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Abstract

Robert Bork argued against the enforcement of the Robinson-Patman Act based on the economic

theory of the 1970s where output and welfare effects of third-degree price discrimination are

driven by local demand curvature conditions. Although known for nearly a century, these

curvature conditions have never been evaluated empirically. I first use demand manifold in-

variance results to show that most econometric specifications predetermine demand curvature

behavior and therefore, the predicted output and welfare effects of price discrimination relative

to uniform pricing. Second, I use supermarket scanner data to evaluate demand curvature

conditions nonparametrically for thousands of chain-store-product combinations and show that,

more often than not, third-degree price discrimination (local store pricing) decreases output

and welfare relative to uniform pricing (chain-store pricing). Furthermore, I show that using

output as a proxy for welfare as Bork suggested overstates potential gains and understates

potential damages of price discrimination. Zone pricing might thus serve as an effective tool for

firms with market power to profit by restricting total sales. This anticompetitive effect of price

discrimination could be reversed by the existence of economies of scale or the opening of new

markets.
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“Whether the much cruder forms of discrimination that one

encounters in the real world lead on average to a greater or smaller

output than single-price monopoly is an empirical question.”

Antitrust Law, An Economic Perspective

Richard A. Posner

1 Introduction

A monopolist serving two (or more) separate markets uses uniform pricing if he charges a single

unit price across locations. Alternatively, he engages in third-degree price discrimination (3DPD)

if he charges different prices in separate locations when preferences are sufficiently heterogeneous

and incremental profits are large enough to compensate arbitrage costs. Welfare effects associated

to 3DPD are always positive if it opens new markets but ambiguous if the number of local markets

served remains the same. If both local markets are always served in equilibrium, the monopolist

can increase profits by charging a higher price in the strong market and a lower price in the weak

market. The additional profits plus the increase in consumer surplus of low valuation consumers

as the weak market expands may or may not compensate the consumer surplus reduction following

the exclusion of high valuation customers in the strong market. Figuring out whether charging

different prices in separate markets could increase welfare is a long-standing question in economics

dating back to Robinson (1933, Book V). I think it is fair to say that most economists share an

overwhelmingly positive view of 3DPD .

The Robinson-Patman Act of 1936, RPA hereafter, is the antitrust law dealing with price

discrimination, mostly aimed to intermediate products sold by wholesalers with market power. The

influential legal scholar Robert Bork, who doubted the RPA as the “Typhoid Mary of Antitrust,”

led the charge against it by defending the consumer welfare standard:

“[...] the better guess, it seems to me, is that antitrust policy would do well to ignore price

discrimination. That estimate is based upon the judgment that price discrimination is, on

balance, probably better for consumers than any rule enforcing nondiscrimination, and upon

the belief that law cannot satisfactorily deal with the phenomenon in any event.” (Bork, 1978,

§20, p.412)

How did Robert Bork conclude that price discrimination is, on balance, probably better

for consumers? What was the empirical evidence supporting his position? The answer matters

because Bork’s arguments permeated the opinion of legal scholars for decades. The legal profession

still overwhelmingly believes that 3DPD generally benefits rather than harms consumers in the

aggregate (Hovenkamp, 2017, §1.5b). This may or may not be the case. However, as I document

below, this conclusion follows exclusively from an introspective theoretical reasoning rather than

from any statistical analysis of actual data.
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Bork appealed to efficiency arguments to justify a lenient treatment of 3DPD and treated

the output effect of price discrimination as a proxy for consumer welfare:

“[...] The evil of monopoly is restriction of output and consequent misallocation of resources.

The question, therefore, is whether the misallocation will be greater under a rule permitting

discrimination or under a rule requiring a single price to all customers. That question, in

turn, translates into the question of whether discrimination expands or further restricts the

monopolist’s output. [...] The impact of discrimination on output, therefore, may be taken as a

proxy for its effect on consumer welfare.” (Bork, 1978, §20, p.413)

Bork was well aware that 3DPD excludes some high valuation customers to expand the market

among low valuation ones, but acknowledged that antitrust did not have the tools to account

for deadweight losses and misallocation across consumers with different valuations (Bork, 1978,

footnote, p.413). Using output as a proxy for welfare is reasonable as, short of opening up new

markets, welfare effects of 3DPD ultimately depend on second derivatives of the direct and inverse

demand functions evaluated at the optimal uniform price, i.e., an abstract construct difficult to

articulate in legal terms. But why did Bork believe that output could increase with 3DPD? Again,

what empirical evidence shaped his reasoning to support this position?

“The movement from a single price to a two-price system clearly benefits the seller; the question

for antitrust policy is what it does to output. There is no easy answer in this simple two-market

case, though Joan Robinson, whose analysis seems as complete as any that has appeared since,

thought it more probable on the whole that output would be greater under discrimination than

non-discrimination.” (Bork, 1978, §20, p.415) – cursive added.

Thus, it is not data but Joan Robinson’s sole opinion written in 1933, what informs Bork’s belief

that 3DPD must be mostly beneficial. His legal position thus rests on purely theoretical arguments

based on the relationship between demand elasticity and curvature. Joan Robinson explored logical

conditions for output to increase but could not asses the likelihood of them holding in practice.

It could perhaps be argued that Bork was doubly mistaken since Robinson analysis dealt

with discrimination in consumer product (primary injury line or harm to consumers) while RPA

is mainly intended for intermediate goods sold by wholesalers (secondary injury line or harm to

competitors). However, economists had not addressed the welfare effects of input price discrimi-

nation by the time Bork wrote his book. Katz (1987) showed that uniform pricing might be more

beneficial with intermediate goods nearly a decade after Bork published his influential book.

Interestingly, around the time of Bork’s writing, Posner (1976, §8) and Schmalensee (1981,

footnote 8) speculated about the possibility of 3DPD being outlawed because, on average, overall

sales will decrease relative to uniform pricing if concave demands are as likely to occur in practice

as convex demands. Nearly a century after Robinson’s seminal work, we still lack any empirical

evidence supporting or rejecting the supposedly beneficial output and welfare effects of 3DPD . This

paper aims at filling that void by evaluating the necessary demand curvature conditions behind the

output and welfare effects of price discrimination.

– 2 –



I make two related contributions, one theoretical and one empirical. On the theory front, I

show that most common demand specifications will necessarily conclude that 3DPD reduces output

and welfare regardless of the features of the data generating process. Parametric demand speci-

fications implicitly restrict demand curvature properties behind the output effect of 3DPD . This

result highlights the need for more flexible econometric specifications capable of accommodating

demand curvature heterogeneity across local markets, e.g., by allowing for nonlinear price effects

interacted with local market indicators.

Next, on the empirical side, I use the 2008-2011 sample from the IRI Marketing Data Set

to test whether the relative curvature demand conditions of theoretical models generally hold in

practice. I thus evaluate nearly 23,000 chain store pricing problems (uniform vs. 3DPD) using four

alternative nonparametric demand specifications for more than 160,000 store-products combinations

across ten retail product categories. Results support the view that 3DPD is generally welfare

decreasing across all categories of retail products considered in this study. I further show that using

output as a proxy for welfare is misleading as it exaggerates the potential gains and underestimates

the potential welfare reductions of 3DPD .

To my knowledge, demand curvature conditions governing the output and welfare effects

of 3DPD have never been empirically evaluated before. The robustness of results and the scale of

analysis thus provides, for the first time, the kind of evidence that legal scholars lacked in the past

to decide whether mandating uniform pricing could be socially preferable to 3DPD .

Theory. I highlight the limitations of parametric models to evaluate the incremental welfare and

sales of 3DPD , as they predetermine demand curvature behavior behind output and welfare effects

of 3DPD . To show these limitations, I combine the famous criticism of Bulow and Pfleiderer (1983)

on the effect of demand specification on predicting the pass-through rates of commodity taxation

with the manifold invariance results of Mrázová and Neary (2017, §II.B) in the context of 3DPD .

I adopt the demand manifold framework to illustrate where in the space of demand functions

the conditions for 3DPD to increase output and welfare are more likely to hold. The theoretical

analysis of 3DPD over the past century relies on the implicit assumption that infinitesimal price

changes around the optimal uniform price result in local demands with drastically different curva-

ture properties in the strong (high price) and weak (low price) markets. In other words, they must

be explained by different demand specifications even though we are dealing with purchases of the

same item at nearly identical prices. The demand manifold framework demonstrates that without

these demand curvature “jumps” in response to infinitesimal price changes, 3DPD generally leads

to reductions in output and welfare relative to uniform pricing as long as demand elasticity and

curvature are negatively correlated (downward sloping manifolds).

I show that particular demand specifications might inadvertently constrain the behavior of

demand curvature. This is because demand manifolds might be invariant with respect to some

or all parameter estimates. To illustrate this manifold invariance argument intuitively, suppose

that we estimate linear demands to evaluate how markups of a product vary across all stores of
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a supermarket chain. The econometrician obtains store-specific intercepts and slopes estimates

with this linear demand specification that might even accurately account for differences in price

responsiveness and the effect of income differences across locations. But by construction, demand

curvature is always zero and the predicted total output is always identical under both, uniform

pricing and 3DPD whenever we use a linear demand specification. Furthermore, the predicted

welfare will always be lower with price discrimination.1

Note that this empirical conclusion results exclusively from specifying a linear demand and

not necessarily because it is a feature of the data generating process. For linear demands, elasticity

and curvature are independent of each other. Welfare decreases with 3DPD for other manifold

invariant demands with respect to all parameters, such as semi-logarithmic, linear expenditure

system, and translog demands. In all these cases, elasticity and curvature are negatively correlated.

