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Abstract

A class of simultaneous equation models arise in the many domains where observed binary outcomes are
themselves a consequence of the existing choices of of one of the agents in the model. These models are
gaining increasing interest in the computer science and machine learning literatures where they refer the
potentially endogenous sample selection as the selective labels problem. Empirical settings for such models
arise in fields as diverse as criminal justice, health care, and insurance. For important recent work in this area,
see for example Lakkaraju et al. (2017), Kleinberg et al. (2018), and Coston, Rambachan, and Chouldechova
(2021) where the authors focus on judicial bail decisions, and where one observes the outcome of whether
a defendant filed to return for their court appearance only if the judge in the case decides to release the
defendant on bail. Identifying and estimating such models can be computationally challenging for two
reasons. One is the nonconcavity of the bivariate likelihood function, and the other is the large number
of covariates in each equation. Despite these challenges, in this paper we propose a novel distribution
free estimation procedure that is computationally friendly in many covariates settings. The new method
combines the semiparametric batched gradient descent algorithm introduced in Khan, Lan, Tamer, and Yao
(2022) with a novel sorting algorithms incorporated to control for selection bias. Asymptotic properties of
the new procedure are established under increasing dimension conditions in both equations, and its finite
sample properties are explored through a simulation study and an application using similar judicial bail
data.
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1. Introduction

This paper addresses the challenge of inference in large-dimensional selective labeling models.

These models emerge in numerous domains where the observed binary outcomes result from

the choices made by one of the agents within the system. Recently, they have garnered

significant attention in the fields of computer science and machine learning, where this issue is

known as the “selective labels problem”, referring to potentially endogenous sample selection

(in the language of econometricians). Applications of these models span a wide range of

areas, including criminal justice, healthcare, and insurance. For important recent work in

this area, see for example Lakkaraju et al. (2017), Kleinberg et al. (2018) and Coston et al.

(2021). These authors focus on judicial bail decisions, where one observes the outcome of

whether a defendant filed to return for their court appearance only if the judge in the case

decides to release the defendant on bail. Letting di denote the binary decision to grant bail,

and yi denote the binary outcome of the defendant returning for court appearance, they

consider a model of the form

Yi =




0 or 1, if Di = 1

not observed (NA), otherwise
(1.1)

This process and the ensuing model can be best explained with the diagram below. The top

node indicates the decision made by the agent (judge in our criminology example) which

corresponds to a yes (Di = 1) or no (Di = 0) on individual i. The other observed dependent

variable, corresponding to the two nodes beneath the top one, is denoted by Yi, where

Yi ∈ {0, 1, NA} and denotes the resulting outcome (return to court in our example). The

selective labels problem occurs because the observation of outcome Yi is constrained by the

decision Di made by the judge:

Outcome YiOutcome Yi

Decision Di

Not failure Failure Not Observed

Yes (Di = 1) No (Di = 0)

(Yi = 1) (Yi = 0) (Yi = NA)
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Of course controlling for selection bias has a rich history in the econometrics literature, but

usually for models where the outcome variable after selection is continuous. Seminal work

in the parametric literature include Heckman (1974) and in the semiparametric literature,

see Ahn and Powell (1993a), Das, Newey, and Vella (2003) and Newey (2009).

With the availability of regressors for each of the equations in the binary outcome our

econometric model is of the form:

Di = I (z0,i + Z ′
iδ0 − Ui > 0) (1.2)

Yi = Di · I (x0,i +X ′
iβ0 − Vi > 0) (1.3)

The above system of equations is of a similar structure to that used in the classical sample

selection model introduced in Heckman (1974). (z0,i, Zi) and (x0,i, Xi) denote vectors of

observed regressors in selection and outcome equations, respectively. Di and Yi denote

observed binary outcomes. δ0 and β0 are vectors of unknown regression coefficients, that

are the same dimensions as Zi, Xi respectively and the main parameters of interest. This

model is different from the standard selection model, which is for the case where the outcome

equation is linear.

Some Extension of Model

It is possible that the model above can accommodate endogeneity in some of the regressors.

We recall that in the standard selection model with linear outcome equation, Ahn and Powell

(1993a) identify and estimate the coefficients of endogenous regressors using an instrumental

variable approach. However there methods is not applicable to the selective labeling model

where the outcome equation is binary.

In fact even in the absence of selection bias, identifying regression coefficients of endogenous

regressors in binary outcome models is complicated and requires assumptions stronger than

the standard instrumental variable assumptions. Blundell and Powell (2004) adopt a control

function approach that among other conditions, requires modeling the first stage equation

relating endogenous regressors to instruments. Furthermore, they require the endogenous

regressor(s) be continuously distributed with large support and thus rule out examples in

the treatment effects literature. Abrevaya et al. (2010) consider a binary outcome model

with a binary endogenous variable and show how to infer the sign of its coefficient but not

its magnitude. Vytlacil and Yildiz (2007) attain point identification of both the regression

coefficient and the average treatment effect but require a monotonicity condition and a

large regressor support condition. Shaikh and Vytlacil (2011) maintain monotonicity but
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relax large support conditions to partially identify the average treatment effect. Chen et al.

(2024) relax the monotonicity condition and consider a wider class of nonlinear models

with discrete endogenous regressors, also focusing on reduced form parameters such as the

average treatment effect. Khan et al. (2023a) impose a factor structure on unobservables in

a triangular system of binary equations and show ho this aids in point identifying coefficients

of endogenous regressors.

None of the papers in the above expansive list consider models with sample selection as is

the case in our selective labeling model. For the model where the outcome equation without

selection is binary, recent work is in Abrevaya et al. (2010), who considered identification, es-

timation and inference of the unknown parameters. However, the estimation approach taken

in that paper was based on rank regression methods, analogous to that used in Han (1987).

Consequently the objective functions involved are non-smooth and nonconvex, making its

implementation very difficult, even more so in large dimensional models which is what this

paper is about.

The structure of the rest of the paper is organized as follows. In the next section we define

our new (algorithmic) estimation procedures for the unknown regression coefficients. Both

are designed to be computationally efficient, and suitable to implement for models where

the dimensions of zi and/or xi are large. Section 3 explores the asymptotic properties of

the new methods, establishing their limiting distribution theory for models of both fixed

and increasing dimension. The latter class is gaining widespread and growing interest in

the big data and machine learning literatures, but has yet to be studied for this selective

labeling model. Section 4 explores the finite sample properties of our procedures by means

of a simulation study. Section 7 concludes by summarizing our results and suggesting areas

for future work. An Appendix collects tabular results from the simulation study and all the

proofs of the main theorems.

2. Algorithmic Estimation Procedures

This section proposes two novel computationally friendly algorithms for estimating β0. Our

proposed methods are to first estimate parameter vector δ0 in the selection equation, and

with that, use matching as in Ahn and Powell (1993a) or series expansion as in Das et al.

(2003) and Newey (2009) to estimate the selection correction function, and finally estimate

β0. We will not use rank estimation in either step because the dimension of Zi and Xi

potentially can be large. Instead, we adopt iteration-based methods which feature simple

implementation and fast computation speed.
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2.1. Estimating First Step

We first introduce the algorithm for the first-step estimator of δ0. Let Φδ(·) be a (q + 1)-

dimensional vector of basis functions. The algorithm for estimating δ0 is described as follows.

Algorithm 0 for estimating δ0:

1. Start with k = 0 and δ̂0, π̂0, F̂ 0
U , where δ̂

0 is the initial guess of the parameter vector in

the selection equation, π̂0 is the initial guess of sieve coefficient, and F̂ 0
U is the initial

guess of distribution function of Ui.

2. With δ̂k, update the sieve coefficient to π̂k+1 using the following

π̂k+1 =

(
n∑

i=1

Φδ(z0,i + Z ′
iδ̂

k)′Φδ(z0,i + Z ′
iδ̂

k)

)−1( n∑

i=1

Φδ(z0,i + Z ′
iδ̂

k)′Di

)

3. With π̂k+1, update F̂ k
U to F̂ k+1

U as F̂ k+1
U (u) = Ψ(u)′π̂k+1.

4. With F̂ k+1
U , update δ̂k to δ̂k+1 using

δ̂k+1 = δ̂k − γk
n

n∑

i=1

(
F̂ k+1
U

(
z0,i + Z ′

iδ̂
k
)
−Di

)
Zi

where γk > 0 is learning rate.

5. Set k = k + 1 and go back to Step 2, until some terminating conditions are satisfied.

Above is the sieve-based gradient descent estimator (SBGD) proposed by Khan, Lan, Tamer, and Yao

(2022). Under some regularity conditions, Khan et al. (2022) show that for k sufficiently

large, δ̂k is consistent and asymptotically normally distributed under increasing dimensions.

2.2. Estimating Second Step

Denote the first-step estimator as δ̂. With δ̂ in hand, we now consider estimating β0. We will

do something similar to SBGD, but essentially control for selection bias. To provide some

intuition, suppose that we know the joint CDF of Ui and Vi denoted as F (u, v), then the

probability of Vi < v conditional on Ui < u is given by P (Vi < v|Ui < u) = F (u, v)/FU(u) ≡
G(u, v), where FU(u) denotes the marginal distribution of Ui. So P (Yi = 1|Di = 1) =
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G(z0,i +Z ′
iδ0, x0,i +X ′

iβ0). If we also knew δ0, batch gradient descent using the loss function

in Khan et al. (2022) leads to the following iterative algorithm for estimating β0

β̂k+1 = β̂k − γk
Sn

n∑

i=1

Di

(
G(z0,i + Z ′

iδ0, x0,i +X ′
iβ̂

k)− Yi

)
Xi, (2.1)

where Sn =
∑n

i=1Di. Obviously, in each round of the above update, the conditional proba-

bility conditioned on event Di = 1 effectively controls for the selection bias. However, since

both F (u, v) and δ0 are unknown, the above algorithm is infeasible. The latter issue can

be resolved by plugging in our first-step estimator δ̂, while the former remains unsolved.

An intuitive solution to the above problem is to obtain an estimator for the conditional

probability G(u, v) and then plug such estimators into the above update. We propose two

methods to estimate such conditional probability, one being local in nature and the other

global.

The first local estimator is closer to that in Ahn and Powell (1993a) in that it uses matching

to control for selection bias. To provide some intuition, suppose that the first-step estimator

δ̂ is consistent (see following for technical conditions) and β̂k, the starting point in the k-th

iteration, is close to β0. In this case,

E (Yj|Ze,j, Xe,j, Dj = 1) ≈ G(z0,j + Z ′
j δ̂, x0,j +X ′

jβ̂
k).

So long as G is smooth enough and (z0,j + Z ′
j δ̂, x0,j + X ′

j β̂
k) is close enough to (z0,i +

Z ′
iδ̂, x0,i+X

′
iβ̂

k), Yj can be used as a (noisy) replacement for G(z0,i+Z
′
iδ̂, x0,i+X

′
iβ̂

k). Then

the conditional probability for the Yi can be constructed as a weighted combination of Yj’s,

where decreasing weight is assign to each Yj as the distance between (z0,j +Z
′
j δ̂, x0,j +X

′
jβ̂

k)

and (z0,i+Z ′
iδ̂, x0,i+X ′

iβ̂
k) increases. The above weighting scheme is essentially in line with

Ahn and Powell (1993a).

To improve computational efficiency of our algorithm, we propose nearest-neighbour-type1

weighting scheme. Define

dkij = ‖(z0,j + Z ′
j δ̂, x0,j +X ′

j β̂
k)− (z0,i + Z ′

iδ̂, x0,i +X ′
iβ̂

k)‖.

For any i with Di = 1, rearrange the indices of Yj with j 6= i and Dj = 1,

as νk(i, 1), · · · , νk(i, Sn − 1), such that dki,νk(i,1) ≤ · · · ≤ dki,νk(i,Sn−1). Then the weights based

1Kernel-based weights are also easy to construct, which can be similarly done as in Khan et al. (2022).
However, constructing the weights involves O(n2) computational burdens in each round, which may cause
heavy computation burdens, see Yao (2024).
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on m-nearest neighbour is given by

W k
ij =




1/m if j = νk(i, 1), · · · , νk(i,m),

0 otherwise
(2.2)

Constructing weights based on m nearest neighbour has computational complexity of order

O(mn log(n)), which is much faster than constructing kernel-based weights as long as m is

small. In applications, m can be chosen as small as 1, as proposed in Yatchew (1997).

