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Abstract

We study the estimation of dynamic economic models for which some of the state vari-

ables are observed only occasionally by the econometrician—a common problem in many

fields, ranging from marketing to finance to industrial organization. If those occasional state

observations are serially correlated, the likelihood function of the model becomes a high-

dimensional integral over a nonstandard domain. We generalize the recursive likelihood

function integration procedure (RLI; Reich, 2018) to incorporate the occasional observa-

tions, enabling likelihood-based inference in such estimation problems. In extensive Monte

Carlo studies, we demonstrate the favorable properties of the proposed method for identi-

fying all model parameters and compare it to alternative methods.

Keywords: maximum likelihood estimation, occasional state observations, recursive like-

lihood function integration, interpolation, numerical quadrature, Markov models, dynamic

discrete choice models, long-run risk models.

∗We thank Jaap Abbring, Einar Breivik, Max Diegel, Frank de Jong, Philipp Eisenhauer, Robert Erbe,
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1 Introduction

A ubiquitous problem in the estimation of dynamic economic models is that the econometrician

does not have access to data for all the state variables of the model. In such a regime, the

likelihood function of the parameters forms an integral over the unobserved states; this integral

has—if those states are serially correlated—a dimensionality that is proportional to the time

horizon of the dataset. While some estimation approaches exist to cope with this large integral,

they are usually limited to the special case in which the state is either fully observed or fully

unobserved. In this paper, we study regimes where the state is observed infrequently, which we

refer to as an occasionally observed state. This type of observability can take many forms: states

can be observed randomly, endogenously (i.e., tied to a particular realization of some other

model state or action), or follow a regular time pattern; moreover, states that are observed

in a time-aggregated fashion can be modeled as occasional state observations too. All these

imperfect observability forms occur across fields, ranging from marketing to finance to industrial

organization. And their causes are diverse, and include confidentiality or privacy issues and

immeasurability.

Since such observability problems occur in many fields, there exists an emerging—but still

relatively recent—body of literature covering the inherent unobservability of serially correlated

states and its implications for estimation (e.g., Cosslett and Lee, 1985; Kitagawa, 1987; Keane,

1994; Norets, 2009; Arcidiacono and Miller, 2011; Blevins, 2016; Reich, 2018).1 All these ap-

proaches assume a particular state to be either fully observed over time, or fully unobserved

over time—but nothing in between. Often, however, managerial problems are characterized by

occasional observations of such serially correlated states, including in marketing (e.g., prices

in scanner data; Erdem et al., 1999), labor and health economics (e.g., health status in retire-

ment choices; Iskhakov, 2010), finance (e.g., transaction data; Engle and Russell, 1998), and

industrial organization (e.g., steel trading and inventory optimization; Hall and Rust, 2021).2

Erdem et al. (1999) demonstrate the importance of appropriately incorporating such occa-

sional observations in the estimation procedure itself—as opposed to just imputing the missing

values by, say, the mean of their occasional observations—and how conclusions might be mis-

leading otherwise: in a model of product purchases, they estimate consumers’ price elasticity

based on scanner data, which contains daily product prices only if actual transactions have taken

place. However, since the decision to buy likely depends on the price faced by the consumer,

imputing prices from their average observed values creates a selection bias in these estimates

because, in fact, a conditional mean price was used for the imputation (conditional on having

made at least one purchase). The authors use maximum simulated likelihood to integrate out

the missing observations, obtaining an unbiased estimator for the price elasticity. Their ap-

proach, however, does not incorporate any serial correlation in prices, which is quite a limiting

1More recently, Connault (2016) and Farmer (2021) have addressed similar issues in discrete state contexts as
in Cosslett and Lee (1985), though in different domains.

2A related problem appears in the domain of partially observable Markov decision processes (POMDP), where
some states are fully or partially unobservable to the decision maker. Whether or not the econometrician observes
the same set of states (up to the error terms) as the agent or less, is, however, an independent question. See, for
example, Chang et al. (2020) for a recent treatment of POMDP estimation in a similar context as our second
application.
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assumption.

Our contribution is to enable likelihood-based inference even under occasional state ob-

servations by generalizing the recursive likelihood function integration (RLI) method of Reich

(2018)—an approach originally developed to estimate models with one or more states being

completely unobserved. The RLI method provides a recursive approach to integrating out the

serially correlated unobserved state variables in the likelihood function. In the presence of oc-

casionally observed states, this integration cannot, however, be carried out directly because its

domain would be nonstandard3—a lower-dimensional sub-manifold in particular, and thus a set

of measure zero in the original state space. Therefore, we derive a generalized recursive for-

mulation of the integral, which yields a series of interconnected, lower-dimensional integration

problems over standard domains. The latter can then be approximated by alternating highly

efficient quadrature and interpolation methods, such as Gauss quadrature rules and splines,

respectively. The proposed method nests the full observation and the no-observation regimes

as special cases, and applies to various dynamic state-space models, including instances where

occasional state observations occur due to time aggregation of the data.

Two issues arise when performing likelihood-based inference under occasional state observa-

tions: Firstly, the observation pattern of the occasionally observed state might be endogenous,

i.e., the probability to observe a state in some period t is not independent of the realization

of the state in period t. Constructing the likelihood purely from the model ignores this possi-

ble dependence in the available sample, hence making the likelihood invalid and the estimator

possibly biased, even before any approximation of the likelihood. To avoid this issue, we show

how to construct a generally correct likelihood, including the case of endogeneity, if the con-

ditional probability of observation is known. Furthermore, we provide conditions under which

a simplified likelihood purely based on the model is also valid. Secondly, for both, the true

and the approximate estimator, the validity of large sample properties is not ex ante innate.

However, the companion paper Gilch et al. (2025) derives conditions under which both the true

and approximate estimators examined in this paper are consistent and asymptotically normal.

Recently, an alternative approach to estimate dynamic models with occasionally observed

states has been developed by Hall and Rust (2021), one that proposes estimating partially

observed Markov processes using the simulated method of moments (SMM), explicitly allowing

for serial correlation of the occasionally observed variables:4 First, the authors forward simulate

the full process for a particular set of parameter values; second, they censor the simulated data

using the same pattern as in the original dataset; finally, they compare the moments of the

so obtained simulated data with the empirical ones. Based on the (appropriately weighted)

difference in moments, a new set of parameter values is chosen, and the procedure is repeated

until the difference is minimal. The authors formally derive conditions for the consistency and

asymptotic normality of their estimator. Given the estimator’s roots in the moment-based

methodology, it is broadly applicable (in fact, more broadly than likelihood-based approaches),

3We refer to an integration domain as “nonstandard” if neither a change of variables exists to map it to the
unit hypercube nor a specialized quadrature rule is available for that domain.

4A note on nomenclature: We refer to the phenomenon in question as occasionally observed—in contrast to
Hall and Rust’s 2021 notion of endogenously sampled—to explicitly include cases in which states are periodically
or randomly observed, but not necessarily tied to a particular decision or any other endogenous outcome of the
model. We formalize the allowable observation patterns below.
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but we expect—and confirm—it to be less efficient than likelihood function-based estimation.

We compare this approach to the performance of our method, which we assess, demonstrat-

ing its broad applicability by applying it to three relevant problems from the literature that

cover all forms of unobservability: (i) a long-run risk model as in Bansal and Yaron (2004);

(ii) a model with stochastic volatility as in Schorfheide et al. (2018)—where both applications

feature one completely unobserved state and one that is defined quarterly in the model but

observed only aggregated over a whole year—and (iii) a hypothetical setup of the bus engine

replacement problem of Rust (1987), a dynamic discrete choice model where the econometrician

only observes the state variable in the rare case of an engine replacement. Such a setup can

occur, for example, if the decision-maker outsources the actual replacement operation and the

third-party contractor wants to infer on the decision-maker’s implied demand for replacement

as a function of replacement costs, using a structural model based on his own incomplete data.

We analyze these examples in extensive Monte Carlo studies: First, we simulate many com-

plete datasets for various sample lengths, while discarding some observations to obtain the

corresponding datasets with occasional observations. Then, we estimate the models based on

both types of datasets, and compare the distributions for the different estimators, and for the

different sample lengths. Our study yields two insights: (i) the approach is computationally

highly efficient and thus makes likelihood-based inference even in the presence of serially cor-

related occasionally observed states feasible; and (ii) we provide simulation-based evidence for

the statistical efficiency of the likelihood-based estimator even in small samples. Finally, we

compare our approach to the SMM estimator for endogenously sampled time series of Hall

and Rust (2021), showing that our method can yield significant efficiency gains, particularly

for small samples and non-linear models. In fact, we confirm Grammig and Küchlin (2018) in

finding that it is very hard to identify the parameters of a highly persistent stochastic volatility

process using SMM, and we show that this is not an issue with likelihood-based approaches like

ours.

The remainder of this paper is organized as follows: In Section 2, we show how to compute

the likelihood for (discrete-time) Markov processes with occasional state observations. The

section begins with a motivating example highlighting three challenges, endogeneity of the

observation process, high-dimensional integrals and validity of large sample properties, which

we each address in the subsequent subsections. In Section 3.1 we apply our method to estimate

the long-run risk and stochastic volatility models; in Section 3.2 we apply our method to estimate

the dynamic discrete choice model of Rust (1987). Section 4 concludes.

2 Maximum likelihood estimation with occasionally observed

states

In this section, we show how to estimate structural models with states that are observed

infrequently—i.e., only at particular values of the states or decisions, periodically, or completely

at random—using recursive likelihood function integration (RLI). We refer to this setting as

occasionally observed states. While there are many empirical applications involving occasionally

observed states, common estimation methods assume that states are either fully observed or

4
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completely unobserved. We propose a new methodology to estimate such models and show that

fully observed states and unobserved states are nested as special cases.

We proceed as follows: We begin with an introductory example in Section 2.1, where we

demonstrate the main challenges that arise when estimating dynamic models with occasionally

observed states using maximum likelihood estimation. This includes (i) potential endogeneity

of the observation process that needs to be taken into account when formulating the likelihood

function, (ii) computational challenges arising from the high dimensional integrals that are

induced by the marginalization of the unobserved states, and (iii) the validity of large sample

properties of the approximates likelihood estimator. The subsequent subsections then each

cover one of the problems encountered in the introductory example: In Section 2.2, we outline

how to appropriately treat generic observation patterns in the likelihood function to ensure

validity of our approach; we demonstrate that observability is not limited to fixed, regular time

intervals, but can depend on the realization of certain states or controls of the Markov process

itself. Section 2.3 contains our main methodology, and we show how to estimate structural

models with occasionally observed states based on an efficient recursive approximation of the

likelihood function. Section 2.4 briefly discusses large sample properties of our estimator which

are formally treated in the companion paper Gilch et al. (2025).

For the sake of argument, we limit ourselves to one observed and one occasionally observed

state in the following. It is important to highlight that this is by no means a limitation of our

method but rather lets us use very instructive notation. We provide a fully general description

of our methodology for an arbitrary number of states in Appendix A.2.

2.1 Introductory example

Consider a discrete-time Markov process {zt, xt}—possibly controlled, like in dynamic discrete

choice models—with two one-dimensional state variables, zt, xt ∈ R, and a parametric family

of transition probability functions, P (zt, xt|zt−1, xt−1; θ). We want to estimate the model pa-

rameter θ using a maximum likelihood approach. In particular, we are interested in a case of

limited data availability, where the variable zt is observed for all periods t ∈ T ≡ {1, . . . , T} of
the sample, whereas xt is observed only at the times t ∈ T̄ with T̄ ⊆ T . In this subsection,

we analyze the simple case with only one observation, T̄ = {t̄} and illustrate three challenges

for our estimation: endogeneity of the observation process, computation of high-dimensional

integrals, and the large sample properties of the resulting estimator. The subsequent sections

then each deal with one of these issues in more detail, and cover the general observation set

T̄ ⊆ T .
To introduce basic notation and the fundamental treatment of unobserved states, let us

first consider two counterfactual cases: Under full observability for both states xt and yt—i.e.,

T̄ = T—the (unconditional) likelihood function of the parameter vector θ reads

L(θ) = P ({zt, xt}t∈T ; θ)

= P (z1, x1; θ)
T∏
t=2

P (zt, xt|zt−1, xt−1; θ), (1)

5

Electronic copy available at: https://ssrn.com/abstract=3638618



where P (z1, x1; θ) is the stationary distribution of xt (if available). Conversely, if no state

observations on xt are available—i.e., T̄ = ∅—the likelihood function forms an integral with

respect to the unobserved state,

L(θ) = P ({zt}t∈T ; θ)

=

∫
· · ·
∫
STx
P (z1, x̃1; θ)

T∏
t=2

P (zt, x̃t|zt−1, x̃t−1; θ) d(x̃1, . . . , x̃T ) . (2)

Here and in the following, we decorate any integration variable with a tilde; in (2), we write

x̃t to clearly distinguish them from any data set element or state variable, xt. Note that the

overall dimensionality of the integral in (2) is proportional to the time horizon of the data, T .

Thus, computing this integral constitutes a delicate task.

Suppose we have a single observation xt̄ at t̄ that lies in the “interior” of T—i.e., 1 < t̄ < T

and T̄ = {t̄}. If we were to integrate the likelihood as in (2), the domain of integration in

the likelihood function would read {(x̃1, . . . , x̃T ) ∈ STx : x̃t̄ = xt̄}, which is no longer a full-

dimensional subset of STx (for general state spaces Sx), and thus potentially creates ill-defined

integrals. Therefore, we rewrite the integral to explicitly exclude the integration variable x̃t̄ and

only integrate w.r.t. the unobserved states x̃t for t ∈ T \ T̄ :

L(θ) =

∫
· · ·
∫
P (z1, x̃1; θ)

(
t̄−1∏
t=2

P (zt, x̃t|zt−1, x̃t−1; θ)

)
P (zt̄, xt̄|zt̄−1, x̃t̄−1; θ)

· P (zt̄+1, x̃t̄+1|zt̄, xt̄; θ)

 T∏
t=t̄+2

P (zt, x̃t|zt−1, x̃t−1; θ)

 d(x̃1, . . . , x̃t̄−1, x̃t̄+1, . . . , x̃T )

(3)

In the following, we use the likelihood (3) to illustrate three key challenges that arise when

estimating dynamic models with occasional state observations.5

(i) Observation process The fact that we observe xt in some periods, but we don’t in

others, is not innocuous, in particular if the (un-)observability of a variable inherently depends

on the value of the variable itself. This, in turn, implies that the observation pattern carries

information about realization of the underlying variable—even if it is unobserved. Ignoring this

information generally leads to endogeneity, which needs to be accounted for by adapting the

integration domain and the (conditional) distribution for the unobserved xt accordingly.
6

To maintain the simplicity of this example, suppose there is an endogenous observation

mechanism such that xt is observed if xt ∈ S̃, for some subset of the state space S̃ ⊂ Sx, but
not otherwise. A prominent example is censoring : here, xt is only observed if it exceeds—or

falls below—some threshold. To further simply the outline, consider a situation where T = 2

and t̄ = 1, i.e., we have a realization of this mechanism for which we know that x1 ∈ S̃ and

5The likelihood (3) bares a close resemblance to the Chapman-Kolmogorov equation. For T̄ = {1, T}
the function L(θ) is defined as P (x1, xT , {zt}t∈T ; θ), hence dividing by P (z1, x1; θ) returns exactly the
Chapman-Kolmogorov equation, P (xT , {zt}Tt=2|x1, z1) =

∫
ST−2
x

∏T−1
t=2 P (zt, x̃t|zt−1, x̃t−1; θ) d(x̃2, . . . , x̃T−1),

which marginalizes the unobserved states x̃2, ..., x̃T−1 between the unobserved ones.
6We thank the referee for pointing out this issue, which was only informally discussed in previous versions of

the paper.

6

Electronic copy available at: https://ssrn.com/abstract=3638618



x2 ∈ Sx \ S̃. Note that if we were to integrate out the unobserved variable over the full state

space Sx, we would include values from S̃ which are impossible to have happened, conditional

on non-observation of x2. To account for the endogeneity in the likelihood function, we include

the probability to observe xt conditional on xt itself:

L(θ) =

∫
Sx
P (z1, x1; θ)P (x1 is observed|x1)P (z2, x̃2|z1, x1; θ)P (x̃2 is observed|x̃2)dx̃2.

In our example, the observation probability turns out to be an indicator function,

P (xt is observed|xt) = 1{xt∈S̃}. (4)

Thus, we can simplify the likelihood by transforming the integral over the domain Sx \ S̃:

L(θ) =

∫
Sx\S̃

P (z1, x1; θ)P (z2, x̃2|z1, x1; θ)dx̃2. (5)

Note that the likelihood function (5) neither that for the model under full observations (which

would feature no integral at all), nor that for the model with no observation of the state variable

x at all (which would integrate over Sx).
Importantly, given our sample and the knowledge that observation is endogenous in our

example, only this adjusted likelihood is correct for inference. In Section 2.2, we return to the

case with any T ∈ N and provide a general likelihood formulation, which accounts for multiple

observations from a (potentially) endogenous observation process, covering different levels of

endo- or exogeneity of the observation pattern T̄ . The only requirement is that we can express

it through a parametric family of distributions; moreover, we show under which circumstances

the likelihood original (3) can be used“as-is”.