In contrast, logit demand always paints a rosy picture favoring 3DPD over uniform pricing

since, by construction, logit demand leads to positively correlated elasticy and curvature estimates.

This result is problematic and a serious empirical challenge, mostly because the ubiquitous logistic

is the most widely used model currently adopted for discrete choice demand estimation in empirical

industrial organization and antitrust. Its widespread use might give economists and policymakers

the false impression that there is abundant evidence of the beneficial effects of 3DPD , and thus,

support the current lenient treatment of 3DPD among legal scholars.

Many other demand specifications that are not manifold invariant with respect to all

parameters are also likely to predict output reductions with 3DPD if their predicted elasticity and

curvature are negatively correlated unless econometrician allow demand curvature to differ across

local markets. Thus, applied economists should use sufficiently flexible demand specifications to

obtain robust output and welfare effects associated to 3DPD .

Empirics. Welfare increases when 3DPD opens up new markets.2 The case that raises concerns

since the works of Pigou and Robinson is one where the number of local markets is fixed and the

monopolist chooses between uniform pricing and 3DPD . In this environment, the missallocation

effect might dominate the output effect of price discrimination and reduce welfare.

Consequently, I only focus on the canonical case of a single product monopolist with constant

marginal costs always serving all local markets to evaluate the predicted effect of 3DPD on output

and welfare.3 Data availability at each store and the pricing policy of the chain store conditions

the estimation of local demand curvatures. I use the 2008–2011 IRI Marketing Data Set, where

1 This is the misallocation effect first described by Pigou (1932, Part II, Chapter XVII, §13-16) for linear demands.
2 This is similar to the increase in pricing options in models of second-degree price discrimination, e.g., Wilson (1993,

§8.3). As they increase, options with lower fixed fees help expand the market among low valuation customers while
high valuation ones are offered marginal charges closer to the marginal cost, thus promoting efficiency.

3 Despite the evidence against 3DPD reported in this paper, 3DPD could still increase overall output and welfare as
well as consumer surplus across all local markets if it allows firms to take advantage of economies of scale (Robinson,
1933, §16.2). I do not explore this possibility due to lack of information regarding costs for thousand products
across seventy-one supermarket chains.
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supermarket chains charge nearly uniform prices, as in DellaVigna and Gentzkow (2019). There is

however enough price variation across stores and time to allow for separate store-specific estimates.

Economic theory does not provide any guidance about the economic fundamentals driving

curvature heterogeneity across markets, but from a practical perspective simply adding nonlinear

price effects interacted with local market demographics could, in principle, ensure enough demand

curvature flexibility. Given the data available in the IRI database, I estimate thousands of store-

product demands nonparametrically to avoid any of the specification-induced curvature restrictions

discussed above. I then evaluate the regularity and curvature conditions of Aguirre, Cowan and

Vickers (2010), ACV hereafter, for thousands of chain-store-product combinations. In particular, I

directly test ACV’s curvature conditions for strong and weak markets after solving for the optimal

chain uniform price using the estimated store demands parameters. The approach evaluates these

curvature conditions locally, in the neighborhood of the optimal uniform price, as ACV’s Increasing

Ratio Condition for demand curvature conditions to hold globally generally fails.

The resulting evidence shows that output and welfare effects of 3DPD are far more negative

than economists, policy makers, and many legal scholars commonly expected. Output is predicted

to increase only for 26% of product-chains (24% of sales). This output proxy overestimates the

increase in welfare associated to 3DPD , which only increases for 19% of product-chains (17%

of sales). Output is also predicted to decrease for a few cases: 16% of product-chains (15% of

sales). These output predictions, however, vastly underestimate missallocation effects, with welfare

possibly being lower for 76% of product-chains (78% of sales) with 3DPD . These average results

hold across all ten product categories studied in this paper.

This is the first empirical evidence challenging the relevance of long-held theoretical views

on 3DPD . Empirical analyses of other datasets using alternative methodologies are needed to

confirm the present results. The main contribution of this paper is to show that 3DPD has the

potential to reduce welfare far more often than increases it, which, at the very least, should question

the wisdom of Bork’s argument and the current lenient antitrust treatment of 3DPD .

Related Literature. Robinson (1933) first identified the relative demand curvature conditions

driving the overall output and welfare effects of 3DPD vs. uniform pricing. If they fail, 3DPD only

helps the monopolist increase profits while restricting overall sales or not expanding output enough

to compensate for the missallocation effect. While a negative output effect of 3DPD is sufficient

for welfare to decrease, a sales increase is not sufficient to ensure that 3DPD increases welfare. It

needs to be large enough, adding many low-value customers in the weak market to compensate for

the exclusion of a few high-value customers in the strong market.

Research on the theory of price discrimination remained mostly dormant until the early

1980s, when a long and impressive lineage of contributions began to appear. Schmalensee (1981)

extended Robinson’s analysis to the N -market case and proved that 3DPD cannot enhance welfare

unless total output increases in a framework where a constant marginal cost monopolist faces

independent local demands across markets. Varian (1985) generalized these results to the case of
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interdependent demands (imperfect arbitrage) and nondecreasing marginal costs. Schwartz (1990)

further generalized the same results for decreasing marginal costs when the cost function depends

on total output alone. Mauleg (1983) obtained bounds for welfare under 3DPD relative to uniform

pricing when at least one of the local demands is concave. ACV unified this literature and provided

the curvature conditions for 3DPD to increase output and welfare that I empirically evaluate in this

paper. Finally, Bergeman, Brooks and Morris (2015) extended the analysis to calculate output and

welfare bounds of all possible market segmentations, including segments with non-concave profit

functions.

Other important theoretical contributions addressed the case of price discrimination under

oligopoly (Borenstein, 1985; Holmes, 1989; Corts, 1998) or in vertical relations where discrimination

involves input prices (Katz, 1987; DeGraba, 1990; Miklós-Thal and Shaffer, 2021). Overall, these

papers show that some of the results for monopoly markets do not longer hold or are reversed in

oligopoly. See Varian (1989) and Stole (2007) for comprehensive treatments of these extensions.

I am not aware of any empirical study that evaluates the basic tenants of the theory of

3DPD . As far as I know, applied economists have not yet evaluated whether price discrimination

increases output and welfare relative to uniform pricing using an exogenous price regime change.

Early empirical work documented the possibility of 3DPD in oligopolistic markets and the ability

of firms to increase prices, either in gasoline retailing (Shepard, 1991) or the airline industry

(Borenstein, 1989; Borenstein and Rose, 1994). More recently, empirical studies have evaluated

the profitability of 3DPD but not its potential output and welfare effects. They solidly document,

however, that retail chain stores price nearly uniformly (Adams and Williams, 2019; DellaVigna

and Gentzkow, 2019; Hitcsh, Hortaçsu and Lin, 2021).

Organization. Section 2 reviews the near demise of the RPA enforcement after 1980 and the

ongoing rehabilitation attempts. Section 3 uses the demand manifold framework to (i) state output

and welfare conditions of 3DPD in terms of elasticity, curvature, and their derivatives; (ii) prove

that output and welfare are driven by the chosen demand specification in the absence of curvature

heterogeneity across local demands; (iii) show that using common demand specifications that are

manifold invariant will necessarily predict negative output and welfare effects of 3DPD ; and (iv)

discuss the curvature restrictions of common demand systems that are not manifold invariant with

respect to all parameters. Section 4 presents an econometric model comprising three elements: (i)

four alternative polynomial specifications for each chain-store-product demand; (ii) an equilibrium

estimate of a constant chain-product marginal cost; and (iii) the numerical computation of the

optimal chain-product uniform price used to evaluate the demand curvature conditions. This

section then uses the IRI Marketing Data Set to assess the likelihood that 3DPD leads to increases of

decreases of output and welfare and summarizes results across ten product categories for one specific

polynomial demand specification. Section 5 concludes. The Online Appendix inculdes additional

derivations and reports detailed results for the ten product categories and all four polynomial

demand specifications.
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2 The Robinson-Patman Act: Past and Present

The RPA addresses the fairness of price differences that small businesses face rather than final

consumers, ignoring costs and efficiency arguments (Varian, 1989, §3.7). The RPA aimed at

protecting small retailers from large chain stores by limiting wholesale discounts, the so-called

secondary line injury to competition, even if it might end up harming consumers (Breit and Elzinga,

2001, §5). Furthermore, the law is not very effective at distinguishing true price discrimination from

temporary discounts to meet the competition or accounting for cost differences in providing services

across local markets. Influenced by Bork’s opinion and the work of many economists, the RPA was

less frequently enforced beginning in the 1980s.4

There is an ongoing push to rehabilitate the enforcement of the RPA claiming that the

legislator never cared about economic efficiency but enacted the RPA to pursue fairness by protect-

ing smaller businesses against the “unfair practices” available only to large corporations.5 Recent

attempts to combat price discrimination include two FTC investigations on retail pricing by soda

manufacturers and wine and liquor distributors.6 A recent court decision banned Prestige and

Medtech from making promotional payments for advertising and other services of their Clear Eyes

drops only to large retailers such as Costco and Sam’s Club.7 The ultimate prize appears to be

Amazon and its ability to induce wholesalers to price discriminate against smaller retailers.8

Using the RPA to intervene firms’ pricing and distribution decisions on behalf of fairness is

an attractive approach for those trying to phase out the consumer-welfare standard in antitrust as

promoting efficiency and lowering prices for consumers is not the main goal of the RPA. For those

favoring the rehabilitation of the RPA, the move in antitrust toward economics-driven calculations

to prove injury over the past few decades is what really diminished the RPA’s potential to ensure a

fairer working of markets.9 Economists are customarily blamed for the current paralysis, as the task

for judges becomes more difficult with increasingly more technical analyses to meet the evidentiary

burden (Kim, 2021, p.185). The alternative is to eliminate some unjustified price differences not

related to production or distribution costs to create a (never defined) fairer form of competition

governed by something different than low prices (Hanley, 2024, §4).

