
Adapting to Misspecification∗

Timothy B. Armstrong†, Patrick Kline‡ and Liyang Sun§

August 2024

Abstract

Empirical research typically involves a robustness-efficiency tradeoff. A researcher

seeking to estimate a scalar parameter can invoke strong assumptions to motivate a

restricted estimator that is precise but may be heavily biased, or they can relax some

of these assumptions to motivate a more robust, but variable, unrestricted estimator.

When a bound on the bias of the restricted estimator is available, it is optimal to shrink

the unrestricted estimator towards the restricted estimator. For settings where a bound

on the bias of the restricted estimator is unknown, we propose adaptive estimators that

minimize the percentage increase in worst case risk relative to an oracle that knows the

bound. We show that adaptive estimators solve a weighted convex minimax problem

and provide lookup tables facilitating their rapid computation. Revisiting some well

known empirical studies where questions of model specification arise, we examine the

advantages of adapting to—rather than testing for—misspecification.
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1 Introduction

Remember that all models are wrong; the practical question is how wrong do

they have to be to not be useful. – Box and Draper (1987)

Empirical research is typically characterized by a robustness-efficiency tradeoff. The

researcher can either invoke strong assumptions to motivate an estimator that is precise,

but sensitive to violations of model assumptions, or they can employ a less precise estimator

that is robust to these violations. Familiar examples include the choice of whether to add a

set of controls to a regression, whether to exploit over-identifying restrictions in estimation,

and whether to allow for endogeneity or measurement error in an explanatory variable.

As the quote from Box and Draper illustrates, decisions of this nature are often ap-

proached with a degree of pragmatism: imposing a false restriction may be worthwhile if

doing so yields improvements in precision that are not outweighed by corresponding increases

in bias. While precision is readily assessed with asymptotic standard errors, the measure-

ment of bias is less standardized. A popular informal approach is to conduct a series of

“robustness exercises,” whereby estimates from models that add or subtract assumptions

from some baseline are reported and examined for differences. While robustness exercises of

this nature can be informative, they can also be perplexing. How should the results of this

exercise be used to refine the baseline estimate of the parameter of interest?

One answer, found often in econometrics textbooks, is to use a specification test to select

a model. Doing so yields a pre-test estimator that equals the estimator of the restricted

model when the specification test fails to reject, and is otherwise equal to the estimator of

the unrestricted model. The pre-test estimator offers a form of asymptotic insurance against

bias: as the degree of misspecification grows large relative to the noise in the data, the test

rejects with near certainty. Yet when biases are modest, as one might expect of models that

serve as useful approximations to the world, the cost of this insurance in terms of increased

variance can be exceedingly high.

In this paper we explore an alternative to specification testing: adapting to misspecifi-

cation.1 Adaptive estimation provides a systematic approach to exploiting the assumptions

of the restricted model as efficiently as possible while acknowledging the possibility that the

1An interactive Shiny application implementing our proposed estimator is available online at https:

//lsun20.github.io/MissAdapt/.
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restriction in question is misspecified. Consider an oracle who knows a bound on the extent

to which the restricted model is misspecified, allowing them to combine the estimates from

the restricted and unrestricted models in a way that minimizes maximum risk. An adaptive

estimator is one that comes as close as possible to achieving this oracle benchmark without

using prior knowledge of the magnitude of misspecification.

We show that adaptive estimators can be computed by solving a weighted minimax

problem. While the resulting optimally adaptive estimator does not have a closed form, an

analytic soft-thresholding estimator can be tuned to yield comparable performance. This

adaptive soft-thresholding estimator can be interpreted as a smoothed version of the pre-test

estimator utilizing a critical value that depends on the correlation between the restricted

and unrestricted estimators. The near-optimality of adaptive soft-thresholding contrasts

with the performance of pre-test estimators, which perform poorly under moderate amounts

of misspecification.

Both the optimally adaptive and adaptive soft-thresholding estimators are easily com-

puted using information that is routinely reported in robustness checks. In the case where the

restricted estimator is efficient under the restricted model, the estimators can be computed

from published point estimates and standard errors alone. The adaptive soft-thresholding

estimator can also be obtained via a particular sort of lasso regression (Tibshirani, 1996)

that may be of independent interest in other low-dimensional settings.

To illustrate the advantages of adapting to—rather than testing for—misspecification,

we revisit two empirical examples where questions of model specification arise. Our leading

example, which we return to throughout the paper, is drawn from de Chaisemartin and

D’Haultfœuille (2020b)’s reanalysis of Gentzkow et al. (2011), in which a two-way fixed

effects estimator that exhibits negative weights in many periods is compared to a more

variable convex weighted estimator. The optimally adaptive and adaptive soft-thresholding

estimators are shown to place roughly equal weight on these two estimators. A second

example, taken from Angrist and Krueger (1991), compares an ordinary least squares (OLS)

estimate of the returns to schooling to an instrumental variables (IV) estimate. We argue

that extra care is required in this example because the IV estimate is orders of magnitude

less precise than OLS. Online Appendix E provides an additional example, drawn from

LaLonde (1986), illustrating the problem of estimating the effects of job training using a

mix of control groups whose credibility can be ranked ex-ante. In all of the above examples,
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adapting between models is found to yield a more attractive balance between efficiency and

robustness than selecting a single model via pre-testing, with the adaptive soft-thresholding

estimator performing especially well.

Related literature. Our analysis builds on early contributions by Hodges and Lehmann

(1952) and Bickel (1983, 1984) who consider families of robustness-efficiency tradeoffs defined

over pairs of nested models. We extend this work by considering a continuum of models,

indexed by different degrees of misspecification. Our framework also allows for more general

parameter spaces indexed by a regularity parameter, however computational constraints limit

us to low dimensional applications in practice.

A large statistics literature considers the problem of adaptation, defined as the search

for an estimator that performs nearly as well as an oracle with additional knowledge of the

data generating process. We focus on the case where proximity to oracle performance is

measured in terms of the ratio of actual to oracle risk, which mirrors the definition used in

Tsybakov (1998) and leads to simple risk guarantees and statements about relative efficiency.

While the high dimensional statistics literature has mostly focused on asymptotic rates and

constants, we study exact computation of quantities of interest in low dimensional settings.

A large literature considers Bayesian and empirical Bayesian schemes for either model se-

lection or model averaging (Akaike, 1973; Mallows, 1973; Schwarz, 1978; Leamer, 1978; Hjort

and Claeskens, 2003). The proposed adaptive estimator can be viewed as a Bayes estimator

that utilizes a robust prior guaranteeing bounded influence of specification biases on risk. In

contrast to empirical Bayesian proposals (e.g., Green and Strawderman, 1991; Hansen, 2007;

Hansen and Racine, 2012; Cheng et al., 2019; Fessler and Kasy, 2019) our analysis considers

a scalar estimand, which renders Stein style shrinkage arguments inapplicable.

de Chaisemartin and D’Haultfœuille (2020a) study empirical risk minimization in an

analogous setting with a scalar parameter and misspecification. They derive a combination

estimator that exhibits a maximum decrease in risk over the unrestricted estimator greater

than its maximum increase in risk over the unrestricted estimator. Risk-limited variants of

our adaptive estimators are shown to also satisfy this property.
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2 An introductory example

In this section, we illustrate our proposal at a high level via an empirical example, postponing

the details to later discussion. Gentzkow et al. (2011) studied the effects of newspapers on

voter turnout in US presidential elections using a two-way fixed effects (TWFE) model

estimated in first differences. de Chaisemartin and D’Haultfœuille (2020b) showed that

in settings featuring staggered adoption, like the one studied by Gentzkow et al. (2011),

TWFE estimators identify potentially non-convex combinations of average treatment effects

over time and across adoption cohorts.

Convexity of the weights defining a causal estimand θ is generally agreed to be an im-

portant desideratum, guaranteeing that when treatment effects are of uniform sign, θ will

also possess that sign. However, when treatment effect heterogeneity is mild, an estima-

tor exhibiting asymptotic weights of mixed sign may yield negligible asymptotic bias and

substantially lower asymptotic variance than a convex weighted alternative. Consequently,

researchers choosing between traditional TWFE estimators and modern convex weighted

alternatives often face a non-trivial robustness-efficiency tradeoff.

Let YR denote the first differenced TWFE estimator used by Gentzkow et al. (2011) and

YU the convex weighted estimator proposed by de Chaisemartin and D’Haultfœuille (2020b).

The restricted estimator YR evaluates to 0.26 – an additional newspaper raises voter turnout

by 0.26 percentage points – with a standard error of σR = 0.09. The unrestricted estimator

YU evaluates to 0.43 with a standard error of σU = 0.14. Suppose that YU and YR are normally

distributed with standard deviations given by these standard errors, an approximation that

can be formally justified using a local asymptotic misspecification framework.

Following de Chaisemartin and D’Haultfœuille (2020b), we assume that the target pa-

rameter θ is the average effect of an additional newspaper in counties gaining or losing

a newspaper and that YU provides an unbiased estimator of this parameter. In contrast,

the two-way fixed effects estimator will tend to identify a different parameter, yielding an

unknown bias b = E[YR] − θ. The difference YO = YR − YU between the restricted and

unrestricted estimators gives a noisy estimate of the bias b that forms the basis for standard

“over-identification” tests of specification. To further simplify the example, suppose that

cov(YR, YO) = 0. This condition, which seems to be very nearly satisfied in the data, implies

that YR is efficient under the constraint b = 0. Consequently, the variance of YO is given by
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σ2
O = σ2

U − σ2
R and the efficiency gain from imposing the restriction is given by σ2

R/σ
2
U .

To compare these estimators, consider their mean squared error (MSE), which will be our

preferred measure of risk. Since YU is unbiased, its MSE is equal to its variance σ2
U = (0.14)2.

In contrast, the MSE of the restricted estimator depends on its bias b: E[(YR − θ)2] =

b2 + σ2
R = b2 + (0.09)2. Figure 1 plots the MSE of the unrestricted and restricted estimators

as functions of the unknown bias b. To ease visual interpretation both risk functions have

been divided by var(YU), which normalizes the risk of YU to 1.

Figure 1: Risk of unrestricted, restricted, B-minimax, and oracle estimators

Notes: Depiction assumes σ2
R/σ

2
U = 0.41. Horizontal axis is spaced quadratically.

Reasonable people can disagree about which of these estimators is best. If b = 0, then YR

gives a decrease in MSE from (0.14)2 to (0.09)2. The price paid for this improvement in MSE

at b = 0 is that the MSE can be much larger than the MSE of the unrestricted estimator

when b ̸= 0. Of course, tradeoffs of this nature are unavoidable because YU is admissible: no

other estimator has lower MSE for all b. The goal of adaptive estimation is to resolve this

tradeoff by balancing efficiency when b is close to zero against robustness when b is large.

To find such an estimator, we introduce the benchmark of a hypothetical oracle that uses

prior knowledge of a bound on the magnitude of the bias b to form an estimator. When b = 0,

the oracle chooses YR, which is minimax when b is known to be 0. More generally, given a

bound B ≥ 0, one can compute the estimator that is minimax over the restricted parameter

space (θ, b) ∈ R× [−B,B], a procedure we refer to as the B-minimax estimator. The oracle

computes this estimator using prior knowledge of the best possible bound B = |b|, yielding
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an oracle estimator. Though the oracle estimator lacks a closed form, it closely resembles a

linear estimator (1−w)YR+wYU that uses prior knowledge of |b| to choose an oracle weight

w = w∗
b that is decreasing in |b|. Figure 1 plots the risk function of the B-minimax estimator

for B ∈ {1σO, 4σO} along with the risk function of the oracle.

The oracle estimator cannot be computed without prior knowledge of the bias magni-

tude. One feasible stand-in for the oracle estimator is to posit a bound B on the bias and

compute the B-minimax estimator. However, if this bound is set lower than the true bias

magnitude |b|, we again expose ourselves to potentially very large MSE. An alternative to

guessing a bound B is to use the data to infer a likely value of |b|. Then one can estimate

θ optimally subject to the estimated bias magnitude. The pre-test estimator described in

the introduction uses YU when |YO| > 1.96σO and otherwise relies on YR. Pre-testing yields

oracle-like behavior in some respects: when b is small, the restricted model tends to be se-

lected, whereas, when b is large, the unrestricted model tends to be selected. Unfortunately,

the risk function of the pre-test estimator, plotted in Figure 2, is quite large for moderate

values of b, reflecting the cost of using the data “twice” in a non-smooth fashion.

Figure 2: Risk of optimally adaptive, soft thresholding, and pre test estimators

Notes: Depiction assumes σ2
R/σ

2
U = 0.41. Horizontal axis is spaced quadratically.

Adaptive estimators, by contrast, use the data to directly mimic the oracle’s risk function.

The optimally adaptive estimator is the estimator that comes closest to matching the oracle’s

risk function, where distance is measured in terms of the maximum ratio of actual to oracle

risk across all bias levels, a metric that we term the adaptation regret.
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While the optimally adaptive estimator lacks a closed form, a simple soft thresholding

estimator can be tuned to come close to minimizing adaptation regret. Like the pre-test

estimator, the adaptive soft thresholding estimator is equal to YR if |YO/σO| is less than some

threshold value λ. However, rather than switching discontinuously to YU when |YO| > λσO,

the soft thresholding estimator “shrinks” the unrestricted estimator towards the restricted

estimator by λ standard errors of the bias estimate – i.e., the soft thresholding estimator

equals YU − λσO when YO < −λσO and YU + λσO when YO > λσO. The optimal threshold

is a decreasing function of the ratio σ2
R/σ

2
U , which captures the relative efficiency of YU to

YR. In the present example, σ2
R/σ

2
U = 0.41, implying YU is only 41% as efficient as YR when

b = 0. The optimal threshold in this case is λ = 0.64, far below the traditional 1.96 value

used for pre-testing.

The risk function of the optimally adaptive estimator and its soft thresholding approxi-

mation are shown in Figure 2. The MSE of the optimally adaptive estimator is never more

than 44% above the oracle MSE, which is the best that can be achieved. The adaptive soft

thresholding estimator has an MSE that is never more than 46% above the oracle. When

b = 0, these adaptive estimators achieve substantially (40% - 41%) lower MSE than YU .

Conversely, when |b| is large, they exhibit modestly (29% - 39%) higher MSE than YU .

The pre-test estimator also achieves near oracle MSE levels when b = 0. However, when

|b| ≈ 1.96σO, its MSE is 118% percent above the oracle MSE and 75% above the MSE of

YU . Evidently, the adaptive estimators yield both lower worst case departures from oracle

risk and lower worst case MSE than pre-testing.

While the difficulty of eliciting prior beliefs about the bias b of the restricted estimator is

one motivation for adaptation, both the adaptive estimator and its B-minimax counterparts

can actually be thought of as Bayes estimators motivated by particular least favorable priors.

Figure 3 depicts the least favorable priors utilized by the B-minimax estimator for two values

of B along with the least favorable prior of the adaptive estimator. All three priors are

discrete, symmetric about zero, and decreasing in |b|. Hence, all three estimators will tend

to be more efficient than YU when the true bias magnitude |b| is small. The adaptive prior

has the important advantage over B-minimax priors of not requiring specification of the

bound B. A second advantage of the adaptive prior is that it is robust : the risk of the

optimally adaptive estimator remains bounded as |b| grows large. In contrast, the risk of a

B-minimax estimator grows rapidly and without limit once |b| exceeds the posited bound B.
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Figure 3: Least favorable priors when σ2
R/σ

2
U = 0.41

3 Setup

Consider a researcher who observes data or initial estimate Y taking values in a set Y ,

following a distribution Pθ,b that depends on unknown parameters (θ, b). Let Eθ,b denote

expectation under the distribution Pθ,b. We will study possibly misspecified models in a

normal or asymptotically normal setting. Results covering more general models are available

in a prior version of this paper (Armstrong et al., 2023).