(ii) High-dimensional integrals Computing the integral in Equation (3) is numerically

challenging, as its dimension grows proportional with the time horizon T . In the following we

show how to rewrite the integral in (3) recursively. As we demonstrate in the methodology

sections below, we can then form an approximation of that recursive form, which effectively

breaks the curse of dimensionality otherwise induced by the time horizon.

Due to the integrability and boundedness assumption on all P s, the Fubini–Tonelli theorem

and the Markov structure of the model allow us to express the second integral in Equation (3)

(i.e., the integral from t̄+ 2 up to T ) recursively as

fθt (x) =

1 t > T∫
P (zt, x̃|zt−1, x; θ)f

θ
t+1(x̃)dx̃ t̄+ 2 ≤ t ≤ T,

where zt and zt−1 come from the dataset, but x and x̃ are function arguments and integration

variables, respectively. Using the result of this recursion, fθt̄+2, the integration over t̄+ 1 yields

the following constant function, which depends only on the state observation xt̄, but not on the

function argument x:

ft̄+1(x) =

∫
P (zt̄+1, x̃|zt̄, xt̄; θ)fθt̄+2(x̃)dx̃.

7
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Defining

ft̄(x) = P (zt̄, xt̄|zt̄−1, x; θ)ft̄+1(xt̄),

we can express the remaining dimensions of the integral through recursion, as

fθt (x) =

∫
P (zt, x̃|zt−1, x; θ)f

θ
t+1(x̃)dx̃ 2 ≤ t ≤ t̄− 1,

and evaluate the final likelihood based on fθ2 .

However, evaluating fθ2 is still computationally challenging, as an evaluation of fθ2 triggers

an evaluation of fθ3 , which again triggers an evaluation of fθ4 , and so on. As each evaluation

level t requires multiple evaluations at t + 1 to compute the integrals, the resulting number

of function evaluations grows exponentially with T. In Section 2.3 we show how to use an

approximation of the recursion fθt so that the computational complexity only grows linearly in

T and hence becomes computationally feasible; together with our results on convergence of the

resulting estimator in Section 2.4, this formulation can be shown to truly break the curse of

dimensionality.

(iii) Asymptotic properties In the standard setup with fully observed xt, asymptotic prop-

erties of the likelihood estimator are obtained by taking the logarithm of the likelihood (1),

logL(θ) = logP (z1, x1; θ) +
T∑
t=2

logP (zt, xt|zt−1, xt−1; θ).

Taking the sample size T to infinity, consistency is derived using a law of large numbers and

asymptotic normality follows from a central limit theorem.

In the case of occasional state observations, this approach is not applicable: Taking the

logarithm of the likelihood (3) does not yield a sum over t summands, but rather a sum of two

summands only, as the logarithm and the integral cannot be interchanged:

logL(θ) = log

∫
· · ·
∫
P (z1, x̃1; θ)

(
t̄−1∏
t=2

P (zt, x̃t|zt−1, x̃t−1; θ)

)
P (zt̄, xt̄|zt̄−1, x̃t̄−1; θ) d(x̃1, . . . , x̃t̄−1)

+ log

∫
· · ·
∫
P (zt̄+1, x̃t̄+1|zt̄, xt̄; θ)

 T∏
t=t̄+2

P (zt, x̃t|zt−1, x̃t−1; θ)

 d(x̃t̄+1, . . . , x̃T ) .

(6)

Of course, with a fixed number of observations (here: one), we do not obtain the infinite sum

required to derive the desired properties of the estimator when taking T to infinity. Instead,

it is only the dimension of the integral that becomes larger, and convergence is in our gen-

eral framework—to the best of our knowledge—unclear. This makes asymptotic statements

impossible, even if we were able to compute these integrals exactly.

However, as shown by Gilch et al. (2025) and further discussed in Section 2.4, it is possible

to recover the asymptotical results known from many other log-likelihood-based estimators,

if the number of occasional observations, N ≡ |T̄ |, also tends to infinity as T grows. In

particular, these asymptotics can be derived based on the joint probability of all states between

8

Electronic copy available at: https://ssrn.com/abstract=3638618



two observation periods, P
(
{zt, xt}t̄i+1

t=t̄i+1
|zt̄i , xt̄i ; θ

)
.

Based on this observation, Gilch et al. (2025) continue to show how these asymptotics can be

derived if the likelihood has to be approximated, as it is typically the case in realistically-sized

applications: As mentioned in Paragraph (ii), our likelihood cannot be evaluated analytically

and is therefore approximated numerically. Hence, the estimator we are actually interested

in is not the maximizer of (6) but the maximizer of this approximated likelihood. However,

approximation of the likelihood introduces an additional deterministic error to our estimator

on top of the stochastic estimation error and thus also affects its asymptotic properties. We

further explain this issue and the proposed solution by Gilch et al. (2025) in Section 2.4.

2.2 Endogeneity of the observation process

We start by formalizing the assumptions on the formation of the observation pattern T̄ which

are necessary to ensure validity of our approach. As we have indicated above, observability

is not limited to fixed, regular time intervals, but can, in general, depend on the realization

of certain states or controls of the Markov process itself. However, such dependence can lead

to endogeneity if one fails to incorporate the information about the conditional distribution of

the unobserved variables inherent in the observation pattern realization where necessary. As

a consequence, if maximum likelihood estimation does not account for this endogeneity, it is

potentially biased. In this section, we incorporate the observation pattern into the sample, and

we describe different levels of susceptibility to endogeneity that it can induce. Subsequently,

we derive a general likelihood function based on both the economic model and the observation

pattern, and we show under which circumstances the original likelihood (i.e., the likelihood

based purely on the economic model) is sufficient for consistent inference. For the ease of

notation, we keep the assumption that xt is one-dimensional. At the end of this section, we

describe how the results generalize in a setting with multi-dimensional xt ∈ Rdx , dx ≥ 1.

Let us define the observation variable as

mt =

1, if xt is not observed,

0, otherwise.

If we allow the observability of xt to be random, mt is in fact a random variable with probability

distribution Pm. This distribution is typically called the missing data mechanism as it specifies

the probability for the value of xt to be (un-) observed, and it may condition on past realizations

of xs, s < t, as well as current and past realizations of zs and ms, s ≤ t.7 In this paper, we only

consider cases where Pm is Markov. Formally, we write

Pm
(
mt|{ms}t−1

s=1, {zs, xs}
t
s=1; η

)
= Pm (mt|zt, xt, zt−1, xt−1,mt−1; η) , (7)

where η ∈ H is a nuisance parameter. To distinguish the model process for the model variables,

xt and zt, from the missing data mechanism Pm for the observation variable, we denote the

7See, for example, Little and Rubin (2002). Note that while the missing data literature calls xt (potentially)
“missing”, we call it “unobserved”, in order to distinguish it from truncation and related concepts (also see our
comment at the end of the section). Moreover, our definition of Pm is a slight extension of the typical definition
since it allows for dependence on the past observations.

9
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former by

P zx (zt, xt|zt−1, xt−1; θ) , (8)

which is specified by the underlying economic model and parametrized by θ ∈ Θ. In line with

many applications, and to allow the application of RLI, we also impose the Markov property on

P zx . Note that the observation variable mt is only relevant to the econometrician; the agent

whose behavior is explained by the model observes all model variables at all times.8 Therefore,

mt does not appear in P
zx .

In this paper, we address the estimation of the parameter of interest θ using maximum

likelihood estimation under occasional observations of some model variables. Recall that the

likelihood function is the joint probability of the sample, seen as function of the parameter of

the underlying model. If the econometrician observes all variables at all times (by construction,

not by chance), the model process P zx together with the observed model variables, {zt, xt}Tt=1 is

sufficient for the determination of the likelihood and its maximizer. However, under occasional

observations, the sample is deprived of some xt, but their absence is itself informative about

their realized (but unobserved) values—and thus about θ—as specified through Pm. Hence,

the relevant sample is in fact the information set,
{
{zt,mt}Tt=1, {xt|1 ≤ t ≤ T,mt = 0}

}
, and

the likelihood function needs to be augmented by Pm. To formalize this augmentation, we first

introduce some helpful concepts and notation:

Definition 1 (Observation pattern).

1. The set of periods in which xt is observed is called the observation pattern, T̄ , and is

denoted by

T̄ ≡ {t ∈ {1, ..., T}|mt = 0}. (9)

It is a random variable with support {0, 1}T .

2. The number of observations, N , is defined by N ≡ |T̄ | and is a random variable with

support {0, 1, ..., T}.

3. Given N ≥ 1, the periods of observations, t̄i, are the elements of T̄ and numbered

ascendingly by i = 1, ..., N , s.t. t̄i < t̄i+1 for all i. Each t̄i is a random variable with

recursively defined support conditional on N and, if i > 1, t̄i−1,

supp(t̄i) =

{1, ..., T − (N − 1)} if i = 1,

{t̄i−1 + 1, ..., T − (N − i)} if i > 1.
(10)

We further define t̄0 ≡ 0 and t̄N+1 ≡ T + 1 for notational purposes and without corre-

spondence to any observation.

4. The length of the non-observation segment between the (i − 1)-th and the i-th

8This is in contrast to partially observable Markov decision processes (POMDP), where the agent observes
relevant states only imperfectly; also see Footnote 2.
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observation, τi, is defined by τi ≡ t̄i − t̄i−1 − 1 for i = 1, ..., N + 1. Each τi is a random

variable as it is the function of the two random variables t̄i and t̄i−1.

Note that Definition 1 allows for three equivalent representations of the observation pattern; we

continue with the representation through mt, but still use N, t̄i, and τi to simplify the notation

of the likelihood function below.

Next, we characterize the potential endogeneity of the observation pattern, T̄ , w.r.t. the
model variables, xt and zt, in terms of Pm. Generally, the functional form (7) allows for any

probabilistic Markov dependence of the observability of xt on zt, xt, xt−1, and zt−1. The following

definition restricts the functional form of Pm selectively to obtain three forms of endogeneity

which are common in the missing data literature:

Definition 2 (Properties of the observation pattern). The missing data mechanism Pm is

missing at random (MAR) if for all t

Pm(mt|zt, xt,mt−1, zt−1, xt−1; η) = Pm(mt|zt, zt−1,mt−1; η), (11)

i.e., if observation of xt only depends on the fully observed variables. The missing data mecha-

nism is called missing completely at random (MCAR) if for all t

Pm(mt|zt, xt,mt−1, zt−1, xt−1; η) = Pm(mt|η), (12)

i.e., if observation of xt is independent of all other variables.

If Pm is neither missing at random nor missing completely at random, we call Pm missing

not at random (MNAR).9

Note that MCAR implies MAR but not vice versa. Also, while an MNAR mechanism

corresponds to an endogenous observation pattern, MAR and MCAR mechanisms are associated

with observation patterns that are exogenous (conditional on zt−1, zt in the former case). We

provide examples for all forms of endogeneity at the end of the section, and relate them to the

following assumption and proposition:

Assumption A1 (Admissible scenarios for the observation pattern). One of the following two

cases holds:

(a) The missing data mechanism is MNAR and the functional form of

Pm(mt|zt, xt,mt−1, zt−1, xt−1; η) is known.

9Two alternative definitions of MAR and MCAR are also admissible for our setup—one that relates closer
to the definition known from the missing data literature, and one that extends ours even further: For MAR, we
could also keep the dependence on xt−1 and xt if they are actually observed:

Pm(mt|zt, xt,mt−1, zt−1, xt−1; η) = Pm(mt|zt, zt−1,mt−1, {xs}s∈{t−1,t}
⋂

T̄ ; η).

For MCAR, we could also keep the Markov dependence on the previous observation variable, mt−1:

Pm(mt|zt, xt,mt−1, zt−1, xt−1; η) = Pm(mt|mt−1; η).
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(b) The missing data mechanism is MAR and the parameters η and θ specifying Pm and P zx

are distinct, i.e the joint parameter space of η and θ is the product of the parameter spaces

H and Θ.

Based on Assumption A1, and using a set of common notational conventions to achieve

a compact notation,10 the following proposition proposes a maximum likelihood estimator for

each of the two cases:

Proposition 1 (Likelihood function under occasional observations). Let mt, zt, xt for t =

1, ..., T , as well as t̄i for i = 0, ..., N + 1, τi for i = 1, ..., N and P zx , Pm, and N be de-

fined as above. Let yt ≡ (mt, zt) be the vector of variables which are observed in all periods, i.e.,

it is composed of both model and observation variables.

1. If A1(a) holds, then let ψ ≡ (θ, η) and Ψ ≡ Θ×H and define the transition probability P

by

P (yt, xt|yt−1, xt−1;ψ) ≡ Pm(mt|zt, xt,mt−1, zt−1, xt−1; η)P
zx (zt, xt|zt−1, xt−1; θ) . (13)

2. If A1(b) holds, then let ψ ≡ θ and Ψ ≡ Θ and define the transition probability P by

P (yt, xt|yt−1, xt−1;ψ) ≡ P zx (zt, xt|zt−1, xt−1; θ) . (14)

For each of the cases and the according definitions of ψ and P , the maximum likelihood

estimator for ψ is given by

ψ̂ = argmax
ψ∈Ψ

L(ψ),

10To achieve a compact formulation for the likelihoods, we adhere to the following notational convention for
the product sign:

t−1∏
s=t

f(s) =
∏
s∈∅

f(s) = 1,

i.e., the empty product is equal to 1. Furthermore, we write

P zx (z1, x1|z0, x0; θ) ≡ P zx (z1, x1; θ) ,

Pm (m1|z1, x1,m0, z0, x0; θ) ≡ Pm (m1|z1, x1; θ)

for the respective initial distributions, and

P zx (zT+1, xT+1|zT , xT ; θ) ≡ 1,

Pm (mT+1|zT+1, xT+1,mT , zT , xT ; θ) ≡ 1,

since period (T + 1) is outside of the sample period {1, ..., T} and hence mT+1, zT+1, xT+1 are not defined as
random variables.
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where

L(ψ) = L(ψ|{yt}Tt=1, {xt}t∈T̄ ) (15a)

≡
∏

i∈{1,...,N+1}
⋂
{i|τi>0}

∫
· · ·
∫
Sτix

P
(
yt̄i−1+1, x̃t̄i−1+1|yt̄i−1

, xt̄i−1
;ψ
)

(15b)

·
t̄i−1∏

t=t̄i−1+2

P (yt, x̃t|yt−1, x̃t−1;ψ) (15c)

· P
(
yt̄i , xt̄i |yt̄i−1, x̃t̄i−1;ψ

)
d
(
x̃t̄i−1+1, ..., x̃t̄i−1

)
(15d)

·
∏

i∈{j=1,...,N+1|τj=0}

P
(
yt̄i , xt̄i |yt̄i−1, xt̄i−1;ψ

)
. (15e)

The proof of Proposition 1 can be found in Appendix A.1. The idea of the proposition is

as follows: In the full information case, the likelihood of a sample would simply be the product

over each observation’s conditional probability. In our case of non-observation of some xt, we

derive the likelihood function (15) by marginalizing the unobserved xt, i.e., integrating them

w.r.t. their associated conditional probability and their domain Sx.
In contrast to the case of RLI examined in Reich (2018), the occasional observations of xt

allow us to split up the joint integral over xt, t /∈ T̄ , into N + 1 separate factors which are

each associated with one of the segments (t̄i−1, ..., t̄i) for i = 1, ..., N + 1. These N + 1 factors

are in turn split up into two sets, according to the length of their non-observation segment,

τi: If τi = 0 (Equation (15e)), i.e., the respective segment is (t̄i − 1, t̄i), then the i-th factor is

simply the probability of yt̄i , xt̄i conditional on yt̄i−1, xt̄i−1. If τi > 0 (equations (15b)–(15d)),

there is at least one period of non-observation between two periods of observation, i.e., the i-th

segment (t̄i−1, ..., t̄i) contains at least 3 time periods. The factor associated with this segment

is the integral of the product of conditional probabilities over all successive unobserved xt with

t̄i−1 < t < t̄i: the p.d.f. in (15b) is the probability of the first unobserved variable of this

segment conditional on the observations in period t̄i−1; the p.d.f. in (15d) is the probability

of the observations in period t̄i conditional on the last unobserved variable of this segment;

the product in (15c) is empty if there is only one period of unobservation in this segment and

otherwise is the product of all probabilities of an unobserved variable conditional on the previous

unobserved variable.

If the missing data mechanism is MNAR, i.e., if the observation pattern is endogenous, xt

and xt−1 are part of P
m. Therefore, marginalization of the unobserved xt involves the product of

Pm and P zx as the integrand. Consequently, we require (the knowledge of) a specific functional

form for Pm. Moreover, we need to estimate η as well, since it is now also a nuisance parameter of

L (the likelihood function “inherits” the nuisance parameter from Pm). In particular, η cannot

be estimated separately by conditional maximum likelihood, i.e., by only using the process for

mt. The conditional likelihood of η is again an integral over xt for t /∈ T̄ and is in fact the same

as (15).