The algorithm for estimating β0 based on matching is provided as folows.

Algorithm 1 for estimating β0:

1. Start with k = 0, first-step estimator δ̂, initial guess of weights {W 0
ij}ni,j=1 and initial

guess β̂0.

2. With β̂k, update the weights {W k
ij}ni,j=1 to {W k+1

ij }ni,j=1 using (2.2).

3. With {W k+1
ij }ni,j=1, update β̂

k to β̂k+1 using

β̂k+1 = β̂k − γk
Sn

n∑

i=1

n∑

j=1

W k+1
ij DiDj (Yj − Yi)Xi,

where γk > 0 is the learning rate.

4. Set k = k + 1 and go back to Step 2 until some terminating conditions are satisfied.

We next propose an algorithmic approach which controls for selection with by nonpara-

metrically estimating the selection correction function globally based on a series approxi-

mation. This was done for the standard selection model with linear outcome equation in

Das, Newey, and Vella (2003) and Newey (2009). Let Φ(·, ·) be a (q + 1)2-dimensional vec-

tor of basis functions. To provide some intuition to our algorithm, note that we have the

following representation of DiYi,

DiYi = DiΦ
(
z0,i + Z ′

iδ̂, x0,i +X ′
iβ̂

k
)′
Πq + Eq,k,i, (2.3)

where Πq is the unknown true sieve parameter2, and Eq,k,i is the error that can be decomposed

2For any sequence of sieve functions {φs,t(u, v)}∞s,t=0
that is complete in C(R2) space, for any func-

tion G(u, v) ∈ C(R2), there exists a sequence of sieve coefficients {πs,t}∞s,t=0 such that G(u, v) =
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as follows

Eq,k,i = Di

(
G
(
z0,i + Z ′

iδ̂, x0,i +X ′
iβ̂

k
)
− Φq

(
z0,i + Z ′

i δ̂, x0,i +X ′
iβ̂

k
)′

Πq

)

︸ ︷︷ ︸
Error due to truncation of the sieve space

+Di

(
G
(
z0,i + Z ′

iδ0, x0,i +X ′
iβ̂

k
)
−G

(
z0,i + Z ′

iδ̂, x0,i +X ′
iβ̂

k
))

︸ ︷︷ ︸
Error due to first-step estimation

+Di

(
G (z0,i + Z ′

iδ0, x0,i +X ′
iβ0)−G

(
z0,i + Z ′

iδ0, x0,i +X ′
iβ̂

k
))

︸ ︷︷ ︸
Error due to second-step estimation of the k-th round

+Di (Yi −G (z0,i + Z ′
iδ0, x0,i +X ′

iβ0))︸ ︷︷ ︸
Sampling randomness

.

When G(u, v) is smooth enough, the first term on the right side of the above equation will

be small as long as q is large. Moreover, suppose again that the first-step estimator δ̂ is

consistent and β̂k is close to β0, then both second and third terms are small. Finally, the

expectation of the last term conditioned on Ze,i, Xe,i andDi = 1 is zero. The above discussion

indicates that the unknown sieve parameter Πq can be estimated by an OLS-type estimator

Π̂k
q =

[
n∑

i=1

DiΦ
(
z0,i + Z ′

i δ̂, x0,i +X ′
iβ̂k

)
Φ
(
z0,i + Z ′

iδ̂, x0,i +X ′
iβ̂k

)′
]−1

×
[

n∑

i=1

DiYiΦ
(
z0,i + Z ′

iδ̂, x0,i +X ′
iβ̂k

)]
, (2.4)

and the unknown conditional probability functionG(u, v) is estimated by Ĝk(u, v) = Φ(u, v)′Π̂k.

Given the estimator of G(u, v), we can plug it back to (2.1), and conduct the update. The

algorithm is detailed as follows.

Algorithm 2 for estimating β0:

1. Start with k = 0, first-step estimator δ̂, initial guess β̂0, Π̂0
q , Ĝ

0
n(u, v). The second is

the guess of sieve coefficient, and the third is the guess of the conditional probability.

2. With β̂k, update Π̂k to Π̂k+1 using (2.4).

3. With Π̂k+1
q , update Ĝk to Ĝk+1 using Ĝk+1 (u, v) = Φ(u, v)′Π̂k+1

q .

∑
∞

s,t=0
πs,tφs,t(u, v). Then Πq is the vector of first (q + 1)2 function-specific sieve coefficients. See Chen

(2007) for more detailed discussion.
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4. With Ĝk+1, update β̂k to β̂k+1 using

β̂k+1 = β̂k − γk
Sn

n∑

i=1

Di

(
Ĝk+1

(
z0,i + Z ′

iδ̂, x0,i +X ′
iβ̂

k
)
− Yi

)
Xi,

where γk > 0 is the learning rate.

5. Set k = k + 1 and go back to Step 2 until some terminating conditions are satisfied.

Comparisons between two algorithms. When using nearest-neighbour-based weights,

the matching-based algorithm features fast computation. The only tuning parameter is m,

the number of neighbours. When we use the nearest neighbour to perform the update, the

algorithm is completely tuning free and is the most computationally efficient. However, the

resulting estimator is more volatile and has larger variance. Compared with the matching-

based algorithm, the sieve-based estimator has smaller variance, but it takes longer time

to compute. The most time-consuming part is the calculation of the sieve coefficient ξ̂k+1.

Given tuning parameter Q, we use a total of (Q+ 1)2 basis functions, so the computational

complexity of calculating ξ̂k+1 will be at least O(Q
6), which is large even we choose Q = 10.

Choice of terminating conditions. For the sieve-based approach, we follow Khan et al.

(2022) and terminate the update if maxj

∣∣∣β̂k+1,j − β̂k,j

∣∣∣ < ̺, where ̺ is some small positive

constant, say 10−5. For the matching-based approach, it generally does not converge so we

consider an alternative terminating condition. In particular, let T be a positive integer.

We terminate the update if for a successive of T rounds of updates, max1≤m≤k βk,j and

min1≤m≤k βk,j do not change for all j.

3. Asymptotic Analysis

This section studies the statistical properties of the iteration-based estimators proposed in

the previous section. To ease notation, denote Ze,i = (z0,i, Z
′
i)

′ ∈ Ze ⊆ RpZ+1, Xe,i =

(x0,i, X
′
i)

′ ∈ Xe ⊆ RpX+1, δ0 ∈ D ⊆ RpZ , β0 ∈ B ⊆ RpX . Let F (u, v) be the joint

CDF of (Ui, Vi). Denote the marginal CDF of Ui and Vi as FU (u) = limv→∞ F (u, v) and

FV (v) = limu→∞ F (u, v). Finally, denote Z = z0 + Z ′δ0, Z0,i = z0,i + Z ′
iδ0, Ẑ0 = z0 + Z ′δ̂,

Ẑ0,i = z0,i + Z ′
iδ̂, X = x0 +X ′β0, Xi = x0,i +X ′

iβ0, and X
k
i = x0,i +X ′

iβ̂
k

We impose the following conditions on the data generating process and the data set we

observe.
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Condition 1. Ze,i, Xe,i, Ui, Vi, Di, Yi are iid over i and satisfy (1.2) and (1.3). Ui and Vi are

jointly independent of Ze,i and Xe,i. Finally, we observe the data set Sn = {Ze,i, Xe,i, Di, Yi}ni=1.

We next make assumption on the first-step estimator. In particular, we assume that δ̂ has

the following asymptotically linear representation.

Condition 2. The first-step estimator δ̂ guarantees the following representation,

∥∥∥∥∥
√
n
(
δ̂ − δ0

)
−Ψ−1

δ

1√
n

n∑

i=1

ψδ (Ze,i) (Di − FU (Z0,i))

∥∥∥∥∥ = op (1) ,

where Ψδ is a (pZ + 1)× (pZ + 1) nonrandom invertible matrix and ψδ (·) is a (pZ + 1)× 1

nonrandom function, whose arguments can change with q. Finally, there holds ‖δ̂ − δ0‖ =

Op(
√
pZ/n).

Remark 1. Condition 2 simply repeats the results of Theorem 8 in Khan et al (2023);

more primitive conditions that guarantee such condition can be found therein. According to

Theorem 8 of Khan et al. (2022), we have that ψδ (Ze) = Z −EZ̃e

(
Z̃
∣∣∣ z̃0 + Z̃ ′δ0 = Z0

)
and

Ψδ = E (F ′
U (Z0)ψδ (Ze)Z

′), where Z̃e is a independent copy of Ze, and EZ̃e
is expectation

with respect to Z̃e.

The next condition is imposed on the data generating process.

Condition 3. For all n, there hold

(i) Ze = [0, 1]pZ+1 and Xe = [0, 1]pX+1;

(ii) There exists some constant C0 > 0 such that D ⊆ [−C0, C0]
pZ and B ⊆ [−C0, C0]

pX ;

(iii) There exists a positive constant CG > 0 such that ‖∇uG‖∞ , ‖∇vG‖∞, and ‖∇vvG‖∞
are upper bounded by CG;

(iv) There exists some constant CD > 0 such that P (Di = 1) = E(FU(z0,i + Z ′
iδ0)) ≥ CD.

3.1. The Matching-Based Estimator

In this paper we will specifically focus on the matching-based algorithm with m = 1.

9



3.2. The Sieve-Based Estimator

This section studies the statistical properties of the KBGD algorithm proposed in the pre-

vious section. Define We further introduce some technical conditions.

Condition 4. The vector of basis functions Φq satisfies

(i) Let Φj denote the j-th argument of Φ. Then for all 1 ≤ j ≤ (q + 1)2, ‖Φj‖∞ ≤ CΦ,q,

‖∇uΦj‖∞ ≤ CΦ,1,q, ‖∇vΦj‖∞ ≤ CΦ,1,q, ‖∇uuΦj‖∞ ≤ CΦ,2,q, ‖∇uvΦj‖∞ ≤ CΦ,2,q, and

‖∇vvΦj‖∞ ≤ CΦ,2,q, where CΦ,q, CΦ,1,q and CΦ,2,q are all positive constants that depend on q

only;

(ii) Define Γq(β) = E[Φq (Z0,i, x0,i +X ′
iβ)Φq (Z0,i, x0,i +X ′

iβ)
′ |Di = 1]. There exist 0 <

λΦ ≤ λΦ <∞ such that λΦ ≤ infβ∈B λ (Γq (β)) ≤ supβ∈B λ (Γq (β)) ≤ λΦ for all q;

(iii) ‖G (u, v)− Φ(u, v)′Πq‖∞ ≤ Rq;

Condition 5. X (υZ , υX , β) = E(X|Z0 = υZ , x0 + X ′β = υX , D = 1) exists for all

υZ , υX , β ∈ B. Moreover, there hold

(i) Let Xj(υZ , υX , β) denote the j-th argument of X (υZ , υX , β). There exists a positive con-

stant CX such that for all 1 ≤ j ≤ pX , ‖∇υZXj(υZ , υX , β)‖∞ ≤ CX , ‖∇υXXj(υZ , υX , β)‖∞ ≤
CX , and ‖∇βXj(υZ , υX , β)‖∞ ≤ CXp

1/2
X ;

(ii) supυZ ,υX ,β ‖X (υZ , υX , β)−ΠX
q (β)Φ(υZ , υX)‖ ≤ RX,q, where Π

X
q (β) is the unknown sieve

coefficient matrix.

Condition 6. Let

Ψ (β) =

∫ 1

0

E (∇vG (Z0,i,X0,i + τX ′
i∆β) (Xi − X (Z0,i, x0,i +X ′

iβ, β))X
′
i|Di = 1) dτ.

There hold supβ∈B λ (Ψ (β) + Ψ′ (β)) ≤ λΨ <∞ and infβ∈B λ (Ψ (β) + Ψ′ (β)) ≥ λΨ > 0.

Define

Ξ1,n = n−1/2p
1/2
X q4C3

Φ,q (pZCΦ,u,q + CΦ,q) + Rq

(
p
1/2
X q2C2

Φ,q + pX

)

+ (log (n) /n)−1/2
(
pXq

4C3
Φ,q + p

3/2
X

)
+ R

X
q .