The random variable Y = (YU , YR) consists of an unrestricted estimator YU of a scalar

parameter θ ∈ R and a restricted estimator YR that is predicated upon additional model

assumptions. The additional restrictions required to motivate the restricted estimator make

it less robust but potentially more efficient. To capture this tradeoff, we assume that YU is

asymptotically unbiased for θ, while YR may exhibit a bias of b stemming from violation of

the additional restrictions. We focus on the case where YR is a single scalar-valued estimate,

but extensions to vector-valued b are provided in Appendix B.1.

It will often be convenient to work with the quantity YO = YR − YU , which gives an

estimate of the bias b that features in conventional tests of over-identifying restrictions. We

work with the large sample approximation YU

YO

 ∼ N

 θ

b

 ,Σ

 , Σ =

 σ2
U ρσUσO

ρσUσO σ2
O

 . (1)
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The variance matrix Σ is treated as known. In practice, feasible versions of our procedures

can be computed using a consistent estimate of the asymptotic variance matrix. The model

(1) arises as from a local asymptotic framework where θ and b are scaled by the square

root of the sample size and YU and YR are asymptotically normal. While we do not pursue

formal statements translating our results about minimax and adaptive estimators to this

framework, Armstrong and Kolesár (2021, Section 4.2 and Appendix C) obtain such results

for efficiency bounds for CIs.

Under the restriction b = 0, the efficient estimator GMM estimator of θ is YR,GMM and

its variance is σ2
R,GMM , where

YR,GMM := YU − (ρσU/σO)YO, σ2
R,GMM := var(YR,GMM) = σ2

U · (1− ρ2). (2)

In the case where ρσUσO = −σ2
O, the restricted estimator YR and the efficient GMM esti-

mator YR,GMM coincide because cov(YR, YO) = 0. One can compute σ2
O in this case simply

by subtracting the squared standard error of the restricted estimator from that of the un-

restricted estimator (Hausman, 1978). The relative efficiency of YU to YR,GMM is given by

σ2
R,GMM/σ

2
U = 1− ρ2.

3.1 B-minimax estimators

An estimator θ̂ : Y → A maps the data Y to an action a ∈ A. The loss of taking action

a under parameters (θ, b) is given by the function L(θ, b, a). While it is possible to analyze

many types of loss functions in our framework, we will focus on the familiar case of estimation

of a scalar parameter θ ∈ R with A = R and squared error loss L(θ, b, θ̂) = (θ̂ − θ)2.

The risk of an estimator is given by the function

R(θ, b, θ̂) = Eθ,bL(θ, b, θ̂(Y )) =

∫
L(θ, b, θ̂(y)) dPθ,b(y).

An estimator θ̂ isminimax over the set C for the parameter (θ, b) if it minimizes the maximum

risk over (θ, b) ∈ C. We are interested in a setting where the researcher entertains multiple

parameter spaces CB, indexed by B ∈ B, which may restrict the parameters (θ, b) in different
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ways. The maximum risk over the set CB is

Rmax(B, θ̂) = sup
(θ,b)∈CB

R(θ, b, θ̂).

An estimator θ̂ is minimax over CB if it minimizes R(B, θ̂). We denote such a “B-minimax”

estimator by θ̂∗B. The minimax risk for the parameter space CB is the maximum risk of the

minimax estimator:

R∗(B) = Rmax(B, θ̂
∗
B) = inf

θ̂
Rmax(B, θ̂) = inf

θ̂
sup

(θ,b)∈CB
R(θ, b, θ̂).

We will refer to the quantity R∗(B) as the B-minimax risk.

In our framework, the parameter space CB is indexed by a scalar bound B on the mag-

nitude of the bias of the restricted estimator:

CB = {(θ, b) : θ ∈ R, b ∈ [−B,B]} = R× [−B,B].

Hence, the set C∞ corresponds to the unrestricted parameter space, while C0 corresponds to

the restricted parameter space. Consequently, the ∞-minimax estimator (the B-minimax

estimator when B = ∞) is YU , while the 0-minimax estimator (the B-minimax estimator

when B=0) is YR,GMM . In the special case where the restricted estimator is fully efficient,

the 0-minimax estimator is additionally equal to the restricted estimator YR = YU + YO.

In some cases, researchers may have additional information about the problem at hand

that motivates working with parameter spaces of a different nature. For instance, one might

have ex-ante knowledge of the sign of the bias in YR. In such an example, YU would not be

the ∞-minimax estimator under the relevant (sign restricted) CB. While the tools developed

here to compute B-minimax and adaptive estimators are easily extended to other sorts of

parameter spaces indexed by a scalar, we do not pursue such extensions in this paper.

3.2 Adaptation

B-minimax estimators provide a natural approach to incorporating prior restrictions into

estimation. However, researchers are often unwilling to commit to a restricted parameter

space CB, either because they lack appropriate prior information or because priors differ
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among their scientific peers. In contrast to B-minimax estimators, adaptive estimators

yield worst case risk near R∗(B) for all B. That is, they yield uniformly “near-minimax”

performance without commitment to a particular choice of B.

How close to B-minimax performance can one get without specifying B? Relative to an

oracle that knows |b| ≤ B and is able to compute the B-minimax estimator θ̂∗B, an estimator

θ̂ formed without reference to a particular parameter space CB yields a proportional increase

in worst-case risk given by

A(B, θ̂) =
Rmax(B, θ̂)

R∗(B)
.

We refer to A(B, θ̂) as the adaptation regret of the estimator θ̂ under the set CB. In our

main results, risk corresponds to mean squared error. Hence, (A(B, θ̂) − 1) × 100 gives

the percentage increase in worst-case MSE over CB faced by an estimator θ̂ relative to θ̂∗B.

Importantly, this regret notion is scale invariant: a change of the units in which MSE is

measured (e.g., dollars squared versus squared cents) will not alter the percentage increase

in risk over an oracle.

The adaptation regret may be as large as Amax(B, θ̂) = supB∈B A(B, θ̂), a quantity we

term the worst case adaptation regret. The lowest possible value Amax(B, θ̂) can take is

A∗(B) = inf
θ̂
sup
B∈B

A(B, θ̂) = inf
θ̂
sup
B∈B

Rmax(B, θ̂)

R∗(B)
. (3)

Following Tsybakov (1998), A∗(B) gives the loss of efficiency under adaptation. An estimator

θ̂ is optimally adaptive if Amax(B, θ̂) = A∗(B). We use the notation θ̂∗ to denote such an

estimator.

To measure the efficiency of an ad hoc estimator θ̂ relative to the optimally adaptive

estimator, one can compute

A∗(B)
Amax(B, θ̂)

=
inf θ̃ Amax(B, θ̃)
Amax(B, θ̂)

.

We refer to this quantity as the adaptive efficiency of the estimator θ̂. Note that A(B, θ̂)−1 =

R∗(B)/Rmax(B, θ̂) gives the relative efficiency of the estimator θ̂ to θ̂∗B under the parameter

space CB. The optimally adaptive estimator θ̂∗ yields the best possible relative efficiency
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that can be obtained simultaneously for all B ∈ B. The loss of efficiency under adaptation

gives the reciprocal of this best possible simultaneous relative efficiency.

We study the case where CB = R × [−B,B] and take the set of values of B under

consideration to be B = [0,∞]. Early work by Bickel (1984) considered adapting over the

granular set Bgran = {0,∞}. Naturally, it is easier to adapt to the elements of the finite set

Bgran than to the infinite set B. Consequently, A∗(Bgran) ≤ A∗(B). However, consideration

of Bgran may leave efficiency gains on the table for 0 < b <∞ because R∗(b) ≤ R∗(∞).

Bickel (1982) studied an asymptotic regime where A(B, θ̂∗) tended to one, implying no

asymptotic loss of efficiency under adaptation. By contrast, in the high-dimensional statistics

literature, estimators typically exhibit non-negligible loss of efficiency under adaptation. For

instance, the lasso achieves asymptotic MSE exceeding that of an oracle that knows the

identity of the nonzero coefficients by a term that grows with the log of the number of

regressors considered (Bühlmann and van de Geer, 2011, Ch. 6).

3.3 When is adaptation desirable?

The optimally adaptive estimator is designed for settings where researchers believe the bias in

the restricted estimator is limited but nonetheless have difficulty committing to a particular

bound B < ∞. Hence, like their minimax antecedents, adaptive estimators can be viewed

as providing a convenient alternative to Bayesian estimation that avoids the requirement

to fully specify a prior. Minimax decisionmaking has famously been axiomatized in terms

of ambiguity aversion (Gilboa and Schmeidler, 1989; Schmeidler, 1989). Adaptation regret

can likewise be interpreted as capturing the regret an ambiguity averse researcher feels over

having exposed themselves to an unnecessarily high level of worst case risk.

A different sort of justification for minimax decisions—attributable to Savage (1954)—

involves the potential of such decisions to foster consensus in settings where priors differ

among members of a group. In Appendix A we develop a stylized extension of this argument

that illustrates the ability of adaptive decisions to foster consensus among “committees”

characterized by different sets of beliefs. In the model, each committee will agree to a B-

minimax decision, choosing B to appease its most skeptical member. However, different

committees prefer different values of B ∈ B. When the loss of efficiency under adaptation

A∗(B) is not too large, the committees will agree to jointly follow the optimally adaptive

decision because every committee can be compensated for the small increase in maximum
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risk over their preferred B-minimax level.

Taking the committees to represent different camps of researchers, the model suggests

adaptive estimation can help to forge consensus between researchers with varying beliefs

about the suitability of different econometric models. In accord with the notion that the

desirability of an optimally adaptive decision stems from its semblance to the relevant B-

minimax decision, the prospects for achieving consensus decrease with the loss of efficiency

under adaptation A∗(B), which itself depends on the range of beliefs in B.
When A∗(B) is small, one can simply proceed with the optimally adaptive estimator and

avoid arguments about whether the restricted model is appropriate. If it is large, then there

are substantive tradeoffs in choosing B that cannot be avoided. Depending on the range of

beliefs entertained by the scientific audience, adaptation may still be attractive when A∗(B)
is large. However, researchers may find it preferable to hedge against large biases in such

settings by placing a constraint on worst-case risk, an extension we consider in Section 4.4.

4 Main results

This section derives the form of the optimally adaptive estimator in our setting. We begin

by noting that the problem of computing adaptive estimators can be reduced to comput-

ing minimax estimators with a scaled loss function. We next use this insight along with

invariance arguments to derive the form of the minimax and optimally adaptive estimators.

4.1 Adaptation as minimax with scaled loss

Plugging in the definition of Rmax(B, θ̂) along with B = [0,∞] and CB = R × [−B,B], the

criterion that the optimally adaptive estimator θ̂∗ minimizes can be written

sup
B∈[0,∞]

Rmax(B, θ̂)

R∗(B)
= sup

B∈[0,∞]

sup
θ∈R,b∈[−B,B]

R(θ, b, θ̂)

R∗(B)
= sup

(θ,b)∈R2

sup
B∈[|b|,∞]

R(θ, b, θ̂)

R∗(B)

where the last equality follows by noting that the double supremum on either side of this

equality is over the same set of values of (B, θ, b). Since R∗(B) is increasing in B, the inner

supremum is taken at B = |b|, which gives the following lemma.
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Lemma 4.1. The loss of efficiency under adaptation (3) is given by

inf
θ̂

sup
(θ,b)∈R2

ω(b)R(θ, b, θ̂) where ω(b) = 1/R∗(|b|)

and an estimator θ̂∗ that achieves this infimum (if it exists) is optimally adaptive.

Lemma 4.1 shows that finding an optimally adaptive decision can be written as a minimax

problem with a weighted version of the original loss function. In particular, θ̂∗ is found to

minimize the maximum (over θ, b) of the objective ω(b)R(θ, b, θ̂) = Eθ,bω(b)L(θ, b, θ̂(Y )).

Hence, the optimal adaptive estimator corresponds to a minimax estimator under the loss

function ω(b)L(θ, b, θ̂(Y )).

4.2 Minimax and adaptive estimators

According to Lemma 4.1, computing adaptive estimators amounts to solving a weighted

minimax problem. In our setting, we can further simplify this problem using invariance.

We focus here on the case of squared error loss L(θ, b, θ̂) = (θ− θ̂)2. Appendix B.1 provides

proofs of the results in this section and covers general loss functions for estimation of the form

L(θ, b, θ̂) = ℓ(θ− θ̂). It will be useful to transform the data to (YU , TO), where TO = YO/σO is

the t-statistic for a specification test of the null that b = 0. This representation is equivalent

to our original setting because σO is known.

Applying invariance arguments and the Hunt-Stein theorem, it follows that the B-

minimax estimator θ̂∗B(YU , TO) takes the form

θ̂(YU , TO) = ρσUδ (TO) + YU − ρσUTO = ρσUδ (TO) + YR,GMM , (4)

where YR,GMM is the efficient GMM estimator given in (2). To build some intuition for this

estimator, note that if b ̸= 0, then YR,GMM will exhibit a bias of −(ρσU/σO)b. The estimator

in (4) subtracts from the GMM estimate a corresponding estimate −ρσUδ (YO/σO) of this

bias term.

The δ (TO) employed by theB-minimax estimator can be shown to evaluate to the bounded

normal mean estimator δBNM (TO;B/σO), where δ
BNM(y; τ) denotes the minimax estimator

of ϑ ∈ C = [−τ, τ ] when Y ∼ N(ϑ, 1). The bounded normal mean problem has been

studied extensively (as detailed in Lehmann and Casella, 1998, Section 9.7(i), p. 425) and
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we detail its computation in Online Appendix D.3. For finite τ , the minimax estimator is

the posterior mean against a least favorable prior. Figure 3 illustrates several such priors.

When the interval is small, the least favorable prior concentrates at the two endpoints.

For larger intervals, it concentrates at a finite number of points within [−τ, τ ] (Casella and

Strawderman, 1981). For τ = ∞, the minimax estimator is TO.

The corresponding B-minimax risk is

R∗(B) = ρ2σ2
Ur

BNM (B/σO) + σ2
U − ρ2σ2

U , (5)

where rBNM(τ) denotes minimax risk in the bounded normal mean problem. This expression

was used to construct the oracle risk curve displayed in Figures 1 and 2.

By Lemma 4.1, it suffices to compute the minimax estimator for θ under the scaled loss

function R∗(|b|)−1(θ − θ̂)2 where R∗(B) is given in (5). Invariance arguments can again be

applied to show that the optimally adaptive estimator takes the same form as in (4), but

with δ given by the estimator δ∗(t; ρ), which minimizes

sup
b̃∈R

ET∼N(b̃,1)(δ(T )− b̃)2 + ρ−2 − 1

rBNM(|b̃|) + ρ−2 − 1
. (6)

The loss of efficiency under adaptation A∗([0,∞]) is given by the minimized value of (6).

We summarize these results in the following theorem, which is proved in Appendix B.1.

Theorem 4.1. Consider the model in (1) with parameter spaces CB = R × [−B,B] for

B ∈ B = [0,∞] and squared error loss L(θ, b, d) = (d− θ)2. The following results hold:

(i) The B-minimax estimator takes the form in (4) with δ (·) given by δBNM (·;B/σO) and
the minimax risk R∗(B) is given by (5).

(ii) An optimally adaptive estimator is given by (4) with δ(·) given by a function δ∗(t; ρ)

that minimizes (6).

(iii) The loss of efficiency under adaptation A∗(B) in (3) is equal to

inf
δ
sup
b̃∈R

ET∼N(b̃,1)(δ(T )− b̃)2 + ρ−2 − 1

rBNM(|b̃|) + ρ−2 − 1
= sup

π
inf
δ

∫
ET∼N(b̃,1)(δ(T )− b̃)2 + ρ−2 − 1

rBNM(|b̃|) + ρ−2 − 1
dπ(b̃)

where the supremum is over all probability distributions π on R.
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Theorem 4.1(i) states that an oracle who knows the best bound B = |b| will apply the

estimator in (4) with δ given by the bounded normal mean estimator δBNM. One could

alternatively consider an oracle with full knowledge of b that is required to entertain a

restricted class of estimators. Magnus (2002) shows that such an oracle will choose a linear

estimator δ(TO) = w(b)TO for some scalar weight w(b) even if the class of estimators δ(TO)

can take the form w(TO, b)TO, where w(TO, b) is constrained to be symmetric in TO, bounded

between 0 and 1, nondecreasing in TO on [0,∞), and to satisfy certain continuity conditions.