4 See O’Brien and Shaffer (1994), Blair and DePasquale (2014), and Schwartz (1986) in addition to Posner (1976)
and Bork (1978) himself.

5 See Federal Trade Commissioner Alvaro M. Bedoya’s (2022) prepared remarks at the Midwest Forum on
Fair Markets, https://www.ftc.gov/system/files/ftc_gov/pdf/returning_to_fairness_prepared_remarks_

commissioner_alvaro_bedoya.pdf.
6 See the June 12, 2024 WSJ editorial The FTC Brings Back the 1930s.
7 L.A. International Corp. v. Prestige Brands Holdings Inc. et al. See “Expect an Increase in Robinson-Patman Act
Enforcement” by D. Savrin, N. Kaufman and C. Zeytoonian, on April 29, 2024; and “Eye Drops Must Sell on Even
Terms Under Rare Antitrust Win” by B. Koenig, on May 21, 2024, both at https://www.law360.com/.

8 Kim (2021) presents a blueprint of the different strategies that plaintiffs and government agencies could use to bring
a secondary-line case against Amazon for using separate vendor programs, Amazon seller Central and Amazon
Vendor Central, with different conditions for pricing retailers, listing products, fulfillment and shipping.

9 Economists approach the effectiveness of the RPA quite differently. Not long ago, Blair and DePasquale (2014)
favored outright repeal of the RPA after the 2007 report by the Antitrust Modernization Commission.
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3 Theory: Demand Specification and Curvature Restrictions

Let’s assume that an econometrician has access to detailed price and quantity sales information

(psjt, xsjt) of products j sold in all stores s ∈ s(r) of chain stores r across time t. Suppose that

the sample contains two pricing regimes. First, chains engaged in 3DPD (store pricing). Then,

due to a sudden and unexpected change in regulation, chains are forced to price uniformly across

all stores. The econometrician could thus estimate a simple diff-in-diff model to evaluate whether

overall output is larger or smaller with 3DPD or under uniform pricing. A similar approach could

be used if regulation moves in the opposite direction, no longer restricting firms to uniform pricing,

after accounting for price endogeneity.

In both cases, output effects are evaluated ex post, and are not informative for the regulator

to decide whether to constrain firms’ pricing across locations. My goal is to evaluate the potential

effects of 3DPD vs. uniform pricing ex ante, which requires the use of a simple equilibrium model

capable of generating thousands of robust counterfactuals inexpensively. The basic elements behind

this minimal equilibrium model are the following:

1. I focus on a single-product demand at each store. Despite being a common approach in

the literature (DellaVigna and Gentzkow, 2019; Hitcsh et al., 2021), the approach ignores

substitution and strategic pricing decision within and across product categories in order to

offer a large number of demand estimates that would be unfeasible otherwise. Consumer

identity is not available and I therefore assume they always purchase at the same store.

2. I specify a constant, product-chain specific, marginal cost. Constant returns ignore the

possibility of wholesale quantity discounts. This is a reasonable assumption as small store

sales variations are unlikely to trigger massive discounts. Furthermore, it greatly facilitates

the computation of product-store marginal costs as an equilibrium estimate using the chain’s

profit maximization conditions.

3. Theory of price discrimination evaluates curvature conditions locally at the optimal uniform

price. This is the only counterfactual that I need to compute.

This section discusses how parametric specifications might drive output and welfare predictions

of 3DPD within this framework. Section 4 estimates demand nonparametrically to overcome the

limitations on local curvature heterogeneity highlighted below.

Basic Elements. Let’s consider a candidate specification with direct and inverse demand func-

tions that are both positive, continuous, strictly decreasing, and three times differentiable:

x = x(p), s.t. x′ = xp(p) < 0, and x(p) ∈ C3 , (1a)

p = p(x), s.t. p′ = px(x) < 0, and p(x) ∈ C3 . (1b)
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The elasticity ε(x) and curvature ρ(x) of the inverse demand are:

ε(x) ≡ − p(x)

x · p′(x)
= −p · x′(p)

x(p)
=

1

e(p)
> 0 , (2a)

ρ(x) ≡ −x · p′′(x)
p′(x)

=
x(p) · x′′(p)
[x′(p)]2

= e(p) · r(p) , (2b)

where e(p), the elasticity of the direct demand function is, in equilibrium, the price markup or

Lerner index, while r(p) represents the curvature of the direct demand function:

r(p) ≡ −p · x′′(p)
x′(p)

=
p(x) · p′′(x)
[p′(x)]2

= ε(x) · ρ(x) . (3)

In this section I review how demand curvature conditions across local markets determine

output and welfare effects of 3DPD relative to uniform pricing. I begin by writing ACV’s output

and welfare conditions in terms of demand elasticity and curvature. For simplicity, and without

loss of generality, assume that there is only one weak and one strong local market so that ps > pw

when the chain does not engage in uniform pricing, pu.

3.1 The Increasing Ratio Condition

The starting point of ACV’s analysis is the Increasing Ratio Condition (IRC ), a property ensuring

welfare to vary monotonically with ps − pw, the price difference between strong and weak markets,

or alternatively, showing an interior peak. Let’s define z(p) as the ratio of the marginal effect of a

price increase on social welfare to the second derivative of the profit function. After making use of

the Lerner index in the denominator, it becomes clear that ratio z(p) is the product of the markup

and pass-through rate of a single-product monopolist:

z(p) =
(p− c)x′(p)

2x′(p) + (p− c)x′′(p)
=

p− c

2− ρ[x(p)]
. (4)

IRC: The increasing ratio condition holds in every market evaluated at local prices, i.e.,

z′(pw) > 0 and z′(ps) > 0.

Welfare results discussed below in Section 3.2 characterize local conditions in the neigh-

borhood of the optimal uniform price, pu. If in addition IRC also holds, these welfare results are

“global” in the sense that they also apply to all prices in [pw, pu] and [pu, ps], respectively. Differ-

entiating (4) and eliminating the price markup with the equilibrium Lerner index, p− c = −x/x′,

IRC can be stated as:

z′(p) =
(2− ρ) + (p− c)ρx · x′

(2− ρ)2
=

(2− ρ)− xρx
(2− ρ)2

> 0 , (5)
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ACV[Appendix B] claim that many demand functions meet this IRC condition. Concavity

of a monopolist’s profit function requires demand not to be excessively convex, ρ < 2, to ensure that

ρx ≤ 0 and IRC holds.10 For isocurvature demands (Bulow and Pfleiderer, 1983) ρx = 0, which

always fulfills this condition as for this demand family, z(p) = 1 > 0, including linear demands with

ρ = 0. More generally, superconvexity of the absolute value of the slope of demand ensures that

ρx ≤ 0 and IRC holds.11 Applying MN[Lemma 4], the absolute slope of demand is superconvex if:

d2 log (−p′(x))

d(log x)2
= x

d

dx

(
xp′′(x)

p′(x)

)
= −xρx = −ρ (1 + ρ− χ) > 0 , (6)

so that the IRC condition then becomes:

z′(p) =
(2− ρ)− ρ(1 + ρ− χ)

(2− ρ)2
> 0 , (7)

which depends on the size of demand curvature relative to temperance parameter of the inverse

demand function (Kimball, 1992):12

χ(x) ≡ −x · p′′′(x)
p′′(x)

. (8)

Thus, for ρ < 2, IRC holds whenever:

ρx =
ρ

x
(1 + ρ− χ) < 0 . (9)

3.2 Curvature Conditions and Demand Manifolds

I now present ACV’s propositions on demand curvature behind output and welfare effects of 3DPD .

ACV1: Given the IRC , if the direct demand function in the strong market is at least

as convex as that in the weak market at the nondiscriminatory price then discrimination reduces

welfare, i.e., welfare decreases if rs(pu) ≥ rw(pu). The proposition can be rewritten as follows after

substituting identity (3): Welfare decreases with 3DPD when:

εs[x(pu)]·ρs[x(pu)]︸ ︷︷ ︸
rs(pu)

≥ εw[x(pu)]·ρw[x(pu)]︸ ︷︷ ︸
rw(pu)

. (10)

If this condition holds, welfare decreases in the neighborhood of pu. In combination with IRC , wel-

fare reduction holds globally, for any price difference across local markets. Starting from a situation

10A profit maximizing monopolist with a constant marginal cost c chooses price p so that p+xp′ = p(1−1/ε) = c > 0
and 2p′ + xp′′ = p′(2− ρ) < 0.

11A function f(x) is superconvex if log[f(x)] is convex in log(x). See MN[I.B] and MN[Online Appendix B] for a
discussion of superconvexity of demand and its relation to Marshall’s Second Law of Demand (Marshall, 1920,
[Book III, Chapter IV, §2).

12On the relationship between temperance of the direct and inverse demand functions, see the Online Appendix.
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where the monopolist sets a common price across locations, ACV1 tests whether transitioning from

uniform pricing to 3DPD could reduce welfare.