Under the above conditions, we have the following result, whose proof is in the Appendix,

Section B.
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Theorem 1. Let Conditions 1-6 hold and Ξ1,n → 0. Then there exists some 0 < γ < ∞
such that if we choose γk = γ for all k ≥ 1, where 0 < γ < γ, there holds

sup
k≥k(n,γ)

‖βk − β0‖ = Op(Ξ1,n),

where k (n, γ) is a threshold that depends on n and γ.

Theorem 2. Let all the conditions in Theorem 1, then we have that

∆βk+1 = (IpX − γΨ (β0))∆βk +
γ

n

n∑

i=1

Di

(
Xi −XE (Z0,i,X0,i, β0)

)
εi

− γ

n

n∑

i=1

ΣX,ZΨ
−1
δ ψδ (Z0,i) (Di − FU (Z0,i)) +Wn,k,

where ΣX,Z = E
(
∇uG (Z0,i,X0,i)

(
Xi −XE (Z0,i,X0,i, β0)

)
Z ′

i|Di = 1
)
and supk≥k(n,γ) ‖Wn,k‖ =

Op (Ξ2,n) . We have that

sup
k≥k(n,γ)−log(Ξ−1

2,n)/ log(1−γλ
Ψ
/8)

∥∥∥∥∥
√
n∆βk −Ψ−1 (β⋆)

1√
n

n∑

i=1

Di

(
Xi −XE (Z0,i,X0,i, β0)

)
εi

+Ψ−1 (β⋆)ΣX,ZΨ
−1
δ

1√
n

n∑

i=1

ψδ (Z0,i) (Di − FU (Z0,i))

∥∥∥∥∥ = op (1) .

Theorem 2 directly leads to the following corollary.

Corollary 1. Let all the conditions in Theorem 2 hold. Define β̂ = βk for any k ≥ k (n, γ)−
log
(
Ξ−1
2,n

)
/ log (1− γλΨ/8). For any pX×1 vector ω, suppose that ω′Ψ−1 (β⋆)

(
X −XE (Z0,X0, β0)

)
→a.s.

X (ω) and ω′Ψ−1 (β⋆)ΣX,ZΨ
−1
δ ψδ (Z0) →a.s. Z (ω) as n→ ∞, where X (ω) and Z (ω) are ran-

dom variables with bounded second moment. Then we have that

√
nω′∆β̂ =

1√
n

n∑

i=1

DiX (ω) εi −
1√
n

n∑

i=1

Z (ω) (Di − FU (Z0,i)) + op (1)

→d N
(
0, E

(
G (Z0,X0,i) (1−G (Z0,i,X0,i))FU (Z0,i)Xi (ω)Xi (ω)

′
)

+E
(
FU (Z0,i) (1− FU (Z0,i))Zi (ω)Zi (ω)

′
))
.
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4. Monte Carlo Simulations

This section conducts some simulation experiments to evaluate the performance of the pro-

posed estimators. We consider four competing methods.

The first method is parametric estimation using nonlinear least squares, which is similar to

Heckman’s two-step estimation but accounts for the binary response in the second stage.

We assume that Ui and Vi in (1.2) and (1.3) have zero mean and unit variance, and are

jointly normally distributed with covariance ρ. Then we can jointly estimate (rescaled) δ0, β0

together with ρ. In particular, let F1(·) and F2(·, ·, ρ) denote the CDF’s of univariate standard

normal distribution and bivariate normal distribution with zero mean, unit variance, and

correlation ρ. Also define Z̄e,i = (1, z0,i, Z
′
i)

′, X̄e,i = (1, x0,i, X
′
i)

′, δ̄ = (cδ,0, cδ,1, δ
′)′, β̄ =

(cβ,0, cβ,1, β
′)′. In the first step, we minimize the following loss function

L1,n(δ̄) =
1

n

n∑

i=1

(Di − F1(Z̄
′
e,iδ̄))

2

and obtain the minimizer ̂̄δ. Then in the second step, we minimize the following loss function

L2,n(β̄, ρ) =
1

n

n∑

i=1

Di

(
Yi −

F2(Z̄
′
e,i
̂̄δ, X̄ ′

e,iβ̄, ρ)

F1(Z̄ ′
e,i
̂̄δ)

)2

and obtain the minimizer ̂̄β. Then the two-step NLS estimators for δ0 and β0 are given by

ĉ−1
δ,1 δ̂ and ĉ−1

β,1β̂.

The second method is parametric maximum likelihood estimation. Like in the first method,

we also assume that Ui and Vi in (1.2) and (1.3) are jointly normally distributed, then the

log-likelihood function is then given by

L3,n

(
δ̄, β̄, ρ

)
=

1

n

n∑

i=1

(
(1−Di) log(1− F1(Z̄

′
e,iδ̄)) +DiYi log

(
F2(Z̄

′
e,iδ̄, X̄

′
e,iβ̄, ρ)

)

+Di(1− Yi) log
(
F1(Z̄

′
e,iδ̄)− F2(Z̄

′
e,iδ̄, X̄

′
e,iβ̄, ρ)

))
.

Suppose the MLE estimators are given by ̂̄δ and ̂̄β, then the MLE estimators for δ0 and β0

are given by ĉ−1
δ,1 δ̂ and ĉ−1

β,1β̂.

The third method is semiparametric estimation based on matching. In particular, we first

obtain the estimator of δ0 in the first step, then we conduct Algorithm 1. To improve the
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computational efficiency, in both first and second step estimation, we use nearest neighbour

matching with m = 1.

The fourth method is semiparametric estimation based on series approximation. For the

sieve functions, we consider the Legendre polynomials used in Khan et al. (2022), and use

tensor products of one-variate sieve functions as the sieve functions for bivariate functions.

We report the bias, the root mean squared error, and the running time of all methods. Tables

of results are reported in the appendix, Section A.

5. Empirical Illustrations

In this section we further illustrate the finite sample properties of our proposed procedures

through two empirical illustrations- one which controls for selection in a binarized female la-

bor supply equation and the other which studies the likelihood of rearrested after controlling

for the bias induced by the sample only being of those released after the first arrest.

5.1. Female Labor Supply

In this subsection we revisit the well known Mroz (1987) labor supply data set. This data

set was also used in Ahn and Powell (1993b), Newey et al. (1990) and Khan and Nekipelov

(2024) to compare parametric and semiparametric methods. However, in those papers the

focus was the sample selection model whereas here we estimate a selective labeling model.

In the original Mroz (1987) study, the sample consists of measurements on the characteristics

of 753 married women, with 428 being employed and 325 unemployed. The dependent

variable in the outcome equation, the annual hours of work, is specified to depend upon

six regressors: the logarithm of the wage rate, household income less the woman’s labor

income, indicators for young and older children in the household, the woman’s age and years

of education. Mroz’s study also used the square of experience and various interaction terms

as instrumental variables for the wage rate, and were also included in his Probit analysis

of employment status, resulting in 18 parameters to be estimated in the first equation.

Ahn and Powell (1993b) use the same conditioning variables in the first equation but only

the original 10 variables in their first stage kernel regression to attain estimators of the slope

coefficients in the outcome (hours worked) equation.

Here, notationally, the first-stage estimates the model with a binary outcome Di indicating

13



Table 1. Estimation Results for Mroz (1987)’s Data Set

Selection Equation Outcome Equation
2Step
NLS

Joint
MLE

2Step
SBGD

2Step
NLS

Joint
MLE

2Step
SBGD

Num. of Kids < 6 years −0.43†

(0.07)
−0.43†

(0.18)
−0.44†

(0.10)
0.55
(0.47)

0.60
(1.87)

0.97
(0.76)

Num. of Kids 6-18 years 0.03
(0.07)

0.04
(0.26)

0.04
(0.06)

−1.00
(0.00)

−1.00
(0.00)

−1.00
(0.00)

Age 6.32
(6.83)

−2.07†

(0.30)
0.13
(6.60)

0.28
(0.50)

0.33
(0.57)

0.74†

(0.45)
Education 1.86

(4.90)
−1.25†

(0.20)
0.24
(4.98)

−1.58†

(0.51)
−1.34†

(0.76)
−1.87†

(0.58)
Log wage 0.85†

(0.43)
0.48
(1.74)

0.85
(0.61)

Mother’s education 0.05
(0.07)

0.03
(0.16)

0.03
(0.06)

Father’s education −0.02
(0.07)

0.01
(0.13)

−0.01
(0.07)

Unemployment Rate −0.06
(0.05)

−0.06
(0.24)

−0.05
(0.05)

SMSA dummy −0.00
(0.06)

−0.01
(0.16)

−0.01
(0.05)

Experience 1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

Non-wife income −0.17†

(0.06)
−0.15†

(0.17)
−0.15†

(0.07)
0.69†

(0.38)
0.28
(1.37)

0.53†

(0.11)
Experience squared −0.48†

(0.16)
−0.43†

(0.15)
−0.48†

(0.09)

Note: Standard deviation is provided in the parenthesis. † indicates statistical significance
at 10%.

the status of female labor participation. When Di = 1, we can further observe the hours

worked, denoted by Y ∗
i . To apply our estimator to a selective labeling model, we binarize

Y ∗
i as

Yi = I(Y ∗
i > med(Y ∗

i )),

where med(Y ∗
i ) is the observed median of Y ∗

i for Di = 1. We use Yi as our second-stage

binary outcome, indicating whether a women in the labor market work more compared to

the average level. We follow Newey et al. (1990) and consider 18 covariates in the first-stage
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model and 6 covariates in the second-stage model, see Mroz (1987) and Newey et al. (1990)

for more details.

Similar to the simulation section, we consider three competing methods including two-step

NLS, MLE, and two-step SBGD. When conducting semiparametric estimation we normalize

the coefficient of experience to 1 in the first-step equation because, intuitively, an individual

with more working experience is more likely to be in the job market. For the outcome equa-

tion, we normalize the coefficient of the number of kids between 6 and 18 years to −1 because

we expect that women with more number of young children will spend more time with family

so are less likely to work more than average. When estimating the model, we standardize

all the regressors so the standardized regressors have zero mean and unit variance. For the

first-step SBGD estimation, we use the same sieve functions as in Khan et al. (2022), and for

the second-step SBGD estimation, we use tensor products of the above sieve functions. The

order of sieve functions is determined by an AIC-type criterion function3. For both steps of

estimation, we use MLE estimators as the initial guess. Finally, we choose γk = 1 for both

steps, and terminate the iteration when the maximum change across all arguments of the

parameters after an iteration is less than 10−6 or the number of iterations exceeds 106.

We report the estimation results of both steps using different methods in Table 1. We can see

in Table 1 that estimation results of two-step NLS and two-step SBGD are similar in terms

of statistical significance. In particular, coefficients of number of kids under 6 years old,

non-wife income and squared experience are all estimated to be negative and significant at

10%. Indeed, for such three coefficients, using different specifications or estimation methods

leads to almost identical results. We also find that when using joint MLE estimation, apart

from the above three coefficients, the coefficients of age and education are also significant

at 10%. But when we compare them with the coefficients estimated based on two-step

SBGD, we find that age and education do not have significant impacts on the job market

participation. Moreover, the estimation results of the two coefficients differ in both sign and

scale. When we further look at the second-stage estimation results reported in the right three

columns in Table 1, we find that, interestingly, parametric and semiparametric estimators

differ systematically for some coefficients. For example, under both two-step NLS and joint

MLE, the coefficient of age is estimated to be insignificant at 10%, but under semiparametric

estimation, the impacts of age become statistically significant. The significance mainly

comes from the increase of the scale of the estimated coefficient: compared with two-step

3For selection equation, the criterion is given by log
(
σ̂2

q

)
+2q/n, where n is the sample size, q is the number

of sieve functions, and σ̂2

q =
∑n

i=1
(Di − D̂q,i)

2/n, where D̂q,i is the predicted E(Di|Ze,i). For the outcome

equation, the criterion is given by log
(
σ̂2
q

)
+ 2q/

∑n

i=1
Di, where q is the number of sieve functions, and

σ̂2
q =

∑n

i=1
Di · (Yi − Ŷq,i)

2/
∑n

i=1
Di, where Ŷq,i is the predicted E(Yi|Ze,i, Xe,i, Di = 1).
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NLS or joint MLE, the estimated coefficient of age under two-step SBGD almost triples.

