and a product
located at v. The utility that a consumer at 6 derives from a product at v is given by:

u(0,v) = cosfcosv +sinfsinv = cos(d — v). 3)

'In another robustness check we set the number of latent factors to H = 5. In this case we assume the algorithm
knows the true number of latent factors. Results are in section ??.
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Since the utility that consumers receive from their ideal product (where v = ) is 1, the “trans-
portation cost” is simply 1 — cos(f — v); there is no explicit transportation cost parameter.
Figure 1 contrasts our transportation cost with a quadratic cost.

Transportation cost

1-cos(6-v)

: 0.4 (9-v)?
o et 06 (8-v)

Distance

FIGURE 1.—The continuous curve depicts the transportation cost 1 — cos(6 — v) in our model. For
comparison, the figure also presents the standard quadratic transportation cost 7(6 — v)2. The dashed
curve corresponds to 7 = 0.4, and the dotted one to = = 0.6. For 7 = 0.5, the quadratic transportation
costs are almost indistinguishable from that of our latent factor model.

6. MARKET CONCENTRATION
6.3. The superstar effect with horizontal differentiation

Table IV shows that the superstar effect is significant when vertical differentiation is impor-
tant (large «), but not when product differentiation is mainly horizontal (small «). In fact, RS
creates superstars even under horizontal product differentiation. This tendency is not apparent
in Table IV because with m ., = 19 products there are many products that are “central,” and the
ones selected by the RS as superstars vary randomly from session to session. To eliminate this
effect, we rank products in terms of their market share and calculate the average share, across
the 100 sessions, of the most popular product, the second most popular, and so on. We do so
for the case with RS and for the benchmark of unassisted search. The resulting distribution is
depicted in Figure 2.
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FIGURE 2.—Average Market share of products ordered by popularity, for different degrees of product
differentiation ranging from pure horizontal (o« = 0), and pure vertical (o« = 1). The average is computed
across session.
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In the individual search benchmark, all products except for the most peripheral ones have
similar market shares of around 5% when o = 0. However, with the RS, the most popular
product has an average market share of over 15%, indicating the presence of a significant
superstar effect even when oo = 0. This effect becomes even stronger as « increases.

Reconsidering the definition of a ‘superstar’ as the product with the highest market share,
we can identify this product in Figure 3. The figure illustrates the frequency with which each
product attains superstar status across 100 simulations. Products are organized based on their
position within the product space, spanning from the z- to the y-axis, as previously shown in
Figure 1. Notably, central products exhibit a greater tendency to become superstars even in
cases where oo = 0. As « increases, a noteworthy trend emerges: the product located at the cen-
ter of the product space (characterized by m = 19 and product number 10) is selected more
frequently. In fact, for values of « equal to or exceeding 0.3, this specific product consistently
assumes the role of the superstar.
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FIGURE 3.—Frequency with which each product is selected as the superstar. Products are ordered on the basis
of their location in Figure 1 (body of the paper), from the z-axis (product 1) to the y-axis (product 19). The central
product is product 10.
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6.4. The uniformity effect

In Figure 4, we study the uniformity effect for different values of the density d of the rating
matrix. In particular, in examining the estimation biases across varying values of d, a note-
worthy pattern emerges. Except for the lowest value of d, the biases appear to be consistently
similar for 6, 5, and the sum of squares of 5. This consistent behavior suggests that the esti-
mation process remains stable for these parameters over a range of d values. However, at the
lowest d, instead of observing increasing heterogeneity in the estimated (3, as seen in all other
cases, there is a homogenization of estimates of 5. This homogenization aligns with what is
consistently observed for estimates of 6. Furthermore, for this lowest d, there’s a bias in fa-
vor of central products. In contrast, for all other d values, there’s a bias leaning towards niche
products.
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(a) Estimation biases with density d = 0.6%.
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(b) Estimation biases with density d = 1.2%.
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FIGURE 4.—Estimation biases for various densities.

7. EQUILIBRIUM PRICES
7.1. Deriving demand functions

The demand functions are calculated as follows. Let g;; denote the probability that the sur-
plus provided by product j to consumer % surpasses the cutoff @;; — p;. The probability z;; that
consumer ¢ purchases product j then is:
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1
Tij = quj +

Z iu - qﬂ)‘| Tij 4)

n
tlem M

The first term on the right hand side is the probability that product j is sampled first and
is immediately purchased. The term inside square brackets is the probability that no product
is purchased after the first search, in which case the search process starts anew. Solving this
equation yields:

qij
xij =

B Z Qil.

