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Abstract

We study constrained information design where a sender must provide facts to persuade a

receiver to accept or reject a proposal. We show that sender-optimal strategies correspond to

maximal-weight matchings on a bipartite graph that incorporates a novel fact-selection con-

straint, alongside the usual ones. We characterize exactly when the sender can induce his ideal

decisions. Receiver payoffs are independent of the sender’s cardinal preferences, although these

preferences determine the sender-optimal strategy. When the receiver can first specify the set

of admissible facts, we identify conditions under which the receiver would (not) like to eliminate

the sender’s freedom to select facts.
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1 Introduction

Experts often have to provide factual evidence in support of their arguments. But they also have

freedom to select the facts they will emphasize. Politicians soliciting votes highlight the facts

that are convenient for their case.1 Television networks and newspaper editors give prominence to

certain news stories while burying others that do not support their ideological loyalties. Managers

reporting to the board of directors, or the investing public, have to submit evidence together with

their projections and recommendations. But because of their expertise about internal operations,

they may be able to cherry-pick this evidence. For the same reason, organizations may be able to

manage the information they disclose to regulators, and experts testifying in court may be able to

choose the facts they deem to be relevant.

In this paper, we consider the problem of an expert (the sender, he) who selects facts in order

to persuade an uninformed observer (the receiver, she) to approve of a decision taken (or recom-

mended) by the sender. The decision is to either accept or reject a proposal. The sender is privately

informed about the state of the world. In each state he has access to some (indisputable) facts that

are relevant for the decision. Relative to the receiver, the sender is biased in favor of accepting the

proposal. The sender’s report must (truthfully) reveal some facts that will subsequently be scruti-

nized by the receiver. His design problem is to select the facts that will be revealed, and those that

will be concealed, as a function of his private information, while making sure the receiver always

approves of his decision and never wants to overturn it and take a different decision.

To persuade the receiver, the sender must select her facts in a manner that pools states where

she wants to accept the proposal but the receiver does not, with states where they both want to

accept it. We show that this problem is formally equivalent to a matching problem on a suitably

chosen bipartite graph that captures constraints on the facts that are available to the sender,

while also accounting for the receiver’s priors and preferences. One side of the graph corresponds

to (agreement) states where the sender and receiver agree that the proposal should be accepted

1To justify the Iraq War in 2003, George W. Bush’s administration claimed aluminum tubes bought by Iraq were for

use in uranium-enriching centrifuges, suggesting Iraq had weapons of mass destruction. The suggestion turned out to

be untrue (https://www.factcheck.org/2008/01/us-intelligence-on-wmds-in-iraq/). In the lead-up to the 2016 Brexit

referendum, Boris Johnson and other pro-Brexit campaigners highlighted the UK’s payments to the European Union,

claiming that the UK sent £350 million a week to the EU. This fact was criticized to be misleading, in part because it

excluded payments received by the UK from the EU. (https://www.independent.co.uk/news/uk/politics/vote-leave-

brexit-lies-eu-pay-money-remain-poll-boris-johnson-a8603646.html).
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whereas the other side corresponds to (conflict) states where they have a conflict of interest. Each

edge of the graph corresponds to arguments the sender can make (i.e., facts she can reveal) that will

persuade the receiver to follow the sender’s recommended decision. We show that any matching

on this graph can be used to construct a reporting strategy for the sender that satisfies Bayes

plausibility and obedience constraints.

We apply Hall’s marriage theorem (1935) to identify a sufficient condition under which the

sender has a strategy that persuades the receiver to approve the sender’s ideal decision in every

state. This corresponds to a perfect matching on the bipartite graph described above. In effect,

the sender subverts the receiver’s attempt to monitor him and implements his own unconstrained

optimal decision rule. The sufficient condition for subversion states that there must be enough

diversity across states in the different ways the sender can select supporting facts to pool agreement

states with conflict states. We provide examples of environments where the sufficient condition is

met and the sender’s optimal strategy takes a natural and simple form.

Our sufficient condition is also necessary. When it is not met, the sender must make a compro-

mise and give up on her own ideal decision in some states. In general, the sender’s optimal reporting

strategy is the solution to a linear program. We show that it can be described as a maximal-weight

matching on an edge-weighted bipartite graph, where the weights are derived from the sender’s

intensity of preferences (i.e., his cardinal utilities). Furthermore, the optimal reporting strategy

also corresponds to a maximal-cardinality matching that does not depend on these weights.

Using this characterization, we identify the expected payoffs to both the sender and receiver from

an optimal policy. We show that the receiver’s expected payoff depends on the sender’s ordinal

preferences, but not on his cardinal preferences, even though the latter determine the sender’s

optimal reporting strategy. Thus, when the sender prefers to accept the proposal in every state,

the receiver’s expected payoff depends only on her own preferences and the priors.

We ask next if the receiver can set the rules of argumentation for the sender. Suppose that at

an ex ante stage the receiver can specify a subset of the set of possible facts that are admissible.

Thus, if the sender is a prosecutor and the receiver is a judge, the latter may choose to admit

forensic evidence but not witness testimonies. The sender can only select facts that are deemed

admissible by the receiver and he must have at least one such fact available in every state. What is

the receiver-optimal set of admissible facts? Our graph-theoretic approach answers this question.

Consider first the special case of a Cartesian problem where the set of possible states is an

n-dimensional product set that captures different aspects of the decision facing the two players.

The available facts in each state are the realized values of each aspect and the sender can only

provide k < n of these values as supporting facts (choosing which ones to reveal). The receiver’s
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ex ante design problem is to decide which values of each aspect to recognize as admissible facts.

In Cartesian problems, it is optimal for the receiver to pre-specify k admissible aspects. Any

vector of values of these k admissible aspects counts as a fact, and nothing else does. This solution

to the receiver’s design problem minimizes the sender’s freedom to select her facts in every state.

The sender must reveal the realized values of the pre-specified admissible aspects. He has no choice

in the matter. We can think of the admissible aspects as a topic of discussion that the sender is

restricted to by the receiver. The receiver does not need to predict the arguments the sender will

subsequently make (that are determined by the sender’s cardinal preferences), in order to choose

her optimal topic.

These results for Cartesian problems generalize to non-Cartesian problems (e.g., ones where

the state space is not a product set), except that the receiver may not always want to eliminate

the sender’s freedom to select facts in every state. In general the receiver will want to minimize

the diversity of arguments the sender can make across different states. We make this insight

precise by showing that the receiver’s problem reduces to maximizing a metric that we call the

Hall deficit, derived from the necessary and sufficient condition for a perfect matching according to

Hall’s theorem. As in the Cartesian special case, the Hall deficit does not depend on the sender’s

cardinal preferences that determine the arguments the sender will make. It depends only on the

receiver’s own preferences and the priors.

The rest of the paper is organized as follows. Section 2 sets up the model. Section 3 casts

the sender’s problem as a matching problem on a suitable bipartite graph and provides necessary

and sufficient conditions for the sender to subvert the receiver. Section 4 characterizes the optimal

strategy for the sender more generally, while Section 5 describes the receiver-optimal specification

of admissible facts. Section 6 discusses interpretations and variations of our model. Section 7

discusses the related literature and Section 8 contains the concluding remarks. The Appendix

contains proofs of results not contained in the main text.

2 Model

A sender (“he”) is privately informed about the state of the world x ∈ X, where X is a finite set of

possible states. He prepares a report m recommending either that a proposal should be accepted

(d = a) or it should be rejected (d = r). The report is scrutinized subsequently by an uninformed

receiver (“she”). The receiver has a conflict of interest with the sender and may not agree with the

sender’s recommendation. The receiver attaches a prior probability p(x) > 0 to x ∈ X.

Both the receiver’s and sender’s payoff from rejecting the proposal is normalized to zero. If
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the proposal is accepted in state x ∈ X, the receiver’s payoff is u (x), while the sender’s payoff is

v (x). Assume that if the receiver wants the proposal to be accepted then so does the sender: if

u (x) > 0 then v (x) > 0. Let A = {x ∈ X : u (x) , v (x) > 0} be the set of states where the receiver

and sender prefer to accept the proposal and let R = {x ∈ X : u (x) , v (x) < 0} denote the set of

states where both parties prefer to reject the proposal. In the remaining states, C = X ∖ (A ∪R),
there is a conflict of interest between the sender and the receiver. The sender wants to accept the

proposal when x ∈ C while the receiver prefers to reject it.2

For every state x, there is a non-empty and finite set of associated facts F(x) that describes

the available hard information (or evidence) at state x. The sender must choose one fact ϕ ∈ F (x)

from this set as part of her report. When ϕ ∈ F (x) is revealed by the sender, the sender proves

(and the receiver understands) that states outside the set {x|ϕ ∈ F(x)} are impossible.3 In each

state x, the sender also recommends a decision d ∈ {a, r} to either accept or reject the proposal.