This highlights the difference between semiparametric and parametric estimation, which

also indicates potential model misspecification. Our semiparametric estimator indicates

departure from bivariate normality of in this data set.

5.2. Juvenile Defendants in Criminal Courts

In this section we apply our estimation procedures to a sample of juvenile defendants drawn

from the State Court Processing Statistics (SCPS) for 1998. SCPS 1998 tracked felony cases

filed in May 1998 until final disposition or until one year had elapsed from the date of filing.

The SCPS presents data on felony cases filed in approximately 40 of the nation’s 75 most

populous counties in 1998. These 75 counties account for more than a third of the United

States population and approximately half of all reported crimes. Data were collected on

arrest charges, demographic characteristics, criminal history, pretrial release and detention,

adjudication, and sentencing. Within each sampled site, data were gathered on each juvenile

felony case. Cases were tracked through adjudication or for up to one year. Further details

of this data set can be found in USDOJ (2003), Griffin, Torbet, and Szymanski (1998).

To implement our procedure we estimate a selective labeling model. The first (selected)

equation is modeled as a semiparametric binary response model, where the dependent binary

variable was RELEASE, indicating whether of not a defendant was released before trial,

and the regressors were type of charge4, RELADULT, a binary variable indicating previous

relationship with the adult court at time of arrest, RELJUV, a binary variable indicating

previous relationship with the juvenile court at time of arrest, age at time of arrest, sex,

race, prior arrest as a juvenile, prior arrest as an adult.

For the binary outcome equation, the dependent variable is the binary variable REARREST

indicating whether or not the defendant was rearrested before the trial date. The regressors

were the same as selection equation expect that we include a new regressor HOMECOF

indicating whether the defendant was confined to home, and exclude the variable ADPRIOR,

so we have exclusion.

4We classfiy are charge types into five categories. ChargeType 1 refers to violent offenses, including murder,
rape, robbery, assault, other violent offenses. ChargeType 2 refers to drug offenses, including drug traf-
ficking and other drug offenses. ChargeType 3 refers to property offenses, including burglary, theft, motor
vehicle theft, fraud, forgery, and other property offenses. ChargeType 4 refers to public order offenses,
including weapons, and other public order offenses. ChargeType 5 refers other offenses, including driving-
related offenses, other felony, and misdemeanor. We drop observations with ChargeType 5 due to too few
observations. Then we drop variable ChargeType4 to ensure identification.
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When estimating semiparametric selection and outcome equations, we need to respectively

normalize one covariate so that its coefficient is 1. When estimating the selection equation,

we normalize the coefficient of negative ChargType1 to be 1. This is motivated by the

intuition that when the defendant is involved in violent offenses such as murder or rape,

the defendant is less likely to be get released. When estimating the outcome equation, we

normalize negative HOMECOF. This is also intuitive since, if the defendant is released but

is confined to home, then the defendant is less likely to conduct crimes and is less likely

to get rearrested before the trail date. The estimation results are reported in Table 2. As

was the case in the previous empirical example, these differences indicate misspecification

in the parametric estimators of regression coefficents and indicates the bivariate normality

assumption is not reflected in this data set.
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Table 2. Estimation Results of Juvenile Defendants in Criminal Courts

Selection Equation Outcome Equation
2Step
NLS

Joint
MLE

2Step
SBGD

2Step
NLS

Joint
MLE

2Step
SBGD

Reladult −0.45†

(0.17)
−0.42
(0.32)

−0.45†

(0.25)
Reljuv −0.48†

(0.15)
−0.48†

(0.10)
−0.51†

(0.24)
Sex −0.17

(0.13)
−0.16
(0.13)

−0.15
(0.14)

2.08†

(1.24)
0.21
(0.13)

0.33†

(0.05)
Juvprior −0.39†

(0.15)
−0.37†

(0.14)
−0.38†

(0.20)
1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

Adprior −0.21
(0.17)

−0.20
(0.15)

−0.22
(0.19)

0.24
(0.18)

0.18
(0.12)

0.59†

(0.31)
Age 0.81†

(0.14)
0.76†

(0.18)
0.82†

(0.33)
0.34
(0.23)

0.40
(0.12)

0.14
(0.31)

Black 1.08†

(0.37)
1.09†

(0.24)
1.28†

(0.66)
2.52†

(0.13)
7.27†

(0.67)
1.13†

(0.64)
White 1.23†

(0.37)
1.27†

(0.20)
1.42†

(0.69)
1.59
(1.20)

6.29†

(0.68)
0.31
(0.64)

Charge Type 1 −1.00
(0.00)

−1.00
(0.00)

−1.00
(0.00)

0.43
(0.39)

0.36†

(0.21)
0.86†

(0.27)
Charge Type 2 0.52†

(0.31)
0.52†

(0.27)
0.52
(0.48)

−0.18
(0.30)

0.02
(0.23)

−0.07
(0.17)

Charge Type 3 0.23
(0.29)

0.22
(0.19)

0.22
(0.36)

0.13
(0.28)

0.19
(0.21)

0.05
(0.19)

Note: Standard deviation is provided in the parenthesis. † indicates statistical significance
at 10%.

6. Extensions ( Preliminary)

In this section we discuss extensions of the methods introduced tin the previous section

to estimate regression coefficients in different models. As was the case with the semipara-

metric selective labeling model we considered previously, the motivation of the estimators

proposed in this section are computational ease when there are a moderate or large number

of regressors. One is for a semiparametric multinomial choice model and the the other for
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semiparametric panel data selective labeling models.

6.1. Multinomial Choice Models

We illustrate here how our proposed method can be used to estimate the standard multi-

nomial response model where the dependent variable takes one of J + 1 mutually exclusive

and exhaustive alternatives numbered from 0 to J . Following the notation similar to that

used in Khan et al. (2021), for individual i, alternative  is assumed to have an unobservable

indirect utility y∗i. The alternative with the highest indirect utility is assumed chosen. Thus

the observed choice yi can be defined as

yi = 1[y∗i > y∗ik, ∀k 6= ]

with the convention that yi = 0 indicates that the choice of alternative  is not made by

individual i. As is standard in the literature, an assumption of joint continuity of the indirect

utilities rules out ties (with probability one). In addition, we maintain the familiar linear

form for indirect utilities5

y∗i0 = 0,

y∗i = x′iβ0 − ǫi,  = 1, ..., J, (6.1)

where β0 is a p-dimensional vector of unknown preference parameters of interest whose first

component is normalized to have absolute value 1 (scale normalization). Note that for

alternative  = 0, the standard (location) normalization y∗i0 = 0 is imposed. The vector

ǫi ≡ (ǫi1, ..., ǫiJ )
′ of unobserved error terms, attained by stacking all the scalar idiosyncratic

errors ǫi, is assumed to be jointly continuously distributed and independent of the p × J-

dimensional vector of regressors xi ≡ (x′i1, ..., x
′
iJ)

′6. We stress that expression (6.1) is rather

general. By properly re-organizing xi’s and β0, (6.1) can accommodate both alternative-

specific and individual-specific covariates7

Previous semiparametric contributions to estimating this model include Lee (1995), who

5Our method can be applied to more general models with indirect utilities y∗i = u(x
′

iβ0,−ǫi),  = 1, 2,

where u(·, ·)’s are unknown (to econometrician) R
2 7→ R functions strictly increasing in each of their

arguments. It will be clear that our rank procedure does not rely on the additive separability of the
regressors and error terms.

6We impose the independence restriction here to simplify exposition. As explained in Khan et al. (2021),
this matching-based approach allows ǫi to be correlated with individual-specific regressors.

7Note the identification of models with both alternative-specific and individual-specific regressors will need
to take two steps, of which the first step only identifies the coefficients on alternative-specific regressors.
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proposes a profile likelihood approach, extending the results in Klein and Spady (1993) for

the binary response model. Ahn et al. (2017) propose a two-step estimator that requires

nonparametric methods but show the second step is of closed-form. Shi et al. (2018) also

propose a two-step estimator in panel setups exploiting a cyclic monotonicity condition,

which also requires a high dimensional nonparametric first stage, but whose second stage is

not closed-form as Ahn et al. (2017) is.

Khan et al. (2021) proposed a local rank procedure. We define it here for the special case

where J = 2, in which case the model is

y∗i0 = 0,

y∗i = x′iβ0 − ǫi,  = 1, 2.

One way to estimate β0 for this model proposed in Khan et al. (2021) was a weighted rank

type estimator:8 rank correlation estimator, analogous to the maximum rank correlation

(MRC) estimator proposed in Han (1987), defined as the maximizer, over the parameter

space B, of the objective function

G1n(b) =
1

n(n− 1)

∑

i 6=ℓ

1[xi2 = xℓ2](yi1 − yℓ1) · sgn((xi1 − xℓ1)
′b), (6.2)

where above we denote pairs of individuals by i, ℓ and recall the second subscript denotes

the choice.

The motivation for that estimator were robustness properties, notably when many of the

regressors were discrete. Note the matching of regressors is analogous to how we controlled

for selection in the earlier part of the paper for the selective labelling model. We also note the

nonsmoothness and nonconvexity of the objective function make implementation difficult,

especially when there are a moderately large number of regressors.

For the model at hand we propose the following algorithm, which is analogous to the matching

algorithm earlier in the paper (Algorithm 1) and keep notation as close as possible to that

used there. A sieve based algorithm could also be considered be we omit that here.

Define dkiℓ = ‖(xi2 − xℓ2)
′β̂k‖. Rearrange the indices of yℓ2 with ℓ 6= i as νki,1, ν

k
i,2, · · · , νki,n,

such that dk
i,νki,1

≤ dk
i,νki,2

· · · ≤ dk
i,νki,n

. Then the weights based on m-nearest neighbour is given

by

8Here the weights correspond to binary, “exact” matches of each component of the vector x2. For continuously
distributed regressors they were replaced with kernel weights in Khan et al. (2021).
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W k
iℓ =




1/m if ℓ = νki,1, ν

k
i,2, · · · , νki,m,

0 otherwise
(6.3)

Algorithm 3 for estimating β0:

1. Start with k = 0, weights {W k
iℓ}ni,ℓ=1 and initial guess β̂0.

2. With β̂k, update the weights {W k
iℓ}ni,ℓ=1 as {W k+1

iℓ }ni,ℓ=1 using (6.3).

3. With {W k
iℓ}ni,ℓ=1, update β̂

k to β̂k+1 using

β̂k+1 = β̂k − γk
n

n∑

i=1

n∑

ℓ=1

W k
iℓ (yi1 − yℓ1)xi,

where γk > 0 is the learning rate.

4. Set k = k + 1 and go back to Step 2 until some terminating conditions are satisfied.

6.2. Selective Label Models with Endogenous Treatment

In recent seminal work, Lee (2009) considers identifying treatment parameters in treatment

effect models with attrition but does not allow for explanatory variables. Extending our

selective labeling model to allow for an endogenous treatment variable, denoted by Ti which

could be continuous or discrete, could be expressed as

Di = I[z0,i + Z ′
iδ0 + Tiβ01 > Ui]

Yi = Di · I[x0,i +X ′
iδ0 + Tiβ02 > Vi]

Ti = 1[Wiγ0 > νi]

The key here is that (Ui, Vi, νi) are mutually correlated. so treatment is endogenous. A

parameter of interest is β02 which relates to the effect of treatment on outcome. In a model

where for Di = 1 Yi was linear and there were no regressors besides Ti, Lee (2009) considered

identification. In a model where there was no selection/attrition issue soDi was identical to 1,

a identification and estimation was considered in Vytlacil and Yildiz (2007), Abrevaya et al.

(2010), Shaikh and Vytlacil (2011). Vytlacil and Yildiz (2007) attained point identification
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under a monotonicity condition as well as support conditions on exogenous covariates effect-

ing Yi. None of methods proposed in these papers are applicable to the model above where

there is endogenous treatment, attrition and selective labeling.

6.3. Panel Data Models

A second area where the models we considered and estimated can be extended to are those

for data sets where we observed multiple observations for each agent. In these settings we

are able to control for unobserved heterogeneity in ways we could not before, so consequently

panel data models are very useful in applied research.

