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Abstract. In the standard stochastic block model for networks, the probability of a connection be-

tween two nodes, often referred to as the edge probability, depends on the unobserved communities

each of these nodes belongs to. We consider a flexible framework in which each edge probability, to-

gether with the probability of community assignment, are also impacted by observed covariates. We

propose a computationally tractable two-step procedure to estimate the conditional edge probabilities

as well as the community assignment probabilities. The first step relies on a spectral clustering algo-

rithm applied to a localized adjacency matrix of the network. In the second step, k-nearest neighbor

regression estimates are computed on the extracted communities. We study the statistical properties

of these estimators by providing non-asymptotic bounds.

1. Introduction

The Stochastic Block Model (SBM) is a powerful yet convenient framework for network data

analysis, by postulating that each node in a network belongs to a community, in the presence of a finite

number of communities. The community assignments are unobserved to the researcher. A SBM is

highly effective in applications where community membership can be regarded as a discretized version

of unobserved heterogeneity. The standard SBM has been applied widely in diverse areas, where an

algorithm based on spectral clustering is often used. Statistical properties of these methodologies

have been investigated intensively in the recent literature; see, Lei and Rinaldo (2015), Joseph and

Yu (2016) and Rohe, Qin, and Yu (2016), just to name a few.

As an alternative approach, one can employ a model with more specific structures for the

edge probability functions, while incorporating (possibly continuous-valued) unobserved heterogeneity

through node-specific fixed effects. An advantage of such an approach is its ease of incorporating

observed covariates into the model. If one is willing to accept a specific form of the edge probability

function, e.g. scalar valued fixed effects representing unobserved heterogeneity, and the estimation
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algorithm is computationally feasible, then such a method is practical and intuitive to use, and by

having covariates in the model, it can shed valuable insights on, for example, the magnitude of

homophily (or heterophily) effects in terms of observed characteristics in a given network.

The main goal of our paper is to develop a procedure that incorporates both unobserved hetero-

geneity (through unobserved community assignments) and observed heterogeneity (through covariates)

building on the SBM framework. More specifically, our version of SBM lets each edge probability, to-

gether with the probability of community assignment, be impacted by observed covariates in a flexible

manner. That is, we postulate that the edge probabilities and the community assignment probabil-

ities are nonparametric function of covariates. Unobserved community assignment enters the model

in a fully unrestricted way, since it simply indexes (or used as a label for) the edge probability and

the community assignment probability. We note that letting the community assignment probability

depend on covariates nonparametrically is an important feature of our model. It means that the

observed covariates (or observed heterogeneity) and the unobserved heterogeneity can be correlated

in an unspecified way, a feature often considered to be highly desirable in econometrics. Of course,

this generality comes at the cost of additional technical complications, a part of the many theoretical

challenges presented by our model, as is discussed shortly.

We propose a computationally tractable two-step procedure to estimate the conditional edge

probabilities as well as the community assignment probabilities. The first step relies on a spectral

clustering algorithm applied to a localized adjacency matrix of the network. We build on the k-nearest

neighbor (k-nn) algorithm in our localization procedure, followed by the Singular Value Decomposition

(SDV) to compute left/right singular vectors of the localized adjacency matrix, or, more precisely, a

localized and normalized version of the Laplacian. Note that we need to employ SVD, as opposed to

the eigen-value decomposition often used for the standard spectral clustering, even though we consider

undirected network. This is because our localized and normalized network Laplacian depends on the

covariate values at each of the two nodes, resulting its asymmetry. We then apply K-means clustering

to extract communities, as in the standard spectral clustering algorithm, though it is implemented at

each covariate value. As in the literature of the standard SBM without covariates, we provide non-

asymptotic bounds for misclassificaiton error. Since we allow for correlation of unknown form between

the community assignment and the covariates, it naturally induces independent but non-identically

distributed (i.n.i.d) covariates when conditioned on community assignments, even though we assume
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random sampling for community assignments and observed covariates. We thus obtain some non-

asymptotic results for the k-nn estimator under an i.n.i.d sampling; those can be of independent

theoretical interest.

In the second step, once again we employ the k-nn regression algorithm, but this time in order

to estimate the edge probability matrix and the community assignment probability vector. We apply

the k-nn estimator to the extracted communities obtained from the first step. We study the statistical

properties of these estimators while taking account of the effects of classification error in the first step,

by obtaining non-asymptotic bounds for them.

1.1. Notation.

For a matrix M , ∥M∥ denotes its spectral norm, ∥M∥F its Frobenius norm, ∥M∥max its max

norm. B(x, r) ⊂ Rd is the closed ball of center x and radius r, λ is the Lebesgue measure on Rd,

Vd =
∫
B(0,1) dλ and Ik is the identity matrix of size k.

2. Model and Estimator

2.1. Stochastic Block Model with Covariates.

We consider a network of N nodes such that each node i has a d-vector of covariates x(i) and

belongs to a community g(i) ∈ [G] where G ∈ N. For each node i, the researcher observes x(i) but

does not observe the community g(i). Let MN,G ⊂ RN×G the set of membership matrices, i.e., of

matrices such that each row has exactly one nonzero coefficient set to 1. Let θi ∈ RG be a vector such

that θig(i) = 1 and all other coefficients are 0. Then Θ := (θ1, ..., θN )⊤ ∈ MN,G. The researcher also

observes the adjacency matrix A = (Aij)1≤i,j≤N . Define x = {x(i), i ∈ [N ]} and g = {g(i), i ∈ [N ]}.

In our stochastic block model with covariates, the distribution of the adjacency matrix conditional on

x and g is given by a matrix-valued function B : (x, x′) 7→ B(x, x′) ∈ RG×G: conditional on x and g,

the entries Aij are i.i.d Bernouilli random variables with

Pr(Aij = 1|x,g) = Pr(Aij = 1|x(i), x(j), g(i), g(j)) = Bg(i)g(j)(x(i), x(j)).

We note that the function B may vary with N and thus allows for sparsity. The distribution of g(i)

conditional on x(i) is given by the functions x 7→ πg(x) = Pr(g(i) = g|x(i) = x), for g ∈ [G]. We

assume that (x(i), g(i))i∈[N ] are i.i.d random variables, and let SX = supp(x(i)). However we state

some of our results as nonasymptotic bounds conditional on g, in which case it is understood that we

only assume that (x(i))i∈[N ] are independent draws and the marginal distribution of each depend on

g(i) only.
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2.2. Construction of the estimator.

Our primary parameters of interest are B(x, x′) and π(x) = (π1(x), ..., πG(x)) for some (x, x′) ∈

SX × SX . Our estimators of these quantities rely on a spectral clustering algorithm applied to a

truncated adjacency matrix, following the intuition of k-nearest neighbor regression. Before describing

the algorithm and our estimators, we introduce the following notations.

Let k ∈ N. We define the k-nearest neighbor (k-NN) radius of x as rk(x) := inf{r > 0 :

|B(x, r) ∩ x| = k}. The k-neighborhood of x is ηN (x) := {i ∈ [N ] : ||x(i) − x|| ≤ rk(x)}. Let

ηN (x, x′) := {(x(i), x(j)) : x(i) ∈ ηN (x) and x(j) ∈ ηN (x′)}. For ease of notation, we sometimes write

η(x) and η(x, x′). For these units, we define the adjacency matrix Aη ∈ Rk×k: it is a submatrix of

the network adjacency matrix A where rows index units in η(x) and columns index units in η(x′).

Similarly, Θη(x) ∈ Mk,G is the membership matrix for the individuals in η(x): it is a submatrix of Θ

where rows index units in η(x) and columns index communities. Note that we drop the dependence

of Aη in x and x′ for ease of notation. Let Oη ∈ Rk×k and Qη ∈ Rk×k be the diagonal matrices such

that Oη
ii :=

∑
j∈ηN (x′)A

η
ij and Qη

jj :=
∑

i∈ηN (x)A
η
ij . For τ > 0, we also define Oη

τ := Oη + τIk and

Qη
τ := Qη + τIk′ . Finally, by analogy with the regularized graph Laplacian in the symmetric case, let

Lη
τ := (Oη

τ )
− 1

2Aη(Qη
τ )

− 1
2 .

Our estimation procedure first applies a spectral clustering algorithm to Lη
τ to estimate the commu-

nities of units in η(x) and η(x′). This spectral clustering algorithm proceeds as follows.

Spectral Clustering Algorithm:

Input: Lη
τ , G, approximation parameter for K-means.

Output: Θ̂η(x) ∈ Mk,G and Θ̂η(x′) ∈ Mk,G estimators of the membership matrices.

Steps:

(1) Obtain the singular value decomposition of Lη
τ . Let U ∈ Rk×G and V ∈ Rk×G be the

matrices of the top G left and right singular vectors, respectively.

(2) Apply K-means clustering on the rows of U , output Θ̂η(x).

(3) Apply K-means clustering on the rows of V , output Θ̂η(x′).

Once these communities are estimated, we estimate Bgh(x, x
′) and πg(x) by running k-NN

regressions on the appropriate communities. For i ∈ η(x), let ĝ(i) be the estimated community, i.e.,

such that
(
Θ̂η(x)

)
i,ĝ(i)

= 1 and
(
Θ̂η(x)

)
i,g

= 0 for any g ̸= ĝ(i). Estimated communities of units

in η(x′) are similarly defined. Let GhN (x) = {g(i) = h, i ∈ ηN (x)} and nh(x) = |GhN (x)|. Our
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estimator for nh(x) is n̂h(x) := #{i ∈ η(x) : ĝ(i) = h}. We can finally introduce our estimators of

the connection probabilities and community probabilities. The estimator of πh(x) is

(2.1) π̂h(x) =
n̂h(x)

k
.

The estimator of Bgh(x, x
′) is

(2.2) B̂gh(x, x
′) =

1

n̂g(x)n̂h(x′)

∑
i∈η(x) : ĝ(i)=g
j∈η(x′) : ĝ(j)=h

Aij .

2.3. Assumptions.

We will maintain the following assumptions where S is a subset of SX , the support of x.

Assumption 2.1. There exist constants c > 0 and T > 0 such that

(2.3) λ(S ∩ B(x, t)) ≥ cλ(B(x, t)), ∀t ∈ (0, T ], ∀x ∈ S.

We consider the case where the covariates are continuous. Define the density of x(i) given

g(i) = g as f(.|g), for g ∈ [G]. Define also f(x) := ming∈[G] f(x|g).

Assumption 2.2. There exist constants UX and bX > 0 such that

UX ≥ f(x) ≥bX , ∀x ∈ S.(2.4)

Similarly, define f(x) := maxg∈[G] f(x|g).

Assumption 2.3. There exist constants UX and bX > 0 such that

(2.5) UX ≥ f(x) ≥ bX , ∀x ∈ S.

Some smoothness assumptions will be imposed to study our estimators.

Assumption 2.4. (x, x′) 7→ Bgh(x, x
′) is Lipschitz continuous for all (g, h) ∈ [G]2. We denote lB the

smallest Lipschitz constant.

Assumption 2.5. x 7→ πg(x) is Lipschitz continuous for all g ∈ [G]. We denote lπ the smallest

Lipschitz constant.

Note that lB may depend on N and thus captures sparsity.
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3. Clustering

We fix a pair (x, x′) ∈ S2. The main result of this section is a high probability finite sample

bound on a misclustering measure applied to Θ̂η(x) and Θ̂η(x′). This result is obtained in 3 steps. We

first obtain a finite sample bound on the difference between the graph Laplacian and its population

counterpart. We then apply a version of Davis-Kahan theorem to bound the difference between Û , V̂ ,

and their population counterparts. Finally, we use theoretical properties of the K-means algorithm

to bound the misclustering error.

3.1. Convergence of the graph Laplacian.

To introduce the population counterpart of Lη
τ , we define the following objects. Let P (x,g) :=

E[A|x,g]. Thus, Pij(x,g) = E[Aij |x(i), x(j), g(i), g(j)]. Let also Pij(x, x
′,g) = E[Aij |x(i) = x, x(j) =

x′, g(i), g(j)] and P (x, x′,g) = (Pij(x, x
′,g))1≤i,j≤N . As in Section 2.2, we also define the localized ma-

trices P η(x,g) and P η(x, x′,g) as submatrices of the matrices P (x,g) and P (x, x′,g) where rows index

units in η(x) and columns index units in η(x′). Let Oη(x,g) ∈ Rk×k, Oη(x, x′,g) ∈ Rk×k, Qη(x,g) ∈

Rk×k and Qη(x, x′,g) ∈ Rk×k be the diagonal matrices such that Oη
ii(x,g) :=

∑
j∈ηN (x′) E[A

η
ij |x,g],

Oη
ii(x, x

′,g) :=
∑

j∈ηN (x′) Pij(x, x
′,g), Qη

jj(x,g) :=
∑

i∈ηN (x) E[A
η
ij |x,g] and finally Qη

jj(x, x
′,g) :=∑

i∈ηN (x) Pij(x, x
′,g). Define also Oη

τ (x,g) := Oη(x,g) + τIk, Oη
τ (x, x′,g) := Oη(x, x′,g) + τIk,

Qη
τ (x,g) := Qη(x,g) + τIk and Qη

τ (x, x′,g) := Qη(x, x′,g) + τIk. Finally, let

Lη
τ (x,g) := (Oη

τ (x,g))
− 1

2P η(x,g)(Qη
τ (x,g))

− 1
2 ,

Lη
τ (x, x

′,g) := (Oη
τ (x, x

′,g))−
1
2P η(x, x′,g)(Qη

τ (x, x
′,g))−

1
2 .