In addition, we allow her to include a (costless) message from a finite set M (that does not depend

on x) in her report. Thus, in each state x, the sender’s report m ∈ M(x) = F (x)× {a, r} ×M.4

The five-tuple P = ⟨X, {F(·)}, p, u, v⟩ defines the sender’s problem. Let F = ∪x∈X F (x) be

the set of all possible facts, ϕ (m) = projF (m) be the fact associated with report m and d (m) =

proj{a,r}(m) be the decision recommended by report m. A reporting strategy σ = {σ(x)} for the

sender in a problem P is a collection of probability distributions over reports, σ(x) ∈ ∆(M(x)),

one for each x ∈ X.

We say that the sender’s problem P is Cartesian if it has two properties. First, X = ×i=1,...,nXi,

i.e., the set of possible states is a product set with each state x = (x1, ..., xn) ∈ X defined by the

realization of n ≥ 1 decision-relevant aspects. Second, the sender must reveal the realized values of

k ≥ 0 of the n aspects, i.e., F (x) = {ϕ ⊂ {x1, ..., xn} : |ϕ| = k}. The parameter k can be interpreted

as a constraint on the sender’s ability to produce evidence or it may reflect a constraint on the

receiver’s ability to process it. The case k = 0 corresponds to a standard unconstrained persuasion

environment where the sender does not have to perfectly reveal any facts. In comparison, when

k > 0 the sender is constrained by the requirement that he must reveal k components of the state.

Our model and results also cover environments beyond Cartesian ones. For instance, we allow

2We rule out the possibility of indifference (i.e., that either u(x) or v(x) equals zero), implying there is a unique

full information optimal decision rule for both the sender and the receiver. Indifference by the receiver can be resolved

in favor of the sender (and vice-versa), so this would not have a significant bearing on our results.
3The fact set F (x) can be redefined to accomodate the possibility of revealing multiple pieces of hard information,

as we show below.
4Allowing the costless (cheap talk) message is a convenient way to handle randomizations in our proofs. But it

has no bearing on our results. As will become clear, we can integrate over these messages and describe reporting

strategies simply as a probability distribution over (recommended) decisions and revealed facts.
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WMD No WMD

Saddam F(x) = {Saddam, WMD} F(x) = {Saddam}

Sam F(x) = {Sam, WMD} F(x) = {Sam}

Figure 1: Non-Cartesian example where the state space has a product structure

the set of possible states not to be a product set and a fact to contain the realized values of at

least k of the aspects (and not exactly k). We also allow some values of some aspects not to count

as hard evidence. In the example below, the state space is a product set described by the values

of two aspects, the sender’s name and whether or not he possesses weapons of mass destruction

(WMDs).

As shown by the fact sets, the sender can always prove what his name is. He can also provide

evidence he possesses WMDs. But he cannot prove that he does not possess WMDs. Thus, we

allow the available hard evidence F (x) to not include all that the sender knows in state x. Our

model also allows for a grain of truth specification of fact sets, F(x) = {ϕ ∈ 2X : x ∈ ϕ}, whereby
an available fact in state x is any subset of the state space that contains x (see, e.g., Milgrom,

1981); or Dye structures, F(x) = {x,∅}, where any fact set consists of the actual state and another

fact ∅ that is available in all states (see, e.g., Dye, 1985). We discuss the implications of our results

for these instances of our model in detail below. For now we note that fact sets are primitives and

we impose no restrictions on them except for requiring that each F (x) be non-empty.

The timing of moves for the constrained persuasion problem described above is as follows. First,

the sender commits to a reporting policy σ. Then the state of the world x is realized and a report

m ∈ M(x) is drawn according to σ(x). After observing the reportm, the receiver considers whether

or not to obey the recommended decision, given her priors p and knowledge of σ. We focus on the

reporting strategy σ that maximizes the sender’s ex ante expected payoff.

Given a report m from the sender with recommendation d(m) ∈ {a, r}, the receiver is willing

to obey the sender’s recommendation if and only if

E[u|m : d(m) = a] ≥ 0 ≥ E[u|m : d(m) = r]. (1)

This obedience constraint (Kamenica and Gentzkow, 2011) ensures the receiver has the incentive

to follow the sender’s recommendation. We can assume without loss that the sender must make

prepare her reportm in a way that ensures (1) holds. As an alternative specification that is formally

equivalent, we can allow the sender to take the decision himself while making sure the receiver has

no incentive to overturn his decision. Under this interpretation, (1) captures a notion of deniability
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(Antic, Chakraborty and Harbaugh, 2024). When the sender has decision rights but must comply

with regulations, or is subject to ex post public scrutiny, meeting this constraint allows him to

maintain deniability that he has served the public interest. In what follows, we will refer to (1) as

the deniability constraint.

3 Subversive strategies

We start our analysis by showing how the problem described above can be mapped into a matching

problem on an appropriately defined graph. Since for any state x ∈ R, the sender and the receiver

agree the proposal should be rejected, and the sender is able to commit to sending a report that

recommends rejection and reveals any fact in F (x), the deniability constraint (1) will always holds

in this case. So the sender gets his ideal outcome for all x ∈ R. The crux of the sender’s problem is

to get the receiver to agree to an accept decision as much as possible in the remaining states. This

involves pooling states in the set A, where the sender and receiver agree that acceptance is best,

with states in C where there is a conflict of interest.

Fix P = ⟨X,F , p, u, v⟩ and consider a bipartite graph G with vertices V (G) = A∪C and edges

E (G). The bipartition of the vertices V (G) are the sets A and C. An edge {x, x′} ∈ E (G) connects

x ∈ C and x′ ∈ A if and only if F (x)∩F (x′) ̸= ∅. Thus, two vertices are connected by an edge as

long as they have a fact in common. We will sometimes write G = (A,C) to denote this bipartite

graph.

CallM ⊆ E a matching if {x, x′} ∈M implies {x, x′′} /∈M and {x′, x′′} /∈M for all x′′ ∈ V (G).

That is, a matching is a subset of edges such that each vertex is in at most one edge of the matching.

Vertex x ∈ V (G) is matched by M if {x, x′} ∈ M for some x′ ∈ V (G); otherwise x is unmatched

by M . A matching M on G = (A,C) is C-perfect if every x ∈ C is matched by M . A matching

M on G is perfect if every x ∈ V (G) is matched by M . For a subset of vertices S ⊆ V (G), let

N(S) = {x′ ∈ V (G) | {x, x′} ∈ E, x ∈ S} denote the neighbors of S.

Panel (a) of Figure 2 provides an example of a Cartesian problem P, with n = 2, k = 1,

X1 = {0, 1, 2}, X2 = {0, 1} and uniform priors. In all our figures, the sets A, C and R are colored

blue, yellow and red, respectively. Suppose that the receiver’s utility is u(x) = +1 for x ∈ A,

with u(x) = −1 otherwise. With such preferences, the receiver only wishes to avoid mistakes (i.e.,

choosing d = r for x ∈ A and d = a for x /∈ A) and she cares equally about both kinds of mistakes

in every state. The deniability constraint (1) then becomes

Pr[A | m : d(m) = a] ≥ 1

2
≥ Pr[A | m : d(m) = r]. (2)

While we allow for arbitrary receiver utility functions u, this balance of probabilities special case of
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Figure 2: A state space and its graph

the deniability constraint, (2), will be important in what follows.5 We allow for any sender’s utility

function v, as long as v (x) > 0 if x ∈ A ∪ C and v (x) < 0 otherwise.

Figure 2(b) shows the graph G associated with the problem in panel (a). Each edge of G

corresponds to k = 1 facts that are shared by the two vertices defining the edge. This graph has a

C-perfect matching, with the edges included in the matching highlighted (by green circles) in panel

(b). We construct a reporting strategy for the sender from this matching as follows.

The sender chooses d = a and reveals x2 = 1 when the state is either (0, 1) or (2, 1), and also

chooses d = a but reveals x1 = 1 when the state is either (1, 0) or (1, 1). In state (2, 0) he again

chooses d = a while revealing x1 = 2, while in state (0, 0) he chooses d = r and reveals x1 = 0. Since

priors are uniform, the relevant deniability constraint (2) is met in all cases. For instance, when

the receiver observes x1 = 1 and d = a, she concludes the state of the world is either (1, 0) ∈ C or

(1, 1) ∈ A. Since these two possibilities are equally likely, Pr[A | m : x1 = 1, d(m) = a] = 1/2 so

that (2) is met.

Notice that the sender obtains his ideal decisions using such a reporting strategy since d = a

whenever x ∈ A∪C and d = r whenever x ∈ R. Whenever there is a reporting strategy that makes

it possible to implement the sender’s ideal decision rule, while satisfying the deniability constraint,

the sender avoids any burden of scrutiny by the receiver. He subverts the receiver’s agenda and

implements his own unconstrained optimal decisions. We call such a reporting strategy a subversive

(reporting) strategy. In the rest of this section we identify necessary and sufficient conditions for the

existence of subversive strategies, going beyond the special assumptions of the example in Figure

2.