Lem

&)

The total demand for product j is obtained by aggregating individual demands x;; across con-
sumers. Since ¢;; decreases with p;, this yields a system of decreasing demand curves.
With RSs, the algorithm recommends to consumer ¢ the product

j (i, M) = argmax fy;. (6)
The demand for this product is:
qij*
Tijeim) = Qe + (1 — Gigs) S g (7
Qie
eM
whereas the demand for products j # j* is

dij

2= (1= gij») : ®)
J ( J Z e
eEM

7.2. Individual profits

In section 7 of the main text, we mention the effect of the RS on equilibrium profits. Figures
5 and 6 illustrate these results in detail, showing how the RS affects the profits earned by each
of the 19 firms in the market. The figure shows that when o = 0, the peripheral firms defi-
nitely lose, while the gains and losses for the other firms do not seem to follow a clear pattern.
When o > 0, on the other hand, the central firm emerges as the clear winner, while the losers
include not only the peripheral firms but also the closest competitors of the central firm. For
the remaining firms, the effect is not significantly different from zero. In the figure, the median
profit of central products decreases because creating champions with highly asymmetric mar-
ket shares, the RS sometimes benefits and other times disadvantages those products. However,
as anticipated from the price hikes, the average profits significantly increase, as show in Table
2.
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FIGURE 5.—The average (across sessions) profits of the suppliers ranked by market share.

al 0 0.25 0.5 0.75 1
Unassisted Search | 0.0022  0.0053  0.0108  0.0192  0.0298
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Recommender System | 0.0031 0.0148 0.027 0.0372  0.0448
(0.0003) (0.0004) (0.0002) (0.0001) (0.0001)
BS-Un %100 | 4091% 179.25%  150.00%  93.75%  50.34%

U

TABLE 2
AVERAGE PROFITS
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FIGURE 6.—The profits of the suppliers of the different products, ranked from 1 to 19 according to their
location in the space of products: products 1 and 19 are peripheral, product 10 is central. As customary,
the figure shows median, inter-quartile range (IQR), and the values obtained by subtracting 1.5 times the
IQR range from the first quartile (Q1), and obtained by adding 1.5 times the IQR to the third quartile
(Q3). That is the highest and lowest value excluding outliers).
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7.3. Number of products and search cost

In this section, we illustrate how our results change when we vary the number of products
m, and the level of the search cost ¢,. We consider both the effect on market concentration
when prices are exogeneously set at zero, and the effect on equilibrium prices and consumer
surplus.

Specifically, we consider three possible levels of the search cost: ¢, = 0.002, ¢, = 0.004 (the
baseline value considered in the main text), and ¢, = 0.006. For each of these values, and for
each variable of interest, we present a heat map obtained by varying the number of products
m, from 7 to 31 (the baseline value considered in the main text being m, = 19), and the
degree of vertical product differentiation o from 0 to 1. The heat maps represent the percentage
change in the relevant variables with RSs relative to the individual search benchmark.

Search Cost = 0.002 Search Cost = 0.004 Search Cost = 0.006
T 500 T 500 [ 500
31 - 31 - 31 -
- 400 - 400 - 400
25 o 25 o 25 o
8 300 & t30 & t 300
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13 o 13 o 13 o
- 100 - 100 - 100
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T T T T T o T T T T T o T T T T T o
0 0.25 05 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
a a a

FIGURE 7.—Percentage shift of the HHI Index from Benchmark to RS.
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FIGURE 8.—Percentage shift of the market share of the central product from Benchmark to RS.

We have seen in the main text that the impact of the RS on market concentration, as measured
by the HHI, increases with «. Figure 7 confirms this finding and shows that the effect also
increases with the number of products and the level of the search cost. Unsurprisingly, the
superstar effect (Figure 8) and the reverse long-tail effect also exhibit a similar pattern.
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FIGURE 9.—Percentage shift of equilibrium prices (average across products) from benchmark to RS
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FIGURE 10.—Percentage shift of consumer surplus net of search costs from benchmark to RS.