To obtain a finite sample bound, we will rely on concentration inequalities for symmetric matrices.

However, P η(x, x′,g) and Aη are not symmetric in general. Following Rohe, Qin, and Yu (2016), we

first focus on their Hermitian dilations, where the Hermitian dilation of a matrix M , denoted M̃ , is

given by

M̃ =

 0 M

M⊤ 0

 .

Define the minimum degree

dmin(x, x
′,x) := min

(
min

i∈ηN (x)
Oii(x, x

′,g), min
j∈ηN (x′)

Qjj(x, x
′,g), min

i∈ηN (x)
Oii(x,g), min

j∈ηN (x′)
Qjj(x,g)

)
.

In most of the computations, we drop the dependence in (x, x′,x). Define

Rk :=

(
2k

NbXcVd

)1/d

.(3.1)
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Lemma 3.1. Let Assumptions 2.1, 2.2, 2.3 and 2.4 hold. For all N , δ ∈ (0, 1), τ > 0 and 1 ≤ k ≤ N

such that

(1) supx∈S rk(x) ≤ Rk,

(2) 3 ln(8k/δ) ≤ dmin + τ ,

with probability at least 1− δ conditional on (g,x), it holds that

∥L̃η
τ − L̃η

τ (x, x
′,g)∥ ≤ 4

√
3 ln(8k/δ)

dmin + τ
+

2klBRk

dmin + τ

(
2klBRk

dmin + τ
+ 3

)
.(3.2)

Note that this finite sample bound holds conditionally on (g,x). It cannot be integrated

directly because Conditions (1) and (2) are restrictions on x. We show in Lemma A 1.5 that under

certain assumptions, supx∈S rk(x) ≤ Rk holds with high probability and we derive in Lemma 3.3 a

high probability bound for dmin. Lemma 3.4 obtains a high probability bound on ∥L̃η
τ − L̃η

τ (x, x′,g)∥

which will hold conditional on g only.

Proof.

Let

Dη
τ :=

Oη
τ 0

0 Qη
τ

 , Dη
τ (x,g) :=

Oη
τ (x,g) 0

0 Qη
τ (x,g)

 and Dη
τ (x, x

′,g) :=

Oη
τ (x, x′,g) 0

0 Qη
τ (x, x′,g)

 .

Note that

L̃η
τ = (Dη

τ )
− 1

2 Ãη(Dη
τ )

− 1
2 ,

L̃η
τ (x,g) = Dη

τ (x,g)
− 1

2 P̃ η(x,g)Dη
τ (x,g)

− 1
2

L̃η
τ (x, x

′,g) = Dη
τ (x, x

′,g)−
1
2 P̃ η(x, x′,g)Dη

τ (x, x
′,g)−

1
2 .

We decompose

L̃η
τ − L̃η

τ (x, x
′,g) = (Dη

τ )
− 1

2 Ãη(Dη
τ )

− 1
2 − (Dη

τ (x, x
′,g))−

1
2 P̃ η(x, x′,g)(Dη

τ (x, x
′,g))−

1
2

= [(Dη
τ )

− 1
2 − (Dη

τ (x,g))
− 1

2 ]Ãη(Dη
τ )

− 1
2︸ ︷︷ ︸

=B1

+(Dη
τ (x,g))

− 1
2 Ãη[(Dη

τ )
− 1

2 − (Dη
τ (x,g))

− 1
2 ]︸ ︷︷ ︸

=B2

+(Dη
τ (x,g))

− 1
2 Ãη(Dη

τ (x,g))
− 1

2 − (Dη
τ (x,g))

− 1
2 P̃ η(x,g)(Dη

τ (x,g))
− 1

2︸ ︷︷ ︸
=B3

+(Dη
τ (x,g))

− 1
2 P̃ η(x,g)(Dη

τ (x,g))
− 1

2 − (Dη
τ (x, x

′,g))−
1
2 P̃ η(x, x′,g)(Dη

τ (x, x
′,g))−

1
2︸ ︷︷ ︸

=B4

.
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Note that by Lemma A 1.6, ∥L̃η
τ∥ ≤ 1. Thus

∥B1∥ = ∥[I − (Dη
τ (x,g))

− 1
2 (Dη

τ )
1
2 ](Dη

τ )
− 1

2 Ãη(Dη
τ )

− 1
2 ∥

= ∥I − (Dη
τ (x,g))

− 1
2 (Dη

τ )
1
2 L̃η

τ∥

≤ ∥I − (Dη
τ (x,g))

− 1
2 (Dη

τ )
1
2 ∥.

Likewise

∥B2∥ = ∥(Dη
τ (x,g))

− 1
2 (Dη

τ )
1
2 (Dη

τ )
− 1

2 Ãη(Dη
τ )

− 1
2 [I − (Dη

τ )
1
2 (Dη

τ (x,g))
− 1

2 ]∥

≤ ∥(Dη
τ (x,g))

− 1
2 (Dη

τ )
1
2 ∥∥I − (Dη

τ )
1
2 (Dη

τ (x,g))
− 1

2 ∥.

We follow Rohe, Qin, and Yu (2016) and use the two-sided Chernoff concentration inequality of Chung

and Lu (2006) (see Theorem 2.4) to obtain for i ∈ ηN (x) ∪ ηN (x′),

Pr (|(Dη(x,g))ii − (Dη)ii| ≥ a0|g,x) ≤ exp

(
− a20
2(Dη(x,g))ii

)
+ exp

(
− a20
2(Dη(x,g))ii +

2
3a0

)
where the absence of τ as a subscript indicates τ = 0. Take a0 = a1(Dη

τ (x,g))ii where 0 < a1 ≤ 1,

then

Pr
[
|(Dη

τ (x,g))ii − (Dη
τ )ii| ≥ a1(Dη

τ (x,g))ii|g,x
]
≤ 2 exp

(
−a21(D

η
τ (x,g))ii
3

)
= 2 exp

(
−a21 [(Dη(x,g))ii + τ ]

3

)
≤ 2 exp

(
−a21 [dmin + τ ]

3

)
.

Note that for any x ≥ 0, |
√
x− 1| ≤ |x− 1|. Thus we have

Pr
[
∥I − (Dη

τ (x,g))
− 1

2 (Dη
τ )

1
2 ∥ ≥ a1|g,x

]
= Pr

[
max

i∈ηN (x)∪ηN (x′)

∣∣∣∣∣1−
√

(Dη
τ )ii

(Dη
τ (x,g))ii

∣∣∣∣∣ ≥ a1|g,x

]

≤ Pr

[
max

i∈ηN (x)∪ηN (x′)

∣∣∣∣1− (Dη
τ )ii

(Dη
τ (x,g))ii

∣∣∣∣ ≥ a1|g,x
]

≤
∑

i∈ηN (x)∪ηN (x′)

Pr [|(Dη
τ (x,g))ii − (Dη

τ )ii| ≥ a1(Dη
τ (x,g))ii|g,x]

≤ 4k exp

(
−a21 [dmin + τ ]

3

)
On the event {∥I − (Dη

τ (x,g))
− 1

2 (Dη
τ )

1
2 ∥ ≤ a1},

∥(Dη
τ (x,g))

− 1
2 (Dη

τ )
1
2 ∥ ≤ ∥I∥+ ∥I − (Dη

τ )
1
2 (Dη

τ (x,g))
− 1

2 ∥ ≤ 1 + a1,
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which implies that ∥B1∥+ ∥B2∥ ≤ a21 + 2a1 ≤ 3a1. Thus,

Pr (∥B1∥+ ∥B2∥ ≤ 3a1|g,x) ≥ 1− 4k exp

(
−a21 [dmin + τ ]

3

)
.(3.3)

The expression for B3 simplifies to

B3 = (Dη
τ (x,g))

− 1
2

[
Ãη − P̃ η(x,g)

]
(Dη

τ (x,g))
− 1

2 .

We follow Rohe, Qin, and Yu (2016) and decompose B3 =
∑

i∈ηN (x)

∑
j∈ηN (x′) Yi,j with

Yi,j =
Aij − Pij(x,g)

([Oη
ii(x,g) + τ ][Qη

ii(x,g) + τ ])
1/2

Ei,k+j

where Ei,j is the square matrix of size 2k with ones at position (i, j) and at position (j, i) and zeros

everywhere else. We apply a concentration inequality for symmetric matrices, see Theorem 5.4.1 of

Vershynin (2018). ∥Ei,j∥ = 1 thus a bound on ∥Yi,j∥ is

∥Yi,j∥ ≤ ([Oη
ii(x,g) + τ ][Qη

ii(x,g) + τ ])
−1/2

≤ ([dmin + τ ] [dmin + τ ])−1/2 =
1

dmin + τ

and a bound on ∥
∑

i∈ηN (x)

∑
j∈ηN (x′) E[(Yi,j)2|g,x]∥ is

∥
∑

i∈ηN (x)

∑
j∈ηN (x′)

E[(Yi,j)2|g,x]∥ = ∥
∑

i∈ηN (x)

∑
j∈ηN (x′)

[
Pij(x,g)− Pij(x,g)

2

[Oη
ii(x,g) + τ ][Qη

jj(x,g) + τ ]
(Ei,i + Ek+j,k+j)

]
∥

= ∥
∑

i∈ηN (x)

 ∑
j∈ηN (x′)

Pij(x,g)− Pij(x,g)
2

[Oη
ii(x,g) + τ ][Qη

jj(x,g) + τ ]

Ei,i

+
∑

j∈ηN (x′)

 ∑
i∈ηN (x)

Pij(x,g)− Pij(x,g)
2

[Oη
ii(x,g) + τ ][Qη

jj(x,g) + τ ]

Ek+j,k+j∥

= max

 max
i∈ηN (x)

 ∑
j∈ηN (x′)

Pij(x,g)− Pij(x,g)
2

[Oη
ii(x,g) + τ ][Qη

jj(x,g) + τ ]

 ,

max
j∈ηN (x′)

 ∑
i∈ηN (x)

Pij(x,g)− Pij(x,g)
2

[Oη
ii(x,g) + τ ][Qη

jj(x,g) + τ ]


≤ max

 1

dmin + τ
max

i∈ηN (x)

 ∑
j∈ηN (x′)

Pij(x,g)

Oη
ii(x,g) + τ

 ,
1

dmin + τ
max

j∈ηN (x′)

 ∑
i∈ηN (x)

Pij(x,g)

Qη
jj(x,g) + τ


≤ 1

dmin + τ
,
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where the third equality holds by definition of the spectral norm. We apply Theorem 5.4.1 of Vershynin

(2018) and obtain

(3.4) Pr (∥B3∥ ≤ a1|g,x) ≥ 1− 4k exp

(
−a21[dmin + τ ]

2 + 2a1/3

)
.

The remaining term is B4. We decompose

B4 = [(Dη
τ (x,g))

− 1
2 − (Dη

τ (x, x
′,g))−

1
2 ]P̃ η(x,g)(Dη

τ (x,g))
− 1

2︸ ︷︷ ︸
=B41

+(Dη
τ (x, x

′,g))−
1
2 P̃ η(x,g)[(Dη

τ (x,g))
− 1

2 − (Dη
τ (x, x

′,g))−
1
2 ]︸ ︷︷ ︸

=B42

+(Dη
τ (x, x

′,g))−
1
2 P̃ η(x,g)(Dη

τ (x, x
′,g))−

1
2 − (Dη

τ (x, x
′,g))−

1
2 P̃ η(x, x′,g)(Dη

τ (x, x
′,g))−

1
2︸ ︷︷ ︸

=B43

.

By Lemma A 1.7, ∥L̃η
τ (x,g)∥ ≤ 1. Thus,

∥B41∥ ≤ ∥I − (Dη
τ (x, x

′,g))−
1
2 (Dη

τ (x,g))
1
2 ∥∥L̃η

τ (x,g)∥

≤ ∥I − (Dη
τ (x, x

′,g))−
1
2 (Dη

τ (x,g))
1
2 ∥,

and

∥B42∥ ≤ ∥(Dη
τ (x, x

′,g))−
1
2 (Dη

τ (x,g))
1
2 ∥∥L̃η

τ (x,g)∥∥I − (Dη
τ (x,g))

1
2 (Dη

τ (x, x
′,g))−

1
2 ∥

≤ ∥(Dη
τ (x, x

′,g))−
1
2 (Dη

τ (x,g))
1
2 ∥∥I − (Dη

τ (x,g))
1
2 (Dη

τ (x, x
′,g))−

1
2 ∥.