The key tool for our analysis is Hall’s matching theorem (1935) that takes as a primitive a

5It is similar to the “balance of probabilities” standard of proof used for U.S. civil law cases. When (2) is met,

the balance of probabilities favors acquitting the sender.
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bipartite graph G = (A,C). It states that a C -perfect matching exists on G if and only if

|N(S)| ≥ |S| for all S ⊆ C. (HC)

We may think of elements of C as agents and elements of A as objects. Each agent x ∈ C only finds

objects in N({x}) acceptable to her. A C-perfect matching assigns one acceptable object in A to

every agent in C, and the same object is not assigned to two different agents (i.e., the matching

is one-to-one). Condition (HC) is a statement about the diversity of preferences among the agents

for the objects. For instance, if two agents find one and the same object as the only acceptable

one, (HC) is not met and it is impossible to assign a different acceptable object to each agent.

Thus, (HC) is necessary for the existence of a C-perfect matching. Hall’s theorem shows it is also

sufficient.

If we assume uniform priors and the balance of probabilities version of the deniability constraint,

then our version of the matching problem involves pooling, or matching, elements of the conflict

set C with elements of the agreement set A. This is the key feature of the example in Figure 2.

We assume that each conflict point in C can be pooled with an agreement point in A only via a

“valid argument” (i.e., one that has a supporting fact). So (HC) is a statement about the diversity

of possible arguments in our setting. Hall’s theorem states that a subversive reporting strategy

exists if and only if the requirement of providing supporting facts does not sufficiently restrict the

possible arguments available to the sender. The sender can select his facts in a manner that allows

his own ideal decisions to be implemented.6

In the rest of this section, we extend (HC) to a broader domain, allowing for general priors and

receiver utility functions u, and going beyond Cartesian problems. We find necessary and sufficient

conditions for the existence of subversive reporting strategies. In the subsequent section, we char-

acterize the sender’s optimal reporting strategies, covering cases where subversion is impossible. In

all cases, the core intuition of our approach is contained in Hall’s condition (HC).

To go beyond the simplifying assumptions underlying the example of Figure 2, to each x ∈ A∪C
assign a weight w(x) = ∥p(x)u(x)∥ > 0. Unless mentioned otherwise, we will assume the weights

w(x) are rational for each x ∈ A ∪ C. Let h be the largest number such that w(x)/h is an integer

for all x ∈ A∪C (i.e., h = 1/L, where L denotes the least common multiple of the denominators of

{w(x)}x∈A∪C). For each x ∈ A ∪ C create w(x)/h “clones” of x, denoted by i
cx, i = 1, ..., w(x)/h.

6For the unconstrained Cartesian problem with k = 0, the sender does not need to provide any facts and any

x ∈ C can be matched with any x′ ∈ A, i.e., G is a complete bipartite graph. In this case (HC) reduces to requiring

|C| ≤ |A|. At the other extreme where k = n, G is completely disconnected and N(S) is empty for each x, so that

(HC) fails and subversion is impossible.
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Let cA be the set of all clones of all states x ∈ A and cC be the set of all clones of all x ∈ C.

Define the cloned bipartite graph cG = (cA,cC) derived from G as follows: {icx,
j
cx′} ∈ E (cG) if and

only if {x, x′} ∈ E, for each i = 1, ..., w(x)/h, j ∈ 1, ..., w(x′)/h. Notice that when u(x) ∈ {−1,+1}
and all x ∈ A ∪ C are equiprobable, cG coincides with G. We are ready for our first result.

Theorem 1 A subversive reporting strategy exists iff

E[u|S ∪N(S)] ≥ 0 for all non-empty S ⊆ C. (3)

Proof.

Step 1 (‘if’). Suppose (HC) obtains on cG so that by Hall’s theorem a C-perfect matching

exists on cG. Let cM be this matching. We first construct a subversive reporting strategy from

cM . Next we show that when (3) obtains on G, (HC) obtains on cG.

Consider any x ∈ C, x′ ∈ A such that {x, x′} ∈ E and {icx,
j
cx′} ∈ cM for some i = 1, ..., w(x)/h,

j ∈ 1, ..., w(x′)/h. Let µ({icx,
j
cx′}) ∈ M be a unique message that identifies the particular match

{icx,
j
cx′} ∈ cM (i.e., µ is a one-to-one map from cM to M). The sender’s report m consists of

revealing a fact in F (x) ∩ F (x′) that defines the edge {x, x′}, a decision d(m) = a, as well as the

message µ({icx,
j
cx′}). She sends report m with probability h/w(x) when the realized state is x, and

with probability h/w(x′) when the realized state is x′. Note that

Pr [A | m : d(m) = a] =

h
w(x′)p(x

′)

h
w(x′)p(x

′) + h
w(x)p(x)

= − u(x)

u(x′)− u(x)

= 1− Pr [C | m : d(m) = a]

implying

E [u|m : d(m) = a] = Pr [A | m : d(m) = a]u(x′) + Pr [C | m : d(m) = a]u(x) = 0

so that the deniability constraint (1) is met.

Since cM is a C-perfect matching, for each x ∈ C the the probabilities of such randomized

reports add up to one. For x′ ∈ A, these probabilities may add up to some number qx′ < 1 less

than one, since some j
cx′ may not be matched under cM . In these cases, x′ is perfectly revealed by

the report with the remaining probability 1 − qx′ , and the sender chooses d(m) = a. The sender

also perfectly reveals all x ∈ R and chooses d(m) = r. In both cases, (1) is met. Since d(m) = a if

and only if x ∈ A ∪ C, this reporting strategy is subversive.

It remains to show (3) on G implies (HC) on cG. Pick cS ⊆ cC. The claim is trivial if cS is

empty so suppose cS ̸= ∅. Construct S ⊆ C as follows: x ∈ S if i
cx ∈ cS for some i = 1, ..., w(x)/h.
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Thus, S contains only those elements of C for which at least one clone is contained in cS. Let

cS
′ = ∪x∈S ∪i

{
i
cx
}
⊆ cC be the set of all clones of all elements of S. Note that for any x ∈ C,

N({icx}) = N({jcx}) for every pair of clones i
cx and j

cx of x. Thus,

|N(cS)| =
∣∣N(cS

′)
∣∣

=
∑

x′∈N(S)

w(x′)

h
≥
∑
x∈S

w(x)

h

=
∣∣
cS

′∣∣ ≥ |cS| ,

where the inequality in the second line follows from (3) applied to cS
′ and the inequality in the last

line follows from noting cS ⊆ cS
′.

Step 2 (‘only if’).

Suppose there exists a subversive reporting strategy σ. Let supp σ(x) be the support of σ(x) and

suppa σ(x) = {m ∈ supp σ(x) : d(m) = a}. To satisfy (1), any m ∈ suppa σ(x) must also belong to

suppa σ(x
′) for some x′ ∈ N({x}). Pick S ⊆ C with x ∈ S. Define π(x) ⊆ N({x}) ⊆ A as follows:

x′ ∈ π(x) ⇔ suppa σ(x)∩suppa σ(x′) ̸= ∅. Let π(S) = ∪x∈Sπ(x) and suppa σ(S) = ∪x∈Ssuppa σ(x).

Note that π(S) ⊆ N(S) and, using the law of iterated expectations, further that

E[u|S ∪N(S)] = Pr[S ∪ π(S) | S ∪N(S)]E[u | S ∪ π(S)]
+Pr[N(S)∖ π(S) | S ∪N(S)]E[u|N(S)∖ π(S)]

Since u(x) > 0 for all x ∈ N(S)∖ π(S) ⊆ A, this yields

E[u|S ∪N(S)] ≥ E[u | S ∪ π(S)] Pr[S ∪ π(S) | S ∪N(S)]

But, using the law of iterated expectations again,

E[u|S ∪ π(S)] =
∑

m∈suppa σ(S∪π(S))

Pr[m | S ∪ π(S)]E[u | m] ≥ 0,

where suppa σ(S ∪ π(S)) = ∪x∈S∪π(S)suppa σ(x); and the inequality follows from the fact that σ

is a subversive reporting strategy that meets (1) for all m ∈ suppa σ(S ∪ π(S)). This establishes

(3) on G. ■

Each vertex of the cloned graph cG, when viewed as the primitive, can be thought to be

equiprobable, with probability equal to h. Furthermore, even when u takes a general form, because

of how the cloned graph was constructed, it is as if the receiver uses the balance of probability

standard (2) when evaluating a pooled message corresponding to an edge {icx,
j
cx′} ∈ cM ⊆ E (cG).

So Theorem 1 links Hall’s condition (HC) when applied to cG to an equivalent condition (3) when
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Figure 3: A subversive strategy as a matching

applied to the original graph G. It makes precise the sense in which assuming uniform priors and a

balance of probabilities standard are without loss of generality, even if actual receiver preferences

and priors are general.