ACV2: Given the IRC , if zw(pw) = (pw−c)/(2−ρw) ≥ (ps−c)/(2−ρs) = zs(ps) (so inverse

demand in the weak market is more convex than that in the strong market at the discriminatory

prices, which are close together) then welfare is higher with discrimination.

ACV suggest using this condition to evaluate a mandatory uniform pricing policy could

reduce welfare when the monopolist actually engages in 3DPD . Again, IRC ensures that results

are valid globally, between the local and uniform prices. Using the equilibrium conditions (Lerner

index) to eliminate the unobservable marginal cost by substituting p − c = −x/x′, allows this

proposition to be restated as follows: given the IRC , welfare is higher with discrimination if:

(2− ρ[x(pw)]) ·
x′(pw)

x(pw)
≥ (2− ρ[x(ps)]) ·

x′(ps)

x(ps)
. (11)

ACV4(+): Total output rises if both direct demand and inverse demand are more convex

in the weak market than in the strong market. Evaluated locally at the nondiscriminatory price,

output rises with 3DPD when:

εw[x(pu)]·ρw[x(pu)]︸ ︷︷ ︸
rw(pu)

> εs[x(pu)]·ρs[x(pu)]︸ ︷︷ ︸
rs(pu)

, and ρw[x(pu)] > ρs[x(pu)] , (12)

ACV4(–): Total output does not increase if both direct demand and inverse demand are

more (or equally) convex in the strong market than in the weak market. Evaluated locally at the

nondiscriminatory price, output and welfare decreases with 3DPD when:

εs[x(pu)]·ρs[x(pu)]︸ ︷︷ ︸
rs(pu)

≥ εw[x(pu)]·ρw[x(pu)]︸ ︷︷ ︸
rw(pu)

, and ρs[x(pu)] ≥ ρw[x(pu)] . (13)

Demand curvatures evaluated at the uniform price are key to determine if 3DPD could

increase sales relative to uniform pricing. In some cases the curvature of the inverse demand

function suffices to characterize the output effect. Sales increase with 3DPD if all demands are

convex and ρw[x(pu)] > ρs[x(pu)] > 0. Similarly, sales decrease with 3DPD if all demands are

concave and ρw[x(pu)] ≤ ρs[x(pu)] < 0 (Shih, Mai and Liu, 1988; Cheung and Wang, 1994).

3.3 Demand Curvature Heterogeneity: Output and Welfare Predictions

In this section I use the demand manifold framework to illustrate how these output and welfare

conditions may or may not hold across different regions of demand curvature. The slope of demand

manifolds plays a key role. The main result of the following analysis is that unless demand curvature

heterogeneity across local markets is substantial, 3DPD reduces output and welfare if demand

manifolds are downward sloping.
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Figure 1: Pollak Demand Manifolds
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Demand Manifolds. A demand manifold is a smooth function relating demand elasticity and

curvature. MN[Proposition 1] proves that with the exception of the CES , downward sloping direct

and inverse demand functions that are three times continuously differentiable lead to a well-defined

and smooth equilibrium relationship in the elasticity-curvature space for each demand function:

ε(ρ) = ε (ρ[x(p)]) , or ρ(ε) = ρ (ε[x(p)]) . (14)

To illustrate and convey the intuition of the results presented in this section, Figure 1

depicts the demand manifolds of the translated CES demand introduced by Pollak (1971):

x = γ + δp−σ . (15)

After combining the necessary and sufficient profit maximization conditions using this demand

specification, the Pollak demand manifold is:

ρ =
σ + 1

ε
. (16)
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Profit maximization necessary condition requires demand to be elastic in equilibrium for any

firm with market power, ε > 1. Similarly, sufficiency requires the profit function to be concave, i.e.,

that the marginal revenue function is not increasing at the equilibrium prices, or ρ < 2. Together,

these two conditions restrict the set of admissible combinations of (ε, ρ) for a profit maximizing

monopolist to the non-shaded area in Figure 1. In equilibrium, demands can take many different

shapes for any elasticity value, ε.

The Pollak demand system includes both concave and convex demands as well as upward

and downward sloping manifolds, an important feature for the evaluation of output and welfare of

3DPD . When ρ < 0 demand is concave; linear for ρ = 0; and convex for ρ > 0. Among the latter,

demand is log-concave when ρ < 1 and log-convex if ρ > 1, with incomplete or more than complete

pass-through rate. When ρ = 1, along the dashed vertical line of Figure 1, pass-through rate is

exactly 100%.

Figure 1 shows that exponent σ determines the location of the {ε, ρ} manifold for the Pollak

family. A value of σ = −1 identifies the family of linear demands. The manifold is upward slopping

for σ < −1 which also identifies concave demands functions. Conversely, manifolds are downward

slopping for σ > −1, which includes both log-concave and log-convex demand functions. For any

value of σ, a combination of parameters (γ, δ) identifies a single point on each (ε, ρ) manifold.

Homogeneous Curvature Across Markets. I now explore where the curvature conditions

behind output and welfare of 3DPD hold in the (ε, ρ) space. The basic arguments can be conveyed

graphically. Dots {u,w, s} in Figure 1 represent particular elasticity-curvature combinations (ε, ρ)

at strong and weak local markets. They are intended to represent “infinitesimal” deviations from

the elasticity and curvature under uniform pricing, (εu, ρu), along a single manifold. For output

and welfare to increase with price discrimination, elasticity and curvature need to be positively

correlated. This might occur even in the absence of local market demand curvature heterogeneity,

i.e., along a single manifold, if manifolds are upward sloping. If demand manifolds are downward

sloping, output and welfare decreases with 3DPD unless the drivers of local demand curvature are

exceedingly different across strong and weak markets.

The formal argument relies on the fact that optimal price and elasticity are necessarily

inversely related for a profit maximizing monopolist. However, prices increase or decrease with

curvature depend on demand specification. The monopoly pricing solution is formally identical for

the weak and strong market, as well as for the uniform pricing case. The optimal monopoly price

is given by:

pj =
εj

εj − 1
c , for j = {u,w, s} . (17)

Local markets are defined as strong or weak if, under 3DPD , the local price is higher or lower than

the optimal uniform pricing solution, ps > pu > pw. It follows from the pricing equation (17) that

εs < εu < εw, i.e., demand is less elastic in the strong market than in the weak one, with demand

elasticity of the joint market falling in between (Nahata, Ostaszewski and Sahoo, 1990, Theorem 1).
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The strength of the price-curvature connection determines the amount of local market

curvature heterogeneity needed for 3DPD to increase output and welfare. If manifolds are upward

sloping, the ordering of elasticities and curvatures in the weak and strong market is the same as

points {w2, u2, s2} in Figure 1. Demand is always more elastic for the weak than for the strong

market, εw2 > εs2 . Because the demand manifold are upward sloping, it is also the case that

ρw2 > ρs2 . Thus, ACV4(+) condition (12), εw2ρw2 > εs2ρs2 , holds and output increases with price

discrimination even in the absence of curvature heterogeneity across local markets, i.e., when local

demands have common curvature determinants as in Figure 1 for the σ = −2 manifold.13

A very different outcome occurs when Pollak demands are convex and manifolds downward

sloping, e.g., points {w1, u1, s1} along the σ = 0.25 manifold in Figure 1. If local demands still

have common curvature determinants εw1 > εs1 , but ρs1 > ρw1 . Now elasticity and curvature are

inversely correlated, which leads to ambiguous rankings of direct demands curvatures.

Consider first the case where manifolds are very steep, ρw1 ≈ ρs1 , corresponding to the

case of limited local curvature heterogeneity. Inequality (12), εw1ρw1 > εs1ρs1 , most likely holds

because εw1 > εs1 . Thus, output could still increase with 3DPD when determinants of local demand

curvature are common and the correlation between ε and ρ is negative but close to zero. On the

other hand, welfare is more likely to decrease with 3DPD if demand manifolds are relatively flat,

i.e., when curvature varies substantially across local markets. Now ρs1 >> ρw1 and εsρs ≥ εwρw.

If this is the case, equation (13) implies that output decreases with 3DPD . Combining (10) and

(13) indicates that 3DPD reduces output relative to uniform pricing as well as welfare.

Local Curvature Heterogeneity. For output to increase with 3DPD it is necessary that ρw >

ρs. If manifolds are downward sloping this can only happen if an infinitesimal price difference

separating strong and weak market results in local demands with drastically different demand

curvatures, e.g., for instance, shifting horizontally s1 to s′1 on the σ = −0.5 manifold and w1 to w′
1

on the σ = 1 manifold (gray arrows and nodes on the downward sloping manifolds of Figure 1).

This is consistent with the theoretical work on this subject for the past century.14

3.4 Implications for Empirical Analysis

There is an important take-away from the previous analysis for the empirical evaluation of 3DPD .

To ensure robust output and welfare predictions associated to 3DPD , applied economists should

turn to more flexible demand specifications that do not restrict the behavior of demand curvature

and allow for sufficient heterogeneity across markets, for instance by introducing nonlinear price

effects interacted with local market demographics.

13According to Cowan (2016, equation (12)) “captures the intuition that the total output effect is positive if the price
elasticity and the curvature measures are positively correlated.”