If the missing data mechanism is MAR, i.e., if the observation pattern is exogenous, xt

is not a part of Pm for any t, allowing us to “pull” Pm out of the integral. By Assumption

A1(b), Pm is parametrized independently of θ and thus becomes merely a scaling factor to
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the likelihood of θ. In other words, the likelihood given in (15) with ψ = θ and Definition

(14) is equivalent to the likelihood with ψ = (θ, η) and Definition (13) for any η ∈ H. Thus,

maximum likelihood estimation with an M(C)AR missing data mechanism does neither require

any explicit specification of Pm, nor the estimation of an additional nuisance parameter. Note

that if the second part of Assumption A1(b) regarding the support of η fails to be satisfied, the

resulting estimator of θ is still valid, but less efficient.

Let us briefly comment on the dimensionality of the model variable xt.
11 For simplicity, we

have assumed in this section that xt is one-dimensional, and hence mt is also one-dimensional.

We can generalize this setting to a setting with multi-dimensional xt ∈ Rdx , dx > 1, in two

ways: First, consider a situation in which all elements of the vector xt are observed at the same

time, i.e., if one element of xt is observed, all other elements are also observed. Then, mt and

all of the auxiliary variables N, t̄i, and τi, i = 1, ..., N , are still one-dimensional variables. In

particular, all definitions and derivations in this section only depend on the entire vector xt

and never directly on individual elements of xt. Thus, all of the definitions and derivations and

especially Proposition 1 above hold verbatim and can be used without further adjustments for

estimation.

The second case further generalizes our setting in that it allows some elements of xt to be

observed while others are unobserved in the same period, i.e., mt is now also dx-dimensional.

This entails a more intricate definition of the observation pattern T̄ and causes the integration

domain Sx to differ in each period, depending on how many elements of xt need to be marginal-

ized. We show in the Appendix A.2 how our notation has to be adjusted for this case. However,

the general intuition of this section remains valid: If the missing data mechanism is MAR,

then the likelihood can be constructed only using the model process. If it is MNAR, then we

additionally require the observation process. We conclude this section with three examples each

corresponding to one of the types of endo- or exogeneity of the observation pattern described

in Definition 2:

Example 1 (Discrete choice models with choice-dependent observability). Consider a data set

{dt, st}Tt=1 which is analyzed using a Discrete Choice model (DCM): It consists of one or sev-

eral decision variables dt which take discrete values {1, ..., J} and one or several explanatory

variables st which are inputs to the decision process of the agent in the model. Suppose that the

econometrician does not have access to the full data set but observes some of the st only occa-

sionally, according to the missing data mechanism Pm. If the decision variables dt are always

observed and the observability of the explanatory variables depends only on the decision variable,

then the missing data mechanism is MAR: Although dt depends on st and hence observability

of st also depends on st, the dependence on st in Pm simply drops out by conditioning on the

always observed dt. Put in terms of our framework, the occasionally observed parts of st map

into xt, while dt and the remaining parts of st map into zt. This implies that A1(b) is fulfilled

and the likelihood is conveniently constructed using only the decision process which is anyway

specified by the DCM.

Prominent examples for such DCM with occasionally observed explanatory variables are

11The dimensionality of zt did not play a role in any of our definitions and derivations, hence zt can be freely
considered to be multi-dimensional.
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models of purchase decisions based on scanner data (Erdem et al., 1999) or price data from

steel retailers (Hall and Rust, 2021). In these settings, prices are only observed if the agent

actually purchases the product, otherwise the price is not observed by the econometrician but

only by the agent (who bases his purchase decision on this price). This reflects exactly the setting

above; thus, only the decision process is required for estimation of these models.

In Section 3.2, we present a hypothetical version of the bus engine replacement model by

Rust (1987) in which the mileage data is only observed upon replacement and the random utility

component of the bus manager is serially correlated. We analyze it with the likelihood from Part

2 of Proposition 1 and provide empirical evidence for its asymptotic properties.

Example 2 (Observation of summary statistics of time series data). Suppose an econometrician

wants to estimate a model of two variables, zt and st, which admit a joint transition probability

P sz (zt, st|zt−1st−1; θ) parameterized by θ. However, he or she only has access to reliable data

for the z-variable; observations of st are not available, e.g., because they are not reported, or

because they are diluted by an unknown seasonality pattern or some other form of noise making

them unfit for estimation. Instead, the econometrician occasionally observes another variable,

say xt, which is a function of a finite sequence of st. For simplicity, suppose xt is observed

every τ periods, i.e. t̄i − t̄i−1 = τ for observation periods {t̄i}Ni=1, and xt̄i is a function of the τ

variables st̄i , ..., st̄i−1+1, which we denote by f in this example.12

In this setting, our framework allows us to use the model of zt and st to derive a likelihood

of θ based on the sample {{zt}Tt=1, {xt̄i}
N
i=1}. In general, this likelihood has the same form as

that in Equation (15), but it features an integral over {st}t̄it=t̄i−1+1
, where the integration domain

is defined by f(st̄i−1+1, ..., st̄i) = xt̄i. This formulation makes maximum likelihood estimation

possible even if the observed data is only a function of the variables of interest.13 If we think

of the f as a statistic of the sample {st}t̄it=t̄i−1+1
, then we can still estimate model parameters

even if only a sample quantile or moment of the relevant model variables are observed.

A common example is time aggregation, where xt̄i = st̄i−1+1 + st̄i−τ+2 + ...+ st̄i, i.e., where

xt is proportional to the empirical mean of a sample of length τ of the s-variable. In Section

3.1, we illustrate how our approach can be used to estimate two long-run risk models by Bansal

and Yaron (2004) and Schorfheide et al. (2018); while those models are defined on the quarterly

level, reliable dividend data necessary to estimate them is only available at the annual level. We

show how the aggregated observed variable corresponds with the disaggregated model variable,

and demonstrate the empirical efficiency of our approach in comparison to the case with full

observability of the model variables.

Example 3 (Censoring with deterministic threshold). Let us consider the well known case of

censored data: Suppose xt is a variable with support R which is only observed if xt < x̄ for some

threshold x̄ ∈ R; otherwise, we only know that xt ≥ x̄. Importantly, non-observation of xt is still

informative as it corresponds to knowing that xt lies above the threshold. Hence, the number of

12The general formulation allows for varying length of the non-observation segment, i.e. observations occur in
periods t = t̄1, ..., t̄N , and a time-dependent functional relation, xt̄i ≡ fi(st̄i−1+1, ..., st̄i).

13The integrand over {st}t̄it=t̄i−1+1 can be interpreted as conditional probability of {st}t̄it=t̄i−1+1 conditional

on xt̄i . Note that maximum likelihood estimation is possible using the characterization of the likelihood above;
however, asymptotic properties can only be derived if the conditional probability of (zt̄i−1+1, st̄i−1+1) conditioned
on (zt̄i−1

, xt̄i−1
) is specified by the model.
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non-observations provides an estimator for how much mass of xt’s probability distribution lies

on the interval [x̄,∞).14 This period-t-information (either from observation or non-observation)

is often formalized by considering the censored variable x∗t which is defined by x∗t ≡ xt if xt < x̄

and x∗t ≡ x̄ otherwise and which is observed in all periods. In contrast, we capture the same

information by the tuple (xt,mt) where the observation variable, mt, associated with xt is given

by

mt =

1, if xt > x̄,

0, otherwise.
(16)

This way, censoring can be formulated in terms of a missing data problem. Notably, we cannot

discard the dependence on xt in the definition of Pm in the case of censoring. As a matter of

fact, Pm is an indicator function and only takes the values 0 or 1, directly depending on whether

xt > x̄ or not. Therefore, the missing data mechanism Pm is MNAR and we need to construct

the likelihood from Proposition 1.1, including Pm.

Our formulation using the tuple (xt,mt) generalizes the censoring intuition: it does not

deterministically impose observability based on a fixed threshold but instead allows observability

to be probabilistic at every value in the support of xt. In this sense, our notion of generalized

censoring is indeed equivalent to the notion of MNAR.

2.3 Recursive formulation of the likelihood function

Proposition 1 provides the general formulation of the likelihood, Equation (15), which accounts

for both MAR and MNAR data. In particular, it abstracts from both cases by introducing a

general notation for the observed variables, yt and the parameter of interest, ψ. In this section,

we show how to efficiently compute this likelihood using the recursive likelihood integration

proposed by Reich (2018).

By a simple induction argument, the example with only one observation from Section 2.1

can be generalized to any observation pattern T̄ ⊆ T for t > 1 by

fψt (x) =



1 t > T∫
P (yt, x̃|yt−1, xt−1;ψ)f

ψ
t+1(x̃)dx̃ t− 1 ∈ T̄ , t /∈ T̄

P (yt, xt|yt−1, x;ψ)f
ψ
t+1(xt) t− 1 /∈ T̄ , t ∈ T̄

P (yt, xt|yt−1, xt−1;ψ)f
ψ
t+1(xt) t− 1 ∈ T̄ , t ∈ T̄∫

P (yt, x̃|yt−1, x;ψ)f
ψ
t+1(x̃)dx̃ otherwise,

(17)

where all indexed variables—i.e., xt, xt−1, yt, and yt−1—denote observations from the dataset,

whereas x and x̃ denote function arguments and integration variables, respectively. Finally, the

14A different notion of “missing” data is described by truncation. However, truncation is fundamentally a
sampling problem, i.e., values outside of the truncated support of xt are inherently never sampled. Opposed
to our setting, it is therefore not possible to obtain any information about the distribution of xt outside the
truncated support.
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complete likelihood function can be evaluated as one of the following:

L(ψ) =

∫
P (y1, x̃;ψ)f

ψ
2 (x̃)dx̃ (18a)

L(ψ) = P (y1, x1;ψ)f
ψ
2 (x1), (18b)

where we distinguish two cases: In Equation (18a) we assume 1 /∈ T̄—that is, the very first

state realization is unobserved; the likelihood thus forms an integral against the stationary

distribution of the unobserved process, P (x;ψ). In Equation (18b) we require 1 ∈ T̄—that is,

the initial state realization is either trivially known or observed.15

The appeal—but also the main problem—of the recursive representation of the likelihood

function in (18) is that it is exact. Theoretically, an evaluation of fψ2 defined according to (17)

would trigger evaluations of fψ3 , which would themselves trigger evaluations of fψ4 , and so on,

up to fψT+1. Moreover, each evaluation at level t triggers potentially multiple evaluations at the

level t+1 due to the integration, resulting in an exponentially growing number of total function

evaluations in T . Therefore, we introduce an approximation operator, a mapping between two

function spaces B and P:
I : B → P, f 7→ f̂, (19)

where the elements of P can be represented by a countable set of parameters, the size of which

is independent of T . This allows us to state an approximation of (17) as follows:

f̂ψt (x) =



1 t > T∫
P (yt, x̃|yt−1, xt−1;ψ)f̂

ψ
t+1(x̃)dx̃ t− 1 ∈ T̄ , t /∈ T̄

P (yt, xt|yt−1, x;ψ)f̂
ψ
t+1(xt) t− 1 /∈ T̄ , t ∈ T̄

P (yt, xt|yt−1, xt−1;ψ)f̂
ψ
t+1(xt) t− 1 ∈ T̄ , t ∈ T̄

I
(∫

P (yt, x̃|yt−1, x;ψ)f̂
ψ
t+1(x̃)dx̃

)
otherwise,

(20)

which now has linear complexity in T . The procedure to actually evaluate f̂ψ2 numerically—

and thus, the likelihood function (18)—critically depends on the nature of the state variable x,

in particular whether it is discrete or continuous. This is not only true for the approximation

operator I, but also for the computation of the integrals in (20). However, the actual procedures

to compute the value of the likelihood function for some parameter value share the same logic,

which is therefore summarized in Algorithm 1 in Online Appendix A.3

In the following, we specialize the likelihood recursion (17) for Markov processes with state

x being continuous—that is, xt ∈ Sx ⊆ R (We do not need to specify the nature of the state

space for y at this point). In the presence of a continuous occasionally observed state, we first

have to compute the integrals by numerical quadrature, and second, we have to approximate

the function fψt (·)—an infinite-dimensional object—by some form of function approximation,

such as interpolation.16

15Note that by setting P (y1, x1;ψ) equal to unity in (18b) we can also calculate the conditional likelihood.
16For the case where x follows a discrete process, the recursion function, fψt (·), becomes a finite vector and

the integral is simply replaced by a sum. Hence, the recursion can be computed exactly (up to the floating-point
arithmetic round-off error).

17

Electronic copy available at: https://ssrn.com/abstract=3638618



We start with the discussion of the integration problems. In order to make a wide range of

quadrature rules applicable, we formulate two assumptions, which are, however, without loss

of generality for the method itself, and their relaxation only limits the choice of the numerical

integration methods. First, suppose the transition probabilities for the model variables and the

observation variables each satisfy a conditional independence relation s.t. we obtain for the

joint probability:

P (yt, xt|yt−1, xt−1) = P (yt|xt)P (xt|yt−1, xt−1).

Second, suppose there exists an invertible and differentiable change of variables ϕ, mapping to

a new variable ∆xt by

xt = ϕ(∆xt, yt−1, xt−1;ψ),

such that

P (ϕ(∆xt, yt−1, xt−1;ψ)|yt−1, xt−1;ψ) = q(∆xt).

A simple but very relevant example is the AR(1) process with ϕ : xt = ρxt−1 +∆xt and ϕ
′ ≡ 1.

Using this change of variables, we can rewrite the integrals in recursion (17) as

fψt (x) =

∫
ϕ(D,yt−1,x;ψ)

P (yt|x̃;ψ)P (x̃|yt−1, x;ψ)f
ψ
t+1(x̃)dx̃ (21)

=

∫
D
P (yt|ϕ(∆x̃, yt−1, x;ψ);ψ)ϕ

′(∆x̃, yt−1, x;ψ)

· q(∆x̃)fψt+1(ϕ(∆x̃, yt−1, x;ψ))d∆x̃,

(22)

which allows the application of a wide range of quadrature rules of the following form: Consider

an integrand h : D → R, a non-negative bounded weighting function q : D → [0, a], and a set of

nodes and weights {(ci, wi)}N
Q

i=1 with

∫
D
h(x̃)q(x̃)dx̃ =

NQ∑
j=1

wjh(cj) + ϵQ, (23)

such that the approximation error ϵQ is minimized in some sense. For example, for Gauss-

type weighting functions, Gauss–Hermite quadrature approximates integrals of the form (23)

accurately if the corresponding integrand h is sufficiently smooth (and can thus be approximated

well by a polynomial). Therefore, we approximate the integral in the recursive definition (22)

by
NQ∑
j=1

wjP (yt|ϕ(cj , yt−1, x;ψ);ψ)ϕ
′(cj , yt−1, x;ψ)f

ψ
t+1(ϕ(cj , yt−1, x;ψ)), (24)

where the weighting function q(·) is now captured in the weights wj according to the specific

quadrature rule.

We now turn our attention to the approximation of the function object fψ itself. As we have

argued above, this is necessary because otherwise the recursion would trigger a tree of function

evaluations that grows exponentially in T at worst. Even when using an approximation of the

integral as in (24), we are required to evaluate fψt (x) at the transformed quadrature nodes
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ϕ(cj , yt−1, xt−1;ψ), which do, however, depend on t and thus keep changing over the course of

the recursion. Consequently, we want to find a representation of fψt , say f̂
ψ
t , that (i) can be

obtained through finitely many evaluations of fψt , and (ii) does not require the evaluation of

fψs , or f̂
ψ
s , for s > t+ 1.

Following Reich (2018), we further specialize the approximation operator I defined in (19) to

create an interpolant based on finitely many evaluations of fψ.17 Consider a grid of interpolation

nodes {gj}N
I

j=1 ∈ SN
I
. Then,

Î : RN
I

+ → P, {fψ(gj)}N
I

j=1 7→ f̂ψ, (25)

where f̂ψ is an object from a function space with finite-dimensional representation, P, and is

typically obtained by solving a system of equations on the set of interpolation nodes, {gj}N
I

j=1,

such that ∀gj : f̂ψ(gj) = fψ(gj). Moreover, some interpolation schemes impose further restric-

tions on the derivatives of the interpolant (e.g., splines for continuous higher-order derivatives of

the interpolant, or Hermite interpolation to fit derivatives of the original function). Obviously,

this approximation step introduces a second source of error: ϵI = ∥fψ − f̂ψ∥.18

By combining the numerical approaches for integration and function approximation defined

above, recursion (20) can be implemented for continuous occasionally observed states as

f̂ψt (x) =



1 t > T∑NQ

j=1 wjP (yt|ϕ(cj , yt−1, xt−1;ψ);ψ)

· ϕ′(cj , yt−1, xt−1;ψ)f̂
ψ
t+1(ϕ(cj , yt−1, xt−1;ψ))

t− 1 ∈ T̄ , t /∈ T̄

P (yt|xt;ψ)P (xt|yt−1, x;ψ)f̂
ψ
t+1(xt) t− 1 /∈ T̄ , t ∈ T̄

P (yt|xt;ψ)P (xt|yt−1, xt−1;ψ)f̂
ψ
t+1(xt) t− 1 ∈ T̄ , t ∈ T̄

Î
({∑NQ

j=1 wjP (yt|ϕ(cj , gi, yt−1;ψ);ψ)

· ϕ′(cj , gi, yt−1;ψ)f̂
ψ
t+1(ϕ(cj , gi, yt−1;ψ))

}NI

i=1

) otherwise.