Note that

∥I − (Dη
τ (x, x

′,g))−
1
2 (Dη

τ (x,g))
1
2 ∥ = max

i∈ηN (x)∪ηN (x′)

∣∣∣∣∣1−
√

(Dη
τ (x,g))ii

(Dη
τ (x, x′,g))ii

∣∣∣∣∣ ≤ max
i∈ηN (x)∪ηN (x′)

∣∣∣∣1− (Dη
τ (x,g))ii

(Dη
τ (x, x′,g))ii

∣∣∣∣
If i ∈ ηN (x),

(Dη
τ (x,g))ii = (Oη

τ (x,g))ii =
∑

j∈ηN (x′)

E[Aη
ij |x,g] + τ =

∑
j∈ηN (x′)

Bg(i),g(j)(x(i), x(j)) + τ

thus∣∣(Dη
τ (x,g))ii − (Dη

τ (x, x
′,g))ii

∣∣ ≤ ∑
j∈ηN (x′)

|Bg(i),g(j)(x(i), x(j))−Bg(i),g(j)(x, x
′)|

≤
∑

j∈ηN (x′)

lB∥(x(i), x(j))− (x, x′)∥

≤
∑

j∈ηN (x′)

lB
[
||(x(i), x(j))− (x(i), x′)||+ ||(x(i), x′)− (x, x′)||

]
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=
∑

j∈ηN (x′)

lB
[
||x(j)− x′||+ ||x(i)− x||

]
≤ klB(rk(x) + rk(x

′))

≤ 2klBRk,

where the second inequality holds by Assumption 2.4 and the last inequality by Condition (1). We

also have for i ∈ ηN (x),

(3.5) (Dη
τ (x, x

′,g))ii = Oii(x, x
′,g) + τ ≥ dmin + τ

which implies ∣∣∣∣1− (Dη
τ (x,g))ii

(Dη
τ (x, x′,g))ii

∣∣∣∣ ≤ 2klBRk

dmin + τ
.

The same bound holds for i ∈ ηN (x′). Thus

(3.6) ∥B41∥ ≤ 2klBRk

dmin + τ
.

We also obtain

(3.7) ∥B42∥ ≤ 2klBRk

dmin + τ

(
2klBRk

dmin + τ
+ 1

)
.

The spectral norm of B43 can be bounded as follows

∥B43∥ ≤ ∥Dη
τ (x, x

′,g)∥−1 ∥P̃ η(x,g)− P̃ η(x, x′,g)∥.

By Equation (3.5), we have ∥Dη
τ (x, x′,g)∥ ≥ dmin+ τ . As for the second term in the inequality above,

∥P̃ η(x,g)− P̃ η(x, x′,g)∥ ≤ k max
i∈ηN (x)
j∈ηN (x′)

(
P̃ η
ij(x,g)− P̃ η

ij(x, x
′,g)

)
= k max

i∈ηN (x)
j∈ηN (x′)

(
Bg(i),g(j)(x(i), x(j))−Bg(i),g(j)(x, x

′)
)

≤ 2klBRk,

where the first inequality comes from the fact that for any matrix A of size k × k, ∥A∥ ≤ ∥A∥F ≤

kmaxi,j |Aij | and the following equality from Assumption 2.4. Thus

(3.8) ∥B43∥ ≤ 2klBRk

dmin + τ
.

Adding (3.6), (3.7) and (3.8), we obtain

∥B4∥ ≤ 2klBRk

dmin + τ

(
2klBRk

dmin + τ
+ 3

)
.(3.9)
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Putting (3.3), (3.4) and (3.9) together, and using the fact that for L events V1,...,VL, Pr(∩L
l=1Vl) ≥∑L

l=1 Pr(Vl)− L+ 1, we obtain

Pr
(
∥L̃η

τ − L̃η
τ (x, x

′,g)∥ ≤ 4a1 +
2klBRk

dmin + τ

(
2klBRk

dmin + τ
+ 3

)
| g,x

)
≥ Pr (∥B1∥+ ∥B2∥ ≤ 3a1|g, V (g)) + Pr (∥B3∥ ≤ a1|g,x)

+ Pr

(
∥B4∥ ≤ 2klBRk

dmin + τ

(
2klBRk

dmin + τ
+ 3

)
|g,x

)
− 2

≥ 1− 8k exp

(
−a21 [dmin + τ ]

3

)
.

Taking

a1 =

√
3 ln(8k/δ)

dmin + τ
,

then a1 ≤ 1 by Condition (2), and

Pr

∥L̃η
τ − L̃η

τ (x, x
′,g)∥ ≤ 4

√
3 ln(8k/δ)

dmin + τ
+

2klBRk

dmin + τ

(
2klBRk

dmin + τ
+ 3

)
| g,x

 ≥ 1− δ.

□

3.2. Lower bound on dmin(x, x
′,x).

The finite sample bound obtained in Lemma 3.1 is valid under restrictions on dmin(x, x
′,x),

a localized minimum expected degree. In this section, we derive a nonasymptotic probability bound

on dmin(x, x
′,x) and combine it with Lemmas 3.1 and A 1.5 to obtain a finite sample bound on

∥L̃η
τ − L̃η

τ (x, x′,g)∥ conditional on g only and with explicit dependence in k. For h ∈ [G], let

nh(x) := #{g(i) = h, i ∈ ηN (x)}

Nh := #{g(i) = h, i ∈ [N ]}

nh := min
x∈S

nh(x).

Define

∆ = min
g∈[G]

max
h∈[G]

inf
(x,x′)∈S2

Bgh(x, x
′)

Note that as for B and lB, ∆ may vary with N and thus captures sparsity. We assume that ∆ > 0. A

natural lower bound on dmin(x, x
′,x) therefore involves minh∈[G] nh. We show in Lemma A 1.5 that

under certain assumptions, infx∈S rk(x) ≥ Rk holds with high probability, where

(3.10) Rk :=

(
k − 12d ln(12N/δ)

4NUXVd

)1/d

.
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The following lemma uses this result and establishes a lower bound on minh∈[G] nh.

Lemma 3.2. Let Assumptions 2.1, 2.2 and 2.3 hold. Then for all N , δ ∈ (0, 1), 1 ≤ k ≤ N such that

(1) k ≥ 12d ln(24GN/δ),

(2) k ≤ 8T dVdUXN ,

(3) and for all h ∈ [G], c
16

Nh
N

bX
UX

k ≥ 24d ln(24GNh/δ) + 1,

with probability at least 1− δ conditional on g, it holds that

min
h∈[G]

nh ≥ min
h∈[G]

⌊
c

16

Nh

N

bX

UX

k

⌋
.

Proof. Fix δ ∈ (0, 1) and k satisfying the conditions of the lemma. Note that

Rk ≥
(

k

8NUXVd

)1/d

.

We apply Lemma 4 of Portier (2021) to the subpopulation {i : g(i) = h}. We define rhl (x) to be the

l-NN radius of x ∈ S for this subpopulation, that is,

rhl (x) := inf{r > 0 : |B(x, r) ∩ {x(i) : g(i) = h}| = l}.

By Assumptions 2.2 and 2.3, we have

(3.11) 0 < bX ≤ f(x|h) ≤ UX , ∀x ∈ S,

and by Assumption 2.1, Condition (7) of Portier (2021) also holds for f(x|h). For any l and δ′ > 0

such that 24d ln(12Nh/δ
′) ≤ l ≤ T dNhbXcVd/2, let

τhl :=

(
2l

NhbXcVd

)1/d

.

By Lemma 4 of Portier (2021), with probability at least 1− δ′ conditional on g, it holds that

sup
x∈S

rhl (x) ≤ τS,hl .

We take lh =
⌊

c
16

Nh
N

bX
UX

k
⌋
and δ′ = δ

2G . Then

lh ≤ c

16

Nh

N

bX

UX

k ≤ T dNhbXcVd/2,

by Condition (2) and

lh ≥ 24d ln(12Nh/δ
′),
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by Condition (3). Moreover,

τhlh ≤
(

k

8NUXVd

)1/d

≤ Rk.

This implies

{nh ≥ lh} = {nh(x) ≥ lh for every x ∈ S} = {rhlh(x) ≤ rk(x) for every x ∈ S }

⊇ {sup
x∈S

rhlh(x) ≤ τhlh} ∩ { inf
x∈S

rk(x) ≥ Rk}.

Define L = minh∈[G]

⌊
c
16

Nh
N

bX
UX

k
⌋
= minh∈[G] lh. We apply the equation above to all h ∈ [G] and

obtain

Pr

(
min
h∈[G]

nh ≥ L |g
)

≥
∑
h∈[G]

Pr
(
nh ≥ L |g

)
−G+ 1

≥
∑
h∈[G]

Pr
(
nh ≥ lh |g

)
−G+ 1

≥
∑
h∈[G]

Pr

(
{sup
x∈S

rhlh(x) ≤ τhlh} ∩ { inf
x∈S

rk(x) ≥ Rk} |g
)
−G+ 1

≥
∑
h∈[G]

[
Pr

(
sup
x∈S

rhlh(x) ≤ τhlh |g
)
+ Pr

(
inf
x∈S

rk(x) ≥ Rk |g
)
− 1

]
−G+ 1

≥ G(1− 2δ′)−G+ 1 = 1− δ.

where in the last inequality, we used k ≥ 12d ln(12N/δ′), guaranteed by Condition (1), together with

(A 1.8) of Lemma A 1.5. □

Lemma 3.3. Let Assumptions 2.1, 2.2 and 2.3 hold. Then for all N , δ ∈ (0, 1), 1 ≤ k ≤ N such that

(1) k ≥ 12d ln(24GN/δ),

(2) k ≤ 8T dVdUXN ,

(3) and for all h ∈ [G], c
16

Nh
N

bX
UX

k ≥ 24d ln(24GNh/δ) + 1,

with probability at least 1− δ conditional on g, it holds that

dmin(x, x
′,x) ≥ ∆ min

h∈[G]

⌊
c

16

Nh

N

bX

UX

k

⌋
.

Proof. Recall that

dmin(x, x
′,x) = min

(
min

i∈ηN (x)
Oii(x, x

′,g), min
j∈ηN (x′)

Qjj(x, x
′,g), min

i∈ηN (x)
Oii(x,g), min

j∈ηN (x′)
Qjj(x,g)

)
.
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Note that

Oii(x, x
′,g) =

∑
j∈ηN (x′)

Pij(x, x
′,g) =

∑
h∈[G]

nh(x
′)Bg(i)h(x, x

′)

≥
∑
h∈[G]

nh(x
′) inf

(x,x′)∈S2
Bg(i)h(x, x

′)

≥ min
h∈[G]

nh(x
′) max

h′∈[G]
inf

(x,x′)∈S2
Bg(i)h′(x, x′)

≥ min
h∈[G]

min
x∈S

nh(x) min
g∈[G]

max
h′∈[G]

inf
(x,x′)∈S2

Bgh′(x, x′)

≥ ∆ min
h∈[G]

nh.

The same inequality holds for Qjj(x, x
′,g). For the remaining terms in the definitions of dmin(x, x

′,x),

note that

Oii(x,g) =
∑

j∈ηN (x′)

Pij(x,g)

=
∑

j∈ηN (x′)

E[Aη
ij |x(i), x(j), g(i), g(j)]

=
∑
h∈[G]

∑
j∈ηN (x′):g(j)=h

Bg(i)h(x(i), x(j))

≥
∑
h∈[G]

nh(x
′) inf

(x,x′)∈S2
Bg(i)h(x, x

′)

≥ min
h∈[G]

nh(x
′) max

h∈[G]
inf

(x,x′)∈S2
Bg(i)h(x, x

′)

≥ min
h∈[G]

min
x∈S

nh(x) min
g∈[G]

max
h∈[G]

inf
(x,x′)∈S2

Bgh(x, x
′)

≥ ∆ min
h∈[G]

nh

This also holds for Qjj(x,g). Thus dmin(x, x
′,x) ≥ ∆minh∈[G] nh and the result holds by Lemma

3.2. □

Combining Lemma 3.1 together with Lemma 3.3, we obtain a new bound on ∥L̃η−L̃η(x, x′,g)∥.