Constraining the oracle to choose among linear rules in our setting would yield similar results,

as minimax risk in the bounded normal means problem does not change much when attention

is restricted to linear estimators (Donoho et al., 1990).

The class of estimators in (4) was also considered by Magnus and Durbin (1999) in the

context of linear regression, albeit without the use of invariance arguments or a criterion such

as minimax or adaptation regret. Our use of invariance to derive (4) mirrors the arguments

of Bickel (1984) in the granular case where B = {0,∞}, although the characterization of the

adaptive estimator in Bickel (1984) is different and uses the fact that adaptation is between

two parameter spaces, rather than a continuum of parameter spaces.

4.2.1 Computation, least favorable prior and lookup table

According to Theorem 4.1, the optimally adaptive estimator δ∗(t; ρ) can be computed as the

solution to a weighted minimax problem over the scaled bias b̃ = b/σO. We use the charac-

terization of minimax estimators as Bayes estimators under a least favorable prior. Following

part (iii) of Theorem 4.1, the problem is solved numerically using a discrete approximation

to the prior over b̃, similar to recent work in econometrics that has numerically computed

solutions to minimax problems in other settings (e.g. Chamberlain, 2000; Elliott et al., 2015;

Müller and Wang, 2019; Kline and Walters, 2021). The least favorable prior distributions

reported in Figure 3 were computed using this approach. The invariance arguments used to

derive (6) imply an independent flat prior for θ. See Online Appendix D for details.

To ease computation of the optimally adaptive estimator, we solved for the function

δ∗(t; ρ) numerically at a grid of values of ρ. Tabulating these solutions yields a simple

lookup table that allows rapid retrieval of (a spline interpolation of) the empirically relevant

function δ∗(·; ρ). We detail the construction of this lookup table in Online Appendix D.5.

After evaluating this function at the realized TO, the remaining computations take an analytic
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closed form and can be evaluated nearly instantaneously.

4.2.2 Weighted average interpretation

One can write the estimator in (4) as a weighted average:

w(TO) · YU + (1− w(TO)) · YR,GMM , (7)

where w(TO) = δ(TO)/TO is a data-dependent weight. The B-minimax estimator takes

δ(·) to be a minimax estimator that uses the constraint |b| ≤ B with known B, whereas

the optimally adaptive estimator takes as δ(·) an estimator engineered to adapt to different

values of B in this constraint. We find numerically that the adaptive estimator “shrinks” TO

towards zero, leading the weight δ(TO)/TO to fall between zero and one for all values of ρ.

The data dependent nature of the weight w(TO) is clearly crucial for the robustness

properties of the optimally adaptive estimator. As TO grows large, less weight is placed

on the optimal GMM estimator and more weight is placed on the unrestricted estimator

YU . If one were to commit ex-ante to a fixed (i.e., non-stochastic) weight on YU below one,

the worst-case risk of the procedure would become unbounded because the optimal GMM

estimator can exhibit arbitrarily large bias. Consequently, worst case adaptation regret

would also become unbounded.

4.2.3 Impossibility of consistently estimating the asymptotic distribution

The distribution of an estimator of the form (4) can be derived by noting that YGMM and

TO are independent, with YGMM ∼ N(θ − bρσU/σO, σ
2
U(1 − ρ2)) and TO ∼ N(b/σO, 1). Let

Z1 and Z2 denote independent N(0, 1) random variables. Substituting TO = Z1 + b/σO and

YGMM = σU
√

1− ρ2Z2 + θ − bρσU/σO into (4) and rearranging terms yields

θ̂(YU , TO)− θ

σU
= ρ

[
δ
(
Z1 + b̃

)
− b̃
]
+
√

1− ρ2Z2, where b̃ = b/σO. (8)

This representation holds under the distribution for (YU , TO) maintained in (1), which

provides an asymptotic approximation under local misspecification. In this asymptotic

regime, consistent estimators of ρ, σU and σO are available via the usual asymptotic variance

formulas used in overidentification tests for GMM. In contrast, b gives the limit of the bias of
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the restricted estimator divided by
√
n and cannot be consistently estimated. Consequently,

it is not possible to consistently estimate the asymptotic distribution of θ̂(YU , TO).

For example, the MSE of the estimator θ̂(YU , TO) is

σ2
U

[
ρ2r(b/σO; δ(·)) + 1− ρ2

]
, where r(b̃; δ(·)) = ET∼N(b̃,1)(δ(T )− b̃)2.

Figures 1 and 2 of Section 2 plot this quantity as a function of b̃ with consistent estimates of

ρ, σU and σO plugged in. However, b̃ itself cannot be consistently estimated. See Leeb and

Pötscher (2005) for a discussion of these issues in the context of pre-test estimators.

4.2.4 Confidence Intervals

Using (8), one can obtain a 100 · (1 − α)% CI that is valid under the parameter space

CB = R× [−B,B] for (θ, b) by using a critical value cα(B̃) = cα(B̃; ρ, δ) solving

inf χ s.t. sup
b̃:|b̃|≤B̃

P
(∣∣∣ρ [δ (Z1 + b̃

)
− b̃
]
+
√

1− ρ2Z2

∣∣∣ > χ
)
≤ α. (9)

This critical value can then be used to form the fixed length confidence interval (FLCI){
θ̂(YU , TO)± σUcα(B/σO)

}
, which is centered at the estimator θ̂(YU , TO). To emphasize

the dependence on the parameter space CB under which coverage is guaranteed, we will

refer to such intervals as B-FLCIs. For example, one can form the B-FLCI centered at

the B-minimax estimator by using the critical value cα(B/σU) for this estimator (i.e., for

δ(·) = δBNM(·;B/σU)). Setting B = ∞, the ∞-FLCI centered at the ∞-minimax estimator

is the usual CI centered at the unrestricted estimator: {YU ± z1−α/2σU}. This CI turns out
to be larger than the B-FLCI centered at the B-minimax estimator for finite B, reflecting

its validity over the larger parameter space b ∈ R.

Centering the B-FLCI at the B-minimax estimator requires specifying B. One would

ideally like to automate the choice of B for CI construction using an adaptive CI that has

length close to an infeasible |b|-FLCI, while maintaining coverage for all b ∈ R. Unfortu-

nately, it can be shown formally that adaptive CIs do not exist in our setting: any CI that is

valid for all b ∈ R must have average length close to the length 2z1−α/2σU of the CI centered

at YU , even if b happens to be close to zero (see Section 4 of Armstrong and Kolesár, 2021).

Despite these impossibility results, one can compute a B-FLCI centered at the adaptive
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estimator by computing the critical value cα(B/σO; ρ, δ
∗(·; ρ)) for the adaptive estimator.

One approach is to report an adaptive estimator along with the critical values for a 0-

FLCI and ∞-FLCI, thereby summarizing the range of critical values needed to guarantee

coverage under different assumptions. When |ρ| is large, the critical value for a 0-FLCI

will be far below the usual 1.96 benchmark for a 95% test. Conversely, the corresponding

critical value for a ∞-FLCI interval will be much larger than 1.96, reflecting the inherent

tradeoffs involved in centering the CI around the adaptive estimator rather than the unbiased

estimator. Cai and Low (2005) discuss analogous tradeoffs involving centering in the context

of nonparametric estimation.

An alternate approach, which we explore in our main empirical example, is to construct

a B-FLCI for some intermediate value of B and report both its worst and best case coverage.

Researchers who are open to trading off some worst-case coverage for a shorter CI or enhanced

best-case coverage might find an interval centered around an adaptive estimator, offering

coverage (say) between 90% and 97%, more appealing than a longer interval centered around

YU that consistently provides 95% coverage. This interval could also be preferable to a

slightly shorter 90% CI centered around YU , as the additional 7 percentage points of potential

coverage may be more valuable than a modest reduction in length.

4.3 Analytic adaptive estimators

While the optimally adaptive estimator is straightforward to compute via convex program-

ming and is trivial to implement once the solution is tabulated, it lacks a simple closed

form. To reduce the opacity of the procedure, one can replace the term δ(TO) in (4) with an

analytic approximation.

A natural choice of approximations for δ(TO) is the class of soft-thresholding estimators,

which are indexed by a threshold λ ≥ 0 and given by

δS,λ(T ) = max {|T | − λ, 0} sgn(T ) =


T − λ if T > λ

T + λ if T < −λ

0 if |T | ≤ λ.
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We also consider the class of hard-thresholding estimators, which are given by

δH,λ(T ) = T · I(|T | ≥ λ) =

T if |T | > λ

0 if |T | ≤ λ.

Note that hard-thresholding leads to a simple pre-test rule: use the unrestricted estimator

if |TO| > λ (i.e. if we reject the null that b = 0 using critical value λ) and otherwise use the

GMM estimator that is efficient under the restriction b = 0. The soft-thresholding estimator

uses a similar idea, but avoids the discontinuity at TO = λ.

As detailed in Appendix B.2, the soft-thresholding estimator is numerically equivalent

to a generalized lasso estimator (Tibshirani, 1996) applied to a dataset comprised of the

restricted and unrestricted estimates. The regressors are a constant and an indicator for

the restricted estimate, the coefficient on which measures the bias b. The lasso penalty

shrinks the bias estimate towards zero and depends only on the soft threshold λ. Hence,

the adaptive soft threshold provides an optimal tuning of lasso for low-dimensional settings

in which interest centers on a scalar parameter. This exact tuning contrasts with high-

dimensional settings where existing tuning methods typically only offer rate results.

A third estimator, which we will call the empirical risk minimizer (ERM), takes the form

δERM(TO) =
T 2
O

T 2
O+1

· TO. The ERM estimator, which was proposed by de Chaisemartin and

D’Haultfœuille (2020a), minimizes the estimated risk of the weighted average between YU

and YGMM . The ERM can be generalized to a broader class of estimators

δERM,λ(TO) =
T 2
O

T 2
O + λ

· TO,

which was briefly considered in Magnus (2002, p. 230). We can optimize λ for the worst-case

adaptation regret given a specific value of ρ2, which yields the adaptive ERM estimator.

To compute the adaptive ERM estimator along with the hard and soft-thresholding esti-

mators that are optimally adaptive in these classes of estimators, we minimize (6) numerically

over λ. The minimax theorem does not apply to these restricted classes of estimators. Fortu-

nately, the resulting two dimensional minimax problem in λ and b̃ is easily solved in practice

as explained in Online Appendix D.6.

The optimized value of (6) then gives the worst-case adaptation regret of the adaptive
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Figure 4: Thresholds minimizing the worst-case adaptation regret

Notes: Vertical axis is spaced on a log2 scale.

ERM estimator or the adaptive soft or hard-thresholding estimator. We plot the respec-

tive optimal thresholds in Figure 4, which are only a function of the relative efficiency

σ2
R,GMM/σ

2
U = 1 − ρ2. We will be especially interested in the optimal soft threshold, which

can be closely approximated using the formula λ = 0.45−0.24·ln(1−ρ2) for ρ2 ∈ (0.002, 0.99).

Figure 5 plots the optimally adaptive and soft-thresholding estimators of the scaled bias

as functions of TO. To ease visual inspection of the differences between these estimators,

they have been plotted over the restricted range [-3,3]. These functions depend on the data

only through the estimated value of 1 − ρ2, which takes the value 0.41 here, as in the two-

way fixed effects example introduced in Section 2. The optimal soft-threshold λ yielding the

lowest worst cast adaptation regret in this example is 0.64. The optimally adaptive, adaptive

ERM, and soft-thresholding estimators continuously shrink small values of TO towards zero.

However, the soft-thresholding estimator sets all values of |TO| less than 0.64 to zero, while

the optimally adaptive and adaptive ERM estimators avoid flat regions. In contrast to

the continuous nature of these adaptive estimators, a conventional pre-test using λ = 1.96

exhibits large discontinuities at the hard threshold. The pre-test choice of λ = 1.96 differs

from the value that minimizes worst-case adaptation regret, which in this example is 1.43.

Like the optimally adaptive estimator θ̂∗, the worst-case adaptation regret of the adap-

22



Figure 5: Estimators of scaled bias when σ2
R,GMM/σ

2
U = 0.41

Notes: Solid vertical line at 0.64 depicts optimal soft-threshold. Solid line at 1.96 depicts conventional
pre-test threshold.

tive soft and hard-thresholding estimators depends only on 1 − ρ2. We report comparisons

between these estimators in our empirical applications in Section 5. As discussed in Online

Appendix C.2, soft-thresholding yields nearly optimal performance for the adaptation prob-

lem relative to θ̂∗ in a wide range of settings. In contrast, hard-thresholding typically exhibits

both substantially elevated worst case adaptation regret and worst case risk driven by the

possibility that the scaled bias has magnitude near λ. The adaptive ERM estimator gener-

ally exhibits slightly higher worst case risk and adaptation regret than the soft-thresholding

estimator but exhibits lower risk when the bias is very large.

Our finding that soft-thresholding is nearly optimal for adaptation mirrors the findings of

Bickel (1984) for the case where the set B of bounds B on the bias consists of the two elements

0 and ∞. Magnus (2002, p. 231) reports that soft-thresholding (which he refers to as the

Burr estimator) optimizes a related regret problem over a certain class of estimators indexed

by two scalar parameters. While soft-thresholding is perhaps the simplest way of achieving

near-optimal performance for adaptation, other generalizations of thresholding estimators

(e.g., Johnstone, 2019, pp. 200-201) have been found to have similar risk properties to

soft-thresholding, and may also perform well in our setting.
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4.4 Constrained adaptation

If the loss of efficiency under adaptation A∗(B) is large, both the optimally adaptive estimator

and its soft-thresholding approximation will possess worst case risk far above the oracle

minimax risk, which limits their practical appeal as devices for building consensus among

researchers with different priors. As we show in Online Appendix C.3, A∗(B) will tend to be

large when |ρ| is large, which corresponds to settings where YR is orders of magnitude more

precise than YU . In such settings, substantial weight will be placed on the GMM estimator

to guard against the immense adaptation regret that would emerge if b = 0, which exposes

the researcher to severe biases if |b| is large.
In such cases, it may be attractive to temper the degree of adaptation that takes place by

restricting attention to estimators that exhibit worst case risk no greater than a constant R̄.

Online Appendix Section C.1 details how to compute such a constrained adaptive estimator.

As noted by Bickel (1984) in his analysis of the granular case where B = {0,∞}, it is often
possible to greatly improve the risk at b = 0 relative to the unbiased estimator YU in exchange

for modest increases in risk when b = ∞. Similarly, we find that setting R to 50% above the

risk of YU yields large efficiency improvements when b is small.

The constrained adaptive estimator bears some similarity to the ERM estimator. de Chaise-

martin and D’Haultfœuille (2020a) prove that the maximal risk decrease of δERM relative to

the risk of the unbiased estimator is larger than the maximal risk increase of δERM relative

to the unbiased estimator. Through numerical calculations reported in a prior version of

the paper (Armstrong et al., 2023), we find that this property holds for the constrained

soft-thresholding version of our estimator so long as R is less than 70% above the risk of YU .

Remarkably, the property holds even for unconstrained soft-thresholding (R = ∞) so long

as ρ2 is less than 0.86.