Not only do they allow researchers to study the intertemporal behaviour of individuals, they

also enable them to control for the presence of unobserved permanent individual heterogene-

ity. To date there exists a large body of literature on panel data models with unobserved

individual effects that enter additively in the (possibly latent) regression model. Consider-

able advances in the panel data literature have been made in the direction of dynamic linear

and nonlinear models that allow for the presence of lags of the dependent variable. These

are reviewed for example Arellano and Honoré (2001), who also describe results for dynamic

non-linear panel data models. An important setting involves sample selection models- see

Kyriazidou (1997), Kyriazidou (2001). However, little is known about settings in a selection

panel data model when the outcome variable is binary, as was the case in the cross sectional

models considered at the outset of this paper.

We express the panel data selective labeling model as

dit = I[α1i + w′
itδ0 + ηit > 0] (6.4)

yit = dit · I[α2i + x′itβ0 + ǫit > 0] (6.5)

i = 1, 2, ...n, t = 1, 2....T

and for its dynamic variant as

dit = I[α1i + w′
itδ0 + γ0di,t−1 + ηit > 0] (6.6)

yit = dit · I[α2i + x′itβ0 + θ0yi,t−1 + ǫit > 0] (6.7)

i = 1, 2, ...n, t = 1, 2....T

where dit, wit, yit, xit are observed variables, α1i, α2i are unobserved, denoting individual spe-

cific heterogeneity, ηit, ǫit are also unobserved, denoting idiosyncratic shocks.
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We note the dynamic variant included lagged dependent variables as explanatory variables.

For work in other dynamic nonlinear panel data models see, for example, Honoré and Kyriazidou

(2000) and Khan et al. (2023b) (binary), Hu (2002) (censored), Khan et al. (2016) (Roy),

Kyriazidou (2001) (selection). We would characterize the model here in equations (6.6),

(6.7) with lagged dependent variables, as a dynamic selective labeling model.

There is much recent interest in dynamic binary choice panel since Honoré and Kyriazidou

(2000), but little work for system of (static or dynamic) binary equations like the ones above.

Our work here would propose similar algorithmic procedures to estimate δ0, β0 in situations

where, as in the cross sectional setting, they are of moderate or large dimension.

7. Conclusions

This paper considers estimation and inference for large dimensional semiparametric selective

labeling models. Statistically these models have a similar structure to sample selection

models with binary, as opposed to linear outcome equations in the second stage. It is

this binary/binary structure which makes computation of the model particularly difficult

when compared to the standard selection model, especially for large dimensional (i.e many

regressor) models.

To address this problem we propose novel algorithmic procedures which are computationally

fast, and derive their asymptotic properties even for the case where the dimension increases

with the sample size. We demonstrate the finite sample properties of our proposed procedures

by a simulation study.

Our work here motivates areas for future research. For example to further ease implementa-

tion, a bivariate penalization scheme would be useful for model selection in this settings, and

its asymptotic validity would need to be proven. Furthermore, the usefulness of our meth-

ods in other empirical settings in economics, biostatistics and medicine would be worthy of

exploration.
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Arellano, M. and B. Honoré (2001): “Panel Data Models: Some Recent Develop-

ments,” Handbook of econometrics.Volume 5, 3229–96.

Blundell, R. and J. Powell (2004): “Endogeneity in Semiparametric Binary Response

Models,” Review of Economic Studies, 56, 37–58.

Chen, S., S. Khan, and X. Tang (2024): “Endogeneity in Weakly Separable Models

witgout Endogeneity,” Journal of Econometrics, 238, 1–14.

Chen, X. (2007): “Large sample sieve estimation of semi-nonparametric models,” Handbook

of Econometrics, 6, 5549–5632.

Coston, A., A. Rambachan, and A. Chouldechova (2021): “Charecterizing Fairness

Over the Set of Good Models Under Selective Labels,” Proceedings of the 38th Interna-

tional Conference on Machine Learning, 139, 2144–2155.

Das, M., W. Newey, and F. Vella (2003): “Nonparametric Estimation of Sample

Selection Models,” Review of Economic Studies, 70, 33–58.

Griffin, P., P. Torbet, and L. Szymanski (1998): “Trying Juveniles as Adults in

Criminal Court: An Analysis of State Transfer Provisions.” Tech. rep., U.S. Department of

Justice, Office of Justice Programs, Office of Juvenile Justice and Delinquency Prevention.

Han, A. K. (1987): “Non-parametric analysis of a generalized regression model: the maxi-

mum rank correlation estimator,” Journal of Econometrics, 35, 303–316.

Heckman, J. (1974): “Shadow Prices, Market Wages, and Labor Supply,” Econometrica,

42, 679–694.
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A. Monte Carlo Results

Table 3. Finite Sample Performance
B − δ, R− δ, B − β,R− β denote aggregate (across components) bias and
RMSE of estimators for δ, β. η, ǫ have marginal cauchy distributions,
implying misspecification of MLE. Time denotes computational time in

seconds.
p = 10

n = 100000 n = 200000
Method B-δ R-δ B-β R-β Time B-δ R-δ B-β R-β Time
MLE 1.1562 0.7345 1.1592 0.7208 149.64 1.1477 0.7210 1.1406 0.7045 286.83
M-GD 0.0624 0.1539 0.8273 0.4774 1144.5 0.0344 0.0989 0.6358 0.3520 3163.6
S-GD 0.0336 0.1456 0.0209 0.1786 1936.1 0.0308 0.0956 0.0072 0.1310 3845.5

p = 50
n = 100000 n = 200000

Method B-δ R-δ B-β R-β Time B-δ R-δ B-β R-β Time
MLE 1.1789 0.7357 1.2034 0.7455 881.57 1.1711 0.7301 1.1927 0.7242 1690.6
M-GD 0.0357 0.1740 0.1305 0.3402 1777.1 0.0266 0.1233 0.1609 0.2508 4634.4
S-GD 0.0394 0.1712 0.0800 0.2346 2099.3 0.0461 0.1226 0.0601 0.1669 4161.2
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Table 4. Finite Sample Performance of Kernel-Based Estimators:
ηi ∼ Cauchy, εi ∼ 0.5ηi +

√
0.75Cauchy, p = 10

n = 100000
Method δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10

Bias
MLE 0.0034 0.0228 0.0158 0.0622 0.2147 0.6721 0.0107 0.0237 0.0201 0.1106
M-GD 0.0053 0.0033 0.0013 0.0034 0.0065 0.0148 0.0017 0.0040 0.0061 0.0159
S-GD 0.0034 0.0015 0.0002 0.0015 0.0030 0.0081 0.0010 0.0025 0.0031 0.0093

RMSE
MLE 0.0432 0.0337 0.0282 0.0689 0.2203 0.6771 0.0240 0.0365 0.0512 0.1394
M-GD 0.0374 0.0234 0.0218 0.0293 0.0488 0.0905 0.0184 0.0251 0.0437 0.0834
S-GD 0.0363 0.0218 0.0210 0.0282 0.0469 0.0856 0.0180 0.0242 0.0413 0.0777
Method β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Bias
MLE 0.0067 0.0188 0.0157 0.0572 0.1987 0.6327 0.0111 0.0153 0.0049 0.1981
M-GD 0.0487 0.0473 0.0244 0.0493 0.1000 0.1990 0.0212 0.0488 0.0926 0.1959
S-GD 0.0023 0.0004 0.0014 0.0014 0.0027 0.0013 0.0011 0.0030 0.0014 0.0058

RMSE
MLE 0.0579 0.0375 0.0346 0.0685 0.2078 0.6411 0.0300 0.0379 0.0554 0.2221
M-GD 0.0882 0.0717 0.0455 0.0751 0.1458 0.2890 0.0397 0.0712 0.1357 0.2783
S-GD 0.0497 0.0298 0.0278 0.0352 0.0555 0.1036 0.0235 0.0313 0.0503 0.0931

n = 200000
Method δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10

Bias
MLE 0.0027 0.0231 0.0166 0.0603 0.2146 0.6678 0.0109 0.0247 0.0200 0.1070
M-GD 0.0027 0.0022 0.0021 0.0008 0.0037 0.0072 0.0010 0.0023 0.0047 0.0076
S-GD 0.0022 0.0019 0.0017 0.0006 0.0034 0.0068 0.0009 0.0021 0.0041 0.0070

RMSE
MLE 0.0299 0.0288 0.0235 0.0640 0.2172 0.6703 0.0180 0.0308 0.0363 0.1202
M-GD 0.0259 0.0163 0.0154 0.0199 0.0319 0.0572 0.0121 0.0162 0.0278 0.0523
S-GD 0.0254 0.0155 0.0151 0.0195 0.0309 0.0555 0.0120 0.0161 0.0264 0.0502
Method β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Bias
MLE 0.0013 0.0200 0.0142 0.0559 0.1957 0.6311 0.0100 0.0184 0.0031 0.1908
M-GD 0.0400 0.0373 0.0194 0.0371 0.0732 0.1551 0.0171 0.0372 0.0716 0.1479
S-GD 0.0016 0.0010 0.0008 0.0008 0.0009 0.0000 0.0004 0.0007 0.0001 0.0007

RMSE
MLE 0.0377 0.0301 0.0264 0.0622 0.2006 0.6357 0.0226 0.0316 0.0414 0.2045
M-GD 0.0644 0.0529 0.0333 0.0558 0.1056 0.2145 0.0298 0.0532 0.1003 0.2044
S-GD 0.0328 0.0210 0.0199 0.0251 0.0426 0.0769 0.0180 0.0223 0.0368 0.0687
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Table 5. Finite Sample Performance of Kernel-Based Estimators:
ηi ∼ Cauchy, εi ∼ 0.5ηi +

√
0.75Cauchy, p = 50

n = 100000
Method δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10

Bias
MLE 0.0073 0.0218 0.0164 0.0595 0.2131 0.6662 0.0120 0.0264 0.0231 0.1011
M-GD 0.0007 0.0006 0.0009 0.0015 0.0005 0.0014 0.0007 0.0004 0.0015 0.0014
S-GD 0.0004 0.0006 0.0014 0.0006 0.0026 0.0038 0.0000 0.0005 0.0005 0.0031

RMSE
MLE 0.0458 0.0313 0.0278 0.0665 0.2181 0.6708 0.0232 0.0364 0.0488 0.1278
M-GD 0.0376 0.0216 0.0209 0.0288 0.0455 0.0794 0.0176 0.0255 0.0384 0.0710
S-GD 0.0379 0.0207 0.0209 0.0283 0.0436 0.0781 0.0174 0.0219 0.0377 0.0699
Method β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Bias
MLE 0.0006 0.0198 0.0154 0.0550 0.1984 0.6393 0.0081 0.0175 0.0070 0.1977
M-GD 0.0074 0.0048 0.0043 0.0038 0.0096 0.0235 0.0012 0.0045 0.0108 0.0215
S-GD 0.0033 0.0014 0.0019 0.0006 0.0043 0.0138 0.0010 0.0022 0.0044 0.0095

RMSE
MLE 0.0598 0.0372 0.0363 0.0671 0.2073 0.6485 0.0291 0.0398 0.0588 0.2228
M-GD 0.0641 0.0459 0.0370 0.0524 0.0909 0.1811 0.0322 0.0470 0.0845 0.1659
S-GD 0.0512 0.0290 0.0295 0.0361 0.0590 0.1118 0.0241 0.0315 0.0522 0.0958

n = 200000
Method δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10

Bias
MLE 0.0023 0.0230 0.0161 0.0614 0.2163 0.6711 0.0112 0.0244 0.0204 0.1082
M-GD 0.0022 0.0006 0.0002 0.0001 0.0015 0.0021 0.0001 0.0014 0.0009 0.0030
S-GD 0.0031 0.0016 0.0008 0.0012 0.0038 0.0073 0.0005 0.0024 0.0033 0.0076