(26)

The final, approximated likelihood for the continuous case, which depends on whether x1 is

observed or not, reads

L̃(ψ) =

NQ∑
j=1

w̄jP (y1|ϕ1(c̄j ;ψ);ψ)ϕ′1(c̄j ;ψ)f̂
ψ
2 (ϕ1(c̄j ;ψ)) (27a)

L̃(ψ) = P (y1|x1;ψ)P (x1;ψ)f̂ψ2 (x1), (27b)

where ϕ1 is the corresponding change of variables for the stationary distribution of xt, P (x1;ψ),

and {(c̄j , w̄j)}N
Q

i=1 are the respective quadrature nodes and weights.

We conclude this subsection with some remarks on practicalities and alternatives: First,

17Regression approaches that minimize a loss function are equally applicable, in particular in higher-dimensional
contexts.

18Note that the individual interpolation and quadrature errors, ϵI and ϵQ, respectively, are only the one-step
approximation errors, which potentially magnify throughout the recursion. Reich (2018), however, provides a
rigorous error and convergence analysis. In particular, the author finds that the error grows only linearly in T ,
and that the overall convergence rate is half as good as the smaller of the respective interpolation and quadrature
schemes. Note that this potentially allows for exponential convergence.
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the procedure outlined above is not spared from the usual issues related to floating point arith-

metic, over- and under-flow in particular. Therefore, we discuss implementation-related aspects

in Appendix A.3, together with a pseudo-code description of the algorithm (Algorithm 1). More-

over, we give a very concise—and yet fully functional—MATLAB implementation for x from a

continuous state space in Appendix A.4.

Our second remark concerns the application of (forward) simulation to approximate the

integral in Equation (3), which is a popular procedure due to its wide applicability to many

integration problems. For example, using the GHK sampler (seen as an importance sampling

device, as due to Keane, 1994) one can efficiently simulate an unobserved, serially correlated

process even in the presence of observations of other, dependent variables, such as realized

choices in a discrete choice model (under appropriate distributional assumptions on the process

itself). However, while occasionally observed processes can theoretically be forward-simulated,

direct implementations tend to be highly inefficient: Consider again the case with exactly one

observation at t̄ > 1 and some (known) initial value x0. All forward simulation procedures

that we are aware of are inherently one-sided, because the simulated value xit for any variable xt

conditions either on the previous observation xt−1, if t = 1, or the previous simulated value xit−1.

Then, sample sequences {xit}t̄−1
t=1 are generated by applying the forward simulation mechanism

t̄− 1 times. Note that all sequences obtained like this incorporate solely the data at t = 0, but

not the information available at t = t̄. Nevertheless, in order to utilize the simulated sequences

for computation of the integral in (3) we do need to incorporate the information inherent in

xt̄. Therefore, we need to weight the sequences by the conditional probabilities P (xt̄|xit̄−1; θ),

which are known from the model. However, these probabilities can become arbitrarily small,

as the sample path—and in particular the final element xt̄−1—is generated without specifically

“targeting” the observed value xt̄ in the t̄-th period.

2.4 Large sample properties of the approximate likelihood estimator

We now provide a brief discussion of the statistical properties of our likelihood estimator which

are formally treated in Gilch et al. (2025). In the previous section, we have defined two likeli-

hood functions: the exact likelihood L in Equation (15), and the approximated likelihood L̃ in

equation (27). Although they both admit estimators of the parameter of interest ψ, namely

ψ̂ = argmax
ψ∈Ψ

L(ψ)

and

ψ̃ = argmax
ψ∈Ψ

L̃(ψ),

respectively, only ψ̃ is computationally feasible, since we cannot evaluate the exact likelihood

L in general.

The main requirement for proving asymptotic properties of ψ̃ is the consistency and asymp-

totic normality of the exact maximum likelihood estimator ψ̂ itself. In the case of full state

observations (as in equation (1)), these properties are verified for ψ̂ by taking the logarithm

of the likelihood, granting a sum of log-probabilities and allowing the application of the law
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of large numbers and the central limit theorem. This approach is not directly applicable for

integrated likelihoods such as (2) because the integral over the unobserved states disallows the

log-transformation of the likelihood-product into the loglikelihood-sum.

Yet, as Gilch et al. (2025) show, in contrast to the case of never observed states as in Reich

(2018), the availability of occasional observations allows to split up the integral. Gilch et al.

(2025) use this decomposition to facilitate a loglikelihood approach and prove consistency and

asymptotic normality of ψ̂. Besides standard assumptions on stationarity and ergodicity of the

Markov process, they only require an assumption about the frequency of observations of xt for

their proof.19

However, note that we generally have ψ̂ ̸= ψ̃. This is because numerical approximation of the

likelihood is not only a subject of interest for computational methods, but also affects statistical

properties of the resulting maximum likelihood estimator. This is because the approximation

introduces an error to the objective function of the underlying maximization problem—and

thus the corresponding maximizer, too. Therefore, the large sample properties of the estimator,

i.e., its consistency and asymptotic normality, which are the basis for inference about ψ, are

potentially affected by the approximation scheme.20 Gilch et al. (2025) provide a full set of

proofs to show consistency and asymptotic normality of the approximated estimator, ψ̃ based

on similar methods as developed by Griebel et al. (2019).

3 Applications

In this section, we demonstrate the applicability our method as well as its favorable properties in

various examples. In Section 3.1, we use it to estimate two prominent finance applications: First,

we apply it to the long-run risk model of Bansal and Yaron (2004), which includes persistent

changes in consumption and dividend growth. The model is conditionally Gaussian and features

linear state dynamics. Second, we use a model with stochastic volatility as in Schorfheide et al.

(2018), which adds non-linear dynamics to consumption and dividend growth. Both models

feature one fully unobserved and one occasionally observed process. We show that our method

can identify all model parameters even in small data samples, and we provide evidence for the

asymptotic normality of our RLI estimator. Furthermore, we demonstrate that our approach

can be significantly more efficient than conventional approaches such as simulated method of

moments, in particular in the presence of non-linearities, and for short data set time windows.

In Section 3.2, we consider an application featuring a controlled Markov process. In particular,

we estimate a variant of the optimal replacement of GMC bus engines model by Rust (1987), for

which we observe only a subset of the state variables over time. We show that our estimator with

19Note that the assumption regarding frequency of observations requires regular complete observations, i.e.
the entire state vector is observed after finite time. For that for two of the applications we present below, the
long-run risk and the stochastic volatility model, this property is not satisfied because they have permanently
unobserved states. For the modified bus engine replacement model it is satisfied because the mileage-state is
observed every time the engine is replaced.

20Note that we consider deterministic and not stochastic algorithms for the approximation of L: While there is
a large literature on simulated maximum likelihood, this literature is not applicable for numerical approximation
because its approximation nodes are chosen deterministically. Hence, it is necessary to make use of the known
approximation error formulas whereas for simulation methods often the Delta-method and a central limit theorem
can be applied.
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occasionally observed states is barely less efficient for identifying some key model parameters

than the estimator with full state observations in this application, despite the fact that it uses

significantly less state data.

3.1 Long-run risk and stochastic volatility models with time-aggregated ob-

servations

This section demonstrates the favorable properties and the broad applicability of our approach,

using two prominent finance applications: the long-run risk models of Bansal and Yaron (2004)

and Schorfheide et al. (2018). Bansal and Yaron (2004) propose a model where consumption

and dividend growth are driven by a small but persistent, unobservable component, which can

help explain a large number of asset pricing puzzles (see, for example, Hansen et al., 2008;

Bollerslev et al., 2009; Drechsler and Yaron, 2011; Bansal et al., 2012; Bansal and Shaliastovich,

2013). Further, they add stochastic volatility to the model to generate time variation in risk pre-

mia. Estimating long-run risk models has proven difficult due to the unobserved and persistent

nature of the state variables. Difficulties arise, for example, due to data scarcity caused by rela-

tively short observation horizons and to different frequencies of the observable data: Aggregate

consumption data for the US is available at a quarterly frequency starting in 1947, which yields

around 294 observations as of now. Aggregate dividend data is available on a monthly basis

and goes back to the 1920s. However, monthly and quarterly dividends show strong seasonality

patterns, which explains why researchers have relied on smoothing methods (see, for example,

Grammig and Küchlin, 2018; Schorfheide et al., 2018), which can, in turn, bias the estimation.

Hence, while we have reliable, unmodified quarterly data for consumption, only annual data of

the same quality is available for dividends.21 This results in a rather small dataset with, as

we show below, an occasional observation pattern due to these mixed data frequencies. In the

following, we show how the RLI approach can be used to estimate long-run risk models with

occasionally observed and unobserved states.

3.1.1 Model dynamics

We consider two model variants to compare the performance of our estimation approach. First,

we use the standard model of Bansal and Yaron (2004, Case 1, without stochastic volatility),

where log aggregate consumption growth, ∆ct, and log aggregate dividend growth, ∆dt are

given by

∆ct = µc + xt + σcηc,t

xt = ρxxt−1 + σxηx,t

∆dt = µd +Φxt + σdηd,t,

(28)

with η·,t ∼ N(0, 1) i.i.d.22 The key feature of the long-run risk model is that there are small but

highly persistent shifts in the growth rate of consumption and dividends, which are captured by

21For consumption, monthly data is available starting in the 1960s. This data is, however, artificially smoothed
as the observed data is only available at a quarterly frequency; see Schorfheide et al. (2018).

22Note that the original model of Bansal and Yaron (2004) assumes that ∆ct depends on xt−1 instead of on xt.
This does not, however, influence our estimation results, but following the original notation would significantly
complicate the notation of the likelihood.
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xt. In this model, all shocks are normally distributed and enter the model equations linearly.

This clearly allows highly efficient estimation also by moment-based methods.

As a second example, we use a stochastic volatility model as in Bansal and Yaron (2004,

Case 2). Bansal and Yaron (2004) model the variance as an AR(1) process, which has the

strong disadvantage that the variance can become negative. Therefore, Schorfheide et al. (2018)

propose a model where volatility dynamics follow a log-normal distribution. We follow this

approach and use for the second model the following consumption and dividend dynamics:

∆ct = µc + σce
htηc,t

ht = ρhht−1 + σhηh,t

∆dt = µd + ϕdσce
htηd,t

(29)

with η·,t ∼ N(0, 1) i.i.d. Note that volatility dynamics enter consumption and dividends non-

linearly, which makes the estimation of the model more challenging. In the following, we describe

how the models can be estimated using recursive likelihood integration.

3.1.2 Time aggregation as occasional state observations

As already indicated, the data available to estimate the model is limited. While consumption

data is observed quarterly, dividend data at the same frequency shows strong seasonalities,

which processes (28) and (29) can not account for. Hence, only annual dividend data can be

used in its original form for the estimation.

A full observation regime can be characterized by a quarterly time index set T ≡ {1, . . . , T}
where the data is given by {∆ct,∆dt}Tt=1. As the econometrician can only rely on annual

dividend data, but the model uses dividend growth in quarterly terms, we obtain an occasional

observation regime in the following way: Let us define the time index set T̄ ≡ {t ∈ T : t

mod 4 = 0} (with T ∈ T̄ for notational simplicity); for example, if index 1 represents quarter 1

in year 1, T̄ would contain the indices of all 4th quarters over the years. Along these lines, we

assume that the sum over quarterly dividend growth (i.e., annual dividend growth) is observed

at the end of each year—so, in quarter 4.

Furthermore, we define the time-aggregated dividend state ∆Dt for the long-run risk model

(28) by

∆Dt =

µd +Φxt + σdηd,t t+ 3 ∈ T̄

∆Dt−1 + µd +Φxt + σdηd,t otherwise.

At the same time, the time-aggregated dividend state ∆Dt for the stochastic volatility model

(29) reads

∆Dt =

µd + ϕdσce
htηd,t t+ 3 ∈ T̄

∆Dt−1 + µd + ϕdσce
htηd,t otherwise.

The available data in the occasionally observed regime is then given by

{{∆ct}t∈T , {∆Dt}t∈T̄ } for each model. Note that the states xt and ht are unobserved

in both the full and the occasional observation regime in the respective models, while the state

∆Dt, which captures the sum over dividend growth within a year, is only observed every fourth
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quarter in the occasional observation regime.

3.1.3 The likelihood function

We begin with the likelihood in the “full information” regime—that is, with consumption and

dividend observations at the same frequency; note that the states xt in the long-run risk model

(28) and ht in the stochastic volatility model (29) are still (completely) unobserved. Denote

by θ the vector of model parameters, which is given by θ ≡ (µc, σc, ρx, σx, µd,Φ, σd) for the

long-run risk model and θ ≡ (µc, σc, ρh, σh, µd, ϕd) for the stochastic volatility model. Since the

likelihoods of the two models have a very similar structure, we denote the underlying completely

unobserved states, xt and ht, respectively, by st in the following, and complement it with a tilde

if it constitutes an integration variable. For full consumption and dividend data {∆ct,∆dt}Tt=1,

the likelihood is given by

L(θ) =

∫
· · ·
∫
p(s̃1; θ)p(∆c1|s̃1; θ)p(∆d1|s̃1; θ)

·
T∏
t=2

p(∆ct|s̃t; θ)p(∆dt|s̃t; θ)p(s̃t|s̃t−1; θ) d(s̃1, . . . , s̃T ) .

Note that we still need to integrate out the fully unobserved state st, representing either xt or

ht, depending on which model is estimated.

In the occasional observation regime, where dividends are only observed annually and in

an aggregated form, the available data is given by {{∆ct}t∈T , {∆Dt}t∈T̄ }. Hence, ∆D̃t is

integrated out for t ∈ T \ T̄ , and ∆Dt is taken from the dataset otherwise (t ∈ T̄ ). This creates
a nonstandard domain of integration—indeed, a lower-dimensional sub-manifold of RT—

D ≡

{
(∆d1, . . . ,∆dT ) ∈ RT :

3∑
i=0

∆dt−i = ∆Dt, t ∈ T̄

}
,

for the likelihood function,

L(θ) =

∫
· · ·
∫
RT×D

T∏
t=1

p(∆ct|s̃t; θ)

· p(∆d̃t|s̃t; θ)p(s̃t|s̃t−1; θ)dS((∆d̃t)t∈T ) d(s̃t)t∈T .

Note that we slightly abuse notation and write the stationary distribution of s as p(s1|s0; θ) ≡
p(s1; θ) for brevity. Moreover, note that the data on dividend growth enters the likelihood

function only through the domain of integration in this formulation. Finally, since the integra-

tion is carried out over a (3T/4)-dimensional sub-manifold, we need to introduce—for now just

symbolically—the (3T/4)-dimensional “surface element,” S(x), for the integration to be well

defined; otherwise, the integration domain would be a set of measure zero.

Due to the special structure of D, we can carry out a simple change of variables, implying

dS((∆d̃t)t∈T ) = d3T/4
(
∆D̃t

)
t∈T \T̄

,

24

Electronic copy available at: https://ssrn.com/abstract=3638618



and write the likelihood function as an integral over a standard domain:

L(θ) =

∫
· · ·
∫
RT+3T/4

∏
t∈T̄

p(∆ct−3|s̃t−3; θ)p(∆D̃t−3|s̃t−3; θ)p(s̃t−3|s̃t−4; θ)

· p(∆ct−2|s̃t−2; θ)p(∆D̃t−2|∆D̃t−3, s̃t−2; θ)p(s̃t−2|s̃t−3; θ)

· p(∆ct−1|s̃t−1; θ)p(∆D̃t−1|∆D̃t−2, s̃t−1; θ)p(s̃t−1|s̃t−2; θ)

· p(∆ct|s̃t; θ)p(∆Dt|∆D̃t−1, s̃t; θ)p(s̃t|s̃t−1; θ) d
(
∆D̃t

)
t∈T \T̄

d(s̃t)t∈T .

To cast it recursively as in Equation (17), we directly incorporate another change of variables

to express the distribution of ∆Dt (conditional on ∆Dt−1) by the distribution of ∆dt:

fθt (s,∆D) =



1 t > T∫
p(∆ct|s̃; θ)p(∆Dt|∆D, s̃; θ)p(s̃|s; θ)

· fθt+1(s̃,∆Dt)ds̃
t ∈ T̄∫∫

p(∆ct|s̃; θ)p(∆d̃|s̃; θ)p(s̃|s; θ)

· fθt+1(s̃,∆d̃)d∆d̃ds̃
t+ 3 ∈ T̄∫∫

p(∆ct|s̃; θ)p(∆d̃|s̃; θ)p(s̃|s; θ)

· fθt+1(s̃,∆D +∆d̃)d∆d̃ds̃
otherwise.

(30)

Note that this formulation renders standard Gauss–Hermite quadrature applicable.

Finally, recall that we assumed t = 4 to be the first observation of the aggregate state ∆D;

therefore, the unconditional likelihood is given by

L(θ) =

∫∫
p(∆c1|s̃1; θ)p(∆d̃1|s̃1; θ)p(s̃1; θ)fθ2 (s̃1,∆d̃1)d∆d̃1ds̃1. (31)

Depending on the concrete distribution of s and ∆d, we can choose adequate changes of variables

to make efficient quadrature rules applicable in (30) and (31); we comment on our strategy for

the numerical approximation in the next subsection.