5 Examples

We now consider two empirical examples where questions of specification arise and exam-

ine how adapting to misspecification compares to pre-testing and other strategies such as

committing ex-ante to either the unrestricted or restricted estimator. Because the only in-

puts required to compute the adaptive estimator are the restricted and unrestricted point

estimates along with their estimated covariance matrix, the burden on researchers of re-
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porting adaptive estimates is very low. The analysis below draws on published tables of

point estimates and standard errors whenever possible, using the replication data only to

derive estimates of the covariance between the estimators. In both examples, we find that

the restricted estimator is nearly efficient, implying the relevant covariances could have been

inferred from published standard errors. A third example, provided in Appendix E, consid-

ers a multivariate adaptation problem with two restricted models and corresponding bias

estimates.

5.1 Adapting to heterogeneous effects (Gentzkow et al., 2011)

Returning to the example introduced in Section 2, Gentzkow et al. (2011) study the effect

of newspapers on voter turnout in US presidential elections between 1868 and 1928. They

consider the following linear model relating the first-difference of the turnout rate to the first

difference of the number of newspapers available in different counties:

∆yct = β∆nct +∆γst +∆εct,

where ∆ is the first difference operator, yct is voter turnout per eligible voter in county c and

year t, nct denotes the number of newspapers, and γst is a state by year fixed effect. The

parameter β is meant to capture a causal effect of newspapers on voter turnout. In what

follows, we take the OLS estimator of β as YR.

Studying this estimator in a heterogeneous treatment effects framework, de Chaisemartin

and D’Haultfœuille (2020b) establish that YR yields a linear combination of average causal

effects across different time periods and different counties, estimating that 46% of the relevant

combination weights are negative. To guard against the potential biases stemming from

reliance on negative weights, they propose a convex weighted estimator of average treatment

effects featuring weights that are treatment shares. We take this convex weighted estimator

as YU , implying our estimand of interest θ is the average effect of a change in the number

of newspapers on turnout in county-years where the number of newspapers changed. When

treatment effects are constant, the two-way fixed effects estimator is also consistent for this

parameter.

Estimates Table 1 reports the realizations of (YU , YR) and their standard errors, which

exactly replicate those given in Table 3 of de Chaisemartin and D’Haultfœuille (2020b) after
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dividing by 100. The estimated variance of YO is closely approximated by the difference in

squared standard errors between YU and YR, suggesting YR is nearly efficient. Hence, the

downstream GMM, adaptive, and soft-thresholding estimators could have been accurately

approximated using only the published point estimates and standard errors. Standard er-

rors are not reported for the soft-thresholding, adaptive, or pre-test estimators because the

variability of these procedures depends on the unknown bias level b.

Table 1: Estimates of the effect of an additional newspaper on turnout.

Pre- Opt. Soft- Hard- Adapt
YU YR YR,GMM test Adapt thresh thresh ERM ERM

Estimate 0.43 0.26 0.24 0.24 0.36 0.36 0.43 0.38 0.36
Std Error (0.14) (0.09) (0.09)
Max Risk 0% ∞ ∞ 87% 39% 25% 39% 15% 25%
Max Regret 145% ∞ ∞ 134% 44% 46% 82% 68% 50%
Threshold 1.96 0.64 1.43 1 1.73

Notes: Bootstrap standard errors in parentheses computed using the same 100 bootstrap samples utilized by
de Chaisemartin and D’Haultfœuille (2020b). The over-identification test statistic is TO = −1.75. “Pre-test”
selects between YU and GMM based on |TO| ≷ 1.96σO. The relative efficiency of YU to YR,GMM is 1− ρ2 =

0.41. “Max Risk” gives the percentage increase in worst case risk over YU : (supB Rmax(B, θ̂)/σ2
U − 1)× 100.

“Max Regret” refers to the worst case adaptation regret in percentage terms (Amax(B, θ̂)− 1)× 100.

Though the realized value of YU is nearly twice as large as that of YR, the two estimators

are not statistically distinguishable from one another at the 5% level. Hence, a conventional

pre-test suggests ignoring the perils of negative weights and confining attention to YR on

account of its substantially increased precision. The worst case MSE of the pre-test estimator

is 75% higher than the MSE σ2
U of YU , reflecting the hump shaped risk profiles depicted in

Figure 2. Pre-testing also yields sizable worst-case adaptation regret reflecting the possibility

that the test selects the inefficient YU when b = 0. Like YR, YR,GMM exhibits a standard

error roughly 35% below that of YU . Consequently, relying solely on the convex-weighted

(but highly inefficient) estimator YU exposes the researcher to a large worst-case adaptation

regret of 145%.

In contrast to the pre-test estimator, both the optimally adaptive estimator and its soft-

thresholding approximation place substantial weight w(TO) on the convex estimator, yielding

estimates roughly 60% of the way towards YU from YR,GMM . This phenomenon owes to the

fact that with TO = −1.7 both estimators detect the presence of a non-trivial amount of bias

in YR. We can easily compute the soft-thresholding bias estimate from the figures reported
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in the table as (−1.7+ .64)× 0.1 ≈ −.11, suggesting that YR exhibits a bias of roughly 40%.

Balancing this bias against the estimator’s increased precision leads the soft-thresholding

estimator to essentially split the difference between the convex and non-convex weighted

estimators.

By construction, the adaptive estimator exhibits lower worst case adaptation regret than

the soft-thresholding estimator but the differences are quantitatively trivial. However, the

soft-thresholding estimator exhibits meaningfully lower worst case risk than the adaptive

estimator. Though the two estimators happen to yield identical estimates ex-post in this

example, the ex-ante risk properties of the adaptive soft-thresholding estimator arguably

commend it over the optimally adaptive estimator.

The ERM estimator of de Chaisemartin and D’Haultfœuille (2020a) yields lower worst

case risk than soft-thresholding but substantially larger adaptation regret. Optimizing the

ERM threshold to minimize adaptation regret yields worst case risk equivalent to the soft-

thresholding estimator but higher adaptation regret. Evidently, soft-thresholding offers the

most attractive tradeoff between worst case risk and adaptation regret of the estimators

considered.

Confidence Intervals Table 2 reports the best case and worst case coverage of a series

of confidence intervals. The first two columns of Panel A show that the usual 95% confidence

interval centered around the unbiased estimator has proper size, while a naive CI centered

around the restricted estimator has best case coverage of 95% and worst case coverage of 0%

attributable to the potentially unlimited bias of the restricted estimator. Relying on a pre-

test to select one of these two confidence intervals yields a minimum coverage level of 67%.

By contrast, centering a CI around the optimally adaptive estimator using the standard error

of the unbiased estimator yields best case coverage of 98% and worst case coverage of 90%.

Centering around the soft thresholding estimator yields even more favorable results, raising

the worst case coverage to 93%.

Panel B of Table 2 considers B-FLCIs centered around the adaptive estimators. A 0-FLCI

centered around the optimally adaptive estimator has a half length of only about 1.54σU (as

opposed to the traditional 1.96σU utilized in Panel A) but exhibits worst case coverage of

80%. Centering around the soft thresholding estimator yields a slightly longer interval, which

improves minimum coverage to 87%. The third row of Panel B shows the coverage of a σO-

FLCI centered around the optimally adaptive estimator, which yields modestly longer CI
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Table 2: Coverage and length of confidence intervals

Panel A: Simple CIs

Opt. Soft-
YU YR Pre- Adapt Thresh

±1.96σU ±1.96σR test ±1.96σU ±1.96σU

Max Coverage 95% 95% 95% 98% 98%
Min Coverage 95% 0% 67% 90% 93%

Panel B: B-FLCIs

Opt. Soft- Opt. Soft- Opt. Soft-
Adapt Thresh Adapt Thresh Adapt Thresh

±c.05(0)σU ±c.05(0)σU ±c.05(1)σU ±c.05(1)σU ±c.05(9)σU ±c.05(9)σU
Max Coverage 95% 95% 97% 97% 99% 99%
Min Coverage 80% 87% 86% 90% 95% 95%
Critical Val 1.54 1.62 1.74 1.77 2.32 2.11

Notes: “Max coverage” refers to the maximal coverage probability for the given confidence interval. “Min
Coverage” refers to the min coverage probability. “Adaptive” refers to the optimally adaptive estimator and
“Soft-Thresh” refers to soft thresholding. “Pre-test” switches between YU ± 1.96σU and YR ± 1.96σR based
on whether |TO| ≷ 1.96σO. Critical values for B-FLCIs found by solving (9). Min/max coverage evaluated
using the expression for the constraint in (9).

but lowers worst case coverage to 86%. Again, centering at the soft thresholding estimator

raises worst case coverage slightly, in this case to 90%. Finally, we approximate an ∞-FLCI

by setting B = 9σO, which yields very conservative intervals with half-lengths exceeding

2.1σU .

The simplicity and robustness of intervals based upon an adaptive estimator ±1.96σU

make them an attractive option. For researchers who seek shorter intervals, the σO-FLCI

centered around the soft thresholding estimator seems to offer a reasonable mix of worst

and best case coverage. Notably, all of these options offer substantially higher worst case

coverage than pre-testing, which remains widespread in applied research.

5.2 Adapting to endogeneity (Angrist and Krueger, 1991)

Our second example, which is meant to highlight the limits of optimal adaptation, comes

from Angrist and Krueger (1991)’s classic analysis of the returns to schooling using quarter

of birth as an instrument for schooling attainment. Documenting that individuals born in

the first quarter of the year acquire fewer years of schooling than those born later in the

year, they demonstrate that those born in the first quarter of the year also earn less than
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those born later in the year.

Table 3 replicates exactly the estimates reported in Angrist and Krueger (1991, Panel B,

Table III) for men born 1930-39. YU gives the Wald-IV estimate of the returns to schooling

using an indicator for being born in the first quarter of the year as an instrument for years

of schooling completed, while YR gives the corresponding OLS estimate. Neither estimator

controls for additional covariates. When viewed through the lens of the linear constant

coefficient models that dominated labor economics research at the time, the IV estimator

identifies the same parameter as OLS under strictly weaker exogeneity requirements. In

particular, IV guards against “ability bias,” which plagues OLS in such models (Griliches

and Mason, 1972; Ashenfelter and Krueger, 1994).

The first stage relationship between quarter of birth and years of schooling exhibits a

z-score of 8.24, suggesting an asymptotic normal approximation to YU is likely to be highly

accurate. We follow the original study in assuming homoscedasticity, in which case OLS

(YR) is known to be the asymptotically efficient GMM estimator under exogeneity.

Table 3: Estimates of the return to an additional year of schooling.

Unconstrained Constrained
Pre- Opt. Soft- Hard- Opt. Soft-

YU YR test Adapt thresh thresh Adapt thresh

Estimate 0.102 0.071 0.071 0.071 0.071 0.071 0.080 0.085
Std Error (0.0239) (0.0003)
Max Risk 0% ∞ 147% 455% 427% 608% 50% 50%
Max Regret 634,577% ∞ 17,882% 493% 537% 709% 15,134% 17,926%
Threshold 1.96 2.07 3.30 0.71

Notes: Standard errors in parentheses computed under homoscedasticity as in original study. Under ho-
moscedasticity, YR coincides with GMM. The over-identification test statistic is TO = −1.3. “Max Risk”
gives the percentage increase in worst case risk over YU : (supB Rmax(B, θ̂)/σ2

U − 1) × 100. “Max regret”

refers to the worst case adaptation regret in percentage terms (Amax(B, θ̂)− 1)× 100. The relative efficiency
of YU to YR = YR,GMM is 1− ρ2 = 0.0004.

While the IV estimator accounts for endogeneity, it is highly imprecise, with a standard

error two orders of magnitude greater than OLS. Consequently, the maximal regret associated

with using IV instead of OLS is extremely large, as YU is only 0.04% as efficient as YR

when exogeneity holds. IV and OLS cannot be statistically distinguished at conventional

significance levels, with TO ≈ −1.3. The inability to distinguish IV from OLS estimates of

the returns to schooling is characteristic not only of the specifications reported in Angrist and

Krueger (1991) but of the broader quasi-experimental literature spawned by their landmark

29



study (Card, 1999).

The confluence of extremely large maximal regret for YU with a statistically insignificant

difference YO, leads the adaptive estimator, the soft-thresholding estimator, and the pre-

test estimator to all coincide with YR. The motives for this coincidence are of course quite

different. The adaptive and soft-thresholding estimators seek to avoid the regret associated

with missing out on the enormous efficiency gains of OLS if it is unconfounded. By contrast,

the pre-test estimator simply fails to reject the null hypothesis that years of schooling is

exogenous at the proper significance level.

Despite the agreement of the three approaches, the extremely large adaptation regret

exhibited by the optimally adaptive estimator suggests it is unlikely to garner consensus

in this setting. Committing to YR exposes the researcher to potentially unlimited risk.

The adaptive and soft-thresholding estimators avoid committing to either YU or YR before

observing the data but still expose the researcher to more than a 400% increase in maximal

risk over YU . A skeptic concerned with the potential biases in OLS is therefore unlikely to

be willing to rely on such an estimator.

If we instead limit ourselves to a 50% increase in maximal risk, the adaptive and soft-

threshold estimators yield returns to schooling estimates of 0.080 and 0.085 respectively.

While the former estimate is a bit closer to OLS than IV, the latter is approximately halfway

between the two. The maximal regret of both these estimators is extremely high, reflecting

the potential efficiency costs of weighting YU so heavily. These efficiency concerns are likely

outweighed in this case by the potential for extremely large biases. Though these estimates

are unlikely to garner consensus across camps of researchers with widely different beliefs, the

risk-limited adaptive estimators should yield wider consensus than proposals to discard the

OLS estimates and rely on IV alone.

6 Conclusion

Empiricists routinely encounter robustness-efficiency tradeoffs. The reporting of estimates

from different models has emerged as a best practice at leading journals. The methods

introduced here provide a scientific means of summarizing what has been learned from such

exercises and arriving at a preferred estimate that trades off considerations of bias against

variance.
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Computing the adaptive estimators proposed in this paper requires only point estimates,

standard errors, and the covariance between estimators, objects that are easily produced by

standard statistical packages. As our examples revealed, in many cases the restricted esti-

mator is nearly efficient, implying the relevant covariance can be deduced from the standard

errors of the restricted and unrestricted estimators.

In line with earlier results from Bickel (1984), we found that soft-thresholding estimators

closely approximate the optimally adaptive estimator in the scalar case, while requiring less

effort to compute. An interesting topic for future research is whether similar approximations

can be developed for higher dimensional settings where the curse of dimensionality renders

direct computation of optimally adaptive estimators infeasible.
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Appendix A Group decision making interpretation

This appendix develops a stylized model of group decision making inspired by Savage (1954)’s

arguments regarding the ability of minimax decisions to foster consensus among individuals
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with heterogeneous beliefs. Extending these arguments, we illustrate how adaptive decisions

can serve to foster consensus across groups of individuals with different sets of beliefs.

A.1 Consensus in a single committee

Suppose there is a committee charged with deciding on the value of a parameter θ (e.g.,

the social cost of carbon) based on the evidence (YU , YR). The committee is comprised of

members with heterogeneous beliefs over (θ, b) that include all priors supported on the set

CB. The committee chair, who we will call the B-chair, offers a take it or leave it proposal

that her committee agree on the estimator θ̂ in exchange for the provision of a public good

providing payoff G to each member of the committee. This public good might entail, for

example, a reduction in committee work or an offer to end the meeting early.

If the committee agrees to the proposal, the B-chair earns a payoff K − C(G), where

K is the value of consensus and C(·) is an increasing cost function. If some member of

the committee does not agree to the proposal, the chair and all committee members receive

payoff zero. The B-chair therefore seeks an estimator θ̂ allowing payment of the smallest G

that ensures consensus.

A committee member who is certain of the parameters (θ, b) will accept the chair’s offer

if and only if R
(
θ, b, θ̂

)
≤ G. However, the committee member with the most pessimistic

beliefs regarding these parameters will require a public goods provision level of at least

Rmax

(
B, θ̂

)
to agree to the offer. To achieve consensus at minimal cost, the B-chair can

propose the B-minimax estimator θ̂∗B, which requires public goods provision level R∗ (B) to

achieve consensus.