Lemma 3.4. Let Assumptions 2.1, 2.2, 2.3 and 2.4 hold. Then for all N , δ ∈ (0, 1), 1 ≤ k ≤ N such

that

(1) ∆minh∈[G]

⌊
c
16

Nh
N

bX
UX

k
⌋
+ τ ≥ 3 ln(24k/δ),

(2) k ≥ max(12d ln(72GN/δ), 24d ln(36N/δ)),

(3) k ≤ min(8T dVdUXN, (1/2)T dVdbXcN),
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(4) and for all h ∈ [G], c
16

Nh
N

bX
UX

k ≥ 24d ln(72GNh/δ) + 1,

with probability at least 1− δ conditional on g, it holds that

∥L̃η
τ − L̃η

τ (x, x
′,g)∥ ≤ 4

√√√√ 3 ln(24k/δ)

∆minh∈[G]

⌊
c
16

Nh
N

bX
UX

k
⌋
+ τ

+
2klBRk

∆minh∈[G]

⌊
c
16

Nh
N

bX
UX

k
⌋
+ τ

 2klBRk

∆minh∈[G]

⌊
c
16

Nh
N

bX
UX

k
⌋
+ τ

+ 3

 .(3.12)

Proof. In what follows we use some simplified notation. Let C be the function such that C(dmin) is

the right hand side of (3.2). We also define the following two events, V (g,x) := {supx∈S rk(x) ≤ Rk}

and W (g,x) :=
{
minh∈[G] nh ≥ minh∈[G]

⌊
c
16

Nh
N

bX
UX

k
⌋}

⊂
{
dmin ≥ ∆minh∈[G]

⌊
c
16

Nh
N

bX
UX

k
⌋}

where

the inclusion follows by the proof of Lemma 3.3. Then,

Pr

[
∥L̃η

τ − L̃η
τ (x, x

′,g)∥ ≤ C

(
∆ min

h∈[G]

⌊
c

16

Nh

N

bX

UX

k

⌋) ∣∣∣g]
≥ Pr

[{
∥L̃η

τ − L̃η
τ (x, x

′,g)∥ ≤ C

(
∆ min

h∈[G]

⌊
c

16

Nh

N

bX

UX

k

⌋)}
∩ V (g,x) ∩W (g,x)

∣∣∣g]
≥ Pr

[{
∥L̃η

τ − L̃η
τ (x, x

′,g)∥ ≤ C (dmin)
}
∩ V (g,x) ∩W (g,x)

∣∣∣g]
= E

[
Pr
[{

∥L̃η
τ − L̃η

τ (x, x
′,g)∥ ≤ C (dmin)

} ∣∣∣g,x, V (g,x),W (g,x)
] ∣∣∣g, V (g,x),W (g,x)

]
× Pr

[
V (g,x) ∩W (g,x)

∣∣∣g] .
By Lemma 3.1 and ∆minh∈[G]

⌊
c
16

Nh
N

bX
UX

k
⌋
+ τ ≥ 3 ln(24k/δ),

Pr
[{

∥L̃η
τ − L̃η

τ (x, x
′,g)∥ ≤ C (dmin)

} ∣∣∣g,x, V (g,x),W (g,x)
]
≥ 1− δ/3.

Moreover, by Lemma A 1.5 and 24d ln(36N/δ) ≤ k ≤ T dNbXcVd/2,

Pr
[
V (g,x)

∣∣∣g] ≥ 1− δ/3.

Since

(1) k ≥ 12d ln(72GN/δ),

(2) k ≤ 8T dVdUXN ,

(3) and for all h ∈ [G], c
16

Nh
N

bX
UX

k ≥ 24d ln(72GNh/δ) + 1,

we also have by Lemma 3.3,

Pr
[
W (g,x)

∣∣∣g] ≥ 1− δ/3.
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Thus

Pr

[
∥L̃η

τ − L̃η
τ (x, x

′,g)∥ ≤ C

(
∆ min

h∈[G]

⌊
c

16

Nh

N

bX

UX

k

⌋) ∣∣∣g]
≥ (1− δ/3)

(
Pr
[
V (g,x)

∣∣∣g]+ Pr
[
W (g,x)

∣∣∣g]− 1
)
≥ (1− δ/3)(1− 2δ/3) ≥ 1− δ.

□

Remark 3.1. The variance term is the first term in (3.12). Consider the case where no regularization

is made (τ = 0) and sparsity is captured by a parameter ρN , i.e., such that B = ρNB0 where B0

does not vary with N , see e.g. Bickel, Chen, and Levina (2011)). Approximating Nh/N ≈ C for all

h ∈ [G], the variance term in (3.12) simplifies to

(3.13) C

√
ln(24k/δ)

ρNk
,

where C is a constant subject to change in value. The normalization in the definition of the Laplacian is

not unlike that of the k-NN regression estimator. However in comparison to standard k-NN regression,

e.g., Jiang (2019), the variance term has an extra
√
ln k term in the numerator, which comes from the

growing dimension of L̃η
τ and appears when applying various matrix concentration inequalities. On

the other hand, (3.13) does not have a lnN term in the numerator because it is a pointwise bound at

(x, x′) ∈ S2.

Remark 3.2. Let τ = 0, sparsity be captured by a parameter ρN and Nh/N ≈ C for all h ∈ [G].

Then the bias term in (3.12) simplifies to ≈ Rk(Rk + C) ≈ Rk if Rk → 0 as N → ∞, where C is a

constant subject to change in value. This is similar to Jiang (2019), confirming the intuition that the

effective dimension is that of the covariates and not twice as much. Note that the bias, a novel term

in this type of calculations, is not impacted by sparsity.

Remark 3.3. Let τ = 0, sparsity be captured by a parameter ρN and Nh/N ≈ C for all h ∈ [G].

Then as long as NρN → ∞, taking k ≈ (N2/ρdN )
1

d+2 gives ∥L̃η − L̃η(x, x′,g)∥ ≈ (ρNN)
−1
d+2 , up to

lnN and ln ρN factors: the rate obtained is as Jiang (2019), see Remark 1, where the sample size is

replaced with NρN due to sparsity.

3.3. Clustering.

In this section, for ease of readability, we do not display dependence of many of the defined

objects in x, x′, τ, k, etc. Using the Laplacian Lη
τ we compute its top G left/right singular vectors, to
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obtain the SVD of Lη
τ

Lη
τ = U Λ̂V ⊤

where U, V ∈ Rk×G. We then apply K-means clustering to U and V , solving

(Θ̂η(x), ZU ) = argmin
Θ∈Mk,G,Z∈RG×G

∥ΘZ − U∥F(3.14)

(Θ̂η(x′), ZV ) = argmin
Θ∈Mk,G,Z∈RG×G

∥ΘZ − V ∥F(3.15)

It is possible to use a faster clustering algorithm by using an approximate solution instead, incorpo-

rating the approximation error explicitly in the following analysis as in Lei and Rinaldo (2015).

Note that the i-th element of the diagonal matrix Oη
τ (x, x′,g) only depends on g(i). Define the

diagonal matrix O ∈ RG×G collecting these coefficients, i.e., such that Ogg =
∑

j∈ηN (x′)Bgg(j)(x, x
′)+

τ . Similarly, define the diagonal matrix Q ∈ RG×G such that Qgg =
∑

i∈ηN (x)Bg(i)g(x, x
′) + τ .

Define N (x) = diag
(√

n1(x), ...,
√
nG(x)

)
and let

(3.16) N (x)O−1/2
B(x, x′)Q−1/2N (x′) = zUΛτz

⊤
V

be the SVD of B(x, x′) after normalization by N (x)O−1/2
and N (x′)Q−1/2

. Note that

Lη
τ (x, x

′,g) = (Oη
τ (x, x

′,g))−
1
2Θη(x)B(x, x′)Θη(x′)

⊤
(Qη

τ (x, x
′,g))−

1
2 ,

with (Oη
τ (x, x′,g))

− 1
2Θη(x) = Θη(x)O−1/2

and (Qη
τ (x, x′,g))

− 1
2Θη(x′) = Θη(x′)Q−1/2

. Thus

Lη
τ (x, x

′,g) = Θη(x)N (x)−1zUΛτz
⊤
V N (x′)−1Θη(x′)

⊤
.(3.17)

From this expression, by slight modification of the argument in the proof of Lemma 2.1 in Lei and

Rinaldo (2015), considering SVD instead of eigenvalue decomposition, and taking account of the

normalization of the Laplacian, we see that the SVD of Lη(x, x′,g) is given by

Lη(x, x′,g) = UΛτV⊤

with U = Θη(x)ZU and V = Θη(x′)ZV where ZU = N (x)−1zU and ZV = N (x)−1zV .

Note

(3.18) ZUZ⊤
U = N (x)−1zUz

⊤
UN (x)−1 = diag

(
1

n1(x)
, ...,

1

nG(x)

)
As in Rohe, Qin, and Yu (2016), define

Ũ :=
1√
2

(
U
V

)
,
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Ũ :=
1√
2

(
U

V

)
,

then Ũ and Ũ are the eigenvectors corresponding to top G eigenvalues of L̃η and L̃η, respectively. We

will use λ1(x, x
′) ≥ λ2(x, x

′) ≥ ... ≥ λG(x, x
′) and λ̂1(x, x

′) ≥ λ̂2(x, x
′) ≥ ... ≥ λ̂G(x, x

′) to denote

them although we drop (x, x′) in most of our computations. We now have

Lemma 3.5.

∥Ũ Ũ⊤ − ŨŨ⊤∥F ≤ 2
√
2G

λG
∥L̃η

τ − L̃η
τ (x, x

′,g)∥.

Moreover, for some G×G orthogonal matrices QU and QV ,

∥U − UQU∥F ≤ 4
√
2G

λG
∥L̃η

τ − L̃η
τ (x, x

′,g)∥.

and

∥V − VQV ∥F ≤ 4
√
2G

λG
∥L̃η

τ − L̃η
τ (x, x

′,g)∥.

Proof. We employ the proof strategy developed by Lei and Rinaldo (2015) and Rohe, Qin, and Yu

(2016) with suitable modification. Note that these eigenvalues are equal to the top G singular values

of Lη and Lη, respectively. By Davis-Kahan Theorem (see Theorem VII.3.1 in Bhatia (2013)) and

noting that the eigengap between λ̂j , j ≤ G and λj , j ≥ G+ 1 is λ̂G we have

∥(I − ŨŨ⊤)Ũ Ũ⊤∥ ≤ 1

λ̂G

∥L̃η
τ − L̃η

τ (x, x
′,g)∥.

But

λ̂G ≥ λG − |λ̂G − λG|

≥ λG − ∥L̃η
τ − L̃η

τ (x, x
′,g)∥

where the second inequality follows from Weyl’s Theorem. It follows that

∥(I − ŨŨ⊤)Ũ Ũ⊤∥ ≤ 1

λG − ∥L̃η
τ − L̃η

τ (x, x′,g)∥
∥L̃η

τ − L̃η
τ (x, x

′,g)∥.

If ∥L̃η
τ − L̃η

τ (x, x′,g)∥ ≤ λG
2 then we have

∥(I − ŨŨ⊤)Ũ Ũ⊤∥ ≤ 2

λG
∥L̃η

τ − L̃η
τ (x, x

′,g)∥.

If, on the other hand, ∥L̃η
τ − L̃η

τ (x, x′,g)∥ > λG
2 then we directly have

∥(I − ŨŨ⊤)Ũ Ũ⊤∥ ≤ 1 ≤ 2

λG
∥L̃η

τ − L̃η
τ (x, x

′,g)∥



20 KITAMURA AND LAAGE

again. Now, noting rank(Û) is at most G it holds that

∥(I − ŨŨ⊤)Ũ Ũ⊤∥ ≥ 1√
G
∥(I − ŨŨ⊤)Ũ Ũ⊤∥F

≥ 1√
2G

∥Ũ Ũ⊤ − ŨŨ⊤∥F .

by Proposition 2.1 in Vu and Lei (2013). In sum, we have

∥Ũ Ũ⊤ − ŨŨ⊤∥F ≤ 2
√
2G

λG
∥L̃η

τ − L̃η
τ (x, x

′,g)∥

as desired. For the second assertion, as in Rohe, Qin, and Yu (2016) we note that for some G × G

orthogonal matrix QU

∥Ũ Ũ⊤ − ŨŨ⊤∥F ≥ 1

2
∥UU⊤ − UU⊤∥F

≥ 1√
2
∥ sinΘ(col(U), col(U))∥F

≥ 1

2
∥U − UQU∥F

where the second inequality follows from Proposition 2.1 in Vu and Lei (2013) and the third follows

from Proposition 2.2 in Vu and Lei (2013). We now have

∥U − UQU∥F ≤ 4
√
2G

λG
∥L̃η

τ − L̃η
τ (x, x

′,g)∥.

A similar argument shows the last inequality. □

We now bound misclassification rates. Let

Ū = Θ̂η(x)ZU , V̄ = Θ̂η(x′)ZV ,

then

∥Ū − UQU∥2F ≤ 2∥Ū − U∥2F + 2∥U − UQU∥2F

≤ 2∥UQU − U∥2F + 2∥U − UQU∥2F

= 4∥U − UQU∥2F

and likewise

∥V̄ − VQV ∥2F ≤ 4∥V − VQV ∥2F .

Define

Z ′
U = ZUQU , Z ′

V = ZV QV ,
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Note that for g ∈ [G], by (3.18)

min
ℓ ̸=g

∥Z ′
Uℓ·

−Z ′
Ug·∥ = min

ℓ̸=g
∥ZUℓ· −ZUg·∥

= min
ℓ̸=g

√
1

ng(x)
+

1

nℓ(x)
(3.19)

=

√
1

ng(x)
+

1

max{nℓ(x) : ℓ ̸= g}
.