3.1.4 Results: Monte Carlo study

We conduct an extensive Monte Carlo estimation study to demonstrate the high efficiency of

our RLI approach for estimating the consumption and dividend dynamics (28) and (29), respec-

tively, with quarterly consumption and annual dividend data. We compare the RLI approach

to the simulated method of moments (SMM) approach for occasional state observations intro-

duced by Hall and Rust (2021). To compare the asymptotic behavior of the methods in this

example, we consider simulated datasets with sample lengths of 50, 100, 200, 400, and 800

years, respectively—so T ∈ {200, 400, 800, 1600, 3200} quarters. Note that quarterly consump-

tion data starts in 1947 so there are only 294 observations available as of now, which makes

around 74 years of data. For each T we simulate N = 400 datasets using the monthly calibra-

tion of Bansal and Yaron (2004) scaled to a quarterly frequency.23 The parameters used for the

23To compute quarterly from monthly parameters, means are multiplied by 3, standard deviations by
√
3, and

the persistence is taken to the power of 3. Bansal and Yaron (2004) use a linearized version for the stochastic
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simulation are reported in Table 1, and we refer to the vector of all parameters of the model as

θ throughout this section.

Long-Run Risk Model (28)

µc σc ρx σx µd Φ σd

0.0045 0.0135 0.9383 0.0010 0.0045 3 0.1053

Stochastic Volatility Model (29)

µc σc ρh σh µd ϕd

0.0045 0.0135 0.9615 0.0109 0.0045 4.5

Table 1: Parameter calibrations for the asset pricing models (28) and (29) used in the Monte
Carlo study. The values are based on the monthly calibration of Bansal and Yaron (2004),
adjusted to a quarterly frequency.

For the RLI approach, we use cubic spline interpolation with 50 nodes in each dimension,

and compute the integrals by Gauss–Hermite quadrature with 11 nodes per dimension. We

compare the results to the SMM estimator for endogenously sampled data by Hall and Rust

(2021) using the following parametrization: for the HAC weighting matrix we use
⌊

5
√
T
⌉
lags,

where ⌊·⌉ denotes the rounding operator (rounding to the closest integer). We employ the

following moments for both consumption and dividend data: for the long-run risk model (28),

we use the first and second non-central moments, autocorrelations up to order 10, as well as

the cross-correlation between consumption and dividend growth. For the stochastic volatility

model, we additionally use the third, fourth, fifth, and sixth non-central moments to account

for higher-order effects and for autocorrelations up to order 10.24 All computations are carried

out in MATLAB.25

For the assessment and comparison of the different estimation methods, we use the Maha-

lanobis distance. The Mahalanobis distance DM is defined as

DM (θ̂; θ,Σ) ≡
√

(θ̂ − θ)Σ−1(θ̂ − θ)T , (32)

and measures the distance between the vector θ̂ and a distribution with mean θ and covariance

matrix Σ. Since the Mahalanobis distance corrects for the variance of the estimators, it not

only normalizes the size of the parameters, it also takes into account how well a parameter is

identified relative to the other parameters for some reference method used to estimate Σ, and

thus allows meaningful comparisons of the properties of the methods in question, and not just

volatility process, which has the disadvantage of allowing negative variances. To obtain the parameters for the
exponential process, we use σh = σs/(2σ

2
c ) where σs is the volatility of the linearized process; see Schorfheide

et al. (2018).
24We have tried different numbers of autocorrelations and lags for the HAC weighting matrix; the specification

reported here is the one that yields the lowest errors. We also used the Lasso GMM approach by Cheng and Liao
(2015) to automatically select the relevant moments. The results are reported in Appendix B.1. We show that
our findings are robust with regard to the specific selection of moments and, in particular, using the Lasso GMM
approach does not change the conclusions we draw regarding the comparison of the SMM and RLI estimator.
We thank an anonymous referee for suggesting this additional robustness check.

25We discard all runs that do not converge. For RLI we have that in most cases, all runs or all but one run
converge and we get a maximum of 1% non-converged runs, see Table 2 in Appendix B.1. We get similar numbers
for SMM with a maximum of 1.25% non-converged runs.
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properties of the model or the dataset. Furthermore, we use the Mahalanobis distance in Q–Q

plots to analyze the asymptotic normality of our estimators.

Figure 1 plots the median of the Mahalanobis distances over the 400 simulated datasets

for different dataset lengths.26 The Mahalanobis distance (32) for each estimate θ̂ is computed

using the true parameter vector θ; as an estimate of Σ, we use the covariance matrix of θ̂

obtained from RLI under the full information regime and the longest dataset, of 800 years; the

same Σ is used for both SMM and RLI to make the results comparable. Red lines depict the

results for RLI and black lines those for SMM, while dashed lines denote the full observation

regime and solid lines the occasional observation regime. Panel (a) shows the results for the

long-run risk model (28) and panel (b) those for the stochastic volatility model (29).
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(a) Long-Run Risk Model (28)
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(b) Stochastic Volatility Model (29)

Figure 1: Median of the Mahalanobis distance over 400 simulated datasets as a function of
dataset length in years, using RLI (red lines) and SMM (black lines) under the full observation
regime (dashed lines) and the occasional observation regime (solid lines). The dashed blue line
shows the number of observations in the real consumption and dividend dataset. Panel (a)
shows the results for the long-run risk model (28) and panel (b) for the stochastic volatility
model (29).

We observe that for each model the errors for RLI with occasional state observations decrease

with the size of the dataset, showing the consistency of our method. Moreover, in each model

the errors for RLI in the occasional observation regime are only slightly larger than those in

the full information case, although there are four times as many observations of the aggregate

dividend process available in the full information case compared to the occasional observation

regime.

The errors for SMM in the occasional observation regime also converge for large datasets.

However, for small datasets the errors are significantly larger than those of the RLI estimator:

approximately 3–4 times as many data points are needed for SMM to achieve the same accuracy

as RLI in the occasional observation regime. For the stochastic volatility model, where the

state process enters the consumption and dividend dynamics non-linearly, the evidence for the

consistency of the SMM estimator in the occasional observation regime is much weaker—a point

we investigate in detail below. We observe a large difference for SMM between the full and the

occasional observation regime, which shows that the missing state observations significantly

26In Figure 11 in Appendix B.1 we plot kernel densities of the Mahalanobis distance which show its full
distribution instead of only the median. The kernel density plots show the same patterns as the median and
hence we focus on the median in the main text which allows for easier interpretation.
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affect the estimation outcomes. The difference is considerably smaller for RLI, which suggests

that it can handle the missing state observations more efficiently. Furthermore, the errors for

RLI under the occasional observation regime are significantly smaller than the errors for SMM

under the occasional information regime, and approximately 5 times as many data points are

needed for SMM to achieve the same accuracy as RLI in the occasional observation regime.

In the following, we analyze in detail where the differences between the methods come from.

For this, we first analyze the joint normality of the estimators using Q-Q plots; second, we look

at kernel density plots to analyze in which dimensions the methods fail to estimate different

parameters. Figure 2 shows Q-Q plots of the roots of the χ2 quantiles with seven degrees of

freedom against sample quantiles of the Mahalanobis distance of the estimates for the long-run

risk model (28). Note that in contrast to the analysis of Figure 1, which measures the deviation

of estimates from the true value of the parameter—projected to a single dimension via the

Mahalanobis distance based on a common weighting matrix—the analysis of the distribution

of the estimators and their comparison to a theoretical benchmark requires us to obtain an

estimate of Σ for each sample size T and each method separately. Therefore, we use the

empirical covariance matrix Σ̂ obtained from the respective 400 Monte-Carlo samples with

length T for the corresponding method.27 Our Q-Q plots can be interpreted as follows: Any

shift of the distribution away from the 45 degree line corresponds to a bias in the estimate,

whereas any rotation centered at zero corresponds to a different covariance matrix. One or

more crossings of the 45 degree line (i.e., s-shapes, u-shapes, etc.) implies a different skewness

or kurtosis and, hence, non-normality. From visual inspection, we find strong evidence that the

RLI estimator asymptotically approaches normality in the occasional observation regime, and

that the convergence appears to be almost as fast as in the full observation case. While SMM

shows some s-shaping for small samples, we also cannot reject asymptotic normality; this does

not come as a surprise given the linear and conditional Gaussian structure of the model.

Figure 3 shows the corresponding Q-Q plots for the stochastic volatility model (29). For RLI

in the occasional observation regime, we observe some s-shaping, which most likely comes from

the skewness induced by the natural bound of ρh at 1, as we argue below using individual kernel

density plots. As in the long-run risk model, RLI approaches normality almost as quickly in the

occasional observation regime as in the full information case. In contrast, for SMM we observe

substantial deviations from the 45 degree line and hence find evidence against the normality of

the estimators. Note that as the points are almost linear and close to cutting the origin, the

deviations could also suggest a failure in the estimation of the covariance matrix, which can, for

example, happen when the distribution is essentially flat in some dimensions. We find evidence

for this hypothesis by looking, in the following analysis, at kernel densities.

In the following we analyze kernel density plots for individual parameters. We consider

one parameter of the unobserved process and one of the occasionally observed process. Kernel

densities for all parameters can be found in Appendix B.1. Figure 4 shows the kernel densities

for the persistence ρx of the unobserved process in the long-run risk model. The distributions for

27To minimize the impact of outliers introduced by the Monte Carlo approach when estimating Σ, we drop
the 2% of runs with the largest Mahalanobis distance. Note, however, that we only exclude them from the
estimation of the covariance matrix, but not from the samples used to obtain the Q-Q plots. Therefore, the plots
are expressive and the conclusions are robust even in the presence of outliers.
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Figure 2: Q-Q plots of the roots of χ2 quantiles with seven degrees of freedom against sample
quantiles of the Mahalanobis distance of the estimates. Results are shown for the long-run risk
model (28) using either RLI or SMM in the full or occasional observation regime.

RLI in the occasional observation regime are approaching bell shapes and have modes close to the

true parameter value. The distributions are very similar to those in the full information regime.

For SMM, the distributions are also bell shaped but with significantly higher variance, which is

consistent with the higher errors reported in Figure 1. Figure 5 shows the corresponding kernel

densities for the volatility σd of the (occasionally) observed dividend process. As expected, the

densities for the occasional observation regime show a slightly larger variance compared to those

of the full information case. This holds for both RLI and SMM. However, for small datasets

SMM shows a large bias especially in the occasional observation regime, which is reflected in

the larger errors for small datasets, see Figure 1.

Figure 6 shows kernel densities for the persistence ρh of the unobserved process in the

stochastic volatility model. Convergence for RLI is slower than for the distributions in the long-

run risk model, which reflects the complexity of the non-linear volatility dynamics; but even

in the occasional observation regime the distributions approach bell shape with modes close to

the true parameter. This departure from normality, partially due to the boundedness of the ρh

parameter, explains the deviation from the 45 degree line reported in Figure 3.

In contrast, SMM experiences substantial problems in identifying the key model parameters.
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Figure 3: Q-Q plots of the roots of χ2 quantiles with six degrees of freedom against sample
quantiles of the Mahalanobis distance of the estimates. Results are shown for the stochastic
volatility model (29) using either RLI or SMM in the full or occasional observation regime.

For both the full information regime and the occasional observation regime the kernel densities

for ρh are almost flat. SMM is not able to identify the persistence ρh; σh is not well identified

either (see Figure 13 in Appendix B.1). These findings are in line with Grammig and Küchlin

(2018), who argue that SMM is not able to identify the parameters of the unobserved stochastic

volatility process. We attribute this to a failure to properly estimate the covariance matrix

reflected in the flat kernel densities. This explains the deviation in the Q–Q plots (see Figure 3)

as well as the larger and maybe even non-converging errors reported in Figure 1. Importantly,

this holds for both the full information and the occasional information regime and hence is a

feature of the SMM estimator itself rather than its restriction to occasional observations.

Figure 7 shows the kernel densities for the volatility ϕd of the (occasionally) observed divi-

dend process. In line with the findings for the long-run risk model, densities for RLI under the

occasional observation regime show a slightly larger variance compared to those under the full

information case. Furthermore, SMM shows a large bias in the occasional observation regime

due to the availability of less data for the dividend process. This bias adds to the deviation

from the 45 degree line in the Q–Q plots reported in Figure 3. For completeness, Figures 12

and 13 in Appendix B.1 plot kernel densities for all model parameters for the long-run risk
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Figure 4: Kernel density estimates for ρx for the long-run risk model (28) using RLI (top panels)
and SMM (bottom panels) under the full observation regime (left panels) and the occasional
observation regime (right panels) for 400 simulated datasets. The color map from yellow to red
show results for 50, 100, 200, 400, and 800 years.

and the stochastic volatility model, respectively. We find that RLI yields at least as efficient,

and in many cases more efficient, estimates for each parameter individually compared to SMM.

Moreover, with few exceptions RLI with occasional state observations is even more efficient

than SMM under the full information regime.

To conclude, we find that our RLI estimator for occasionally observed data consistently

identifies all model parameters, even for the non-linear and more complex stochastic volatility

model. Furthermore, there is no strong evidence against the normality of our estimator even

for very small data samples, and the difference in the errors between the full information and

occasional information regime decreases with the sample size. The performance of SMM is com-

parable with RLI for the simple and linear long-run risk model. It fails, however, in estimating

the key parameters of the stochastic volatility model. This problem is specific to SMM and

does not depend on the observation pattern of the dividend process. This showcases another

important aspect of our RLI approach: the broad applicability of a likelihood-based estimation

approach.

We conclude this section with a few of remarks regarding other aspects of the comparison

of RLI and SMM, aspects that we have not touched on thus far: First and foremost, the RLI

approach is only applicable if the likelihood function can be specified in a non-degenerate way.

This requires a specification of—and data on—individual behavior as well as rich enough error

terms, which are not always available. For example, the steel trading application considered
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Figure 5: Kernel density estimates for σd for the long-run risk model (28) using RLI (top panels)
and SMM (bottom panels) under the full observation regime (left panels) and the occasional
observation regime (right panels) for 400 simulated datasets. The color map from yellow to red
show results for 50, 100, 200, 400, and 800 years.

by Hall and Rust (2021) would induce a degenerate likelihood function, which is non-zero

only on a set of measure zero, and thus can not be estimated using RLI; rather, it requires a

more generally applicable approach such as SMM. On the other hand, if a (non-degenerate)

likelihood function is available, the RLI approach has less “degrees of freedom”—or method-

related parameters—and is thus easier to configure from the viewpoint of the researcher: while

SMM requires an explicit choice of moments (HAC bandwidth, etc.) and thus potentially

significant experimentation and optimization effort, the use of RLI only requires the—mostly

straightforward—configuration of the numerical methods for integration and interpolation, for

which Reich (2018) provides useful guidelines directly based on the convergence rates of the

respective methods. Finally, the fact that the objective function in SMM is subject to simulation

noise requires special attention in order to avoid the moment criterion minimization getting

stuck in noise-induced local optima; see Hall and Rust (2021), and the references cited therein,

for various mitigation strategies.

3.2 The optimal replacement of GMC bus engines (Rust, 1987)

To assess the performance of our method for the estimation of a controlled Markov process with

occasional state observations, we apply it to a hypothetical scenario of the well-understood

bus engine replacement model of Rust (1987): we assume that the main state variable of the
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Figure 6: Kernel density estimates for ρh for the stochastic volatility model (29) using RLI (top
panels) as well as SMM (bottom panels) under the full observation regime (left panels) and the
occasional observation regime (right panels) for 400 simulated datasets. The color map from
yellow to red show results for 50, 100, 200, 400, and 800 years.

model—the mileage a bus has traveled since its engine was last replaced—is only observed

when a particular action takes place; namely engine replacement. To assess the properties of

the resulting estimator, we conduct a Monte Carlo simulation study to compare the distribution

of the estimators under the full and the occasional observation regimes. To demonstrate the

feasibility, the flexibility, and both the statistical and the numerical efficiency of our approach,

we use a modified version of the model, featuring a continuous mileage state. We find that

the estimator for the parameters of interest under occasionally observed states is, in essence, as

efficient as the estimator under full state observations, although it uses only around 2% of the

available state data.

3.2.1 Rust (1987) with continuous mileage state

In this canonical dynamic discrete choice model, Harold Zurcher, the manager of a fleet of public

transportation buses, faces a dynamic renewal problem: On a regular basis, he inspects all the

buses of his fleet. He can decide to fully overhaul a bus, which, most importantly, implies the

renewal of its engine; such a bus counts as new and its odometer is reset to zero. Or he can

do only the regular maintenance work necessary to keep the bus in service; this option usually

comes at lower immediate costs compared to engine replacement, but costs increase with the

mileage driven since the vehicle was last fully overhauled. This models a common trade-off—
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Figure 7: Kernel density estimates for ϕd for the stochastic volatility model (29) using RLI (top
panel) as well as SMM (bottom panel) under the full observation regime (left panel) and the
occasional observation regime (right panel) for 400 simulated datasets. The color map from
yellow to red show results for 50, 100, 200, 400 and 800 years.

namely, whether or not to further invest in an old machine to keep it in service, as opposed to

replacing it by a new one to reduce future (expected) maintenance costs.