The B-chair will be willing to provide this level of public goods if and only if K ≥
C(R∗ (B)), in which case consensus ensues. If this condition does not hold, the chair deems

the B-minimax estimator too costly to implement and consensus is not achieved. Hence,

when no individual holds beliefs that are too extreme, the minimax estimator fosters con-

sensus.

A.2 Consensus among committees

Now suppose there is a collection B of committees (e.g., the Intergovernmental Panel on Cli-

mate Change), each of which must decide on the parameter θ using (YU , YR). This collection
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is led by a chair of chairs (CoC) who would like for the B-chairs to agree on a common

estimator θ̂. Suppose also that K > supB∈B C(R
∗ (B)), so that each B-chair would privately

prefer the B-minimax estimator θ̂∗B. The CoC has a fixed budget F > 0 that can be used

to provide a public good G̃ enjoyed by all chairs. The CoC makes provision of G̃ contingent

on the agreement of all B-chairs to use θ̂: if they fail to reach consensus, the public good is

not provided. The cost to the CoC of providing public goods level G̃ is C̃(G̃), where C̃(·) is
monotone increasing.

By the arguments above, each B-chair must pay a cost C(Rmax

(
B, θ̂

)
) to secure con-

sensus regarding the CoC’s proposed θ̂, leaving her with payoff K − C(Rmax

(
B, θ̂

)
). How-

ever, each chair can also defy the CoC and propose θ̂∗B to her committee, yielding payoff

K−C(R∗ (B)). Hence, to compel a B-chair to use θ̂, the CoC must offer a public good pro-

viding utility of at least ∆B(θ̂) = C(Rmax

(
B, θ̂

)
)−C(R∗ (B)). To minimize costs, the CoC

sets G̃ = supB∈B ∆B(θ̂), which is the smallest level capable of appeasing the most reticent

B-chair.

Different functional forms for the cost function C yield different notions of adaptation.

To motivate the formulation in (3), we assume C(G) ∝ lnG, which implies chairs pro-

duce the public good according to an increasing returns to scale technology that is expo-

nential in costs. With this choice of C(·), the CoC’s problem is to find a θ̂ that mini-

mizes supB∈B ln
(
Rmax

(
B, θ̂

)
/R∗ (B)

)
= supB∈B lnA(B, θ̂). The CoC will therefore pro-

pose the optimally adaptive estimator θ̂∗, which yields supB∈B ∆B(θ̂
∗) ∝ lnA∗(B). When

C̃(lnA∗(B)) > F , the CoC balks at the cost of implementing θ̂∗ and consensus fails.

A.3 Discussion

Taking the committees to represent different camps of researchers, the model suggests adap-

tive estimation can help to forge consensus between researchers with varying beliefs about

the suitability of different econometric models. The prospects for achieving consensus are

governed by the loss of efficiency under adaptation. When A∗(B) is small, consensus is

likely, as the adaptive estimator will yield maximal risk similar to each camp’s perceived

B-minimax risk. When A∗(B) is large, however, consensus is unlikely to emerge, as the

optimally adaptive estimator will be perceived as excessively risky by camps with extreme

beliefs.
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Appendix B Details and proofs

B.1 Details for Theorem 4.1 and extensions

We provide details and formal results for the results in Section 4.2 giving B-minimax and

optimally adaptive estimators. We first provide a general theorem characterizing minimax

estimators in a setting that includes our main example. We then specialize this result to

derive the formula for the B-minimax estimator and optimally adaptive estimator for our

main example given in Section 4.2, using a weighted loss function and Lemma 4.1 to obtain

the optimally adaptive estimator. This proves Theorem 4.1.

We consider a slightly more general setting with p misspecified estimates, leading to a

p× 1 vector YO:

Y =

 YU
1×1

YO
p×1

 ∼ N

 θ
1×1

b
p×1

 ,Σ

 , Σ =

 ΣU
1×1

ΣUO
1×p

Σ′
UO
p×1

ΣO
p×p

 . (10)

In our main example, p = 1 and ρ = ΣUO/
√
ΣUΣO. We are interested in the minimax

risk of an estimator δ : Rp+1 → R under the loss function L(θ, b, d), which may incorporate

a scaling to turn the minimax problem into a problem of finding an optimally adaptive

estimator, following Lemma 4.1. We assume that the loss function satisfies the invariance

condition

L(θ + t, b, d+ t) = L(θ, b, d) all t ∈ R. (11)

We consider minimax estimation over a parameter space R× C:

inf
δ

sup
θ∈R,b∈C

R(θ, b, δ). (12)

Theorem B.1. Suppose that the loss function L(θ, b, d) is convex in d and that (11) holds.
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Then the minimax risk (12) is given by

inf
δ̄
sup
b∈C

E0,b[L̃(b, δ̄(YO)− ΣUOΣ
−1
O b)] (13)

= sup
π supported on C

inf
δ̄

∫
E0,b[L̃(b, δ̄(YO)− ΣUOΣ

−1
O b)] dπ(b)

where L̃(b, t) = EL(0, b, t+V ) with V ∼ N(0,ΣU−ΣUOΣ
−1
O Σ′

UO). Furthermore, the minimax

problem (12) has at least one solution, and any solution δ∗ takes the form

δ∗(YU , YO) = YU − ΣUOΣ
−1
O YO + δ̄∗(YO)

where δ̄∗ achieves the infimum in (13).

Proof. The minimax problem (12) is invariant (in the sense of pp. 159-161 of Lehmann and

Casella (1998)) to the transformations (θ, b) 7→ (θ+t, b) and the associated transformation of

the data (YU , YO) 7→ (YU+t, YO), where t varies over R. Equivariant estimators for this group

of transformations are those that satisfy δ(yU + t, yO) = δ(yU , yO) + t, which is equivalent to

imposing that the estimator takes the form δ(yU , yO) = δ(0, yO) + yU . The risk of such an

estimator does not depend on θ and is given by

R(θ, b, δ) = R(0, b, δ) = E0,b [L(0, b, δ(0, YO) + YU)] .

Using the decomposition YU − θ = ΣUOΣ
−1(YO− b)+V where V ∼ N(0,ΣU −ΣUOΣ

−1
O Σ′

UO)

is independent of YO, the above display is equal to

E0,b

[
L(0, b, δ(0, YO) + ΣUOΣ

−1
O (YO − b) + V )

]
= E0,bL̃(b, δ(0, YO) + ΣUOΣ

−1
O (YO − b)).

Letting δ̄(YO) = δ(0, YO) + ΣUOΣ
−1
O YO, the above display is equal to E0,b[L̃(b, δ̄(YO) −

ΣUOΣ
−1
O b)]. Thus, if an estimator δ̄∗ achieves the infimum in (13), the corresponding es-

timator δ(YU , YO) = δ(0, YO) + YU = δ̄∗(YO) − ΣUOΣ
−1
O YO + YU will be minimax among

equivariant estimators for (12). It will then follow from the Hunt-Stein Theorem (Lehmann

and Casella, 1998, Theorem 9.2) that this minimax equivariant estimator is minimax among

all estimators, that any other minimax estimator takes this form and that the minimax risk

is given by the first line of (13).
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It remains to show that the infimum in the first line of (13) is achieved, and that the

equality claimed in (13) holds. The equality in (13) follows from the minimax theorem, as

stated in Theorem A.5 in Johnstone (2019) (note that d 7→ L̃(b, d − ΣUOΣ
−1
O b) is convex

since it is an integral of the convex functions d 7→ L(0, b, d−ΣUOΣ
−1
O b+v) over the index v).

The existence of an estimator δ̄∗ that achieves the infimum in the first line of (13) follows by

noting that the set of decision rules (allowing for randomized decision rules) is compact in the

topology defined on p. 405 of Johnstone (2019), and the risk E0,b[L̃(b, δ̄(YO)−ΣUOΣ
−1
O b)] is

continuous in δ̄ under this topology. As noted immediately after Theorem A.1 in Johnstone

(2019), this implies that δ̄ 7→ supbE0,b[L̃(b, δ̄(YO) − ΣUOΣ
−1
O b)] is a lower semicontinuous

function on the compact set of possibly randomized decision rules under this topology, which

means that there exists a decision rule that achieves the minimum. From this possibly

randomized decision rule, we can construct a nonrandomized decision rule that achieves

the minimum by constructing a nonrandomized decision rule with uniformly smaller risk by

averaging, following Johnstone (2019, p. 404).

We now prove Theorem 4.1 by specializing this result. Note that ΣU and ΣO correspond to

σ2
U and σ2

O in the main text respectively, and that ρ in the main text is given by ΣUO/
√
ΣUΣO.

First, we derive the minimax estimator and minimax risk in (12) when L(θ, b, d) = (θ−d)2

and C = [−B,B]. We have L̃(b, t) = E(t+ V )2 = t2 + ΣU − Σ2
UO/ΣO. Thus, (13) becomes

inf
δ̄

sup
b∈[−B,B]

E0,b

[(
δ̄(YO)−

ΣUO

ΣO

b

)2
]
+ ΣU − Σ2

UO

ΣO

= inf
δ̄

sup
b∈[−B,B]

Σ2
UO

ΣO

E0,b

[(√
ΣO

ΣUO

δ̄(YO)−
b√
ΣO

)2
]
+ ΣU − Σ2

UO

ΣO

.

This is equivalent to observing TO = YO/
√
ΣO ∼ N(t, 1) and finding the minimax estimator

of t under the constraint |t| ≤ B/
√
ΣO. Letting δBNM(TO;B/

√
ΣO) denote the solution to

this minimax problem and letting rBNM(B/
√
ΣO) denote the value of this minimax problem,

the optimal δ̄ in the above display satisfies
√
ΣO

ΣUO
δ̄(YO) = δBNM(YO/

√
ΣO;B/

√
ΣO), which

gives the value of the above display as

Σ2
UO

ΣO

rBNM(B/
√

ΣO) + ΣU − Σ2
UO

ΣO

(14)
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and the B-minimax estimator as

ΣUO√
ΣO

δBNM(YO/
√

ΣO;B/
√

ΣO) + YU − ΣUO

ΣO

YO. (15)

Substituting TO = YO/
√
ΣO and the notation ρ = ΣUO/

√
ΣUΣO, σ

2
U = ΣU and σ2

O = ΣO

used in the main text gives (4) and (5). This proves part (i) of Theorem 4.1.

To find the optimally adaptive estimator and loss of efficiency under adaptation in our

main example, we apply Lemma 4.1 with ω(θ, b) = R∗(|b|)−1, with R∗(B) given by (14).

This leads to the minimax problem (12) with C = R and L(θ, b, d) = R∗(|b|)−1(θ − d)2. The

function L̃ in Theorem B.1 is then given by L̃(b, t) = ER∗(|b|)−1(t + V )2 = R∗(|b|)−1(t2 +

ΣU − Σ2
UO/ΣO), which gives (13) as

inf
δ̄
sup
b∈R

E0,b

[(
δ̄(YO)− ΣUO

ΣO
b
)2]

+ ΣU − Σ2
UO

ΣO

Σ2
UO

ΣO
rBNM(|b|/

√
ΣO) + ΣU − Σ2

UO

ΣO

= inf
δ̄
sup
b∈R

E0,b

[(√
ΣO

ΣUO
δ̄(YO)− b√

ΣO

)2]
+ ρ−2 − 1

rBNM(|b|/
√
ΣO) + ρ−2 − 1

.

This proves part (iii) of Theorem 4.1. The above display is minimized by δ̄ satisfying
√
ΣO

ΣUO
δ̄(YO) = δ∗(YO/

√
ΣO; ρ) where δ∗(T ; ρ) minimizes (6) in the main text. By Theorem

B.1, the optimally adaptive estimator is given by

ΣUO√
ΣO

δ∗(YO/
√
Σ; ρ) + YU − ΣUO

ΣO

YO = ρ
√

ΣUδ
∗(TO; ρ) + YU − ρ

√
ΣUTO. (16)

This proves the part (ii) of Theorem 4.1.

B.2 Lasso interpretation of soft thresholding

To connect the soft thresholding estimator to lasso, consider a dataset with two observations

comprised of the realizations of YU and YR, and a linear model relating these estimates to

a constant and an indicator for whether the observation is from the restricted specification.

Letting y1 = YU , d1 = 0, y2 = YR, and d2 = 1, the model can be written

yi = β + diγ + ui,
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where β = θ, γ = b. Now consider an ℓ1-penalized GLS regression estimator

(β̂′
lasso,λ, γ̂lasso,λ) = argmin

β,γ

1

2
∥ỹ − X̃β − z̃γ∥22 + λ|γ|,

where ỹ, z̃, and X̃ are transformed so that the observations are orthogonalized and stan-

dardized.

Theorem B.2. Suppose that the lasso penalty λ is set to equal to the adaptive soft threshold

(divided by σO). Then the lasso regression coefficient estimator

β̂lasso,λ = YGMM + ρσUδS,λσO(TO).

is the same as the soft thresholding nearly adaptive estimator.

Proof. We first prove a general representation of the lasso regression coefficient estimator as

a soft-thresholding estimator, and then we specialize the result to our setting. Consider a

penalized regression estimator

(β̂′
Pen,λ, γ̂Pen,λ) = argmin

β,γ

1

2
∥y −Xβ − zγ∥22 + λPen(γ) (17)

where y and Z are n× 1 vectors and X is a n× k matrix. We use PX = X(X ′X)−1X ′ and

MX = I − PX to denote the projection onto the column space of X and onto its orthogonal

complement. We are interested in the scalar parameter ℓ′β for some known vector ℓ and wish

to compare the estimator ℓ′β̂Pen,λ to estimators that are optimally adaptive or constrained

optimally adaptive for ℓ′β under a restriction on the bias of the short regression estimator

ℓ′β̂short where β̂short = (X ′X)−1X ′y.

Note that standard regression algebra immediately implies that β̂Pen,λ can be obtained

by regressing y − zγ̂Pen,λ on X, which gives

ℓ′β̂Pen,λ = ℓ′(X ′X)−1X ′(y − zγ̂Pen,λ) = ℓ′β̂short − ℓ′(X ′X)−1X ′zγ̂Pen,λ. (18)

To derive γ̂Pen,λ, note that the objective in (17) can be written as

1

2
∥MXy −MXzγ∥22 +

1

2
∥PX(y − zγ)−Xβ∥22 + λPen(γ).
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Since the second term can be set to zero for any value of γ by taking β = (X ′X)−1X ′(y−zγ),
and β does not show up in the remaining terms, it follows that this term can be ignored

when optimizing γ̂Pen,λ. Thus, γ̂Pen,λ minimizes

1

2
∥MXy −MXzγ∥22 + λPen(γ).

Consider the lasso case where Pen(γ) = |γ|. Taking FOCs gives

− z′MX(y − zγ) + λ sign(γ) = 0

⇐⇒ γ =
z′MXy

z′MXz
− λ

z′MXz
sign(γ) = γ̂long −

λ

z′MXz
sign(γ)

where sign(γ) is the set-valued function equal to the sign of γ when γ is nonzero, and equal

to [−1, 1] when γ = 0. There are three cases to consider. First, if γ̂long > λ/z′MXz, then

sign(γ) = 1 so that γ = γ̂long − λ/z′MXz. Second, if γ̂long < −λ/z′MXz, then sign(γ) = −1

so that γ = γ̂long + λ/z′MXz. Finally, if γ̂long ∈ [−λ/z′MXz, λ/z
′MXz], then we will run

into a contradiction if γ ̸= 0: γ > 0 would imply sign(γ) = 1 which would give γ = γ̂long −
λ/z′MXz ≤ 0 and γ < 0 would imply sign(γ) = −1 which would give γ = γ̂long+λ/z

′MXz ≥
0. Thus, if γ̂long ∈ [−λ/z′MXz, λ/z

′MXz], we must have γ = 0. It follows that the solution

to the optimization problem is given by

γ̂Pen,γ =


0 when |γ̂long| ≤ |λ/z′MXz|

γ̂long − λ/z′MXz when γ̂long > λ/z′MXz

γ̂long + λ/z′MXz when γ̂long < λ/z′MXz

This is the soft threshold estimator δS,λ/z′MXz(γ̂long) with cutoff λ/z′MXz. Plugging this into

(18) gives the penalized regression estimate for our parameter of interest as

ℓ′β̂Pen,λ = ℓ′β̂short − ℓ′(X ′X)−1X ′z · δS,λ/z′MXz(γ̂long)

Now apply the GLS transformation to the data as the follows

ỹ =

 YGMM/σR,GMM

TO

 =

 1
σR,GMM

0

0 1
σO

 1 + ρσU
σO

−ρσU
σO

−1 1

 YU

YR

 ,

42



X̃ =

 1
σR,GMM

0

0 1
σO

 1 + ρσU
σO

−ρσU
σO

−1 1

 1

1

 =

 1
σR,GMM

0


and

z̃ =

 1
σR,GMM

0

0 1
σO

 1 + ρσU
σO

−ρσU
σO

−1 1

 0

1

 =

 − 1
σR,GMM

· ρσU
σO

1
σO

 .