Condition (3) (or (HC)) is easy to check in some instances of our model. For instance, with

grain of truth fact sets F(x) = {ϕ ∈ 2X , x ∈ ϕ}, the set X of all possible states is always an

available fact and so the graph G (and hence cG) is complete. As a result, one needs to check (3)

only for the case of the “grand coalition” S = C with N(C) = A. Indeed, this is true in any setting

where G is complete, e.g., a Cartesian problem with k = 0, or Dye fact sets F(x) = {x,∅}. These
settings are like the usual unconstrained information design environments. In contrast, Figure 3

illustrates Theorem 1 in a constrained environment of a three-dimensional Cartesian problem with

k = 1.

In Figure 3, the sender wishes to persuade the receiver to accept a proposal (e.g., pass a bill)

in every state (i.e., R is empty). The sender knows, and can prove, whether the bill would help

(xi = 1) or hurt (xi = 0) each of three citizens (or constituencies), i ∈ {1, 2, 3}. But he can provide

evidence only for one citizen. The receiver prefers to pass the bill only if a majority of citizens

benefit and her payoffs are shown in the panel (a) of the figure, together with priors p that display

correlation across aspects. Notice that w(x) = 1/3 for x ∈ {(0, 0, 0), (1, 1, 1)} and w(x) = 1/9

otherwise. Using this, in panel (b) we depict the cloned graph cG corresponding to this problem,

as well as a perfect matching cM on cG (see marked edges).7

7To avoid clutter, we depict cG simply by replicating the vertices that have multiple clones but not depicting all
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Using cM we can recover the sender’s subversive reporting strategy, as follows. Since the

sender always prefers to accept the proposal he will always recommend d = a. We only need to

determine the fact he chooses to reveal in each state. When only one citizen benefits from the bill,

x ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, the sender reveals the identity of the citizen who benefits. Each

such report is pooled with a report that is sent when x = (1, 1, 1). In state (1, 1, 1), the sender

randomizes uniformly, revealing xi = 1 with probability 1/3 for each i ∈ {1, 2, 3}. Thus, when the

sender reveals x1 = 1, the receiver attaches a posterior probability of 1/3 to the state (1, 1, 1) and

the remaining probability to (1, 0, 0). The deniability constraint is met and the receiver is willing

to pass the bill in this case; and similarly in cases where the sender reveals x2 = 1 and x3 = 1.

When x ∈ {(0, 1, 1), (1, 0, 1), (1, 1, 0)} and only one citizen is hurt by the bill, the sender reveals

the identity of the citizen who is hurt, i.e., xi = 0 for some i. Each such report is pooled with

a report that is sent when x = (0, 0, 0) where the sender again randomizes, revealing each of the

three components of x with probability 1/3. Once again it is easy to check that deniability will

be met for each possible selected fact. Thus, in this example, the sender persuades the receiver

to always pass the bill, either via evidence that supports a claim that a majority of citizens will

benefit from it, or via evidence that suggests only a minority will be hurt by it. By Theorem 1,

such a subversive strategy exists if and only if (3) holds.8

To obtain Theorem 1 we assumed each w(x) is rational. This restriction is not important for

the ‘only if’ part, as an inspection of the proof reveals. Since rationals are dense in the reals, it is

also not a substantive restriction for the ‘if’ part. Any problem with an irrational weights can be

approximated by a problem with rational weights, as Lemma 3 in the Appendix shows.

4 Optimal strategies

When a subversive strategy exists, it is a sender-optimal strategy. But when (3) fails, a C-perfect

matching does not exist on cG and subversion is impossible. In this section we characterize the

sender’s optimal reporting strategies for all situations, whether or not subversion is possible. To

do so, it will be helpful to clone states in the same way as was done in Section 3.

We proceed as follows. First, we set up the sender’s optimization problem as a linear program

on the cloned space cA ∪ cC . Then we show that this problem has a solution in pure strategies in

the cloned space.9 As a consequence, a sender-optimal strategy can be described as a maximum-

of the additional (identical) edges these clones create.
8In Figure 3, subversion is impossible when k > 1 because (3) fails for S = {(0, 0, 0)} when k = 2, and for all

S ⊆ C when k = 3, because N(S) is empty.
9This is consistent with randomizations by the sender in the original space, as shown in the previous section.
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weight matching on an edge-weighted graph ηG that is constructed from the cloned graph cG, using

the sender’s cardinal utility function v. We show further that such a maximum-weight matching

must also be a maximum cardinality matching on cG. This allows us to derive expressions for the

sender’s and receiver’s expected payoffs from any sender-optimal reporting strategy.

As before, the sender is able to guarantee her first-best outcome on all states x ∈ R, since a

reject decision always satisfies the deniability constraint (1). For each x ∈ A∪C, let v̂ (x) = h v(x)
∥u(x)∥ ,

where h was defined in Section 3. For a clone i
cx ∈ cA ∪ cC of x ∈ A ∪ C, v̂ (x) gives the payoff to

the sender at i
cx from accepting the proposal, but scaled up by the constant h. In order to avoid

notational clutter, we erase the distinction between a state x and its clone i
cx in what follows and

let v̂(x) be the sender’s payoff from d = a at x ∈ cA ∪ cC.

Using the convention F(icx) = F(x), we assume each x ∈ cA ∪ cC sends a report m ∈ M(x) =

F (x)× {a, r} ×M, and letMa(x) = {m ∈ M (x) : d (m) = a} with Ma = ∪xMa (x). A reporting

strategy σ picks σ(x) ∈ ∆(M(x)) for each x ∈ cA ∪ cC. A solution to the following program is a

sender-optimal reporting strategy.

max
σ

∑
x∈cC

∑
m∈Ma

v̂ (x)σ (x) [m] (4)

s.t.
∑
x∈cC

σ (x) [m]−
∑
x∈cA

σ (x) [m] ≤ 0, for all m ∈ Ma∑
m∈Ma(x)

σ(x) [m] ≤ 1, for all x ∈ cA ∪ cC

σ(x) [m] ≥ 0, for all x, m.

To see why this describes the sender’s problem, note first that it is never optimal for the sender

to send a report in Ma (i.e., recommend d = a) with positive probability when the state belongs

to R. If instead he chooses d = r he obtains higher payoffs from doing so, and the deniability

constraint is now relaxed for any m ∈ Ma that he may have been sending with positive probability.

Symmetrically, the sender must always send a report in Ma for x ∈ cA because he can ensure

d = a by revealing such a state. For these reasons, only states in cC appear in the objective

function, where we recall that all states cA∪ cC are equally weighted. Since the sender obtains zero

payoffs from d = r, it also suffices to restrict attention to messages in Ma. The first constraint of

the program (4) is the deniability constraint (1), adapted to the cloned space. The inequality in

the second constraint allows m /∈ Ma to be sent with strictly positive probability, while the last

constraint is a non-negativity constraint on probabilities.

Lemma 1 The linear program (4) has a solution in pure strategies: σ (x) [m] ∈ {0, 1} for all

x ∈ .cA ∪ cC, m ∈ Ma.
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The proof (see the Appendix) uses some classic results in linear programming. It consists of

showing (via a result attributed to D. Gale) that the coefficient matrix of the constraint set is

totally unimodular, i.e., every square submatrix of the coefficient matrix has determinant equal to

0 or ±1. Total unimodularity implies every extreme point of the constraint set consists of integers.

Since the objective function is also linear, the result follows. Lemma 1 is useful because it allows us

to restrict attention to matchings on the cloned graph cG, as we look for sender optimal reporting

strategies.

Lemma 2 Any pure strategy σ with σ (x) [m] ∈ {0, 1} for x ∈ .cA ∪ cC, m ∈ Ma that satisfies the

constraints of (4) can be described as a matching on cG, and conversely.

Let η : E (cG) → R be an edge-weight function for the graph cG. For any edge {x, x′} ∈ E (cG),

with x ∈ cC, x
′ ∈ cA, we will use the weight η({x, x′}) = v̂ (x), and call the resulting edge-weighted

graph ηG = {cG, η}. The sum of the edge-weights of a matching M on ηG is the weight of the

matching M . Let ν∗(ηG) be the weight of the maximal-weight matching on ηG and call it the

matching number of ηG. In general, a maximum-weight matching may not maximize the number

of matches (a maximal-cardinality matching). Nevertheless, because of the way the edge weights η

are constructed in our problem, the two will coincide as our next result shows.

Theorem 2 The sender’s optimal reporting strategy can be described as a maximal-weight matching

on ηG. It is also a maximal-cardinality matching on ηG (equivalently, on cG).

Proof. Lemmas 1 and 2 show that a solution to (4) can be described as a maximum-weight

matching on ηG. Given the definition of the edge-weights, it follows that the value of the program

(4) must equal the matching number ν∗(ηG),

To complete the proof, we need to show that any maximum-weight matching on ηG must also

be a maximum-cardinality matching. We prove the contrapositive. Let M be a matching on ηG

that is not of maximum-cardinality. By Berge’s theorem (1957) there is an M -augmenting path in

ηG (Lovasz and Plummer, 2009, Theorem 1.2.1), denoted P . Such a path starts from an unmatched

vertex, alternates between edges that are in the matching M and edges that are not, and ends on

another unmatched vertex.