RMSE
MLE 0.0295 0.0285 0.0225 0.0649 0.2185 0.6737 0.0187 0.0309 0.0374 0.1227
M-GD 0.0255 0.0152 0.0144 0.0193 0.0308 0.0575 0.0130 0.0161 0.0272 0.0516
S-GD 0.0253 0.0146 0.0143 0.0192 0.0306 0.0577 0.0128 0.0164 0.0270 0.0515
Method β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Bias
MLE 0.0036 0.0221 0.0147 0.0567 0.1992 0.6397 0.0091 0.0166 0.0074 0.1988
M-GD 0.0120 0.0083 0.0044 0.0072 0.0143 0.0324 0.0046 0.0084 0.0159 0.0294
S-GD 0.0053 0.0023 0.0006 0.0017 0.0032 0.0101 0.0008 0.0020 0.0049 0.0073

RMSE
MLE 0.0397 0.0312 0.0259 0.0628 0.2039 0.6441 0.0210 0.0299 0.0412 0.2114
M-GD 0.0482 0.0343 0.0243 0.0380 0.0687 0.1349 0.0229 0.0350 0.0635 0.1249
S-GD 0.0344 0.0205 0.0193 0.0253 0.0423 0.0801 0.0160 0.0277 0.0368 0.0699
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Table 6. Finite Sample Performance: ηi ∼ N(0, 1), εi ∼ 0.5ηi +
√
0.75N(0, 1)

B − δ, R− δ, B − β,R− β denote aggregate (across components) bias and
RMSE of estimators for δ, β. Time denotes computational time in seconds.

p = 10
n = 100000 n = 200000

Method B-δ R-δ B-β R-β Time B-δ R-δ B-β R-β Time
MLE 0.0058 0.0753 0.0152 0.0859 138.550 0.0095 0.0522 0.0030 0.0628 277.94
M-GD 0.0158 0.0769 0.1173 0.1272 1460.0 0.0171 0.0536 0.0875 0.0945 4067.1
S-GD 0.0202 0.0778 0.0250 0.0922 1864.7 0.0257 0.0551 0.0054 0.0659 3693.2

p = 50
n = 100000 n = 200000

Method B-δ R-δ B-β R-β Time B-δ R-δ B-β R-β Time
MLE 0.0198 0.0945 0.0240 0.1112 797.77 0.0141 0.0670 0.0188 0.0799 1547.6
M-GD 0.0183 0.0965 0.0312 0.1360 1817.8 0.0131 0.0682 0.0215 0.0972 4735.5
S-GD 0.0261 0.0973 0.0230 0.1172 1981.3 0.0192 0.0683 0.0283 0.0844 3879.5
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Table 7. Finite Sample Performance of Kernel-Based Estimators:
ηi ∼ N(0, 1), εi ∼ 0.5ηi +

√
0.75N(0, 1), p = 10

n = 100000
Method δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10

Bias
MLE 0.0002 0.0004 0.0003 0.0006 0.0008 0.0004 0.0001 0.0007 0.0007 0.0017
M-GD 0.0009 0.0010 0.0001 0.0011 0.0019 0.0027 0.0004 0.0013 0.0021 0.0041
S-GD 0.0011 0.0013 0.0001 0.0015 0.0027 0.0037 0.0005 0.0016 0.0025 0.0053

RMSE
MLE 0.0212 0.0124 0.0119 0.0155 0.0250 0.0424 0.0103 0.0128 0.0213 0.0393
M-GD 0.0216 0.0126 0.0122 0.0157 0.0256 0.0433 0.0106 0.0130 0.0217 0.0402
S-GD 0.0216 0.0126 0.0121 0.0157 0.0256 0.0442 0.0105 0.0132 0.0218 0.0408
Method β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Bias
MLE 0.0021 0.0001 0.0001 0.0007 0.0020 0.0030 0.0008 0.0002 0.0021 0.0042
M-GD 0.0063 0.0076 0.0044 0.0059 0.0139 0.0289 0.0044 0.0067 0.0130 0.0263
S-GD 0.0025 0.0007 0.0001 0.0012 0.0026 0.0069 0.0006 0.0008 0.0032 0.0064

RMSE
MLE 0.0258 0.0131 0.0139 0.0176 0.0270 0.0483 0.0121 0.0150 0.0235 0.0454
M-GD 0.0351 0.0214 0.0188 0.0237 0.0387 0.0736 0.0172 0.0213 0.0366 0.0677
S-GD 0.0259 0.0140 0.0142 0.0181 0.0287 0.0534 0.0123 0.0158 0.0253 0.0489

n = 200000
Method δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10

Bias
MLE 0.0015 0.0004 0.0007 0.0001 0.0014 0.0015 0.0000 0.0002 0.0016 0.0021
M-GD 0.0020 0.0008 0.0010 0.0004 0.0024 0.0034 0.0002 0.0008 0.0025 0.0037
S-GD 0.0024 0.0013 0.0012 0.0008 0.0035 0.0054 0.0005 0.0013 0.0036 0.0059

RMSE
MLE 0.0148 0.0081 0.0077 0.0103 0.0170 0.0295 0.0071 0.0089 0.0145 0.0279
M-GD 0.0153 0.0085 0.0079 0.0104 0.0175 0.0303 0.0072 0.0090 0.0149 0.0286
S-GD 0.0153 0.0084 0.0079 0.0104 0.0178 0.0315 0.0072 0.0091 0.0153 0.0298
Method β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Bias
MLE 0.0000 0.0001 0.0006 0.0000 0.0007 0.0002 0.0002 0.0002 0.0008 0.0002
M-GD 0.0066 0.0052 0.0027 0.0043 0.0109 0.0207 0.0024 0.0052 0.0104 0.0190
S-GD 0.0000 0.0002 0.0005 0.0002 0.0007 0.0021 0.0001 0.0001 0.0004 0.0012

RMSE
MLE 0.0182 0.0100 0.0094 0.0126 0.0202 0.0353 0.0087 0.0113 0.0173 0.0333
M-GD 0.0252 0.0157 0.0130 0.0178 0.0294 0.0541 0.0116 0.0166 0.0271 0.0512
S-GD 0.0187 0.0102 0.0095 0.0130 0.0210 0.0376 0.0089 0.0116 0.0182 0.0351
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Table 8. Finite Sample Performance of Kernel-Based Estimators:
ηi ∼ N(0, 1), εi ∼ 0.5ηi +

√
0.75N(0, 1), p = 50

n = 100000
Method δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10

Bias
MLE 0.0007 0.0004 0.0005 0.0009 0.0002 0.0013 0.0002 0.0004 0.0006 0.0006
M-GD 0.0003 0.0003 0.0006 0.0006 0.0003 0.0000 0.0003 0.0002 0.0001 0.0005
S-GD 0.0003 0.0004 0.0008 0.0000 0.0018 0.0023 0.0007 0.0005 0.0012 0.0031

RMSE
MLE 0.0204 0.0124 0.0116 0.0149 0.0237 0.0422 0.0104 0.0129 0.0211 0.0400
M-GD 0.0205 0.0130 0.0118 0.0150 0.0239 0.0432 0.0106 0.0133 0.0215 0.0404
S-GD 0.0205 0.0128 0.0118 0.0152 0.0242 0.0447 0.0106 0.0133 0.0217 0.0416
Method β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Bias
MLE 0.0008 0.0002 0.0008 0.0008 0.0003 0.0016 0.0003 0.0010 0.0008 0.0017
M-GD 0.0005 0.0008 0.0014 0.0001 0.0008 0.0020 0.0004 0.0015 0.0015 0.0022
S-GD 0.0012 0.0001 0.0008 0.0011 0.0006 0.0017 0.0004 0.0005 0.0000 0.0000

RMSE
MLE 0.0252 0.0140 0.0132 0.0174 0.0289 0.0481 0.0117 0.0146 0.0237 0.0444
M-GD 0.0327 0.0178 0.0167 0.0211 0.0347 0.0583 0.0144 0.0180 0.0285 0.0556
S-GD 0.0260 0.0150 0.0134 0.0178 0.0307 0.0536 0.0118 0.0154 0.0253 0.0486

n = 200000
Method δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10

Bias
MLE 0.0005 0.0001 0.0001 0.0002 0.0017 0.0020 0.0000 0.0000 0.0007 0.0004
M-GD 0.0003 0.0002 0.0001 0.0002 0.0010 0.0009 0.0002 0.0003 0.0000 0.0006
S-GD 0.0005 0.0009 0.0004 0.0009 0.0005 0.0017 0.0004 0.0010 0.0012 0.0034

RMSE
MLE 0.0137 0.0087 0.0079 0.0107 0.0167 0.0306 0.0070 0.0091 0.0148 0.0284
M-GD 0.0139 0.0090 0.0080 0.0109 0.0168 0.0308 0.0072 0.0094 0.0149 0.0287
S-GD 0.0139 0.0089 0.0080 0.0109 0.0169 0.0313 0.0071 0.0093 0.0151 0.0294
Method β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Bias
MLE 0.0004 0.0005 0.0003 0.0003 0.0014 0.0023 0.0003 0.0010 0.0005 0.0013
M-GD 0.0008 0.0006 0.0003 0.0001 0.0013 0.0021 0.0002 0.0003 0.0001 0.0006
S-GD 0.0007 0.0010 0.0005 0.0005 0.0021 0.0057 0.0005 0.0015 0.0012 0.0035

RMSE
MLE 0.0165 0.0097 0.0100 0.0126 0.0195 0.0366 0.0085 0.0108 0.0173 0.0331
M-GD 0.0207 0.0125 0.0123 0.0153 0.0238 0.0438 0.0101 0.0130 0.0215 0.0400
S-GD 0.0171 0.0101 0.0103 0.0130 0.0206 0.0407 0.0086 0.0114 0.0186 0.0360

B. Proofs of Main Theorems

In the following, we use an . bn (an & bn) if there exists some constant C such that an ≤ bn

(an ≥ Cbn) for all sufficiently large n.

Proof of Theorem 1. Denote Ẑi = z0,i + Z ′
iδ̂, Z0,i = z0,i + Z ′

iδ0, X
k
i = x0,i + X ′

iβ̂
k, and
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X0,i = x0,i +X ′
iβ0. Also denote εi = Yi −G (Z0,i,X0,i). We have that
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Sn

n∑

i=1
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Now we derive an expression for Π̂k
q − Πq. Denote

Γ̂n,q (δ, β) =
1
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)
εj.

Define X̂E
n (νZ , νX , β) = 1

Sn

∑n
i=1DiXiΦq

(
Ẑ0,i, x0,i +X ′

iβ
)′
Γ̂−1
n,q

(
δ̂, β
)
Φq (νZ , νX) . Taking

the expression of Π̂k
q − Πq into the expression of β̂k+1, we have that
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β̂k+1 = β̂k − γ
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k
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The following lemmas are necessary for analyzing the above algorithm.

Lemma 1. Let Conditions 1-5 hold, then

sup
β∈B

∥∥∥Γ̂n,q

(
δ̂, β
)
− Γq (β)

∥∥∥ = Op

(
n−1/2pZq

2CΦ,qCΦ,1,q + n−1/2C2
Φ,q + (log (n) /n)−1/2 p

1/2
X q2CΦ,q

)
.

If further Ξ1,n → 0, then P
(
supβ∈B λ

(
Γ̂−1
n,q

(
δ̂, β
))

≤ 1.5λ−1
Φ

)
→ 1.

Proof. Recall that Γq (β) = E
[
Φq (Z0,i, x0,i +X ′

iβ)Φq (Z0,i, x0,i +X ′
iβ)

′ |Di = 1
]
. To show

the first result, we first note that

sup
β∈B

∥∥∥Γ̂n,q

(
δ̂, β
)
− Γ̂n,q (δ0, β)

∥∥∥ = sup
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∥∥∥∥∥S
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DiΦq

(
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)
Φq

(
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)′

−S−1
n

n∑

i=1

DiΦq (Z0,i, x0,i +X ′
iβ)Φq (Z0,i, x0,i +X ′

iβ)
′

∥∥∥∥∥

. q2CΦ,qCΦ,1,q max
1≤i≤n

∣∣∣Ẑi − Z0,i

∣∣∣ .

According to Condition 2, max1≤i≤n

∣∣∣Ẑi − Z0,i

∣∣∣ . p
1/2
Z

∥∥∥δ̂ − δ0

∥∥∥ = Op

(
pZn

−1/2
)
, so

sup
β∈B

∥∥∥Γ̂n,q

(
δ̂, β
)
− Γ̂n,q (δ0, β)

∥∥∥ = Op

(
n−1/2pZq

2CΦ,qCΦ,1,q

)
.