The least squares estimator of γ is the minimum variance unbiased estimate for γ = b,

which is γ̂long = YO. The short regression estimator of β in the transformed model is

β̂short = (X̃ ′X̃)−1X̃ ′ỹ = YGMM . Finally, (X̃ ′X̃)−1X̃ ′z̃ = σ2
R,GMM · 1

σR,GMM
· −1
σR,GMM

·ρσU
σO

= −ρσU
σO

and z̃′MX̃ z̃ = 1/σ2
O. Thus, the GLS lasso estimate is

YGMM + ρ
σU
σO
δS,λσ2

O
(YO).

Note that soft thresholding YO at λσ2
O is equivalent to soft thresholding TO = YO/σO at λσO

and multiplying by σO. Thus, we can also write the GLS lasso estimate as

YGMM + ρσUδS,λσO(TO).

This is the same as the soft thresholding nearly adaptive estimator, but with λ replaced by

λ · σO.
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Appendix C Additional details

C.1 Constrained adaptation

The constrained adaptive estimator solves the problem

A∗(B;R) = inf
θ̂
sup
B∈B

Rmax(B, θ̂)

R∗(B)
s.t. sup

B∈B
Rmax(B, θ̂) ≤ R. (19)

We can rewrite this formulation as a weighted minimax problem similar to the one in Section

4.1 by setting t = R/A∗(B;R) and considering the problem

inf
θ̂
sup
B∈B

max

{
Rmax(B, θ̂)

R∗(B)
,
Rmax(B, θ̂)

t

}
= inf

θ̂
sup
B∈B

Rmax(B, θ̂)

min {R∗(B), t}
. (20)

Indeed, any solution to (19) must also be a solution to (20) with t = R/A∗(B;R), since any

decision function achieving a strictly better value of (20) would satisfy the constraint in (19)

and achieve a strictly better value of the objective in (19). Conversely, letting Ã∗(t) be the

value of (20), any solution to (20) will achieve the same value of the objective (19) and will

satisfy the constraint for R̄ = t · Ã∗(t). In fact, this solution to (20) will also solve (19) for

R̄ = t · Ã∗(t) so long as this value of R̄ is large enough to allow some scope for adaptation.

Arguing as in Section 4.1, we can write the optimization problem (20) as

inf
θ̂

sup
(θ,b)∈∪B′∈BCB′

ω̃(θ, b, t)R(θ, b, θ̂), (21)

where ω̃(θ, b, t) =

(
inf

B∈B s.t. (θ,b)∈CB
min {Rmax(B), t}

)−1

= max {ω(θ, b), 1/t}
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and ω(θ, b) is given in Lemma 4.1 in Section 4.1. Thus, we can solve (20) by solving for the

minimax estimator under the loss function (θ, b, d) 7→ ω̃(θ, b, t)L(θ, b, d). Letting A∗(t) be the

optimized objective function, we can then solve (19) by finding a t such that R̄ = t · A∗(t).

We summarize these results in the following lemma, which is proved in Section C.1.1 of

the appendix.

Lemma C.1. Any solution to (19) is also a solution to (21) with t = R/A∗(B;R). Con-

versely, let Ã∗(t) denote the value of (21) and let R̃(t) = Ã∗(t)·t. If R̃(t) > inf θ̂ supB∈B Rmax(B, θ̂)

and infB∈B R
∗(B) > 0, then A∗(B; R̃(t)) = Ã∗(t) and any solution to (21) is also a solution

to (19) with R̄ = R̃(t).

C.1.1 Details for constrained adaptation

We provide proof for Lemma C.1, which shows the constrained adaption problem is equivalent

to the weighted minimax problem with a particular set of weights. The first statement is

immediate from the arguments proceeding the statement of the lemma in Section 4.4. For

the second statement, let δ̄ be a decision rule with supB∈B Rmax(B, δ̄) < R̃(t). Such a decision

rule exists and satisfies supB∈B
Rmax(B,δ̄)
R∗(B)

<∞ by the assumptions of the lemma. Let δ∗t be a

solution to (20).

Suppose, to get a contradiction, that a decision δ′ satisfies the constraint in (19) with

R̄ = R̃(t) and achieves a strictly better value of the objective than Ã∗(t). For λ ∈ (0, 1), let

δ′λ be the randomized decision rule that places probability λ on δ̄ and probability 1 − λ

on δ′, independently of the data Y . Note that Rmax(B, δ
′
λ) = sup(θ,b)∈CB R(θ, b, δ

′
λ) =

sup(θ,b)∈CB

[
λR(θ, b, δ̄) + (1− λ)R(θ, b, δ′)

]
≤ sup(θ,b)∈CB λR(θ, b, δ̄)+sup(θ,b)∈CB(1−λ)R(θ, b, δ

′) =

λRmax(B, δ̄) + (1− λ)Rmax(B, δ
′) so that, for λ ∈ (0, 1),

sup
B∈B

Rmax(B, δλ) ≤ λ sup
B∈B

Rmax(B, δ̄) + (1− λ) sup
B∈B

Rmax(B, δ
′) < R̃(t) = Ã∗(t) · t

and

sup
B∈B

Rmax(B, δλ)

R∗(B)
≤ λ sup

B∈B

Rmax(B, δ̄)

R∗(B)
+ (1− λ) sup

B∈B

Rmax(B, δ
′)

R∗(B)
.

Since supB∈B
Rmax(B,δ̄)
R∗(B)

is finite and
supB∈B Rmax(B,δ′)

R∗(B)
< Ã∗(t), the above display is strictly less

than Ã∗(t) for small enough λ. Thus, for small enough λ, the objective function in (21)
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evaluated at the decision function δλ evaluates to

max

{
sup
B∈B

Rmax(B, δλ)

R∗(B)
, sup
B∈B

Rmax(B, δλ)

t

}
< max

{
Ã∗(t), R̃(t)/t

}
= Ã∗(t),

a contradiction.

C.2 Numerical results on estimators as a function of 1− ρ2

In practice, it is common to use a fixed threshold of 1.96, which corresponds to a pre-test

rule that switches between the unrestricted estimator and the GMM estimator based on

the result of the specification test. Doing so leads to high level of worst-case adaptation

regret especially when ρ2 is close to one as shown in Figure A1. To minimize the worst-case

adaptation regret, the adaptive hard-threshold estimator needs to use a threshold that would

increase to infinity as ρ2 gets closer to one.

Figure A1: Worst case adaptation regret as function of relative efficiency

Notes: Vertical axis plots (Amax(B, θ̂)− 1)× 100 on log10 scale.

A pre-test estimator utilizing a fixed threshold at 1.96 realizes its worst-case risk when the

scaled bias b̃ is itself near the 1.96 threshold. As shown in Figure A2, the pre-test estimator

tends to exhibit substantially greater worst-case risk than the class of adaptive estimators

for most values of ρ2. As discussed in Section C.3 below, adaptive estimators have large

worst-case risk when ρ2 is close to one. The pre-test estimator has lower worst-case risk in

these cases, due to the fixed threshold at 1.96.
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Figure A2: Worst case risk increase relative to YU

Notes: Vertical axis plots (Rmax(∞, θ̂)− σU )/σU × 100 on log10 scale.

C.3 Asymptotics as |ρ| → 1

This section considers the behavior of the worst-case adaptation regret as |ρ| → 1 for

the optimally adaptive estimator as well as for the hard and soft-thresholding estima-

tors. Recall that 1 − ρ2 is equal to σ2
R,GMM/σ

2
U , so that |ρ| → 1 corresponds to the

case where σ2
R,GMM/σ

2
U → 0. It will be convenient to phrase our results in terms of

ρ−2 − 1 = (1− ρ2)/ρ2 = (1 + o(1)) · σ2
R,GMM/σ

2
U as |ρ| → 1.

Let A(δ, ρ) denote the worst-case adaptation regret of the estimator given by (4) un-

der the given value of ρ, so that A(δ, ρ) returns the value of (6) with δ̃ = δ. We use

A∗(ρ) = infδ A(δ, ρ) (where the infimum is over all estimators) to denote the loss of efficiency

under adaptation for the given value of ρ. Likewise, we denote by AS(λ, ρ) = A(δS,λ, ρ)

and AH(λ, ρ) = A(δH,λ, ρ) the worst-case adaptation regret for soft and hard-thresholding

respectively with threshold λ, where δS,λ are δH,λ are defined in Section 4.3. Finally, we

use A∗
S(ρ) = infλAS(λ, ρ) and A∗

H(ρ) = infλAH(λ, ρ) to denote the minimum worst-case

adaptation regret for soft and hard-thresholding respectively.

The following theorem characterizes the behavior of A∗(ρ), A∗
S(ρ) and A

∗
H(ρ) as |ρ| → 1.

Theorem C.1. We have

lim
|ρ|↑1

A∗(ρ)

2 log(ρ−2 − 1)−1
= lim

|ρ|↑1

A∗
S(ρ)

2 log(ρ−2 − 1)−1
= lim

|ρ|↑1

A∗
H(ρ)

2 log(ρ−2 − 1)−1
= 1.
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In the remainder of this section, we prove Theorem C.1. We split the proof into upper

bounds (Section C.3.1) and lower bounds (Section C.3.2). The lower bounds in Section C.3.2

are essentially immediate from results in Bickel (1983) for adapting to B ∈ B = {0,∞},
whereas the upper bounds in Section C.3.1 involve new arguments to deal with intermediate

values of B.

C.3.1 Upper bounds

In this section, we show that A∗
S(ρ) ≤ (1 + o(1))2 log(ρ−2 − 1)−1 and A∗

H(ρ) ≤ (1 +

o(1))2 log(ρ−2 − 1)−1. Since A∗(ρ) is bounded from above by both A∗
S(ρ) and A∗

H(ρ), this

also implies A∗(ρ) ≤ (1 + o(1))2 log(ρ−2 − 1)−1.

Let rS(λ, t) = ET∼N(µ,1)(δS,λ(T )− µ)2 and rS(λ, t) = ET∼N(µ,1)(δH,λ(T )− µ)2 denote the

risk of soft and hard-thresholding. Then

AS(λ, ρ) = sup
µ∈R

rS(λ, µ) + ρ−2 − 1

rBNM(|µ|) + ρ−2 − 1

and similarly for AH(λ, ρ). We use the following upper bound for rH(λ, µ) and rS(λ, µ),

which follows immediately from results given in Johnstone (2019).

Lemma C.2. There exists a constant C such that, for λ > C, both rS(λ, µ) and rH(λ, µ)

are bounded from above by r̄(λ, µ) where

r̄(λ, µ) =

min {λ exp (−λ2/2) + 1.2µ2, 1 + µ2} |µ| ≤ λ

1 + λ2 |µ| > λ.

Proof. The bound for rH(λ, µ) follows from Lemma 8.5 in Johnstone (2019) along with the

bound rH(λ, 0) ≤ 2+ε√
2π
λ exp (−λ2/2) which holds for any ε > 0 for λ large enough by (8.15)

in Johnstone (2019). The bound for rL(λ, µ) follows from Lemma 8.3 and (8.7) in Johnstone

(2019).

Let λ̃ρ =
√

2 log(ρ−2 − 1)−1. By Lemma C.2, A∗
S(ρ) and A

∗
H(ρ) are, for (ρ

−2 − 1)−1 large

enough, bounded from above by the supremum over µ of

r̄(λ̃ρ, µ) + ρ−2 − 1

rBNM(|µ|) + ρ−2 − 1
(22)
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Let c(ρ) be such that c(ρ)/λ̃ρ → 0 and c(ρ) → ∞ as |ρ| ↑ 1. We bound (22) separately for

|µ| ≤ c(ρ) and for |µ| ≥ c(ρ). For |µ| ≤ c(ρ), we use the bound rBNM(|µ|) ≥ .8 · µ2/(µ2 + 1)

(Donoho, 1994), which gives an upper bound for (22) of

r̄(λ̃ρ, µ) + ρ−2 − 1

.8 · µ2/(µ2 + 1) + ρ−2 − 1
≤
√

2 log(ρ−2 − 1)−1 · (ρ−2 − 1) + 1.2µ2 + ρ−2 − 1

.8 · µ2/(µ2 + 1) + ρ−2 − 1

≤
√
2 log(ρ−2 − 1)−1 + (1.2/.8) · (µ2 + 1) + 1 ≤

√
2 log(ρ−2 − 1)−1 + (1.2/.8) · (c(ρ)2 + 1) + 1.

As |ρ| ↑ 1, this increases more slowly than log(ρ−2 − 1)−1. For |µ| ≥ c(ρ), we use the bound

rBNM(|µ|) ≥ rBNM(c(ρ)) which gives an upper bound for (22) of

r̄(λ̃ρ, µ) + ρ−2 − 1

rBNM(|c(ρ)|) + ρ−2 − 1
≤ r̄(λ̃ρ, µ)

rBNM(|c(ρ)|)
+ 1 ≤

1 + λ̃2ρ
rBNM(|c(ρ)|)

+ 1.

As |ρ| ↑ 1, c(ρ) → ∞ and rBNM(|c(ρ)|) → 1, so that the above display is equal to a 1 + o(1)

term times λ̃2ρ = 2 log(ρ−2 − 1)−1 as required.

C.3.2 Lower bounds

In this section, we show that A∗(ρ) ≥ (1 + o(1))2 log(ρ−2 − 1)−1. Since A∗
S(ρ) and A∗

H(ρ)

are bounded from below by A∗(ρ) , this also implies A∗
S(ρ) ≥ (1 + o(1))2 log(ρ−2 − 1)−1 and

A∗
H(ρ) ≥ (1 + o(1))2 log(ρ−2 − 1)−1.

Given an estimator δ(Y ) of µ in the normal means problem Y ∼ N(µ, 1), let m(δ) =

ET∼N(0,1)δ(Y )2 denote the risk at µ = 0 and let M(δ) = supµ∈RET∼N(µ,1)(δ(Y )− µ)2 denote

worst-case risk. The following lemma is immediate from Bickel (1983, Theorem 4.1).

Lemma C.3 (Bickel 1983, Theorem 4.1). For t ∈ (0, 1], let δt be an estimator that satisfies

m(δt) ≤ 1− t. Then, as t ↑ 1, M(δt) ≥ (1 + o(1)) · 2 log(1− t).

Using this result, we prove the following lemma, which gives a lower bound for the worst-

case adaptation regret and the worst-case risk of any estimator achieving the upper bound

in Section C.3.1. The required lower bound A∗(ρ) ≥ (1 + o(1))2 log(ρ−2 − 1)−1 follows from

this result.