Moreover, let

SgN (x) :=

{
i ∈ GgN (x) : ∥Ūi· − (UQU )i·∥ ≥ 1

2

√
1

ng(x)
+

1

max{nℓ(x) : ℓ ̸= g}

}
.

Then

∥Ū − UQU∥2F =
G∑

g=1

1

4

[
1

ng(x)
+

1

max{nℓ(x) : ℓ ̸= g}

] 4
1

ng(x)
+ 1

max{nℓ(x):ℓ̸=g}

∑
i∈GgN (x)

∥Ūi· − (UQU )i·∥2


≥
G∑

g=1

1

4

[
1

ng(x)
+

1

max{nℓ(x) : ℓ ̸= g}

]
 ∑

i∈GgN (x)

1

{
∥Ūi· − (UQU )i·∥ ≥ 1

2

√
1

ng(x)
+

1

max{nℓ(x) : ℓ ̸= g}

}
=

G∑
g=1

|SgN (x)|1
4

[
1

ng(x)
+

1

max{nℓ(x) : ℓ ̸= g}

]
.

Therefore we have

G∑
g=1

|SgN (x)|
ng(x)

≤
G∑

g=1

|SgN (x)|
(

1

ng(x)
+

1

max{nℓ(x) : ℓ ̸= g}

)
≤ 4∥Ū − UQU∥2F

≤ 16∥U − UQU∥2F .

By Lemma 3.5 it follows that

(3.20)

G∑
g=1

|SgN (x)|
ng(x)

≤ 512G

λG(x, x′)2
∥L̃η

τ − L̃η
τ (x, x

′,g)∥2.

The same holds with |ShN (x′)|
nh(x′) . Moreover, one can show that following the proof of Lemma 5.3 of Lei

and Rinaldo (2015), the definition of SgN (x), in view of (3.19), guarantees that for each g ∈ [G], under
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the condition

(3.21)
16
√
2G

λG(x, x′)
∥L̃η

τ − L̃η
τ (x, x

′,g)∥ < 1,

the estimated membership matrix Θ̂η(x) assigns the correct membership for every i ∈ GgN (x)\SgN (x).

That is, for GN (x) = ∪g∈[G](GgN (x) \ SgN (x)), there exists a permutation matrix J(x) such that

(Θ̂η(x))GN (x)·J(x) = (Θη(x))GN (x)· and the same holds for x′.

By (3.16) and (3.17), the singular values of Lη(x, x′,g) are that ofN (x)O−1/2
B(x, x′)Q−1/2N (x′).

Denote σ1(M) ≥ ... ≥ σr(M) the singular values of a matrix M of rank r. We use Theorem 3.3.16 of

Horn and Johnson (1990), see also Wang and Xi (1997), and write

λG(x, x
′) = σG

(
N (x)O−1/2

B(x, x′)Q−1/2N (x′)
)

≥
σG

(
N (x)O−1/2

B(x, x′)
)

σ1

([
Q−1/2N (x′)

]−1
) =

σG

(
N (x)O−1/2

B(x, x′)
)

σ1

(
N (x′)−1Q1/2

)
≥ σG (B(x, x′))

σ1

(
N (x′)−1Q1/2

)
σ1

([
N (x)O−1/2

]−1
) =

σG (B(x, x′))

σ1

(
N (x′)−1Q1/2

)
σ1

(
N (x)−1O1/2

)
where we recall that the matrices N (x), O and Q are diagonal. Their singular values are equal to

their diagonal coefficients, and

(
N (x)−1O1/2

)2
gg

=

 ∑
j∈ηN (x′)

Bgg(j)(x, x
′) + τ

 /ng(x) ≤
(
∥B(x, x′)∥maxk + τ

)
/min

h
nh.

This implies that

λG(x, x
′) ≥

σG (B(x, x′))minh nh

∥B(x, x′)∥maxk + τ
.(3.22)

We plug in (3.22) and the bounds obtained on the relevant quantities in (3.21). This condition becomes

4

√√√√ 3 ln(8k/δ̃)

∆minh∈[G]

⌊
c
16

Nh
N

bX
UX

k
⌋
+ τ

+
2klBRk

∆minh∈[G]

⌊
c
16

Nh
N

bX
UX

k
⌋
+ τ

 2klBRk

∆minh∈[G]

⌊
c
16

Nh
N

bX
UX

k
⌋
+ τ

+ 3



< 16
√
2GσG

(
B(x, x′)

) minh∈[G]

⌊
c
16

Nh
N

bX
UX

k
⌋

∥B(x, x′)∥maxk + τ
.(3.23)

We combine (3.20) and (3.23) to obtain a finite sample probability bound on
∑G

g=1 |SgN (x)|/ng(x) in

the following Lemma.
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Lemma 3.6. Let Assumptions 2.1, 2.2, 2.3 and 2.4 hold. Then for all N , δ ∈ (0, 1), 1 ≤ k ≤ N such

that

(1) ∆minh∈[G]

⌊
c
16

Nh
N

bX
UX

k
⌋
+ τ ≥ 3 ln(24k/δ),

(2) k ≥ max(12d ln(72GN/δ), 24d ln(36N/δ)),

(3) k ≤ min(8T dVdUXN, (1/2)T dVdbXcN),

(4) and for all h ∈ [G], c
16

Nh
N

bX
UX

k ≥ 24d ln(72GNh/δ) + 1,

(5) (3.23) holds for δ̃ = δ/3

with probability at least 1− δ conditional on g, it holds that

G∑
g=1

|SgN (x)|
ng(x)

≤ 512G [∥B(x, x′)∥maxk + τ ]2

σG (B(x, x′))2minh∈[G]

⌊
c
16

Nh
N

bX
UX

k
⌋2
4√√√√ 3 ln(24k/δ)

∆minh∈[G]

⌊
c
16

Nh
N

bX
UX

k
⌋
+ τ

+
2klBRk

∆minh∈[G]

⌊
c
16

Nh
N

bX
UX

k
⌋
+ τ

 2klBRk

∆minh∈[G]

⌊
c
16

Nh
N

bX
UX

k
⌋
+ τ

+ 3

2

,(3.24)

and that there exist permutation matrices J(x) and J(x′) such that (Θ̂η(x))GN (x)·J(x) = (Θη(x))GN (x)·

and the same holds for x′.

Proof. We use the events V (g,x) and W (g,x) as well as the function C defined in the proof of Lemma

3.4. Let C̃ be the function such that C̃(dmin) is the right hand side of (3.24).

Pr

 G∑
g=1

|SgN (x)|
ng(x)

≤ C̃

(
∆ min

h∈[G]

⌊
c

16

Nh

N

bX

UX

k

⌋) ∣∣∣g


≥ Pr

[{
∥L̃η

τ − L̃η
τ (x, x

′,g)∥ ≤ C

(
∆ min

h∈[G]

⌊
c

16

Nh

N

bX

UX

k

⌋)}
∩ V (g,x) ∩W (g,x)

∣∣∣g]
by (3.20) and (3.22). By the proof of Lemma 3.4, the probability on the right hand side is larger than

1− δ. □

Remark 3.4. Let τ = 0, sparsity be captured by a parameter ρN and Nh/N ≈ C for all h ∈ [G].

Remark 3.3 explains that ∥L̃η − L̃η(x, x′,g)∥ ≈ (ρNN)
−1
d+2 , up to lnN and ln ρN factors. According

to Lemma 3.6, this implies that
G∑

g=1

|SgN (x)|
ng(x)

≈ (ρNN)
−2
d+2 ,

whereas Lei and Rinaldo (2015) obtains a rate of (ρNN)−1, see Corollary 3.2.
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4. Estimation of B and π

As in the previous section, we fix a pair (x, x′) ∈ S2. Recall that GhN (x) = {g(i) = h, i ∈ ηN (x)}

and nh(x) = |GhN (x)|. We introduce the following new notation,

• GhN (x) = {g(i) = h, i ∈ ηN (x)}, then nh(x) = |GhN (x)|

• ĜhN (x) = {ĝ(i) = h, i ∈ ηN (x)}, then n̂h(x) = |ĜhN (x)|

• GhN = {g(i) = h, i ∈ [N ]}, then Nh = |GhN |

• 1h,x(i) = 1{i ∈ GhN (x)}

• 1̂h,x(i) = 1{i ∈ ĜhN (x)}

• 1x(i) = 1{i ∈ ηN (x)}

Note that the estimators of πh(x) and Bgh(x, x
′) can be written

π̂h(x) =
n̂h(x)

k
=

∑
i∈ηN (x) 1̂h,x(i)

k
,

B̂gh(x, x
′) =

1

n̂g(x)n̂h(x′)

∑
i∈ĜgN (x)

j∈ĜhN (x′)

Aij =
1

n̂g(x)n̂h(x′)

∑
i,j

Aij 1̂g,x(i)1̂h,x′(j).

Define the oracle estimators for πg(x) and Bgh(x, x
′) as

πor
g (x) =

ng(x)

k
=

∑
i 1g,x(i)

k
,

Bor
gh(x, x

′) =
1

ng(x)nh(x′)

∑
i,j

Aij1g,x(i)1h,x′(j).

In this section, we derive probability bounds on π̂h(x) and B̂gh(x, x
′). Note that according to Lemma

3.6, with probability at least 1 − δ conditional on g, the memberships of i ∈ (GgN (x) \ SgN (x)) are

all correctly estimated up to a permutation. Thus all the following probability bounds hold up to a

permutation. We explore this identification issue this raises in Remark 4.1.

4.1. Result conditional on g.

We can decompose

|B̂gh(x, x
′)−Bor

gh(x, x
′)| ≤

∣∣∣∣ 1

n̂g(x)n̂h(x′)
− 1

ng(x)nh(x′)

∣∣∣∣ ∑
i,j

1̂g,x(i)1̂h,x′(j)︸ ︷︷ ︸
T1

+
1

ng(x)nh(x′)

∑
i,j

∣∣∣1̂g,x(i)1̂h,x′(j)− 1g,x(i)1h,x′(j)
∣∣∣︸ ︷︷ ︸

T2

,
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where by a slight abuse of notation the summations are over i ∈ ηN (x) and j ∈ ηN (x′). We look at

T1 and T2 separately.

T1 =

∣∣∣∣1− n̂g(x)n̂h(x
′)

ng(x)nh(x′)

∣∣∣∣ = |ng(x)nh(x
′)− n̂g(x)n̂h(x

′)|
ng(x)nh(x′)

,

T2 ≤
1

ng(x)nh(x′)

∑
i,j

∣∣∣1̂g,x(i)− 1g,x(i)
∣∣∣ 1̂h,x′(j)︸ ︷︷ ︸

T21

+
1

ng(x)nh(x′)

∑
i,j

1g,x(i)
∣∣∣1̂h,x′(j)− 1h,x′(j)

∣∣∣︸ ︷︷ ︸
T22

.

When (3.21) holds,

T21 =
n̂h(x

′)

nh(x′)

1

n̂h(x′)

∑
j

1̂h,x′(j)
1

ng(x)

∑
i

∣∣∣1̂g,x(i)− 1g,x(i)
∣∣∣

≤ n̂h(x
′)

nh(x′)

1

ng(x)

∑
l∈[G]

|SlN (x)|,

where the second inequality holds by the argument used in (4.7). Similarly, when (3.21) holds we

obtain

T22 ≤
1

nh(x′)

∑
l∈[G]

|SlN (x′)|.

Note that when (3.21) holds,

T1 ≤
|ng(x)− n̂g(x)|nh(x

′) + n̂g(x) |n̂h(x
′)− nh(x

′)|
ng(x)nh(x′)

≤ 1

ng(x)

∑
l∈[G]

|SlN (x)|+ n̂g(x)

ng(x)

1

nh(x′)

∑
l∈[G]

|SlN (x′)|

≤

[
k

minh∈[G] nh
+

k2(
minh∈[G] nh

)2
] ∑

l∈[G]

|SlN (x)|
nl(x)

,

where we used the same argument as in (4.7) in the second inequality. We use similar arguments to

bound T21 and T22 and obtain

(4.1) |B̂gh(x, x
′)−Bor

gh(x, x
′)| ≤ 2

[
k

minh∈[G] nh
+

k2(
minh∈[G] nh

)2
] ∑

l∈[G]

|SlN (x)|
nl(x)

.