14For instance, Robinson (1933, §15.5) compares linear demands in one market with either a concave or a convex
demand in the other. This is also the case in ACV[Example 1], where the authors consider an exponential demand
in for the strong market and a linear one for the weak market.
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Parameter σ captures this additional flexibility in the Pollak demand system. A different

σ for strong and weak local markets may reverse the less desirable effects of a downward sloping

manifold with a common σ, i.e., a reduction of output and welfare relative to uniform pricing. For

other demand systems, market-specific estimates of demand parameters behind demand curvature

might also drive a wedge between the curvature of demand in weak and strong markets. This is

not possible at all when demand manifolds are invariant with respect to all parameters of demand.

If manifold invariance does not involve all parameters, it is possible to accommodate demand

curvature heterogeneity across local markets if the econometric specification is sufficiently flexible.

Manifold Invariance and Negative Output and Welfare of 3DPD. There are some impor-

tant demand specifications where jumps across demand manifolds are not possible at all because the

value of the parameter driving curvature properties is a constant common across weak and strong

markets. This is perhaps the most interesting result of using the manifold framework in relation

with the empirical analysis of 3DPD : to show that regardless of the data generating process,

the choice of some common demand specifications determines necessarily the negative output and

welfare prediction associated to 3DPD . This is a direct consequence of the manifold invariance

result of MN[§ II.B].

Demand shifts or rotations respond to changes in local demographics or other primitives of

each market. In general, we should expect that such changes in demand in the (p, x) space also affect

the shape and position of the corresponding demand manifold in the (ε, ρ) space. MN[Proposition 2]

present a set of technical conditions ensuring that a change of an arbitrary demand parameter ϕ

does not change the shape or position of the associated demand manifold. The demand manifold

is then invariant with respect to parameter ϕ.15

To illustrate this result with a particular case, note that differences in income or price

responsiveness across local markets result in demand shifts. For the linear demand specification

discussed in the Introduction, x = γ + δp, with different intercept-slope combinations {γ, δ}
reflecting these particular local demand conditions. However, all linear demands belong to the

same elasticity-curvature manifold σ = −1 in Figure 1, with a zero-curvature, which in the end

lead to the well-known welfare reduction predictions under 3DPD .

In addition to linear demands, there are other important demand systems with demand

manifolds that are invariant to local demand shifts with respect to all parameters include the

Stone-Geary’s linear expenditure system, x = γ + δ/p; CARA, x = γ + δ log(p); and translog

demand specifications, x = (γ + δ log(p)) /p. For all these cases, even if the econometrician takes

great care and estimates separate specifications of these convex demand functions for each local

market, the estimated intercepts and slopes across locations correspond to different elasticity-

curvature combinations belonging to a single downward sloping manifold. Thus, as discussed in

the homogeneous curvature case of Section 3.3, regardless of the data generating process, any of

15Formally, for demand manifold to be invariant with respect to demand parameter ϕ, elasticity and curvature should
depend on (x, ϕ) or (p, ϕ) through a common sub-function of either F (x, ϕ) or G(p, ϕ).
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these manifold invariant demand specifications will predict that 3DPD does not increase output

and reduces welfare.

Curvature Restrictions of Common Demand Systems. Most demand specifications, even if

they are not manifold invariant with respect to all demand parameters, impose important curvature

restrictions that determine the sign of correlation between elasticity and curvature estimates that

drive the output and welfare effects of 3DPD . I now documents the manifold curvature properties

of nine widely used demand systems. The demand manifolds of the first eight families are downward

sloping. Thus, if applied economists fail to model curvature heterogeneity in a sufficiently flexible

manner, they may likely conclude that 3DPD leads to reductions in total sales and welfare. The

only exception is the ninth family: logit demand.

Table 1 presents a wide selection of demand families commonly used in empirical research

and describes their manifold features, with most of them being almost always downward sloping,

i.e., dε/dρ ≤ 0. The table includes each analytical demand specification, particular cases, important

desirable properties, the expression of their demand manifolds and, most importantly, the slope of

this manifold for each demand family. See the Appendices of MN for further technical details.

The first row of Table 1 begins with the subset of convex Pollak demands. Pollak demand

manifolds are hyperbolas, all of them decreasing for convex demands, as shown in Figure 1. This

family includes the linear, CES , linear expenditure system (Stone-Geary), and CARA demand

functions as particular cases. The Inverse PIGL, also in the first row, includes the inverse translog

and all manifolds are downward sloping straight lines crossing at (ε, ρ) = (1, 2), the locus of the

Cobb-Douglas demand function. Next, the isoconvex demand is the important constant pass-

through family of Bulow and Pfleiderer (1983). In this case, manifolds are vertical lines that ensure

that curvature in the weak and strong market does not vary with elasticity. As in the linear demand

case, total output does not change but welfare decreases with 3DPD .16

The second row of Table 1 includes the case of demands with constant revenue elasticity of

marginal revenue, CREMR, introduced by Mrázová, Neary and Parenti (2021), who show that its

manifolds are always downward slopping concave curves converging at (ε, ρ) = (1, 2).17 Demands

with constant proportional pass-through, CPPT , have manifolds that are downward slopping

convex curves always crossing at (ε, ρ) = (1, 2). Last, the price independent generalized linear

(PIGL) demand system of Muellbauer (1975), including the translog demand function and the

Almost Ideal (AIDS ) system of Deaton and Muellbauer (1980) as particular cases, have demand

manifolds that are downward sloping for nearly all (ε, ρ) combinations. I discuss this case at length

in the Online Appendix and show that PIGL manifolds become upward sloping only for a very

small subset of very elastic and concave demands.

16This welfare reduction should be prediced by the empirical analysis of Atkin and Donaldson (2015) and Butters,
Sacks and Seo (2022), both of whom estimate or assume an isocurvature demand specification.

17This remarkable demand family allows for productivity and sales distributions having the same form. Furthermore,
if preferences are additively separable, CREMR demands are necessary and sufficient for Gibrat’s Law (growth rate
of firm sales is independent of firm size).
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The first two cases of the last row of Table 1 presents demand systems characterized by

downward sloping demand manifolds for all or a wide range of parameters. They include demands

with quadratic mean of order r, QMOR, introduced by (Diewert, 1976). The demand manifolds

of this demand system are very similar to those of the Pollak family depicted in Figure 1. They

are hyperbola-like manifolds that are decreasing for r < 2, i.e., for convex demands “to the right”

of the linear case, r = 2. The next case, the inverse exponential family, has downward sloping

manifolds if demand is log-concave but not necessarily if they are log-convex. This is the only case

that I am aware off where output might increase with price discrimination for very convex demands,

frequently falling into the superconvex region of demand.

The ninth family of Table 1, the logistic demand function, is always log-concave and the

only case where manifolds are always upward sloping and asymptotic to ρ = 1. Thus, any estimate

of a multinomial logit model not only imposes an incomplete pass-through rate (Miravete, Seim

and Thurk, 2023, §4), but also, if used to evaluate the effects of price discrimination, predicts, by

construction, that 3DPD leads to increases in output and welfare, a case already noted by Cowan

(2016). The analysis of this section indicates, however, that predictions regarding 3DPD of the

logistic demand are not necessarily robust, as they are implied by its curvature properties rather

than by the behavior of the data. This is an important result given the widespread use of the logit

demand in empirical work nowadays. Output and welfare effects measured after estimating a logit

demand are not necessarily robust but not being aware of its implied curvature restrictions might

wrongly convey the idea that the output and welfare effects of 3DPD are overwhelmingly positive.

4 Evaluating Output and Welfare Curvature Conditions

The policymaker might be interested in restricting supermarkets’ ability to price discriminate across

local stores. This might occur after a merger if the new consolidated firm is perceived to have

excessive market power. We therefore need to evaluate the optimality of uniform pricing vs. price

discrimination ex ante, which requires adopting a structural approach for researchers to compute

counterfactuals under alternative pricing regimes and predict their output and welfare effects.

The analysis of Section 3 shows the serious limitations that common parametric demand

models impose on output and welfare predictions of 3DPD . Even if we specify demand in such a

way that allows for sufficient demand curvature heterogeneity across local markets solving a full

structural model thousands of times might be prohibitive.

Theory Section 3.2 allows us to mostly circumvent this counterfactual approach. IRC

and conditions ACV1, ACV2, and ACV4 can be directly evaluated on demand estimates once we

determine the optimal uniform pricing, pu. This is a much simpler problem to solve than a full

counterfactual evaluation of output and welfare. Counterfactual analysis is contingent on a precise

estimation of a flexible demand specification capable of producing robust estimates when evaluated

at alternative pricing strategies. My approach, detailed below, could allow antitrust authorities
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to evaluate ex-ante whether uniform pricing or 3DPD are socially preferable based on curvature

properties of demand obtained using the actual prices charged by chains in each store.

4.1 Estimation: Demand, Costs, and Optimal Uniform Pricing

The estimation focuses on the residual demand of each product in each location, as in DellaVigna

and Gentzkow (2019). Consumers are assumed not to change the brand they purchase or the store

they purchase them from when evaluated at alternative prices. This restrictive assumption avoids

having to estimate a full multiproduct discrete choice demand across stores for all products, but

allows me to test local curvature conditions for tens of thousands of chain-store-products.

Data consists of price and quantity observations (p, x) for each product j (UPC) and

store s of chain r over t weeks. I adopt flexible demand specifications capable of accommodating

curvature heterogeneity across local markets to avoid the limitations discussed in Section 3.4 and

estimate the followingH-degree Stone-Weierstrass polynomial approximation for each store-product

combination:18

x(psjt) = β0 +

H∑
h=1

βh ·(psjt)h + τt + εsjt , (18)

where τt denotes the week-of-the-year fixed effects. To address price endogeneity concerns I use

Hausman (1996) instruments consisting of the average prices of product j for stores in the own chain

s ∈ s(r) located in other geographic markets. This polynomial regression makes use of the panel

data structure to predict store-product estimates for demand and its derivatives, x̂(p), x̂′(p) and

x̂′′(p), which allows computing estimates of elasticity and curvature, ε̂(p) and ρ̂(p) characterizing

the demand of each product in each store. These are the key ingredients necessary to test for

IRC , ACV1, ACV2, ACV4 and determine whether 3DPD increases output and welfare relative to

uniform pricing.