Lemma C.4. For ρ ∈ (−1, 1), let δρ : R → R be an estimator of µ in the normal means

problem Y ∼ N(µ, 1). Suppose that the worst-case adaptation regret A(δρ, ρ) of the corre-
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sponding estimator (4) satisfies A(δρ, ρ) ≤ (1 + o(1))2 log(ρ−2 − 1)−1 as |ρ| → 1. Then the

following results hold as |ρ| → 1.

i.) The worst-case risk of the corresponding estimator (4) is bounded from below by a

1 + o(1) term times 2ΣU log(ρ−2 − 1)−1

ii.) A(δρ, ρ) ≥ (1 + o(1)) · 2 log(ρ−2 − 1)−1.

Proof. By the arguments Section B.1, the worst-case risk of the estimator (4) with δ = δρ

is given by ΣU ·
[
ρ2 supµET∼N(µ,1)(δρ(T )− µ)2 + 1− ρ2

]
. As |ρ| ↑ 1, this is bounded from

below by a 1+ o(1) term times ΣU supµET∼N(µ,1)(δρ(T )−µ)2. Similarly, A(δρ, ρ) is bounded

from below by a 1 + o(1) term times supµET∼N(µ,1)(δρ(T )− µ)2 as |ρ| ↑ 1. Thus, it suffices

to show that supµET∼N(µ,1)(δρ(T )− µ)2 ≥ (1 + o(1)) · 2 log(ρ−2 − 1)−1.

To show this, note that it follows from plugging in b̃ = 0 to the objective in (6) that, for

any ε > 0, we have, for |ρ| close enough to 1,

ET∼N(0,1)δρ(T )
2

ρ−2 − 1
≤ A(δρ, ρ) ≤ (2 + ε) log(ρ−2 − 1)−1.

Applying Lemma C.3 with 1− t = (ρ−2 − 1) · (2 + ε) log(ρ−2 − 1)−1, it follows that

sup
µ
ET∼N(µ,1)(δρ(T )− µ)2 ≥ (1 + o(1)) · 2 log

[
(ρ−2 − 1) · (2 + ε) log(ρ−2 − 1)−1

]
= (1 + o(1)) ·

[
2 log(ρ−2 − 1) + log(2 + ε) + log log(ρ−2 − 1)−1

]
= (1 + o(1)) · 2 log(ρ−2 − 1)

as required.

Appendix D Computational details

In this section, we provide additional details on our computation of the adaptive estimator.

D.1 Computing minimax estimators

As shown in Sections 4.1 and 4.2, one can compute adaptive estimators by solving a weighted

minimax problem which, in our setting, can be further simplified using invariance. To solve
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these problems, we use the insight that the minimax estimator can be characterized as a

Bayes estimator for a least favorable prior. We first give a brief review of this approach

before going into details for our setting.

Consider the generic problem of computing a minimax decision over the parameter space

C for a parameter ϑ under loss L̄(ϑ, δ). We use Eϑ and Pϑ to denote expectation under ϑ and

the probability distribution of the data Y under ϑ. Letting π denote a prior distribution on

C, the Bayes risk of δ is given by

RBayes(π, δ) =

∫
EϑL̄(ϑ, δ(Y )) dπ(ϑ) =

∫ ∫
L̄(ϑ, δ(y)) dPϑ(y)dπ(ϑ).

The Bayes decision, which we will denote δBayes
π , optimizes RBayes(π, δ) over δ. It can be

computed by optimizing expected loss under the posterior distribution for ϑ taking π as the

prior. Under squared error loss, the Bayes decision is the posterior mean.

RBayes(π, δ) gives a lower bound for the worst-case risk of δ under C and RBayes(π, δ
Bayes
π )

gives a lower bound for the minimax risk. Under certain conditions, a minimax theorem

applies, which tells us that this lower bound is in fact sharp. In this case, letting Γ denote

the set of priors π supported on C, the minimax risk over C is given by

min
δ

max
π∈Γ

RBayes(π, δ) = max
π∈Γ

min
δ
RBayes(π, δ) = max

π∈Γ
RBayes(π, δ

Bayes
π ).

The distribution π that solves this maximization problem is called the least favorable prior.

When the minimax theorem applies, the Bayes decision for this prior is the minimax decision

over C.
The expression RBayes(π, δ

Bayes
π ) is convex as a function of π if the set of possible decision

functions is sufficiently unrestricted and the set Γ is convex. While one may need to allow

randomized decisions in general, the estimation problems we consider will be such that the

Bayes decision is nonrandomized. Thus, we can use convex optimization software to compute

the least favorable prior and minimax estimator so long as we have a way of approximating

π with a finite dimensional object that retains the convex structure of the problem.

In our setting, we use invariance arguments to obtain the objective function (6), which

is a minimax problem over the unknown parameter b̃ = b/σO (the noncentrality parameter

of the overidentification statistic TO). We solve (6), as well as the bounded normal mean

problem used to obtain the scaling in (6), by solving for a least favorable prior over b̃ using
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a finite dimensional approximation π(b̃1), . . . , π(b̃J) to the prior over a grid of J values of b̃.

The least favorable prior for (θ, b) is then given by a flat (improper) prior for θ along with

the corresponding prior for b̃ = b/σO, with the flat prior for θ following from invariance. We

now discuss the details of this approximation.

D.2 Discrete approximation to estimators and risk function

Operationally, discretizing the support of the random variable T ∈ T into K points, finding

an estimator δ(T ) is equivalent to finding a “policy” function δ (t) : T → R:

δ (t) =
K∑
k=1

ψk1 {t = tk} .

Hence, we can rewrite the risk of estimator δ(T ) when T ∼ N(b, 1) as

ET∼N(b,1)

(
K∑
k=1

ψk1 {T = tk} − b

)2

. (23)

Define µkb = PrT∼N(b,1) (T = tk) as the probability of falling into the k’th grid point given

bias b, which can be evaluated analytically via the following discrete approximation to the

normal distribution

µkb = Φ((tk + tk+1) /2− b)− Φ ((tk + tk−1) /2− b) , (24)

where we define t0 = −∞ and tK+1 = ∞, which ensures that
∑K

k=1 µkb = 1. The discretized

approximation to the risk function (23) is therefore

K∑
k=1

ψ2
kµkb − 2b

K∑
k=1

ψkµkb + b2. (25)

D.3 Computing minimax risk in the bounded normal mean prob-

lem

We now provide details on how to compute the minimax risk rBNM(|b̃|) in the bounded

normal mean problem, which allows us to easily compute the B-minimax risk as described

in (5) for each B ∈ B.
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By definition, the minimax risk rBNM(|b̃|) is the minimized value of the following minimax

problem

min
δ

max
b∈[−|b̃|,|b̃|]

ET∼N(b,1)(δ(T )− b)2

whose solution is the minimax estimator δBNM
(
T ; |b̃|

)
. In particular, for each |b̃| = B/σO ∈

{0.1, 0.2, . . . , 9} we calculate the minimax risk rBNM(|b̃|) following the steps below. To com-

pute the minimax risk function rBNM(|b̃|) for values of |b̃| that are not included in the fine

grid, we rely on spline interpolation.

1. Approximate the prior π with the finite dimensional vector π ∈ ∆J , where the param-

eter space [−|b̃|, |b̃|] is approximated by an equally spaced grid of b values spanning

[−|b̃|, |b̃|] with a step size of 0.05, totaling to J grid values. Approximate the condi-

tional risk function as in (25), where the support for T ∼ N(b, 1) is approximated by

an equally spaced grid of t values spanning [−|b̃| − 3, |b̃| + 3] with a step size of 0.1,

totaling to K grid values. The minimax problem becomes

max
π∈∆J

min
{ψk}Kk=1

J∑
ℓ=1

πℓ

(
K∑
k=1

ψ2
kµkbℓ − 2bℓ

K∑
k=1

ψkµkbℓ + b2ℓ

)
. (26)

2. The solution to the inner optimization yields the posterior mean ψ∗
k (π) =

∑J
ℓ=1 πℓµkbℓbℓ∑J
ℓ=1 πℓµkbℓ

.

The outer problem is then

max
π∈∆J

J∑
ℓ=1

πℓ

(
K∑
k=1

(ψ∗
k (π))

2 µkbℓ − 2bℓ

K∑
k=1

ψ∗
k (π)µkbℓ + b2ℓ

)
.

3. Solve the outer problem for the least favorable prior π∗ based on sequential quadratic

programming via MATLAB’s fmincon routine. The minimax estimator δBNM
(
T ; |b̃|

)
is therefore

∑K
k=1 ψ

∗
k (π

∗) 1 {t = tk} and the minimax risk rBNM(|b̃|) is the minimized

value.

Since the objective is concave in π (it is the pointwise infimum over a set of linear functions;

see Boyd and Vandenberghe, 2004, p. 81), we can check that the algorithm has found a

global maximum by checking for a local maximum.
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D.4 Computing the optimally adaptive estimator for a given ρ2

As explained in the main text, the adaptive problem only depends on Σ through the corre-

lation coefficient ρ2. For a given value of ρ2, we use convex programming methods to solve

for the function δ∗(t; ρ) based on the steps described below.

1. Approximate the prior π with the finite dimensional vector π ∈ ∆J , where the param-

eter space for b/σO is approximated by an equally spaced grid of b̃ values spanning

[−9, 9] with a step size of 0.025, totaling to J grid values. Approximate the conditional

risk function as in (25), where the support for T ∼ N(b̃, 1) is approximated by an

equally spaced grid of t values spanning [−12, 12] with a step size of 0.05, totaling to

K grid values. The adaptation problem (6) becomes

max
π∈∆J

min
{ψk}Kk=1

J∑
ℓ=1

πℓωℓ

(
K∑
k=1

ψ2
kµkbℓ − 2bℓ

K∑
k=1

ψkµkbℓ + b2ℓ

)
+ ρ−2 − 1 (27)

where ωℓ =
(
rBNM(|b̃ℓ|) + ρ−2 − 1

)−1

using output from the previous subsection.

2. The solution to the inner optimization yields ψ∗
k (π) =

∑J
ℓ=1 πℓµkbℓωℓbℓ∑J
ℓ=1 πℓµkbℓωℓ

. The outer prob-

lem is then

max
π∈∆J

J∑
ℓ=1

πℓωℓ

(
K∑
k=1

(ψ∗
k (π))

2 µkbℓ − 2bℓ

K∑
k=1

ψ∗
k (π)µkbℓ + b2ℓ

)
+ ρ−2 − 1.

3. Solve the outer problem for the least favorable (adaptive) prior π∗ based on sequential

quadratic programming via Matlab’s fmincon routine. The adaptive estimator δ∗(t; ρ)

is therefore
∑K

k=1 ψ
∗
k (π

∗) 1 {t = tk}. The loss of efficiency under adaptation is the

minimized value.

As with the bounded normal mean problem, the objective is concave in π, so we can check

that the algorithm has found a global maximum by checking for a local maximum.

This algorithm is a finite dimensional approximation to the optimization problem in

Theorem 4.1(iii). While Theorem 4.1(iii) does not formally show the existence of a solution

to this infinite dimensional problem, we find that the algorithm reliably converges to a

global maximum, and that the least favorable prior stabilizes as the number of gridpoints
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and range of the grid increase. Based on this numerical finding, we conjecture that the

minimax problem in Theorem 4.1(iii) admits a least favorable prior, and that this solution

can be approximated arbitrarily well using the our grid approach.

D.5 Computing the optimally adaptive estimator based on the

lookup table

To simplify the computation of the optimally adaptive estimator, we pre-calculate the adap-

tive estimates over an unequally spaced grid tanh([0, 0.05, 0.10, . . . , 3]) of correlation coef-

ficients using the algorithm described above. As ρ2 approaches one, the solution becomes

sensitive to small changes in ρ. The uneven spacing of the ρ grid allows for more accurate

interpolation based on the simple pre-tabulated lookup table that we describe next.

To rapidly obtain a final estimator δ∗(TO; ρ) for a given application, we conduct 2D

interpolation across ρ2 and t values to tailor the adaptive estimates to the exact parameter

values desired. For example, we obtain δ∗ (TO;−0.524) based on spline interpolation at

ρ2 = (−0.524)2 together with the observed test statistic TO based on the 2D grid of ρ2 and

t values.

D.6 Computing the analytic adaptive estimators

To find the analytic adaptive estimators in the class of ERM estimators, soft thresholding

estimators and hard thresholding estimators, it suffices to solve the two dimensional mini-

max problem in threshold λ and scaled bias level b̃. We provide details for the claim in the

main text that this two dimensional minimax problem can be easily solved even though the

minimax theorem does not apply to these restricted classes of estimators. To simplify the

computation of the analytic adaptive estimator in practice, we pre-calculate the adaptive

thresholds λ over an unequally spaced grid tanh([0, 0.05, 0.10, . . . , 3]) of correlation coeffi-

cients as explained above. To rapidly obtain a final estimator, for example, soft-thresholding

estimator δS,λ (TO; ρ) for a given application, we conduct a spline interpolation across ρ2

values to tailor the threshold to the exact parameter values desired. For example, we ob-

tain δS,λ (TO;−0.524) firstly based on spline interpolation at ρ2 = (−0.524)2 to obtain the

threshold λ, and then with the observed test statistic TO.

The derivation for soft and hard thresholding is largely based on the following equality
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using moments of a truncated standard normal Xi | a < Xi < b. Let ϕ(x) and Φ(x) denote

the pdf and cdf of a standard normal distribution. Then for any a < b, we have

∫ b

a

x2ϕ(x)dx = Φ(b)− Φ (a)− (bϕ(b)− aϕ(a)) . (28)

D.6.1 Soft thresholding

Rewrite the soft thresholding estimator as δS,λ (TO) = 1 {TO > λ} (TO − λ)+1 {TO < −λ} (TO + λ)

and its risk function can be expressed as

ETO∼N(b̃,1))

(
δS,λ (TO)− b̃

)2
= ETO∼N(b̃,1)

(
1 {TO > λ}

(
TO − λ− b̃

)
+ 1 {TO < −λ}

(
TO + λ− b̃

)
− 1 {−λ < TO < λ} b̃

)2
= b̃2

(
Φ
(
λ− b̃

)
− Φ

(
−λ− b̃

))
+

∫ ∞

λ−b̃
(x− λ)2 ϕ(x)dx+

∫ −λ−b̃

−∞
(x+ λ)2 ϕ(x)dx (29)

The integrals in (29) simplify to

∫ ∞

λ−b̃
(x− λ)2 ϕ(x)dx+

∫ −λ−b̃

−∞
(x+ λ)2 ϕ(x)dx

=

∫ ∞

λ−b̃
x2ϕ(x)dx+

∫ −λ−b̃

−∞
x2ϕ(x)dx

− 2λ

(∫ ∞

λ−b̃
xϕ(x)dx−

∫ −λ−b̃

−∞
xϕ(x)dx

)
+ λ2

(
1− Φ

(
λ− b̃

)
+ Φ

(
−λ− b̃

))
=1− Φ

(
λ− b̃

)
+ Φ

(
−λ− b̃

)
+
(
(λ− b̃)ϕ(λ− b̃)− (−λ− b̃)ϕ(−λ− b̃)

)
− 2λ

(
ϕ(λ− b̃) + ϕ(−λ− b̃)

)
+ λ2

(
1− Φ

(
λ− b̃

)
+ Φ

(
−λ− b̃

))
where we use the fact that

∫∞
λ−b̃ x

2ϕ(x)dx+
∫ −λ−b̃
−∞ x2ϕ(x)dx =

∫∞
−∞ x2ϕ(x)dx−

∫ λ−b̃
−λ−b̃ x

2ϕ(x)dx

and Equation (28).

The analytic adaptive objective function

min
λ

max
b̃

ETO∼N(b̃,1))

(
δS,λ (TO)− b̃

)2
+ ρ−2 − 1

rBNM(|b̃|) + ρ−2 − 1
,
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can now be easily solved by Matlab’s fminimax function when the risk function is eval-

uated based on the simplified expression derived above, and the parameter space for b̃ is

approximated by an equally spaced grid values spanning [−9, 9] with a step size of 0.025.