We now bound |Bor
gh(x, x

′) − Bgh(x, x
′)|. The oracle estimator is not a standard k-nearest neighbor

estimator with, say, k = ng(x)nh(x
′), because ng(x) and nh(x

′) are not chosen by the statistician

but random. Moreover, the neighborhood for x is chosen separately from that of x′. It is also not a

Nadaraya-Watson estimator with uniform kernel as rgng(x)
(x) and rhnh(x′)(x

′) are random. Write

Aij = Bg(i)g(j)(x(i), x(j)) + ζij ,
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then we can decompose

|Bor
gh(x, x

′)−Bgh(x, x
′)| ≤ 1

ng(x)nh(x′)

∑
i,j

∣∣ [Bgh(x(i), x(j))−Bgh(x, x
′)
] ∣∣1g,x(i)1h,x′(j)︸ ︷︷ ︸

T3

+
1

ng(x)nh(x′)

∣∣∑
i,j

ζij1g,x(i)1h,x′(j)
∣∣

︸ ︷︷ ︸
T4

.(4.2)

In this decomposition, T3 is a bias term and T4 is a variance term. As in the proof of Lemma 3.1, the

bias term can be bounded using Assumption 2.4,

(4.3) T3 ≤ lB[rk(x) + rk(x
′)]

by rgng(x)
(x) ≤ rk(x) and rgnh(x′)(x

′) ≤ rk(x
′). Note that the relevant regressor dimension is d. As for

the variance term T4, note that we can rewrite

T4 =
1

ng(x)nh(x′)

∣∣ ∑
i∈GgN (x)
j∈GhN (x′)

ζij
∣∣,

where conditional on (x,g), {ζij , i ∈ GgN (x), j ∈ GhN (x′)} are independent mean-zero bounded

random variables. We apply a Hoeffding inequality for bounded random variables, see Theorem 2.2.6

in Vershynin (2018), and obtain for any a0 ≥ 0,

Pr

∣∣∑
i,j

ζij1g,x(i)1h,x′(j)
∣∣ ≥ a0

∣∣∣∣∣x,g
 ≤ 2 exp

(
−a20/[2ng(x)nh(x

′)]
)
,(4.4)

where we used that ζij ∈ [−1, 1]. Taking a0 =
√

2ng(x)nh(x′) ln(2/δ̃) implies

Pr

T4 ≤

√
2 ln(2/δ̃)

minh∈[G] nh

∣∣∣∣∣x,g
 ≥ 1− δ̃.(4.5)

We combine (4.1) with (4.3) and (4.5) to obtain the following Lemma.

Lemma 4.1. Let Assumptions 2.1, 2.2, 2.3 and 2.4 hold. Then for all N , δ ∈ (0, 1), 1 ≤ k ≤ N such

that

(1) ∆minh∈[G]

⌊
c
16

Nh
N

bX
UX

k
⌋
+ τ ≥ 3 ln(48k/δ),

(2) k ≥ max(12d ln(144GN/δ), 24d ln(72N/δ)),

(3) k ≤ min(8T dVdUXN, (1/2)T dVdbXcN),

(4) and for all h ∈ [G], c
16

Nh
N

bX
UX

k ≥ 24d ln(144GNh/δ) + 1,
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(5) (3.23) holds for δ̃ = δ/6,

with probability at least 1− δ conditional on g, it holds that

|B̂gh(x, x
′)−Bgh(x, x

′)|

≤ 1024G [∥B(x, x′)∥maxk + τ ]2

σG (B(x, x′))2minh∈[G]

⌊
c
16

Nh
N

bX
UX

k
⌋2
 k

minh∈[G]

⌊
c
16

Nh
N

bX
UX

k
⌋ +

k2(
minh∈[G]

⌊
c
16

Nh
N

bX
UX

k
⌋)2

×

4√√√√ 3 ln(48k/δ)

∆minh∈[G]

⌊
c
16

Nh
N

bX
UX

k
⌋
+ τ

+
2klBRk

∆minh∈[G]

⌊
c
16

Nh
N

bX
UX

k
⌋
+ τ

 2klBRk

∆minh∈[G]
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(4.6)

Proof. We use once more the definitions introduced in the proof of Lemma 3.4.

Pr

[{
∥L̃η

τ − L̃η
τ (x, x

′,g)∥ ≤ C

(
∆ min

h∈[G]

⌊
c

16

Nh

N

bX

UX

k

⌋)}

∩

T4 ≤
√

2 ln(4/δ)

minh∈[G]

⌊
c
16

Nh
N

bX
UX

k
⌋
 ∩ V (g,x) ∩W (g,x)

∣∣∣g


≥ Pr

[{
∥L̃η

τ − L̃η
τ (x, x

′,g)∥ ≤ C (dmin)
}
∩

{
T4 ≤

√
2 ln(4/δ)

minh∈[G] nh

}
∩ V (g,x) ∩W (g,x)

∣∣∣g]

≥

[
E
[
Pr
[{

∥L̃η
τ − L̃η

τ (x, x
′,g)∥ ≤ C (dmin)

} ∣∣∣g,x, V (g,x),W (g,x)
] ∣∣∣g, V (g,x),W (g,x)

]
× Pr [V (g,x) ∩W (g,x) |g] + E

[
Pr

[{
T4 ≤

√
2 ln(4/δ)

minh∈[G] nh

} ∣∣∣g,x] ∣∣∣g] − 1

≥ 1− δ/2 + 1− δ/2− 1 = 1− δ

where the last inequality holds by (4.5) and the proof of Lemma 3.4. The result holds by

{
∥L̃η

τ − L̃η
τ (x, x

′,g)∥ ≤ C

(
∆ min

h∈[G]

⌊
c

16

Nh

N

bX

UX

k

⌋)}
∩ V (g,x) ∩W (g,x)
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⇒



∑
l∈[G]

|SlN (x)|
nl(x)

≤ ϵN (δ/6),

|B̂gh(x, x
′)−Bor

gh(x, x
′)| ≤ 2

 k

minh∈[G]

⌊
c
16

Nh
N

bX
UX

k

⌋ + k2(
minh∈[G]

⌊
c
16

Nh
N

bX
UX

k

⌋)2

 ϵN (δ/6),

T3 ≤ 2lBRk,

where the first line holds as in Lemma 3.6 under condition (5), the second holds by (4.1), and the

third by (4.3). □

4.2. Results unconditional on g.

4.2.1. Result on the community assignment probabilities.

The following results hold up to a permutation but for ease of readability we let J(x) = J(x′) =

I. Note that when (3.21) holds,

|π̂g(x)− πor
g (x)| ≤ 1

k

∑
i

∣∣∣1̂g,x(i)− 1g,x(i)
∣∣∣

≤ 1

k

∑
h∈[G]
h̸=g

∑
i∈GhN (x)

1̂g,x(i) +
1

k

∑
i∈GgN (x)

∣∣∣1̂g,x(i)− 1
∣∣∣(4.7)

≤ 1

k

∑
h∈[G]

|ShN (x)| ≤
∑
h∈[G]

|ShN (x)|
nh(x)

(4.8)

The behavior of πor
g (x) is given by Theorem 1 of Jiang (2019). Write

1g,x(i) = πg(x) + ξi

with E(ξi|x(i) = x) = 0. Assumptions 1-3 of Jiang (2019) hold by Assumptions 2.1, 2.2 and taking

the sub-gaussian parameter to be 1 since ξi ∈ [−1, 1] almost surely, see Exercise 2.4 in ?. We note that

the imposed assumption of independence between ξ and x is not needed for his Theorem 11. Assume

also that

(4.9) 28d ln(4/δ̃) lnN ≤ k ≤ cVdbXT dN/2,

then under Assumption 2.5, Theorem 1 of Jiang (2019) implies that the following holds with probability

at least 1− δ̃,

(4.10) |πor
g (x)− πg(x)| ≤ lπRk + 2

√
d lnN + ln(2/δ̃)

k
.

1The application of Hoeffding’s inequality in the Proof of Theorem 1 (see p4004) can be done conditional on x as

long as (x(i), ξi) for i = 1...n is i.i.d.
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Let πg := Pr(g(i) = g) = E(πg(x(i))) and π := ming∈[G] πg. We combine Equations (4.8) and (4.10) to

obtain a probability bound unconditional on g in the following Lemma, where (3.23) is replaced with

4

√√√√ 3 ln(24k/δ̃)

∆
⌊

πcbX
32UX

k
⌋
+ τ

+
2klBRk

∆
⌊

πcbX
32UX

k
⌋
+ τ

 2klBRk

∆
⌊

πcbX
32UX

k
⌋
+ τ

+ 3



<
16
√
2GσG (B(x, x′))

⌊
πcbX
32UX

k
⌋

∥B(x, x′)∥maxk + τ
.(4.11)

Lemma 4.2. Let Assumptions 2.1, 2.2, 2.3, 2.4 and 2.5 hold. Assume moreover that π > 0. Then

for all N , δ ∈ (0, 1), 1 ≤ k ≤ N such that

(1) ∆
⌊

πcbX
32UX

k
⌋
+ τ ≥ 3 ln(72k/δ),

(2) k ≥ max(12d ln(216GN/δ), 24d ln(108N/δ)),

(3) k ≤ min(8T dVdUXN, (1/2)T dVdbXcN),

(4) πcbX
32UX

k ≥ 24d ln(216GN/δ) + 1,

(5) (4.11) holds for δ̃ = δ/3,

(6) 28d ln(24/δ) lnN ≤ k ≤ cVdbXT dN/2,

(7) N ≥ 8 ln(3G/δ)/π2,

with probability at least 1− δ, it holds that

|π̂g(x)− πg(x)| ≤
512G [∥B(x, x′)∥maxk + τ ]2

σG (B(x, x′))2
⌊

πcbX
32UX

k
⌋2

4√√√√ 3 ln(72k/δ)

∆
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πcbX
32UX
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+
2klBRk

∆
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πcbX
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×

 2klBRk

∆
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πcbX
32UX

k
⌋
+ τ

+ 3

2

+ lπRk + 2

√
d lnN + ln(6/δ)

k
.(4.12)

Proof. For ease of readability, we denote with ϵN (δ) the bound on the right hand side of (3.24). We

apply a Hoeffding inequality for bounded random variables, see Theorem 2.2.6 in Vershynin (2018),

and obtain,

Pr (Ng − πgN ≥ −πgN/2) = Pr

∑
i∈[N ]

1{g(i) = g} − πg ≥ −πgN/2


≤ exp

(
−π2

gN/8
)
≤ exp

(
−π2N/8

)
.

Define the event T (g) = {∀ g ∈ [G], N ≥ Ng ≥ πN/2}. Then

Pr (T (g)) ≥ 1−G exp
(
−π2N/8

)
≥ 1− δ/3,
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by Condition (7). Note that on T (g), Conditions (1) - (5) of Lemma 3.6 hold. Thus,

Pr

∑
h∈[G]

|ShN (x)|
nh(x)

≤ ϵN (δ/3)

∣∣∣∣g, T (g)
 ≥ 1− δ/3.

Moreover on T (g), note that the upper bound on ϵN (δ/3) is bounded above by

512G [∥B(x, x′)∥maxk + τ ]2
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2

.

The result follows by Theorem 1 of Jiang (2019). □

4.2.2. Result on the connection probabilities.

We integrate Lemma 4.1 with respect to g on T (g) and obtain the following Lemma.

Lemma 4.3. Let Assumptions 2.1, 2.2, 2.3 and 2.4 hold. Assume moreover that π > 0. Then for all

N , δ ∈ (0, 1), 1 ≤ k ≤ N such that

(1) ∆
⌊

πcbX
32UX

k
⌋
+ τ ≥ 3 ln(96k/δ),

(2) k ≥ max(12d ln(288GN/δ), 24d ln(144N/δ)),

(3) k ≤ min(8T dVdUXN, (1/2)T dVdbXcN),

(4) πcbX
32UX

k ≥ 24d ln(288GN/δ) + 1,

(5) (4.11) holds for δ̃ = δ/12,

(6) N ≥ 8 ln(2G/δ)/π2,

with probability at least 1− δ conditional on g, it holds that
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Proof. Under Condition (6), Pr(T (g)) ≥ 1− δ/2 and under the remaining conditions, by Lemma 4.1,

Pr ( (4.13) holds |g, T (g)) ≥ 1− δ/2.

□

Remark 4.1. As in the existing literature on the SBM (or other models with mixture structure in

general) the preceding results hold up to relabeling of communities. This usually causes no issues since

community labels have little practical implications in those models. While this observation partially

applies to our procedure, the issue of community labeling still poses a novel challenge in terms of the

interpretability of our estimators.

Take a simple, special case with G = 2. The results obtained above enable us to identify and

estimate each of the four elements of the edge probability matrix B(x, x′), (x, x′) ∈ S2, as well as the

two vectors of community assignment probabilities, up to relabeling of the rows and the columns. We

are clearly free to choose the labels for either the rows or the columns, so let us say we fix the two labels

for the rows (those corresponding to the nodes with covariate value being x): this essentially amounts

to normalization. Given this normalization, however, one may wish to identify the community labels

for the columns (i.e. the order of the two columns of B), at least for two reasons. First, even when one

is interested in the edge probabilities and the community assignment probabilities at just one point

(x, x′) in S2, interpreting and using these probabilities might demand identification of the column

(row) order, relative to a given choice of the row (column) order. For example, a diagonal element of

the edge probability matrix represents connections within an unobservable community (though they

generally differ in terms of the observed heterogeneity, as far as x ̸= x′); Such within-community

connections are often associated with homophily/heterophily or (dis)assortativity. Of course, such

issues potentially affect off-diagonal elements of the edge probability matrix with general G ≥ 2.

Second, if, for example, one is interested in the partial effect of moving x′ to x′′ in Bgh(x, ·) or πh(·),

then it is obvious that we need to have the correspondence between the community labels remain

consistent between (x, x′) and (x, x′′).