The potential for biased predictions far from the sample average of the regressors is well-

known (Fan and Gijbels, 1996, §1.1). The time span of the IRI data limits the possibility of using

other, more flexible nonparametric estimation methods. The number of observations required to

nonparametrically estimate derivatives increases exponentially with each additional derivative order

(Pagan and Ullah, 1999, §4), something that cannot be credibly achieved with a maximum of 208

weekly observations per store-product combination. As I discuss below, I exclude store-product

combinations with less than 104 observations from the analysis.

On the positive side, the evaluation of x̂(p), x̂′(p), x̂′′(p), and x̂′′′(p) takes place either at

the chain uniform price or at the store price, both of which are very close to the price sample mean,

as supermarket pricing is very similar across locations. Results are very similar for both, a cubic

(H = 3) and fourth-degree polynomial (H = 4) to evaluate the first three derivatives of demand.

18This approach simply considers nonlinear price effects that are allowed to vary across local markets as demand is
estimated for each store-product combination. Data availability conditions this modeling choice. If pooling the data
across local markets, another valid approach would be to interact local socioeconomic indicators with nonlinear
price effects.
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Results are very similar when I repeat the analysis using the Müntz-Szász approximation, which

Barnett and Yue (1988) favor as it reduces the risk of overfitting the data because it is globally

regular (concave) at all orders of approximaiton:19

x(psjt) = β0 +
H∑

h=1

βh ·(psjt)1/2h + τt + εsjt . (19)

Marginal Costs. I assume a common constant marginal cost crj for each product j across all

stores s(r) of a chain r. Since prices are not always exactly uniform across stores, I assume that

each period t, supermarket chain r sets store prices of product j to maximize total chain profits:

{p⋆sjt} ∈ argmax
{psjt}

Πrjt

(
p1jt, p2jt, . . . ps(r)jt

)
=

∑
s(r), j

(psjt − crj)x(psjt) . (20)

There are nr×t first order profit maximization conditions similar to (17) with an identical number

of store pricing equations, where nr is the number of stores in chain r and t the number of weeks

when store sales of product j are available for this supermarket chain. After estimating demand

for each store-product and computing its predicted store-product-week sales, x̂(psjt), and elasticity

estimate ε̂sj [x̂(psjt)], I average the s(r) weekly store marginal revenue estimates over all nr× t

store-weeks to obtain an equilibrium estimate of chain r’s marginal cost for each product j:

ĉrj =
1

nr×t

∑
s(r), j

psjt

(
1− 1

ε̂sjt[x̂(psjt)]

)
. (21)

Optimal Uniform Price. Output and welfare conditions ACV1 and ACV4 are evaluated at the

uniform price purj while ACV2 is evaluated at the store price psj . Although supermarket chains

price very similarly across stores and time, there are still small differences that need to be taken into

account to compare the curvatures of the weak and strong markets. In order to reduce the number

of comparisons across weeks, I define psj , the price of product j in store s as the sales-weighted,

weekly average of psjt in that store. Thus, x̂(psj) and ε̂j(psj) denote the within sample prediction

of weekly average sales and average elasticity of product j in store s∈s(r), respectively, where both

are evaluated at the sales-weighted average store price psj . Similarly, ρ̂j(psj) and χ̂j(psj) represent

the average curvature and average temperance estimates evaluated at the same sales-weighted,

weekly average store price.

19The Stone-Weierstrass approximation theorem ensures that a linear combination of functions {1, p, p2, p3, . . . }
used in (18) uniformly approximates any continuous demand x(p) on a compact support [p, p] ⊂ R. The
Müntz-Szász theorem ensures that demand can be uniformly approximated by a linear combination of functions
{1, pλ1 , pλ2 , pλ3 , . . . } if

∑
h∈N λ

−1
h = ∞ (Rudin, 1966, §15). I use half the harmonic sequence for the power

elements of demand specification (19) to approximate demand x(p) with a linear combination of concave functions
in [p, p] ⊂ R as each term λh = 1/2h ∈ [0, 1] (Barnett and Jonas, 1983).
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The estimate ĉrj is necessary to figure out the uniform price that maximizes supermarket

chain r’s profits of product j. I use the estimated parameters of the chain-store-product demands

to predict x̂(purj), the weekly average sales of product j in store s ∈ s(r) evaluated at the optimal

uniform chain price purj . I search among the set of prices ensuring non-negative predicted sales for

every chain-store to find the optimal uniform price that maximizes chain profits:

purj ∈ argmax
pj

Πu
rj(pj) =

∑
s(r),j

(pj − ĉrj) x̂(pj) · 1 [x̂(pj) ≥ 0] . (22)

Maximizing this objective function mimics the premises of the theoretical model by focusing on cases

where all local markets are covered both under uniform pricing and 3DPD . Since in practice I need

to solve this optimal uniform price for nearly twenty-three thousands chain-product combinations,

I proceed as follows. I first evaluate the weekly average store sales for each price given by a

thousand elements of a uniform sequence between the highest and lowest sales-weighted average

price observed in the data, psj ∈ (p
sj
, psj), for any store in a given chain. I then select purj as the

price securing the highest profits on (p
sj
, p◦sj ], where p◦sj , is the highest price in the sequence where

sales in all chain stores are positive.

4.2 Testing for Local Demand Curvature

After finding the optimal uniform price purj , I can test for IRC , output, and welfare conditions for

each store-product within a chain. The IRC regularity condition must hold for all local markets

evaluated at the local price. As I document below in Table 6, IRC fails most of the time. Thus, I

only evaluate local versions of the output and welfare conditions. If ACV’s conditions fail locally,

their global versions also fail.

Generalizing ACV1, ACV2, and ACV4 for more than two markets requires that they hold for

all weak and strong markets, i.e., for all pairwise demand curvature comparisons between each store

in the weak markets and each store in the strong market. Since ps > pu > pw and εs < εu < εw,

all pairwise comparisons hold if the infimum of the left hand side of conditions ACV1, ACV2,

and ACV4 exceeds the supremum of the right hand side of these conditions. If they hold for the

particular pairwise combination where the output and welfare conditions are more similar for weak

and strong markets, they will hold for all others. If they do not, there there is at least one pairwise

comparison that would violate the curvature condition. I thus evaluate the following hypotheses

empirically:

1. ACV1. 3DPD reduces welfare if IRC holds for all local markets plus:

min{rs[x̂(pu)] = εs[x̂(pu)] · ρs[x̂(pu)]} ≥ max{εw[x̂(pu)] · ρw[x̂(pu) = rw[x̂(pu)]} . (23)
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2. ACV2. 3DPD increases welfare if IRC holds for all local markets plus:

min

{
(2− ρ[x̂(pw)]) ·

x̂′(pw)

x̂(pw)

}
≥ max

{
(2− ρ[x̂(ps)]) ·

x̂′(ps)

x̂(ps)

}
. (24)

3. ACV4(+). 3DPD increases output if both direct and indirect demands are more convex in

the weak than in the strong market:

min{rw[x̂(pu)]} > max{rs[x̂(pu)]} and min{ρw[x̂(pu)]} > max{ρs[x̂(pu)]} . (25)

4. ACV4(−). 3DPD decreases output and welfare if both direct and indirect demands are more

convex in the strong than in the weak market:

min{rs[x̂(pu)]} ≥ max{rw[x̂(pu)]} and min{ρs[x̂(pu)]} ≥ max{ρw[x̂(pu)]} . (26)

4.3 Supermarket Data

I use weekly sales data from the IRI Marketing Data Set for ten product categories across nearly one

thousand stores belonging to seventy-one supermarket chains in fifty medium/large metropolitan

areas in the U.S. between 2008 and 2011. Most households purchase one or many of the products

included in the IRI Marketing Data Set (Bronnenberg, Kruger and Mela, 2008, Table 2). Products

are defined by UPC and they differ by size, flavor, and other attributes. Product categories include

beer, breakfast cereal, carbonated beverages, coffee, frozen dinners/entrees, household cleaning

products, salty snacks, soup, and yogurt.20

Following the sample selection criteria of DellaVigna and Gentzkow (2019), I exclude chains

present only in one geographical market as these cases do not allow to exploit within-chain price

variation across markets to compute Hausman instruments and properly estimate demand. I also

exclude stores switching chains over the sample period and store-product combinations with positive

sales for fewer than 104 weeks. To ensure that the estimation uses only products that are widely

available, I only include in the sample those items sold at least 80% of store-weeks across all chains.

The final sample includes over 3,000 UPCs across ten product categories. Store average weekly

price is the result of dividing each store weekly dollar sale by the number of units sold in each store.

Table 2 presents the descriptive statistics of the samples of each product category used

in the estimation. It reports descriptive statistics for prices, price variation, number of products,

stores, chains, and sales at different levels of aggregation. Overall, magnitudes are similar to those

of other retail studies.21

20Einav, Leibtag and Nevo (2010) document the similarity of the IRI and Nielsen datasets. I restrict the attention
to the period 2008-2011 with unique product identifiers across years as in Luco and Marshall (2020).