D.6.2 Hard thresholding

Similarly rewrite hard thresholding as δH,λ (TO) = (1− 1 {−λ < TO < λ})TO and its risk

function can be simplified due to Equation (28)

ETO∼N(b̃,1))

(
δH,λ (TO)− b̃

)2
= ETO∼N(b̃,1)

(
(1− 1 {−λ < TO < λ})

(
TO − b̃

)
− 1 {−λ < TO < λ} b̃

)2
= b̃2

(
Φ
(
λ− b̃

)
− Φ

(
−λ− b̃

))
+

∫ ∞

−∞
x2ϕ(x)dx−

∫ λ−b̃

−λ−b̃
x2ϕ(x)dx.

D.6.3 Adaptive ERM

For the adaptive ERM estimator δERM,λ(TO) =
T 2
O

T 2
O+λ

· TO, we evaluate the risk function

based on 105 simulations draws from TO ∼ N(b̃, 1) and similarly optimize λ for the analytic

adaptive objective function.

Appendix E Pooling controls (LaLonde, 1986)

LaLonde (1986) contrasted experimental estimates of the causal effects of job training derived

from the National Supported Work (NSW) demonstration with econometric estimates de-

rived from observational controls, concluding that the latter were highly sensitive to modeling

choices. Subsequent work by Heckman and Hotz (1989) argued that proper use of specifica-

tion tests would have guarded against large biases in LaLonde (1986)’s setting. An important

limitation of the NSW experiment, however, is that its small sample size inhibits a precise

assessment of the magnitude of selection bias associated with any given non-experimental

estimator. In what follows, we explore the prospects of improving experimental estimates of

the NSW’s impact on earnings by utilizing additional non-experimental control groups and

adapting to the biases their inclusion engenders.

We consider three analysis samples differentiated by the origin of the untreated (“con-

trol”) observations. All three samples include the experimental NSW treatment group ob-
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servations. In the first sample the untreated observations are given by the experimental

NSW controls. In a second sample the controls come from LaLonde (1986)’s observational

“CPS-1” sample, as reconstructed by Dehejia and Wahba (1999). In the third sample, the

controls are a propensity score screened subsample of CPS-1. To estimate treatment effects

in the samples with observational controls, we follow Angrist and Pischke (2009) in fitting

linear models for 1978 earnings to a treatment dummy, 1974 and 1975 earnings, a quadratic

in age, years of schooling, a dummy for no degree, a race and ethnicity dummies, and a

dummy for marriage status. The propensity score is generated by fitting a probit model of

treatment status on the same covariates and dropping observations with predicted treatment

probabilities outside of the interval [0.1, 0.9].

Let YU be the mean treatment / control contrast in the experimental NSW sample.

We denote by YR1 the estimated coefficient on the treatment dummy in the linear model

described above when the controls are drawn from the CPS-1 sample. Finally, YR2 gives

the corresponding estimate obtained from the linear model when the controls come from

the propensity score screened CPS-1 sample. We follow the applied literature in assuming

trimming does not meaningfully change the estimand, a perspective that can be formalized by

viewing the trimmed estimator as one realization of a sequence of estimators with trimming

shares that decrease rapidly with the sample size (Huber et al., 2013).

Table A1 reports point estimates from all three estimation approaches along with stan-

dard errors derived from the pairs bootstrap. The realizations of (YR1, YR2) exactly reproduce

those found in the last row of Table 3.3.3 of Angrist and Pischke (2009) but the reported

standard errors are somewhat larger due to our use of the bootstrap, which accounts both for

heteroscedasticity and uncertainty in the propensity score screening procedure. The realiza-

tion of YU matches the point estimate reported in the first row of Angrist and Pischke (2009)’s

Table 3.3.3 but again exhibits a modestly larger standard error reflecting heteroscedasticity

with respect to treatment status.

While the experimental mean contrast (YU) of $1,794 is statistically distinguishable from

zero at the 5% level, considerable uncertainty remains about the magnitude of the average

treatment effect of the NSW program on earnings. The propensity trimmed CPS-1 estimate

lies closer to the experimental estimate than does the estimate from the untrimmed CPS-

1 sample. However, the untrimmed estimate has a much smaller standard error than its

trimmed analogue. Though the two restricted estimators are both derived from the CPS-1
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Table A1: Estimates of the impact of NSW job training on earnings.

YU YR1 YR2 GMM2 GMM3 Adaptive Pre-test

Estimate 1794 794 1362 1629 1210 1597 1629
Std error (668) (618) (741) (619) (595)

Max Regret 26% ∞ ∞ ∞ ∞ 7.77% 47.5%
Risk rel. to YU

when b1 = 0 and b2 = 0 1 0.853 1.23 0.858 0.793 0.855 0.80
when b1 ̸= 0 and b2 = 0 1 ∞ 1.23 0.858 ∞ 0.925 0.993
when b1 ̸= 0 and b2 ̸= 0 1 ∞ ∞ ∞ ∞ 1.077 1.475

Notes: Bootstrap standard errors in parentheses computed using 1,000 bootstrap samples. The GMM2

estimate imposes b2 = 0 only while the GMM3 estimate imposes b1 = 0 and b2 = 0. A J-test of the null
b1 = b2 = 0 motivating GMM3 yields a p-value at 0.04. A corresponding test of the null b2 = 0 motivating
GMM2 yields a p-value of 0.51. “Risk rel. to YU” gives worst case risk scaled by the risk (i.e. variance) of

YU . “Max regret” refers to the worst case adaptation regret in percentage terms (Amax(B, θ̂)− 1)× 100.

sample, our bootstrap estimate of the correlation between them is only 0.75, revealing that

each measure contains substantial independent information.

Combining the three estimators together via GMM, a procedure we denote GMM3,

yields roughly an 11% reduction in standard errors relative to relying on YU alone. However,

the J-test associated with the GMM3 procedure rejects the null hypothesis that the three

estimators share the same probability limit at the 5% level (p = 0.04). Combining only YU

and YR2 by GMM, a procedure we denote GMM2, yields a standard error 7% below that of

YU alone. The J-test associated with GMM2 fails to reject the restriction that YU and YR2

share a common probability limit (p = 0.51). Hence, sequential pre-testing selects GMM2.

Letting b1 ≡ E[YR1 − θ] and b2 ≡ E[YR2 − θ] our pre-tests reject the null that b1 = b2 = 0

and fail to reject that b2 = 0. However, it seems plausible that both restricted estimators

suffer from some degree of bias. The adaptive estimator seeks to determine the magnitude

of those biases and make the best possible use of the observational estimates. In adapting

to misspecification, we operate under the assumption that |b1| ≥ |b2|, which is in keeping

with the common motivation of propensity score trimming as a tool for bias reduction (e.g.,

Angrist and Pischke, 2009, Section 3.3.3). Denoting the bounds on (|b1|, |b2|) by (B1, B2), we

adapt over the finite collection of bounds B = {(0, 0), (∞, 0), (∞,∞)}, the granular nature of
which dramatically reduces the computational complexity of finding the optimally adaptive

estimator. Note that the scenario (B1, B2) = (0,∞) has been ruled out by assumption,

reflecting the belief that propensity score trimming reduces bias. See Appendix F for further

details.
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From Table A1, the multivariate adaptive estimator yields an estimated training effect

of $1,597: roughly two thirds of the way towards YU from the efficient GMM3 estimate.

Hence, the observational evidence, while potentially quite biased, leads to a non-trivial (11%)

adjustment of our best estimate of the effect of NSW training away from the experimental

benchmark. In Table A2 we show that pairwise adaptation using only YU and YR1 or only YU

and YR2 yields estimates much closer to YU . A kindred approach, which avoids completely

discarding the information in either restricted estimator, is to combine YR1 and YR2 together

via optimally weighted GMM and then adapt between YU and the composite GMM estimate.

As shown in Table A3, this two step approach yields an estimate of $1,624, extremely close

to the multivariate adaptive estimate of $1,597, but comes with substantially elevated worst

case adaptation regret relative to a multivariate oracle who knows which pair of bounds in

B prevails.

While the multivariate adaptive estimate of $1,597 turns out to be very close to the

pre-test estimate of $1,629, the adaptive estimator’s worst case adaptation regret of 7.7% is

substantially lower than that of the pre-test estimator, which exhibits a maximal regret of

47.5%. The adaptive estimator achieves this advantage by equalizing the maximal adaptation

regret across the three bias scenarios {(b1 = 0, b2 = 0), (b1 ̸= 0, b2 = 0), (b1 ̸= 0, b2 ̸= 0)}
allowed by our specification of B. When both restricted estimators are unbiased, the adaptive

estimator yields a 14.5% reduction in worst case risk relative to YU . However, an oracle that

knows both restricted estimators are unbiased would choose to employ GMM3, implying

maximal adaptation regret of 0.855/0.793 ≈ 1.077. When YR1 is biased, but YR2 is not, the

adaptive estimator yields a 7.5% reduction in worst case risk. An oracle that knows only YR1

is biased will rely on GMM2, which yields worst case scaled risk of 0.858; hence, the worst

case adaptation regret of not having employed GMM2 in this scenario is 0.925/0.858 ≈ 1.077.

Finally, when both restricted estimators are biased, the adaptive estimator can exhibit up

to a 7.7% increase in risk relative to YU .

The near oracle performance of the optimally adaptive estimator in this setting suggests

it should prove attractive to researchers with a wide range of priors regarding the degree of

selection bias present in the CPS-1 samples. Both the skeptic that believes the restricted

estimators may be immensely biased and the optimist who believes the restricted estimators

are exactly unbiased should face at most a 7.7% increase in maximal risk from using the

adaptive estimator. In contrast, an optimist could very well object to a proposal to rely on
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YU alone, as doing so would raise risk by 26% over employing GMM3.

Appendix F Details of bivariate adaptation

In Appendix E, we report the results of adapting simultaneously to the bias in two restricted

estimators when the bias spaces take a nested structure. Denoting the bounds on (|b1|, |b2|)
of the two restricted estimators by (B1, B2), we adapt over the finite collection of bounds

B = {(0, 0), (∞, 0), (∞,∞)}. Note that the scenario (B1, B2) = (0,∞) has been ruled out by

assumption, reflecting the belief that propensity score trimming reduces bias. The minimax

risk over each bias space C(B1,B2) is therefore

R∗(C(B1,B2)) =


ΣU for (B1, B2) = (∞,∞)

ΣU − ΣUO,2Σ
−1
O,2ΣUO,2 for (B1, B2) = (∞, 0)

ΣU − ΣUOΣ
−1
O ΣUO for (B1, B2) = (0, 0)

(30)

Then δ(YO) is the solution to the following problem

inf
δ

max
(B1,B2)∈B

maxb∈C(B1,B2)
EYO∼N(b,ΣO)(δ(YO)− ΣUOΣ

−1
O b)2 + ΣU − ΣUOΣ

−1
O ΣUO

R∗(C(B1,B2))

Since the three spaces are nested, we can rewrite the adaptation problem as

inf
δ

sup
b∈R×R

EYO∼N(b,ΣO)(δ(YO)− ΣUOΣ
−1
O b)2 + ΣU − ΣUOΣ

−1
O ΣUO

R̃(S̃(b))

where the scaling is

R̃(S̃(b)) =


ΣU − ΣUOΣ

−1
O ΣUO if b1 = b2 = 0

ΣU − ΣUO,2Σ
−1
O,2ΣUO,2 if b1 ̸= 0, b2 = 0

ΣU if b1 ̸= 0, b2 ̸= 0

(31)

Given the high dimensionality of the adaptation problem, we use CVX instead of Matlab’s

fmincon to solve the scaled minimax problem.
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F.1 Pairwise adaptation

For comparison with the trivariate adaptation estimates reported in the text, we also consider

pairwise adaptation using only YU and YR1 or only YU and YR2, keeping the bias spaces as

before. Specifically to adapt using only YU and YRj, we consider an oracle where the set B
of bounds B on the bias consists of the two elements 0 and ∞.

Table A2: Pairwise adaptive estimates

YU YR GMM Adaptive Soft-threshold Pre-test

CPS-1 untrimmed 1794 794 1123 1659 1608 1794
Std error (668) (617) (600)

Rel. risk when b = 0 1 0.85 0.81 0.863 0.869 0.894
Rel. risk when b ̸= 0 1 ∞ ∞ 1.071 1.078 1.541

Max Regret 24% ∞ ∞ 7.1% 7.8% 54%
Max Regret 26% ∞ ∞ 24.8% 25.6% 79.5%

(rel. to multivariate)
Threshold 0.63 1.96

CPS-1 trimmed 1794 1362 1629 1657 1638 1362
Std error (668) (741) (619)

Rel. risk when b = 0 1 1.23 0.86 0.9 0.91 1.166
Rel. risk when b ̸= 0 1 ∞ ∞ 1.05 1.055 2.051

Max Regret 16.4% ∞ ∞ 5% 5.5% 105%
Max Regret 26% ∞ ∞ 13.6% 14.2% 105%

(rel. to multivariate)
Threshold 0.62 1.96

Notes: Bootstrap standard errors in parentheses computed using 1,000 bootstrap samples. In the top panel
YR corresponds to estimates using the untrimmed CPS-1 as controls, which are referred to as YR1 in the
main text. In the bottom panel, YR corresponds to estimates derived from the propensity score trimmed
CPS-1 sample, which are referred to as YR2 in the main text. Adaptive estimates adapt pairwise between
YU and YR within panel. If applicable, the adaptive thresholds are reported. “Max regret” refers to the
worst case adaptation regret in percentage terms (Amax(B, θ̂)−1)×100. “Max Regret (rel. to multivariate)”
refers to the worst case adaptation regret in terms of the multivariate oracle. “Rel. risk” gives worst case
risk scaled by the risk (i.e. variance) of YU . The correlation between YU and YRj − YU is -0.44 in the top
panel and -0.38 in the bottom panel.

Table A2 shows that pairwise adaptation produces estimates much closer to YU than

the multivariate adaptive estimate. While pairwise adaptive estimates both incur smaller

adaptation regret, the efficiency gain when the model is correct is smaller than with the

multivariate adaptive estimate.
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Table A3: Adapting pairwise with GMM composite

YU Ycomp GMM Adaptive Soft-threshold Pre-test

Estimate 1794 882 1173 1624 1601 1794
Std error (668) (612) (595)

Max Regret 26% ∞ ∞ 8% 8.3% 56%
Max Regret 26% ∞ ∞ 25.4% 26.3% 81.5%

(rel. to multivariate)
Threshold ∞ 0.64 1.96

Notes: Adaptive estimates for the impact of job training, adapting to Bcomp ∈ {0,∞}, which is the bound
on the bias of the composite estimator Ycomp = argminθ(YR−θ)′Σ−1

R (YR−θ). GMM combines Ycomp and YU

optimally under the assumption that Ycomp is unbiased. If applicable, the adaptive thresholds are reported.

“Max regret” refers to the worst case adaptation regret in percentage terms (Amax(B, θ̂) − 1) × 100. “Max
Regret (rel. to multivariate)” refers to the worst case adaptation regret relative to the multivariate oracle
in (30). The correlation coefficient between YU and Ycomp − YU is -0.45.

F.2 Bivariate adaptation with GMM composite

For another comparison with the trivariate adaptation estimates reported in the text, we also

consider combining YR1 and YR2 first via optimally weighted GMM, which is a composite

of the two Ycomp. We then adapt between YU and Ycomp. The bias space is now also a

composite of the two-dimensional bias space C(B1,B2), and we consider an oracle where the

set B of bounds B on the bias consists of the two elements 0 and ∞.

Table A3 shows that composite adaptation produces estimates very similar to the mul-

tivariate adaptive estimate. The adaptation regret relative to an oracle who knows a bound

on the bias of composite is also small. However, for a fair comparison with multivariate

adaptation, one should compare its efficiency loss relative to the multivariate oracle with

minimax risk specified in (30). This notion of worst case regret is substantially higher at

25% because bivariate adaptation against the GMM composite cannot leverage the nested

structure of the multivariate parameter space B.
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