This issue does not arise in the standard SBM without covariates as in Lei and Rinaldo (2015),

as their edge probability matrix are defined for the same population. This holds true even in the

analysis of asymmetric networks in Rohe, Qin, and Yu (2016). In our analysis, if x ̸= x′, then the

edge probability matrix B(x, x′) is concerned with edges between two separate populations, and this

feature gives rise to difficulties in guaranteeing proper matching between the row-clusters and the

column clusters in the absence of further information/restrictions. Of course, by setting x = x′ in
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B(x, x′), matching the community labels between the two sides is trivial, and then to the extent that

continuity of Bg,h(·, ·), (g, h) ∈ [G]× [G] and the connectedness of the support of covariate X permit,

the labels can be matched as we move x′ away from x. Such approach may fail to be reasonable or

practical in actual applications, however.

If we are willing to impose additional restrictions, it is possible to address this issue directly. For

example, once again, we are free to choose community labeling such that π1(x) > π2(x) > · · · > πG(x),

assuming no ties. Suppose we also choose community labels for the columns, so that π1(x
′) > π2(x

′) >

· · · > πG(x
′). Under the assumption that the ranking of the magnitudes of community assignment

probabilities is invariant between those at x and those at x′, then trivially the community labels on

both sides can be matched in a consistent manner.

One may also wish to introduce qualitative restrictions that are motivated by concepts devel-

oped in the literature of network analysis, in order to achieve successful community label matching.

Examples of such restrictions include homophily/heterophily, or, assortativity/disasortativity, con-

ditional on the covariates. Suppose the edge probability matrix B(x, x′) is conditionally weakly

assortative at (x, x′) ∈ S2, in the sense that2

(4.15) Bgg(x, x
′) > max(Bg,h(x, x

′), Bh,g(x, x
′)) for every (g, h) ∈ [G]× [G] with g ̸= h.

This can be justified under homophily in terms of unobserved community membership, while the

impact of covariates (x, x′) on edge probabilities remain fully unspecified (and can be correlated

with unobserved heterogeneity in an arbitrary manner). The restriction (4.15) suffices to achieve

identification of matched community labels. Let EG denote the set of G × G permutation matrices.

Without loss of generality, assign G labels on the rows of the edge probability matrix; let B(x, x′) be

the resulting matrix to be (uniquely) recovered. Without a restriction such as (4.15), we can only

identify the set {B(x, x′)EG, EG ∈ EG}. Let B◦(x, x′) an arbitrary element of the set. To exploit the

2Technically, even a weaker condition such as

Bgg(x, x
′) > Bg,h(x, x

′) for every (g, h) ∈ [G]× [G] with g ̸= h.

which ensures that each diagonal element dominates the rest of its row elements — or its column elements, by symmetry

— suffices. The strong assortative version of (4.15) can be obtained by strengthening the inequality by

Bgg(x, x
′) > Bh,f (x, x

′) for every (f, g, h) ∈ [G]× [G]× [G] with h ̸= f.
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asortativity restriction (4.15), we can simply solve

EG = argmax
EG∈EG

tr[B◦(x, x′)EG],

and then we recover B(x, x′) by B◦(x, x′)EG. This offers a practical algorithm, as the maximization

problem maxEG∈EG tr[AEG] is well defined for any G by G matrix A as far as the maximum entry of

each row has no ties. Likewise, if one is willing to impose a heterophily, we can flip the inequality sign

in (4.15) to restrict B(x, x′) to be disasortative, then solve

EG = argmin
EG∈EG

tr[B◦(x, x′)EG],

to recover the desired edge probability matrix.

5. Conclusion

This paper demonstrates that it is possible to incorporate both observed and unobserved het-

erogeneity in network data analysis in a flexible way, at least when we have discrete values of het-

erogeneity represented by community assignments. It offers a highly versatile, yet computationally

tractable procedure, which is expected to complement the existing methodology for analyzing net-

works with covariates under more specific structures for the edge probabilities and the community

assignment probabilities. Our results build upon recent developments in spectral clustering in SBMs

and k-nn algorithms, and we contribute to the literature by addressing novel theoretical challenges

presented by our multi-step procedure. Though our estimators can be computed in a straightfor-

ward manner, an extensive simulation exercise is called for in order to assess the efficacy of the new

procedure in a practical setting.

Supplement: Some Useful results

A 1.1. Nearest Neighbor Radius.

To obtain uniform upper and lower bounds on the radiuses, we use inequalities for relative

deviations see Anthony and Shawe-Taylor (1993) and Section 1.4.2 of Lugosi (2002). Before stating

the two inequalities we will use, we introduce some definitions. Let x denote a Rd valued covariate

vector. Let PxN denote the empirical measure based on x = (x1, ..., xN ), that is, PxN (A) := #{x(i) ∈

A, i ∈ [N ]}/N for A ∈ C. Likewise define PyN (A) := #{y(i) ∈ A, i ∈ [N ]}/N and PxyN (A) :=

#{x(i) ∈ A, y(i) ∈ A, i ∈ [N ]}/2N . We consider x = (x1, ..., xN ) and y = (y1, ..., yN ) defined on the

sample space SN , independent of each other and both distributed according to P (.)n for a probability
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measure P . Let C be a collection of subsets of S. For a sample x = (x1, ..., xN ) viewed as a collection

of draws {x1, ..., xN}, we define as in Giné and Nickl (2021) (Section 3.6.1) the trace of C on x as all

the subsamples of x obtained by intersection of x with sets A ∈ C. Define ∆C(x) as the cardinal of

the trace of the collection C and

mC(N) = sup
x∈SN

∆C(x).

mC(N) is the shattering coefficient of the collection C. Following Anthony and Shawe-Taylor (1993), we

define a complete set of distinct representatives (CSDR) of C for x as a collection A = {A1, ..., A∆C(x)}

if for any 1 ≤ i ̸= j ≤ ∆C(x) then Ai ∩ {x1, ..., xN} ≠ Aj ∩ {x1, ..., xN}. For all A ∈ C, there exists

1 ≤ i ≤ ∆C(x) such that A ∩ {x1, ..., xN} = Ai ∩ {x1, ..., xN}.

We are in particular interested in the following inequalities, see e.g. Theorem 1.11 in Lugosi

(2002),

∀η > 0, Pr

(
sup
a∈C

P (A)− PxN (A)√
P (A)

> η

)
≤ 4mC(2N) exp

(
−η2N/4

)
(A 1.1)

∀η > 0, Pr

(
sup
a∈C

PxN (A)− P (A)√
PxN (A)

> η

)
≤ 4mC(2N) exp

(
−η2N/4

)
(A 1.2)

where C is any collection of Borelian sets. We first give a proof of (A 1.2). As we could not find

one in the literature, we restate one which we will later modify to accommodate non-identically (but

independently) distributed random variables.

Lemma A 1.1. For C any collection of Borelian sets, (A 1.2) holds.

Proof. The proof adapts the steps of Anthony and Shawe-Taylor (1993). We define the sets

Q :=

{
(x1, ..., xN ) ∈ SN : ∃A ∈ C such that

PxN (A)− P (A)√
PxN (A)

> η

}

R :=

{
(x1, ..., xN , y1, ..., yN ) ∈ S2N : ∃A ∈ C such that PxN (A)− PyN (A) > η

√
PxyN (A)

}
.

We first look at the case N > 2/η. First note that for each x ∈ Q there exists a set Ax ∈ C, indexed

by x, such that PxN (Ax)− P (Ax) > η
√
PxN (Ax). Define

Fxy(Ax) :=
PxN (Ax)− PyN (Ax)√

PxyN (Ax)
.

Take PyN (Ax) such that PyN (Ax) < P (Ax). Then

Fxy(Ax) >
P (Ax) + η

√
PxN (Ax)− PyN (Ax)√

[PxN (Ax)) + PyN (Ax)]/2
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>
η
√
PxN (A)√

[PxN (Ax) + P (Ax)]/2
> η,

where the second inequality holds by monotonicity in PxN (Ax) and the third by PxN (Ax) > P (Ax).

Pr{(x,y) ∈ R|g} ≥ Pr{Fxy(Ax) > η |PyN (Ax) < P (Ax),x ∈ Q}Pr{PyN (Ax) < P (Ax),x ∈ Q}

≥
(
inf
x∈Q

Pr{PyN (Ax) < P (Ax)}
)
Pr{x ∈ Q} =

(
inf
x∈Q

Pr{PyN (Ac
x) > P (Ac

x)}
)
Pr{x ∈ Q}

≥ 1

4
Pr{x ∈ Q}.

where Ac
x is the complement set of Ax. The last inequality uses Theorem 1 of Greenberg and Mohri

(2014) thus we need to check that for all x ∈ Q, P (Ac
x) > 1/N , that is, P (Ax) < 1 − 1/N . Note

that P (Ax) < PxN (Ax) − η
√
PxN (Ax) =: g(PxN (Ax)). The function g decreases on [0, η2/4] and is

negative on this interval, and increases on [η2/4,+∞). Thus P (Ax) < g(1) = 1 − η, which imposes

η < 1, and P (Ax) < 1− 1/N follows by N > 2/η. The inequality (A 1.2) is obtained by

Pr{(x,y) ∈ R|g} ≤ mC(2N) exp
(
−η2N/4

)
,

which holds by the proof of Theorem 2.1 in Anthony and Shawe-Taylor (1993).

If N < 2/η, the upper bound in (A 1.2) is 4mC(2N) exp
(
−η2N/4

)
≥ 4mC(2N) exp (−η/2).

For x ∈ Q, P (Ax) < g(PxN (Ax)) guarantees that η < 1 which implies that 4mC(2N) exp
(
−η2N/4

)
≥

4 exp (−1/2) ≥ 2. Thus (A 1.2) holds naturally. Note that if Q = ∅, (A 1.2) holds naturally as

well. □

Before elaborating on our results, we state two preliminary lemmas.

Lemma A 1.2. Suppose {zi}Ni=1 are independently distributed, with zi ∼Bernoulli(qi), 0 < qi < 1 for

every i ∈ [N ]. Let S :=
∑N

i=1 zi, then Pr{S > N mini∈[N ] qi} > 1
4 if mini∈[N ] qi >

1
N .

Proof. It is easy to see that, if zi ∼iidBernoulli(mini∈[N ] qi), and we let S :=
∑N

i=1 zi, then Pr{S >

N mini∈[N ] qi} ≥ Pr{S > N mini∈[N ] qi}. Indeed, note that by definition zi first-order stochastically

dominates zi, or zi ≥1 zi for each i. Then by Theorem 1.A.3(b) in Shaked and Shanthikumar (2007),

we have S ≥1 S and the statement indeed follows. Since S ∼Binom(N,mini∈[N ] qi), by Theorem 1 of

Greenberg and Mohri (2014) Pr{S > N mini∈[N ] qi} > 1
4 if mini∈[N ] qi >

1
N and the result follows. □

Corollary A 1.1. Suppose {zi}Ni=1 are independently distributed, with zi ∼Bernoulli(qi), 0 < qi < 1

for every i ∈ [N ]. Let S :=
∑N

i=1 zi, then Pr{S < N maxi∈[N ] qi} > 1
4 if maxi∈[N ] qi < 1− 1

N .

Proof. Apply Lemma A 1.2 to {z̃i}Ni=1 = {1− zi}Ni=1. □
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We now extend (A 1.1) and (A 1.2) to accommodate non-identically (but independently) dis-

tributed random variables (i.ni.d), induced by conditioning. We first introduce additional notation as

we now consider x = (x1, ..., xN ) and y = (y1, ..., yN ) defined on the sample space SN , independent

of each other and both distributed according to
∏N

i=1 f(.|gi) conditional on g(i) = gi, i ∈ [N ]. We use

Pr{·|g} to denote the probability of event · conditional on (g(1), ..., g(N)) = g. Define

P (A) :=

∫
f(x)dx,(A 1.3)

P (A) :=

∫
A
f(x)dx.(A 1.4)

where f and f are as defined in Section 2.3. Define B = {B(x, τ) |x ∈ Rd, τ > 0} and

Q :=

{
(x1, ..., xN ) ∈ SN : ∃A ∈ C such that

P (A)− PxN (A)√
P (A)

> η

}
,

Q :=

{
(x1, ..., xN ) ∈ SN : ∃A ∈ C such that

PxN (A)− P (A)√
PxN (A)

> η

}
,

R :=

{
(x1, ..., xN , y1, ..., yN ) ∈ S2N : ∃A ∈ C such that PxN (A)− PyN (A) > η

√
PxyN (A)

}
.

Lemma A 1.3 and Lemma A 1.4 extend (A 1.1) and (A 1.2) to i.ni.d data.

Lemma A 1.3. For any collection C of Borel sets,

Pr{x ∈ Q|g} ≤ 4mC(2N) exp
(
−η2N/4

)
.

Proof. The proof relies on two claims.

First claim: Pr{x ∈ Q|g} ≤ 4Pr{(x,y) ∈ R|g} if N > 2/η2.