21Following DellaVigna and Gentzkow (2019), I also winsorize the sample by dropping the observations with store-
product estimated demand elasticity outside reasonable bounds, ε̂sjt[x̂(psjt)] /∈ [1.2, 7], or with non-concave revenue
function, ρ̂sjt[x̂(psjt)] > 2. Thus, the final sample size varies slightly across polynomial approximations.
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Prices of sample products range from $0.14 for a serving of soup to $23.86 for the most

expensive beer. Price dispersion within categories is particularly important for yogurt, with a

coefficient of variation of 0.86 across stores (standard deviation of price over mean price), but

rather limited for breakfast cereal with 0.23. It is interesting to note that price dispersion is more

muted across the stores of a chain, and in many cases nil, with chains frequently charging the

same price across all its stores at a moment in time. Sometimes pricing is substantially different

in specific locations, where some expensive products are offered. This price heterogeneity across

categories is a nice feature of the data. I show that output and welfare conditions are fulfilled in a

similar manner across stores, and thus results are robust to price level and price dispersion.

Store sales are closely related to the number of items available; they average only $37.47 per

week for the two household cleaning products they offer. At the other end, they make an average

of $1,438 per week selling nearly forty varieties of carbonated beverages. Chains offer a different

number of products of each category in different stores. For instance, on average they sell four

household cleaning items and nearly seventy carbonated beverages. Weekly chain average sales

range from $398 for household cleaning products to $43,568 for carbonated beverages.

Overall, the data includes information for 3,223 products sold across 964 stores belonging

to 71 supermarket chains. The number of units sold amounts to 754 millions for all products across

these ten categories. Sales amount to $1.6bn in total.

Table 3 documents how these magnitudes vary across chains of different size by number of

stores focusing on the case of carbonated beverages, the category with more units sold and with

larger sales. Average prices are lower for larger supermarket chains, particularly those with a very

large number of stores. They also offer more variety, leading to larger weekly average sales per

store. Price dispersion across stores is similar for all chains except for the largest ones. Pricing

is very similar if not identical across many of their stores, reducing the overall within chain price

dispersion. The most common chain has between eleven and twenty stores. Qualitatively similar,

category-specific descriptive statistics are reported in the Online Appendix for all ten product

categories used in the empirical analysis.

4.4 Results: Anticompetitive Potential of 3DPD

Demand estimation results vary slightly across demand specifications. These estimates also affect

the value of the output and welfare conditions, as well as the criteria used to quantify the importance

of violating these conditions, e.g., the share of chains or the share of category sales that fulfill them.

Table 4 reports these statistics for the four demand specifications discussed above, i.e., a

third and fourth degree Stone-Weierstrass polynomial, and a third and fourth Müntz-Szász series

expansion of demand. The third-degree Müntz-Szász series expansion is slightly preferred as fewer

observations get dropped after winsorization, both as a share of chain-products included and as a

share of chain sales within the carbonated beverages category. This specification also produces the

least elastic demand estimates on average, although admittedly, differences are negligible.
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Table 3: Descriptive Statistics: Carbonated Beverages

Chain Size (number of stores)

All 2–5 6–10 11–20 21–88

Price ($)
Average Price 2.22 2.35 2.38 2.32 2.04

Standard Deviation 1.21 1.25 1.23 1.22 1.15

Maximum Price 6.00 5.21 5.27 6.00 5.23

Minimum Price 0.23 0.23 0.24 0.24 0.29

Supermarket Stores

Average Number of UPCs 38.4 25.9 31.6 44.3 36.6

Average Weekly Sales (units) 1,438.2 992.8 1,159.1 1,523.8 1,503.1

Average Weekly Sales ($) 3,261.20 2,335.43 2,920.91 3,689.39 3,061.77

Supermarket Chains

Average Number of Stores 13.6 3.1 8.1 15.7 34.9

Average Number of UPCs 67.9 31.6 59.4 91.0 90.7

Average Weekly Sales (units) 19,213.2 2,840.2 9,123.6 23,172.9 50,229.7

Average Weekly Sales ($) 43,568.20 6,681.11 22,990.59 56,105.18 102,316.33

Within Chain UPC Price Dispersion (%)

Average Coefficient of Variation 2.51 2.57 2.37 2.35 2.94

Maximum Coefficient of Variation 25.18 17.43 25.18 15.87 13.40

Minimum Coefficient of Variation 0.00 0.02 0.00 0.00 0.08

Overall Data

Total Number of Chains 71 19 16 25 11

Total Number of Stores 964 58 130 392 384

Total Number of UPCs 908 213 320 604 415

Total Sales (millions of units) 273.3 10.2 29.4 118.8 114.9

Total Sales ($ millions) 619.7 24.0 74.0 287.6 234.1

Average Number of Weeks 192.4 174.5 194.2 192.8 193.3

Observations (millions) 7.13 0.26 0.80 3.35 2.72

Notes: The first block of price information is measured in dollars. The second one reports the average number of products
and sales per store. The third block repeats it by chain and includes also the average number of stores. The next one,
price dispersion, reports the average coefficient of variation across chains. The last block reports totals to give an idea of
the size of the data.

I consider both, a local and global version of welfare conditions, ACV1 and ACV2, as

equations (23)-(24) are evaluated either by themselves or together with the IRC condition. A first

important result is that ACV’s IRC condition does not hold as freuently as previously anticipated

in the economic theory literature. IRC fails more often than not, for somewhere between half and

two thirds of chain-products or chain sales. I test whether IRC plus ACV1 hold simultaneously, i.e.,

IRC ∩ACV 1, which occurs only for 8.69%− 12.52% of chain-products and 3.23%− 6.08% of chain

sales. I therefore conclude that data is consistent with a global reduction of welfare associated to

3DPD , only for a few cases. Similarly, it is only possible to show that welfare increases globally with

3DPD , i.e., IRC ∩ACV 2, for a few cases as well: 9%−14.36% of chain-products and 4.04%−5.86%

of chain sales.

This evidence could be read in different ways. First, it could be thought of being incon-

clusive: among the subsample where IRC holds, welfare increases globally for 25% of cases, and

it decreases globally for another 25% of cases. Results are inconclusive for the remaining 50%

of chain-products. Those ambiguous cases represent nearly two thirds of chain sales. The major
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Table 4: Curvature Tests Summary: Carbonated Beverages

Chain Products (#) Chain Sales ($)

S.W.(3) S.W.(4) M.S.(3) M.S.(4) S.W.(3) S.W.(4) M.S.(3) M.S.(4)

Average estimated ε̂ 3.31 3.38 3.29 3.35 3.31 3.38 3.29 3.35

Std.Dev of estimated ε̂ 1.25 1.32 1.27 1.35 1.25 1.32 1.27 1.35

Chain-Products (surviving) 95.15 91.37 96.04 96.15 92.53 86.34 93.76 93.70

IRC holds for all stores in a chain 35.55 49.53 35.89 37.36 38.32 51.90 38.79 40.06

– Welfare decreases globally 8.91 12.52 8.69 9.30 3.91 6.08 3.23 3.48

– Welfare increases globally 9.00 14.36 9.40 9.66 3.13 5.86 4.04 4.20

Potential welfare increase

– Output increases 23.30 25.72 23.08 23.33 9.43 11.01 9.69 9.76

– Output increases enough 16.77 20.78 16.41 16.17 6.13 7.99 5.26 5.14

Potential welfare decrease

– Output decreases 15.80 18.91 15.21 15.68 6.09 9.28 5.07 5.55

– Output does not increase enough 79.17 74.55 78.60 78.58 92.32 89.32 91.97 91.59

Notes: Percentage of chain products or chain sales that fulfill each curvature condition for third and fourth degree Stone-
Weierstrass polynomials and Müntz-Szász series expansion specifications of demand.

hurdle to show that welfare may increase or decreases globally with 3DPD is that IRC does not

hold most of the time. Thus, data can only prove an unambiguous welfare results for 20% of

chain-products and less than 10% of chain sales. For this reason, the rest of the analysis evaluates

output and welfare conditions locally, only in the neighborhood of the optimal uniform price. As I

have argued above, rejection of ACV’s conditions locally also invalidates them globally.

My preferred reading of the evidence however, is that data do not support Bork’s opinion,

based on Robinson’s theoretical analysis, that 3DPD will most likely increase welfare relative to

uniform pricing. It should be noted that Bork’s argument actually referred to output rather than

welfare as he treated total industry sales as a proxy for welfare. For welfare to increase, it is

necessary that output increases, i.e., ACV 4(+) should hold. But the increase in output should be

large enough to compensate the misallocation effect of excluding some high value consumers in the

strong market to increase sales among low valuation consumers in the weak one, i.e., ACV 4(+) ∩
ACV 2.

Results show that output increases between 23.08% and 25.72% of chain-products across

demand specifications, although the increase in output is large enough to expend welfare only

between 16.41% and 20.78% of cases. Similarly, the output proxy criteria predicts an increase of

between 9.43% and 11.01% of chain sales, although this increase is only large enough for welfare

to expand between 5.26% and 7.99% of sales. Thus, most cases are still ambiguous. However,

the evidence is robust across demand specifications which are flexible enough to accommodate

curvature heterogeneity across local markets. The important take-away from this analysis is that

focusing on output as a proxy for welfare exaggerates the potential benefits of 3DPD .