Figure 4 shows an example for the matching in panel (a) that is represented by the green

dot. The augmeting path for this matching starts at the unmatched vertex x and finishes on the

unmatched vertex x̂′ and it is given by the set of edges {(x, x̂), (x̂, x′), (x′, x̂′)}. It creates a new

matching {(x, x̂), (x′, x̂′)} that is shown in panel (b). In general, the augmenting path creates a

new matching M ′ = P△M , where △ denotes the symmetric set difference.10

10The symmetric set difference P△M = (P ∪M) \ (P ∩M).
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Figure 4: Augmenting paths

This new matching M ′ matches each vertex that was matched under M (now to a different

neighbor), and also matches the two additional vertices at the start and end of P (one in cA

and one in cC). Since the edge weights in our problem depend only on the vertices x ∈ cC, and

v (x) > 0 for all such x , we see that the edge-weight of the new matching M ′ must be greater than

the edge-weight of M . Therefore, M cannot be a maximum-weight matching.11 ■

Since the sender will choose d = a at each x ∈ cA, whether or not it is matched, Theorem

2 implies the sender’s expected payoff equals
∑

x∈.cA
v̂ (x) + ν∗(ηG). The sender gets what she

wants in all states x ∈ A. The weight of the maximum weight matching ν∗(ηG) corresponds to her

expected payoff from the states x ∈ C on which the receiver agrees to accept the proposal. The

second part of the theorem, which states that any maximum weight matching is also a maximum

cardinality matching, allows us to pin down the the receiver’s expected utility.

Proposition 1 The receiver’s expected payoff is

∑
x∈A∪C

p (x)u (x) + max
S⊆C

− ∑
x∈S∪N(S)

p (x)u (x)

 .
It is independent of the sender’s optimal strategy σ (i.e., the sender-optimal matching).

Proposition 1 is a corollary of Theorem 2 and its proof follows from the König-Ore formula

which characterizes the number of unmatched vertices in any maximum cardinality matching.12

The rest is simply accounting for the mapping between our model and the graph cG. The second

11In general matching problems, the weight of an edge (x, x̂) will depend on both vertices x and x̂. Thus, a

maximum-weight matching may not also be a maximum-cardinality matching in models with “lying costs” (see, e.g.,

Kartik, 2009) where the sender’s payoff directly depends on the report in addition to the state.
12See Theorem 1.3.1 in Lovász and Plummer (2009).

15



011 101 110

001 010

(a) (b)

𝑝𝑝 𝑥𝑥 = 0

𝑢𝑢 𝑥𝑥 = −2

𝑝𝑝 𝑥𝑥 =
1
6

𝑢𝑢 𝑥𝑥 = −1

1

0

𝑥𝑥3 = 0 𝑥𝑥3 = 1

𝑝𝑝 𝑥𝑥 =
1
6

𝑢𝑢 𝑥𝑥 = −1

𝑝𝑝 𝑥𝑥 =
1
6

𝑢𝑢 𝑥𝑥 = 1

0 1

𝑝𝑝 𝑥𝑥 =
1
6

𝑢𝑢 𝑥𝑥 = −1

𝑝𝑝 𝑥𝑥 =
1
6

𝑢𝑢 𝑥𝑥 = 1

1

0

𝑝𝑝 𝑥𝑥 =
1
6

𝑢𝑢 𝑥𝑥 = 1

𝑝𝑝 𝑥𝑥 = 0

𝑢𝑢 𝑥𝑥 = 2

0 1𝑥𝑥1 𝑥𝑥1

𝑥𝑥2𝑥𝑥2 100

{𝑥𝑥1 = 0} {𝑥𝑥1 = 0, 𝑥𝑥2= 1} {𝑥𝑥1 = 1}

{𝑥𝑥1 = 0, 𝑥𝑥2= 1} {𝑥𝑥1 = 1} {𝑥𝑥1 = 1}

Figure 5: Optimal strategies

term in the expression for the receiver’s expected payoff has an interesting interpretation. Using

the relationship between the original graph G and the cloned graph cG we may write

1

h
max
S⊆C

− ∑
x∈S∪N(S)

p (x)u (x)

 = max
S⊆cC

[|S| − |N(S)|] ≡ δH (HD)

We call the number δH the “Hall deficit” on cG. When Hall’s condition (HC) is satisfied on cG,

and subversion is possible, δH = 0. In this case, the empty set solves the maximization problem in

(HD). Otherwise, δH is positive. Proposition 1 shows that the receiver’s total payoff equals what

she would get if the sender gets his ideal decisions plus a term proportional to the Hall deficit δH .

When subversion is not possible, the sender has to make choices about the conflict states in C

that he can match with states in A. These choices, and the sender’s optimal strategy σ, will depend

on the intensity of his preferences, i.e., on the weights v̂ that are derived from his cardinal payoff

function v. But since δH does not depend on σ, the receiver’s expected payoff does not depend on

the actual choices the sender makes. This is illustrated by the example in Figure 5.

As with the example of Figure 3, we suppose in Figure 5 that the sender knows if a bill would

help or hurt each of three citizens and the sender always wants the bill to be passed. Priors and

receiver preferences are different from the earlier example, as shown in Figure 5. As for the fact

sets, we suppose that the sender can always prove whether the bill will help or hurt citizen 1. In

addition, he can also prove the bill will help citizen 2 but only when it hurts citizen 1. That is,

F(x) = {x1, x2} for x ∈ {(0, 1, 0), (0, 1, 1)} with F(x) = {x1} otherwise. The cloned graph cG,

which is identical to G in this non-Cartesian example, is shown in the figure.
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As can be seen from the graph, when x = (1, 0, 0) and only citizen 1 benefits from the bill, the

sender can persuade the receiver to pass the bill by revealing x1 = 1 and matching this state either

with (1, 1, 0) or with (1, 0, 1) and meet the deniability constraint. However, the sender can get the

bill passed and meet deniability in just one of the two other conflict states (0, 1, 0) and (0, 0, 1). This

is because (HC) fails for S = {(0, 1, 0), (0, 0, 1)} which has N(S) = {(0, 1, 1)}, implying subversion

is not possible.

A sender with cardinal preferences that reflect a strong preference to pass the bill when citizen

2 benefits from it will prefer to match (0, 1, 0) with (0, 1, 1). In contrast, a sender with a strong

desire to pass the bill when citizen 3 benefits may match (0, 0, 1) with (0, 1, 1). In general, one may

expect that different kinds of senders, with different cardinal preferences over the conflict states,

may be more or less constrained by the set of available facts that they can exploit in each state. For

instance, in Figure 5 the sender who has a strong preference to pass the bill when citizen 3 benefits

may seem more constrained than a sender who prefers to pass it when citizen 2 does, because the

latter can sometimes prove his favored citizen benefits while the former cannot.

This suggests, in turn, that the receiver may prefer facing a sender who is more constrained by

the available fact sets, compared to another sender who is less so. Proposition 1, a consequence of

Theorem 2, shows this intuition is incorrect. While the sender’s optimal strategy depends on his

cardinal preferences, the receiver is equally well off from facing all possible kinds of senders. This is

because each possible sender-optimal strategy (a maximum-weight matching on ηG) must also be a

maximum cardinality matching on cG, and cG does not require specifying the cardinal preferences

of the sender. This fact is the key input for our results in the next section.

5 Receiver-optimal fact sets

So far we have taken the fact sets available to the sender as primitives and restricted the receiver

to a passive role. In this section, we ask how the receiver would like to modify the fact sets at the

very beginning, before the sender commits to a reporting strategy. We model the receiver’s design

problem as follows.

Take as given the non-empty fact sets F (x), x ∈ X, with F = ∪x∈XF (x). We suppose the

receiver can specify a smaller set F ′ ⊆ F that the sender is restricted to, subject to the constraint

F ′(x) ≡ F ′∩F (x) be non-empty for each x ∈ X. Designing the set F ′ of admissible facts is the only

instrument available to the receiver. We can think of F ′ as describing the rules of argumentation

and evidence production that the receiver imposes on the sender at the outset. Notice the receiver

can specify F ′ given only her knowledge of each F (x) but without knowing the realized state x.
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The only constraint on the receiver is that she must allow the sender to present some fact in every

state, i.e., each F ′(x) must be non-empty. Each possible F ′ creates a subgraph G(F ′) of G that

(possibly) removes some edges of G. Let δH(F ′) be the Hall deficit on G(F ′).

Theorem 3 Let F∗(P) ⊆ F be the receiver-optimal set of admissible facts for a problem P. It

solves maxF ′⊆F δH(F ′) subject to the constraints F ′(x) be non-empty for each x ∈ X. If problem

P ′ differs from P only in the specification of the sender’s cardinal payoff function v, then F∗(P) is

receiver-optimal also for P ′.