In the main text, we have seen that the effect of the RS on equilibrium prices is highest when
product differentiation is mainly horizontal (small o). Again, Figure x confirms this finding.
Furthermore, it shows that the increase in equilibrium prices increases with the search cost
and decreases with the number of products. When the search cost is high and the number of
products is small, the average price may increase by as much as 50%.

In the paper, we observed that the RS has the most significant impact on equilibrium prices
when product differentiation is primarily horizontal. Figure 9 reaffirms this. Additionally, the
figure illustrates that the rise in equilibrium prices is proportional to the search cost and in-
versely related to the number of products. In cases where the search cost is high and the number
of products is limited, the average price may experience an increase of up to 50

Figure 10 shows that this large increase in the average price may more than offset the positive
effect of the RS on the matching of consumers and products, lading to a decrease in the level
of consumer surplus. This possibility arises when the search cost is high (¢, = 0.006), product
differentiation is horizontal (o = 0), and the number of products is small (m; = 7 or 13).

9. BIASED RECOMMENDATIONS

In this section we provide further information for the case in which the RS provides manip-
ulated recommendations, as discussed in the main text.
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9.1. Intensity of competition

We will now dissect the average impact of manipulation on prices, illustrating its effects on
various products while varying the favored product’s identity. Figures 11-13 complement the
main paper’s findings by presenting results with a 50% manipulation rate, where the central
product is favored, for different values of a.

alpha = 0, iNPtau = 10
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FIGURE 11.—Impact of 50% manipulation on prices for all products when product 10 is favored, with o = 0.

alpha = 0.5, iNPtau = 10
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FIGURE 12.—Impact of 50% manipulation on prices for all products when product 10 is favored, with o = 0.5.

The next figures 14, 15, 16 consider the same analysis of the effects of manipulation on
prices, this time varying the favored product’s identity. In all cases, manipulation intensifies
competition and reduces equilibrium prices.
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alpha = 1, iNPtau = 10
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FIGURE 13.—Impact of 50% manipulation on prices for all products when product 10 is favored, with o = 1.
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9.2. Profits

We here unpack the effect of manipulation on profits by showing the impact on the different
products and by varying the identity of the favored product. Figure 17 complements the main
paper’s findings by presenting results with a 50% manipulation rate, where the central product
is favored. Manipulation has a strong positive effect on the favorite product and a negative
effect on neighboring products that diminishes with the distance.

In analogy with the analysis on prices, we repeat the exercise by changing the identity of the
favored product (figures 20, 21 and 22) In all instances, manipulation heightens competition
and diminishes equilibrium profits.

alpha = 0, iNPtau = 10

Non-manipulating RS
Manipulating RS

Profit
0,006 0008 0010
I I I

0.004
L

0002
L

0.000
L

Product

FIGURE 17.—Impact of 50% manipulation on profits for all products with product 10 favored by the recommender
system (o = 0).

alpha = 0.5, iNPtau = 10
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FIGURE 18.—Impact of 50% manipulation on profits for all products with product 10 favored by the recommender
system (o = 0.5).
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alpha =1, iNPtau = 10

Non-manipulating RS
Manipulating RS

004
I

Profit

002
L

000
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T T T T T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Product

FIGURE 19.—Impact of 50% manipulation on profits for all products with product 10 favored by the recommender
system (o = 1).
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9.3. Consumer surplus

In Figure 23, consumer surplus decreases when recommendations are manipulated relative
to the case where recommendations are sincere. This occurs independently of which product is
favored with the manipulation and the level of «.

Note that when « is large, the scope for manipulation is quite limited even with a 50%
manipulation rate. This is because in this case, most consumers are already directed towards the
central product, regardless of manipulation. As a result, the impact of manipulation is almost
imperceptible when « is close to 1.

This change is again driven by three factors: the quality of matching, search costs, and prices.
Manipulation negatively affects the quality of matching, leading to an increase in search costs
for consumers. However, it also causes a substantial decrease in prices which mitigates its
negative impact on consumer surplus. The scenario in which Product 10 is favored and « is
set to 1 holds a distinct significance, as manipulation enhances matching, leading to improved
matches and consequently, an increase in surplus. All these figures confirm the results discussed
in the main text.
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FIGURE 23.—Percentage difference in the average consumer surplus between the cases of manipulated
and genuine recommendations with a rate of manipulation of 50%, for different manipulated products
(labeled INPtau) and different values of a.
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