What about possible welfare reductions of 3DPD? Welfare decreases if output decreases,

when ACV 4(−) holds. If output decreases or does not increase enough, ACV 2 fails. 3DPD has
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Table 5: Chain Size and Curvature Conditions: Carbonated Beverages

No. Chain-Products Chain-Product Sales

No. Stores: All 2–10 11+ All 2–10 11+

Chains (%)

IRC holds for all stores in a chain 37.36 40.69 23.13 40.06 45.51 36.18

– Welfare decreases globally 9.30 11.35 0.56 3.48 7.88 0.34

– Welfare increases globally 9.66 11.61 1.34 4.20 8.08 1.44

Potential welfare increase

– Output increases 23.33 27.33 6.26 9.76 19.21 3.02

– Output increases enough 16.17 19.30 2.79 5.14 10.94 1.00

Potential welfare decrease:

– Output decreases: 15.68 18.88 2.01 5.55 11.58 1.24

– Output does not increase enough 78.58 74.79 94.75 91.59 83.49 97.37

Notes: Welfare decreases globally when, IRC and ACV1 hold together, i.e., IRC ∩ ACV 1. Similarly welfare increases
globally if IRC ∩ ACV 2. For welfare to increase, it is necessary that output increases, i.e., ACV 4(+) should hold. The
increase in output should be enough to compensate the misallocation effect to ensure that welfare increases, ACV 4(+)∩
ACV 2. Welfare decreases if output decreases, i.e., when ACV 4(−) holds. If output decreases, ACV 4(−), or does not
increase enough, ACV 2 fails, 3DPD has the potential to decrease welfare, i.e., when ACV 4(−) ∪ ACV 2. Results are
based on the the third degree Müntz-Szász series expansion specification of demand.

thus the potential to decrease welfare when ACV 4(−) ∪ ACV 2. Results indicate that using the

output proxy greatly underestimates the potential welfare reduction induced by 3DPD . While

output is predicted to decrease between 15.21% and 18.91% of chain-products and between 5.07%

and 9.28% of sales across demand specifications, welfare might get reduced from 74.55% to 79.19%

of chain-products and from 89.32% to 92.32% of sales.

Table 5 explores whether these output and welfare conditions are more likely to hold for

smaller or larger chains. IRC fails frequently, but failure is even more common for products sold

by larger chains. This is reasonable as IRC is required to hold for every local store. Demands

estimated for products sold by larger chains are inconclusive in nearly all cases when welfare is

evaluated globally. Output is predicted to increase (decrease) far more often for products sold

by smaller chains. However, using output as a proxy for welfare still exaggerates potential gains

and underestimate potential losses induced by 3DPD , results that holds regardless of the size of

supermarket chains.

Finally, Table 6 summarizes ACV’s output and welfare tests for all ten different product

categories for the estimates of the third degree Müntz-Szász series expansion of demand. Average

estimated price elasticity ranges from 3.12 for yogurt to 4.22 for beer, with all categories showing

a very similar empirical distribution of price responsiveness, many of them with a coefficient of

variation close to 0.38. Winsorization and the non-negative demand restriction when evaluated at

the optimal uniform price eliminate observations comprising up to 9% of chain-products and 15%

of sales. Most frequently, however, only 5% of chain-products and 8% of sales are eliminated.
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IRC fails always for more than half of the chain products and half of the chain sales across

all ten product categories. Using output as a proxy always exaggerates welfare increases of 3DPD

across all product categories, both as share of chain-products or share of chain sales. The most

extreme cases is frozen pizza 26.29% vs. 16.43% for chain-products and 13.98% vs. 7.29% for chain

sales. Similarly to the carbonated beverages case discussed before, output grossly underestimates

the potential welfare reductions of 3DPD , both for products and sales across all categories. Un-

derestimation of potential welfare losses of 3DPD is most important for coffee 14.31% vs. 81.09%

for chain-products and 3.37% vs. 92.91% for chain sales.

The picture arising from this analysis is very different from the long-held consensus among

economists regarding the potential gains of 3DPD that informed Robert Bork’s position against

restricting the practice of price discrimination. I avoid using parametric demand specifications that

might constrain the sign of output welfare predictions. The adopted nonparametric approach is

capable of handling demand curvature heterogeneity across local markets and evidence hints at

3DPD reducing welfare more often than expanding it. The empirical evidence also supports in

some way Bork’s view that it is more probably on the whole that 3DPD increases rather than

reduces output. However, Table 6 shows that output predictions are ambiguous for most cases and

also that the output proxy overestimates the benefits and underestimates the potential damages of

3DPD , a result that holds across all product categories.

5 Concluding Remarks

The results reported in the present paper are not very supportive of 3DPD even though my

evaluation relies on consumer welfare criteria rather than on a loose definition of fairness. My

analysis provides evidence against 3DPD using Bork’s preferred consumer welfare standard, which

might perhaps be useful to overcome economists’ concerns on the potential anticompetitive effects

of 3DPD , if its main effect is to reduce overall sales as a result of market power.

Callaci, Hanley and Vaheesan (2024, § IV.B) dismiss the usefulness of economic models to

understanding the consequences of enforcing the RPA robustly with criticisms that squarely apply

to my work. Their view is shared by many legal scholars bent on rehabilitating the RPA.

A first complaint is that I only deal with the simple case of price discrimination vs. no

price discrimination that has dominated the economic literature since Robinson (1933) rather than

addressing secret discounts. There are compelling reasons to defend the current approach. It is

difficult to study discounts that are secret and therefore non-observable to econometricians unless

they use a full-fledged structural model, something that would raise a different kind of concerns

and limit the analysis to a few product sold in a handful of stores.

Next, it could be argued that I am using a misguided framework for evaluating the per-

formance of 3DPD by its output and welfare effects rather than adopting the RPA’s normative

framework “to ensure fair competition and protect suppliers and retailers from unfair exercises
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of market power.” Economic welfare is the natural measure of well-being of the different actors

interacting in the market. Any other arbitrary normative criteria could easily be assessed with an

exogenous weighting of profits and consumer rents to incorporate whatever is to be considered fair.

And lastly, I fail to focus on intermediate goods markets. The data of the present study

refers to final consumer products rather than intermediate goods transacted between wholesalers

and retailers. Although not the common subject of interest for the RPA, focusing on final products

has some advantages. Theoretical output and welfare predictions are based on curvature conditions

of demands for final products. Showing that output and welfare might not generally increase with

3DPD has the potential to extend the influence of the RPA to the analysis of final products, if

indeed, price discrimination serves as an effective way for firms with market power to reduce sales.

Furthermore, Bork appealed to Robinson’s analysis of price discrimination in the market for final

goods to justify his legal theory against the RPA. The present paper provides the first empirical

evidence that should replace the theoretical intuition dating back a hundred years ago used to

justify a lenient treatment of 3DPD . Future empirical analysis using demand for inputs could

test the implications of Katz (1987) and later works on price discrimination on intermediate goods

favoring uniform pricing over 3DPD from a welfare perspective.

Any empirical work is, by definition, limited in one way or another by the availability of

data and the computational complexity of the estimation method employed. Thus, for instance, I

treat demand for each product in isolation and do not consider consumers’ choice of supermarket

because of lack of individual consumer purchases data. Estimating demand for all retail products

sold by a supermarket is not feasible. However, my approach, similar to DellaVigna and Gentzkow

(2019), produces abundant robust evidence based on the estimation of tens of thousands store-

product residual demands, which should make results particularly compelling. Of course, additional

evidence is always desirable for policymakers to make fully informed decisions. Thus, for instance,

in a recent work, Asil (2024) attempts to measure the trade-off between lower consumer prices

induced by wholesale discounts to large retailers and the possibility of higher consumer prices if

these discounts induce small retailers to leave the market. I hope the present work inspires other

researchers to continue evaluating output and welfare effects of 3DPD in a wide variety of settings.
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Hitcsh, G., A. Hortaçsu, and X. Lin (2021): “Prices and Promotions in U.S. Retail Markets,”
Quantitative Marketing and Economics, Vol. 19, pp. 289–368.

Holmes, T. J. (1989): “The Effects of Third-Degree Price Discrimination in Oligopoly,” American
Economic Review, Vol. 79, pp. 244–250.

Hovenkamp, H. (2017): Principles of Antitrust, St. Paul, MN: West Academic Publishing.

Katz, M. L. (1987): “The Welfare Effects of Third-Degree Price Discrimination in Intermediate
Good Markets,” American Economic Review, Vol. 77, pp. 154–167.

Kim, K. (2021): “Amazon-Induced Price Discrimination Under the Robinson–Patman Act,”
Columbia Law Review Forum, Vol. 121, pp. 160–185.

Kimball, M. S. (1992): “Precautionary Motives for Holding Assets,” in P. Newman, M. Milgate,
and J. Eatwell eds. The New Palgrave Dictionary of Money and Finance, New York, NY:
Stockton Press.

Luco, F. and G. Marshall (2020): “The Competitive Impact of Vertical Integration,” American
Economic Review, Vol. 110, pp. 2041–2064.

Marshall, A. (1920): Principles of Economics, London, UK: Macmillan, 8th edition.

Mauleg, D. A. (1983): “Bounding the Welfare Effects of Third-Degree Price Discrimination,”
American Economic Review, Vol. 93, pp. 1011–1021.

Miklós-Thal, J. and G. Shaffer (2021): “Input Price Discrimination by Resale Market,” RAND
Journal of Economics, Vol. 52, pp. 727–757.

Miravete, E. J., K. Seim, and J. Thurk (2023): “Elasticity and Curvature of Discrete Choice
Demand Models,” Discussion Paper 18310, CEPR.
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