Proof. The proof follows from Proposition 1. Notice first that we can work interchangeably

with the graph G and its cloned graph cG. Each specification of a set F ′ of admissible facts gives rise

to a subgraph G(F ′) and its corresponding clone cG(F ′). On this subgraph, the receiver’s expected

payoff is given by Proposition 1; see, in particular, expression (HD). It is independent of v and the

matching used by the sender on cG(F ′). It follows that the set F ′ that maximizes the receiver’s

expected payoff must have the maximum Hall deficit δH(F ′) among all feasible alternatives; and

that this solution will be optimal also for a problem P ′ that differs from P only in the specification

of v. ■

We first apply Theorem 3 to the special case of a Cartesian problem with k = 1. Let F i be

an admissible fact set that restricts the sender to present facts only on a particular aspect i, i.e.,

F i(x) = {xi} for each x. Any value of any other aspect is not an admissible fact. Let δiH be the

Hall deficit of G(F i).

Proposition 2 Consider a Cartesian problem with k = 1. The set of admissible facts F i∗ that

restricts the sender to present facts only on a particular aspect i∗ = argmaxi δ
i
H , is receiver-optimal.

In particular, i∗ does not depend v.

Proof. Consider the constraint on the receiver-optimal fact set F∗ that F∗(x) be non-empty

for each x. A necessary condition for this to obtain is that all possible values of some aspect i must

belong to F∗. For if there is no aspect all of whose possible values are acceptable facts, there must

exist a state x ∈ X every component of which is not an acceptable fact, because the set of possible

states X is product set. Then F∗(x) is empty for such an x, a contradiction.

Note next that this necessary condition is also sufficient for the non-emptiness of each fact set,

i.e., a fact set of the form F i is feasible for the receiver’s problem. Since allowing any additional

facts, in addition to all possible values of aspect i, only (weakly) reduces the Hall deficit of the

resulting subgraph, an admissible fact set of the form F i is (weakly) better for the receiver than

a larger fact set F ′ ⊇ F i. Since this is true for each i, an admissible fact set F i∗ , that restricts
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Figure 6: Admissible fact sets and Hall deficit I

the sender to provide facts only on some aspect i∗ of the problem, must be receiver-optimal. Using

Theorem 3, we see i∗ = argmaxi δ
i
H and it does not depend on v. ■

Figure 6 provides a Cartesian example with k = 1 that illustrates Proposition 2. As with the

earlier examples, the sender wants the receiver to pass a bill and he knows whether or not the bill

would help or hurt each of three citizens. Priors are uniform iid. The agreement and conflict sets

as well as receiver payoffs u from accepting the proposal are shown in the figure.

By Proposition 2, the receiver wants to allow the sender to present facts only about a particular

citizen, the one that results in the maximum Hall deficit in the resulting subgraph. This Hall

deficit is easy to calculate in Cartesian problems. In particular, when i is the only admissible

aspect, F ′(x) = {xi} for each x, the Hall deficit of the resulting graph is given by

δiH =
1

h

∑
xi

max

−∑
x−i

p(x)u(x), 0

 . (5)

To see why this is the case, consider the graph in Figure 6 where the receiver is only willing

to admit facts about citizen 2 as evidence, i.e., F ′(x) = {x2}. Notice first that this graph consists

of two subgraphs, one for the case x2 = 0 and another for the case x2 = 1, that are disconnected

from each other. Notice also that each of these two subgraphs must be a complete bipartite graph

because all its vertices share a fact corresponding to a particular value of the admissible aspect x2.

This implies the overall Hall deficit δ2H can be calculated simply by first focusing on the “grand

coalition” of all conflict states in each subgraph, and then summing over the subgraphs. Formula

(5) follows from this observation. Using it, we see that δ2H = 2+0 = 2 and, similarly, δ1H = 2 while
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δ3H = 4. Thus, in Figure 6, it is optimal for the receiver to ask the sender to only provide facts

about citizen 3. This is at least as good as any other set of admissible facts the receiver can specify.

It is straightforward to extend Proposition 2 to Cartesian problems with k > 1. For instance,

if k = 2, identical arguments to those in the proof of Proposition 2 establish that the receiver

will admit all possible values of two aspects i and j, and no values of any other aspects, i.e., fact

sets of the form F∗(x) = {(xi, xj)} are optimal. The choice of the two unrestricted aspects will

be determined by the Hall deficits of the subgraphs created by each pair of unrestricted aspects.

Given any such pair {i, j}, this Hall deficit can be calculated by focusing on the grand coalition

on a subgraph corresponding to a particular value of {xi, xj}, and then summing across these

disconnected subgraphs to obtain a formula similar to (5). We focus on Cartesian problems with

k = 1 in Proposition 2 purely for the sake of expositional convenience.

We can think of the receiver optimal admissible aspect(s) as a topic or subject matter imposed

on the sender before he makes his arguments. This optimal topic does not depend on v. Even

though the sender’s cardinal preferences v determine the arguments the sender will actually make,

the receiver does not need to predict these arguments to determine her choice of topic. Her optimal

topic describes the facts she would like to know, given only that the sender wants to accept the

proposal (i.e., x /∈ R). In particular, when R is empty and the sender always wants to accept the

proposal, the receiver’s optimal topic depends only on priors and her own preferences.

In Cartesian problems, with her choice of a topic, the receiver eliminates the sender’s freedom

to select facts. For each x, the sender is forced to reveal the values of the k aspects the receiver

accepts. He cannot choose between facts. This intuitive implication of Proposition 2 does not

extend to non-Cartesian problems. Figure 7 provides an example where each possible state is

equally likely and described by the values of two aspects. It is not a Cartesian problem because

{0, 1}×{0, 1} has zero probability, i.e., the set of possible states X is not a product set. The sender

must reveal the value of one of the two aspects and the initial (unrestricted) fact sets are of the

form F(x) = {x1, x2}. Receiver preferences take the form u ∈ {−1,+1}, R is empty and the sets

A and C are as depicted in panel (a). Panel (b) shows the corresponding (cloned) graph and it

allows subversion.

Proposition 2 does not cover this example and we have to use Theorem 3 to determine the

receiver-optimal admissible fact set. Consider the admissible fact set F ′ depicted in Figure 7(a)

that requires the sender to either reveal the value of x1 or of x2, provided the revealed value is

in the set {2, 3}. In effect, the receiver asks the sender to reveal which of the two aspects has a

value higher than its expected value. Such a fact set is feasible because F ′(x) is non-empty for each

x ∈ X. The graph corresponding to this fact set is obtained by deleting the dotted edges from the
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Figure 7: Admissible fact sets and Hall deficit II

graph in panel (b). It has δH = 3 and it allows the sender to make two matches.

It is not difficult to directly verify that this admissible fact set has the largest possible Hall

deficit among all possibilities.13 By Theorem 3, it is optimal for the receiver even though it gives

the sender flexibility to select facts in some states. Senders with different cardinal preferences v

may make use of this flexibility in different ways and make different matches. But all of them will

only make two matches in total.

In particular, this admissible fact set is better for the receiver than restricting the sender to

provide facts only on a particular aspect because such fact sets allow the sender to make three

matches, as can be easily verified from the figure. While eliminating the sender’s freedom to

select facts is always optimal in Cartesian problems, this is not generally true. What matters

is minimizing the diversity of possible arguments available to the sender across different conflict

states, i.e., finding the subgraph that has the largest Hall deficit.

Finally, even in Cartesian problems, if the receiver faces additional constraints on the admissible

fact set, she may have to leave the sender with some freedom to select facts. For instance, certain

facts U ⊆ F may be “undeniable”, in the sense that the receiver-optimal admissible fact set F∗ ⊆ F
has to satisfy the additional constraint U ⊆ F∗. Proposition 2 (in particular, expression 5) does

not cover such cases but Theorem 3 does.

13The non-emptiness constraint on F ′(x) applied to states of the form (x1, 2) and (2, x2) implies the sender must

be able to make at least two matches, and so the Hall deficit can at most be three, for any feasible fact set. The fact

set depicted in Figure 7 achieves this upper bound on δH .
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6 Additional remarks

In this section, we offer a brief discussion of some key features of our model, along with some

comparative statics results and alternative assumptions.

On receiver-optimal fact sets. So far we have assumed that in designing admissible fact sets

the receiver requires the sender to provide a supporting fact regardless of the decision the sender

recommends (or takes). We now ask what will happen if the receiver can specify admissible fact

sets F(x) that are empty when x ∈ R. Since in these states the sender will recommend d = r,

this amounts to the receiver waiving the requirement for the sender to provide a fact when he

recommends rejection.14

Relaxing some of the (non-emptiness) constraints on the receiver’s design problem in this way

cannot make the receiver worse off. To see that she may be strictly better off, consider an altered

version of the example of Figure 7. Suppose that instead of having zero probability, {0, 1}×{0, 1} =

R with p(R) > 0. This changes the example to a Cartesian problem. If every admissible fact set

F ′(x) (including for x ∈ R) must be non-empty, by Proposition 2, it is optimal for the receiver to

admit all values of one aspect. This results in a Hall deficit of two and allows the sender to make

three matches.