Formally, the agent faces the immediate utility function

u(x, i; θ1, RC) + ϵ(i) ≡

−RC + ϵ(1) i = 1

−0.001 · θ1 · x+ ϵ(0) i = 0

for each individual bus, where x is the current mileage (i.e., odometer reading) of the bus, i is

the decision of the agent, and θ1 and RC are two structural parameters of the model. Having

decided to replace the engine (i = 1), the agent receives a constant, negative utility, −RC, plus
some random utility shock (with fixed mean), ϵ(1). When the agent decides to carry out regular

maintenance work (i = 0), he or she receives a utility −0.001 · θ1 · x that is linearly decreasing

in mileage, plus some utility shock ϵ(0). We refer to RC as the replacement costs and θ1 as the

maintenance cost parameter. Both are to be estimated from the observed data. Following Rust

(1987), we assume ϵ(0) and ϵ(1) to be extreme value type I (EV1) i.i.d.

The model assumes that the agent behaves in a dynamically optimal manner—that is, the

agent maximizes the expected sum of discounted future payoffs. A sufficient condition for such
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optimality is given by the well-known Bellman equation (Bellman, 1952),

Vθ(x, ϵ) = max
i∈{0,1}

{
u(x, i; θ1, RC) + ϵ(i) + βE

[
Vθ(x

′, ϵ′)|x, i; θ3
]}
, (33)

which has to hold for all possible values of (x, ϵ) in the state space. β denotes the discount

factor, and we follow Rust (1987) in fixing it at 0.9999. In order to compute the expectation

over the future value in Equation (33), we need to specify a law of motion of the mileage state

variable, parametrized by θ3. We follow Rust’s conditional independence assumption and refer

to this distribution as P (xt|xt−1, it−1; θ3).

Instead of the original Rust (1987) specification where the odometer readings are discretized,

we modify the model to feature a continuous mileage state. This specification comes naturally as

mileage is an inherently continuous measure, and as the raw data measuring mileage is virtually

continuous (i.e., merely rounded). To this end, we assume stationarity of the mileage increments

conditional on engine replacement,

p(xt|xt−1, it−1; θ3) =

q(xt − xt−1; θ3) it−1 = 0

q(xt; θ3) it−1 = 1,

for some parametric density q(·; θ3). In other words, the distribution of the increment,

∆x = xt − (1− it−1)xt−1,

is independent of the decision. Specifically, we assume the increment to follow a log-normal

distribution: ∆x ∼ LN(µ, σ), with parameter vector θ3 ≡ (µ, σ). We further analyze the fit

of this model in Appendix B.2, concluding that the estimated log-normal density provides a

reasonable fit.28 The specifics of the solution of the dynamic program in the presence of the

proposed law of motion and how it feeds into the likelihood function can be found ibidum.

3.2.2 Rust (1987) with occasionally observed mileage state

In the remainder of the section, we study the following hypothetical scenario compared to the

standard Rust (1987) model: Suppose the fleet manager outsources engine replacement to a

third-party company, which can only record the odometer readings when the bus comes to

its repair shop for engine replacement; thus, the third-party cannot collect any data on the

odometer readings in between replacements. Moreover, we assume that the third-party has

access to a document, such as the vehicle’s registration certificate, that states when the bus was

put into service, giving us the first mileage state observation. In this setup, we ask if it is still

possible to estimate the manager’s cost trade-off accurately using the limited dataset of only

about 2 percent of the state observations.

Formally, we want to compare the estimators for the full observation regime with state

observation index set (per bus) T = {1, . . . , T}, denoted by θ̂full, and the occasional observation

regime with T̄ = {t : it = 1} ∪ {1} and estimator θ̂occ. To do so, we compare the estimators’

28Rust (1987) and, more recently, Lanz et al. (2022) suggest using exponentially distributed mileage increments;
we, however, find the log-normal model to provide a better fit for the original dataset.
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distributions based on a Monte Carlo simulation of datasets while keeping their time horizon

of comparable length to the original dataset on average with T = 80. To assess the estimators’

efficiency, we compare kernel density fits of their distributions.

To efficiently and accurately evaluate the likelihood function under occasional state observa-

tions, we employ the continuous state variant of the recursive formulation (26). As discussed in

Section 2.3, continuous state spaces require efficient numerical approximations for the integrals

induced by the likelihood function recursion. Analogously to the computation of the integrals

in the expected value function (see Appendix B.2, Eqn. 45), we use Gauss–Hermite quadrature

to integrate the log-normally distributed mileage increments. We provide the full likelihood re-

cursion in Appendix B.2, Equations (47) and (48). The maximization of the likelihood function

subject to the constraints implied by the model is analogous to that in the full observation case

of the previous section. All our computations use MATLAB with CasADi (Andersson et al.,

2018) for automatic differentiation as well as the constrained solvers KNITRO and IPOPT

(Wächter and Biegler, 2005).

3.2.3 Results: Monte Carlo study

As motivated previously, we study the distribution of estimators of the structural parameters,

θ̂full and θ̂occ, under the full and the occasional observation regimes. These distributions are

estimated in a Monte Carlo study with 400 simulated datasets. Figure 8 depicts a kernel fit of

the distribution of the two estimators and a normal distribution with sample mean and variance

of the estimates from each regime. Apparently, the costs parameters—and thus the objects of

interest—are estimated from occasional observations as efficiently as under full mileage state

observations; that is to say, R̂C
occ

and θ̂occ1 are unbiased and exhibit little or no additional

variance compared to R̂C
full

and θ̂full1 , respectively. Thus, with only around 2 percent of the

original dataset, we achieve an almost equally good fit as under complete information for the

quantity of interest. The estimators for the parameters of the law of motion, µ̂ and σ̂, show

substantially more variance under occasional observations, which is anything but unexpected.

We further elaborate on the properties of the distribution of the estimators in Appendix B.2.

4 Conclusion

This paper’s contribution is to allow for likelihood-based inference under occasional state ob-

servations, and harvest its favorable properties in small samples. We propose a method that

generalizes the RLI procedure of Reich (2018) to cover various forms of occasional observability

(e.g., random observations, endogenous observations, and observations following a time pat-

tern). We provide a general likelihood formulation, which accounts for endogenous observation

patterns, and show how it can be simplified if the observation process is exogenous. We demon-

strate the high efficiency and broad applicability of our likelihood-based estimator. For this, we

apply the proposed method to three relevant problems in finance and industrial organization: (i)

a long-run risk model as in Bansal and Yaron (2004), (ii) a model with stochastic volatility as in

Schorfheide et al. (2018), and (iii) a counterfactual setup of the famous bus engine replacement

problem of Rust (1987).
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Figure 8: Distributions of the maximum likelihood estimators of the costs and transition param-
eters of Rust (1987) with continuous mileage states under the full observation regime (red) and
the occasional observation regime (blue) for 400 simulated datasets. The solid lines show the
kernel fit, the dotted lines the normal distribution using the sample mean and sample variance,
the black vertical line the parameter value used for simulation.

We show in extensive Monte Carlo studies that our method can identify all model parameters

with high efficiency, and we find that the additional variance of our estimator when going from

full to occasional state observations is small for the parameters of interest. This is a valuable

finding for the current discussion on optimal data provision as well as privacy considerations

and raises the question: How much data do econometricians—and eventually companies—really

need to generate satisfactory insights? A better understanding of data requirements, especially

with sensitive consumer data, is important in the advent of increasingly strict (self-)regulations.
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Grammig, J. and Küchlin, E.-M. (2018). A two-step indirect inference approach to estimate

the long-run risk asset pricing model. Journal of Econometrics, 205(1):6–33.

Griebel, M., Heiss, F., Oettershagen, J., and Weiser, C. (2019). Maximum approximated like-

lihood estimation. Available as University of Bonn INS Preprint No. 1905.

Hall, G. and Rust, J. (2021). Estimation of Endogenously Sampled Time Series: The Case of

Commodity Price Speculation in the Steel Market. Journal of Econometrics, 222(1):219–243.

Hansen, L. P., Heaton, J. C., and Li, N. (2008). Consumption Strikes Back? Measuring Long

Run Risk. Journal of Political Economy, 116(2):260–302.

Iskhakov, F. (2010). Structural dynamic model of retirement with latent health indicator. The

Econometrics Journal, 13(3):126–161.

Judd, K. L. (1992). Projection Methods for Solving Aggregate Growth Models. Journal of

Economic Theory, 58(2):410–452.

Judd, K. L. (1998). Numerical Methods in Economics. The MIT Press, Cambridge, MA.

Keane, M. P. (1994). A computationally practical simulation estimator for panel data. Econo-

metrica, 62, No. 1:95–116.

Kitagawa, G. (1987). Non-gaussian state-space modeling of nonstationary time series. Journal

of the American Statistical Association, 82(400):1032.

Lanz, A., Reich, G., and Wilms, O. (2022). Adaptive grids for the estimation of dynamic

models. Quantitative Marketing and Economics, 20(2):179–238.

Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with Missing Data. Wiley.

Norets, A. (2009). Inference in Dynamic Discrete Choice Models with Serially Correlated Unob-

served State Variables. Econometrica: Journal of the Econometric Society, 77(5):1665–1682.

Reich, G. (2018). Divide and Conquer: Recursive Likelihood Function Integration for Hidden

Markov Models with Continuous Latent Variables. Operations Research, 66(6):1457–1470.

Rust, J. (1987). Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold

Zurcher. Econometrica: Journal of the Econometric Society, 55(5):999–1033.

Schorfheide, F., Song, D., and Yaron, A. (2018). Identifying Long-Run Risks: A Bayesian

Mixed-Frequency Approach. Econometrica: Journal of the Econometric Society, 86(2):617–

654.

39

Electronic copy available at: https://ssrn.com/abstract=3638618



Su, C.-L. and Judd, K. L. (2012). Constrained Optimization Approaches to Estimation of

Structural Models. Econometrica: Journal of the Econometric Society, 80(5):2213–2230.
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A Online Appendix

A.1 Proof of Proposition 1

The likelihood of a parameter vector θ given the sample
{
{yt}Tt=1, {xt}t∈T̄

}
is the joint proba-

bility of the sample in the underlying model under parametrization with θ. We use definitions

(7) for Pm, (8) for P zx , the notational conventions from Footnote 10, as well as Assumption

A1 and the assumptions of the proposition to transform the likelihood to the shape given in

(15). We start with Part 1, i.e. Part (a) of Assumption A1 holds and yt = (mt, zt):

L(θ) = L(θ|{yt}Tt=1, {xt}t∈T̄ )

=

∫
· · ·
∫
×t∈T \T̄ Sx

P
(
{yt}Tt=1, {xt}Tt=1;ψ

)
dxt∈T \T̄

=

∫
· · ·
∫
×t∈T \T̄ Sx

P
(
{mt, zt}Tt=1, {xt}Tt=1;ψ

)
dxt∈T \T̄

=

∫
· · ·
∫
×t∈T \T̄ Sx

T∏
t=1

Pm(mt|zt, xt,mt−1, zt−1, xt−1; η)P
zx (zt, xt|zt−1, xt−1θ)dxt∈T \T̄

=

∫
· · ·
∫
×t∈T \T̄ Sx

T∏
t=1

P (yt, xt|yt−1, xt−1;ψ)dxt∈T \T̄

=

∫
· · ·
∫
×t∈T \T̄ Sx

N+1∏
i=1

t̄i∏
t=t̄i−1+1

P (yt, xt|yt−1, xt−1;ψ)dxt∈T \T̄

=
∏

i∈{1,...,N+1}
⋂
{i|τi>0}

∫
· · ·
∫
Sτix

P
(
yt̄i−1+1, x̃t̄i−1+1|yt̄i−1

, xt̄i−1
;ψ
)

·
t̄i−1∏

t=t̄i−1+2

P (yt+1, x̃t+1|yt, x̃t;ψ)

· P
(
yt̄i , xt̄i |yt̄i−1, x̃t̄i−1;ψ

)
d
(
x̃t̄i−1+1, ..., x̃t̄i−1

)
·

∏
i∈{j=1,...,N+1|τj=0}

P
(
yt̄i , xt̄i |yt̄i−1, xt̄i−1;ψ

)
.

(34)

Note that up to the last equation we use xt for any t ∈ T \ T̄ as integration variable; we only

switch to our previous convention with x̃t as integration variable in the last equation. The reason

for this is to display the emergence of the product
∏N
i=1 s.t. the double product

∏N+1
i=1

∏t̄i
t=t̄i−1+1

clearly spans the entire sample period t = 1, ..., T . Thereafter, in the last line we need to separate

the set {1, ..., N} into two parts: If τi = 0, then xt is observed in two successive periods and

no integration is needed. In particular, the conditional probability of (yt̄i+1
, xt̄i+1

) conditions

on (yt̄i , xt̄i), hence, the factor for this i consists of only one conditional probability. In all other

cases, there is at least one period of unobservation between two periods of observation, hence,

we need to integrate these unobserved states. Note that the product
∏t̄i−1
t=t̄i−1+2 is empty, i.e.

equal to 0, if there is exactly one period of unobservation (t̄i+1 = t̄i + 2).

In summary, the likelihood in the case of MNAR data follows immediately from our Markov

assumptions for Pm and P zx and a suitable decomposition of the observation pattern T . For
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the case of MAR data, the conditional independence assumption (11) implies

P (yt, xt|yt−1, xt−1;ψ) = Pm(mt|mt−1, zt, zt−1; η)P
zx (zt, xt|zt−1, xt−1; θ)

Plugging this identity into the likelihood from (34) yields:

L(ψ) =
∏

i∈{1,...,N+1}
⋂
{i|τi>0}

∫
· · ·
∫
Sτix

Pm
(
mt̄i−1+1|mt̄i−1

, zt̄i−1+1, zt̄i−1
; η
)

· P zx
(
zt̄i−1+1, x̃t̄i−1+1|zt̄i−1

, xt̄i−1
;ψ
)

·
t̄i−1∏

t=t̄i−1+2

Pm (mt|mt−1, zt, zt−1; η)P
zx (zt, x̃t|zt−1, x̃t−1;ψ)

· Pm
(
mt̄i |mt̄i−1, zt̄i , zt̄i−1; η

)
P zx

(
zt̄i , xt̄i |zt̄i−1, x̃t̄i−1;ψ

)
d
(
x̃t̄i−1+1, ..., x̃t̄i−1

)
·

∏
i∈{j=1,...,N+1|τj=0}

Pm
(
mt̄i |mt̄i−1, zt̄i , zt̄i−1; η

)
P zx

(
zt̄i , xt̄i |zt̄i−1, xt̄i−1;ψ

)
=

∏
i∈{1,...,N+1}

⋂
{i|τi>0}

∫
· · ·
∫
Sτix

P zx
(
zt̄i−1+1, x̃t̄i−1+1|zt̄i−1

, xt̄i−1
;ψ
)

·
t̄i−1∏

t=t̄i−1+2

P zx (zt, x̃t|zt−1, x̃t−1;ψ)

· P zx
(
zt̄i , xt̄i |zt̄i−1, x̃t̄i−1;ψ

)
d
(
x̃t̄i−1+1, ..., x̃t̄i−1

)
·

∏
i∈{j=1,...,N+1|τj=0}

P zx
(
zt̄i , xt̄i |zt̄i−1, xt̄i−1;ψ

)
·
T+1∏
t=1

Pm(mt|mt−1, zt, zt−1; η).

Due to the data being MAR, the observation variablemt is conditionally independent on xt, xt−1,

hence its transition probability Pm can be pulled out of the integral for each t. Since under

Assumption A1(b) also the model and the nuisance parameter are fully separate, the factor∏T+1
t=1 P

m(mt|mt−1, zt, zt−1; η) is purely scaling the likelihood and does not influence maximiza-

tion. For this reason the likelihood based solely on the model transition probability P zx is

equivalent to the likelihood (34). Setting ψ = θ and P = P zx and only utilizing the zt-

component of yt delivers this result for the general result (15).

A.2 General notation

We develop a general notation to formulate the likelihood function of a Markov model with

serially correlated states, in particular if some (or all) of the model states are observed only

occasionally. In fact, the notation developed below allows for arbitrary observations patterns

both w.r.t. time and the state space dimension.

In contrast to previous sections, we consider observed variables Yt and occasionally observed

variables Xt jointly to allow for general observation patterns and simplify notation in this

section. Recall that we have introduced Yt as composite variable of the always observed variables

in Proposition 1, i.e., it includes both model variables Zt and observation variables Mt. We
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now join all the model variables into X̄t = (Zt, Xt) ∈ Rd, the vector of all model variables, in

particular allowing for any number of occasionally observed variables and no always observed

variables. Then, we define M̄t ∈ {0, 1}d to be the vector of observation variables mit, i = 1, ..., d

for each component of the vector X̄t. As before, the conditional joint probability Pm of the

vector M̄t conditional on X̄t, X̄t−1 can account for any (cross) endogeneity of the observation

process. However, using the same formalism as in Proposition 1, we can now continue by solely

considering the joint vector Wt = (X̄t, M̄t). Its joint probability function P is the product of

P x̄ and Pm if the data is MNAR and only P x̄ when the data is MAR. Hence, we consider a

stochastic process {Wt}t∈N, where the random vector Wt has support S ⊆ R2d, which we refer

to as the “state space”.29 Note that we restrict our attention to continuous state variables here,

as all concepts we present below have simple analogues in the discrete case.