Also note that ‖Γ̂n,q (δ0, β)−P−1
D

1
n

∑n
i=1DiΦq (Z0,i, x0,i +X ′

iβ)Φq (Z0,i, x0,i +X ′
iβ)

′ ‖ is uni-
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formly of order Op(n
−1/2C2

Φ,q), it then remains to bound the following distance

sup
β∈B

∥∥∥∥∥
1

n

n∑

i=1

DiΦq (Z0,i, x0,i +X ′
iβ) Φq (Z0,i, x0,i +X ′

iβ)
′
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(
DiΦq (Z0,i, x0,i +X ′

iβ)Φq (Z0,i, x0,i +X ′
iβ)

′)∥∥ .

Note that each argument of DiΦq (Z0,i, x0,i +X ′
iβ)Φq (Z0,i, x0,i +X ′

iβ)
′ is bounded by C2

Φ,q,

and each argument of Φq (Z0,i, x0,i +X ′
iβ1)Φq (Z0,i, x0,i +X ′

iβ)
′ has partial derivative with

respect to β that is bounded (in norm) by CΦ,qCΦ,v,qp
1/2
X . So using Lemma A1 of Khan et al

(2023), we have that

sup
β∈B

∥∥∥∥∥
1

n

n∑

i=1

DiΦq (Z0,i, x0,i +X ′
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X q2CΦ,q

)
.

This shows the first result. Since Ξ1,n → 0, we have that supβ∈B

∥∥∥Γ̂n,q

(
δ̂, β
)
− Γq (β)

∥∥∥→p 0.

Using the fact that

sup
β∈B

∣∣∣λ
(
Γ̂n,q

(
δ̂, β
))

− λ (Γq (β))
∣∣∣ ≤ sup

β∈B

∥∥∥Γ̂n,q

(
δ̂, β
)
− Γq (β)

∥∥∥→p 0,

we have that λ
(
Γ̂n,q

(
δ̂, β
))

≥ 2/3 infβ∈B λ (Γq (β)) ≥ 2/3λΦ with probability going to 1.

Then λ
(
Γ̂−1
n,q

(
δ̂, β
))

≤ 1.5λ−1
Φ for all β ∈ B with probability going to 1. This proves the

results.

Lemma 2. Let Conditions 1-5 hold and Ξ1,n → 0, then

sup
Ze∈Ze,Xe∈Xe,β∈B

∥∥∥X̂E
n

(
Ẑ, x0 +X ′β, β

)
−XE (Z0, x0 +X ′β, β)

∥∥∥

= Op

(
R

X
q + n−1/2pZp

1/2
X q4C3

Φ,qCΦ,1,q + n−1/2p
1/2
X q2C4

Φ,q + (log (n) /n)−1/2 pXq
4C3

Φ,q

)
.
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sup
β∈B

∥∥XE (Z0, x0 +X ′β, β)−ΠX
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∥∥ ≤ R
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q
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according to Condition 5(ii), and that the following
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According to the proof of Lemma 1, we know that supβ∈B λ
(
Γ̂−1
n,q

(
δ̂, β
))

≤ 1.5λ−1
Φ with

probability going to 1. So (i) and (iii) are both of order Op

(
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For the last term (iv), we know that each argument of DiXiΦq (Z0,i, x0,i +X ′
iβ)

′ is bounded

by CΦ,q and each argument ofDiXiΦq (Z0,i, x0,i +X ′
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by CΦ,1,qp
1/2
X ‖β1 − β2‖. Using Lemma A1 of Khan et al (2024), we have that
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This proves the results.

Lemma 3. Let Conditions 1-5 hold and Ξ1,n → 0, then
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Proof. The first two results are obvious if we note that
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Then we will bound

sup
β∈B

∥∥∥∥∥
1

Sn

n∑

i=1

Di

(
Xi − P−1

D XE (Z0,i, x0,i +X ′
iβ, β)

)
(G (Z0,i, x0,i +X ′

iβ)−G (Z0,i,X0,i))

−P−1
D E

(
Di

(
Xi −XE

(
Z0,i, x0,i +X ′

iβ
k, βk

))
(G (Z0,i, x0,i +X ′

iβ)−G (Z0,i,X0,i))
)∥∥ .

Since n/Sn − P−1
D = Op(n

−1/2), we only need to look at the following distance

sup
β∈B

∥∥∥∥∥
1

n

n∑

i=1

Di

(
Xi −XE (Z0,i, x0,i +X ′

iβ, β)
)
(G (Z0,i, x0,i +X ′

iβ)−G (Z0,i,X0,i))

−E
(
Di

(
Xi −XE

(
Z0,i, x0,i +X ′

iβ
k, βk

))
(G (Z0,i, x0,i +X ′

iβ)−G (Z0,i,X0,i))
)∥∥ .

Note that each argument ofDi

(
Xi −XE (Z0,i, x0,i +X ′

iβ, β)
)
(G (Z0,i, x0,i +X ′

iβ)−G (Z0,i,X0,i))

is upper bounded, and moreover, the gradient of each argument with respect to β is bounded

by p
1/2
X up to some scale in norm. So using Khan et al (2024)’s Lemma A1, we have that

sup
β∈B

∥∥∥∥∥
1

n

n∑

i=1

Di

(
Xi −XE (Z0,i, x0,i +X ′

iβ, β)
)
(G (Z0,i, x0,i +X ′

iβ)−G (Z0,i,X0,i))

−E
(
Di

(
Xi −XE

(
Z0,i, x0,i +X ′

iβ
k, βk

))
(G (Z0,i, x0,i +X ′

iβ)−G (Z0,i,X0,i))
)∥∥

=Op

(
pX ((logn) /n)1/2

)
.

We finish the proof by noting that, using Fubini’s theorem, we have
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Lemma 4. Let Conditions 1 and 3(i) hold, then ‖S−1
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Proof. Note that
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+ sup
k≥k(n,γ)

∥∥∥∥∥
1

n

n∑

i=1

(
X̂E

n

(
Ẑi,X

k
i , β

k
)
−XE (Z0,i,X0,i, β0)

)(
G
(
Ẑi,X

k
i

)
−G

(
Z0,i,X

k
i

))
∥∥∥∥∥ (ii)

+ sup
k≥k(n,γ)

∥∥∥∥∥
1

n

n∑

i=1

(
Xi −XE (Z0,i,X0,i, β0)

) (
∇uG

(
Z̃i,X

k
i

)
−∇uG (Z0,i,X0,i)

)
Z ′

i∆δ̂

∥∥∥∥∥ (iii)

+

∥∥∥∥∥
1

n

n∑

i=1

(
Xi −XE (Z0,i,X0,i, β0)

)
∇uG (Z0,i,X0,i)Z

′
i − E

((
Xi −XE (Z0,i,X0,i, β0)

)
∇uG (Z0,i,X0,i)Z

′
i

)
∆δ̂

Obviously, (i) .
∣∣n/Sn − P−1

D

∣∣ p1/2X supk≥k(n,γ),1≤i≤n

∣∣∣Ẑi − Z0,i

∣∣∣ = Op

(
n−1pZp

1/2
X

)
. For (ii),

we have

(ii) ≤ sup
k≥k(n,γ),1≤i≤n

∥∥∥X̂E
n

(
Ẑi,X

k
i , β

k
)
−XE (Z0,i,X0,i, β0)

∥∥∥ sup
1≤i≤n

∣∣∣Ẑi − Z0,i

∣∣∣ .

Obviously,

sup
k≥k(n,γ),1≤i≤n

∥∥∥X̂E
n

(
Ẑi,X

k
i , β

k
)
−XE (Z0,i,X0,i, β0)

∥∥∥

≤ sup
k≥k(n,γ),1≤i≤n

∥∥∥X̂E
n

(
Ẑi,X

k
i , β

k
)
−XE

(
Z0,i,X

k
i , β

k
)∥∥∥

+ sup
k≥k(n,γ),1≤i≤n

∥∥XE
(
Z0,i,X

k
i , β

k
)
−XE

(
Z0,i,X0,i, β

k
)∥∥

+ sup
k≥k(n,γ),1≤i≤n

∥∥XE
(
Z0,i,X0,i, β

k
)
−XE

(
Z0,i,X

k
i , β0

)∥∥ = Op (pXΞ1,n) .

So (ii) is of orderOp

(
n−1/2pZpXΞ1,n

)
. (iii), is bounded by p

1/2
Z p

1/2
X max1≤i≤n

∣∣∣∇uG
(
Z̃i,X

k
i

)
−∇uG (Z0,i,X0
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Since

sup
k≥k(n,γ),1≤i≤n

∣∣∣∇uG
(
Z̃i,X

k
i

)
−∇uG (Z0,i,X0,i)

∣∣∣

≤ sup
k≥k(n,γ),1≤i≤n

∣∣∣∇uG
(
Z̃i,X

k
i

)
−∇uG

(
Z0,i,X

k
i

)∣∣∣

+ sup
k≥k(n,γ),1≤i≤n

∣∣∇uG
(
Z0,i,X

k
i

)
−∇uG (Z0,i,X0,i)

∣∣

.
∣∣∣Z̃i − Z0,i

∣∣∣+
∣∣Xk

i − X0,i

∣∣ = Op

(
p
1/2
X Ξ1,n

)
.

This implies that (iii) is of order Op

(
n−1/2pZpXΞ1,n

)
. Finally, the last term (iv) is obviously

of order Op

(
n−1pZp

1/2
X

)
. Together we have shown the result.

Lemma 6. Let Conditions 1-6 hold, we have that

sup
k≥k(n,γ)

∥∥∥∥∥
1

Sn

n∑

i=1

(
Xi − X̂E

n

(
Ẑi,X

k
i , β

k
)) (

G
(
Z0,i,X

k
i

)
−G (Z0,i,X0,i)

)
−Ψ (β0)∆β

k

∥∥∥∥∥ = Op

(
p
3/2
X Ξ2

1,n

)
.

Proof. Note that similar to the proof of the above lemma, we have that

sup
k≥k(n,γ)

∥∥∥∥∥
1

Sn

n∑

i=1

(
Xi − X̂E

n

(
Ẑi,X

k
i , β

k
)) (

G
(
Z0,i,X

k
i

)
−G (Z0,i,X0,i)

)
−Ψ (β0)∆β

k

∥∥∥∥∥

.

∣∣∣∣
n

Sn
− P−1

D

∣∣∣∣ sup
k≥k(n,γ)

∥∥∥∥∥
1

n

n∑

i=1

(
Xi − X̂E

n

(
Ẑi,X

k
i , β

k
)) (

G
(
Z0,i,X

k
i

)
−G (Z0,i,X0,i)

)
∥∥∥∥∥ (i)

+ sup
k≥k(n,γ)

∥∥∥∥∥
1

n

n∑

i=1

(
X̂E

n

(
Ẑi,X

k
i , β

k
)
−XE (Z0,i,X0,i, β0)

) (
G
(
Z0,i,X

k
i

)
−G (Z0,i,X0,i)

)
∥∥∥∥∥ (ii)

+ sup
k≥k(n,γ)

∥∥∥∥∥
1

n

n∑

i=1

(
Xi −XE (Z0,i,X0,i, β0)

) (
∇vG

(
Z0,i, X̃i

)
−∇vG (Z0,i,X0,i)

)
X ′

i∆β
k

∥∥∥∥∥ (iii)

+

∥∥∥∥∥
1

n

n∑

i=1

(
Xi −XE (Z0,i,X0,i, β0)

)
∇vG (Z0,i,X0,i)X

′
i − E

((
Xi −XE (Z0,i,X0,i, β0)

)
∇vG (Z0,i,X0,i)X

′
i

)
∆

Obviously, term (i) is of order Op

(
n−1/2pXΞ1,n

)
, term (ii) is of order Op

(
p
1/2
X Ξ2

1,n

)
, term

(iii) is of order Op

(
p
3/2
X Ξ2

1,n

)
, and term (iv) is of order Op

(
n−1/2pXΞ1,n

)
. This proves the

result.
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Lemma 7. Let Conditions 1-6 hold, we have that

sup
k≥k(n,γ)

∥∥∥∥∥
1

Sn

n∑

i=1

Di

(
Xi − X̂E

n

(
Ẑi,X

k
i , β

k
))

εi −
1

nPD

n∑

i=1

Di

(
Xi −XE (Z0,i,X0,i, β0)

)
εi

∥∥∥∥∥

= Op

(
pXq

3CΦ,qCΦ,2,qΞ
2
1,n + p2Xq

6C2
Φ,qC

2
Φ,2,qΞ

4
1,n

)
.