If instead the receiver can let admissible fact sets F ′(x) be empty for x ∈ R, her design problem

is the same as that in Figure 7, where {0, 1} × {0, 1} had zero probability. As shown earlier, the

receiver-optimal fact sets in Figure 7 admit xi ∈ {2, 3} as a fact, for i = 1, 2. This results in a Hall

deficit of three and allows the sender to make only two matches. So the receiver is strictly better

off from dropping the requirement of a supporting fact when the sender proposes rejection. More

generally, once we allow admissible fact sets to be empty for x ∈ R, Proposition 2 applies only to

Cartesian problems where R is empty.15

Comparative statics on fact sets. Fix the set of possible states X together with preferences

and priors that define a problem. Consider two senders, α and β , who differ only in the facts that

they have available in different states. Call α more adept than β if Fα(x) ⊇ Fβ(x) for all x ∈ X,

with strict inclusion for some x ∈ X. It is easy to see that, ceteris paribus, α must earn at least as

high an expected payoff as β because he can provide all the facts (and so make all the matches) β

can, and perhaps some more. We discuss below some examples where α and β do equally well and

identify conditions for α to do strictly better than β.

14We continue to require the sender to provide a fact when he recommends d = a, implying admissible fact sets

must be non-empty for each x /∈ R. Dropping this requirement would transform our constrained information design

problem to the standard unconstrained one.
15Theorem 3 continues to hold with the modification that F ′(x) must be non-empty only for x /∈ R.
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For the first example, suppose X is a n-dimensional product set and assume that Fβ (x) =

{ϕ ⊂ {x1, ..., xn} : |ϕ| = k} for some k < n. Let Fα (x) = {ϕ ⊂ {x1, ..., xn} : |ϕ| ≥ k}, so that α

is more adept than β. Compare the graph Gα that describes α’s problem to Gβ that describes

β’s problem. Note that whenever Fα(x) ∩ Fα(x
′) is non-empty for some x ∈ C and x′ ∈ A, so is

Fβ(x)∩Fβ(x
′). Thus, Gβ must have the same set of edges as Gα, i.e., the two graphs are identical.

This implies α and β must employ the same optimal strategy (specifically, matching) and so they

must be equally well off, and the receiver must also be equally well off from facing either of them.

For the second example, suppose β is the sender in the example of Figure 3, and assume that

any logical implication of a fact for β is a fact for the more adept sender α.16 For instance, β can

prove the fact ϕ =“citizen 1 benefits from the bill” in state x = (1, 0, 0). This implies the fact

ψ =“at least one citizen benefits from the bill” is also true at x. We suppose ψ is a fact for α at

x. Notice that by using ψ, α can match x = (1, 0, 0) with x′ = (0, 1, 1), which is not possible for β

given his fact sets. So, the graph Gα has more edges than Gβ. Nonetheless, α will do exactly as

well as β in this example since β has a subversive strategy. For a more adept sender α to do strictly

better than a less adept sender β (and the receiver to be worse off when facing α), it is necessary

and sufficient that Gα has a smaller Hall deficit than Gβ, by Theorem 2 (and Proposition 1).

This comparative static result does not extend to cases where the receiver first designs an

optimal set of admissible facts tailored to the sender she will face. The receiver may be able to

constrain a more adept sender more than a less adept one and so she may be prefer facing the

former. For instance, consider the example of Figure 6 and suppose β’s fact sets are as in that

example. But α also has all logical implications of β’s facts available as facts. As shown earlier, it

is optimal for the receiver to constrain β to reveal facts about citizen 3, giving a Hall deficit of 2.

But the receiver is better off against α because she can ask him simply to reveal whether or not a

majority benefits from the bill to obtain her ideal payoffs (i.e., a Hall deficit of six).17

Limited commitment. We assume the sender can commit to a reporting strategy. In general,

this commitment is valuable but there are some special cases where the sender has no incentive to

deviate from his strategy after learning the state. We conclude this section with a brief description

of some simple situations where the value of commitment is zero.

The easiest case to consider where commitment has no value is when the conditions of Theorem 1

obtain and the sender has a subversive reporting strategy. Since the sender achieves his ideal payoffs

16If ϕ ∈ Fβ(x) and ϕ⇒ ψ (logically), then ψ ∈ Fα(x).
17For an example where the receiver is worse off against the more adept sender, even after optimizing her admissible

fact sets, suppose X = {x, x′}, with x ∈ C and x′ ∈ A (and uniform priors with u ∈ {−1,+1}). Suppose Fα(x) =

{ϕ, ψ}, Fα(x
′) = {ϕ}, Fβ(x) = {ψ}, Fβ(x

′) = {ϕ}. Then F∗
α = {ϕ} and F∗

β = {ϕ, ψ} are receiver-optimal fact sets

for the two senders and the receiver is better off facing the less adept sender β.
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with such a strategy there is no incentive to deviate from it. Another easy case where the value of

commitment could be zero is one where the sender can deviate from the decision recommendation

but he is committed to the facts his strategy (or experiment) is supposed to disclose. When X is

a product set and the sender can reveal at least k components of the state, the sender can obtain

his commitment outcome by fully revealing the state x ∈ C whenever his optimal commitment

strategy recommends rejecting the proposal in that state.

The value of commitment is also zero in situations the receiver can detect that a deviation from

the experiment may have taken place but cannot deduce from the observed report what the actual

deviation is (e.g., an illegal after hours login or other suspicious activity). One can sustain the

commitment outcome in this case by assuming the receiver attaches degenerate (skeptical) beliefs

to some x ∈ C (and prefers rejection), after detecting a deviation has occurred, provided such a

state exists that is consistent with the facts revealed in the report; otherwise, the receiver follows

the sender’s recommendation. Since the sender always gets his desired decision for x ∈ A under his

optimal commitment strategy, these beliefs eliminate his incentive to deviate from the experiment.

A final case where the value of commitment is easy to pin down is the grain of truth specification

of our model where F(x) = {ϕ ∈ 2X : x ∈ ϕ}. In this case, the sender cannot profitably deviate

from his optimal commitment strategy after learning the state if and only if for each x ∈ C,

either the proposal is accepted for sure or it is rejected for sure. To see this, consider the only if

direction first and suppose the sender-optimal strategy under commitment induces both decisions

with positive probability for some x ∈ C. Then the sender has an incentive to deviate and reveal a

fact that is available to him, and which induces acceptance instead of rejection, after learning the

state is x.

For the if direction, note that the sender-optimal commitment strategy can always be imple-

mented by using the fact {x, x′} ∈ F(x) ∩ F(x′) for each matched pair {x, x′} with x ∈ C, x′ ∈ A.

Such a report cannot be mimicked by any x′′ ∈ C, x′′ ̸= x, and so the sender has no profitable

deviation available after he learns the state. Outside of these easy cases, the problem of identifying

sender-optimal incentive compatible reporting strategies is non-trivial and it is the subject of our

ongoing research.

7 Related literature

This paper belongs to the information design literature (Rayo and Segal, 2010; Kamenica and

Gentzkow, 2011; Bergemann and Morris, 2019; Kamenica, 2019). In contrast to the standard

belief-based approach, we use graph-theoretic techniques to capture constraints on the kinds of
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experiments that the sender can design. Bayes plausibility is built into the structure of our cloned

graphs in a way that ensures the obedience (or, deniability) constraint is satisfied for every matching.

The fact selection constraints are captured by the presence (or absence) of edges in our graph.

They imply that the sender can induce any posterior for which all states in the support share

some common fact. In contrast, Kolotilin, Corrao and Wolitzky (2024) and Kolotilin and Wolitzky

(2024) describe the Bayes plausible posteriors that can arise in a persuasion setting in the language

of (assortative) matching but they have no additional constraints on experiments.18

Our paper is also closely related to the work of Glazer and Rubinstein (2004, 2006). They

study a mechanism design problem in which receiver commits to a persuasion rule that selects a

fact after the sender sends a message. They characterize receiver-optimal persuasion rules, when

the sender has state-independent preferences (i.e., seeks to maximize the likelihood of the proposal

being accepted). We study the mirror-image problem of sender-optimal rules of persuasion, under

general preferences for both the sender and the receiver, when the sender has commitment power

and selects the facts to be revealed.19 We also solve the receiver’s problem of designing a restricted

set of admissible facts that imposes additional constraints on the arguments available to the sender.