We assume the Markov model explaining {Wt} to define a parametric family of (conditional)

distributions, which can be represented through probability density functions

P
(
Wt | {Ws}s<t ; θ

)
= P (Wt | Wt−1; θ)

with θ ∈ Θ ⊂ Rp.30 We assume that there exists a unique θ0 ∈ Θ that perfectly parametrizes

the data generating process and aim to estimate this parameter through applying a maximum

likelihood approach. In order to precisely express the observation pattern of a dataset, we

introduce some more notation: Let wτ0 ≡ (wi)i∈τ0 denote the sub-vector of states for some

index set τ0 ⊆ τ ≡ {1, . . . , d}. Moreover, we write τ̃0 ≡ τ \ τ0 for the complement of τ0 w.r.t.

τ , and we express the number of dimensions of wτ0 using the cardinality operator |τ0|. Finally,
note that if we write (wτ0 , wτ̃0), we tacitly assume the elements to be re-ordered appropriately

so that (wτ0 , wτ̃0) = w, including the special cases (wτ , w∅) and (w∅, wτ ).

This notation allows us to define the observation pattern of a dataset as follows: For an

observation horizon {0, . . . , T}, the set of index sets {τt}Tt=0, τt ⊆ τ , specifies which dimensions

of the state vector w are observed at each point in time t,31 and we denote the dataset by

{wt,τt}Tt=0. Note that in order to distinguish entries of the dataset from generic sub-vectors of

states such as wτt , we have equipped the former with another time subscript besides the index

set. This notation also allows us to implicitly distinguish completely, never, and occasionally

observed variables and thus ties it back into the context of the previous section: A completely

observed variable wti has i ∈ τt for all t ∈ T , an unobserved variable has i ∈ τ̃t for all t and a

variable is occasionally observed if neither holds. At each point in time t, the state realizations

are an element of the subset

St ≡ {w ∈ S : wτt = wt,τt} ,

29We abstract from the more general case which supposes time-heterogenous dimensionality of the state space
in favor of a lighter notation. As the integration dimension will vary over time due to occasional observations of
Wt = wt this extension is straight-forward.

30The density Pθ can, of course, be time-dependent, but we spare the additional index here, as our notation
encompasses this feature—theoretically—through a deterministic, discrete state.

31Note that in the outline of the method in Section 2, we use a single index set T to denote the points in time
where an observation of a single state takes place. Here, each point in time has its own index set τt, specifying
the dimensions of the state space which are observed at time t.
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which “binds” the observed dimensions to the values from the dataset. Note, though, that not

necessarily all elements in St have non-zero probability density. For the integration over the

unobserved dimensions, we also need the projection of St to the lower-dimensional space where

the unobserved dimensions live:

S̃t ≡
{
w̃ ∈ R|τ̃t| : w̃ = wτ̃t , w ∈ St

}
.

We write S̃t = ∅ if τt = τ and thus τ̃t = ∅. The (unconditional) likelihood of the model under

observation regime {τt}Tt=0 reads

LTg (θ) ≡ L(θ|{wt,τt}Tt=1)

=

∫
· · ·
∫
×Tt=1S̃t

T∏
t=1

P
(
w̃t, wt,τt |w̃t−1, wt−1,τt−1 ; θ

)
dw̃T . . . dw̃1 (35)

=

∫
· · ·
∫
×Tt=1S̃t

T∏
t=1

gt (w̃t, w̃t−1, θ) dw̃T · · · dw̃1 (36)

and thus resembles the definition of LTg in Reich (2018). The functions gt : S̃t × S̃t−1 ×Θ→R
are defined by

gt(w̃t, w̃t−1, θ) ≡

P
(
w̃t, wt,τt |w̃t−1, wt−1,τt−1 ; θ

)
if t > 1

P (w̃1, w1,τ1 ; θ) if t = 1

s.t. the dependence of the integrand on the data is implicitly given in the subscript t of gt. Note

that both S̃t and w̃t can be empty if τt = τ , i.e., gt, gt+1 are constant in w̃t and no integration

w.r.t. w̃t takes place. Using the Markov structure of the model and standard regularity condi-

tions for gt
32, a Fubini–Tonelli theorem (the concrete version of it depending on the nature of

S) justifies a recursive formulation of (36),

φθt ∈ R+ :


1 t > T

gt (wt|wt−1; θ)φ
θ
t+1 τt = τ∫

S̃t gt ((w̃, wt,τt)|wt−1; θ)

· fθt+1(w̃)d
|τ t|w̃

otherwise


τt−1 = τ

fθt : S̃t−1 → R+, w 7→


1 t > T

gt
(
wt|(w,wt−1,τt−1); θ

)
φθt+1 τt = τ∫

S̃t gt
(
(w̃, wt,τt)|(w,wt−1,τt−1); θ

)
· fθt+1(w̃)d

|τ t|w̃
otherwise


otherwise,

(37)

32These follow from the fact that gt is derived from a conditional p.d.f. which tend to be continuous and
bounded in most economic applications.
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and the final likelihood reads

L(θ; {wt,τt}Tt=1) =

gt (w1; θ)φ
θ
2 τ1 = τ∫

S̃1
gt ((w̃, w1,τ1); θ) f

θ
2 (w̃)d

|τ1|w̃ otherwise.
(38)

While formulation (37) is exact, it is not practical for implementation purposes for the

following reasons:

1. Actually evaluating the final likelihood—and thus evaluating either fθ2 or φθ2—would still

require traversing a tree with T − 1 levels and potentially infinitely many “knots” at each

level; thus its computational complexity would explode.

2. No explicit use is made from the knowledge of the observations wt,τt to determine the

conditional distribution of wτ t .

To address issue 1, we introduce a mapping between two function spaces Bn and Pn, whose
elements are real functions of n-dimensional arguments, and with all elements in Pn having a

complete representation through a countable set of parameters:

In : Bn → Pn, f 7→ f̂,

where

f, f̂ : Rn ⊇ D → R,

and with the norm ∥f − f̂∥ being “small” in the appropriate sense.

As indicated in issue 2, knowledge of wt,τt can be used in many instances to obtain “high

density regions” for wτ t by conditioning its distribution on wt,τt . This can often be exploited

when numerically approximating the integrals in (37), e.g., by placing the nodes of quadra-

ture rules accordingly. Therefore, we rewrite the relevant cases, conditioning the integrated

probability densities on the observed states; note that in practice, this is not always possible.
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Consequently, the final likelihood function recursion reads

φ̂θt ∈ R+ :



1 t > T

gt (wt|wt−1; θ) φ̂
θ
t+1 τt = τ∫

S gt (w̃|wt−1; θ) f̂
θ
t+1(w̃)d

nw̃ τt = ∅
gt (wt,τt |wt−1; θ)

·
∫
S̃t gt (w̃|wt,τt , wt−1; θ) f̂

θ
t+1(w̃)d

|τ t|w̃
otherwise


τt−1 = τ

f̂θt : S̃t−1 → R+, w 7→



1 t > T

gt
(
wt|(w,wt−1,τt−1); θ

)
φ̂θt+1 τt = τ

I|τ t−1|

( ∫
S gt

(
w̃|(w,wt−1,τt−1); θ

)
· f̂θt+1(w̃)d

nw̃
) τt = ∅

I|τ t−1|

(
gt
(
wt,τt |(w,wt−1,τt−1); θ

)
·
∫
S̃t gt

(
w̃|wt,τt , (w,wt−1,τt−1); θ

)
· f̂θt+1(w̃)d

|τ t|w̃
) otherwise



otherwise,

(39)

and the actual likelihood can be computed analogously to (38).

A.3 Issues related to floating-point arithmetics and rescaling the likelihood

function

In most maximum likelihood applications, it is not the “physical” likelihood function that is

maximized, but its logarithm instead. This (smooth) monotonic transformation does not affect

the location of the maximum, but has significant numerical advantages: The main motivation

for this transformation is the fact that likelihood functions can become very small or—in the case

of continuous random variables with densities possibly larger than one—very large, potentially

causing severe numerical problems in floating-point arithmetic, most prominently underflows

(number can no longer be distinguished from 0) and overflows (absolute value of a number can

no longer be represented).33 However, this transformation cannot be “moved” into the integral

in the recursion (20), because generally log
∫
g(w̃)dw̃ ̸=

∫
log g(w̃)dw̃. We therefore employ

a simple rescaling scheme based on the following equality (for notational brevity, we restrict

ourselves to the case of no observations here):

∫
· · ·
∫
p(w̃1)

T∏
t=2

p(w̃t|w̃t−1) d(w̃1, . . . , w̃T )

=
T∑
t=1

logαt + log

∫
· · ·
∫
p(w̃1)α

−1
1

T∏
t=2

p(w̃t|w̃t−1)α
−1
t d(w̃1, . . . , w̃T ) .

(40)

33On the other hand, note that subtraction is considered the most accuracy-losing operation. Therefore, the
multiplication of physical probabilities would be preferred in cases where the log-likelihood of the individual
observations is of mixed sign, which can happen with continuous variables.
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We choose the following scaling factors (where the norm is taken over x):

αt ∝

∥∥∥∥∥
∫
· · ·
∫
p(w̃t+1|w)α−1

t+1

T∏
s=t+2

p(w̃s|w̃s−1)α
−1
s d(w̃t+1, . . . , w̃T )

∥∥∥∥∥ ,
because in the context of recursion (20) it can easily be obtained as αt ∝ ∥fθt (w)∥. In other

words, at every iteration of the recursion we rescale the recursion function fθt to have a unity

norm, and separately update the “aggregate” scaling factor to finally obtain the correct log-

likelihood function. This procedure is integrated in Algorithm 1, as well as the listings in

Appendix A.4.

For the type of the norms itself, we often use L1 or L∞, or, to balance better the order of

magnitude, exp ∥ log fθt ∥1; the integral over fθt can be easily approximated using the nodes of

the interpolant Ifθt (recall that approximation error for the norm does not affect the accuracy of

the likelihood approximation itself by construction). Alternatively, if the point(s) of evaluation

of the result of the recursion is known upfront—which is most commonly the case, for example,

for quadrature rules to compute (27a), or for a single observation w1 in (27b)—one can also

rescale fθt to unity around that point(s).

Algorithm 1 provides a pseuo-implementation of recursive likelihood function integration

under occasional observations, with the rescaling from Equations (40) and (A.3) applied.34

A.4 Code listings

The following listing is a MATLAB implementation of our method for continuous x, but which

is agnostic about the nature of y, i.e., (x, y) ∈ Sx ×Sy ⊂ R2. The numerical integration follows

rule (23), and is thus expressed as a set of nodes and weights, qn and qw, respectively; note that

the weights contain the kernel against which to integrate. The nodes and weights to integrate x1

against the stationary distribution are given by qn1 and qw1. The change of variables to allow

for an unconditional kernel, ϕ(∆xt, xt−1, it−1; θ), and its first derivative w.r.t. xt is given by phi

and phipr, respectively; those objects are function-valued and take the respective arguments xt,

xt−1, and it−1. Similarly, the density functions Pr(xt|xt−1, yt−1; θ), Pr(yt|xt; θ), and Pr(x1; θ)
enter as Px, Py, and Px1, respectively, and are all function-valued arguments. Finally, the

interpolation grid is passed as in.

Note that the parameter to be estimated, θ, enters implicitly through the probability dis-

tributions, the change of variables ϕ (and its partial derivative), and the quadrature nodes and

weights for the stationary distribution in this implementation (we assume that qn and qw in-

tegrate against a standardized distribution, and thus parameter dependence of the conditional

distributions enters solely through the change of variables).

34Note that a direct implementation of Algorithm 1 will, in many programming languages, still cause the full
recursion tree to be built up, before the actual numerical evaluation is triggered in t = 1—in particular if lambda
calculus is used (for example, through “anonymous functions” in MATLAB). This is, however, not generally an
issue, because only the assignment in line 13 triggers more than one evaluation of the previous f̂ψ while not being
“safeguarded” through I; however, due to the observational pattern, it cannot call itself repeatedly. Alternatively,
it is straightforward—and often slightly more efficient—to explicitly force the numerical evaluation of fψ(·) on
the right-hand side of the assignments in each time step (as we demonstrate in Appendix A.4); moreover, one
can wrap each line by I, which is slightly less efficient and introduces a higher numerical error but allows for
some simpler implementations, in particular in higher dimensional states with asymmetric observation patters.
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Algorithm 1 Recursive likelihood function integration (RLI) for occasionally observed states
with adaptive rescaling.

1: f̂(x)← 1
2: α← 0
3: α̂← 1
4: for t = T, . . . , 2 do
5: if t ∈ T̄ then
6: if t− 1 ∈ T̄ then
7: f̂ψ(x)← P (yt, xt|yt−1, xt−1;ψ)f̂

ψ(xt)/α̂
8: else
9: f̂ψ(x)← P (yt, xt|yt−1, x;ψ)f̂

ψ(xt)/α̂
10: end if
11: else
12: if t− 1 ∈ T̄ then
13: f̂ψ(x)←

∫
P (yt, x̃|yt−1, xt−1;ψ)f̂

ψ(x̃)/α̂dx̃
14: else
15: f̂ψ(x)← I

(∫
P (yt, x̃|yt−1, x;ψ)f̂

ψ(x̃)/α̂dx̃
)

16: end if
17: end if
18: α̂← ∥f̂ψ∥
19: α← α+ log α̂
20: end for
21: if 1 ∈ T̄ then
22: Lψ ← P (y1, x1;ψ)f̂

ψ(x1)/α̂
23: else
24: Lψ ←

∫
P (y1, x̃;ψ)f̂

ψ(x̃)/α̂dx̃
25: end if
26: return logLψ − α
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In order to keep MATLAB from spanning the full recursion tree first and only evaluate it at

t = 1, we need to explicitly enforce the numerical evaluation of the recursion function at each

time step. This is done through the helper variable fn (instead of directly writing the call to

fn of the previous iteration into the definition of the new fn function object).

1 function l = likelihood cont(x,y,qn,qw,qn1,qw1,in,Py,Px,Px1,phi,phipr)

2 % LIKELIHOOD CONT - Likelihood for occasional continuous observations

3 %

4 % Inputs:

5 % x - data for X (MISSING if unobserved) LENGTH(x): T

6 % y - data for Y LENGTH(y): T

7 % qn - quadrature nodes SIZE(qn): [nq,1]

8 % qw - quadrature weights SIZE(qw): [nq,1]

9 % qn1 - quad. nodes (stat. dist.;theta) SIZE(qn1): [nq,1]

10 % qw1 - quad. weights (stat. dist.;theta) SIZE(qw1): [nq,1]

11 % in - interpolation nodes SIZE(in): [ni,1]

12 % Py - Pr(Y t | X t;theta) FUNCTION(nargin=2)

13 % Px - Pr(X t | X t-1,Y t-1;theta) FUNCTION(nargin=3)

14 % Px1 - Pr(X 1;theta) FUNCTION(nargin=1)

15 % phi - phi(DeltaX,X t-1,Y t-1;theta) FUNCTION(nargin=3)

16 % phipr - phi'(DeltaX,X t-1,Y t-1;theta) FUNCTION(nargin=3)

17 %

18 % Outputs:

19 % l - value of log-likelihood function

20

21

22 % initialization

23 ni = length(in);

24 nq = length(qn);

25 T = length(x);

26 qn = repmat(qn',ni,1);

27 in = repmat(in,1,nq);

28

29 fn = @(x) 1;

30 a = 0;

31 a t = 1;

32

33 for t=T:-1:2

34

35 % recursion step

36 if ismissing(x(t))

37 if ismissing(x(t-1))

38 phi = phi(qn ,in ,y(t-1));

39 phipr = phipr(qn ,in ,y(t-1));

40 fn = fn(phi ) ./ a t;

41 f vals = (Py(y(t),phi ) .* phipr .* fn ) * qw;

42 fn = @(x ) max(interp1(in,f vals,x ,'spline','extrap'),0);

43 a t = max(f vals);

44 else

45 phi = phi(qn',x(t-1),y(t-1));

46 phipr = phipr(qn',x(t-1),y(t-1));
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47 fn = fn(phi ) ./ a t;

48 fn = @(x ) (Py(y(t),phi ) .* phipr .* fn ) * qw;

49 a t = fn(NaN);

50 end

51 else

52 fn = fn(x(t)) ./ a t;

53 if ismissing(x(t-1))

54 fn = @(x ) Py(y(t),x(t)) .* Px(x(t),x ,y(t-1)) .* fn ;

55 a t = max(fn(in));

56 else

57 fn = @(x ) Py(y(t),x(t)) .* Px(x(t),x(t-1),y(t-1)) .* fn ;

58 a t = fn(NaN);

59 end

60 end

61

62 a = a + log(a t);

63 end

64

65 % final likelihood

66 if ismissing(x(1))

67 l = (Py(y(1),qn1') .* Px1(qn1)' .* (fn(qn1') ./ a t)) * qw1;

68 else

69 l = Py(y(1),x(1)) .* Px1(x(1)) .* (fn(x(1) ./ a t));

70 end

71 l = log(l) + a;

A.5 Gauss–Hermite quadrature for Integration against a log-normal Density

As in the main text, we define m(x, i; θ) ≡ u(x, i; θ1)+βEVθ(x, i) for shorter notation; consider
the integrand

EV (x, i) =

∫ ∞

0
log

 ∑
j∈{0,1}

exp(m((1− i)x+∆x̃, j; θ))

 q(∆x̃)d∆x̃, (41)

where q is the density of the log-normal distribution,

1

x
√
2πσ

exp

(
−(log(x)− µ)2

2σ2

)
. (42)

Given that ∆x is log-normally distributed, consider the change of variables ∆x = exp(∆t):

EV (x, i) =

∫ ∞

−∞
log

 ∑
j∈{0,1}

exp
(
m((1− i)x+ exp

(
∆t̃
)
, j; θ)

)
· exp

(
∆t̃
) 1

exp
(
∆t̃
) 1√

2πσ
exp

(
−(∆t̃− µ)2

2σ2

)
d∆t̃,

(43)

which is an integral against the normal density, and thus can be approximated efficiently using

Gauss–Hermite quadrature with nodes and weights {(ck, wk)}N
Q

k=1; see, for example, Judd (1998).