Proof. We first show the results for

sup
k≥k(n,γ)

∥∥∥∥∥
1

n

n∑

i=1

(
X̂E

n

(
Ẑi,X

k
i , β

k
)
−XE (Z0,i,X0,i, β0)

)
εi

∥∥∥∥∥

Using Taylor expansion, we have that

Φq

(
Ẑj ,X

k
j

)
= Φq (Z0,j,X0,j) +∇uΦq (Z0,j ,X0,j)Z

′
j∆δ̂︸ ︷︷ ︸

+

Φ(1,j,n)

∇vΦq (Z0,j ,X0,j)X
′
j∆β

k

︸ ︷︷ ︸
Φ(2,j,n,k)

+ Ek
Φ,q,j,

where supj,k

∥∥Θk
Φ,q,j

∥∥ = Op

(
pXqCΦ,2,qΞ

2
1,n

)
, and that

Γ̂n,q

(
δ̂, βk

)
= Γq (β0) + Γq (β0)− S−1

n

n∑

i=1

DiΦq (Z0,i,X0,i) Φq (Z0,i,X0,i)
′

︸ ︷︷ ︸
Γ(1,n)

+ S−1
n

n∑

i=1

Di∇u

[
Φq (Z0,i,X0,i) Φq (Z0,i,X0,i)

′
]
Z ′

j∆δ̂

︸ ︷︷ ︸
Γ(2,n)

+ S−1
n

n∑

i=1

Di∇v

[
Φq (Z0,i,X0,i) Φq (Z0,i,X0,i)

′
]
X ′

j∆β
k

︸ ︷︷ ︸
Γ(3,n,k)

+Θk
Γ,q,

where ‖Γ (1, n)‖ = Op

(
n−1/2qC2

Φ,q

)
, ‖Γ (2, n)‖ = Op

(
n−1/2pZq

2C2
Φ,1,q

)
, supk ‖Γ (3, n, k)‖ =

Op

(
p
1/2
X q2C2

Φ,1,qΞ1,n

)
, and supk

∥∥Θk
Γ,q

∥∥ = Op

(
pXq

2CΦ,2,qΞ
2
1,n

)
. Since Ξ2,n → 0, all of the

above terms are of op (1). Then note that

Γ̂−1
n,q

(
δ̂, βk

)
− Γ−1

q (β0) = Γ−1
q (β0)

(
Γq (β0)− Γ̂n,q

(
δ̂, βk

))(
Γ̂−1
n,q

(
δ̂, βk

)
− Γ−1

q (β0)
)

+ Γ−1
q (β0)

(
Γq (β0)− Γ̂n,q

(
δ̂, βk

))
Γ−1
q (β0) .

Define

EΓ,q,n = Γ̂−1
n,q

(
δ̂, βk

)
− Γ−1

q (β0)− Γ−1
q (β0) (Γ (1, n) + Γ (2, n) + Γ (3, n, k)) Γ−1

q (β0)
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we have supk ‖EΓ,q,n‖ = Op

(
pXq

4C4
Φ,1,qΞ

2
1,n + p2Xq

4C2
Φ,2,qΞ

4
1,n

)
.

Using the expansion of Φq

(
Ẑj ,X

k
j

)
and Γ̂−1

n,q

(
δ̂, βk

)
, we have that

X̂E
n

(
Ẑi,X

k
i , β

k
)
= S−1

n

n∑

j=1

DjXj (Φq (Z0,j ,X0,j) + Φ (1, j, n) + Φ (2, j, n, k) + EΦ,n,j)

×
(
Γ̂−1
n,q (δ0, β0) + Γ−1

q (β0) (Γ (1, n) + Γ (2, n) + Γ (3, n, k)) Γ−1
q (β0) + EΓ,n

)

× (Φq (Z0,i,X0,i) + Φ (1, i, n) + Φ (2, i, n, k) + EΦ,n,i)
′

= S−1
n

n∑

j=1

DjXjΦq (Z0,j ,X0,j) Γ
−1
q (β0) Φq (Z0,i,X0,i)

+ S−1
n

n∑

j=1

DjXj (Φ (1, j, n) + Φ (2, j, n, k)) Γ−1
q (β0) Φq (Z0,i,X0,i)

+ S−1
n

n∑

j=1

DjXjΦq (Z0,j ,X0,j)
(
Γ−1
q (β0) (Γ (1, n) + Γ (2, n) + Γ (3, n, k))

)
Γ−1
q (β0) Φq (Z0,i,X

+ S−1
n

n∑

j=1

DjXjΦq (Z0,j ,X0,j) Γ
−1
q (β0) (Φ (1, i, n) + Φ (2, i, n, k)) + EX,n,i,k,

where

sup
k,i

‖EX,n,i,k‖ = Op

(
pXq

3CΦ,qCΦ,2,qΞ
2
1,n + p2Xq

6C2
Φ,qC

2
Φ,2,qΞ

4
1,n

)
.

Also note that

S−1
n

n∑

j=1

DjXjΦq (Z0,j ,X0,j)
′ Γ−1

q (β0) Φq (Z0,i,X0,i)−XE (Z0,i,X0,i, β0)

=

(
S−1
n

n∑

j=1

DjXjΦq (Z0,j ,X0,j)
′ Γ−1

q (β0)− Πq

)
Φq (Z0,i,X0,i) +

(
XE (Z0,i,X0,i, β0)− ΠqΦq (Z0,i,X0,i)

)

=

(
S−1
n

n∑

j=1

DjXjΦq (Z0,j ,X0,j)
′ − 1

PD
E
(
DjXjΦq (Z0,j ,X0,j)

′
)
)
Γ−1
q (β0)Φq (Z0,i,X0,i)

+
(
E
(
XjΦq (Z0,j,X0,j)

′
∣∣Dj = 1

)
Γ−1
q (β0)−Πq

)
Φq (Z0,i,X0,i)

+
(
XE (Z0,i,X0,i, β0)− ΠqΦq (Z0,i,X0,i)

)

Obviously,

∥∥(E
(
XjΦq (Z0,j ,X0,j)

′
∣∣Dj = 1

)
Γ−1
q (β0)− Πq

)
Φq (Z0,i,X0,i)

∥∥ ≤ qCΦ,qR
X
q ,

∥∥XE (Z0,i,X0,i, β0)−ΠqΦq (Z0,i,X0,i)
∥∥ ≤ R

X
q .
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Moreover,

S−1
n

n∑

j=1

DjXjΦq (Z0,j ,X0,j)
′ − 1

PD
E
(
DjXjΦq (Z0,j ,X0,j)

′
)

=

(
1

Sn/n
− 1

PD

)
1

n

n∑

j=1

DjXjΦq (Z0,j ,X0,j)
′ +

1

PD

(
1

n

n∑

j=1

DjXjΦq (Z0,j ,X0,j)
′ − E

(
DjXjΦq (Z0,j ,X0,j)

′
)
)

Then

∥∥∥∥∥

(
1

Sn/n
− 1

PD

)
1

n

n∑

j=1

DjXjΦq (Z0,j ,X0,j)
′ Γ−1

q (β0)
1

n

n∑

i=1

Φq (Z0,i,X0,i) εi

∥∥∥∥∥ = Op

(
n−1p

1/2
X q2C2

Φ,q

)

and

∥∥∥∥∥
1

PD

(
1

n

n∑

j=1

DjXjΦq (Z0,j,X0,j)
′ −E

(
DjXjΦq (Z0,j ,X0,j)

′
)
)
Γ−1
q (β0)

1

n

n∑

i=1

Φq (Z0,i,X0,i) εi

∥∥∥∥∥

= Op

(
n−1p

1/2
X q2C2

Φ,q

)
.

Now we are ready to derive the result. Note that

∥∥∥∥∥
1

Sn

n∑

i=1

Di

(
X̂E

n

(
Ẑi,X

k
i , β

k
)
−XE (Z0,i,X0,i, β0)

)
εi

∥∥∥∥∥

≤
∥∥∥∥∥
1

Sn

n∑

i=1

Di

(
1

Sn

n∑

i=1

DjXjΦq (Z0,j ,X0,j)
′ Γ−1

q (β0)Φq (Z0,i,X0,i)−XE (Z0,i,X0,i, β0)

)
εi

∥∥∥∥∥

+

∥∥∥∥∥
1

Sn

n∑

i=1

DjXj (Φ (1, j, n) + Φ (2, j, n)) Γ−1
q (β0)

1

Sn

n∑

i=1

DiΦq (Z0,i,X0,i) εi

∥∥∥∥∥

+

∥∥∥∥∥
1

Sn

n∑

i=1

DjXjΦq (Z0,j,X0,j)
(
Γ−1
q (β0) (Γ (1, n) + Γ (2, n, k))

)
Γ−1
q (β0)

1

Sn

n∑

i=1

DiΦq (Z0,i,X0,i) εi

∥∥∥∥∥

+

∥∥∥∥∥
1

Sn

n∑

j=1

DjXjΦq (Z0,j,X0,j) Γ
−1
q (β0)

1

Sn

n∑

i=1

Di (Φ (1, i, n) + Φ (2, i, n)) εi

∥∥∥∥∥

2

+ E

∥∥∥∥∥
1

Sn

n∑

i=1

DiEX,n,i,kεi

∥∥∥∥∥ .

The first term is obviously Op

(
n−1p

1/2
X q2C2

Φ,q + qCΦ,qR
X
q

)
. We will look at the remaining
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terms one by one. First of all,

E

∥∥∥∥∥
1

Sn

n∑

i=1

DjXj (Φ (1, j, n) + Φ (2, j, n)) Γ−1
q (β0)

1

Sn

n∑

i=1

DiΦq (Z0,i,X0,i) εi

∥∥∥∥∥

2

. E



∑n

i=1Diq
2C2

Φ,q

S2
n

∥∥∥∥∥
1

Sn

n∑

i=1

DjXj (Φ (1, j, n) + Φ (2, j, n))

∥∥∥∥∥

2

 . E

[
(
∑n

i=1Di) pXq
4C2

Φ,q

(
p2Zn

−1 + pXΞ
2
1,n

S2
n

= O
(
n−1pXq

4C2
Φ,q

(
p2Zn

−1 + pXΞ
2
1,n

))
,

where the last result comes from the fact that
∑n

i=1Di/S
2
n is bounded by 1 and Sn/n →

PD > 0. Similarly,

E

∥∥∥∥∥
1

Sn

n∑

i=1

DjXjΦq (Z0,j ,X0,j)
(
Γ−1
q (β0) (Γ (1, n) + Γ (2, n) + Γ (3, n))

)
Γ−1
q (β0)

1

Sn

n∑

i=1

DiΦq (Z0,i,X0,i) εi

∥∥∥∥∥

2

= O

(∑n
i=1Diq

2C2
Φ,qC

4
Φ,1,qp

2
Xq

6Ξ2
1,n

S2
n

)
,

E

∥∥∥∥∥
1

Sn

n∑

j=1

DjXjΦq (Z0,j ,X0,j) Γ
−1
q (β0)

1

Sn

n∑

i=1

Di (Φ (1, i, n) + Φ (2, i, n)) εi

∥∥∥∥∥

2

= Op

(
n−1pXq

4C2
Φ,q

(
p2Zn

−1 + pXΞ
2
1,n

))
.

Finally,

E

∥∥∥∥∥
1

Sn

n∑

i=1

DiEX,n,i,kεi

∥∥∥∥∥

2

≤ sup
k,i

‖EX,n,i,k‖2 = Op

(
p2Xq

6C2
Φ,qC

2
Φ,2,qΞ

4
1,n + p4Xq

12C4
Φ,qC

4
Φ,2,qΞ

8
1,n

)
.
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Two-Step NLS
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