The early literature on games of hard information disclosure (Grossman and Hart, 1980; Gross-

man, 1981; Milgrom, 1981; Dye, 1985; Matthews and Postlewaite, 1985; Milgrom and Roberts,

1986; Fishman and Hagerty, 1990; Seidmann and Winter, 1997) considers models without commit-

ment and focuses on receiver-preferred equilibria supported by skeptical off-path beliefs. According

to these beliefs, any undisclosed information is taken to be detrimental to the sender.20 In the

context of this literature, Glazer and Rubinstein (2004, 2006) provide a foundation for equilibrium

selection in favor of the receiver via conditions under which their receiver-optimal mechanism does

not need the receiver to commit. This equivalence between equilibria without commitment and

optimal mechanisms with commitment was also studied by Sher (2011), Hart, Kremer and Perry

(2017), and Rappaport (2024) in the context of disclosure models with hard evidence. We differ

from this literature in assuming the sender can commit to his strategy so that skeptical off-path

beliefs have no role to play. While this commitment power is valuable in general, in some special

cases it may be unnecessary. In such cases, we effectively select the sender’s preferred equilibrium

18Patil and Salant (2024) and Alon, Auster, Gayer and Minardi (2024) study non-Bayesian persuasion environments

where the sender’s experiments are subject to specific constraints.
19When the receiver’s verification strategy is deterministic in Glazer and Rubinstein (2004, 2006), the sender can

predict and voluntarily reveal the fact the receiver will choose to verify, so the key difference between these papers

and ours is our focus on sender-optimal constrained information design.
20Dziuda (2011) considers a disclosure game of where the sender can be an honest type, so that no reports are

off-path.
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in the induced game without commitment.

Dasgupta, Krasikov and Lamba (2022) study a monopoly pricing model where a buyer learns his

value by designing an experiment that either provides hard information about his type, or produces

a null signal that can be mimicked by all types. The buyer is worse off when he chooses whether

or not to disclose such hard information to the seller, compared to a benchmark where the buyer

can misreport his signal in any way. We consider more general constraints on information design

in a binary action sender-receiver setting.21

8 Conclusion

We consider the problem of a sender trying to persuade a receiver to accept or reject a proposal.

The sender must disclose some evidence but has a choice of what evidence to reveal. We show that

this constrained persuasion problem can be solved in generality by casting it as a matching problem

on a suitably chosen bipartite graph. The sender’s optimal strategy can be described both as a

maximum-weight matching and a maximum-cardinality matching on this graph. Hall’s theorem

provides the conditions under which the sender can persuade the receiver to implement the sender’s

ideal decisions. It also allows us to concisely describe the receiver’s expected payoffs and the set of

admissible facts that she would like to constrain the sender to.

9 Appendix

Lemma 3 If w(x) is irrational for some x ∈ X, a subversive reporting strategy exists if E[u|S ∪
N(S)] > 0 for all non-empty S ⊆ C.

Proof of Lemma 3. For each x ∈ X, approximate u(x) by û(x) ∈ Q, so that û(x) ≤ u(x) and

E[û | S ∪N(S)] > 0 for all S ⊆ C, where the expectation is taken with respect to the prior p. Such

an approximation exists by the density of rationals in the reals. For each x ∈ X approximate p(x)

by p̂(x) ∈ Q such that p̂(x) > p(x), and for each x /∈ C approximate p(x) by p̂(x) ∈ Q such that

p̂(x) < p(x), so that
∑

x∈X p̂(x) = 1 and E[û | S ∪ N(S)] ≥ 0 where the last expectation is taken

with respect to priors p̂. Applying Proposition 1 to the problem where u and p are replaced by û

and p̂ yields a C-perfect matching, and an associated subversive reporting strategy. Observe that

this matching in the approximated problem is still a valid matching in the original problem since

the approximations where chosen to ensure (1) is satisfied. ■

21Roesler and Szentes (2017), Ali, Lewis and Vasserman (2023) and Madarasz and Pycia (2024) also consider

models of information design in monopoly pricing environments.
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Proof of Lemma 1.

The linear program (4) can be expressed in matrix form, i.e., finding a vector σ which solves

max
σ

{v̂ · σ : Bσ ≤ b} . (6)

To see this, we let the rows of the vectors and matrices represent the list of ∪x∈cC∪cA {x} × M,

which means that row (x,m) of the vector σ gives the value of σ (x) [m]. Let v̂ be the vector of

v̂ (x) for each (x,m) (repeating the same value for each m ∈ Ma). The matrix B captures all of

the relevant constraints and can be expressed as

B =


B1

B2

B3

 ,

that is, B is the concatenation of three matrices B1, B2 and B3. Let B1, which represents the

first |Ma| rows of B be defined as follows. For each m ∈ Ma, we have a row where the element

multiplying σ(x)[m] takes on the value 1 if x ∈ cC and m ∈ Ma(x), the value −1 if x ∈ cA and

m ∈ Ma(x) and the value 0 otherwise. For B2, which represents the next |cC ∪ cA| rows we have

a row for each x where the element multiplying (x,m) takes on the value of 1 if m ∈ Ma(x) and 0

otherwise. For B3 which is a square matrix representing the next |∪x∈cC∪cA {x} ×M| rows of B

we just have B3 = −I, the negative of the identity matrix. The vector b is defined as |Ma| entries
of 0, followed by |cC ∪ cA| entries of 1, followed by |∪x∈cC∪cA {x} ×Ma| zero elements.

Theorem 21.5 of Schrijver (1998) states that BT is unimodular if and only if there exists an

integer vector σ which solves the matrix form linear program (6). We will show something stronger:

that B is totally unimodular (TUM), which implies that BT is TUM and hence unimodular. Recall

that an integral matrix B is TUM if every square submatrix of B has determinant equal to 0 or

±1. It is immediate that B is TUM if and only if B12 :=

(
B1

B2

)
is TUM, since the rows that

are removed have just one −1 value (and the rest of the values are zero), which means that if a

submatrix with that row included is not TUM then the submatrix formed by deleting this row and

the column where it takes on the value −1 must also fail to be TUM.

That B12 is TUM is due to a result attributed to David Gale in Heller and Tomkins (1956,

Appendix, pp. 253): A matrix consisting of entries 0, ±1 with exactly two non-zero entries in each

column is TUM if and only if the rows of the matrix can be partitioned into two sets, such that

two nonzero entries in a column are in the same partition element if they have opposite signs and

in different partition elements if they have the same sign (see Schrijver, 1998 example 3 on page

276). Each column of B12 has two non-zero entries, one in B1 and one in B2. The rows of B12 can
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be partitioned as follows: let one partition element be the rows of B2 involving x ∈ cC, and the

other partition element be all of the remaining rows. ■

Proof of Lemma 2. For each vertex x ∈ cC and x′ ∈ cA that is part of a matching on cG, we

can let σ(x)[m] = σ(x′)[m] = 1 for some m ∈ Ma, with σ(x
′′)[m] = 0 for all other x′′ ∈ .cA ∪ cC.

Such a message m exists because {x, x′} is an edge of cG and so they share a common fact. It is

easy to see such a strategy will will satisfy all constraints of (4). In the other direction, a feasible

pure strategy of problem (4) chooses m ∈ Ma with probability one on each vertex in cA∪ cC. Since

σ satisfies the first constraint of (4) (the deniability constraint), for each vertex in x ∈ cC there

will be (at least one) x′ ∈ cA that sends the same message m. Since every such pair {x, x′} must

have a fact in common, they correspond to an edge of cG, and so we can select each of these edges

as part of our matching. Observe that this may result in unmatched elements of cA, but that all

elements of cC sending message m are matched. Repeating the process for all messages m that are

picked by σ gives us a matching on cG. ■

Proof of Proposition 1. By the König-Ore formula (Lovász and Plummer, 2009, Theorem

1.3.1) any maximum-cardinality matching on cG (or ηG, since edge-weights are not relevant) results

in exactly

def (cG) = max
S⊆cC

[|S| − |N (S)|] (7)

vertices in cC that are unmatched.22 Since each clone of an x ∈ A∪C has the same set of neighbors

as any other clone, a solution S ⊆ cC of (7) must contain all the clones of a set S′ ⊆ C, implying

N (S) ⊆ cA must be the set of all clones of N(S′) ⊆ A. In other words, the maximization problem

in (7) can also be solved over subsets of C instead of cC. Since each unmatched vertex of cC is

worth an extra h utility to the receiver, we have

h (def (cG)) = h max
S⊆cC

[|S| − |N (S)|]

= hmax
S⊆C

∣∣{i
cx : x ∈ S

}∣∣− ∣∣{icx : x ∈ N (S)
}∣∣

= hmax
S⊆C

∑
x∈S

w(x)

h
−

∑
x∈N(S)

w(x)

h

= max
S⊆C

∑
x∈S

−p (x)u (x)−
∑

x∈N(S)

p (x)u (x)

= max
S⊆C

− ∑
x∈S∪N(S)

p (x)u (x)

 ,

22This number def (cG) is known as the cC-deficiency of cG. Since S can be empty def (cG) ≥ 0.
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using the fact that each x ∈ A ∪ C has w (x) /h clones. The expression for the receiver’s expected

utility now follows from noting that it equals

h[|cA ∪ cC|+ def (cG)] =
∑

x∈A∪C
p (x)u (x) + max

S⊆C

− ∑
x∈S∪N(S)

p (x)u (x)

 (8)

This completes the proof of the Corollary. ■
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