Thus, if {(ck, wk)}N
Q

k=1 denote the nodes and weights of the “standard” degree-nQ Gauss–
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Hermite rule, the nodes and weights to integrate against a log-normal distribution with param-

eters µ and σ as in (41) read {(exp
(
µ+
√
2σck

)
,
√
π
−1
wk)}N

Q

k=1. Note that this corresponds to

the usual transformation of the Gauss–Hermite nodes and weights for integrals against normal

kernels with parameters µ and σ, except that the nodes have been exponentiated to capture

the exp
(
∆t̃
)
term in (43).

B Additional material for the applications

B.1 Additional results for LRR and SV models

In Section 3.1.4 we report results for the SMM approach using a specific set of moments. For

this we have tried different sets of moments and we report results for the case which provided the

lowest errors for our examples. To demonstrate the robustness of our results with regard to the

specific selection of moments, we also provide results using the Lasso GMM approach proposed

by Cheng and Liao (2015). The idea of the approach is to divide the set of moments into two

categories. The sure moments, which contain a relatively small subset the moments and are

sufficient to identify the model parameters, and the doubt moments, which can be a large set

of moments which the econometrician is not sure about whether they provide additional value

for estimating the model parameters. The moment conditions of the doubt moments are then

allowed to deviate from zero by introducing the slackness parameters βl. The Lasso GMM by

Cheng and Liao (2015) minimizes the standard GMM objective function plus a Lasso term with

penalty parameter λn which shrinks the slackness parameters βl towards 0. For λn = 0, the

doubt moments can take on any value and hence, only the sure moments are relevant for the

SMM estimator. For λn →∞ the SMM estimator which includes both, the sure moments and

the doubt moments is obtained.

Cheng and Liao (2015) provide theoretical arguments on how to choose the penalty pa-

rameter λn as well the weights ωn,l for each slackness parameter βl (see equation 2.7 of Cheng

and Liao (2015)). This optimal choice of parameters is based on the information content of

each moment condition. For the SMM approach we use in our paper, this information based

approach did not yield reasonable results for example due to numerical problems when inverting

the variance-covariance matrix of our estimator in the first step estimation with λn = 0. So

instead we use a very pragmatic approach which turned out to work very well in practice.

For this, we first run the unconstrained SMM with λn = 0 and an identity weighting matrix

as proposed by Cheng and Liao (2015). Then we scale each slackness parameter by a constant

term ωn,l such that the SMM objective (left term in equation 2.7 of Cheng and Liao (2015))

and the Lasso penalty (right term equation 2.7 of Cheng and Liao (2015)) are of equal size

for λn = 1. So all slackness parameters obtain the same weight and by increasing for λn to

for example 100, the Lasso penalty on the objective function will be 100 times as large as the

objective from the standard SMM estimator.

For the long-run risk model (28), we use the first and second non-central moments, the cross-

correlation between consumption and dividend growth, as well as autocorrelations up to order

5 as sure moments. Additionally, we add autocorrelations up to order 10 for both, consumption

and dividend growth as doubt moments. For the stochastic volatility model (29), we use the
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first and second non-central moments, the cross-correlation between consumption and dividend

growth, as well as the first-order autocorrelations as sure moments. Additionally, we add the

third, fourth, fifth, and sixth non-central moments and autocorrelations up to order 7 as doubt

moments. We report results for λn ∈ [0, 1, 100, 10000].

Figure 9 shows the results for the long-run risk model and Figure 10 shows the corresponding

results for the stochastic volatility model. Red lines show results for RLI and black lines for

the SMM estimator used in the main text in Figure 1. The left panel shows results for the

occasional observation regime and the right panel for the full information regime. Colored lines

show results for Lasso SMM with different penalty parameters λn. We find that for the long-run

risk model, the Lasso SMM estimator yields comparable results to the SMM estimator we use

in the main text of the paper showing the robustness of our results with regard to the specific

selection of moments. For the stochastic volatility model, we find that while increasing the

penalty can decrease the errors, the moments selected in the main text of the paper for SMM

yield lower errors compared to the Lasso approach. More importantly, for both models, the

errors of SMM with any selection of moments are significantly larger compared to our RLI

estimator independent of the size of the dataset. Hence, the results show that the conclusions

we draw regarding the comparison of the SMM and RLI estimators do not rely on the specific

set of moments we selected for the SMM approach.
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Figure 9: Median of the Mahalanobis distance over 400 simulated datasets as a function of
dataset length in years for the long-run risk model (28). The left panel shows results for the
occasional observation regime and the right panel for the full information regime. Red lines
show results for RLI and black lines for the SMM estimator used in the main text in Figure 1.
Colored lines show results for Lasso SMM with different penalty parameters λn. The dashed
blue line shows the number of observations in the real consumption and dividend dataset.
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Figure 10: Median of the Mahalanobis distance over 400 simulated datasets as a function of
dataset length in years for the stochastic volatility model (29). The left panel shows results for
the occasional observation regime and the right panel for the full information regime. Red lines
show results for RLI and the black line for the SMM estimator used in the main text in Figure
1. Colored lines show results for Lasso SMM with different penalty parameters λn. The dashed
blue line shows the number of observations in the real consumption and dividend dataset.

Long-Run Risk Model

Years 50 100 200 400 800

RLIfull 1 0 0 0 0
RLIocc 3 1 1 1 0
SMMfull 4 0 2 1 0
SMMocc 4 3 2 1 0

Stochastic Volatility Model

Years 50 100 200 400 800

RLIfull 2 3 3 1 0
RLIocc 3 1 1 0 1
SMMfull 0 1 2 4 1
SMMocc 5 4 3 3 1

Table 2: Number of non-converged runs out of the 400 runs in the Monte Carlo study for the
long-run risk model and the stochastic volatility model.
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(a) Long-Run Risk Model (28)
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Figure 11: Kernel density estimates for the Mahalanobis distance over 400 simulated datasets,
using RLI (red lines) and SMM (black lines) under the full observation regime (dashed lines)
and the occasional observation regime (solid lines). Panel (a) shows the results for the long-run
risk model (28) and panel (b) for the stochastic volatility model (29).
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Figure 12: Kernel density estimates for the parameters of the long-run risk model (28) using
RLI (red lines) and SMM (black lines) under the full observation regime (dashed lines) and the
occasional observation regime (solid lines) for 400 simulated datasets of 50, 100, 200, 400, and
800 years, respectively. The blue vertical lines mark the true population parameter used for the
data generation.
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Figure 13: Kernel density estimates for the parameters of the stochastic volatility model (29)
using RLI (red lines) and SMM (black lines) under the full observation regime (dashed lines)
and the occasional observation regime (solid lines) for 400 simulated datasets of 50, 100, 200,
400, and 800 years, respectively. The blue vertical lines mark the true population parameter
used for the data generation.
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B.2 Additional material for optimal replacement of GMC bus engines model

In the main body of the paper, we omitted the precise discussion of the solution process for the

value function as well as the corresponding likelihood function and approaches to maximize it

for brevity.

Under the EV1 assumption on the distribution of ϵ, Rust (1987) derives a (partial) closed-

form solution for the conditional expected value as

EVθ(x, i) ≡ E [Vθ(x̃, ϵ̃)|x, i; θ3] =
∫ ∫

Vθ(x̃, ϵ̃)P (x̃|x, i; θ3)q(ϵ̃)dϵ̃dx̃

=

∫
log

 ∑
j∈{0,1}

exp (m(x̃, j; θ))

P (x̃|x, i; θ3)dx̃ (44)

with q denoting the density function of the (standard) EV1 distribution here, and m(x, i; θ) ≡
u(x, i; θ1, RC) + βEVθ(x, i) for notational brevity.

The continuous nature of the mileage state requires a numerical approximation of the integral

in Equation (44). Gauss–Hermite quadrature rule is designed for computing expectations of

(functions of) normally distributed random variables but can be also applied to expectations of

log-normal random variables after transforming the integration variable, as we show in Appendix

A.5. It preserves its fast convergence properties of polynomial or even exponential order and

is thus equally well suited for log-normal random variables if the integrand does not gain a

singularity from the transformation. This is usually the case for economic models. Let us

denote the Gauss–Hermite nodes and weights by {(ck, wk)}N
Q

k=1. Then, the EV function can be

approximated by

EVθ(x, i) ≈
NQ∑
k=1

√
π
−1
wk log

 ∑
j∈{0,1}

exp
(
m((1− i)x+ exp

(
µ+
√
2σck

)
, j; θ)

) . (45)

Suppose an econometrician wants to quantify the economic trade-off of the agent, but lacks

knowledge of the costs parameter values and parametrization of the state’s law of motion. The

econometrician does, however, have data on all renewal decisions and observes the mileage state

of the buses at each inspection by the manager. Then, the likelihood function of the parameters

in question is composed of two sources of contributions: first, the joint probability or density

of the state transitions, P (xt|xt−1, it−1; θ); and second, the conditional choice probabilities,

P (it|xt; θ). In the case of dynamic logit models with EV1 errors, the latter can be expressed as

a function of the state variables as follows (Rust, 1987):

Pr(it|xt; θ) =
exp (m(xt, it; θ))∑

j∈{0,1} exp (m(xt, j; θ))
.

Assuming, for notational simplicity, that the sample consists of one bus only—observed over a

time horizon T = {1, . . . , T}—the likelihood of the parameter θ given a sample {xt, it}t∈T reads

L(θ; {xt, it}t∈T ) = Pr(i1|x1; θ)
T∏
t=2

Pr(it|xt; θ)P (xt|xt−1, it−1; θ). (46)
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Finally, when maximizing the likelihood function (46) to obtain concrete parameter esti-

mates, the econometrician has to ensure that the model—that is, the Bellman equation (33)—is

solved for the likelihood maximizing parameters. This can be done using the nested fixed point

algorithm (NFXP; Rust, 1987), which computes the solution to the Bellman equation before

each evaluation of the likelihood function. Alternatively, the likelihood can be maximized sub-

ject to a set of constraints implied by the Bellman equation, which is known as mathematical

programming with equilibrium constraints (MPEC; Su and Judd, 2012)35.

We now turn to the likelihood recursion for the Rust (1987) model with occasionally observed

mileage state presented in Section 3.2.2. Specifically, it is given by:

f̂θt (x) =



1 t > T∑NQ

k=1

√
π
−1
wk

· Pr(it| exp
(
µ+
√
2σck

)
+ (1− it−1)xt−1; θ)

· f̂θt+1(exp
(
µ+
√
2σck

)
+ (1− it−1)xt−1)

t− 1 ∈ T̄ , t /∈ T̄

Pr(it|xt; θ)p(xt|x, it−1; θ3)f̂
θ
t+1(xt) t− 1 /∈ T̄ , t ∈ T̄

Pr(it|xt; θ)p(xt|xt−1, it−1; θ3)f̂
θ
t+1(xt) t− 1 ∈ T̄ , t ∈ T̄

Î
({∑NQ

k=1

√
π
−1
wk

· Pr(it| exp
(
µ+
√
2σck

)
+ (1− it−1)gj ; θ)

· f̂θt+1(exp
(
µ+
√
2σck

)
+ (1− it−1)gj)

}NI

j=1

) otherwise,

(47)

with Gauss–Hermite nodes and weights {(ck, wk)}N
Q

k=1. Note that {gj}N
I

j=1 denotes our interpo-

lation grid, and as for the approximation of the expected value function in (45), we use splines

to approximate f̂θt throughout the recursion. The (conditional) likelihood function based on

occasional mileage state observations reads

L(θ; {{xt}t∈T̄ , {it}t∈T }) = Pr(i1|x1; θ)f̂θ2 (x1). (48)

In the following, we present additional results for the bus engine replacement model of

Section 3.2.

Figure 14 illustrates the fit for the original dataset of Rust (1987) by contrasting a kernel

density estimate of the empirical distribution, our log-normal model, and a histogram with the

same class width as in the discretization of the original model.36

We now address why the additional variance of the law of motion estimators does not carry

over to the costs parameters estimators. First and foremost, the correlation plot in Figure 15

35In this formulation, the expected value EV is a continuous function of the mileage state x and has to be
approximated accordingly; we use splines throughout our implementation. Moreover, the implicit nature of the
problem requires the application of a projection or collocation method if we want to integrate it with MPEC (as
opposed to iterative procedures such as value function iteration, which can be integrated with NFXP, but not
with MPEC); see, for example, Judd (1992, 1998).

36Note that the histogram depicts the discrete mileage transitions for each period, whereas the transition
probabilities in Rust (1987) capture the transitions between mileage bins. For example, a transition from mileage
state 4,000 to state 6,000 would fall in the first histogram class in Figure 14, because the difference is only 2,000,
but in the second in the original formulation, because the bin changes from first to second.
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Figure 14: Transition probability density functions for the continuous mileage state space.
Kernel fit of the empirical distribution of state transitions (black line); fitted log-normal model
(red line); histogram of transitions with class width equal to 5, 000 miles.

delivers insights into the correlation structure of the estimates under occasional observations:

while the estimators of the costs parameters are highly correlated among themselves, they are

apparently uncorrelated with the estimators of the parameters of the law of motion. Second,

it is not the parameters of the law of motion themselves that matter for the decision-making,

but rather their implied modes as, e.g., can be seen in Equation (33). Figure 16 depicts the

distribution of the mean and variance of the log-normal distribution derived from its parameters

estimates; apparently, the mean mileage increment in particular is estimated quite accurately

even from occasional state observations. The Q-Q plot in Figure 17 compares the joint distribu-

tions of the estimators for full and occasional observation regimes based on their Mahalanobis

distance, once for all parameters (left), and once for the two costs parameter estimates, together

with the estimated mean mileage increment (right). We conclude that (i) there is barely any ev-

idence, other than their variances, against the two distributions being the same (linearly aligned

data points, but rotated around zero), and (ii) the difference in variance becomes substantially

smaller if we look at the mean of the mileage increments instead of at their raw distributional

parameters.

Finally, Figure 18 plots pairs of estimates for each simulated dataset—the estimate using

full state observations on the x-axis against the estimate using occasional state observations for

the same dataset on the y-axis. The red line corresponds to the linear regression through all

estimates. Note that the fitted linear model intersects with the true parameters and is almost

equal to the 45◦ line. Even though the two types of estimates are not identical for each dataset,

they are centered symmetrically around the linear model. In fact, Figure 19 reveals that the

distribution of θ̂full1 − θ̂occ1 for each dataset is approximately normal, and symmetric around zero

with fat tails for R̂C
full
− R̂C

occ
.
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Figure 15: Correlation plot of the maximum likelihood estimates of the costs and transition
parameters of Rust (1987) with continuous mileage states under the occasional observation
regime for 400 simulated datasets.
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Figure 16: Distributions of the maximum likelihood estimators of the mean and variance of
mileage increments in Rust (1987) with continuous mileage states under the full observation
regime (red) and the occasional observation regime (blue) for 400 simulated datasets. The solid
lines show the kernel fit, the dotted lines the normal distribution using the sample mean and
sample variance, the black vertical line the parameter value used for simulation.
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Figure 17: Q-Q plot (Mahalanobis distance) of the maximum likelihood estimates of the costs
and transition parameters of Rust (1987) with continuous mileage states under the full observa-
tion regime (x-axis) and the occasional observation regime (y-axis) for 400 simulated datasets.
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Figure 18: Scatter plot of the maximum likelihood estimates (blue circles) under the full obser-
vation (x-axis) and the occasional observation regimes (y-axis) for 400 simulated datasets. The
red line depicts a fitted linear model; vertical and horizontal black solid lines depict the true
parameter values.
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Figure 19: Distribution of the difference of the maximum likelihood estimates under the full
observation and the occasional observation regimes for 400 simulated datasets. The solid line
shows the kernel fit, the dotted line the normal distribution using the sample mean and sample
variance.
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