Proof of the first claim: We follow the proof of Theorem 2.1 of Anthony and Shawe-Taylor

(1993), which deals with IID sequences, while accomodating heterogeneity induced by conditioning on

g. First note that for each x ∈ Q there exists a set Ax ∈ C, indexed by x, such that P (Ax)−PxN (Ax) >

η
√

P (Ax). It then follows that infx∈Q P (Ax) ≥ η2 for x ∈ Q. Define

Fxy(Ax) :=
PyN (Ax)− PxN (Ax)√

PxyN (Ax)
.

Note that for every x ∈ Q

min
g∈[G]

∫
Ax

f(x|g)dx ≥ inf
ξ∈Q

P (Aξ)

≥ η2
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>
2

N
.

Therefore by Lemma A 1.2 we have Pr{PyN (Ax) > P (Ax)|g} > 1
4 for every x ∈ Q. Then noting that

d
dy

(
(y − x)/

√
x+y
2

)
is nonnegative,

Pr{(x,y) ∈ R|g} ≥ Pr{Fxy(Ax) > η |PyN (Ax) > P (Ax),x ∈ Q,g}Pr{PyN (Ax) > P (Ax),x ∈ Q|g}

≥ Pr

{
P (Ax)− PxN (Ax)

(
√
(PxN (Ax) + P (Ax))/2

> η|x ∈ Q,g

}(
inf
x∈Q

Pr{PyN (Ax) > P (Ax)|g}
)
Pr{x ∈ Q|g}

≥ 1

4
Pr

{
η
√

P (Ax)√
(PxN (Ax) + P (Ax))/2

> η|x ∈ Q,g

}
Pr{x ∈ Q|g}

=
1

4
Pr{x ∈ Q|g}.

Second claim: if N > 2/η2,

Pr{(x,y) ∈ R|g} ≤ mC(2N) exp
(
−η2N/4

)
.

Proof of the second claim: Define Λ as in Anthony and Shawe-Taylor (1993), i.e., the group

generated by all transpositions of the form (i,N + i) for 1 ≤ i ≤ N . Consider τ ∈ Λ and define for

z ∈ S2N , τz := (zτ(1), ..., zτ(2N)). If x and y are two samples independent of each other and both

distributed according to
∏N

i=1 f(.|gi), then xy and τxy have the same distribution. Thus

Pr(R|g) = Pr(∃Aτxy ∈ C such that Fτxy(Aτxy) > η |g)

=
1

|Λ|
E

(∑
τ∈Λ

1 [∃Aτxy ∈ C such that Fτxy(Aτxy) > η] |g

)

We use the notation (A1
xy, ..., A

∆C(xy)
xy ) for a CSDR of xy. Note that any CSDR of τxy is a CSDR of

xy and vice versa. Then for all A ∈ C, there exists 1 ≤ t ≤ ∆C(xy) such that Fτxy(A) = Fτxy(A
t
xy).

Thus

Pr{(x,y) ∈ R|g} ≤ 1

|Λ|
E

∑
τ∈Λ

∆C(xy)∑
t=1

1
[
Fτxy(A

t
xy) > η

]
|g


Define Θt(xy) as in Anthony and Shawe-Taylor (1993), that is, the number of permutations τ ∈ Λ

such that Fτxy(A
t
xy) > η. The inequality above can be rewritten

Pr{(x,y) ∈ R|g} ≤ 1

|Λ|
E

∆C(xy)∑
t=1

∑
τ∈Λ

1
[
Fτxy(A

t
xy) > η

]
|g

 =
1

|Λ|
E

∆C(xy)∑
t=1

Θt(xy) |g

 .
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As in Anthony and Shawe-Taylor (1993),

Θt(xy)

|Λ|
≤ exp(−η2N/4),

thus

Pr{(x,y) ∈ R|g} ≤ ∆C(xy) exp(−η2N/4) ≤ mC(2N) exp
(
−η2N/4

)
.

By the first and second claim, if N > 2/η2, Pr{x ∈ Q|g} ≤ 4mC(2N) exp
(
−η2N/4

)
. Note that if

N ≤ 2/η2, 4 exp(−η2N/4) ≥ 2 thus the previous inequality also holds. □

The next lemma adapts Lemma A 1.4 to i.ni.d data.

Lemma A 1.4. For any collection C of Borel sets,

Pr{x ∈ Q|g} ≤ 4mC(2N) exp
(
−η2N/4

)
.

Proof. We look first at the case N > 2/η and prove that Pr{x ∈ Q|g} ≤ 4Pr{(x,y) ∈ R|g}. The rest

of the proof follows by the second claim in the proof of Lemma A 1.3.

First note that for each x ∈ Q there exists a set Ax ∈ C, indexed by x, such that PxN (Ax) −

P (Ax) > η
√
PxN (Ax). As in the proof of Lemma A 1.4, this implies that PxN (Ax) > P (Ax) and

P (Ax) ≤ 1− η. Define

Fxy(Ax) :=
PxN (Ax)− PyN (Ax)√

PxyN (Ax)
.

If PyN (Ax) < P (Ax),

Fxy(Ax) >
P (Ax) + η

√
PxN (Ax)− PyN (Ax)√

[PxN (Ax)) + PyN (Ax)]/2

>
η
√
PxN (A)√

[PxN (Ax) + P (Ax)]/2
> η.

Note that for every x ∈ Q, P (Ax) > maxg∈[G] P (Ax|g). Thus Pr{PyN (Ax) < P (Ax)|g} ≥ Pr{PyN (Ax) <

maxg∈[G] P (Ax|g)|g} > 1/4 by Corollary A 1.1 as long as maxg∈[G] P (Ax|g) ≤ 1− 1/N . This holds by

max
g∈[G]

P (Ax|g) ≤ P (Ax)

≤ 1− η

< 1− 2

N
.

Therefore

Pr{(x,y) ∈ R|g} ≥ Pr{Fxy(Ax) > η |PyN (Ax) < P (Ax),x ∈ Q,g}Pr{PyN (Ax) < P (Ax),x ∈ Q|g}
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≥
(
inf
x∈Q

Pr{PyN (Ax) < P (Ax)|g}
)
Pr{x ∈ Q|g}

≥ 1

4
Pr{x ∈ Q|g}.

The case N < 2/η is handled as in the proof of Lemma A 1.4. □

We now apply these results to derive bounds on radiuses. Lemma A 1.3 implies the following

version of Theorem 4 in Portier (2021).

Corollary A 1.2. Let (x(i))i≤N be a sequence of independent and nonidentically distributed random

vectors valued in Rd and P and P defined as above. For any δ > 0,

With probability at least 1− δ conditional on g,

(A 1.5) ∀B ∈ B, 1

N

N∑
i=1

1 (x(i) ∈ B) ≥ P (B)

(
1−

√
12d ln(12N/δ)

NP (B)

)
,

With probability at least 1− δ conditional on g,

(A 1.6) ∀B ∈ B, 1

N

N∑
i=1

1 (x(i) ∈ B) ≤ 12d ln(12N/δ)

N
+ 4P (B).

Proof. The proof of (A 1.5) applies Lemma A 1.3 to the collection B and follows the lines of the proof

of Theorem 4 in Portier (2021).

To obtain (A 1.6), note that Lemma A 1.4 applied to the collection B implies that with prob-

ability at least 1− δ,

∀B ∈ B, PxN (B)− P (B)√
PxN (B)

≤
√

4[ln (4mC(2N)/δ)]

N
≤
√

12d ln(12N/δ)

N

where the second inequality is obtained through the same arguments as in the proof of Theorem 4 in

Portier (2021). Define βn :=

√
12d ln(12N/δ)

N and the function g : x 7→ x2 − βnx− P (B). The function

g has two roots, thus

[PxN (B)− P (B)]/
√
PxN (B) ≤ βn

⇒ g(
√

PxN (B)) ≤ 0

⇒
√
PxN (B) ≤ 1

2

(
βn +

√
β2
n + 4P (B)

)
≤
√
β2
n + 4P (B).

□

We finally obtain the following upper and lower bounds on the radius.

Lemma A 1.5. Let Assumptions 2.1, 2.2 and 2.3 hold. Then,
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(1) for all N , δ ∈ (0, 1) and 1 ≤ k ≤ N such that 24d ln(12N/δ) ≤ k ≤ T dNbXcVd/2,

(A 1.7) Pr

(
sup
x∈S

rk(x) ≤ Rk|g
)

≥ 1− δ,

(2) for all N , δ ∈ (0, 1) and 1 ≤ k ≤ N such that k ≥ 12d ln(12N/δ),

(A 1.8) Pr

(
inf
x∈S

rk(x) ≥ Rk|g
)

≥ 1− δ.

Proof. (A 1.7) is derived replacing P with P in the proof of Lemma 4 in Portier (2021) and using

(A 1.5).

To prove (A 1.8), note that

P (B(x,Rk)) =

∫
B(x,Rk)∩S

f(x)dx

≤ UXλ(B(x,Rk) ∩ S)

≤ k − 12d ln(12N/δ)

4N

where λ is the Lebesgue measure. By (A 1.6), with probability at least 1− δ,

∀x ∈ S,
1

N

N∑
i=1

1 (x(i) ∈ B(x,Rk)) ≤ k/N

which implies (A 1.8). □

A 1.2. Results on Laplacian.

Lemma A 1.6. ∥L̃η
τ∥ ≤ 1.

Proof. By Theorem 7.3.3 of Horn and Johnson (2012), the eigenvalues L̃η
τ are σ1(L

η
τ ) ≥ ... ≥ σG(L

η
τ ) ≥

0 ≥ −σG(L
η
τ ) ≥ ... ≥ −σ1(L

η
τ ). Thus the claim holds if σ1(L

η
τ ) ≤ 1. We equivalently show that I − L̃η

τ

is a symmetric positive semidefinite matrix. Note that

I − L̃η
τ =

 I −Lη
τ

− (Lη
τ )

⊤
I

 .

Take c ∈ R2k, write c =

y

z

 where y, z ∈ Rk. Then

c⊤
[
I − L̃η

τ

]
c = y⊤y + z⊤z − 2y⊤Lη

τz

=
∑

i∈ηN (x)

y2i +
∑

j∈ηN (x′)

z2j − 2
∑

i∈ηN (x)
j∈ηN (x′)

yizjAij[
(Oη

τ )ii (Q
η
τ )jj

]1/2
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≥
∑

i∈ηN (x)
j∈ηN (x′)

(
yiAij

(Oη
τ )

1/2
ii

− zjAij

(Qη
τ )

1/2
jj

)2

≥ 0,

where the first inequality comes from τ ≥ 0 thus guaranteeing I − L̃η
τ is positive semidefinite. □

Lemma A 1.7. ∥L̃η
τ (x,g)∥ ≤ 1.

Proof. We proceed as for Lη
τ : we can equivalently show that I − L̃η

τ (x,g) is a symmetric positive

semidefinite matrix. Take c ∈ R2k, write c =

y

z

 where y, z ∈ Rk. Then note that

∑
i∈ηN (x)
j∈ηN (x′)

 yi
√
P η
ij(x,g)

[(Oη
τ (x,g))ii]

1/2
−

zj
√
P η
ij(x,g)[

(Qη
τ (x,g))jj

]1/2


2

=
∑

i∈ηN (x)

∑
j∈ηN (x′)

y2i P
η
ij(x,g)

(Oη
τ (x,g))ii

+
∑

j∈ηN (x′)

∑
i∈ηN (x)

z2jP
η
ij(x,g)

(Qη
τ (x,g))jj

− 2
∑

i∈ηN (x)
j∈ηN (x′)

yizjP
η
ij(x,g)[

(Oη
τ (x,g))ii (Q

η
τ (x,g))jj

]1/2
≤

∑
i∈ηN (x)

y2i +
∑

j∈ηN (x′)

z2j − 2
∑

i∈ηN (x)
j∈ηN (x′)

yizjP
η
ij(x,g)[

(Oη
τ (x,g))ii (Q

η
τ (x,g))jj

]1/2 ,
by (Oη

τ (x,g))ii =
∑

j∈ηN (x′) P
η
ij(x,g) + τ , (Qη

τ (x,g))jj =
∑

i∈ηN (x) P
η
ij(x,g) + τ and τ > 0. Thus we

obtain

c⊤
[
I − L̃η

τ (x,g)
]
c = y⊤y + z⊤z − 2y⊤Lη

τ (x,g)z

=
∑

i∈ηN (x)

y2i +
∑

j∈ηN (x′)

z2j − 2
∑

i∈ηN (x)
j∈ηN (x′)

yizjP
η
ij(x,g)[

(Oη
τ (x,g))ii (Q

η
τ (x,g))jj

]1/2

≥
∑

i∈ηN (x)
j∈ηN (x′)

 yi
√
P η
ij(x,g)

[(Oη
τ (x,g))ii]

1/2
−

zj
√

P η
ij(x,g)[

(Qη
τ (x,g))jj

]1/2


2

≥ 0.

□
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